ASoC: imx-sgtl5000: fix error return code in imx_sgtl5000_probe()
[deliverable/linux.git] / sound / soc / fsl / fsl_ssi.c
CommitLineData
17467f23
TT
1/*
2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
f0fba2ad
LG
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
17467f23
TT
11 */
12
13#include <linux/init.h>
dfa1a107 14#include <linux/io.h>
17467f23
TT
15#include <linux/module.h>
16#include <linux/interrupt.h>
95cd98f9 17#include <linux/clk.h>
17467f23
TT
18#include <linux/device.h>
19#include <linux/delay.h>
5a0e3ad6 20#include <linux/slab.h>
dfa1a107
SG
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
f0fba2ad 23#include <linux/of_platform.h>
17467f23 24
17467f23
TT
25#include <sound/core.h>
26#include <sound/pcm.h>
27#include <sound/pcm_params.h>
28#include <sound/initval.h>
29#include <sound/soc.h>
a8909c9b 30#include <sound/dmaengine_pcm.h>
17467f23 31
17467f23 32#include "fsl_ssi.h"
09ce1111 33#include "imx-pcm.h"
17467f23 34
dfa1a107
SG
35#ifdef PPC
36#define read_ssi(addr) in_be32(addr)
37#define write_ssi(val, addr) out_be32(addr, val)
38#define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
39#elif defined ARM
40#define read_ssi(addr) readl(addr)
41#define write_ssi(val, addr) writel(val, addr)
42/*
43 * FIXME: Proper locking should be added at write_ssi_mask caller level
44 * to ensure this register read/modify/write sequence is race free.
45 */
46static inline void write_ssi_mask(u32 __iomem *addr, u32 clear, u32 set)
47{
48 u32 val = readl(addr);
49 val = (val & ~clear) | set;
50 writel(val, addr);
51}
52#endif
53
17467f23
TT
54/**
55 * FSLSSI_I2S_RATES: sample rates supported by the I2S
56 *
57 * This driver currently only supports the SSI running in I2S slave mode,
58 * which means the codec determines the sample rate. Therefore, we tell
59 * ALSA that we support all rates and let the codec driver decide what rates
60 * are really supported.
61 */
62#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
63 SNDRV_PCM_RATE_CONTINUOUS)
64
65/**
66 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
67 *
68 * This driver currently only supports the SSI running in I2S slave mode.
69 *
70 * The SSI has a limitation in that the samples must be in the same byte
71 * order as the host CPU. This is because when multiple bytes are written
72 * to the STX register, the bytes and bits must be written in the same
73 * order. The STX is a shift register, so all the bits need to be aligned
74 * (bit-endianness must match byte-endianness). Processors typically write
75 * the bits within a byte in the same order that the bytes of a word are
76 * written in. So if the host CPU is big-endian, then only big-endian
77 * samples will be written to STX properly.
78 */
79#ifdef __BIG_ENDIAN
80#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
81 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
82 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
83#else
84#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
85 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
86 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
87#endif
88
d5a908b2
TT
89/* SIER bitflag of interrupts to enable */
90#define SIER_FLAGS (CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE | \
91 CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN | \
92 CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN | \
93 CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE | \
94 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN)
95
17467f23
TT
96/**
97 * fsl_ssi_private: per-SSI private data
98 *
17467f23
TT
99 * @ssi: pointer to the SSI's registers
100 * @ssi_phys: physical address of the SSI registers
101 * @irq: IRQ of this SSI
be41e941
TT
102 * @first_stream: pointer to the stream that was opened first
103 * @second_stream: pointer to second stream
17467f23
TT
104 * @playback: the number of playback streams opened
105 * @capture: the number of capture streams opened
106 * @cpu_dai: the CPU DAI for this device
107 * @dev_attr: the sysfs device attribute structure
108 * @stats: SSI statistics
f0fba2ad 109 * @name: name for this device
17467f23
TT
110 */
111struct fsl_ssi_private {
17467f23
TT
112 struct ccsr_ssi __iomem *ssi;
113 dma_addr_t ssi_phys;
114 unsigned int irq;
be41e941
TT
115 struct snd_pcm_substream *first_stream;
116 struct snd_pcm_substream *second_stream;
8e9d8690 117 unsigned int fifo_depth;
f0fba2ad 118 struct snd_soc_dai_driver cpu_dai_drv;
17467f23 119 struct device_attribute dev_attr;
f0fba2ad 120 struct platform_device *pdev;
17467f23 121
09ce1111
SG
122 bool new_binding;
123 bool ssi_on_imx;
95cd98f9 124 struct clk *clk;
a8909c9b
LPC
125 struct snd_dmaengine_dai_dma_data dma_params_tx;
126 struct snd_dmaengine_dai_dma_data dma_params_rx;
127 struct imx_dma_data filter_data_tx;
128 struct imx_dma_data filter_data_rx;
09ce1111 129
17467f23
TT
130 struct {
131 unsigned int rfrc;
132 unsigned int tfrc;
133 unsigned int cmdau;
134 unsigned int cmddu;
135 unsigned int rxt;
136 unsigned int rdr1;
137 unsigned int rdr0;
138 unsigned int tde1;
139 unsigned int tde0;
140 unsigned int roe1;
141 unsigned int roe0;
142 unsigned int tue1;
143 unsigned int tue0;
144 unsigned int tfs;
145 unsigned int rfs;
146 unsigned int tls;
147 unsigned int rls;
148 unsigned int rff1;
149 unsigned int rff0;
150 unsigned int tfe1;
151 unsigned int tfe0;
152 } stats;
f0fba2ad
LG
153
154 char name[1];
17467f23
TT
155};
156
157/**
158 * fsl_ssi_isr: SSI interrupt handler
159 *
160 * Although it's possible to use the interrupt handler to send and receive
161 * data to/from the SSI, we use the DMA instead. Programming is more
162 * complicated, but the performance is much better.
