ASoC: fsl_ssi: Fix irq error check
[deliverable/linux.git] / sound / soc / fsl / fsl_ssi.c
CommitLineData
17467f23
TT
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
de623ece
MP
11 *
12 *
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
14 *
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
25 * rate.
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
17467f23
TT
31 */
32
33#include <linux/init.h>
dfa1a107 34#include <linux/io.h>
17467f23
TT
35#include <linux/module.h>
36#include <linux/interrupt.h>
95cd98f9 37#include <linux/clk.h>
17467f23
TT
38#include <linux/device.h>
39#include <linux/delay.h>
5a0e3ad6 40#include <linux/slab.h>
aafa85e7 41#include <linux/spinlock.h>
9c72a04c 42#include <linux/of.h>
dfa1a107
SG
43#include <linux/of_address.h>
44#include <linux/of_irq.h>
f0fba2ad 45#include <linux/of_platform.h>
17467f23 46
17467f23
TT
47#include <sound/core.h>
48#include <sound/pcm.h>
49#include <sound/pcm_params.h>
50#include <sound/initval.h>
51#include <sound/soc.h>
a8909c9b 52#include <sound/dmaengine_pcm.h>
17467f23 53
17467f23 54#include "fsl_ssi.h"
09ce1111 55#include "imx-pcm.h"
17467f23
TT
56
57/**
58 * FSLSSI_I2S_RATES: sample rates supported by the I2S
59 *
60 * This driver currently only supports the SSI running in I2S slave mode,
61 * which means the codec determines the sample rate. Therefore, we tell
62 * ALSA that we support all rates and let the codec driver decide what rates
63 * are really supported.
64 */
24710c97 65#define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
17467f23
TT
66
67/**
68 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
69 *
17467f23
TT
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU. This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order. The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness). Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in. So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79#ifdef __BIG_ENDIAN
80#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83#else
84#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87#endif
88
9368acc4
MP
89#define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
90 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
91 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
92#define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
93 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
94 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
c1953bfe
MP
95
96enum fsl_ssi_type {
97 FSL_SSI_MCP8610,
98 FSL_SSI_MX21,
0888efd1 99 FSL_SSI_MX35,
c1953bfe
MP
100 FSL_SSI_MX51,
101};
102
4e6ec0d9
MP
103struct fsl_ssi_reg_val {
104 u32 sier;
105 u32 srcr;
106 u32 stcr;
107 u32 scr;
108};
109
110struct fsl_ssi_rxtx_reg_val {
111 struct fsl_ssi_reg_val rx;
112 struct fsl_ssi_reg_val tx;
113};
43248122
MP
114static const struct regmap_config fsl_ssi_regconfig = {
115 .max_register = CCSR_SSI_SACCDIS,
116 .reg_bits = 32,
117 .val_bits = 32,
118 .reg_stride = 4,
119 .val_format_endian = REGMAP_ENDIAN_NATIVE,
120};
d5a908b2 121
fcdbadef
SH
122struct fsl_ssi_soc_data {
123 bool imx;
124 bool offline_config;
125 u32 sisr_write_mask;
126};
127
17467f23
TT
128/**
129 * fsl_ssi_private: per-SSI private data
130 *
43248122 131 * @reg: Pointer to the regmap registers
17467f23 132 * @irq: IRQ of this SSI
737a6b41
MP
133 * @cpu_dai_drv: CPU DAI driver for this device
134 *
135 * @dai_fmt: DAI configuration this device is currently used with
136 * @i2s_mode: i2s and network mode configuration of the device. Is used to
137 * switch between normal and i2s/network mode
138 * mode depending on the number of channels
139 * @use_dma: DMA is used or FIQ with stream filter
140 * @use_dual_fifo: DMA with support for both FIFOs used
141 * @fifo_deph: Depth of the SSI FIFOs
142 * @rxtx_reg_val: Specific register settings for receive/transmit configuration
143 *
144 * @clk: SSI clock
145 * @baudclk: SSI baud clock for master mode
146 * @baudclk_streams: Active streams that are using baudclk
147 * @bitclk_freq: bitclock frequency set by .set_dai_sysclk
148 *
149 * @dma_params_tx: DMA transmit parameters
150 * @dma_params_rx: DMA receive parameters
151 * @ssi_phys: physical address of the SSI registers
152 *
153 * @fiq_params: FIQ stream filtering parameters
154 *
155 * @pdev: Pointer to pdev used for deprecated fsl-ssi sound card
156 *
157 * @dbg_stats: Debugging statistics
158 *
159 * @soc: SoC specifc data
17467f23
TT
160 */
161struct fsl_ssi_private {
43248122 162 struct regmap *regs;
17467f23 163 unsigned int irq;
f0fba2ad 164 struct snd_soc_dai_driver cpu_dai_drv;
17467f23 165
737a6b41
MP
166 unsigned int dai_fmt;
167 u8 i2s_mode;
de623ece 168 bool use_dma;
0da9e55e 169 bool use_dual_fifo;
f4a43cab 170 bool has_ipg_clk_name;
737a6b41
MP
171 unsigned int fifo_depth;
172 struct fsl_ssi_rxtx_reg_val rxtx_reg_val;
173
95cd98f9 174 struct clk *clk;
737a6b41 175 struct clk *baudclk;
d429d8e3 176 unsigned int baudclk_streams;
8dd51e23 177 unsigned int bitclk_freq;
737a6b41
MP
178
179 /* DMA params */
a8909c9b
LPC
180 struct snd_dmaengine_dai_dma_data dma_params_tx;
181 struct snd_dmaengine_dai_dma_data dma_params_rx;
737a6b41
MP
182 dma_addr_t ssi_phys;
183
184 /* params for non-dma FIQ stream filtered mode */
de623ece 185 struct imx_pcm_fiq_params fiq_params;
737a6b41
MP
186
187 /* Used when using fsl-ssi as sound-card. This is only used by ppc and
188 * should be replaced with simple-sound-card. */
189 struct platform_device *pdev;
09ce1111 190
f138e621 191 struct fsl_ssi_dbg dbg_stats;
17467f23 192
fcdbadef 193 const struct fsl_ssi_soc_data *soc;
c1953bfe 194};
171d683d
MP
195
196/*
197 * imx51 and later SoCs have a slightly different IP that allows the
198 * SSI configuration while the SSI unit is running.
199 *
200 * More important, it is necessary on those SoCs to configure the
201 * sperate TX/RX DMA bits just before starting the stream
202 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
203 * sends any DMA requests to the SDMA unit, otherwise it is not defined
204 * how the SDMA unit handles the DMA request.
205 *
206 * SDMA units are present on devices starting at imx35 but the imx35
207 * reference manual states that the DMA bits should not be changed
208 * while the SSI unit is running (SSIEN). So we support the necessary
209 * online configuration of fsl-ssi starting at imx51.
