[ALSA] dbri driver cleanup
[deliverable/linux.git] / sound / sparc / dbri.c
CommitLineData
1bd9debf
TI
1/*
2 * Driver for DBRI sound chip found on Sparcs.
4338829e 3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
1bd9debf
TI
4 *
5 * Based entirely upon drivers/sbus/audio/dbri.c which is:
6 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
8 *
9 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10 * on Sun SPARCstation 10, 20, LX and Voyager models.
11 *
12 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13 * data time multiplexer with ISDN support (aka T7259)
14 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16 * Documentation:
17 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18 * Sparc Technology Business (courtesy of Sun Support)
19 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20 * available from the Lucent (formarly AT&T microelectronics) home
21 * page.
22 * - http://www.freesoft.org/Linux/DBRI/
23 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24 * Interfaces: CHI, Audio In & Out, 2 bits parallel
25 * Documentation: from the Crystal Semiconductor home page.
26 *
27 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28 * memory and a serial device (long pipes, nr 0-15) or between two serial
29 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30 * device (short pipes).
31 * A timeslot defines the bit-offset and nr of bits read from a serial device.
32 * The timeslots are linked to 6 circular lists, one for each direction for
33 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34 * (the second one is a monitor/tee pipe, valid only for serial input).
35 *
36 * The mmcodec is connected via the CHI bus and needs the data & some
37 * parameters (volume, balance, output selection) timemultiplexed in 8 byte
38 * chunks. It also has a control mode, which serves for audio format setting.
39 *
40 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41 * the same CHI bus, so I thought perhaps it is possible to use the onboard
42 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43 * audio devices. But the SUN HW group decided against it, at least on my
44 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45 * connected.
4338829e
MH
46 *
47 * I've tried to stick to the following function naming conventions:
48 * snd_* ALSA stuff
d254c8f7 49 * cs4215_* CS4215 codec specific stuff
4338829e
MH
50 * dbri_* DBRI high-level stuff
51 * other DBRI low-level stuff
1bd9debf
TI
52 */
53
54#include <sound/driver.h>
55#include <linux/interrupt.h>
56#include <linux/delay.h>
57
58#include <sound/core.h>
59#include <sound/pcm.h>
60#include <sound/pcm_params.h>
61#include <sound/info.h>
62#include <sound/control.h>
63#include <sound/initval.h>
64
65#include <asm/irq.h>
66#include <asm/io.h>
67#include <asm/sbus.h>
68#include <asm/atomic.h>
69
70MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
71MODULE_DESCRIPTION("Sun DBRI");
72MODULE_LICENSE("GPL");
73MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
74
75static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
76static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
77static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
78
79module_param_array(index, int, NULL, 0444);
80MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
81module_param_array(id, charp, NULL, 0444);
82MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
83module_param_array(enable, bool, NULL, 0444);
84MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
85
86#define DBRI_DEBUG
87
88#define D_INT (1<<0)
89#define D_GEN (1<<1)
90#define D_CMD (1<<2)
91#define D_MM (1<<3)
92#define D_USR (1<<4)
93#define D_DESC (1<<5)
94
6581f4e7 95static int dbri_debug;
4338829e 96module_param(dbri_debug, int, 0644);
1bd9debf
TI
97MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
98
99#ifdef DBRI_DEBUG
100static char *cmds[] = {
101 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
102 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
103};
104
105#define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
106
1bd9debf
TI
107#else
108#define dprintk(a, x...)
109
1bd9debf
TI
110#endif /* DBRI_DEBUG */
111
42fe7647
KH
112#define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
113 (intr << 27) | \
114 value)
115
1bd9debf
TI
116/***************************************************************************
117 CS4215 specific definitions and structures
118****************************************************************************/
119
120struct cs4215 {
121 __u8 data[4]; /* Data mode: Time slots 5-8 */
122 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
123 __u8 onboard;
124 __u8 offset; /* Bit offset from frame sync to time slot 1 */
125 volatile __u32 status;
126 volatile __u32 version;
127 __u8 precision; /* In bits, either 8 or 16 */
128 __u8 channels; /* 1 or 2 */
129};
130
131/*
132 * Control mode first
133 */
134
135/* Time Slot 1, Status register */
136#define CS4215_CLB (1<<2) /* Control Latch Bit */
137#define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
138 /* 0: line: 2.8V, speaker 8V */
139#define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
140#define CS4215_RSRVD_1 (1<<5)
141
142/* Time Slot 2, Data Format Register */
143#define CS4215_DFR_LINEAR16 0
144#define CS4215_DFR_ULAW 1
145#define CS4215_DFR_ALAW 2
146#define CS4215_DFR_LINEAR8 3
147#define CS4215_DFR_STEREO (1<<2)
148static struct {
149 unsigned short freq;
150 unsigned char xtal;
151 unsigned char csval;
152} CS4215_FREQ[] = {
153 { 8000, (1 << 4), (0 << 3) },
154 { 16000, (1 << 4), (1 << 3) },
155 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
156 { 32000, (1 << 4), (3 << 3) },
157 /* { NA, (1 << 4), (4 << 3) }, */
158 /* { NA, (1 << 4), (5 << 3) }, */
159 { 48000, (1 << 4), (6 << 3) },
160 { 9600, (1 << 4), (7 << 3) },
161 { 5513, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
162 { 11025, (2 << 4), (1 << 3) },
163 { 18900, (2 << 4), (2 << 3) },
164 { 22050, (2 << 4), (3 << 3) },
165 { 37800, (2 << 4), (4 << 3) },
166 { 44100, (2 << 4), (5 << 3) },
167 { 33075, (2 << 4), (6 << 3) },
168 { 6615, (2 << 4), (7 << 3) },
169 { 0, 0, 0}
170};
171
172#define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
173
174#define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
175
176/* Time Slot 3, Serial Port Control register */
177#define CS4215_XEN (1<<0) /* 0: Enable serial output */
178#define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
179#define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
180#define CS4215_BSEL_128 (1<<2)
181#define CS4215_BSEL_256 (2<<2)
182#define CS4215_MCK_MAST (0<<4) /* Master clock */
183#define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
184#define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
185#define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
186#define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
187
188/* Time Slot 4, Test Register */
189#define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
190#define CS4215_ENL (1<<1) /* Enable Loopback Testing */
191
192/* Time Slot 5, Parallel Port Register */
193/* Read only here and the same as the in data mode */
194
195/* Time Slot 6, Reserved */
196
197/* Time Slot 7, Version Register */
198#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
199
200/* Time Slot 8, Reserved */
201
202/*
203 * Data mode
204 */
205/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
206
207/* Time Slot 5, Output Setting */
208#define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
209#define CS4215_LE (1<<6) /* Line Out Enable */
210#define CS4215_HE (1<<7) /* Headphone Enable */
211
212/* Time Slot 6, Output Setting */
213#define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
214#define CS4215_SE (1<<6) /* Speaker Enable */
215#define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
216
217/* Time Slot 7, Input Setting */
218#define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
219#define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
220#define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
221#define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
222#define CS4215_PIO1 (1<<7)
223
224/* Time Slot 8, Input Setting */
225#define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
226#define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
227
228/***************************************************************************
229 DBRI specific definitions and structures
230****************************************************************************/
231
232/* DBRI main registers */
233#define REG0 0x00UL /* Status and Control */
234#define REG1 0x04UL /* Mode and Interrupt */
235#define REG2 0x08UL /* Parallel IO */
236#define REG3 0x0cUL /* Test */
237#define REG8 0x20UL /* Command Queue Pointer */
238#define REG9 0x24UL /* Interrupt Queue Pointer */
239
240#define DBRI_NO_CMDS 64
241#define DBRI_NO_INTS 1 /* Note: the value of this define was
242 * originally 2. The ringbuffer to store
243 * interrupts in dma is currently broken.
244 * This is a temporary fix until the ringbuffer
245 * is fixed.
