Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
[deliverable/linux.git] / tools / lguest / lguest.c
CommitLineData
2e04ef76
RR
1/*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6:*/
8ca47e00
RR
7#define _LARGEFILE64_SOURCE
8#define _GNU_SOURCE
9#include <stdio.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <elf.h>
16#include <sys/mman.h>
6649bb7a 17#include <sys/param.h>
8ca47e00
RR
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <sys/wait.h>
659a0e66 21#include <sys/eventfd.h>
8ca47e00
RR
22#include <fcntl.h>
23#include <stdbool.h>
24#include <errno.h>
25#include <ctype.h>
26#include <sys/socket.h>
27#include <sys/ioctl.h>
28#include <sys/time.h>
29#include <time.h>
30#include <netinet/in.h>
31#include <net/if.h>
32#include <linux/sockios.h>
33#include <linux/if_tun.h>
34#include <sys/uio.h>
35#include <termios.h>
36#include <getopt.h>
17cbca2b
RR
37#include <assert.h>
38#include <sched.h>
a586d4f6
RR
39#include <limits.h>
40#include <stddef.h>
a161883a 41#include <signal.h>
8aeb36e8
PS
42#include <pwd.h>
43#include <grp.h>
44
f846619e
RR
45#include <linux/virtio_config.h>
46#include <linux/virtio_net.h>
47#include <linux/virtio_blk.h>
48#include <linux/virtio_console.h>
49#include <linux/virtio_rng.h>
50#include <linux/virtio_ring.h>
51#include <asm/bootparam.h>
07fe9977 52#include "../../include/linux/lguest_launcher.h"
2e04ef76 53/*L:110
9f54288d 54 * We can ignore the 43 include files we need for this program, but I do want
2e04ef76 55 * to draw attention to the use of kernel-style types.
db24e8c2
RR
56 *
57 * As Linus said, "C is a Spartan language, and so should your naming be." I
58 * like these abbreviations, so we define them here. Note that u64 is always
59 * unsigned long long, which works on all Linux systems: this means that we can
2e04ef76
RR
60 * use %llu in printf for any u64.
61 */
db24e8c2
RR
62typedef unsigned long long u64;
63typedef uint32_t u32;
64typedef uint16_t u16;
65typedef uint8_t u8;
dde79789 66/*:*/
8ca47e00 67
8ca47e00
RR
68#define BRIDGE_PFX "bridge:"
69#ifndef SIOCBRADDIF
70#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
71#endif
3c6b5bfa
RR
72/* We can have up to 256 pages for devices. */
73#define DEVICE_PAGES 256
0f0c4fab
RR
74/* This will occupy 3 pages: it must be a power of 2. */
75#define VIRTQUEUE_NUM 256
8ca47e00 76
2e04ef76
RR
77/*L:120
78 * verbose is both a global flag and a macro. The C preprocessor allows
79 * this, and although I wouldn't recommend it, it works quite nicely here.
80 */
8ca47e00
RR
81static bool verbose;
82#define verbose(args...) \
83 do { if (verbose) printf(args); } while(0)
dde79789
RR
84/*:*/
85
3c6b5bfa
RR
86/* The pointer to the start of guest memory. */
87static void *guest_base;
88/* The maximum guest physical address allowed, and maximum possible. */
89static unsigned long guest_limit, guest_max;
56739c80
RR
90/* The /dev/lguest file descriptor. */
91static int lguest_fd;
8ca47e00 92
e3283fa0
GOC
93/* a per-cpu variable indicating whose vcpu is currently running */
94static unsigned int __thread cpu_id;
95
dde79789 96/* This is our list of devices. */
1842f23c 97struct device_list {
17cbca2b
RR
98 /* Counter to assign interrupt numbers. */
99 unsigned int next_irq;
100
101 /* Counter to print out convenient device numbers. */
102 unsigned int device_num;
103
dde79789 104 /* The descriptor page for the devices. */
17cbca2b
RR
105 u8 *descpage;
106
dde79789 107 /* A single linked list of devices. */
8ca47e00 108 struct device *dev;
2e04ef76 109 /* And a pointer to the last device for easy append. */
a586d4f6 110 struct device *lastdev;
8ca47e00
RR
111};
112
17cbca2b
RR
113/* The list of Guest devices, based on command line arguments. */
114static struct device_list devices;
115
dde79789 116/* The device structure describes a single device. */
1842f23c 117struct device {
dde79789 118 /* The linked-list pointer. */
8ca47e00 119 struct device *next;
17cbca2b 120
713b15b3 121 /* The device's descriptor, as mapped into the Guest. */
8ca47e00 122 struct lguest_device_desc *desc;
17cbca2b 123
713b15b3
RR
124 /* We can't trust desc values once Guest has booted: we use these. */
125 unsigned int feature_len;
126 unsigned int num_vq;
127
17cbca2b
RR
128 /* The name of this device, for --verbose. */
129 const char *name;
8ca47e00 130
17cbca2b
RR
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
8ca47e00 133
659a0e66
RR
134 /* Is it operational */
135 bool running;
a007a751 136
8ca47e00
RR
137 /* Device-specific data. */
138 void *priv;
139};
140
17cbca2b 141/* The virtqueue structure describes a queue attached to a device. */
1842f23c 142struct virtqueue {
17cbca2b
RR
143 struct virtqueue *next;
144
145 /* Which device owns me. */
146 struct device *dev;
147
148 /* The configuration for this queue. */
149 struct lguest_vqconfig config;
150
151 /* The actual ring of buffers. */
152 struct vring vring;
153
154 /* Last available index we saw. */
155 u16 last_avail_idx;
156
95c517c0
RR
157 /* How many are used since we sent last irq? */
158 unsigned int pending_used;
159
659a0e66
RR
160 /* Eventfd where Guest notifications arrive. */
161 int eventfd;
20887611 162
659a0e66
RR
163 /* Function for the thread which is servicing this virtqueue. */
164 void (*service)(struct virtqueue *vq);
165 pid_t thread;
17cbca2b
RR
166};
167
ec04b13f
BR
168/* Remember the arguments to the program so we can "reboot" */
169static char **main_args;
170
659a0e66
RR
171/* The original tty settings to restore on exit. */
172static struct termios orig_term;
173
2e04ef76
RR
174/*
175 * We have to be careful with barriers: our devices are all run in separate
f7027c63 176 * threads and so we need to make sure that changes visible to the Guest happen
2e04ef76
RR
177 * in precise order.