210 */
171d683d 211
fcdbadef
SH
212static struct fsl_ssi_soc_data fsl_ssi_mpc8610 = {
213 .imx = false,
214 .offline_config = true,
215 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
216 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
217 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
218};
219
220static struct fsl_ssi_soc_data fsl_ssi_imx21 = {
221 .imx = true,
222 .offline_config = true,
223 .sisr_write_mask = 0,
224};
225
226static struct fsl_ssi_soc_data fsl_ssi_imx35 = {
227 .imx = true,
228 .offline_config = true,
229 .sisr_write_mask = CCSR_SSI_SISR_RFRC | CCSR_SSI_SISR_TFRC |
230 CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
231 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
232};
233
234static struct fsl_ssi_soc_data fsl_ssi_imx51 = {
235 .imx = true,
236 .offline_config = false,
237 .sisr_write_mask = CCSR_SSI_SISR_ROE0 | CCSR_SSI_SISR_ROE1 |
238 CCSR_SSI_SISR_TUE0 | CCSR_SSI_SISR_TUE1,
239};
240
241static const struct of_device_id fsl_ssi_ids[] = {
242 { .compatible = "fsl,mpc8610-ssi", .data = &fsl_ssi_mpc8610 },
243 { .compatible = "fsl,imx51-ssi", .data = &fsl_ssi_imx51 },
244 { .compatible = "fsl,imx35-ssi", .data = &fsl_ssi_imx35 },
245 { .compatible = "fsl,imx21-ssi", .data = &fsl_ssi_imx21 },
246 {}
247};
248MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
249
250static bool fsl_ssi_is_ac97(struct fsl_ssi_private *ssi_private)
251{
252 return !!(ssi_private->dai_fmt & SND_SOC_DAIFMT_AC97);
171d683d
MP
253}
254
8dd51e23
SH
255static bool fsl_ssi_is_i2s_master(struct fsl_ssi_private *ssi_private)
256{
257 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
258 SND_SOC_DAIFMT_CBS_CFS;
259}
260
cf4f7fc3
FF
261static bool fsl_ssi_is_i2s_cbm_cfs(struct fsl_ssi_private *ssi_private)
262{
263 return (ssi_private->dai_fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
264 SND_SOC_DAIFMT_CBM_CFS;
265}
17467f23
TT
266/**
267 * fsl_ssi_isr: SSI interrupt handler
268 *
269 * Although it's possible to use the interrupt handler to send and receive
270 * data to/from the SSI, we use the DMA instead. Programming is more
271 * complicated, but the performance is much better.
272 *
273 * This interrupt handler is used only to gather statistics.
274 *
275 * @irq: IRQ of the SSI device
276 * @dev_id: pointer to the ssi_private structure for this SSI device
277 */
278static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
279{
280 struct fsl_ssi_private *ssi_private = dev_id;
43248122 281 struct regmap *regs = ssi_private->regs;
17467f23 282 __be32 sisr;
0888efd1 283 __be32 sisr2;
17467f23
TT
284
285 /* We got an interrupt, so read the status register to see what we
286 were interrupted for. We mask it with the Interrupt Enable register
287 so that we only check for events that we're interested in.
288 */
43248122 289 regmap_read(regs, CCSR_SSI_SISR, &sisr);
17467f23 290
fcdbadef 291 sisr2 = sisr & ssi_private->soc->sisr_write_mask;
17467f23
TT
292 /* Clear the bits that we set */
293 if (sisr2)
43248122 294 regmap_write(regs, CCSR_SSI_SISR, sisr2);
17467f23 295
f138e621 296 fsl_ssi_dbg_isr(&ssi_private->dbg_stats, sisr);
9368acc4 297
f138e621 298 return IRQ_HANDLED;
9368acc4
MP
299}
300
4e6ec0d9
MP
301/*
302 * Enable/Disable all rx/tx config flags at once.
303 */
304static void fsl_ssi_rxtx_config(struct fsl_ssi_private *ssi_private,
305 bool enable)
306{
43248122 307 struct regmap *regs = ssi_private->regs;
4e6ec0d9
MP
308 struct fsl_ssi_rxtx_reg_val *vals = &ssi_private->rxtx_reg_val;
309
310 if (enable) {
43248122
MP
311 regmap_update_bits(regs, CCSR_SSI_SIER,
312 vals->rx.sier | vals->tx.sier,
313 vals->rx.sier | vals->tx.sier);
314 regmap_update_bits(regs, CCSR_SSI_SRCR,
315 vals->rx.srcr | vals->tx.srcr,
316 vals->rx.srcr | vals->tx.srcr);
317 regmap_update_bits(regs, CCSR_SSI_STCR,
318 vals->rx.stcr | vals->tx.stcr,
319 vals->rx.stcr | vals->tx.stcr);
4e6ec0d9 320 } else {
43248122
MP
321 regmap_update_bits(regs, CCSR_SSI_SRCR,
322 vals->rx.srcr | vals->tx.srcr, 0);
323 regmap_update_bits(regs, CCSR_SSI_STCR,
324 vals->rx.stcr | vals->tx.stcr, 0);
325 regmap_update_bits(regs, CCSR_SSI_SIER,
326 vals->rx.sier | vals->tx.sier, 0);
4e6ec0d9
MP
327 }
328}
329
65c961cc
MP
330/*
331 * Calculate the bits that have to be disabled for the current stream that is
332 * getting disabled. This keeps the bits enabled that are necessary for the
333 * second stream to work if 'stream_active' is true.
334 *
335 * Detailed calculation:
336 * These are the values that need to be active after disabling. For non-active
337 * second stream, this is 0:
338 * vals_stream * !!stream_active
339 *
340 * The following computes the overall differences between the setup for the
341 * to-disable stream and the active stream, a simple XOR:
342 * vals_disable ^ (vals_stream * !!(stream_active))
343 *
344 * The full expression adds a mask on all values we care about
345 */
346#define fsl_ssi_disable_val(vals_disable, vals_stream, stream_active) \
347 ((vals_disable) & \
348 ((vals_disable) ^ ((vals_stream) * (u32)!!(stream_active))))
349
4e6ec0d9
MP
350/*
351 * Enable/Disable a ssi configuration. You have to pass either
352 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
353 */
354static void fsl_ssi_config(struct fsl_ssi_private *ssi_private, bool enable,
355 struct fsl_ssi_reg_val *vals)
356{
43248122 357 struct regmap *regs = ssi_private->regs;
4e6ec0d9 358 struct fsl_ssi_reg_val *avals;
43248122
MP
359 int nr_active_streams;
360 u32 scr_val;
65c961cc
MP
361 int keep_active;
362
43248122
MP
363 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
364
365 nr_active_streams = !!(scr_val & CCSR_SSI_SCR_TE) +
366 !!(scr_val & CCSR_SSI_SCR_RE);
367
65c961cc
MP
368 if (nr_active_streams - 1 > 0)
369 keep_active = 1;
370 else
371 keep_active = 0;
4e6ec0d9
MP
372
373 /* Find the other direction values rx or tx which we do not want to
374 * modify */
375 if (&ssi_private->rxtx_reg_val.rx == vals)
376 avals = &ssi_private->rxtx_reg_val.tx;
377 else
378 avals = &ssi_private->rxtx_reg_val.rx;
379
380 /* If vals should be disabled, start with disabling the unit */
381 if (!enable) {
65c961cc
MP
382 u32 scr = fsl_ssi_disable_val(vals->scr, avals->scr,
383 keep_active);
43248122 384 regmap_update_bits(regs, CCSR_SSI_SCR, scr, 0);
4e6ec0d9
MP
385 }
386
387 /*
388 * We are running on a SoC which does not support online SSI
389 * reconfiguration, so we have to enable all necessary flags at once
390 * even if we do not use them later (capture and playback configuration)
391 */
fcdbadef 392 if (ssi_private->soc->offline_config) {
4e6ec0d9 393 if ((enable && !nr_active_streams) ||
65c961cc 394 (!enable && !keep_active))
4e6ec0d9
MP
395 fsl_ssi_rxtx_config(ssi_private, enable);
396
397 goto config_done;
398 }
399
400 /*
401 * Configure single direction units while the SSI unit is running
402 * (online configuration)
403 */
404 if (enable) {
43248122
MP
405 regmap_update_bits(regs, CCSR_SSI_SIER, vals->sier, vals->sier);
406 regmap_update_bits(regs, CCSR_SSI_SRCR, vals->srcr, vals->srcr);
407 regmap_update_bits(regs, CCSR_SSI_STCR, vals->stcr, vals->stcr);
4e6ec0d9
MP
408 } else {
409 u32 sier;
410 u32 srcr;
411 u32 stcr;
412
413 /*
414 * Disabling the necessary flags for one of rx/tx while the
415 * other stream is active is a little bit more difficult. We
416 * have to disable only those flags that differ between both
417 * streams (rx XOR tx) and that are set in the stream that is
418 * disabled now. Otherwise we could alter flags of the other
419 * stream
420 */
421
422 /* These assignments are simply vals without bits set in avals*/
65c961cc
MP
423 sier = fsl_ssi_disable_val(vals->sier, avals->sier,
424 keep_active);
425 srcr = fsl_ssi_disable_val(vals->srcr, avals->srcr,
426 keep_active);
427 stcr = fsl_ssi_disable_val(vals->stcr, avals->stcr,
428 keep_active);
4e6ec0d9 429
43248122
MP
430 regmap_update_bits(regs, CCSR_SSI_SRCR, srcr, 0);
431 regmap_update_bits(regs, CCSR_SSI_STCR, stcr, 0);
432 regmap_update_bits(regs, CCSR_SSI_SIER, sier, 0);
4e6ec0d9
MP
433 }
434
435config_done:
436 /* Enabling of subunits is done after configuration */
437 if (enable)
43248122 438 regmap_update_bits(regs, CCSR_SSI_SCR, vals->scr, vals->scr);
4e6ec0d9
MP
439}
440
441
442static void fsl_ssi_rx_config(struct fsl_ssi_private *ssi_private, bool enable)
443{
444 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.rx);
445}
446
447static void fsl_ssi_tx_config(struct fsl_ssi_private *ssi_private, bool enable)
448{
449 fsl_ssi_config(ssi_private, enable, &ssi_private->rxtx_reg_val.tx);
450}
451
6de83879
MP
452/*
453 * Setup rx/tx register values used to enable/disable the streams. These will
454 * be used later in fsl_ssi_config to setup the streams without the need to
455 * check for all different SSI modes.