246 */
247#define DBRI_INT_BLK 64
248#define DBRI_NO_DESCS 64
249#define DBRI_NO_PIPES 32
250
251#define DBRI_MM_ONB 1
252#define DBRI_MM_SB 2
253
254#define DBRI_REC 0
255#define DBRI_PLAY 1
256#define DBRI_NO_STREAMS 2
257
258/* One transmit/receive descriptor */
259struct dbri_mem {
260 volatile __u32 word1;
261 volatile __u32 ba; /* Transmit/Receive Buffer Address */
262 volatile __u32 nda; /* Next Descriptor Address */
263 volatile __u32 word4;
264};
265
266/* This structure is in a DMA region where it can accessed by both
267 * the CPU and the DBRI
268 */
269struct dbri_dma {
270 volatile s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
271 volatile s32 intr[DBRI_NO_INTS * DBRI_INT_BLK]; /* Interrupt field */
272 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
273};
274
275#define dbri_dma_off(member, elem) \
276 ((u32)(unsigned long) \
277 (&(((struct dbri_dma *)0)->member[elem])))
278
279enum in_or_out { PIPEinput, PIPEoutput };
280
281struct dbri_pipe {
282 u32 sdp; /* SDP command word */
283 enum in_or_out direction;
284 int nextpipe; /* Next pipe in linked list */
285 int prevpipe;
286 int cycle; /* Offset of timeslot (bits) */
287 int length; /* Length of timeslot (bits) */
288 int first_desc; /* Index of first descriptor */
289 int desc; /* Index of active descriptor */
290 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
291};
292
293struct dbri_desc {
294 int inuse; /* Boolean flag */
295 int next; /* Index of next desc, or -1 */
296 unsigned int len;
297};
298
299/* Per stream (playback or record) information */
475675d6
TI
300struct dbri_streaminfo {
301 struct snd_pcm_substream *substream;
1bd9debf
TI
302 u32 dvma_buffer; /* Device view of Alsa DMA buffer */
303 int left; /* # of bytes left in DMA buffer */
304 int size; /* Size of DMA buffer */
305 size_t offset; /* offset in user buffer */
306 int pipe; /* Data pipe used */
307 int left_gain; /* mixer elements */
308 int right_gain;
309 int balance;
475675d6 310};
1bd9debf
TI
311
312/* This structure holds the information for both chips (DBRI & CS4215) */
475675d6
TI
313struct snd_dbri {
314 struct snd_card *card; /* ALSA card */
315 struct snd_pcm *pcm;
1bd9debf
TI
316
317 int regs_size, irq; /* Needed for unload */
318 struct sbus_dev *sdev; /* SBUS device info */
319 spinlock_t lock;
320
321 volatile struct dbri_dma *dma; /* Pointer to our DMA block */
322 u32 dma_dvma; /* DBRI visible DMA address */
323
324 void __iomem *regs; /* dbri HW regs */
325 int dbri_version; /* 'e' and up is OK */
326 int dbri_irqp; /* intr queue pointer */
4338829e
MH
327 int wait_send; /* sequence of command buffers send */
328 int wait_ackd; /* sequence of command buffers acknowledged */
1bd9debf
TI
329
330 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
331 struct dbri_desc descs[DBRI_NO_DESCS];
332
333 int chi_in_pipe;
334 int chi_out_pipe;
335 int chi_bpf;
336
337 struct cs4215 mm; /* mmcodec special info */
338 /* per stream (playback/record) info */
339 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
340
341 struct snd_dbri *next;
475675d6 342};
1bd9debf 343
1bd9debf
TI
344#define DBRI_MAX_VOLUME 63 /* Output volume */
345#define DBRI_MAX_GAIN 15 /* Input gain */
346#define DBRI_RIGHT_BALANCE 255
347#define DBRI_MID_BALANCE (DBRI_RIGHT_BALANCE >> 1)
348
349/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
350#define D_P (1<<15) /* Program command & queue pointer valid */
351#define D_G (1<<14) /* Allow 4-Word SBus Burst */
352#define D_S (1<<13) /* Allow 16-Word SBus Burst */
353#define D_E (1<<12) /* Allow 8-Word SBus Burst */
354#define D_X (1<<7) /* Sanity Timer Disable */
355#define D_T (1<<6) /* Permit activation of the TE interface */
356#define D_N (1<<5) /* Permit activation of the NT interface */
357#define D_C (1<<4) /* Permit activation of the CHI interface */
358#define D_F (1<<3) /* Force Sanity Timer Time-Out */
359#define D_D (1<<2) /* Disable Master Mode */
360#define D_H (1<<1) /* Halt for Analysis */
361#define D_R (1<<0) /* Soft Reset */
362
363/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
364#define D_LITTLE_END (1<<8) /* Byte Order */
365#define D_BIG_END (0<<8) /* Byte Order */
366#define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
367#define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
368#define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
369#define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
370#define D_IR (1<<0) /* Interrupt Indicator (readonly) */
371
372/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
373#define D_ENPIO3 (1<<7) /* Enable Pin 3 */
374#define D_ENPIO2 (1<<6) /* Enable Pin 2 */
375#define D_ENPIO1 (1<<5) /* Enable Pin 1 */
376#define D_ENPIO0 (1<<4) /* Enable Pin 0 */
377#define D_ENPIO (0xf0) /* Enable all the pins */
378#define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
379#define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
380#define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
381#define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
382
383/* DBRI Commands (Page 20) */
384#define D_WAIT 0x0 /* Stop execution */
385#define D_PAUSE 0x1 /* Flush long pipes */
386#define D_JUMP 0x2 /* New command queue */
387#define D_IIQ 0x3 /* Initialize Interrupt Queue */
388#define D_REX 0x4 /* Report command execution via interrupt */
389#define D_SDP 0x5 /* Setup Data Pipe */
390#define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
391#define D_DTS 0x7 /* Define Time Slot */
392#define D_SSP 0x8 /* Set short Data Pipe */
393#define D_CHI 0x9 /* Set CHI Global Mode */
394#define D_NT 0xa /* NT Command */
395#define D_TE 0xb /* TE Command */
396#define D_CDEC 0xc /* Codec setup */
397#define D_TEST 0xd /* No comment */
398#define D_CDM 0xe /* CHI Data mode command */
399
400/* Special bits for some commands */
401#define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
402
403/* Setup Data Pipe */
404/* IRM */
405#define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
406#define D_SDP_CHANGE (2<<18) /* Report any changes */
407#define D_SDP_EVERY (3<<18) /* Report any changes */
408#define D_SDP_EOL (1<<17) /* EOL interrupt enable */
409#define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
410
411/* Pipe data MODE */
412#define D_SDP_MEM (0<<13) /* To/from memory */
413#define D_SDP_HDLC (2<<13)
414#define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
415#define D_SDP_SER (4<<13) /* Serial to serial */
416#define D_SDP_FIXED (6<<13) /* Short only */
417#define D_SDP_MODE(v) ((v)&(7<<13))
418
419#define D_SDP_TO_SER (1<<12) /* Direction */
420#define D_SDP_FROM_SER (0<<12) /* Direction */
421#define D_SDP_MSB (1<<11) /* Bit order within Byte */
422#define D_SDP_LSB (0<<11) /* Bit order within Byte */
423#define D_SDP_P (1<<10) /* Pointer Valid */
424#define D_SDP_A (1<<8) /* Abort */
425#define D_SDP_C (1<<7) /* Clear */
426
427/* Define Time Slot */
428#define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
429#define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
430#define D_DTS_INS (1<<15) /* Insert Time Slot */
431#define D_DTS_DEL (0<<15) /* Delete Time Slot */
432#define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
433#define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
434
435/* Time Slot defines */
436#define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
437#define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
438#define D_TS_DI (1<<13) /* Data Invert */
439#define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
440#define D_TS_MONITOR (2<<10) /* Monitor pipe */
441#define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
442#define D_TS_ANCHOR (7<<10) /* Starting short pipes */
443#define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
444#define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
445
446/* Concentration Highway Interface Modes */
447#define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
448#define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
449#define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
450#define D_CHI_OD (1<<13) /* Open Drain Enable */
451#define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
452#define D_CHI_FD (1<<11) /* Frame Drive */
453#define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
454
455/* NT: These are here for completeness */
456#define D_NT_FBIT (1<<17) /* Frame Bit */
457#define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
458#define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
459#define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
460#define D_NT_ISNT (1<<13) /* Configfure interface as NT */
461#define D_NT_FT (1<<12) /* Fixed Timing */
462#define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
463#define D_NT_IFA (1<<10) /* Inhibit Final Activation */
464#define D_NT_ACT (1<<9) /* Activate Interface */
465#define D_NT_MFE (1<<8) /* Multiframe Enable */
466#define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
467#define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
468#define D_NT_FACT (1<<1) /* Force Activation */
469#define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
470
471/* Codec Setup */
472#define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
473#define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
474#define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
475
476/* Test */
477#define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
478#define D_TEST_SIZE(v) ((v)<<11) /* */
479#define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
480#define D_TEST_PROC 0x6 /* MicroProcessor test */
481#define D_TEST_SER 0x7 /* Serial-Controller test */
482#define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
483#define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
484#define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
485#define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
486#define D_TEST_DUMP 0xe /* ROM Dump */
487
488/* CHI Data Mode */
489#define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
490#define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
491#define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
492#define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
493#define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
494#define D_CDM_REN (1<<0) /* Receive Highway Enable */
495
496/* The Interrupts */
497#define D_INTR_BRDY 1 /* Buffer Ready for processing */
498#define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
499#define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
500#define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
501#define D_INTR_EOL 5 /* End of List */
502#define D_INTR_CMDI 6 /* Command has bean read */
503#define D_INTR_XCMP 8 /* Transmission of frame complete */
504#define D_INTR_SBRI 9 /* BRI status change info */
505#define D_INTR_FXDT 10 /* Fixed data change */
506#define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
507#define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
508#define D_INTR_DBYT 12 /* Dropped by frame slip */
509#define D_INTR_RBYT 13 /* Repeated by frame slip */
510#define D_INTR_LINT 14 /* Lost Interrupt */
511#define D_INTR_UNDR 15 /* DMA underrun */
512
513#define D_INTR_TE 32
514#define D_INTR_NT 34
515#define D_INTR_CHI 36
516#define D_INTR_CMD 38
517
518#define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
519#define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
520#define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
521#define D_INTR_GETVAL(v) ((v) & 0xffff)
522#define D_INTR_GETRVAL(v) ((v) & 0xfffff)
523
524#define D_P_0 0 /* TE receive anchor */
525#define D_P_1 1 /* TE transmit anchor */
526#define D_P_2 2 /* NT transmit anchor */
527#define D_P_3 3 /* NT receive anchor */
528#define D_P_4 4 /* CHI send data */
529#define D_P_5 5 /* CHI receive data */
530#define D_P_6 6 /* */
531#define D_P_7 7 /* */
532#define D_P_8 8 /* */
533#define D_P_9 9 /* */
534#define D_P_10 10 /* */
535#define D_P_11 11 /* */
536#define D_P_12 12 /* */
537#define D_P_13 13 /* */
538#define D_P_14 14 /* */
539#define D_P_15 15 /* */
540#define D_P_16 16 /* CHI anchor pipe */
541#define D_P_17 17 /* CHI send */
542#define D_P_18 18 /* CHI receive */
543#define D_P_19 19 /* CHI receive */
544#define D_P_20 20 /* CHI receive */
545#define D_P_21 21 /* */
546#define D_P_22 22 /* */
547#define D_P_23 23 /* */
548#define D_P_24 24 /* */
549#define D_P_25 25 /* */
550#define D_P_26 26 /* */
551#define D_P_27 27 /* */
552#define D_P_28 28 /* */
553#define D_P_29 29 /* */
554#define D_P_30 30 /* */
555#define D_P_31 31 /* */
556
557/* Transmit descriptor defines */
558#define DBRI_TD_F (1<<31) /* End of Frame */
559#define DBRI_TD_D (1<<30) /* Do not append CRC */
560#define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
561#define DBRI_TD_B (1<<15) /* Final interrupt */
562#define DBRI_TD_M (1<<14) /* Marker interrupt */
563#define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
564#define DBRI_TD_FCNT(v) (v) /* Flag Count */
565#define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
566#define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
567#define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
568#define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
569 /* Maximum buffer size per TD: almost 8Kb */
570#define DBRI_TD_MAXCNT ((1 << 13) - 1)
571
572/* Receive descriptor defines */
573#define DBRI_RD_F (1<<31) /* End of Frame */
574#define DBRI_RD_C (1<<30) /* Completed buffer */
575#define DBRI_RD_B (1<<15) /* Final interrupt */
576#define DBRI_RD_M (1<<14) /* Marker interrupt */
577#define DBRI_RD_BCNT(v) (v) /* Buffer size */
578#define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
579#define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
580#define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
581#define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
582#define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
583#define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
584
585/* stream_info[] access */
586/* Translate the ALSA direction into the array index */
587#define DBRI_STREAMNO(substream) \
588 (substream->stream == \
589 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
590
591/* Return a pointer to dbri_streaminfo */
592#define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
593
6581f4e7 594static struct snd_dbri *dbri_list; /* All DBRI devices */
1bd9debf
TI
595
596/*
597 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
598 * So we have to reverse the bits. Note: not all bit lengths are supported
599 */
600static __u32 reverse_bytes(__u32 b, int len)
601{
602 switch (len) {
603 case 32:
604 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
605 case 16:
606 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
607 case 8:
608 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
609 case 4:
610 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
611 case 2:
612 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
613 case 1:
614 case 0:
615 break;
616 default:
617 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
618 };
619
620 return b;
621}
622
623/*
624****************************************************************************
625************** DBRI initialization and command synchronization *************
626****************************************************************************
627
628Commands are sent to the DBRI by building a list of them in memory,
629then writing the address of the first list item to DBRI register 8.
4338829e
MH
630The list is terminated with a WAIT command, which generates a
631CPU interrupt to signal completion.
1bd9debf
TI
632
633Since the DBRI can run in parallel with the CPU, several means of
4338829e
MH
634synchronization present themselves. The method implemented here is close
635to the original scheme (Rudolf's), and uses 2 counters (wait_send and
636wait_ackd) to synchronize the command buffer between the CPU and the DBRI.