163 *
164 * This interrupt handler is used only to gather statistics.
165 *
166 * @irq: IRQ of the SSI device
167 * @dev_id: pointer to the ssi_private structure for this SSI device
168 */
169static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
170{
171 struct fsl_ssi_private *ssi_private = dev_id;
172 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
173 irqreturn_t ret = IRQ_NONE;
174 __be32 sisr;
175 __be32 sisr2 = 0;
176
177 /* We got an interrupt, so read the status register to see what we
178 were interrupted for. We mask it with the Interrupt Enable register
179 so that we only check for events that we're interested in.
180 */
dfa1a107 181 sisr = read_ssi(&ssi->sisr) & SIER_FLAGS;
17467f23
TT
182
183 if (sisr & CCSR_SSI_SISR_RFRC) {
184 ssi_private->stats.rfrc++;
185 sisr2 |= CCSR_SSI_SISR_RFRC;
186 ret = IRQ_HANDLED;
187 }
188
189 if (sisr & CCSR_SSI_SISR_TFRC) {
190 ssi_private->stats.tfrc++;
191 sisr2 |= CCSR_SSI_SISR_TFRC;
192 ret = IRQ_HANDLED;
193 }
194
195 if (sisr & CCSR_SSI_SISR_CMDAU) {
196 ssi_private->stats.cmdau++;
197 ret = IRQ_HANDLED;
198 }
199
200 if (sisr & CCSR_SSI_SISR_CMDDU) {
201 ssi_private->stats.cmddu++;
202 ret = IRQ_HANDLED;
203 }
204
205 if (sisr & CCSR_SSI_SISR_RXT) {
206 ssi_private->stats.rxt++;
207 ret = IRQ_HANDLED;
208 }
209
210 if (sisr & CCSR_SSI_SISR_RDR1) {
211 ssi_private->stats.rdr1++;
212 ret = IRQ_HANDLED;
213 }
214
215 if (sisr & CCSR_SSI_SISR_RDR0) {
216 ssi_private->stats.rdr0++;
217 ret = IRQ_HANDLED;
218 }
219
220 if (sisr & CCSR_SSI_SISR_TDE1) {
221 ssi_private->stats.tde1++;
222 ret = IRQ_HANDLED;
223 }
224
225 if (sisr & CCSR_SSI_SISR_TDE0) {
226 ssi_private->stats.tde0++;
227 ret = IRQ_HANDLED;
228 }
229
230 if (sisr & CCSR_SSI_SISR_ROE1) {
231 ssi_private->stats.roe1++;
232 sisr2 |= CCSR_SSI_SISR_ROE1;
233 ret = IRQ_HANDLED;
234 }
235
236 if (sisr & CCSR_SSI_SISR_ROE0) {
237 ssi_private->stats.roe0++;
238 sisr2 |= CCSR_SSI_SISR_ROE0;
239 ret = IRQ_HANDLED;
240 }
241
242 if (sisr & CCSR_SSI_SISR_TUE1) {
243 ssi_private->stats.tue1++;
244 sisr2 |= CCSR_SSI_SISR_TUE1;
245 ret = IRQ_HANDLED;
246 }
247
248 if (sisr & CCSR_SSI_SISR_TUE0) {
249 ssi_private->stats.tue0++;
250 sisr2 |= CCSR_SSI_SISR_TUE0;
251 ret = IRQ_HANDLED;
252 }
253
254 if (sisr & CCSR_SSI_SISR_TFS) {
255 ssi_private->stats.tfs++;
256 ret = IRQ_HANDLED;
257 }
258
259 if (sisr & CCSR_SSI_SISR_RFS) {
260 ssi_private->stats.rfs++;
261 ret = IRQ_HANDLED;
262 }
263
264 if (sisr & CCSR_SSI_SISR_TLS) {
265 ssi_private->stats.tls++;
266 ret = IRQ_HANDLED;
267 }
268
269 if (sisr & CCSR_SSI_SISR_RLS) {
270 ssi_private->stats.rls++;
271 ret = IRQ_HANDLED;
272 }
273
274 if (sisr & CCSR_SSI_SISR_RFF1) {
275 ssi_private->stats.rff1++;
276 ret = IRQ_HANDLED;
277 }
278
279 if (sisr & CCSR_SSI_SISR_RFF0) {
280 ssi_private->stats.rff0++;
281 ret = IRQ_HANDLED;
282 }
283
284 if (sisr & CCSR_SSI_SISR_TFE1) {
285 ssi_private->stats.tfe1++;
286 ret = IRQ_HANDLED;
287 }
288
289 if (sisr & CCSR_SSI_SISR_TFE0) {
290 ssi_private->stats.tfe0++;