456 */
457static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private *ssi_private)
458{
459 struct fsl_ssi_rxtx_reg_val *reg = &ssi_private->rxtx_reg_val;
460
461 reg->rx.sier = CCSR_SSI_SIER_RFF0_EN;
462 reg->rx.srcr = CCSR_SSI_SRCR_RFEN0;
463 reg->rx.scr = 0;
464 reg->tx.sier = CCSR_SSI_SIER_TFE0_EN;
465 reg->tx.stcr = CCSR_SSI_STCR_TFEN0;
466 reg->tx.scr = 0;
467
171d683d 468 if (!fsl_ssi_is_ac97(ssi_private)) {
6de83879
MP
469 reg->rx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE;
470 reg->rx.sier |= CCSR_SSI_SIER_RFF0_EN;
471 reg->tx.scr = CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE;
472 reg->tx.sier |= CCSR_SSI_SIER_TFE0_EN;
473 }
474
475 if (ssi_private->use_dma) {
476 reg->rx.sier |= CCSR_SSI_SIER_RDMAE;
477 reg->tx.sier |= CCSR_SSI_SIER_TDMAE;
478 } else {
479 reg->rx.sier |= CCSR_SSI_SIER_RIE;
480 reg->tx.sier |= CCSR_SSI_SIER_TIE;
481 }
482
483 reg->rx.sier |= FSLSSI_SIER_DBG_RX_FLAGS;
484 reg->tx.sier |= FSLSSI_SIER_DBG_TX_FLAGS;
485}
486
d8764646
MP
487static void fsl_ssi_setup_ac97(struct fsl_ssi_private *ssi_private)
488{
43248122 489 struct regmap *regs = ssi_private->regs;
d8764646
MP
490
491 /*
492 * Setup the clock control register
493 */
43248122
MP
494 regmap_write(regs, CCSR_SSI_STCCR,
495 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
496 regmap_write(regs, CCSR_SSI_SRCCR,
497 CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13));
d8764646
MP
498
499 /*
500 * Enable AC97 mode and startup the SSI
501 */
43248122
MP
502 regmap_write(regs, CCSR_SSI_SACNT,
503 CCSR_SSI_SACNT_AC97EN | CCSR_SSI_SACNT_FV);
504 regmap_write(regs, CCSR_SSI_SACCDIS, 0xff);
505 regmap_write(regs, CCSR_SSI_SACCEN, 0x300);
d8764646
MP
506
507 /*
508 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
509 * codec before a stream is started.
510 */
43248122
MP
511 regmap_update_bits(regs, CCSR_SSI_SCR,
512 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE,
513 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE);
d8764646 514
43248122 515 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_WAIT(3));
d8764646
MP
516}
517
17467f23
TT
518/**
519 * fsl_ssi_startup: create a new substream
520 *
521 * This is the first function called when a stream is opened.
522 *
523 * If this is the first stream open, then grab the IRQ and program most of
524 * the SSI registers.
525 */
dee89c4d
MB
526static int fsl_ssi_startup(struct snd_pcm_substream *substream,
527 struct snd_soc_dai *dai)
17467f23
TT
528{
529 struct snd_soc_pcm_runtime *rtd = substream->private_data;
5e538eca
TT
530 struct fsl_ssi_private *ssi_private =
531 snd_soc_dai_get_drvdata(rtd->cpu_dai);
f4a43cab
SW
532 int ret;
533
534 ret = clk_prepare_enable(ssi_private->clk);
535 if (ret)
536 return ret;
17467f23 537
0da9e55e
NC
538 /* When using dual fifo mode, it is safer to ensure an even period
539 * size. If appearing to an odd number while DMA always starts its
540 * task from fifo0, fifo1 would be neglected at the end of each
541 * period. But SSI would still access fifo1 with an invalid data.