1bd9debf
TI
637
638A more sophisticated scheme might involve a circular command buffer
639or an array of command buffers. A routine could fill one with
640commands and link it onto a list. When a interrupt signaled
641completion of the current command buffer, look on the list for
642the next one.
643
1bd9debf
TI
644Every time a routine wants to write commands to the DBRI, it must
645first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
4338829e
MH
646in return. dbri_cmdlock() will block if the previous commands have not
647been completed yet. After this the commands can be written to the buffer,
648and dbri_cmdsend() is called with the final pointer value to send them
649to the DBRI.
1bd9debf
TI
650
651*/
652
475675d6 653static void dbri_process_interrupt_buffer(struct snd_dbri * dbri);
4338829e 654
475675d6 655enum dbri_lock { NoGetLock, GetLock };
4338829e 656#define MAXLOOPS 10
1bd9debf 657
475675d6 658static volatile s32 *dbri_cmdlock(struct snd_dbri * dbri, enum dbri_lock get)
1bd9debf 659{
4338829e
MH
660 int maxloops = MAXLOOPS;
661
1bd9debf
TI
662#ifndef SMP
663 if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
664 printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
665 }
666#endif
667
4338829e
MH
668 /* Delay if previous commands are still being processed */
669 while ((--maxloops) > 0 && (dbri->wait_send != dbri->wait_ackd)) {
670 msleep_interruptible(1);
671 /* If dbri_cmdlock() got called from inside the
672 * interrupt handler, this will do the processing.
673 */
674 dbri_process_interrupt_buffer(dbri);
675 }
676 if (maxloops == 0) {
677 printk(KERN_ERR "DBRI: Chip never completed command buffer %d\n",
678 dbri->wait_send);
679 } else {
680 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
681 MAXLOOPS - maxloops - 1);
682 }
683
1bd9debf
TI
684 /*if (get == GetLock) spin_lock(&dbri->lock); */
685 return &dbri->dma->cmd[0];
686}
687
475675d6 688static void dbri_cmdsend(struct snd_dbri * dbri, volatile s32 * cmd)
1bd9debf 689{
1bd9debf
TI
690 volatile s32 *ptr;
691
692 for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
693 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
694 }
695
696 if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
4338829e 697 printk(KERN_ERR "DBRI: Command buffer overflow! (bug in driver)\n");
1bd9debf
TI
698 /* Ignore the last part. */
699 cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
700 }
701
4338829e
MH
702 dbri->wait_send++;
703 dbri->wait_send &= 0xffff; /* restrict it to a 16 bit counter. */
1bd9debf 704 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
4338829e
MH
705 *(cmd++) = DBRI_CMD(D_WAIT, 1, dbri->wait_send);
706
707 /* Set command pointer and signal it is valid. */
1bd9debf 708 sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
1bd9debf
TI
709
710 /*spin_unlock(&dbri->lock); */
711}
712
713/* Lock must be held when calling this */
475675d6 714static void dbri_reset(struct snd_dbri * dbri)
1bd9debf
TI
715{
716 int i;
717
718 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
719 sbus_readl(dbri->regs + REG0),
720 sbus_readl(dbri->regs + REG2),
721 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
722
723 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
724 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
725 udelay(10);
726}
727
728/* Lock must not be held before calling this */
475675d6 729static void dbri_initialize(struct snd_dbri * dbri)
1bd9debf
TI
730{
731 volatile s32 *cmd;
732 u32 dma_addr, tmp;
733 unsigned long flags;
734 int n;
735
736 spin_lock_irqsave(&dbri->lock, flags);
737
738 dbri_reset(dbri);
739
740 cmd = dbri_cmdlock(dbri, NoGetLock);
741 dprintk(D_GEN, "init: cmd: %p, int: %p\n",
742 &dbri->dma->cmd[0], &dbri->dma->intr[0]);
743
744 /*
745 * Initialize the interrupt ringbuffer.
746 */
747 for (n = 0; n < DBRI_NO_INTS - 1; n++) {
748 dma_addr = dbri->dma_dvma;
42fe7647 749 dma_addr += dbri_dma_off(intr, ((n + 1) * DBRI_INT_BLK));
1bd9debf
TI
750 dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
751 }
752 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
753 dbri->dma->intr[n * DBRI_INT_BLK] = dma_addr;
754 dbri->dbri_irqp = 1;
755
756 /* Initialize pipes */
757 for (n = 0; n < DBRI_NO_PIPES; n++)
758 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
759
4338829e
MH
760 /* A brute approach - DBRI falls back to working burst size by itself
761 * On SS20 D_S does not work, so do not try so high. */
1bd9debf 762 tmp = sbus_readl(dbri->regs + REG0);
4338829e
MH
763 tmp |= D_G | D_E;
764 tmp &= ~D_S;
1bd9debf
TI
765 sbus_writel(tmp, dbri->regs + REG0);
766
767 /*
768 * Set up the interrupt queue
769 */
770 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
771 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
772 *(cmd++) = dma_addr;
773
774 dbri_cmdsend(dbri, cmd);
775 spin_unlock_irqrestore(&dbri->lock, flags);
776}
777
778/*
779****************************************************************************
780************************** DBRI data pipe management ***********************
781****************************************************************************
782
783While DBRI control functions use the command and interrupt buffers, the
784main data path takes the form of data pipes, which can be short (command
785and interrupt driven), or long (attached to DMA buffers). These functions
786provide a rudimentary means of setting up and managing the DBRI's pipes,
787but the calling functions have to make sure they respect the pipes' linked
788list ordering, among other things. The transmit and receive functions
789here interface closely with the transmit and receive interrupt code.
790
791*/
475675d6 792static int pipe_active(struct snd_dbri * dbri, int pipe)
1bd9debf
TI
793{
794 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
795}
796
797/* reset_pipe(dbri, pipe)
798 *
799 * Called on an in-use pipe to clear anything being transmitted or received
800 * Lock must be held before calling this.
801 */
475675d6 802static void reset_pipe(struct snd_dbri * dbri, int pipe)
1bd9debf
TI
803{
804 int sdp;
805 int desc;
806 volatile int *cmd;
807
808 if (pipe < 0 || pipe > 31) {
4338829e 809 printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
1bd9debf
TI
810 return;
811 }
812
813 sdp = dbri->pipes[pipe].sdp;
814 if (sdp == 0) {
4338829e 815 printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
1bd9debf
TI
816 return;
817 }
818
819 cmd = dbri_cmdlock(dbri, NoGetLock);
820 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
821 *(cmd++) = 0;
822 dbri_cmdsend(dbri, cmd);
823
824 desc = dbri->pipes[pipe].first_desc;
825 while (desc != -1) {
826 dbri->descs[desc].inuse = 0;
827 desc = dbri->descs[desc].next;
828 }
829
830 dbri->pipes[pipe].desc = -1;
831 dbri->pipes[pipe].first_desc = -1;
832}
833
834/* FIXME: direction as an argument? */
475675d6 835static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
1bd9debf
TI
836{
837 if (pipe < 0 || pipe > 31) {
4338829e 838 printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
1bd9debf
TI
839 return;
840 }
841
842 if ((sdp & 0xf800) != sdp) {
4338829e 843 printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
1bd9debf
TI
844 /* sdp &= 0xf800; */
845 }
846
847 /* If this is a fixed receive pipe, arrange for an interrupt
848 * every time its data changes
849 */
850 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
851 sdp |= D_SDP_CHANGE;
852
853 sdp |= D_PIPE(pipe);
854 dbri->pipes[pipe].sdp = sdp;
855 dbri->pipes[pipe].desc = -1;
856 dbri->pipes[pipe].first_desc = -1;
857 if (sdp & D_SDP_TO_SER)
858 dbri->pipes[pipe].direction = PIPEoutput;
859 else
860 dbri->pipes[pipe].direction = PIPEinput;
861
862 reset_pipe(dbri, pipe);
863}
864
865/* FIXME: direction not needed */
475675d6 866static void link_time_slot(struct snd_dbri * dbri, int pipe,
1bd9debf
TI
867 enum in_or_out direction, int basepipe,
868 int length, int cycle)
869{
870 volatile s32 *cmd;
871 int val;
872 int prevpipe;
873 int nextpipe;
874
875 if (pipe < 0 || pipe > 31 || basepipe < 0 || basepipe > 31) {
4338829e
MH
876 printk(KERN_ERR
877 "DBRI: link_time_slot called with illegal pipe number\n");
1bd9debf
TI
878 return;
879 }
880
881 if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
4338829e 882 printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
1bd9debf
TI
883 return;
884 }
885
886 /* Deal with CHI special case:
887 * "If transmission on edges 0 or 1 is desired, then cycle n
888 * (where n = # of bit times per frame...) must be used."
889 * - DBRI data sheet, page 11
890 */
891 if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
892 cycle = dbri->chi_bpf;
893
894 if (basepipe == pipe) {
895 prevpipe = pipe;
896 nextpipe = pipe;
897 } else {
898 /* We're not initializing a new linked list (basepipe != pipe),
899 * so run through the linked list and find where this pipe
900 * should be sloted in, based on its cycle. CHI confuses
901 * things a bit, since it has a single anchor for both its
902 * transmit and receive lists.
903 */
904 if (basepipe == 16) {
905 if (direction == PIPEinput) {
906 prevpipe = dbri->chi_in_pipe;
907 } else {
908 prevpipe = dbri->chi_out_pipe;
909 }
910 } else {
911 prevpipe = basepipe;
912 }
913
914 nextpipe = dbri->pipes[prevpipe].nextpipe;
915
916 while (dbri->pipes[nextpipe].cycle < cycle
917 && dbri->pipes[nextpipe].nextpipe != basepipe) {
918 prevpipe = nextpipe;
919 nextpipe = dbri->pipes[nextpipe].nextpipe;
920 }
921 }
922
923 if (prevpipe == 16) {
924 if (direction == PIPEinput) {
925 dbri->chi_in_pipe = pipe;
926 } else {
927 dbri->chi_out_pipe = pipe;
928 }
929 } else {
930 dbri->pipes[prevpipe].nextpipe = pipe;
931 }
932
933 dbri->pipes[pipe].nextpipe = nextpipe;
934 dbri->pipes[pipe].cycle = cycle;
935 dbri->pipes[pipe].length = length;
936
937 cmd = dbri_cmdlock(dbri, NoGetLock);
938
939 if (direction == PIPEinput) {
940 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
941 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
942 *(cmd++) =
943 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
944 *(cmd++) = 0;
945 } else {
946 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
947 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
948 *(cmd++) = 0;
949 *(cmd++) =
950 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
951 }
952
953 dbri_cmdsend(dbri, cmd);
954}
955
475675d6 956static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
1bd9debf
TI
957 enum in_or_out direction, int prevpipe,
958 int nextpipe)
959{
960 volatile s32 *cmd;
961 int val;
962
963 if (pipe < 0 || pipe > 31 || prevpipe < 0 || prevpipe > 31) {
4338829e
MH
964 printk(KERN_ERR
965 "DBRI: unlink_time_slot called with illegal pipe number\n");
1bd9debf
TI
966 return;
967 }
968
969 cmd = dbri_cmdlock(dbri, NoGetLock);
970
971 if (direction == PIPEinput) {
972 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
973 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
974 *(cmd++) = D_TS_NEXT(nextpipe);
975 *(cmd++) = 0;
976 } else {
977 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
978 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
979 *(cmd++) = 0;
980 *(cmd++) = D_TS_NEXT(nextpipe);
981 }
982
983 dbri_cmdsend(dbri, cmd);
984}
985
986/* xmit_fixed() / recv_fixed()
987 *
988 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
989 * expected to change much, and which we don't need to buffer.