291 ret = IRQ_HANDLED;
292 }
293
294 /* Clear the bits that we set */
295 if (sisr2)
dfa1a107 296 write_ssi(sisr2, &ssi->sisr);
17467f23
TT
297
298 return ret;
299}
300
301/**
302 * fsl_ssi_startup: create a new substream
303 *
304 * This is the first function called when a stream is opened.
305 *
306 * If this is the first stream open, then grab the IRQ and program most of
307 * the SSI registers.
308 */
dee89c4d
MB
309static int fsl_ssi_startup(struct snd_pcm_substream *substream,
310 struct snd_soc_dai *dai)
17467f23
TT
311{
312 struct snd_soc_pcm_runtime *rtd = substream->private_data;
5e538eca
TT
313 struct fsl_ssi_private *ssi_private =
314 snd_soc_dai_get_drvdata(rtd->cpu_dai);
315 int synchronous = ssi_private->cpu_dai_drv.symmetric_rates;
17467f23
TT
316
317 /*
318 * If this is the first stream opened, then request the IRQ
319 * and initialize the SSI registers.
320 */
5e538eca 321 if (!ssi_private->first_stream) {
17467f23 322 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
17467f23 323
5e538eca
TT
324 ssi_private->first_stream = substream;
325
17467f23
TT
326 /*
327 * Section 16.5 of the MPC8610 reference manual says that the
328 * SSI needs to be disabled before updating the registers we set
329 * here.
330 */
dfa1a107 331 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
17467f23
TT
332
333 /*
334 * Program the SSI into I2S Slave Non-Network Synchronous mode.
335 * Also enable the transmit and receive FIFO.
336 *
337 * FIXME: Little-endian samples require a different shift dir
338 */
dfa1a107 339 write_ssi_mask(&ssi->scr,
a454dad1
TT
340 CCSR_SSI_SCR_I2S_MODE_MASK | CCSR_SSI_SCR_SYN,
341 CCSR_SSI_SCR_TFR_CLK_DIS | CCSR_SSI_SCR_I2S_MODE_SLAVE
5e538eca 342 | (synchronous ? CCSR_SSI_SCR_SYN : 0));
17467f23 343
dfa1a107 344 write_ssi(CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
17467f23 345 CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
dfa1a107 346 CCSR_SSI_STCR_TSCKP, &ssi->stcr);
17467f23 347
dfa1a107 348 write_ssi(CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
17467f23 349 CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
dfa1a107 350 CCSR_SSI_SRCR_RSCKP, &ssi->srcr);
17467f23
TT
351
352 /*
353 * The DC and PM bits are only used if the SSI is the clock
354 * master.
355 */
356
5e538eca 357 /* Enable the interrupts and DMA requests */
dfa1a107 358 write_ssi(SIER_FLAGS, &ssi->sier);
17467f23
TT
359
360 /*
361 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
8e9d8690
TT
362 * don't use FIFO 1. We program the transmit water to signal a
363 * DMA transfer if there are only two (or fewer) elements left
364 * in the FIFO. Two elements equals one frame (left channel,
365 * right channel). This value, however, depends on the depth of
366 * the transmit buffer.
367 *
368 * We program the receive FIFO to notify us if at least two
369 * elements (one frame) have been written to the FIFO. We could
370 * make this value larger (and maybe we should), but this way
371 * data will be written to memory as soon as it's available.