178 */
f7027c63 179#define wmb() __asm__ __volatile__("" : : : "memory")
b60da13f 180#define mb() __asm__ __volatile__("" : : : "memory")
17cbca2b 181
2e04ef76
RR
182/*
183 * Convert an iovec element to the given type.
17cbca2b
RR
184 *
185 * This is a fairly ugly trick: we need to know the size of the type and
186 * alignment requirement to check the pointer is kosher. It's also nice to
187 * have the name of the type in case we report failure.
188 *
189 * Typing those three things all the time is cumbersome and error prone, so we
2e04ef76
RR
190 * have a macro which sets them all up and passes to the real function.
191 */
17cbca2b
RR
192#define convert(iov, type) \
193 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
194
195static void *_convert(struct iovec *iov, size_t size, size_t align,
196 const char *name)
197{
198 if (iov->iov_len != size)
199 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
200 if ((unsigned long)iov->iov_base % align != 0)
201 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
202 return iov->iov_base;
203}
204
b5111790
RR
205/* Wrapper for the last available index. Makes it easier to change. */
206#define lg_last_avail(vq) ((vq)->last_avail_idx)
207
2e04ef76
RR
208/*
209 * The virtio configuration space is defined to be little-endian. x86 is
210 * little-endian too, but it's nice to be explicit so we have these helpers.
211 */
17cbca2b
RR
212#define cpu_to_le16(v16) (v16)
213#define cpu_to_le32(v32) (v32)
214#define cpu_to_le64(v64) (v64)
215#define le16_to_cpu(v16) (v16)
216#define le32_to_cpu(v32) (v32)
a586d4f6 217#define le64_to_cpu(v64) (v64)
17cbca2b 218
28fd6d7f
RR
219/* Is this iovec empty? */
220static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
221{
222 unsigned int i;
223
224 for (i = 0; i < num_iov; i++)
225 if (iov[i].iov_len)
226 return false;
227 return true;
228}
229
230/* Take len bytes from the front of this iovec. */
231static void iov_consume(struct iovec iov[], unsigned num_iov, unsigned len)
232{
233 unsigned int i;
234
235 for (i = 0; i < num_iov; i++) {
236 unsigned int used;
237
238 used = iov[i].iov_len < len ? iov[i].iov_len : len;
239 iov[i].iov_base += used;
240 iov[i].iov_len -= used;
241 len -= used;
242 }
243 assert(len == 0);
244}
245
6e5aa7ef
RR
246/* The device virtqueue descriptors are followed by feature bitmasks. */
247static u8 *get_feature_bits(struct device *dev)
248{
249 return (u8 *)(dev->desc + 1)
713b15b3 250 + dev->num_vq * sizeof(struct lguest_vqconfig);
6e5aa7ef
RR
251}
252
2e04ef76
RR
253/*L:100
254 * The Launcher code itself takes us out into userspace, that scary place where
255 * pointers run wild and free! Unfortunately, like most userspace programs,
256 * it's quite boring (which is why everyone likes to hack on the kernel!).
257 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
258 * you through this section. Or, maybe not.
3c6b5bfa
RR
259 *
260 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
261 * memory and stores it in "guest_base". In other words, Guest physical ==
262 * Launcher virtual with an offset.
263 *
264 * This can be tough to get your head around, but usually it just means that we
a33f3224 265 * use these trivial conversion functions when the Guest gives us its
2e04ef76
RR
266 * "physical" addresses:
267 */
3c6b5bfa
RR
268static void *from_guest_phys(unsigned long addr)
269{
270 return guest_base + addr;
271}
272
273static unsigned long to_guest_phys(const void *addr)
274{
275 return (addr - guest_base);
276}
277
dde79789
RR
278/*L:130
279 * Loading the Kernel.
280 *
281 * We start with couple of simple helper routines. open_or_die() avoids
2e04ef76
RR
282 * error-checking code cluttering the callers:
283 */
8ca47e00
RR
284static int open_or_die(const char *name, int flags)
285{
286 int fd = open(name, flags);
287 if (fd < 0)
288 err(1, "Failed to open %s", name);
289 return fd;
290}
291
3c6b5bfa
RR
292/* map_zeroed_pages() takes a number of pages. */
293static void *map_zeroed_pages(unsigned int num)
8ca47e00 294{
3c6b5bfa
RR
295 int fd = open_or_die("/dev/zero", O_RDONLY);
296 void *addr;
8ca47e00 297
2e04ef76
RR
298 /*
299 * We use a private mapping (ie. if we write to the page, it will be
5230ff0c
PS
300 * copied). We allocate an extra two pages PROT_NONE to act as guard
301 * pages against read/write attempts that exceed allocated space.
2e04ef76 302 */
5230ff0c
PS
303 addr = mmap(NULL, getpagesize() * (num+2),
304 PROT_NONE, MAP_PRIVATE, fd, 0);
305
3c6b5bfa 306 if (addr == MAP_FAILED)
af901ca1 307 err(1, "Mmapping %u pages of /dev/zero", num);
a91d74a3 308
5230ff0c
PS
309 if (mprotect(addr + getpagesize(), getpagesize() * num,
310 PROT_READ|PROT_WRITE) == -1)
311 err(1, "mprotect rw %u pages failed", num);
312
a91d74a3
RR
313 /*
314 * One neat mmap feature is that you can close the fd, and it
315 * stays mapped.
316 */
34bdaab4 317 close(fd);
3c6b5bfa 318
5230ff0c
PS
319 /* Return address after PROT_NONE page */
320 return addr + getpagesize();
3c6b5bfa
RR
321}
322
323/* Get some more pages for a device. */
324static void *get_pages(unsigned int num)
325{
326 void *addr = from_guest_phys(guest_limit);
327
328 guest_limit += num * getpagesize();
329 if (guest_limit > guest_max)
330 errx(1, "Not enough memory for devices");
331 return addr;
8ca47e00
RR
332}
333
2e04ef76
RR
334/*
335 * This routine is used to load the kernel or initrd. It tries mmap, but if
6649bb7a 336 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
2e04ef76
RR
337 * it falls back to reading the memory in.
338 */
6649bb7a
RM
339static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
340{
341 ssize_t r;
342
2e04ef76
RR
343 /*
344 * We map writable even though for some segments are marked read-only.
6649bb7a
RM
345 * The kernel really wants to be writable: it patches its own
346 * instructions.
347 *
348 * MAP_PRIVATE means that the page won't be copied until a write is
349 * done to it. This allows us to share untouched memory between
2e04ef76
RR
350 * Guests.