990 * The DBRI only interrupts us when the data changes (receive pipes),
991 * or only changes the data when this function is called (transmit pipes).
992 * Only short pipes (numbers 16-31) can be used in fixed data mode.
993 *
994 * These function operate on a 32-bit field, no matter how large
995 * the actual time slot is. The interrupt handler takes care of bit
996 * ordering and alignment. An 8-bit time slot will always end up
997 * in the low-order 8 bits, filled either MSB-first or LSB-first,
998 * depending on the settings passed to setup_pipe()
999 */
475675d6 1000static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
1bd9debf
TI
1001{
1002 volatile s32 *cmd;
1003
1004 if (pipe < 16 || pipe > 31) {
4338829e 1005 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1bd9debf
TI
1006 return;
1007 }
1008
1009 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
4338829e 1010 printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1bd9debf
TI
1011 return;
1012 }
1013
1014 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
4338829e 1015 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1bd9debf
TI
1016 return;
1017 }
1018
1019 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
4338829e 1020 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1bd9debf
TI
1021 return;
1022 }
1023
1024 /* DBRI short pipes always transmit LSB first */
1025
1026 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1027 data = reverse_bytes(data, dbri->pipes[pipe].length);
1028
1029 cmd = dbri_cmdlock(dbri, GetLock);
1030
1031 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1032 *(cmd++) = data;
1033
1034 dbri_cmdsend(dbri, cmd);
1035}
1036
475675d6 1037static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1bd9debf
TI
1038{
1039 if (pipe < 16 || pipe > 31) {
4338829e 1040 printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1bd9debf
TI
1041 return;
1042 }
1043
1044 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
4338829e 1045 printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1bd9debf
TI
1046 return;
1047 }
1048
1049 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
4338829e 1050 printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1bd9debf
TI
1051 return;
1052 }
1053
1054 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1055}
1056
1057/* setup_descs()
1058 *
1059 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1060 * with a DMA buffer.
1061 *
1062 * Only pipe numbers 0-15 can be used in this mode.
1063 *
1064 * This function takes a stream number pointing to a data buffer,
1065 * and work by building chains of descriptors which identify the
1066 * data buffers. Buffers too large for a single descriptor will
1067 * be spread across multiple descriptors.
1068 */
475675d6 1069static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1bd9debf 1070{
475675d6 1071 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1bd9debf
TI
1072 __u32 dvma_buffer;
1073 int desc = 0;
1074 int len;
1075 int first_desc = -1;
1076 int last_desc = -1;
1077
1078 if (info->pipe < 0 || info->pipe > 15) {
4338829e 1079 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1bd9debf
TI
1080 return -2;
1081 }
1082
1083 if (dbri->pipes[info->pipe].sdp == 0) {
4338829e 1084 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1bd9debf
TI
1085 info->pipe);
1086 return -2;
1087 }
1088
1089 dvma_buffer = info->dvma_buffer;
1090 len = info->size;
1091
1092 if (streamno == DBRI_PLAY) {
1093 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
4338829e 1094 printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1bd9debf
TI
1095 info->pipe);
1096 return -2;
1097 }
1098 } else {
1099 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
4338829e
MH
1100 printk(KERN_ERR
1101 "DBRI: setup_descs: Called on transmit pipe %d\n",
1bd9debf
TI
1102 info->pipe);
1103 return -2;
1104 }
1105 /* Should be able to queue multiple buffers to receive on a pipe */
1106 if (pipe_active(dbri, info->pipe)) {
4338829e 1107 printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1bd9debf
TI
1108 info->pipe);
1109 return -2;
1110 }
1111
1112 /* Make sure buffer size is multiple of four */
1113 len &= ~3;
1114 }
1115
1116 while (len > 0) {
1117 int mylen;
1118
1119 for (; desc < DBRI_NO_DESCS; desc++) {
1120 if (!dbri->descs[desc].inuse)
1121 break;
1122 }
1123 if (desc == DBRI_NO_DESCS) {
4338829e 1124 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1bd9debf
TI
1125 return -1;
1126 }
1127
1128 if (len > DBRI_TD_MAXCNT) {
1129 mylen = DBRI_TD_MAXCNT; /* 8KB - 1 */
1130 } else {
1131 mylen = len;
1132 }
1133 if (mylen > period) {
1134 mylen = period;
1135 }
1136
1137 dbri->descs[desc].inuse = 1;
1138 dbri->descs[desc].next = -1;
1139 dbri->dma->desc[desc].ba = dvma_buffer;
1140 dbri->dma->desc[desc].nda = 0;
1141
1142 if (streamno == DBRI_PLAY) {
1143 dbri->descs[desc].len = mylen;
1144 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1145 dbri->dma->desc[desc].word4 = 0;
1146 if (first_desc != -1)
1147 dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1148 } else {
1149 dbri->descs[desc].len = 0;
1150 dbri->dma->desc[desc].word1 = 0;
1151 dbri->dma->desc[desc].word4 =
1152 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1153 }
1154
1155 if (first_desc == -1) {
1156 first_desc = desc;
1157 } else {
1158 dbri->descs[last_desc].next = desc;
1159 dbri->dma->desc[last_desc].nda =
1160 dbri->dma_dvma + dbri_dma_off(desc, desc);
1161 }
1162
1163 last_desc = desc;
1164 dvma_buffer += mylen;
1165 len -= mylen;
1166 }
1167
1168 if (first_desc == -1 || last_desc == -1) {
4338829e 1169 printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1bd9debf
TI
1170 return -1;
1171 }
1172
1173 dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1174 if (streamno == DBRI_PLAY) {
1175 dbri->dma->desc[last_desc].word1 |=
1176 DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1177 }
1178 dbri->pipes[info->pipe].first_desc = first_desc;
1179 dbri->pipes[info->pipe].desc = first_desc;
1180
1181 for (desc = first_desc; desc != -1; desc = dbri->descs[desc].next) {
1182 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1183 desc,
1184 dbri->dma->desc[desc].word1,
1185 dbri->dma->desc[desc].ba,
1186 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1187 }
1188 return 0;
1189}
1190
1191/*
1192****************************************************************************
1193************************** DBRI - CHI interface ****************************
1194****************************************************************************
1195
1196The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1197multiplexed serial interface which the DBRI can operate in either master
1198(give clock/frame sync) or slave (take clock/frame sync) mode.
1199
1200*/
1201
1202enum master_or_slave { CHImaster, CHIslave };
1203
475675d6 1204static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1bd9debf
TI
1205 int bits_per_frame)
1206{
1207 volatile s32 *cmd;
1208 int val;
1209 static int chi_initialized = 0; /* FIXME: mutex? */
1210
1211 if (!chi_initialized) {
1212
1213 cmd = dbri_cmdlock(dbri, GetLock);
1214
1215 /* Set CHI Anchor: Pipe 16 */
1216
1217 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(16) | D_PIPE(16);
1218 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1219 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1220 *(cmd++) = 0;
1221
1222 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(16) | D_PIPE(16);
1223 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1224 *(cmd++) = 0;
1225 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1226
1227 dbri->pipes[16].sdp = 1;
1228 dbri->pipes[16].nextpipe = 16;
1229 dbri->chi_in_pipe = 16;
1230 dbri->chi_out_pipe = 16;
1231
1232#if 0
1233 chi_initialized++;
1234#endif
1235 } else {
1236 int pipe;
1237
1238 for (pipe = dbri->chi_in_pipe;
1239 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1240 unlink_time_slot(dbri, pipe, PIPEinput,
1241 16, dbri->pipes[pipe].nextpipe);
1242 }
1243 for (pipe = dbri->chi_out_pipe;
1244 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1245 unlink_time_slot(dbri, pipe, PIPEoutput,
1246 16, dbri->pipes[pipe].nextpipe);
1247 }
1248
1249 dbri->chi_in_pipe = 16;
1250 dbri->chi_out_pipe = 16;
1251
1252 cmd = dbri_cmdlock(dbri, GetLock);
1253 }
1254
1255 if (master_or_slave == CHIslave) {
1256 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1257 *
1258 * CHICM = 0 (slave mode, 8 kHz frame rate)
1259 * IR = give immediate CHI status interrupt
1260 * EN = give CHI status interrupt upon change
1261 */
1262 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1263 } else {
1264 /* Setup DBRI for CHI Master - generate clock, FS
1265 *
1266 * BPF = bits per 8 kHz frame
1267 * 12.288 MHz / CHICM_divisor = clock rate
1268 * FD = 1 - drive CHIFS on rising edge of CHICK
1269 */
1270 int clockrate = bits_per_frame * 8;
1271 int divisor = 12288 / clockrate;
1272
1273 if (divisor > 255 || divisor * clockrate != 12288)
4338829e 1274 printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1bd9debf
TI
1275
1276 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1277 | D_CHI_BPF(bits_per_frame));
1278 }
1279
1280 dbri->chi_bpf = bits_per_frame;
1281
1282 /* CHI Data Mode
1283 *
1284 * RCE = 0 - receive on falling edge of CHICK
1285 * XCE = 1 - transmit on rising edge of CHICK
1286 * XEN = 1 - enable transmitter
1287 * REN = 1 - enable receiver
1288 */
1289
1290 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1292
1293 dbri_cmdsend(dbri, cmd);
1294}
1295
1296/*
1297****************************************************************************
1298*********************** CS4215 audio codec management **********************
1299****************************************************************************
1300
1301In the standard SPARC audio configuration, the CS4215 codec is attached
1302to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1303
1304*/
475675d6 1305static void cs4215_setup_pipes(struct snd_dbri * dbri)
1bd9debf
TI
1306{
1307 /*
1308 * Data mode:
1309 * Pipe 4: Send timeslots 1-4 (audio data)
1310 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1311 * Pipe 6: Receive timeslots 1-4 (audio data)
1312 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1313 * interrupt, and the rest of the data (slot 5 and 8) is
1314 * not relevant for us (only for doublechecking).
1315 *
1316 * Control mode:
1317 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1318 * Pipe 18: Receive timeslot 1 (clb).
1319 * Pipe 19: Receive timeslot 7 (version).
1320 */
1321
1322 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1323 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1324 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1325 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1326
1327 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1328 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1329 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1330}
1331
1332static int cs4215_init_data(struct cs4215 *mm)
1333{
1334 /*
1335 * No action, memory resetting only.
1336 *
1337 * Data Time Slot 5-8
1338 * Speaker,Line and Headphone enable. Gain set to the half.
1339 * Input is mike.