542 */
543 if (ssi_private->use_dual_fifo)
544 snd_pcm_hw_constraint_step(substream->runtime, 0,
545 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
546
17467f23
TT
547 return 0;
548}
549
f4a43cab
SW
550/**
551 * fsl_ssi_shutdown: shutdown the SSI
552 *
553 */
554static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
555 struct snd_soc_dai *dai)
556{
557 struct snd_soc_pcm_runtime *rtd = substream->private_data;
558 struct fsl_ssi_private *ssi_private =
559 snd_soc_dai_get_drvdata(rtd->cpu_dai);
560
561 clk_disable_unprepare(ssi_private->clk);
562
563}
564
ee9daad4 565/**
8dd51e23 566 * fsl_ssi_set_bclk - configure Digital Audio Interface bit clock
ee9daad4
SH
567 *
568 * Note: This function can be only called when using SSI as DAI master
569 *
570 * Quick instruction for parameters:
571 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
572 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
573 */
8dd51e23
SH
574static int fsl_ssi_set_bclk(struct snd_pcm_substream *substream,
575 struct snd_soc_dai *cpu_dai,
576 struct snd_pcm_hw_params *hw_params)
ee9daad4
SH
577{
578 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
43248122 579 struct regmap *regs = ssi_private->regs;
ee9daad4
SH
580 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates, ret;
581 u32 pm = 999, div2, psr, stccr, mask, afreq, factor, i;
d8ced479 582 unsigned long clkrate, baudrate, tmprate;
ee9daad4 583 u64 sub, savesub = 100000;
8dd51e23 584 unsigned int freq;
d429d8e3 585 bool baudclk_is_used;
8dd51e23
SH
586
587 /* Prefer the explicitly set bitclock frequency */
588 if (ssi_private->bitclk_freq)
589 freq = ssi_private->bitclk_freq;
590 else
591 freq = params_channels(hw_params) * 32 * params_rate(hw_params);
ee9daad4
SH
592
593 /* Don't apply it to any non-baudclk circumstance */
594 if (IS_ERR(ssi_private->baudclk))
595 return -EINVAL;
596
d429d8e3
MP
597 baudclk_is_used = ssi_private->baudclk_streams & ~(BIT(substream->stream));
598
ee9daad4
SH
599 /* It should be already enough to divide clock by setting pm alone */
600 psr = 0;
601 div2 = 0;
602
603 factor = (div2 + 1) * (7 * psr + 1) * 2;
604
605 for (i = 0; i < 255; i++) {
606 /* The bclk rate must be smaller than 1/5 sysclk rate */
607 if (factor * (i + 1) < 5)
608 continue;
609
610 tmprate = freq * factor * (i + 2);
d429d8e3
MP
611
612 if (baudclk_is_used)
613 clkrate = clk_get_rate(ssi_private->baudclk);
614 else
615 clkrate = clk_round_rate(ssi_private->baudclk, tmprate);
ee9daad4 616
acf2c60a
TT
617 clkrate /= factor;
618 afreq = clkrate / (i + 1);
ee9daad4
SH
619
620 if (freq == afreq)
621 sub = 0;
622 else if (freq / afreq == 1)
623 sub = freq - afreq;
624 else if (afreq / freq == 1)
625 sub = afreq - freq;
626 else
627 continue;
628
629 /* Calculate the fraction */
630 sub *= 100000;
631 do_div(sub, freq);
632
633 if (sub < savesub) {
634 baudrate = tmprate;
635 savesub = sub;
636 pm = i;
637 }
638
639 /* We are lucky */
640 if (savesub == 0)
641 break;
642 }
643
644 /* No proper pm found if it is still remaining the initial value */
645 if (pm == 999) {
646 dev_err(cpu_dai->dev, "failed to handle the required sysclk\n");
647 return -EINVAL;
648 }
649
650 stccr = CCSR_SSI_SxCCR_PM(pm + 1) | (div2 ? CCSR_SSI_SxCCR_DIV2 : 0) |
651 (psr ? CCSR_SSI_SxCCR_PSR : 0);
652 mask = CCSR_SSI_SxCCR_PM_MASK | CCSR_SSI_SxCCR_DIV2 |
653 CCSR_SSI_SxCCR_PSR;
654
8dd51e23 655 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK || synchronous)
43248122 656 regmap_update_bits(regs, CCSR_SSI_STCCR, mask, stccr);
ee9daad4 657 else
43248122 658 regmap_update_bits(regs, CCSR_SSI_SRCCR, mask, stccr);
ee9daad4 659
d429d8e3 660 if (!baudclk_is_used) {
ee9daad4
SH
661 ret = clk_set_rate(ssi_private->baudclk, baudrate);
662 if (ret) {
ee9daad4
SH
663 dev_err(cpu_dai->dev, "failed to set baudclk rate\n");
664 return -EINVAL;
665 }
ee9daad4 666 }
ee9daad4
SH
667
668 return 0;
669}
670
8dd51e23
SH
671static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
672 int clk_id, unsigned int freq, int dir)
673{
674 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
675
676 ssi_private->bitclk_freq = freq;
677
678 return 0;
679}
680
17467f23 681/**
85ef2375 682 * fsl_ssi_hw_params - program the sample size
17467f23
TT
683 *
684 * Most of the SSI registers have been programmed in the startup function,
685 * but the word length must be programmed here. Unfortunately, programming
686 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
687 * cause a problem with supporting simultaneous playback and capture. If
688 * the SSI is already playing a stream, then that stream may be temporarily
689 * stopped when you start capture.
690 *
691 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
692 * clock master.
693 */
85ef2375
TT
694static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
695 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
17467f23 696{
f0fba2ad 697 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
43248122 698 struct regmap *regs = ssi_private->regs;
2924a998 699 unsigned int channels = params_channels(hw_params);
5e538eca
TT
700 unsigned int sample_size =
701 snd_pcm_format_width(params_format(hw_params));
702 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
8dd51e23 703 int ret;
43248122
MP
704 u32 scr_val;
705 int enabled;
706
707 regmap_read(regs, CCSR_SSI_SCR, &scr_val);
708 enabled = scr_val & CCSR_SSI_SCR_SSIEN;
17467f23 709
5e538eca
TT
710 /*
711 * If we're in synchronous mode, and the SSI is already enabled,
712 * then STCCR is already set properly.
713 */
714 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
715 return 0;
17467f23 716
8dd51e23
SH
717 if (fsl_ssi_is_i2s_master(ssi_private)) {
718 ret = fsl_ssi_set_bclk(substream, cpu_dai, hw_params);
719 if (ret)
720 return ret;
d429d8e3
MP
721
722 /* Do not enable the clock if it is already enabled */
723 if (!(ssi_private->baudclk_streams & BIT(substream->stream))) {
724 ret = clk_prepare_enable(ssi_private->baudclk);
725 if (ret)
726 return ret;
727
728 ssi_private->baudclk_streams |= BIT(substream->stream);
729 }
8dd51e23
SH
730 }
731
cf4f7fc3
FF
732 if (!fsl_ssi_is_ac97(ssi_private)) {
733 u8 i2smode;
734 /*
735 * Switch to normal net mode in order to have a frame sync
736 * signal every 32 bits instead of 16 bits
737 */
738 if (fsl_ssi_is_i2s_cbm_cfs(ssi_private) && sample_size == 16)
739 i2smode = CCSR_SSI_SCR_I2S_MODE_NORMAL |
740 CCSR_SSI_SCR_NET;
741 else
742 i2smode = ssi_private->i2s_mode;
743
744 regmap_update_bits(regs, CCSR_SSI_SCR,
745 CCSR_SSI_SCR_NET | CCSR_SSI_SCR_I2S_MODE_MASK,
746 channels == 1 ? 0 : i2smode);
747 }
748
5e538eca
TT
749 /*
750 * FIXME: The documentation says that SxCCR[WL] should not be
751 * modified while the SSI is enabled. The only time this can
752 * happen is if we're trying to do simultaneous playback and
753 * capture in asynchronous mode. Unfortunately, I have been enable
754 * to get that to work at all on the P1022DS. Therefore, we don't
755 * bother to disable/enable the SSI when setting SxCCR[WL], because
756 * the SSI will stop anyway. Maybe one day, this will get fixed.