17467f23 372 */
dfa1a107
SG
373 write_ssi(CCSR_SSI_SFCSR_TFWM0(ssi_private->fifo_depth - 2) |
374 CCSR_SSI_SFCSR_RFWM0(ssi_private->fifo_depth - 2),
375 &ssi->sfcsr);
17467f23
TT
376
377 /*
378 * We keep the SSI disabled because if we enable it, then the
379 * DMA controller will start. It's not supposed to start until
380 * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
381 * DMA controller will transfer one "BWC" of data (i.e. the
382 * amount of data that the MR.BWC bits are set to). The reason
383 * this is bad is because at this point, the PCM driver has not
384 * finished initializing the DMA controller.
385 */
5e538eca
TT
386 } else {
387 if (synchronous) {
388 struct snd_pcm_runtime *first_runtime =
389 ssi_private->first_stream->runtime;
390 /*
391 * This is the second stream open, and we're in
392 * synchronous mode, so we need to impose sample
393 * sample size constraints. This is because STCCR is
394 * used for playback and capture in synchronous mode,
395 * so there's no way to specify different word
396 * lengths.
397 *
398 * Note that this can cause a race condition if the
399 * second stream is opened before the first stream is
400 * fully initialized. We provide some protection by
401 * checking to make sure the first stream is
402 * initialized, but it's not perfect. ALSA sometimes
403 * re-initializes the driver with a different sample
404 * rate or size. If the second stream is opened
405 * before the first stream has received its final
406 * parameters, then the second stream may be
407 * constrained to the wrong sample rate or size.
408 */
409 if (!first_runtime->sample_bits) {
410 dev_err(substream->pcm->card->dev,
411 "set sample size in %s stream first\n",
412 substream->stream ==
413 SNDRV_PCM_STREAM_PLAYBACK
414 ? "capture" : "playback");
415 return -EAGAIN;
416 }
be41e941 417
a454dad1
TT
418 snd_pcm_hw_constraint_minmax(substream->runtime,
419 SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
420 first_runtime->sample_bits,
421 first_runtime->sample_bits);
5e538eca 422 }
be41e941
TT
423
424 ssi_private->second_stream = substream;
425 }
426
17467f23
TT
427 return 0;
428}
429
430/**
85ef2375 431 * fsl_ssi_hw_params - program the sample size
17467f23
TT
432 *
433 * Most of the SSI registers have been programmed in the startup function,
434 * but the word length must be programmed here. Unfortunately, programming
435 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
436 * cause a problem with supporting simultaneous playback and capture. If
437 * the SSI is already playing a stream, then that stream may be temporarily
438 * stopped when you start capture.
439 *
440 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
441 * clock master.
442 */
85ef2375
TT
443static int fsl_ssi_hw_params(struct snd_pcm_substream *substream,
444 struct snd_pcm_hw_params *hw_params, struct snd_soc_dai *cpu_dai)
17467f23 445{
f0fba2ad 446 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(cpu_dai);
5e538eca
TT
447 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
448 unsigned int sample_size =
449 snd_pcm_format_width(params_format(hw_params));
450 u32 wl = CCSR_SSI_SxCCR_WL(sample_size);
dfa1a107 451 int enabled = read_ssi(&ssi->scr) & CCSR_SSI_SCR_SSIEN;
17467f23 452
5e538eca
TT
453 /*
454 * If we're in synchronous mode, and the SSI is already enabled,
455 * then STCCR is already set properly.
456 */
457 if (enabled && ssi_private->cpu_dai_drv.symmetric_rates)
458 return 0;
17467f23 459
5e538eca
TT
460 /*
461 * FIXME: The documentation says that SxCCR[WL] should not be
462 * modified while the SSI is enabled. The only time this can
463 * happen is if we're trying to do simultaneous playback and
464 * capture in asynchronous mode. Unfortunately, I have been enable
465 * to get that to work at all on the P1022DS. Therefore, we don't
466 * bother to disable/enable the SSI when setting SxCCR[WL], because
467 * the SSI will stop anyway. Maybe one day, this will get fixed.
468 */
17467f23 469
5e538eca
TT
470 /* In synchronous mode, the SSI uses STCCR for capture */
471 if ((substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ||
472 ssi_private->cpu_dai_drv.symmetric_rates)
dfa1a107 473 write_ssi_mask(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
5e538eca 474 else
dfa1a107 475 write_ssi_mask(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
17467f23
TT
476
477 return 0;
478}
479
480/**
481 * fsl_ssi_trigger: start and stop the DMA transfer.
482 *
483 * This function is called by ALSA to start, stop, pause, and resume the DMA
484 * transfer of data.
485 *
486 * The DMA channel is in external master start and pause mode, which
487 * means the SSI completely controls the flow of data.