1340 */
1341 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1342 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1343 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1344 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1345
1346 /*
1347 * Control Time Slot 1-4
1348 * 0: Default I/O voltage scale
1349 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1350 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1351 * 3: Tests disabled
1352 */
1353 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1354 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1355 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1356 mm->ctrl[3] = 0;
1357
1358 mm->status = 0;
1359 mm->version = 0xff;
1360 mm->precision = 8; /* For ULAW */
1361 mm->channels = 2;
1362
1363 return 0;
1364}
1365
475675d6 1366static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1bd9debf
TI
1367{
1368 if (muted) {
1369 dbri->mm.data[0] |= 63;
1370 dbri->mm.data[1] |= 63;
1371 dbri->mm.data[2] &= ~15;
1372 dbri->mm.data[3] &= ~15;
1373 } else {
1374 /* Start by setting the playback attenuation. */
475675d6 1375 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1bd9debf
TI
1376 int left_gain = info->left_gain % 64;
1377 int right_gain = info->right_gain % 64;
1378
1379 if (info->balance < DBRI_MID_BALANCE) {
1380 right_gain *= info->balance;
1381 right_gain /= DBRI_MID_BALANCE;
1382 } else {
1383 left_gain *= DBRI_RIGHT_BALANCE - info->balance;
1384 left_gain /= DBRI_MID_BALANCE;
1385 }
1386
1387 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1388 dbri->mm.data[1] &= ~0x3f;
1389 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1390 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1391
1392 /* Now set the recording gain. */
1393 info = &dbri->stream_info[DBRI_REC];
1394 left_gain = info->left_gain % 16;
1395 right_gain = info->right_gain % 16;
1396 dbri->mm.data[2] |= CS4215_LG(left_gain);
1397 dbri->mm.data[3] |= CS4215_RG(right_gain);
1398 }
1399
1400 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1401}
1402
1403/*
1404 * Set the CS4215 to data mode.
1405 */
475675d6 1406static void cs4215_open(struct snd_dbri * dbri)
1bd9debf
TI
1407{
1408 int data_width;
1409 u32 tmp;
1410
1411 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1412 dbri->mm.channels, dbri->mm.precision);
1413
1414 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1415 * to make sure this takes. This avoids clicking noises.
1416 */
1417
1418 cs4215_setdata(dbri, 1);
1419 udelay(125);
1420
1421 /*
1422 * Data mode:
1423 * Pipe 4: Send timeslots 1-4 (audio data)
1424 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1425 * Pipe 6: Receive timeslots 1-4 (audio data)
1426 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1427 * interrupt, and the rest of the data (slot 5 and 8) is
1428 * not relevant for us (only for doublechecking).
1429 *
1430 * Just like in control mode, the time slots are all offset by eight
1431 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1432 * even if it's the CHI master. Don't ask me...
1433 */
1434 tmp = sbus_readl(dbri->regs + REG0);
1435 tmp &= ~(D_C); /* Disable CHI */
1436 sbus_writel(tmp, dbri->regs + REG0);
1437
1438 /* Switch CS4215 to data mode - set PIO3 to 1 */
1439 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1440 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1441
1442 reset_chi(dbri, CHIslave, 128);
1443
1444 /* Note: this next doesn't work for 8-bit stereo, because the two
1445 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1446 * (See CS4215 datasheet Fig 15)
1447 *
1448 * DBRI non-contiguous mode would be required to make this work.
1449 */
1450 data_width = dbri->mm.channels * dbri->mm.precision;
1451
1452 link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1453 link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1454 link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1455 link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1456
1457 /* FIXME: enable CHI after _setdata? */
1458 tmp = sbus_readl(dbri->regs + REG0);
1459 tmp |= D_C; /* Enable CHI */
1460 sbus_writel(tmp, dbri->regs + REG0);
1461
1462 cs4215_setdata(dbri, 0);
1463}
1464
1465/*
1466 * Send the control information (i.e. audio format)
1467 */
475675d6 1468static int cs4215_setctrl(struct snd_dbri * dbri)
1bd9debf
TI
1469{
1470 int i, val;
1471 u32 tmp;
1472
1473 /* FIXME - let the CPU do something useful during these delays */
1474
1475 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1476 * to make sure this takes. This avoids clicking noises.
1477 */
1bd9debf
TI
1478 cs4215_setdata(dbri, 1);
1479 udelay(125);
1480
1481 /*
1482 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1483 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1484 */
1485 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1486 sbus_writel(val, dbri->regs + REG2);
1487 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1488 udelay(34);
1489
1490 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1491 * operate as CHI master, supplying clocking and frame synchronization.
1492 *
1493 * In Data mode, however, the CS4215 must be CHI master to insure
1494 * that its data stream is synchronous with its codec.
1495 *
1496 * The upshot of all this? We start by putting the DBRI into master
1497 * mode, program the CS4215 in Control mode, then switch the CS4215
1498 * into Data mode and put the DBRI into slave mode. Various timing
1499 * requirements must be observed along the way.
1500 *
1501 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1502 * others?), the addressing of the CS4215's time slots is
1503 * offset by eight bits, so we add eight to all the "cycle"
1504 * values in the Define Time Slot (DTS) commands. This is
1505 * done in hardware by a TI 248 that delays the DBRI->4215
1506 * frame sync signal by eight clock cycles. Anybody know why?
1507 */
1508 tmp = sbus_readl(dbri->regs + REG0);
1509 tmp &= ~D_C; /* Disable CHI */
1510 sbus_writel(tmp, dbri->regs + REG0);
1511
1512 reset_chi(dbri, CHImaster, 128);
1513
1514 /*
1515 * Control mode:
1516 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1517 * Pipe 18: Receive timeslot 1 (clb).
1518 * Pipe 19: Receive timeslot 7 (version).
1519 */
1520
1521 link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1522 link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1523 link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1524
1525 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1526 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1527 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1528
1529 tmp = sbus_readl(dbri->regs + REG0);
1530 tmp |= D_C; /* Enable CHI */
1531 sbus_writel(tmp, dbri->regs + REG0);
1532
4338829e
MH
1533 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1534 msleep_interruptible(1);
1bd9debf
TI
1535 }
1536 if (i == 0) {
1537 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1538 dbri->mm.status);
1539 return -1;
1540 }
1541
1542 /* Disable changes to our copy of the version number, as we are about
1543 * to leave control mode.
1544 */
1545 recv_fixed(dbri, 19, NULL);
1546
1547 /* Terminate CS4215 control mode - data sheet says
1548 * "Set CLB=1 and send two more frames of valid control info"
1549 */
1550 dbri->mm.ctrl[0] |= CS4215_CLB;
1551 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1552
1553 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1554 udelay(250);
1555
1556 cs4215_setdata(dbri, 0);
1557
1558 return 0;
1559}
1560
1561/*
1562 * Setup the codec with the sampling rate, audio format and number of
1563 * channels.
1564 * As part of the process we resend the settings for the data
1565 * timeslots as well.
1566 */
475675d6 1567static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1bd9debf
TI
1568 snd_pcm_format_t format, unsigned int channels)
1569{
1570 int freq_idx;
1571 int ret = 0;
1572
1573 /* Lookup index for this rate */
1574 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1575 if (CS4215_FREQ[freq_idx].freq == rate)
1576 break;
1577 }
1578 if (CS4215_FREQ[freq_idx].freq != rate) {
1579 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1580 return -1;
1581 }
1582
1583 switch (format) {
1584 case SNDRV_PCM_FORMAT_MU_LAW:
1585 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1586 dbri->mm.precision = 8;
1587 break;
1588 case SNDRV_PCM_FORMAT_A_LAW:
1589 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1590 dbri->mm.precision = 8;
1591 break;
1592 case SNDRV_PCM_FORMAT_U8:
1593 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1594 dbri->mm.precision = 8;
1595 break;
1596 case SNDRV_PCM_FORMAT_S16_BE:
1597 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1598 dbri->mm.precision = 16;
1599 break;
1600 default:
1601 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1602 return -1;
1603 }
1604
1605 /* Add rate parameters */
1606 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1607 dbri->mm.ctrl[2] = CS4215_XCLK |
1608 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1609
1610 dbri->mm.channels = channels;
1611 /* Stereo bit: 8 bit stereo not working yet. */
1612 if ((channels > 1) && (dbri->mm.precision == 16))
1613 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1614
1615 ret = cs4215_setctrl(dbri);
1616 if (ret == 0)
1617 cs4215_open(dbri); /* set codec to data mode */
1618
1619 return ret;
1620}
1621
1622/*
1623 *
1624 */
475675d6 1625static int cs4215_init(struct snd_dbri * dbri)
1bd9debf
TI
1626{
1627 u32 reg2 = sbus_readl(dbri->regs + REG2);
1628 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1629
1630 /* Look for the cs4215 chips */
1631 if (reg2 & D_PIO2) {
1632 dprintk(D_MM, "Onboard CS4215 detected\n");
1633 dbri->mm.onboard = 1;
1634 }
1635 if (reg2 & D_PIO0) {
1636 dprintk(D_MM, "Speakerbox detected\n");
1637 dbri->mm.onboard = 0;
1638
1639 if (reg2 & D_PIO2) {
1640 printk(KERN_INFO "DBRI: Using speakerbox / "
1641 "ignoring onboard mmcodec.\n");
1642 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1643 }
1644 }
1645
1646 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1647 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1648 return -EIO;
1649 }
1650
1651 cs4215_setup_pipes(dbri);
1652
1653 cs4215_init_data(&dbri->mm);
1654
1655 /* Enable capture of the status & version timeslots. */
1656 recv_fixed(dbri, 18, &dbri->mm.status);
1657 recv_fixed(dbri, 19, &dbri->mm.version);
1658
1659 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1660 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1661 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1662 dbri->mm.offset);
1663 return -EIO;
1664 }
1665 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1666
1667 return 0;
1668}
1669
1670/*
1671****************************************************************************
1672*************************** DBRI interrupt handler *************************
1673****************************************************************************
1674
1675The DBRI communicates with the CPU mainly via a circular interrupt
1676buffer. When an interrupt is signaled, the CPU walks through the
1677buffer and calls dbri_process_one_interrupt() for each interrupt word.
1678Complicated interrupts are handled by dedicated functions (which
1679appear first in this file). Any pending interrupts can be serviced by
1680calling dbri_process_interrupt_buffer(), which works even if the CPU's
4338829e
MH
1681interrupts are disabled. This function is used by dbri_cmdlock()
1682to make sure we're synced up with the chip before each command sequence,
1bd9debf
TI
1683even if we're running cli'ed.
1684
1685*/
1686
1687/* xmit_descs()
1688 *
1689 * Transmit the current TD's for recording/playing, if needed.
1690 * For playback, ALSA has filled the DMA memory with new data (we hope).