757 */
17467f23 758
5e538eca
TT
759 /* In synchronous mode, the SSI uses STCCR for capture */
760 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
761 ssi_private->cpu_dai_drv.symmetric_rates)
43248122
MP
762 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_WL_MASK,
763 wl);
5e538eca 764 else
43248122
MP
765 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_WL_MASK,
766 wl);
17467f23
TT
767
768 return 0;
769}
770
d429d8e3
MP
771static int fsl_ssi_hw_free(struct snd_pcm_substream *substream,
772 struct snd_soc_dai *cpu_dai)
773{
774 struct snd_soc_pcm_runtime *rtd = substream->private_data;
775 struct fsl_ssi_private *ssi_private =
776 snd_soc_dai_get_drvdata(rtd->cpu_dai);
777
778 if (fsl_ssi_is_i2s_master(ssi_private) &&
779 ssi_private->baudclk_streams & BIT(substream->stream)) {
780 clk_disable_unprepare(ssi_private->baudclk);
781 ssi_private->baudclk_streams &= ~BIT(substream->stream);
782 }
783
784 return 0;
785}
786
85151461
MT
787static int _fsl_ssi_set_dai_fmt(struct device *dev,
788 struct fsl_ssi_private *ssi_private,
789 unsigned int fmt)
aafa85e7 790{
43248122 791 struct regmap *regs = ssi_private->regs;
aafa85e7 792 u32 strcr = 0, stcr, srcr, scr, mask;
2b0db996
MP
793 u8 wm;
794
171d683d
MP
795 ssi_private->dai_fmt = fmt;
796
d429d8e3 797 if (fsl_ssi_is_i2s_master(ssi_private) && IS_ERR(ssi_private->baudclk)) {
85151461 798 dev_err(dev, "baudclk is missing which is necessary for master mode\n");
d429d8e3
MP
799 return -EINVAL;
800 }
801
2b0db996 802 fsl_ssi_setup_reg_vals(ssi_private);
aafa85e7 803
43248122
MP
804 regmap_read(regs, CCSR_SSI_SCR, &scr);
805 scr &= ~(CCSR_SSI_SCR_SYN | CCSR_SSI_SCR_I2S_MODE_MASK);
50489479 806 scr |= CCSR_SSI_SCR_SYNC_TX_FS;
aafa85e7
NC
807
808 mask = CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR |
809 CCSR_SSI_STCR_TSCKP | CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TFSL |
810 CCSR_SSI_STCR_TEFS;
43248122
MP
811 regmap_read(regs, CCSR_SSI_STCR, &stcr);
812 regmap_read(regs, CCSR_SSI_SRCR, &srcr);
813 stcr &= ~mask;
814 srcr &= ~mask;
aafa85e7 815
07a28dbe 816 ssi_private->i2s_mode = CCSR_SSI_SCR_NET;
aafa85e7
NC
817 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
818 case SND_SOC_DAIFMT_I2S:
819 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
cf4f7fc3 820 case SND_SOC_DAIFMT_CBM_CFS:
aafa85e7 821 case SND_SOC_DAIFMT_CBS_CFS:
07a28dbe 822 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_MASTER;
43248122
MP
823 regmap_update_bits(regs, CCSR_SSI_STCCR,
824 CCSR_SSI_SxCCR_DC_MASK,
825 CCSR_SSI_SxCCR_DC(2));
826 regmap_update_bits(regs, CCSR_SSI_SRCCR,
827 CCSR_SSI_SxCCR_DC_MASK,
828 CCSR_SSI_SxCCR_DC(2));
aafa85e7
NC
829 break;
830 case SND_SOC_DAIFMT_CBM_CFM:
07a28dbe 831 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_SLAVE;
aafa85e7
NC
832 break;
833 default:
834 return -EINVAL;
835 }
aafa85e7
NC
836
837 /* Data on rising edge of bclk, frame low, 1clk before data */
838 strcr |= CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TSCKP |
839 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
840 break;
841 case SND_SOC_DAIFMT_LEFT_J:
842 /* Data on rising edge of bclk, frame high */
843 strcr |= CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TSCKP;
844 break;
845 case SND_SOC_DAIFMT_DSP_A:
846 /* Data on rising edge of bclk, frame high, 1clk before data */
847 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
848 CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TEFS;
849 break;
850 case SND_SOC_DAIFMT_DSP_B:
851 /* Data on rising edge of bclk, frame high */
852 strcr |= CCSR_SSI_STCR_TFSL | CCSR_SSI_STCR_TSCKP |
853 CCSR_SSI_STCR_TXBIT0;
854 break;
2b0db996 855 case SND_SOC_DAIFMT_AC97:
07a28dbe 856 ssi_private->i2s_mode |= CCSR_SSI_SCR_I2S_MODE_NORMAL;
2b0db996 857 break;
aafa85e7
NC
858 default:
859 return -EINVAL;
860 }
2b0db996 861 scr |= ssi_private->i2s_mode;
aafa85e7
NC
862
863 /* DAI clock inversion */
864 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
865 case SND_SOC_DAIFMT_NB_NF:
866 /* Nothing to do for both normal cases */
867 break;
868 case SND_SOC_DAIFMT_IB_NF:
869 /* Invert bit clock */
870 strcr ^= CCSR_SSI_STCR_TSCKP;
871 break;
872 case SND_SOC_DAIFMT_NB_IF:
873 /* Invert frame clock */
874 strcr ^= CCSR_SSI_STCR_TFSI;
875 break;
876 case SND_SOC_DAIFMT_IB_IF:
877 /* Invert both clocks */
878 strcr ^= CCSR_SSI_STCR_TSCKP;
879 strcr ^= CCSR_SSI_STCR_TFSI;
880 break;
881 default:
882 return -EINVAL;
883 }
884
885 /* DAI clock master masks */
886 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
887 case SND_SOC_DAIFMT_CBS_CFS:
888 strcr |= CCSR_SSI_STCR_TFDIR | CCSR_SSI_STCR_TXDIR;
889 scr |= CCSR_SSI_SCR_SYS_CLK_EN;
890 break;
891 case SND_SOC_DAIFMT_CBM_CFM:
892 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
893 break;
cf4f7fc3
FF
894 case SND_SOC_DAIFMT_CBM_CFS:
895 strcr &= ~CCSR_SSI_STCR_TXDIR;
896 strcr |= CCSR_SSI_STCR_TFDIR;
897 scr &= ~CCSR_SSI_SCR_SYS_CLK_EN;
898 break;
aafa85e7
NC
899 default:
900 return -EINVAL;
901 }
902
903 stcr |= strcr;
904 srcr |= strcr;
905
906 if (ssi_private->cpu_dai_drv.symmetric_rates) {
907 /* Need to clear RXDIR when using SYNC mode */
908 srcr &= ~CCSR_SSI_SRCR_RXDIR;
909 scr |= CCSR_SSI_SCR_SYN;
910 }
911
43248122
MP
912 regmap_write(regs, CCSR_SSI_STCR, stcr);
913 regmap_write(regs, CCSR_SSI_SRCR, srcr);
914 regmap_write(regs, CCSR_SSI_SCR, scr);
aafa85e7 915
2b0db996
MP
916 /*
917 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
918 * use FIFO 1. We program the transmit water to signal a DMA transfer
919 * if there are only two (or fewer) elements left in the FIFO. Two
920 * elements equals one frame (left channel, right channel). This value,
921 * however, depends on the depth of the transmit buffer.
922 *
923 * We set the watermark on the same level as the DMA burstsize. For
924 * fiq it is probably better to use the biggest possible watermark
925 * size.
926 */
927 if (ssi_private->use_dma)
928 wm = ssi_private->fifo_depth - 2;
929 else
930 wm = ssi_private->fifo_depth;
931
43248122
MP
932 regmap_write(regs, CCSR_SSI_SFCSR,
933 CCSR_SSI_SFCSR_TFWM0(wm) | CCSR_SSI_SFCSR_RFWM0(wm) |
934 CCSR_SSI_SFCSR_TFWM1(wm) | CCSR_SSI_SFCSR_RFWM1(wm));
2b0db996
MP
935
936 if (ssi_private->use_dual_fifo) {
43248122 937 regmap_update_bits(regs, CCSR_SSI_SRCR, CCSR_SSI_SRCR_RFEN1,
2b0db996 938 CCSR_SSI_SRCR_RFEN1);
43248122 939 regmap_update_bits(regs, CCSR_SSI_STCR, CCSR_SSI_STCR_TFEN1,
2b0db996 940 CCSR_SSI_STCR_TFEN1);
43248122 941 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_TCH_EN,
2b0db996
MP
942 CCSR_SSI_SCR_TCH_EN);
943 }
944
945 if (fmt & SND_SOC_DAIFMT_AC97)
946 fsl_ssi_setup_ac97(ssi_private);
947
aafa85e7 948 return 0;
85e59af2
MP
949
950}
951
952/**
953 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
954 */
955static int fsl_ssi_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
956{
957 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
958
85151461 959 return _fsl_ssi_set_dai_fmt(cpu_dai->dev, ssi_private, fmt);
aafa85e7
NC
960}
961
aafa85e7
NC
962/**
963 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
964 *
965 * Note: This function can be only called when using SSI as DAI master
966 */
967static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
968 u32 rx_mask, int slots, int slot_width)
969{
970 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
43248122 971 struct regmap *regs = ssi_private->regs;
aafa85e7
NC
972 u32 val;
973
974 /* The slot number should be >= 2 if using Network mode or I2S mode */
43248122
MP
975 regmap_read(regs, CCSR_SSI_SCR, &val);
976 val &= CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_NET;
aafa85e7
NC
977 if (val && slots < 2) {
978 dev_err(cpu_dai->dev, "slot number should be >= 2 in I2S or NET\n");
979 return -EINVAL;
980 }
981
43248122 982 regmap_update_bits(regs, CCSR_SSI_STCCR, CCSR_SSI_SxCCR_DC_MASK,
aafa85e7 983 CCSR_SSI_SxCCR_DC(slots));
43248122 984 regmap_update_bits(regs, CCSR_SSI_SRCCR, CCSR_SSI_SxCCR_DC_MASK,
aafa85e7
NC
985 CCSR_SSI_SxCCR_DC(slots));
986
987 /* The register SxMSKs needs SSI to provide essential clock due to
988 * hardware design. So we here temporarily enable SSI to set them.