488 */
dee89c4d
MB
489static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd,
490 struct snd_soc_dai *dai)
17467f23
TT
491{
492 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 493 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23
TT
494 struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
495
496 switch (cmd) {
497 case SNDRV_PCM_TRIGGER_START:
17467f23 498 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
a4d11fe5 499 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dfa1a107 500 write_ssi_mask(&ssi->scr, 0,
be41e941 501 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_TE);
a4d11fe5 502 else
dfa1a107 503 write_ssi_mask(&ssi->scr, 0,
be41e941 504 CCSR_SSI_SCR_SSIEN | CCSR_SSI_SCR_RE);
17467f23
TT
505 break;
506
507 case SNDRV_PCM_TRIGGER_STOP:
17467f23
TT
508 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
509 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
dfa1a107 510 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_TE, 0);
17467f23 511 else
dfa1a107 512 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_RE, 0);
b2c119b0
NC
513
514 if ((read_ssi(&ssi->scr) & (CCSR_SSI_SCR_TE | CCSR_SSI_SCR_RE)) == 0)
515 write_ssi_mask(&ssi->scr, CCSR_SSI_SCR_SSIEN, 0);
17467f23
TT
516 break;
517
518 default:
519 return -EINVAL;
520 }
521
522 return 0;
523}
524
525/**
526 * fsl_ssi_shutdown: shutdown the SSI
527 *
528 * Shutdown the SSI if there are no other substreams open.
529 */
dee89c4d
MB
530static void fsl_ssi_shutdown(struct snd_pcm_substream *substream,
531 struct snd_soc_dai *dai)
17467f23
TT
532{
533 struct snd_soc_pcm_runtime *rtd = substream->private_data;
f0fba2ad 534 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(rtd->cpu_dai);
17467f23 535
be41e941
TT
536 if (ssi_private->first_stream == substream)
537 ssi_private->first_stream = ssi_private->second_stream;
538
539 ssi_private->second_stream = NULL;
17467f23
TT
540}
541
fc8ba7f9
LPC
542static int fsl_ssi_dai_probe(struct snd_soc_dai *dai)
543{
544 struct fsl_ssi_private *ssi_private = snd_soc_dai_get_drvdata(dai);
545
546 if (ssi_private->ssi_on_imx) {
547 dai->playback_dma_data = &ssi_private->dma_params_tx;
548 dai->capture_dma_data = &ssi_private->dma_params_rx;
549 }
550
551 return 0;
552}
553
85e7652d 554static const struct snd_soc_dai_ops fsl_ssi_dai_ops = {
6335d055
EM
555 .startup = fsl_ssi_startup,
556 .hw_params = fsl_ssi_hw_params,
557 .shutdown = fsl_ssi_shutdown,
558 .trigger = fsl_ssi_trigger,
6335d055
EM
559};
560
f0fba2ad
LG
561/* Template for the CPU dai driver structure */
562static struct snd_soc_dai_driver fsl_ssi_dai_template = {
fc8ba7f9 563 .probe = fsl_ssi_dai_probe,
17467f23
TT
564 .playback = {
565 /* The SSI does not support monaural audio. */
566 .channels_min = 2,
567 .channels_max = 2,
568 .rates = FSLSSI_I2S_RATES,
569 .formats = FSLSSI_I2S_FORMATS,
570 },
571 .capture = {
572 .channels_min = 2,
573 .channels_max = 2,
574 .rates = FSLSSI_I2S_RATES,
575 .formats = FSLSSI_I2S_FORMATS,
576 },
6335d055 577 .ops = &fsl_ssi_dai_ops,
17467f23
TT
578};
579
3580aa10
KM
580static const struct snd_soc_component_driver fsl_ssi_component = {
581 .name = "fsl-ssi",
582};
583
d5a908b2
TT
584/* Show the statistics of a flag only if its interrupt is enabled. The
585 * compiler will optimze this code to a no-op if the interrupt is not
586 * enabled.
587 */
588#define SIER_SHOW(flag, name) \
589 do { \
590 if (SIER_FLAGS & CCSR_SSI_SIER_##flag) \
591 length += sprintf(buf + length, #name "=%u\n", \
592 ssi_private->stats.name); \
593 } while (0)
594
595
17467f23
TT
596/**
597 * fsl_sysfs_ssi_show: display SSI statistics
598 *
d5a908b2
TT
599 * Display the statistics for the current SSI device. To avoid confusion,
600 * we only show those counts that are enabled.