1691 */
1692static void xmit_descs(unsigned long data)
1693{
475675d6
TI
1694 struct snd_dbri *dbri = (struct snd_dbri *) data;
1695 struct dbri_streaminfo *info;
1bd9debf
TI
1696 volatile s32 *cmd;
1697 unsigned long flags;
1698 int first_td;
1699
1700 if (dbri == NULL)
1701 return; /* Disabled */
1702
1703 /* First check the recording stream for buffer overflow */
1704 info = &dbri->stream_info[DBRI_REC];
1705 spin_lock_irqsave(&dbri->lock, flags);
1706
1707 if ((info->left >= info->size) && (info->pipe >= 0)) {
1708 first_td = dbri->pipes[info->pipe].first_desc;
1709
1710 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1711
1712 /* Stream could be closed by the time we run. */
1713 if (first_td < 0) {
1714 goto play;
1715 }
1716
1717 cmd = dbri_cmdlock(dbri, NoGetLock);
1718 *(cmd++) = DBRI_CMD(D_SDP, 0,
1719 dbri->pipes[info->pipe].sdp
1720 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1721 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1722 dbri_cmdsend(dbri, cmd);
1723
1724 /* Reset our admin of the pipe & bytes read. */
1725 dbri->pipes[info->pipe].desc = first_td;
1726 info->left = 0;
1727 }
1728
1729play:
1730 spin_unlock_irqrestore(&dbri->lock, flags);
1731
1732 /* Now check the playback stream for buffer underflow */
1733 info = &dbri->stream_info[DBRI_PLAY];
1734 spin_lock_irqsave(&dbri->lock, flags);
1735
1736 if ((info->left <= 0) && (info->pipe >= 0)) {
1737 first_td = dbri->pipes[info->pipe].first_desc;
1738
1739 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1740
1741 /* Stream could be closed by the time we run. */
1742 if (first_td < 0) {
1743 spin_unlock_irqrestore(&dbri->lock, flags);
1744 return;
1745 }
1746
1747 cmd = dbri_cmdlock(dbri, NoGetLock);
1748 *(cmd++) = DBRI_CMD(D_SDP, 0,
1749 dbri->pipes[info->pipe].sdp
1750 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1752 dbri_cmdsend(dbri, cmd);
1753
1754 /* Reset our admin of the pipe & bytes written. */
1755 dbri->pipes[info->pipe].desc = first_td;
1756 info->left = info->size;
1757 }
1758 spin_unlock_irqrestore(&dbri->lock, flags);
1759}
1760
063859c8 1761static DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1bd9debf
TI
1762
1763/* transmission_complete_intr()
1764 *
1765 * Called by main interrupt handler when DBRI signals transmission complete
1766 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1767 *
4338829e
MH
1768 * Walks through the pipe's list of transmit buffer descriptors and marks
1769 * them as available. Stops when the first descriptor is found without
1bd9debf 1770 * TBC (Transmit Buffer Complete) set, or we've run through them all.
4338829e
MH
1771 *
1772 * The DMA buffers are not released, but re-used. Since the transmit buffer
1773 * descriptors are not clobbered, they can be re-submitted as is. This is
1774 * done by the xmit_descs() tasklet above since that could take longer.
1bd9debf
TI
1775 */
1776
475675d6 1777static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1bd9debf 1778{
475675d6 1779 struct dbri_streaminfo *info;
1bd9debf
TI
1780 int td;
1781 int status;
1782
1783 info = &dbri->stream_info[DBRI_PLAY];
1784
1785 td = dbri->pipes[pipe].desc;
1786 while (td >= 0) {
1787 if (td >= DBRI_NO_DESCS) {
1788 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1789 return;
1790 }
1791
1792 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1793 if (!(status & DBRI_TD_TBC)) {
1794 break;
1795 }
1796
1797 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1798
1799 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
1800 info->offset += dbri->descs[td].len;
1801 info->left -= dbri->descs[td].len;
1802
1803 /* On the last TD, transmit them all again. */
1804 if (dbri->descs[td].next == -1) {
1805 if (info->left > 0) {
1806 printk(KERN_WARNING
1807 "%d bytes left after last transfer.\n",
1808 info->left);
1809 info->left = 0;
1810 }
1811 tasklet_schedule(&xmit_descs_task);
1812 }
1813
1814 td = dbri->descs[td].next;
1815 dbri->pipes[pipe].desc = td;
1816 }
1817
1818 /* Notify ALSA */
1819 if (spin_is_locked(&dbri->lock)) {
1820 spin_unlock(&dbri->lock);
1821 snd_pcm_period_elapsed(info->substream);
1822 spin_lock(&dbri->lock);
1823 } else
1824 snd_pcm_period_elapsed(info->substream);
1825}
1826
475675d6 1827static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1bd9debf 1828{
475675d6 1829 struct dbri_streaminfo *info;
1bd9debf
TI
1830 int rd = dbri->pipes[pipe].desc;
1831 s32 status;
1832
1833 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1834 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1835 return;
1836 }
1837
1838 dbri->descs[rd].inuse = 0;
1839 dbri->pipes[pipe].desc = dbri->descs[rd].next;
1840 status = dbri->dma->desc[rd].word1;
1841 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1842
1843 info = &dbri->stream_info[DBRI_REC];
1844 info->offset += DBRI_RD_CNT(status);
1845 info->left += DBRI_RD_CNT(status);
1846
1847 /* FIXME: Check status */
1848
1849 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1850 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1851
1852 /* On the last TD, transmit them all again. */
1853 if (dbri->descs[rd].next == -1) {
1854 if (info->left > info->size) {
1855 printk(KERN_WARNING
1856 "%d bytes recorded in %d size buffer.\n",
1857 info->left, info->size);
1858 }
1859 tasklet_schedule(&xmit_descs_task);
1860 }
1861
1862 /* Notify ALSA */
1863 if (spin_is_locked(&dbri->lock)) {
1864 spin_unlock(&dbri->lock);
1865 snd_pcm_period_elapsed(info->substream);
1866 spin_lock(&dbri->lock);
1867 } else
1868 snd_pcm_period_elapsed(info->substream);
1869}
1870
475675d6 1871static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1bd9debf
TI
1872{
1873 int val = D_INTR_GETVAL(x);
1874 int channel = D_INTR_GETCHAN(x);
1875 int command = D_INTR_GETCMD(x);
1876 int code = D_INTR_GETCODE(x);
1877#ifdef DBRI_DEBUG
1878 int rval = D_INTR_GETRVAL(x);
1879#endif
1880
1881 if (channel == D_INTR_CMD) {
1882 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1883 cmds[command], val);
1884 } else {
1885 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1886 channel, code, rval);
1887 }
1888
1889 if (channel == D_INTR_CMD && command == D_WAIT) {
4338829e
MH
1890 dbri->wait_ackd = val;
1891 if (dbri->wait_send != val) {
1892 printk(KERN_ERR "Processing wait command %d when %d was send.\n",
1893 val, dbri->wait_send);
1894 }
1bd9debf
TI
1895 return;
1896 }
1897
1898 switch (code) {
1899 case D_INTR_BRDY:
1900 reception_complete_intr(dbri, channel);
1901 break;
1902 case D_INTR_XCMP:
1903 case D_INTR_MINT:
1904 transmission_complete_intr(dbri, channel);
1905 break;
1906 case D_INTR_UNDR:
1907 /* UNDR - Transmission underrun
1908 * resend SDP command with clear pipe bit (C) set
1909 */
1910 {
1911 volatile s32 *cmd;
1912
1913 int pipe = channel;
1914 int td = dbri->pipes[pipe].desc;
1915
1916 dbri->dma->desc[td].word4 = 0;
1917 cmd = dbri_cmdlock(dbri, NoGetLock);
1918 *(cmd++) = DBRI_CMD(D_SDP, 0,
1919 dbri->pipes[pipe].sdp
1920 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1921 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1922 dbri_cmdsend(dbri, cmd);
1923 }
1924 break;
1925 case D_INTR_FXDT:
1926 /* FXDT - Fixed data change */
1927 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1928 val = reverse_bytes(val, dbri->pipes[channel].length);
1929
1930 if (dbri->pipes[channel].recv_fixed_ptr)
1931 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1932 break;
1933 default:
1934 if (channel != D_INTR_CMD)
1935 printk(KERN_WARNING
1936 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1937 }
1938}
1939
1940/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1941 * buffer until it finds a zero word (indicating nothing more to do
1942 * right now). Non-zero words require processing and are handed off
1943 * to dbri_process_one_interrupt AFTER advancing the pointer. This
1944 * order is important since we might recurse back into this function
1945 * and need to make sure the pointer has been advanced first.
1946 */
475675d6 1947static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1bd9debf
TI
1948{
1949 s32 x;
1950
1951 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1952 dbri->dma->intr[dbri->dbri_irqp] = 0;
1953 dbri->dbri_irqp++;
1954 if (dbri->dbri_irqp == (DBRI_NO_INTS * DBRI_INT_BLK))
1955 dbri->dbri_irqp = 1;
1956 else if ((dbri->dbri_irqp & (DBRI_INT_BLK - 1)) == 0)
1957 dbri->dbri_irqp++;
1958
1959 dbri_process_one_interrupt(dbri, x);
1960 }
1961}
1962
1963static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1964 struct pt_regs *regs)
1965{
475675d6 1966 struct snd_dbri *dbri = dev_id;
1bd9debf
TI
1967 static int errcnt = 0;
1968 int x;
1969
1970 if (dbri == NULL)
1971 return IRQ_NONE;
1972 spin_lock(&dbri->lock);
1973
1974 /*
1975 * Read it, so the interrupt goes away.
1976 */
1977 x = sbus_readl(dbri->regs + REG1);
1978
1979 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1980 u32 tmp;
1981
1982 if (x & D_MRR)
1983 printk(KERN_ERR
1984 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1985 x);
1986 if (x & D_MLE)
1987 printk(KERN_ERR
1988 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1989 x);
1990 if (x & D_LBG)
1991 printk(KERN_ERR
1992 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1993 if (x & D_MBE)
1994 printk(KERN_ERR
1995 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1996
1997 /* Some of these SBus errors cause the chip's SBus circuitry
1998 * to be disabled, so just re-enable and try to keep going.
1999 *
2000 * The only one I've seen is MRR, which will be triggered
2001 * if you let a transmit pipe underrun, then try to CDP it.
2002 *
4338829e 2003 * If these things persist, we reset the chip.