351 */
5230ff0c 352 if (mmap(addr, len, PROT_READ|PROT_WRITE,
6649bb7a
RM
353 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
354 return;
355
356 /* pread does a seek and a read in one shot: saves a few lines. */
357 r = pread(fd, addr, len, offset);
358 if (r != len)
359 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
360}
361
2e04ef76
RR
362/*
363 * This routine takes an open vmlinux image, which is in ELF, and maps it into
dde79789
RR
364 * the Guest memory. ELF = Embedded Linking Format, which is the format used
365 * by all modern binaries on Linux including the kernel.
366 *
367 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
368 * address. We use the physical address; the Guest will map itself to the
369 * virtual address.
dde79789 370 *
2e04ef76
RR
371 * We return the starting address.
372 */
47436aa4 373static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 374{
8ca47e00
RR
375 Elf32_Phdr phdr[ehdr->e_phnum];
376 unsigned int i;
8ca47e00 377
2e04ef76
RR
378 /*
379 * Sanity checks on the main ELF header: an x86 executable with a
380 * reasonable number of correctly-sized program headers.
381 */
8ca47e00
RR
382 if (ehdr->e_type != ET_EXEC
383 || ehdr->e_machine != EM_386
384 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
385 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
386 errx(1, "Malformed elf header");
387
2e04ef76
RR
388 /*
389 * An ELF executable contains an ELF header and a number of "program"
dde79789 390 * headers which indicate which parts ("segments") of the program to
2e04ef76
RR
391 * load where.
392 */
dde79789
RR
393
394 /* We read in all the program headers at once: */
8ca47e00
RR
395 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
396 err(1, "Seeking to program headers");
397 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
398 err(1, "Reading program headers");
399
2e04ef76
RR
400 /*
401 * Try all the headers: there are usually only three. A read-only one,
402 * a read-write one, and a "note" section which we don't load.
403 */
8ca47e00 404 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 405 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
406 if (phdr[i].p_type != PT_LOAD)
407 continue;
408
409 verbose("Section %i: size %i addr %p\n",
410 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
411
6649bb7a 412 /* We map this section of the file at its physical address. */
3c6b5bfa 413 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 414 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
415 }
416
814a0e5c
RR
417 /* The entry point is given in the ELF header. */
418 return ehdr->e_entry;
8ca47e00
RR
419}
420
2e04ef76
RR
421/*L:150
422 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
423 * to jump into it and it will unpack itself. We used to have to perform some
424 * hairy magic because the unpacking code scared me.
dde79789 425 *
5bbf89fc
RR
426 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
427 * a small patch to jump over the tricky bits in the Guest, so now we just read
2e04ef76
RR
428 * the funky header so we know where in the file to load, and away we go!
429 */
47436aa4 430static unsigned long load_bzimage(int fd)
8ca47e00 431{
43d33b21 432 struct boot_params boot;
5bbf89fc
RR
433 int r;
434 /* Modern bzImages get loaded at 1M. */
435 void *p = from_guest_phys(0x100000);
436
2e04ef76
RR
437 /*
438 * Go back to the start of the file and read the header. It should be
395cf969 439 * a Linux boot header (see Documentation/x86/boot.txt)
2e04ef76 440 */
5bbf89fc 441 lseek(fd, 0, SEEK_SET);
43d33b21 442 read(fd, &boot, sizeof(boot));
5bbf89fc 443
43d33b21
RR
444 /* Inside the setup_hdr, we expect the magic "HdrS" */
445 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
446 errx(1, "This doesn't look like a bzImage to me");
447
43d33b21
RR
448 /* Skip over the extra sectors of the header. */
449 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
450
451 /* Now read everything into memory. in nice big chunks. */
452 while ((r = read(fd, p, 65536)) > 0)
453 p += r;
454
43d33b21
RR
455 /* Finally, code32_start tells us where to enter the kernel. */
456 return boot.hdr.code32_start;
8ca47e00
RR
457}
458
2e04ef76
RR
459/*L:140
460 * Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965 461 * come wrapped up in the self-decompressing "bzImage" format. With a little
2e04ef76
RR
462 * work, we can load those, too.
463 */
47436aa4 464static unsigned long load_kernel(int fd)
8ca47e00
RR
465{
466 Elf32_Ehdr hdr;
467
dde79789 468 /* Read in the first few bytes. */
8ca47e00
RR
469 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
470 err(1, "Reading kernel");
471
dde79789 472 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 473 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 474 return map_elf(fd, &hdr);
8ca47e00 475
a6bd8e13 476 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 477 return load_bzimage(fd);
8ca47e00
RR
478}
479
2e04ef76
RR
480/*
481 * This is a trivial little helper to align pages. Andi Kleen hated it because
dde79789
RR
482 * it calls getpagesize() twice: "it's dumb code."
483 *
484 * Kernel guys get really het up about optimization, even when it's not
2e04ef76
RR
485 * necessary. I leave this code as a reaction against that.
486 */
8ca47e00
RR
487static inline unsigned long page_align(unsigned long addr)
488{
dde79789 489 /* Add upwards and truncate downwards. */
8ca47e00
RR
490 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
491}
492
2e04ef76
RR
493/*L:180
494 * An "initial ram disk" is a disk image loaded into memory along with the
495 * kernel which the kernel can use to boot from without needing any drivers.
496 * Most distributions now use this as standard: the initrd contains the code to
497 * load the appropriate driver modules for the current machine.
dde79789
RR
498 *
499 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
2e04ef76
RR
500 * kernels. He sent me this (and tells me when I break it).
501 */
8ca47e00
RR
502static unsigned long load_initrd(const char *name, unsigned long mem)
503{
504 int ifd;
505 struct stat st;
506 unsigned long len;
8ca47e00
RR
507
508 ifd = open_or_die(name, O_RDONLY);
dde79789 509 /* fstat() is needed to get the file size. */
8ca47e00
RR
510 if (fstat(ifd, &st) < 0)
511 err(1, "fstat() on initrd '%s'", name);
512
2e04ef76
RR
513 /*
514 * We map the initrd at the top of memory, but mmap wants it to be
515 * page-aligned, so we round the size up for that.
516 */
8ca47e00 517 len = page_align(st.st_size);
3c6b5bfa 518 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
2e04ef76
RR
519 /*
520 * Once a file is mapped, you can close the file descriptor. It's a
521 * little odd, but quite useful.