17467f23
TT
601 */
602static ssize_t fsl_sysfs_ssi_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604{
605 struct fsl_ssi_private *ssi_private =
d5a908b2
TT
606 container_of(attr, struct fsl_ssi_private, dev_attr);
607 ssize_t length = 0;
608
609 SIER_SHOW(RFRC_EN, rfrc);
610 SIER_SHOW(TFRC_EN, tfrc);
611 SIER_SHOW(CMDAU_EN, cmdau);
612 SIER_SHOW(CMDDU_EN, cmddu);
613 SIER_SHOW(RXT_EN, rxt);
614 SIER_SHOW(RDR1_EN, rdr1);
615 SIER_SHOW(RDR0_EN, rdr0);
616 SIER_SHOW(TDE1_EN, tde1);
617 SIER_SHOW(TDE0_EN, tde0);
618 SIER_SHOW(ROE1_EN, roe1);
619 SIER_SHOW(ROE0_EN, roe0);
620 SIER_SHOW(TUE1_EN, tue1);
621 SIER_SHOW(TUE0_EN, tue0);
622 SIER_SHOW(TFS_EN, tfs);
623 SIER_SHOW(RFS_EN, rfs);
624 SIER_SHOW(TLS_EN, tls);
625 SIER_SHOW(RLS_EN, rls);
626 SIER_SHOW(RFF1_EN, rff1);
627 SIER_SHOW(RFF0_EN, rff0);
628 SIER_SHOW(TFE1_EN, tfe1);
629 SIER_SHOW(TFE0_EN, tfe0);
17467f23
TT
630
631 return length;
632}
633
634/**
f0fba2ad 635 * Make every character in a string lower-case
17467f23 636 */
f0fba2ad
LG
637static void make_lowercase(char *s)
638{
639 char *p = s;
640 char c;
641
642 while ((c = *p)) {
643 if ((c >= 'A') && (c <= 'Z'))
644 *p = c + ('a' - 'A');
645 p++;
646 }
647}
648
a0a3d518 649static int fsl_ssi_probe(struct platform_device *pdev)
17467f23 650{
17467f23
TT
651 struct fsl_ssi_private *ssi_private;
652 int ret = 0;
87a0632b 653 struct device_attribute *dev_attr = NULL;
38fec727 654 struct device_node *np = pdev->dev.of_node;
f0fba2ad 655 const char *p, *sprop;
8e9d8690 656 const uint32_t *iprop;
f0fba2ad
LG
657 struct resource res;
658 char name[64];
312bb4f6 659 bool shared;
17467f23 660
ff71334a
TT
661 /* SSIs that are not connected on the board should have a
662 * status = "disabled"
663 * property in their device tree nodes.
f0fba2ad 664 */
ff71334a 665 if (!of_device_is_available(np))
f0fba2ad
LG
666 return -ENODEV;
667
668 /* We only support the SSI in "I2S Slave" mode */
669 sprop = of_get_property(np, "fsl,mode", NULL);
670 if (!sprop || strcmp(sprop, "i2s-slave")) {
38fec727 671 dev_notice(&pdev->dev, "mode %s is unsupported\n", sprop);
f0fba2ad
LG
672 return -ENODEV;
673 }
674
675 /* The DAI name is the last part of the full name of the node. */
676 p = strrchr(np->full_name, '/') + 1;
677 ssi_private = kzalloc(sizeof(struct fsl_ssi_private) + strlen(p),
678 GFP_KERNEL);
17467f23 679 if (!ssi_private) {
38fec727 680 dev_err(&pdev->dev, "could not allocate DAI object\n");
f0fba2ad 681 return -ENOMEM;
17467f23 682 }
17467f23 683
f0fba2ad 684 strcpy(ssi_private->name, p);
17467f23 685
f0fba2ad
LG
686 /* Initialize this copy of the CPU DAI driver structure */
687 memcpy(&ssi_private->cpu_dai_drv, &fsl_ssi_dai_template,
688 sizeof(fsl_ssi_dai_template));
689 ssi_private->cpu_dai_drv.name = ssi_private->name;
690
691 /* Get the addresses and IRQ */
692 ret = of_address_to_resource(np, 0, &res);
693 if (ret) {
38fec727 694 dev_err(&pdev->dev, "could not determine device resources\n");
1fab6caf 695 goto error_kmalloc;
f0fba2ad 696 }
147dfe90
TT
697 ssi_private->ssi = of_iomap(np, 0);
698 if (!ssi_private->ssi) {
699 dev_err(&pdev->dev, "could not map device resources\n");
1fab6caf
TT
700 ret = -ENOMEM;
701 goto error_kmalloc;
147dfe90 702 }
f0fba2ad 703 ssi_private->ssi_phys = res.start;
1fab6caf 704
f0fba2ad 705 ssi_private->irq = irq_of_parse_and_map(np, 0);
1fab6caf
TT
706 if (ssi_private->irq == NO_IRQ) {
707 dev_err(&pdev->dev, "no irq for node %s\n", np->full_name);
708 ret = -ENXIO;
709 goto error_iomap;
710 }
711
712 /* The 'name' should not have any slashes in it. */
713 ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0, ssi_private->name,
714 ssi_private);
715 if (ret < 0) {