989 */
43248122
MP
990 regmap_read(regs, CCSR_SSI_SCR, &val);
991 val &= CCSR_SSI_SCR_SSIEN;
992 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN,
993 CCSR_SSI_SCR_SSIEN);
aafa85e7 994
43248122
MP
995 regmap_write(regs, CCSR_SSI_STMSK, tx_mask);
996 regmap_write(regs, CCSR_SSI_SRMSK, rx_mask);
aafa85e7 997
43248122 998 regmap_update_bits(regs, CCSR_SSI_SCR, CCSR_SSI_SCR_SSIEN, val);
aafa85e7
NC
999
1000 return 0;
1001}
1002
17467f23
TT
1003/**
1004 * fsl_ssi_trigger: start and stop the DMA transfer.
1005 *
1006 * This function is called by ALSA to start, stop, pause, and resume the DMA
1007 * transfer of data.
1008 *
1009 * The DMA channel is in external master start and pause mode, which
1010 * means the SSI completely controls the flow of data.
1011 */
dee89c4d
MB
1012static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
1013 struct snd_soc_dai *dai)
17467f23
TT
1014{
1015 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 1016 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
43248122 1017 struct regmap *regs = ssi_private->regs;
9b443e3d 1018
17467f23
TT
1019 switch (cmd) {
1020 case SNDRV_PCM_TRIGGER_START:
b20e53a8 1021 case SNDRV_PCM_TRIGGER_RESUME:
17467f23 1022 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
a4d11fe5 1023 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
6de83879 1024 fsl_ssi_tx_config(ssi_private, true);
a4d11fe5 1025 else
6de83879 1026 fsl_ssi_rx_config(ssi_private, true);
17467f23
TT
1027 break;
1028
1029 case SNDRV_PCM_TRIGGER_STOP:
b20e53a8 1030 case SNDRV_PCM_TRIGGER_SUSPEND:
17467f23
TT
1031 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1032 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
6de83879 1033 fsl_ssi_tx_config(ssi_private, false);
17467f23 1034 else
6de83879 1035 fsl_ssi_rx_config(ssi_private, false);
17467f23
TT
1036 break;
1037
1038 default:
1039 return -EINVAL;
1040 }
1041
171d683d 1042 if (fsl_ssi_is_ac97(ssi_private)) {
a5a7ee7c 1043 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
43248122 1044 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_TX_CLR);
a5a7ee7c 1045 else
43248122 1046 regmap_write(regs, CCSR_SSI_SOR, CCSR_SSI_SOR_RX_CLR);
a5a7ee7c 1047 }
9b443e3d 1048
17467f23
TT
1049 return 0;
1050}
1051
fc8ba7f9
LPC
1052static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
1053{
1054 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
1055
fcdbadef 1056 if (ssi_private->soc->imx && ssi_private->use_dma) {
fc8ba7f9
LPC
1057 dai->playback_dma_data = &ssi_private->dma_params_tx;
1058 dai->capture_dma_data = &ssi_private->dma_params_rx;
1059 }
1060
1061 return 0;
1062}
1063
85e7652d 1064static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
6335d055 1065 .startup = fsl_ssi_startup,
f4a43cab 1066 .shutdown = fsl_ssi_shutdown,
6335d055 1067 .hw_params = fsl_ssi_hw_params,
d429d8e3 1068 .hw_free = fsl_ssi_hw_free,
aafa85e7
NC
1069 .set_fmt = fsl_ssi_set_dai_fmt,
1070 .set_sysclk = fsl_ssi_set_dai_sysclk,
1071 .set_tdm_slot = fsl_ssi_set_dai_tdm_slot,
6335d055 1072 .trigger = fsl_ssi_trigger,
6335d055
EM
1073};
1074
f0fba2ad
LG
1075/* Template for the CPU dai driver structure */
1076static struct snd_soc_dai_driver fsl_ssi_dai_template = {
fc8ba7f9 1077 .probe = fsl_ssi_dai_probe,
17467f23 1078 .playback = {
e3655004 1079 .stream_name = "CPU-Playback",
2924a998 1080 .channels_min = 1,
17467f23
TT
1081 .channels_max = 2,
1082 .rates = FSLSSI_I2S_RATES,
1083 .formats = FSLSSI_I2S_FORMATS,
1084 },
1085 .capture = {
e3655004 1086 .stream_name = "CPU-Capture",
2924a998 1087 .channels_min = 1,
17467f23
TT
1088 .channels_max = 2,
1089 .rates = FSLSSI_I2S_RATES,
1090 .formats = FSLSSI_I2S_FORMATS,
1091 },
6335d055 1092 .ops = &fsl_ssi_dai_ops,
17467f23
TT
1093};
1094
3580aa10
KM
1095static const struct snd_soc_component_driver fsl_ssi_component = {
1096 .name = "fsl-ssi",
1097};
1098
cd7f0295 1099static struct snd_soc_dai_driver fsl_ssi_ac97_dai = {
bc263214 1100 .bus_control = true,
cd7f0295
MP
1101 .playback = {
1102 .stream_name = "AC97 Playback",
1103 .channels_min = 2,
1104 .channels_max = 2,
1105 .rates = SNDRV_PCM_RATE_8000_48000,
1106 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1107 },
1108 .capture = {
1109 .stream_name = "AC97 Capture",
1110 .channels_min = 2,
1111 .channels_max = 2,
1112 .rates = SNDRV_PCM_RATE_48000,
1113 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1114 },
a5a7ee7c 1115 .ops = &fsl_ssi_dai_ops,
cd7f0295
MP
1116};
1117
1118
1119static struct fsl_ssi_private *fsl_ac97_data;
1120
a851a2bb 1121static void fsl_ssi_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
cd7f0295
MP
1122 unsigned short val)
1123{
43248122 1124 struct regmap *regs = fsl_ac97_data->regs;
cd7f0295
MP
1125 unsigned int lreg;
1126 unsigned int lval;
1127
1128 if (reg > 0x7f)
1129 return;
1130
1131
1132 lreg = reg << 12;
43248122 1133 regmap_write(regs, CCSR_SSI_SACADD, lreg);
cd7f0295
MP
1134
1135 lval = val << 4;
43248122 1136 regmap_write(regs, CCSR_SSI_SACDAT, lval);
cd7f0295 1137
43248122 1138 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
cd7f0295
MP
1139 CCSR_SSI_SACNT_WR);
1140 udelay(100);
1141}
1142
a851a2bb 1143static unsigned short fsl_ssi_ac97_read(struct snd_ac97 *ac97,
cd7f0295
MP
1144 unsigned short reg)
1145{
43248122 1146 struct regmap *regs = fsl_ac97_data->regs;
cd7f0295
MP
1147
1148 unsigned short val = -1;
43248122 1149 u32 reg_val;
cd7f0295
MP
1150 unsigned int lreg;
1151
1152 lreg = (reg & 0x7f) << 12;
43248122
MP
1153 regmap_write(regs, CCSR_SSI_SACADD, lreg);
1154 regmap_update_bits(regs, CCSR_SSI_SACNT, CCSR_SSI_SACNT_RDWR_MASK,
cd7f0295
MP
1155 CCSR_SSI_SACNT_RD);
1156
1157 udelay(100);
1158
43248122
MP
1159 regmap_read(regs, CCSR_SSI_SACDAT, &reg_val);
1160 val = (reg_val >> 4) & 0xffff;
cd7f0295
MP
1161
1162 return val;
1163}
1164
1165static struct snd_ac97_bus_ops fsl_ssi_ac97_ops = {
1166 .read = fsl_ssi_ac97_read,
1167 .write = fsl_ssi_ac97_write,
1168};
1169
17467f23 1170/**
f0fba2ad 1171 * Make every character in a string lower-case
17467f23 1172 */
f0fba2ad
LG
1173static void make_lowercase(char *s)
1174{
1175 char *p = s;
1176 char c;
1177
1178 while ((c = *p)) {
1179 if ((c >= 'A') && (c <= 'Z'))
1180 *p = c + ('a' - 'A');
1181 p++;
1182 }
1183}
1184
49da09e2 1185static int fsl_ssi_imx_probe(struct platform_device *pdev,
4d9b7926 1186 struct fsl_ssi_private *ssi_private, void __iomem *iomem)
49da09e2
MP
1187{
1188 struct device_node *np = pdev->dev.of_node;
ed0f1604 1189 u32 dmas[4];
49da09e2
MP
1190 int ret;
1191
f4a43cab
SW
1192 if (ssi_private->has_ipg_clk_name)
1193 ssi_private->clk = devm_clk_get(&pdev->dev, "ipg");
1194 else
1195 ssi_private->clk = devm_clk_get(&pdev->dev, NULL);
49da09e2
MP
1196 if (IS_ERR(ssi_private->clk)) {
1197 ret = PTR_ERR(ssi_private->clk);
1198 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
1199 return ret;
1200 }
1201
f4a43cab
SW
1202 if (!ssi_private->has_ipg_clk_name) {
1203 ret = clk_prepare_enable(ssi_private->clk);
1204 if (ret) {
1205 dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
1206 return ret;
1207 }
49da09e2
MP
1208 }
1209
1210 /* For those SLAVE implementations, we ingore non-baudclk cases
1211 * and, instead, abandon MASTER mode that needs baud clock.