522 */
8ca47e00 523 close(ifd);
6649bb7a 524 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
525
526 /* We return the initrd size. */
8ca47e00
RR
527 return len;
528}
e1e72965 529/*:*/
8ca47e00 530
2e04ef76
RR
531/*
532 * Simple routine to roll all the commandline arguments together with spaces
533 * between them.
534 */
8ca47e00
RR
535static void concat(char *dst, char *args[])
536{
537 unsigned int i, len = 0;
538
539 for (i = 0; args[i]; i++) {
1ef36fa6
PB
540 if (i) {
541 strcat(dst+len, " ");
542 len++;
543 }
8ca47e00 544 strcpy(dst+len, args[i]);
1ef36fa6 545 len += strlen(args[i]);
8ca47e00
RR
546 }
547 /* In case it's empty. */
548 dst[len] = '\0';
549}
550
2e04ef76
RR
551/*L:185
552 * This is where we actually tell the kernel to initialize the Guest. We
e1e72965 553 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566 554 * the base of Guest "physical" memory, the top physical page to allow and the
2e04ef76
RR
555 * entry point for the Guest.
556 */
56739c80 557static void tell_kernel(unsigned long start)
8ca47e00 558{
511801dc
JS
559 unsigned long args[] = { LHREQ_INITIALIZE,
560 (unsigned long)guest_base,
58a24566 561 guest_limit / getpagesize(), start };
3c6b5bfa
RR
562 verbose("Guest: %p - %p (%#lx)\n",
563 guest_base, guest_base + guest_limit, guest_limit);
56739c80
RR
564 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
565 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 566 err(1, "Writing to /dev/lguest");
8ca47e00 567}
dde79789 568/*:*/
8ca47e00 569
a91d74a3 570/*L:200
dde79789
RR
571 * Device Handling.
572 *
e1e72965 573 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 574 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 575 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
576 * if something funny is going on:
577 */
8ca47e00
RR
578static void *_check_pointer(unsigned long addr, unsigned int size,
579 unsigned int line)
580{
2e04ef76 581 /*
5230ff0c
PS
582 * Check if the requested address and size exceeds the allocated memory,
583 * or addr + size wraps around.
2e04ef76 584 */
5230ff0c 585 if ((addr + size) > guest_limit || (addr + size) < addr)
17cbca2b 586 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
2e04ef76
RR
587 /*
588 * We return a pointer for the caller's convenience, now we know it's
589 * safe to use.
590 */
3c6b5bfa 591 return from_guest_phys(addr);
8ca47e00 592}
dde79789 593/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
594#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
595
2e04ef76
RR
596/*
597 * Each buffer in the virtqueues is actually a chain of descriptors. This
e1e72965 598 * function returns the next descriptor in the chain, or vq->vring.num if we're
2e04ef76
RR
599 * at the end.
600 */
d1f0132e
MM
601static unsigned next_desc(struct vring_desc *desc,
602 unsigned int i, unsigned int max)
17cbca2b
RR
603{
604 unsigned int next;
605
606 /* If this descriptor says it doesn't chain, we're done. */
d1f0132e
MM
607 if (!(desc[i].flags & VRING_DESC_F_NEXT))
608 return max;
17cbca2b
RR
609
610 /* Check they're not leading us off end of descriptors. */
d1f0132e 611 next = desc[i].next;
17cbca2b
RR
612 /* Make sure compiler knows to grab that: we don't want it changing! */
613 wmb();
614
d1f0132e 615 if (next >= max)
17cbca2b
RR
616 errx(1, "Desc next is %u", next);
617
618 return next;
619}
620
a91d74a3
RR
621/*
622 * This actually sends the interrupt for this virtqueue, if we've used a
623 * buffer.
624 */
38bc2b8c
RR
625static void trigger_irq(struct virtqueue *vq)
626{
627 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
628
95c517c0
RR
629 /* Don't inform them if nothing used. */
630 if (!vq->pending_used)
631 return;
632 vq->pending_used = 0;
633
ca60a42c
RR
634 /* If they don't want an interrupt, don't send one... */
635 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
990c91f0 636 return;
ca60a42c 637 }
38bc2b8c
RR
638
639 /* Send the Guest an interrupt tell them we used something up. */
640 if (write(lguest_fd, buf, sizeof(buf)) != 0)
641 err(1, "Triggering irq %i", vq->config.irq);
642}
643
2e04ef76 644/*
a91d74a3 645 * This looks in the virtqueue for the first available buffer, and converts
17cbca2b
RR
646 * it to an iovec for convenient access. Since descriptors consist of some
647 * number of output then some number of input descriptors, it's actually two
648 * iovecs, but we pack them into one and note how many of each there were.
649 *
a91d74a3 650 * This function waits if necessary, and returns the descriptor number found.
2e04ef76 651 */
659a0e66
RR
652static unsigned wait_for_vq_desc(struct virtqueue *vq,
653 struct iovec iov[],
654 unsigned int *out_num, unsigned int *in_num)
17cbca2b 655{
d1f0132e
MM
656 unsigned int i, head, max;
657 struct vring_desc *desc;
659a0e66
RR
658 u16 last_avail = lg_last_avail(vq);
659
a91d74a3 660 /* There's nothing available? */
659a0e66
RR
661 while (last_avail == vq->vring.avail->idx) {
662 u64 event;
663
a91d74a3
RR
664 /*
665 * Since we're about to sleep, now is a good time to tell the
666 * Guest about what we've used up to now.
667 */
38bc2b8c
RR
668 trigger_irq(vq);
669
b60da13f
RR
670 /* OK, now we need to know about added descriptors. */
671 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
672
2e04ef76
RR
673 /*
674 * They could have slipped one in as we were doing that: make
675 * sure it's written, then check again.
676 */
b60da13f
RR
677 mb();
678 if (last_avail != vq->vring.avail->idx) {
679 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
680 break;
681 }
682
659a0e66
RR
683 /* Nothing new? Wait for eventfd to tell us they refilled. */
684 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
685 errx(1, "Event read failed?");
b60da13f
RR
686
687 /* We don't need to be notified again. */
688 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
659a0e66 689 }
17cbca2b
RR
690
691 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 692 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 693 errx(1, "Guest moved used index from %u to %u",
b5111790 694 last_avail, vq->vring.avail->idx);
17cbca2b 695
2e04ef76
RR
696 /*
697 * Grab the next descriptor number they're advertising, and increment
698 * the index we've seen.