1bd9debf
TI
2004 */
2005 if ((++errcnt) % 10 == 0) {
2006 dprintk(D_INT, "Interrupt errors exceeded.\n");
2007 dbri_reset(dbri);
2008 } else {
2009 tmp = sbus_readl(dbri->regs + REG0);
2010 tmp &= ~(D_D);
2011 sbus_writel(tmp, dbri->regs + REG0);
2012 }
2013 }
2014
2015 dbri_process_interrupt_buffer(dbri);
2016
2017 /* FIXME: Write 0 into regs to ACK interrupt */
2018
2019 spin_unlock(&dbri->lock);
2020
2021 return IRQ_HANDLED;
2022}
2023
2024/****************************************************************************
2025 PCM Interface
2026****************************************************************************/
475675d6 2027static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1bd9debf
TI
2028 .info = (SNDRV_PCM_INFO_MMAP |
2029 SNDRV_PCM_INFO_INTERLEAVED |
2030 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2031 SNDRV_PCM_INFO_MMAP_VALID),
2032 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
2033 SNDRV_PCM_FMTBIT_A_LAW |
2034 SNDRV_PCM_FMTBIT_U8 |
2035 SNDRV_PCM_FMTBIT_S16_BE,
2036 .rates = SNDRV_PCM_RATE_8000_48000,
2037 .rate_min = 8000,
2038 .rate_max = 48000,
2039 .channels_min = 1,
2040 .channels_max = 2,
2041 .buffer_bytes_max = (64 * 1024),
2042 .period_bytes_min = 1,
2043 .period_bytes_max = DBRI_TD_MAXCNT,
2044 .periods_min = 1,
2045 .periods_max = 1024,
2046};
2047
475675d6 2048static int snd_dbri_open(struct snd_pcm_substream *substream)
1bd9debf 2049{
475675d6
TI
2050 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2051 struct snd_pcm_runtime *runtime = substream->runtime;
2052 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2053 unsigned long flags;
2054
2055 dprintk(D_USR, "open audio output.\n");
2056 runtime->hw = snd_dbri_pcm_hw;
2057
2058 spin_lock_irqsave(&dbri->lock, flags);
2059 info->substream = substream;
2060 info->left = 0;
2061 info->offset = 0;
2062 info->dvma_buffer = 0;
2063 info->pipe = -1;
2064 spin_unlock_irqrestore(&dbri->lock, flags);
2065
2066 cs4215_open(dbri);
2067
2068 return 0;
2069}
2070
475675d6 2071static int snd_dbri_close(struct snd_pcm_substream *substream)
1bd9debf 2072{
475675d6
TI
2073 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2074 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2075
2076 dprintk(D_USR, "close audio output.\n");
2077 info->substream = NULL;
2078 info->left = 0;
2079 info->offset = 0;
2080
2081 return 0;
2082}
2083
475675d6
TI
2084static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2085 struct snd_pcm_hw_params *hw_params)
1bd9debf 2086{
475675d6
TI
2087 struct snd_pcm_runtime *runtime = substream->runtime;
2088 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2089 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2090 int direction;
2091 int ret;
2092
2093 /* set sampling rate, audio format and number of channels */
2094 ret = cs4215_prepare(dbri, params_rate(hw_params),
2095 params_format(hw_params),
2096 params_channels(hw_params));
2097 if (ret != 0)
2098 return ret;
2099
2100 if ((ret = snd_pcm_lib_malloc_pages(substream,
2101 params_buffer_bytes(hw_params))) < 0) {
4338829e 2102 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
1bd9debf
TI
2103 return ret;
2104 }
2105
2106 /* hw_params can get called multiple times. Only map the DMA once.
2107 */
2108 if (info->dvma_buffer == 0) {
2109 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2110 direction = SBUS_DMA_TODEVICE;
2111 else
2112 direction = SBUS_DMA_FROMDEVICE;
2113
2114 info->dvma_buffer = sbus_map_single(dbri->sdev,
2115 runtime->dma_area,
2116 params_buffer_bytes(hw_params),
2117 direction);
2118 }
2119
2120 direction = params_buffer_bytes(hw_params);
2121 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2122 direction, info->dvma_buffer);
2123 return 0;
2124}
2125
475675d6 2126static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
1bd9debf 2127{
475675d6
TI
2128 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2129 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2130 int direction;
2131 dprintk(D_USR, "hw_free.\n");
2132
2133 /* hw_free can get called multiple times. Only unmap the DMA once.
2134 */
2135 if (info->dvma_buffer) {
2136 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2137 direction = SBUS_DMA_TODEVICE;
2138 else
2139 direction = SBUS_DMA_FROMDEVICE;
2140
2141 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2142 substream->runtime->buffer_size, direction);
2143 info->dvma_buffer = 0;
2144 }
2145 info->pipe = -1;
2146
2147 return snd_pcm_lib_free_pages(substream);
2148}
2149
475675d6 2150static int snd_dbri_prepare(struct snd_pcm_substream *substream)
1bd9debf 2151{
475675d6
TI
2152 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2153 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2154 struct snd_pcm_runtime *runtime = substream->runtime;
1bd9debf
TI
2155 int ret;
2156
2157 info->size = snd_pcm_lib_buffer_bytes(substream);
2158 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2159 info->pipe = 4; /* Send pipe */
2160 else {
2161 info->pipe = 6; /* Receive pipe */
2162 info->left = info->size; /* To trigger submittal */
2163 }
2164
2165 spin_lock_irq(&dbri->lock);
2166
2167 /* Setup the all the transmit/receive desciptors to cover the
2168 * whole DMA buffer.
2169 */
2170 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2171 snd_pcm_lib_period_bytes(substream));
2172
2173 runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2174
2175 spin_unlock_irq(&dbri->lock);
2176
2177 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2178 return ret;
2179}
2180
475675d6 2181static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
1bd9debf 2182{
475675d6
TI
2183 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2184 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2185 int ret = 0;
2186
2187 switch (cmd) {
2188 case SNDRV_PCM_TRIGGER_START:
2189 dprintk(D_USR, "start audio, period is %d bytes\n",
2190 (int)snd_pcm_lib_period_bytes(substream));
2191 /* Enable & schedule the tasklet that re-submits the TDs. */
2192 xmit_descs_task.data = (unsigned long)dbri;
2193 tasklet_schedule(&xmit_descs_task);
2194 break;
2195 case SNDRV_PCM_TRIGGER_STOP:
2196 dprintk(D_USR, "stop audio.\n");
2197 /* Make the tasklet bail out immediately. */
2198 xmit_descs_task.data = 0;
2199 reset_pipe(dbri, info->pipe);
2200 break;
2201 default:
2202 ret = -EINVAL;
2203 }
2204
2205 return ret;
2206}
2207
475675d6 2208static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
1bd9debf 2209{
475675d6
TI
2210 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2211 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2212 snd_pcm_uframes_t ret;
2213
2214 ret = bytes_to_frames(substream->runtime, info->offset)
2215 % substream->runtime->buffer_size;
2216 dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2217 ret, info->left);
2218 return ret;
2219}
2220
475675d6 2221static struct snd_pcm_ops snd_dbri_ops = {
1bd9debf
TI
2222 .open = snd_dbri_open,
2223 .close = snd_dbri_close,
2224 .ioctl = snd_pcm_lib_ioctl,
2225 .hw_params = snd_dbri_hw_params,
2226 .hw_free = snd_dbri_hw_free,
2227 .prepare = snd_dbri_prepare,
2228 .trigger = snd_dbri_trigger,
2229 .pointer = snd_dbri_pointer,
2230};
2231
475675d6 2232static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
1bd9debf 2233{
475675d6 2234 struct snd_pcm *pcm;
1bd9debf
TI
2235 int err;
2236
2237 if ((err = snd_pcm_new(dbri->card,
2238 /* ID */ "sun_dbri",
2239 /* device */ 0,
2240 /* playback count */ 1,
2241 /* capture count */ 1, &pcm)) < 0)
2242 return err;
2243 snd_assert(pcm != NULL, return -EINVAL);
2244
2245 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2246 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2247
2248 pcm->private_data = dbri;
2249 pcm->info_flags = 0;
2250 strcpy(pcm->name, dbri->card->shortname);
2251 dbri->pcm = pcm;
2252
2253 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2254 SNDRV_DMA_TYPE_CONTINUOUS,
2255 snd_dma_continuous_data(GFP_KERNEL),
2256 64 * 1024, 64 * 1024)) < 0) {
2257 return err;
2258 }
2259
2260 return 0;
2261}
2262
2263/*****************************************************************************
2264 Mixer interface
2265*****************************************************************************/
2266
475675d6
TI
2267static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2268 struct snd_ctl_elem_info *uinfo)
1bd9debf
TI
2269{
2270 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2271 uinfo->count = 2;
2272 uinfo->value.integer.min = 0;
2273 if (kcontrol->private_value == DBRI_PLAY) {
2274 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2275 } else {
2276 uinfo->value.integer.max = DBRI_MAX_GAIN;
2277 }
2278 return 0;
2279}
2280
475675d6
TI
2281static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2282 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2283{
475675d6
TI
2284 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2285 struct dbri_streaminfo *info;
1bd9debf
TI
2286 snd_assert(dbri != NULL, return -EINVAL);
2287 info = &dbri->stream_info[kcontrol->private_value];
2288 snd_assert(info != NULL, return -EINVAL);
2289
2290 ucontrol->value.integer.value[0] = info->left_gain;
2291 ucontrol->value.integer.value[1] = info->right_gain;
2292 return 0;
2293}
2294
475675d6
TI
2295static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2296 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2297{
475675d6
TI
2298 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2299 struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
1bd9debf
TI
2300 unsigned long flags;
2301 int changed = 0;
2302
2303 if (info->left_gain != ucontrol->value.integer.value[0]) {
2304 info->left_gain = ucontrol->value.integer.value[0];
2305 changed = 1;
2306 }
2307 if (info->right_gain != ucontrol->value.integer.value[1]) {
2308 info->right_gain = ucontrol->value.integer.value[1];
2309 changed = 1;
2310 }
2311 if (changed == 1) {
2312 /* First mute outputs, and wait 1/8000 sec (125 us)
2313 * to make sure this takes. This avoids clicking noises.
2314 */
2315 spin_lock_irqsave(&dbri->lock, flags);
2316
2317 cs4215_setdata(dbri, 1);
2318 udelay(125);
2319 cs4215_setdata(dbri, 0);
2320
2321 spin_unlock_irqrestore(&dbri->lock, flags);
2322 }
2323 return changed;
2324}
2325
475675d6
TI
2326static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2327 struct snd_ctl_elem_info *uinfo)
1bd9debf
TI
2328{
2329 int mask = (kcontrol->private_value >> 16) & 0xff;
2330
2331 uinfo->type = (mask == 1) ?
2332 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2333 uinfo->count = 1;
2334 uinfo->value.integer.min = 0;
2335 uinfo->value.integer.max = mask;
2336 return 0;
2337}
2338
475675d6
TI
2339static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2340 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2341{
475675d6 2342 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
1bd9debf
TI
2343 int elem = kcontrol->private_value & 0xff;
2344 int shift = (kcontrol->private_value >> 8) & 0xff;
2345 int mask = (kcontrol->private_value >> 16) & 0xff;
2346 int invert = (kcontrol->private_value >> 24) & 1;
2347 snd_assert(dbri != NULL, return -EINVAL);
2348
2349 if (elem < 4) {
2350 ucontrol->value.integer.value[0] =
2351 (dbri->mm.data[elem] >> shift) & mask;
2352 } else {
2353 ucontrol->value.integer.value[0] =
2354 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2355 }
2356
2357 if (invert == 1) {
2358 ucontrol->value.integer.value[0] =
2359 mask - ucontrol->value.integer.value[0];
2360 }
2361 return 0;
2362}
2363
475675d6
TI
2364static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2365 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2366{
475675d6 2367 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
1bd9debf
TI
2368 unsigned long flags;
2369 int elem = kcontrol->private_value & 0xff;
2370 int shift = (kcontrol->private_value >> 8) & 0xff;
2371 int mask = (kcontrol->private_value >> 16) & 0xff;
2372 int invert = (kcontrol->private_value >> 24) & 1;
2373 int changed = 0;
2374 unsigned short val;
2375 snd_assert(dbri != NULL, return -EINVAL);
2376
2377 val = (ucontrol->value.integer.value[0] & mask);
2378 if (invert == 1)
2379 val = mask - val;
2380 val <<= shift;
2381
2382 if (elem < 4) {
2383 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2384 ~(mask << shift)) | val;
2385 changed = (val != dbri->mm.data[elem]);
2386 } else {
2387 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2388 ~(mask << shift)) | val;
2389 changed = (val != dbri->mm.ctrl[elem - 4]);
2390 }
2391
2392 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2393 "mixer-value=%ld, mm-value=0x%x\n",
2394 mask, changed, ucontrol->value.integer.value[0],
2395 dbri->mm.data[elem & 3]);
2396
2397 if (changed) {
2398 /* First mute outputs, and wait 1/8000 sec (125 us)
2399 * to make sure this takes. This avoids clicking noises.