1212 */
1213 ssi_private->baudclk = devm_clk_get(&pdev->dev, "baud");
1214 if (IS_ERR(ssi_private->baudclk))
1215 dev_dbg(&pdev->dev, "could not get baud clock: %ld\n",
1216 PTR_ERR(ssi_private->baudclk));
49da09e2
MP
1217
1218 /*
1219 * We have burstsize be "fifo_depth - 2" to match the SSI
1220 * watermark setting in fsl_ssi_startup().
1221 */
1222 ssi_private->dma_params_tx.maxburst = ssi_private->fifo_depth - 2;
1223 ssi_private->dma_params_rx.maxburst = ssi_private->fifo_depth - 2;
43248122
MP
1224 ssi_private->dma_params_tx.addr = ssi_private->ssi_phys + CCSR_SSI_STX0;
1225 ssi_private->dma_params_rx.addr = ssi_private->ssi_phys + CCSR_SSI_SRX0;
49da09e2 1226
ed0f1604
MP
1227 ret = !of_property_read_u32_array(np, "dmas", dmas, 4);
1228 if (ssi_private->use_dma && !ret && dmas[2] == IMX_DMATYPE_SSI_DUAL) {
49da09e2
MP
1229 ssi_private->use_dual_fifo = true;
1230 /* When using dual fifo mode, we need to keep watermark
1231 * as even numbers due to dma script limitation.
1232 */
1233 ssi_private->dma_params_tx.maxburst &= ~0x1;
1234 ssi_private->dma_params_rx.maxburst &= ~0x1;
1235 }
1236
4d9b7926
MP
1237 if (!ssi_private->use_dma) {
1238
1239 /*
1240 * Some boards use an incompatible codec. To get it
1241 * working, we are using imx-fiq-pcm-audio, that
1242 * can handle those codecs. DMA is not possible in this
1243 * situation.
1244 */
1245
1246 ssi_private->fiq_params.irq = ssi_private->irq;
1247 ssi_private->fiq_params.base = iomem;
1248 ssi_private->fiq_params.dma_params_rx =
1249 &ssi_private->dma_params_rx;
1250 ssi_private->fiq_params.dma_params_tx =
1251 &ssi_private->dma_params_tx;
1252
1253 ret = imx_pcm_fiq_init(pdev, &ssi_private->fiq_params);
1254 if (ret)
1255 goto error_pcm;
1256 } else {
1257 ret = imx_pcm_dma_init(pdev);
1258 if (ret)
1259 goto error_pcm;
1260 }
1261
49da09e2 1262 return 0;
4d9b7926
MP
1263
1264error_pcm:
4d9b7926 1265
f4a43cab
SW
1266 if (!ssi_private->has_ipg_clk_name)
1267 clk_disable_unprepare(ssi_private->clk);
4d9b7926 1268 return ret;
49da09e2
MP
1269}
1270
1271static void fsl_ssi_imx_clean(struct platform_device *pdev,
1272 struct fsl_ssi_private *ssi_private)
1273{
4d9b7926
MP
1274 if (!ssi_private->use_dma)
1275 imx_pcm_fiq_exit(pdev);
f4a43cab
SW
1276 if (!ssi_private->has_ipg_clk_name)
1277 clk_disable_unprepare(ssi_private->clk);
49da09e2
MP
1278}
1279
a0a3d518 1280static int fsl_ssi_probe(struct platform_device *pdev)
17467f23 1281{
17467f23
TT
1282 struct fsl_ssi_private *ssi_private;
1283 int ret = 0;
38fec727 1284 struct device_node *np = pdev->dev.of_node;
c1953bfe 1285 const struct of_device_id *of_id;
f0fba2ad 1286 const char *p, *sprop;
8e9d8690 1287 const uint32_t *iprop;
f0fba2ad 1288 struct resource res;
43248122 1289 void __iomem *iomem;
f0fba2ad 1290 char name[64];
17467f23 1291
ff71334a
TT
1292 /* SSIs that are not connected on the board should have a
1293 * status = "disabled"
1294 * property in their device tree nodes.