699 */
b5111790
RR
700 head = vq->vring.avail->ring[last_avail % vq->vring.num];
701 lg_last_avail(vq)++;
17cbca2b
RR
702
703 /* If their number is silly, that's a fatal mistake. */
704 if (head >= vq->vring.num)
705 errx(1, "Guest says index %u is available", head);
706
707 /* When we start there are none of either input nor output. */
708 *out_num = *in_num = 0;
709
d1f0132e
MM
710 max = vq->vring.num;
711 desc = vq->vring.desc;
17cbca2b 712 i = head;
d1f0132e 713
2e04ef76
RR
714 /*
715 * If this is an indirect entry, then this buffer contains a descriptor
716 * table which we handle as if it's any normal descriptor chain.
717 */
d1f0132e
MM
718 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
719 if (desc[i].len % sizeof(struct vring_desc))
720 errx(1, "Invalid size for indirect buffer table");
721
722 max = desc[i].len / sizeof(struct vring_desc);
723 desc = check_pointer(desc[i].addr, desc[i].len);
724 i = 0;
725 }
726
17cbca2b
RR
727 do {
728 /* Grab the first descriptor, and check it's OK. */
d1f0132e 729 iov[*out_num + *in_num].iov_len = desc[i].len;
17cbca2b 730 iov[*out_num + *in_num].iov_base
d1f0132e 731 = check_pointer(desc[i].addr, desc[i].len);
17cbca2b 732 /* If this is an input descriptor, increment that count. */
d1f0132e 733 if (desc[i].flags & VRING_DESC_F_WRITE)
17cbca2b
RR
734 (*in_num)++;
735 else {
2e04ef76
RR
736 /*
737 * If it's an output descriptor, they're all supposed
738 * to come before any input descriptors.
739 */
17cbca2b
RR
740 if (*in_num)
741 errx(1, "Descriptor has out after in");
742 (*out_num)++;
743 }
744
745 /* If we've got too many, that implies a descriptor loop. */
d1f0132e 746 if (*out_num + *in_num > max)
17cbca2b 747 errx(1, "Looped descriptor");
d1f0132e 748 } while ((i = next_desc(desc, i, max)) != max);
dde79789 749
17cbca2b 750 return head;
8ca47e00
RR
751}
752
2e04ef76 753/*
a91d74a3
RR
754 * After we've used one of their buffers, we tell the Guest about it. Sometime
755 * later we'll want to send them an interrupt using trigger_irq(); note that
756 * wait_for_vq_desc() does that for us if it has to wait.
2e04ef76 757 */
17cbca2b 758static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 759{
17cbca2b
RR
760 struct vring_used_elem *used;
761
2e04ef76
RR
762 /*
763 * The virtqueue contains a ring of used buffers. Get a pointer to the
764 * next entry in that used ring.
765 */
17cbca2b
RR
766 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
767 used->id = head;
768 used->len = len;
769 /* Make sure buffer is written before we update index. */
770 wmb();
771 vq->vring.used->idx++;
95c517c0 772 vq->pending_used++;
8ca47e00
RR
773}
774
17cbca2b 775/* And here's the combo meal deal. Supersize me! */
56739c80 776static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 777{
17cbca2b 778 add_used(vq, head, len);
56739c80 779 trigger_irq(vq);
8ca47e00
RR
780}
781
e1e72965
RR
782/*
783 * The Console
784 *
2e04ef76
RR
785 * We associate some data with the console for our exit hack.
786 */
1842f23c 787struct console_abort {
dde79789 788 /* How many times have they hit ^C? */
8ca47e00 789 int count;
dde79789 790 /* When did they start? */
8ca47e00
RR
791 struct timeval start;
792};
793
dde79789 794/* This is the routine which handles console input (ie. stdin). */
659a0e66 795static void console_input(struct virtqueue *vq)
8ca47e00 796{
8ca47e00 797 int len;
17cbca2b 798 unsigned int head, in_num, out_num;
659a0e66
RR
799 struct console_abort *abort = vq->dev->priv;
800 struct iovec iov[vq->vring.num];
56ae43df 801
a91d74a3 802 /* Make sure there's a descriptor available. */
659a0e66 803 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 804 if (out_num)
17cbca2b 805 errx(1, "Output buffers in console in queue?");
8ca47e00 806
a91d74a3 807 /* Read into it. This is where we usually wait. */
659a0e66 808 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 809 if (len <= 0) {
659a0e66 810 /* Ran out of input? */
8ca47e00 811 warnx("Failed to get console input, ignoring console.");
2e04ef76
RR
812 /*
813 * For simplicity, dying threads kill the whole Launcher. So
814 * just nap here.
815 */
659a0e66
RR
816 for (;;)
817 pause();
8ca47e00
RR
818 }
819
a91d74a3 820 /* Tell the Guest we used a buffer. */
659a0e66 821 add_used_and_trigger(vq, head, len);
8ca47e00 822
2e04ef76
RR
823 /*
824 * Three ^C within one second? Exit.
dde79789 825 *
659a0e66
RR
826 * This is such a hack, but works surprisingly well. Each ^C has to
827 * be in a buffer by itself, so they can't be too fast. But we check
828 * that we get three within about a second, so they can't be too
2e04ef76
RR
829 * slow.
830 */
659a0e66 831 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 832 abort->count = 0;
659a0e66
RR
833 return;
834 }
8ca47e00 835
659a0e66
RR
836 abort->count++;
837 if (abort->count == 1)
838 gettimeofday(&abort->start, NULL);
839 else if (abort->count == 3) {
840 struct timeval now;
841 gettimeofday(&now, NULL);
842 /* Kill all Launcher processes with SIGINT, like normal ^C */
843 if (now.tv_sec <= abort->start.tv_sec+1)
844 kill(0, SIGINT);
845 abort->count = 0;
846 }
8ca47e00
RR
847}
848
659a0e66
RR
849/* This is the routine which handles console output (ie. stdout). */
850static void console_output(struct virtqueue *vq)
8ca47e00 851{
17cbca2b 852 unsigned int head, out, in;
17cbca2b
RR
853 struct iovec iov[vq->vring.num];
854
a91d74a3 855 /* We usually wait in here, for the Guest to give us something. */
659a0e66
RR
856 head = wait_for_vq_desc(vq, iov, &out, &in);
857 if (in)
858 errx(1, "Input buffers in console output queue?");
a91d74a3
RR
859
860 /* writev can return a partial write, so we loop here. */
659a0e66
RR
861 while (!iov_empty(iov, out)) {
862 int len = writev(STDOUT_FILENO, iov, out);
e0377e25
SA
863 if (len <= 0) {
864 warn("Write to stdout gave %i (%d)", len, errno);
865 break;
866 }
659a0e66 867 iov_consume(iov, out, len);
17cbca2b 868 }
a91d74a3
RR
869
870 /*
871 * We're finished with that buffer: if we're going to sleep,
872 * wait_for_vq_desc() will prod the Guest with an interrupt.