716 dev_err(&pdev->dev, "could not claim irq %u\n", ssi_private->irq);
717 goto error_irqmap;
718 }
17467f23 719
f0fba2ad 720 /* Are the RX and the TX clocks locked? */
5e538eca 721 if (!of_find_property(np, "fsl,ssi-asynchronous", NULL))
f0fba2ad 722 ssi_private->cpu_dai_drv.symmetric_rates = 1;
17467f23 723
8e9d8690
TT
724 /* Determine the FIFO depth. */
725 iprop = of_get_property(np, "fsl,fifo-depth", NULL);
726 if (iprop)
147dfe90 727 ssi_private->fifo_depth = be32_to_cpup(iprop);
8e9d8690
TT
728 else
729 /* Older 8610 DTs didn't have the fifo-depth property */
730 ssi_private->fifo_depth = 8;
731
09ce1111
SG
732 if (of_device_is_compatible(pdev->dev.of_node, "fsl,imx21-ssi")) {
733 u32 dma_events[2];
734 ssi_private->ssi_on_imx = true;
95cd98f9
SG
735
736 ssi_private->clk = clk_get(&pdev->dev, NULL);
737 if (IS_ERR(ssi_private->clk)) {
738 ret = PTR_ERR(ssi_private->clk);
739 dev_err(&pdev->dev, "could not get clock: %d\n", ret);
740 goto error_irq;
741 }
742 clk_prepare_enable(ssi_private->clk);
743
09ce1111
SG
744 /*
745 * We have burstsize be "fifo_depth - 2" to match the SSI
746 * watermark setting in fsl_ssi_startup().
747 */
a8909c9b 748 ssi_private->dma_params_tx.maxburst =
09ce1111 749 ssi_private->fifo_depth - 2;
a8909c9b 750 ssi_private->dma_params_rx.maxburst =
09ce1111 751 ssi_private->fifo_depth - 2;
a8909c9b 752 ssi_private->dma_params_tx.addr =
09ce1111 753 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, stx0);
a8909c9b 754 ssi_private->dma_params_rx.addr =
09ce1111 755 ssi_private->ssi_phys + offsetof(struct ccsr_ssi, srx0);
a8909c9b
LPC
756 ssi_private->dma_params_tx.filter_data =
757 &ssi_private->filter_data_tx;
758 ssi_private->dma_params_rx.filter_data =
759 &ssi_private->filter_data_rx;
09ce1111
SG
760 /*
761 * TODO: This is a temporary solution and should be changed
762 * to use generic DMA binding later when the helplers get in.
763 */
764 ret = of_property_read_u32_array(pdev->dev.of_node,
765 "fsl,ssi-dma-events", dma_events, 2);
766 if (ret) {
767 dev_err(&pdev->dev, "could not get dma events\n");
95cd98f9 768 goto error_clk;
09ce1111 769 }
312bb4f6
LPC
770
771 shared = of_device_is_compatible(of_get_parent(np),
772 "fsl,spba-bus");
773
a8909c9b 774 imx_pcm_dma_params_init_data(&ssi_private->filter_data_tx,
312bb4f6 775 dma_events[0], shared);
a8909c9b 776 imx_pcm_dma_params_init_data(&ssi_private->filter_data_rx,
312bb4f6 777 dma_events[1], shared);
09ce1111
SG
778 }
779
17467f23 780 /* Initialize the the device_attribute structure */
f0fba2ad 781 dev_attr = &ssi_private->dev_attr;
0f768a72 782 sysfs_attr_init(&dev_attr->attr);
f0fba2ad 783 dev_attr->attr.name = "statistics";
17467f23
TT
784 dev_attr->attr.mode = S_IRUGO;
785 dev_attr->show = fsl_sysfs_ssi_show;
786
38fec727 787 ret = device_create_file(&pdev->dev, dev_attr);
17467f23 788 if (ret) {
38fec727 789 dev_err(&pdev->dev, "could not create sysfs %s file\n",
17467f23 790 ssi_private->dev_attr.attr.name);
1fab6caf 791 goto error_irq;
17467f23
TT
792 }
793
f0fba2ad 794 /* Register with ASoC */
38fec727 795 dev_set_drvdata(&pdev->dev, ssi_private);
3f4b783c 796
3580aa10
KM
797 ret = snd_soc_register_component(&pdev->dev, &fsl_ssi_component,
798 &ssi_private->cpu_dai_drv, 1);
87a0632b 799 if (ret) {
38fec727 800 dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
1fab6caf 801 goto error_dev;
f0fba2ad
LG
802 }
803
09ce1111 804 if (ssi_private->ssi_on_imx) {
bd41bc96
SG
805 ret = imx_pcm_dma_init(pdev);
806 if (ret)
09ce1111 807 goto error_dev;
09ce1111
SG
808 }
809
810 /*
811 * If codec-handle property is missing from SSI node, we assume
812 * that the machine driver uses new binding which does not require
813 * SSI driver to trigger machine driver's probe.