2400 */
2401 spin_lock_irqsave(&dbri->lock, flags);
2402
2403 cs4215_setdata(dbri, 1);
2404 udelay(125);
2405 cs4215_setdata(dbri, 0);
2406
2407 spin_unlock_irqrestore(&dbri->lock, flags);
2408 }
2409 return changed;
2410}
2411
2412/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2413 timeslots. Shift is the bit offset in the timeslot, mask defines the
2414 number of bits. invert is a boolean for use with attenuation.
2415 */
2416#define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2417{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2418 .info = snd_cs4215_info_single, \
2419 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2420 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2421
475675d6 2422static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
1bd9debf
TI
2423 {
2424 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2425 .name = "Playback Volume",
2426 .info = snd_cs4215_info_volume,
2427 .get = snd_cs4215_get_volume,
2428 .put = snd_cs4215_put_volume,
2429 .private_value = DBRI_PLAY,
2430 },
2431 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2432 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2433 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2434 {
2435 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2436 .name = "Capture Volume",
2437 .info = snd_cs4215_info_volume,
2438 .get = snd_cs4215_get_volume,
2439 .put = snd_cs4215_put_volume,
2440 .private_value = DBRI_REC,
2441 },
2442 /* FIXME: mic/line switch */
2443 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2444 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2445 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2446 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2447};
2448
475675d6 2449#define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
1bd9debf 2450
475675d6 2451static int __init snd_dbri_mixer(struct snd_dbri * dbri)
1bd9debf 2452{
475675d6 2453 struct snd_card *card;
1bd9debf
TI
2454 int idx, err;
2455
2456 snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2457
2458 card = dbri->card;
2459 strcpy(card->mixername, card->shortname);
2460
2461 for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2462 if ((err = snd_ctl_add(card,
4338829e 2463 snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
1bd9debf
TI
2464 return err;
2465 }
2466
2467 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2468 dbri->stream_info[idx].left_gain = 0;
2469 dbri->stream_info[idx].right_gain = 0;
2470 dbri->stream_info[idx].balance = DBRI_MID_BALANCE;
2471 }
2472
2473 return 0;
2474}
2475
2476/****************************************************************************
2477 /proc interface
2478****************************************************************************/
475675d6 2479static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1bd9debf 2480{
475675d6 2481 struct snd_dbri *dbri = entry->private_data;
1bd9debf
TI
2482
2483 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2484 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2485 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2486 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2487}
2488
2489#ifdef DBRI_DEBUG
475675d6
TI
2490static void dbri_debug_read(struct snd_info_entry * entry,
2491 struct snd_info_buffer *buffer)
1bd9debf 2492{
475675d6 2493 struct snd_dbri *dbri = entry->private_data;
1bd9debf
TI
2494 int pipe;
2495 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2496
1bd9debf
TI
2497 for (pipe = 0; pipe < 32; pipe++) {
2498 if (pipe_active(dbri, pipe)) {
2499 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2500 snd_iprintf(buffer,
2501 "Pipe %d: %s SDP=0x%x desc=%d, "
2502 "len=%d @ %d prev: %d next %d\n",
2503 pipe,
2504 (pptr->direction ==
2505 PIPEinput ? "input" : "output"), pptr->sdp,
2506 pptr->desc, pptr->length, pptr->cycle,
2507 pptr->prevpipe, pptr->nextpipe);
2508 }
2509 }
2510}
1bd9debf
TI
2511#endif
2512
475675d6 2513void snd_dbri_proc(struct snd_dbri * dbri)
1bd9debf 2514{
475675d6 2515 struct snd_info_entry *entry;
1bd9debf 2516
8cb7b63f 2517 if (! snd_card_proc_new(dbri->card, "regs", &entry))
bf850204 2518 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
1bd9debf
TI
2519
2520#ifdef DBRI_DEBUG
8cb7b63f 2521 if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
bf850204 2522 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
8cb7b63f
TI
2523 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2524 }
1bd9debf
TI
2525#endif
2526}
2527
2528/*
2529****************************************************************************
2530**************************** Initialization ********************************
2531****************************************************************************
2532*/
475675d6 2533static void snd_dbri_free(struct snd_dbri * dbri);
1bd9debf 2534
475675d6 2535static int __init snd_dbri_create(struct snd_card *card,
1bd9debf
TI
2536 struct sbus_dev *sdev,
2537 struct linux_prom_irqs *irq, int dev)
2538{
475675d6 2539 struct snd_dbri *dbri = card->private_data;
1bd9debf
TI
2540 int err;
2541
2542 spin_lock_init(&dbri->lock);
2543 dbri->card = card;
2544 dbri->sdev = sdev;
2545 dbri->irq = irq->pri;
2546 dbri->dbri_version = sdev->prom_name[9];
2547
2548 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2549 &dbri->dma_dvma);
2550 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2551
2552 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2553 dbri->dma, dbri->dma_dvma);
2554
2555 /* Map the registers into memory. */
2556 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2557 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2558 dbri->regs_size, "DBRI Registers");
2559 if (!dbri->regs) {
2560 printk(KERN_ERR "DBRI: could not allocate registers\n");
2561 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2562 (void *)dbri->dma, dbri->dma_dvma);
2563 return -EIO;
2564 }
2565
65ca68b3 2566 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
1bd9debf
TI
2567 "DBRI audio", dbri);
2568 if (err) {
2569 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2570 sbus_iounmap(dbri->regs, dbri->regs_size);
2571 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2572 (void *)dbri->dma, dbri->dma_dvma);
2573 return err;
2574 }
2575
2576 /* Do low level initialization of the DBRI and CS4215 chips */
2577 dbri_initialize(dbri);
2578 err = cs4215_init(dbri);
2579 if (err) {
2580 snd_dbri_free(dbri);
2581 return err;
2582 }
2583
2584 dbri->next = dbri_list;
2585 dbri_list = dbri;
2586
2587 return 0;
2588}
2589
475675d6 2590static void snd_dbri_free(struct snd_dbri * dbri)
1bd9debf
TI
2591{
2592 dprintk(D_GEN, "snd_dbri_free\n");
2593 dbri_reset(dbri);
2594
2595 if (dbri->irq)
2596 free_irq(dbri->irq, dbri);
2597
2598 if (dbri->regs)
2599 sbus_iounmap(dbri->regs, dbri->regs_size);
2600
2601 if (dbri->dma)
2602 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2603 (void *)dbri->dma, dbri->dma_dvma);
2604}
2605
2606static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2607{
475675d6 2608 struct snd_dbri *dbri;
1bd9debf
TI
2609 struct linux_prom_irqs irq;
2610 struct resource *rp;
475675d6 2611 struct snd_card *card;
1bd9debf
TI
2612 static int dev = 0;
2613 int err;
2614
2615 if (sdev->prom_name[9] < 'e') {
2616 printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2617 sdev->prom_name[9]);
2618 return -EIO;
2619 }
2620
2621 if (dev >= SNDRV_CARDS)
2622 return -ENODEV;
2623 if (!enable[dev]) {
2624 dev++;
2625 return -ENOENT;
2626 }
2627
4338829e
MH
2628 err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2629 if (err < 0) {
2630 printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2631 return -ENODEV;
2632 }
1bd9debf
TI
2633
2634 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
475675d6 2635 sizeof(struct snd_dbri));
1bd9debf
TI
2636 if (card == NULL)
2637 return -ENOMEM;
2638
2639 strcpy(card->driver, "DBRI");
2640 strcpy(card->shortname, "Sun DBRI");
2641 rp = &sdev->resource[0];
5863aa65 2642 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
1bd9debf 2643 card->shortname,
aa0a2ddc 2644 rp->flags & 0xffL, (unsigned long long)rp->start, irq.pri);
1bd9debf
TI
2645
2646 if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2647 snd_card_free(card);
2648 return err;
2649 }
2650
475675d6 2651 dbri = card->private_data;
16dab54b
TI
2652 if ((err = snd_dbri_pcm(dbri)) < 0)
2653 goto _err;
1bd9debf 2654
16dab54b
TI
2655 if ((err = snd_dbri_mixer(dbri)) < 0)
2656 goto _err;
1bd9debf
TI
2657
2658 /* /proc file handling */
2659 snd_dbri_proc(dbri);
2660
16dab54b
TI
2661 if ((err = snd_card_register(card)) < 0)
2662 goto _err;
1bd9debf
TI
2663
2664 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2665 dev, dbri->regs,
2666 dbri->irq, dbri->dbri_version, dbri->mm.version);
2667 dev++;
2668
2669 return 0;
16dab54b
TI
2670
2671 _err:
2672 snd_dbri_free(dbri);
2673 snd_card_free(card);
2674 return err;
1bd9debf
TI
2675}
2676
2677/* Probe for the dbri chip and then attach the driver. */
2678static int __init dbri_init(void)
2679{
2680 struct sbus_bus *sbus;
2681 struct sbus_dev *sdev;
2682 int found = 0;
2683
2684 /* Probe each SBUS for the DBRI chip(s). */
2685 for_all_sbusdev(sdev, sbus) {
2686 /*
2687 * The version is coded in the last character
2688 */
2689 if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2690 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2691 sdev->prom_name, sdev->slot);
2692
2693 if (dbri_attach(sdev->prom_node, sdev) == 0)
2694 found++;
2695 }
2696 }
2697
2698 return (found > 0) ? 0 : -EIO;
2699}
2700
2701static void __exit dbri_exit(void)
2702{
475675d6 2703 struct snd_dbri *this = dbri_list;
1bd9debf
TI
2704
2705 while (this != NULL) {
475675d6
TI
2706 struct snd_dbri *next = this->next;
2707 struct snd_card *card = this->card;
1bd9debf
TI
2708
2709 snd_dbri_free(this);
2710 snd_card_free(card);
2711 this = next;
2712 }
2713 dbri_list = NULL;
2714}
2715
2716module_init(dbri_init);
2717module_exit(dbri_exit);
This page took 0.298925 seconds and 5 git commands to generate.