873 */
38bc2b8c 874 add_used(vq, head, 0);
a161883a
RR
875}
876
e1e72965
RR
877/*
878 * The Network
879 *
880 * Handling output for network is also simple: we get all the output buffers
659a0e66 881 * and write them to /dev/net/tun.
a6bd8e13 882 */
659a0e66
RR
883struct net_info {
884 int tunfd;
885};
886
887static void net_output(struct virtqueue *vq)
8ca47e00 888{
659a0e66
RR
889 struct net_info *net_info = vq->dev->priv;
890 unsigned int head, out, in;
17cbca2b 891 struct iovec iov[vq->vring.num];
a161883a 892
a91d74a3 893 /* We usually wait in here for the Guest to give us a packet. */
659a0e66
RR
894 head = wait_for_vq_desc(vq, iov, &out, &in);
895 if (in)
896 errx(1, "Input buffers in net output queue?");
a91d74a3
RR
897 /*
898 * Send the whole thing through to /dev/net/tun. It expects the exact
899 * same format: what a coincidence!
900 */
659a0e66 901 if (writev(net_info->tunfd, iov, out) < 0)
e0377e25 902 warnx("Write to tun failed (%d)?", errno);
a91d74a3
RR
903
904 /*
905 * Done with that one; wait_for_vq_desc() will send the interrupt if
906 * all packets are processed.
907 */
38bc2b8c 908 add_used(vq, head, 0);
8ca47e00
RR
909}
910
a91d74a3
RR
911/*
912 * Handling network input is a bit trickier, because I've tried to optimize it.
913 *
914 * First we have a helper routine which tells is if from this file descriptor
915 * (ie. the /dev/net/tun device) will block:
916 */
4a8962e2
RR
917static bool will_block(int fd)
918{
919 fd_set fdset;
920 struct timeval zero = { 0, 0 };
921 FD_ZERO(&fdset);
922 FD_SET(fd, &fdset);
923 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
924}
925
a91d74a3
RR
926/*
927 * This handles packets coming in from the tun device to our Guest. Like all
928 * service routines, it gets called again as soon as it returns, so you don't
929 * see a while(1) loop here.
930 */
659a0e66 931static void net_input(struct virtqueue *vq)
8ca47e00 932{
8ca47e00 933 int len;
659a0e66
RR
934 unsigned int head, out, in;
935 struct iovec iov[vq->vring.num];
936 struct net_info *net_info = vq->dev->priv;
937
a91d74a3
RR
938 /*
939 * Get a descriptor to write an incoming packet into. This will also
940 * send an interrupt if they're out of descriptors.
941 */
659a0e66
RR
942 head = wait_for_vq_desc(vq, iov, &out, &in);
943 if (out)
944 errx(1, "Output buffers in net input queue?");
4a8962e2 945
a91d74a3
RR
946 /*
947 * If it looks like we'll block reading from the tun device, send them
948 * an interrupt.
949 */
4a8962e2
RR
950 if (vq->pending_used && will_block(net_info->tunfd))
951 trigger_irq(vq);
952
a91d74a3
RR
953 /*
954 * Read in the packet. This is where we normally wait (when there's no
955 * incoming network traffic).
956 */
659a0e66 957 len = readv(net_info->tunfd, iov, in);
8ca47e00 958 if (len <= 0)
e0377e25 959 warn("Failed to read from tun (%d).", errno);
a91d74a3
RR
960
961 /*
962 * Mark that packet buffer as used, but don't interrupt here. We want
963 * to wait until we've done as much work as we can.
964 */
4a8962e2 965 add_used(vq, head, len);
659a0e66 966}
a91d74a3 967/*:*/
dde79789 968
a91d74a3 969/* This is the helper to create threads: run the service routine in a loop. */
659a0e66
RR
970static int do_thread(void *_vq)
971{
972 struct virtqueue *vq = _vq;
17cbca2b 973
659a0e66
RR
974 for (;;)
975 vq->service(vq);
976 return 0;
977}
17cbca2b 978
2e04ef76
RR
979/*
980 * When a child dies, we kill our entire process group with SIGTERM. This
981 * also has the side effect that the shell restores the console for us!
982 */
659a0e66
RR
983static void kill_launcher(int signal)
984{
985 kill(0, SIGTERM);
8ca47e00
RR
986}
987
659a0e66 988static void reset_device(struct device *dev)
56ae43df 989{
659a0e66
RR
990 struct virtqueue *vq;
991
992 verbose("Resetting device %s\n", dev->name);
993
994 /* Clear any features they've acked. */
995 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
996
997 /* We're going to be explicitly killing threads, so ignore them. */
998 signal(SIGCHLD, SIG_IGN);
999
1000 /* Zero out the virtqueues, get rid of their threads */
1001 for (vq = dev->vq; vq; vq = vq->next) {
1002 if (vq->thread != (pid_t)-1) {
1003 kill(vq->thread, SIGTERM);
1004 waitpid(vq->thread, NULL, 0);
1005 vq->thread = (pid_t)-1;
1006 }
1007 memset(vq->vring.desc, 0,
1008 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
1009 lg_last_avail(vq) = 0;
1010 }
1011 dev->running = false;
1012
1013 /* Now we care if threads die. */
1014 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
1015}
1016
a91d74a3
RR
1017/*L:216
1018 * This actually creates the thread which services the virtqueue for a device.
1019 */
659a0e66 1020static void create_thread(struct virtqueue *vq)
5dae785a 1021{
2e04ef76 1022 /*
a91d74a3
RR
1023 * Create stack for thread. Since the stack grows upwards, we point
1024 * the stack pointer to the end of this region.
2e04ef76 1025 */
659a0e66
RR
1026 char *stack = malloc(32768);
1027 unsigned long args[] = { LHREQ_EVENTFD,
1028 vq->config.pfn*getpagesize(), 0 };
1029
1030 /* Create a zero-initialized eventfd. */
1031 vq->eventfd = eventfd(0, 0);
1032 if (vq->eventfd < 0)
1033 err(1, "Creating eventfd");
1034 args[2] = vq->eventfd;
1035
a91d74a3
RR
1036 /*
1037 * Attach an eventfd to this virtqueue: it will go off when the Guest
1038 * does an LHCALL_NOTIFY for this vq.