f0fba2ad 1295 */
ff71334a 1296 if (!of_device_is_available(np))
f0fba2ad
LG
1297 return -ENODEV;
1298
c1953bfe 1299 of_id = of_match_device(fsl_ssi_ids, &pdev->dev);
fcdbadef 1300 if (!of_id || !of_id->data)
c1953bfe 1301 return -EINVAL;
c1953bfe 1302
2a1d102d
MP
1303 ssi_private = devm_kzalloc(&pdev->dev, sizeof(*ssi_private),
1304 GFP_KERNEL);
17467f23 1305 if (!ssi_private) {
38fec727 1306 dev_err(&pdev->dev, "could not allocate DAI object\n");
f0fba2ad 1307 return -ENOMEM;
17467f23 1308 }
17467f23 1309
fcdbadef
SH
1310 ssi_private->soc = of_id->data;
1311
85e59af2
MP
1312 sprop = of_get_property(np, "fsl,mode", NULL);
1313 if (sprop) {
1314 if (!strcmp(sprop, "ac97-slave"))
1315 ssi_private->dai_fmt = SND_SOC_DAIFMT_AC97;
85e59af2
MP
1316 }
1317
de623ece
MP
1318 ssi_private->use_dma = !of_property_read_bool(np,
1319 "fsl,fiq-stream-filter");
1320
85e59af2 1321 if (fsl_ssi_is_ac97(ssi_private)) {
cd7f0295
MP
1322 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_ac97_dai,
1323 sizeof(fsl_ssi_ac97_dai));
1324
1325 fsl_ac97_data = ssi_private;
cd7f0295
MP
1326
1327 snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops, pdev);
1328 } else {
1329 /* Initialize this copy of the CPU DAI driver structure */
1330 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
1331 sizeof(fsl_ssi_dai_template));
1332 }
2a1d102d 1333 ssi_private->cpu_dai_drv.name = dev_name(&pdev->dev);
f0fba2ad
LG
1334
1335 /* Get the addresses and IRQ */
1336 ret = of_address_to_resource(np, 0, &res);
1337 if (ret) {
38fec727 1338 dev_err(&pdev->dev, "could not determine device resources\n");
b0a4747a 1339 return ret;
f0fba2ad 1340 }
43248122
MP
1341 ssi_private->ssi_phys = res.start;
1342
1343 iomem = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
1344 if (!iomem) {
147dfe90 1345 dev_err(&pdev->dev, "could not map device resources\n");
b0a4747a 1346 return -ENOMEM;
147dfe90 1347 }
43248122 1348
f4a43cab
SW
1349 ret = of_property_match_string(np, "clock-names", "ipg");
1350 if (ret < 0) {
1351 ssi_private->has_ipg_clk_name = false;
1352 ssi_private->regs = devm_regmap_init_mmio(&pdev->dev, iomem,
43248122 1353 &fsl_ssi_regconfig);
f4a43cab
SW
1354 } else {
1355 ssi_private->has_ipg_clk_name = true;
1356 ssi_private->regs = devm_regmap_init_mmio_clk(&pdev->dev,
1357 "ipg", iomem, &fsl_ssi_regconfig);
1358 }
43248122
MP
1359 if (IS_ERR(ssi_private->regs)) {
1360 dev_err(&pdev->dev, "Failed to init register map\n");
1361 return PTR_ERR(ssi_private->regs);
1362 }
1fab6caf 1363
2ffa5310 1364 ssi_private->irq = platform_get_irq(pdev, 0);
64aa5f58 1365 if (ssi_private->irq < 0) {
1fab6caf 1366 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
64aa5f58 1367 return ssi_private->irq;
1fab6caf
TT
1368 }
1369
f0fba2ad 1370 /* Are the RX and the TX clocks locked? */
07a9483a 1371 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL)) {
f0fba2ad 1372 ssi_private->cpu_dai_drv.symmetric_rates = 1;
07a9483a
NC
1373 ssi_private->cpu_dai_drv.symmetric_channels = 1;
1374 ssi_private->cpu_dai_drv.symmetric_samplebits = 1;
1375 }
17467f23 1376
8e9d8690
TT
1377 /* Determine the FIFO depth. */
1378 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
1379 if (iprop)
147dfe90 1380 ssi_private->fifo_depth = be32_to_cpup(iprop);
8e9d8690
TT
1381 else
1382 /* Older 8610 DTs didn't have the fifo-depth property */
1383 ssi_private->fifo_depth = 8;
1384
4d9b7926
MP
1385 dev_set_drvdata(&pdev->dev, ssi_private);
1386
fcdbadef 1387 if (ssi_private->soc->imx) {
43248122 1388 ret = fsl_ssi_imx_probe(pdev, ssi_private, iomem);
49da09e2 1389 if (ret)
2ffa5310 1390 return ret;
0888efd1
MP
1391 }
1392
4d9b7926
MP
1393 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
1394 &ssi_private->cpu_dai_drv, 1);
1395 if (ret) {
1396 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1397 goto error_asoc_register;
1398 }
1399
0888efd1 1400 if (ssi_private->use_dma) {
f0377086 1401 ret = devm_request_irq(&pdev->dev, ssi_private->irq,
171d683d 1402 fsl_ssi_isr, 0, dev_name(&pdev->dev),
f0377086
MG
1403 ssi_private);
1404 if (ret < 0) {
1405 dev_err(&pdev->dev, "could not claim irq %u\n",
1406 ssi_private->irq);
49da09e2 1407 goto error_irq;
f0377086 1408 }
09ce1111
SG
1409 }
1410
f138e621 1411 ret = fsl_ssi_debugfs_create(&ssi_private->dbg_stats, &pdev->dev);
9368acc4 1412 if (ret)
4c9a8845 1413 goto error_irq;
09ce1111
SG
1414
1415 /*
1416 * If codec-handle property is missing from SSI node, we assume
1417 * that the machine driver uses new binding which does not require
1418 * SSI driver to trigger machine driver's probe.
1419 */
171d683d 1420 if (!of_get_property(np, "codec-handle", NULL))
09ce1111 1421 goto done;
09ce1111 1422
f0fba2ad 1423 /* Trigger the machine driver's probe function. The platform driver
2b81ec69 1424 * name of the machine driver is taken from /compatible property of the
f0fba2ad
LG
1425 * device tree. We also pass the address of the CPU DAI driver
1426 * structure.
1427 */
2b81ec69
SG
1428 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
1429 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
f0fba2ad
LG
1430 p = strrchr(sprop, ',');
1431 if (p)
1432 sprop = p + 1;
1433 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
1434 make_lowercase(name);
1435
1436 ssi_private->pdev =
38fec727 1437 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
f0fba2ad
LG
1438 if (IS_ERR(ssi_private->pdev)) {
1439 ret = PTR_ERR(ssi_private->pdev);
38fec727 1440 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
4d9b7926 1441 goto error_sound_card;
3f4b783c 1442 }
17467f23 1443
09ce1111 1444done:
85e59af2 1445 if (ssi_private->dai_fmt)
85151461
MT
1446 _fsl_ssi_set_dai_fmt(&pdev->dev, ssi_private,
1447 ssi_private->dai_fmt);
85e59af2 1448
f0fba2ad 1449 return 0;
87a0632b 1450
4d9b7926 1451error_sound_card:
f138e621 1452 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
9368acc4 1453
4d9b7926 1454error_irq:
3580aa10 1455 snd_soc_unregister_component(&pdev->dev);
1fab6caf 1456
4d9b7926 1457error_asoc_register:
fcdbadef 1458 if (ssi_private->soc->imx)
49da09e2 1459 fsl_ssi_imx_clean(pdev, ssi_private);
1fab6caf 1460
87a0632b 1461 return ret;
17467f23 1462}
17467f23 1463
38fec727 1464static int fsl_ssi_remove(struct platform_device *pdev)
17467f23 1465{
38fec727 1466 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
17467f23 1467
f138e621 1468 fsl_ssi_debugfs_remove(&ssi_private->dbg_stats);
9368acc4 1469
171d683d 1470 if (ssi_private->pdev)
09ce1111 1471 platform_device_unregister(ssi_private->pdev);
3580aa10 1472 snd_soc_unregister_component(&pdev->dev);
49da09e2 1473
fcdbadef 1474 if (ssi_private->soc->imx)
49da09e2
MP
1475 fsl_ssi_imx_clean(pdev, ssi_private);
1476
f0fba2ad 1477 return 0;
17467f23 1478}
f0fba2ad 1479
f07eb223 1480static struct platform_driver fsl_ssi_driver = {
f0fba2ad
LG
1481 .driver = {
1482 .name = "fsl-ssi-dai",
f0fba2ad
LG
1483 .of_match_table = fsl_ssi_ids,
1484 },
1485 .probe = fsl_ssi_probe,
1486 .remove = fsl_ssi_remove,
1487};
17467f23 1488
ba0a7e02 1489module_platform_driver(fsl_ssi_driver);
a454dad1 1490
f3142807 1491MODULE_ALIAS("platform:fsl-ssi-dai");
17467f23
TT
1492MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1493MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
f0fba2ad 1494MODULE_LICENSE("GPL v2");
This page took 0.480415 seconds and 5 git commands to generate.