814 */
815 if (!of_get_property(np, "codec-handle", NULL)) {
816 ssi_private->new_binding = true;
817 goto done;
818 }
819
f0fba2ad 820 /* Trigger the machine driver's probe function. The platform driver
2b81ec69 821 * name of the machine driver is taken from /compatible property of the
f0fba2ad
LG
822 * device tree. We also pass the address of the CPU DAI driver
823 * structure.
824 */
2b81ec69
SG
825 sprop = of_get_property(of_find_node_by_path("/"), "compatible", NULL);
826 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
f0fba2ad
LG
827 p = strrchr(sprop, ',');
828 if (p)
829 sprop = p + 1;
830 snprintf(name, sizeof(name), "snd-soc-%s", sprop);
831 make_lowercase(name);
832
833 ssi_private->pdev =
38fec727 834 platform_device_register_data(&pdev->dev, name, 0, NULL, 0);
f0fba2ad
LG
835 if (IS_ERR(ssi_private->pdev)) {
836 ret = PTR_ERR(ssi_private->pdev);
38fec727 837 dev_err(&pdev->dev, "failed to register platform: %d\n", ret);
1fab6caf 838 goto error_dai;
3f4b783c 839 }
17467f23 840
09ce1111 841done:
f0fba2ad 842 return 0;
87a0632b 843
1fab6caf 844error_dai:
09ce1111 845 if (ssi_private->ssi_on_imx)
bd41bc96 846 imx_pcm_dma_exit(pdev);
3580aa10 847 snd_soc_unregister_component(&pdev->dev);
1fab6caf
TT
848
849error_dev:
38fec727 850 dev_set_drvdata(&pdev->dev, NULL);
1fab6caf
TT
851 device_remove_file(&pdev->dev, dev_attr);
852
95cd98f9
SG
853error_clk:
854 if (ssi_private->ssi_on_imx) {
855 clk_disable_unprepare(ssi_private->clk);
856 clk_put(ssi_private->clk);
857 }
858
1fab6caf
TT
859error_irq:
860 free_irq(ssi_private->irq, ssi_private);
861
862error_irqmap:
87a0632b 863 irq_dispose_mapping(ssi_private->irq);
1fab6caf
TT
864
865error_iomap:
87a0632b 866 iounmap(ssi_private->ssi);
1fab6caf
TT
867
868error_kmalloc:
87a0632b
TT
869 kfree(ssi_private);
870
871 return ret;
17467f23 872}
17467f23 873
38fec727 874static int fsl_ssi_remove(struct platform_device *pdev)
17467f23 875{
38fec727 876 struct fsl_ssi_private *ssi_private = dev_get_drvdata(&pdev->dev);
17467f23 877
09ce1111
SG
878 if (!ssi_private->new_binding)
879 platform_device_unregister(ssi_private->pdev);
95cd98f9 880 if (ssi_private->ssi_on_imx) {
bd41bc96 881 imx_pcm_dma_exit(pdev);
95cd98f9
SG
882 clk_disable_unprepare(ssi_private->clk);
883 clk_put(ssi_private->clk);
884 }
3580aa10 885 snd_soc_unregister_component(&pdev->dev);
38fec727 886 device_remove_file(&pdev->dev, &ssi_private->dev_attr);
3f4b783c 887
1fab6caf
TT
888 free_irq(ssi_private->irq, ssi_private);
889 irq_dispose_mapping(ssi_private->irq);
890
17467f23 891 kfree(ssi_private);
38fec727 892 dev_set_drvdata(&pdev->dev, NULL);
f0fba2ad
LG
893
894 return 0;
17467f23 895}
f0fba2ad
LG
896
897static const struct of_device_id fsl_ssi_ids[] = {
898 { .compatible = "fsl,mpc8610-ssi", },
09ce1111 899 { .compatible = "fsl,imx21-ssi", },
f0fba2ad
LG
900 {}
901};
902MODULE_DEVICE_TABLE(of, fsl_ssi_ids);
903
f07eb223 904static struct platform_driver fsl_ssi_driver = {
f0fba2ad
LG
905 .driver = {
906 .name = "fsl-ssi-dai",
907 .owner = THIS_MODULE,
908 .of_match_table = fsl_ssi_ids,
909 },
910 .probe = fsl_ssi_probe,
911 .remove = fsl_ssi_remove,
912};
17467f23 913
ba0a7e02 914module_platform_driver(fsl_ssi_driver);
a454dad1 915
17467f23
TT
916MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
917MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
f0fba2ad 918MODULE_LICENSE("GPL v2");
This page took 0.399482 seconds and 5 git commands to generate.