1039 */
659a0e66
RR
1040 if (write(lguest_fd, &args, sizeof(args)) != 0)
1041 err(1, "Attaching eventfd");
1042
a91d74a3
RR
1043 /*
1044 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1045 * we get a signal if it dies.
1046 */
659a0e66
RR
1047 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1048 if (vq->thread == (pid_t)-1)
1049 err(1, "Creating clone");
a91d74a3
RR
1050
1051 /* We close our local copy now the child has it. */
659a0e66 1052 close(vq->eventfd);
5dae785a
RR
1053}
1054
659a0e66 1055static void start_device(struct device *dev)
6e5aa7ef 1056{
659a0e66 1057 unsigned int i;
6e5aa7ef
RR
1058 struct virtqueue *vq;
1059
659a0e66
RR
1060 verbose("Device %s OK: offered", dev->name);
1061 for (i = 0; i < dev->feature_len; i++)
1062 verbose(" %02x", get_feature_bits(dev)[i]);
1063 verbose(", accepted");
1064 for (i = 0; i < dev->feature_len; i++)
1065 verbose(" %02x", get_feature_bits(dev)
1066 [dev->feature_len+i]);
1067
1068 for (vq = dev->vq; vq; vq = vq->next) {
1069 if (vq->service)
1070 create_thread(vq);
1071 }
1072 dev->running = true;
1073}
1074
1075static void cleanup_devices(void)
1076{
1077 struct device *dev;
1078
1079 for (dev = devices.dev; dev; dev = dev->next)
1080 reset_device(dev);
6e5aa7ef 1081
659a0e66
RR
1082 /* If we saved off the original terminal settings, restore them now. */
1083 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1084 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1085}
6e5aa7ef 1086
659a0e66
RR
1087/* When the Guest tells us they updated the status field, we handle it. */
1088static void update_device_status(struct device *dev)
1089{
1090 /* A zero status is a reset, otherwise it's a set of flags. */
1091 if (dev->desc->status == 0)
1092 reset_device(dev);
1093 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
a007a751 1094 warnx("Device %s configuration FAILED", dev->name);
659a0e66
RR
1095 if (dev->running)
1096 reset_device(dev);
3c3ed482
RR
1097 } else {
1098 if (dev->running)
1099 err(1, "Device %s features finalized twice", dev->name);
1100 start_device(dev);
6e5aa7ef
RR
1101 }
1102}
1103
a91d74a3
RR
1104/*L:215
1105 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1106 * particular, it's used to notify us of device status changes during boot.
1107 */
56739c80 1108static void handle_output(unsigned long addr)
8ca47e00
RR
1109{
1110 struct device *i;
17cbca2b 1111
659a0e66 1112 /* Check each device. */
17cbca2b 1113 for (i = devices.dev; i; i = i->next) {
659a0e66
RR
1114 struct virtqueue *vq;
1115
a91d74a3
RR
1116 /*
1117 * Notifications to device descriptors mean they updated the
1118 * device status.
1119 */
6e5aa7ef 1120 if (from_guest_phys(addr) == i->desc) {
a007a751 1121 update_device_status(i);
6e5aa7ef
RR
1122 return;
1123 }
1124
3c3ed482 1125 /* Devices should not be used before features are finalized. */
17cbca2b 1126 for (vq = i->vq; vq; vq = vq->next) {
659a0e66 1127 if (addr != vq->config.pfn*getpagesize())
6e5aa7ef 1128 continue;
3c3ed482 1129 errx(1, "Notification on %s before setup!", i->name);
8ca47e00
RR
1130 }
1131 }
dde79789 1132
2e04ef76
RR
1133 /*
1134 * Early console write is done using notify on a nul-terminated string
1135 * in Guest memory. It's also great for hacking debugging messages
1136 * into a Guest.
1137 */
17cbca2b
RR
1138 if (addr >= guest_limit)
1139 errx(1, "Bad NOTIFY %#lx", addr);
1140
1141 write(STDOUT_FILENO, from_guest_phys(addr),
1142 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1143}
1144
dde79789
RR
1145/*L:190
1146 * Device Setup
1147 *
1148 * All devices need a descriptor so the Guest knows it exists, and a "struct
1149 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1150 * routines to allocate and manage them.
1151 */
8ca47e00 1152
2e04ef76
RR
1153/*
1154 * The layout of the device page is a "struct lguest_device_desc" followed by a
a586d4f6
RR
1155 * number of virtqueue descriptors, then two sets of feature bits, then an
1156 * array of configuration bytes. This routine returns the configuration
2e04ef76
RR
1157 * pointer.
1158 */
a586d4f6
RR
1159static u8 *device_config(const struct device *dev)
1160{
1161 return (void *)(dev->desc + 1)
713b15b3
RR
1162 + dev->num_vq * sizeof(struct lguest_vqconfig)
1163 + dev->feature_len * 2;
17cbca2b
RR
1164}
1165
2e04ef76
RR
1166/*
1167 * This routine allocates a new "struct lguest_device_desc" from descriptor
a586d4f6 1168 * table page just above the Guest's normal memory. It returns a pointer to
2e04ef76
RR
1169 * that descriptor.
1170 */
a586d4f6 1171static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1172{
a586d4f6
RR
1173 struct lguest_device_desc d = { .type = type };
1174 void *p;
17cbca2b 1175
a586d4f6
RR
1176 /* Figure out where the next device config is, based on the last one. */
1177 if (devices.lastdev)
1178 p = device_config(devices.lastdev)
1179 + devices.lastdev->desc->config_len;
1180 else
1181 p = devices.descpage;
17cbca2b 1182
a586d4f6
RR
1183 /* We only have one page for all the descriptors. */
1184 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1185 errx(1, "Too many devices");
17cbca2b 1186
a586d4f6
RR
1187 /* p might not be aligned, so we memcpy in. */
1188 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1189}
1190
2e04ef76
RR
1191/*
1192 * Each device descriptor is followed by the description of its virtqueues. We
1193 * specify how many descriptors the virtqueue is to have.
1194 */
17cbca2b 1195static void add_virtqueue(struct device *dev, unsigned int num_descs,
659a0e66 1196 void (*service)(struct virtqueue *))
17cbca2b
RR
1197{
1198 unsigned int pages;
1199 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1200 void *p;
1201
a6bd8e13 1202 /* First we need some memory for this virtqueue. */
2966af73 1203 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
42b36cc0 1204 / getpagesize();
17cbca2b
RR
1205 p = get_pages(pages);
1206
d1c856e0
RR
1207 /* Initialize the virtqueue */
1208 vq->next = NULL;
1209 vq->last_avail_idx = 0;
1210 vq->dev = dev;
a91d74a3
RR
1211
1212 /*
1213 * This is the routine the service thread will run, and its Process ID
1214 * once it's running.
1215 */
659a0e66
RR
1216 vq->service = service;
1217 vq->thread = (pid_t)-1;
d1c856e0 1218
17cbca2b
RR
1219 /* Initialize the configuration. */
1220 vq->config.num = num_descs;
1221 vq->config.irq = devices.next_irq++;
1222 vq->config.pfn = to_guest_phys(p) / getpagesize();
1223
1224 /* Initialize the vring. */
2966af73 1225 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
17cbca2b 1226
2e04ef76
RR
1227 /*
1228 * Append virtqueue to this device's descriptor. We use
a586d4f6
RR
1229 * device_config() to get the end of the device's current virtqueues;
1230 * we check that we haven't added any config or feature information
2e04ef76
RR
1231 * yet, otherwise we'd be overwriting them.
1232 */
a586d4f6
RR
1233 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1234 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
713b15b3 1235 dev->num_vq++;
a586d4f6
RR
1236 dev->desc->num_vq++;
1237
1238 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b 1239
2e04ef76
RR
1240 /*
1241 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1242 * second.
1243 */
17cbca2b
RR
1244 for (i = &dev->vq; *i; i = &(*i)->next);
1245 *i = vq;
8ca47e00
RR
1246}
1247
2e04ef76
RR
1248/*
1249 * The first half of the feature bitmask is for us to advertise features. The
1250 * second half is for the Guest to accept features.
1251 */
a586d4f6
RR
1252static void add_feature(struct device *dev, unsigned bit)
1253{
6e5aa7ef 1254 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1255
1256 /* We can't extend the feature bits once we've added config bytes */
1257 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1258 assert(dev->desc->config_len == 0);
713b15b3 1259 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
a586d4f6
RR
1260 }
1261
a586d4f6
RR
1262 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1263}
1264
2e04ef76
RR
1265/*
1266 * This routine sets the configuration fields for an existing device's
a586d4f6 1267 * descriptor. It only works for the last device, but that's OK because that's
2e04ef76
RR
1268 * how we use it.
1269 */
a586d4f6
RR
1270static void set_config(struct device *dev, unsigned len, const void *conf)
1271{
1272 /* Check we haven't overflowed our single page. */
1273 if (device_config(dev) + len > devices.descpage + getpagesize())
1274 errx(1, "Too many devices");
1275
1276 /* Copy in the config information, and store the length. */
1277 memcpy(device_config(dev), conf, len);
1278 dev->desc->config_len = len;
8ef562d1
RR
1279
1280 /* Size must fit in config_len field (8 bits)! */
1281 assert(dev->desc->config_len == len);
a586d4f6
RR
1282}
1283
2e04ef76
RR
1284/*
1285 * This routine does all the creation and setup of a new device, including
a91d74a3
RR
1286 * calling new_dev_desc() to allocate the descriptor and device memory. We
1287 * don't actually start the service threads until later.
a6bd8e13 1288 *
2e04ef76
RR
1289 * See what I mean about userspace being boring?
1290 */
659a0e66 1291static struct device *new_device(const char *name, u16 type)
8ca47e00
RR
1292{
1293 struct device *dev = malloc(sizeof(*dev));
1294
dde79789 1295 /* Now we populate the fields one at a time. */
17cbca2b 1296 dev->desc = new_dev_desc(type);
17cbca2b 1297 dev->name = name;
d1c856e0 1298 dev->vq = NULL;
713b15b3
RR
1299 dev->feature_len = 0;
1300 dev->num_vq = 0;
659a0e66 1301 dev->running = false;
ca16f580 1302 dev->next = NULL;
a586d4f6 1303
2e04ef76
RR
1304 /*
1305 * Append to device list. Prepending to a single-linked list is
a586d4f6
RR
1306 * easier, but the user expects the devices to be arranged on the bus
1307 * in command-line order. The first network device on the command line
2e04ef76
RR
1308 * is eth0, the first block device /dev/vda, etc.
1309 */
a586d4f6
RR
1310 if (devices.lastdev)
1311 devices.lastdev->next = dev;
1312 else
1313 devices.dev = dev;
1314 devices.lastdev = dev;
1315
8ca47e00
RR
1316 return dev;
1317}
1318
2e04ef76
RR
1319/*
1320 * Our first setup routine is the console. It's a fairly simple device, but
1321 * UNIX tty handling makes it uglier than it could be.
1322 */
17cbca2b 1323static void setup_console(void)
8ca47e00
RR
1324{
1325 struct device *dev;
1326
dde79789 1327 /* If we can save the initial standard input settings... */
8ca47e00
RR
1328 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1329 struct termios term = orig_term;
2e04ef76
RR
1330 /*
1331 * Then we turn off echo, line buffering and ^C etc: We want a
1332 * raw input stream to the Guest.
1333 */
8ca47e00
RR
1334 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1335 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
1336 }
1337
659a0e66
RR
1338 dev = new_device("console", VIRTIO_ID_CONSOLE);
1339
dde79789 1340 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1341 dev->priv = malloc(sizeof(struct console_abort));
1342 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1343
2e04ef76
RR
1344 /*
1345 * The console needs two virtqueues: the input then the output. When
56ae43df
RR
1346 * they put something the input queue, we make sure we're listening to
1347 * stdin. When they put something in the output queue, we write it to
2e04ef76
RR
1348 * stdout.
1349 */
659a0e66
RR
1350 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1351 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
17cbca2b 1352
659a0e66 1353 verbose("device %u: console\n", ++devices.device_num);
8ca47e00 1354}
17cbca2b 1355/*:*/
8ca47e00 1356
2e04ef76
RR
1357/*M:010
1358 * Inter-guest networking is an interesting area. Simplest is to have a
17cbca2b
RR
1359 * --sharenet=<name> option which opens or creates a named pipe. This can be
1360 * used to send packets to another guest in a 1:1 manner.
dde79789 1361 *
9f54288d 1362 * More sophisticated is to use one of the tools developed for project like UML
17cbca2b 1363 * to do networking.
dde79789 1364 *
17cbca2b
RR
1365 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1366 * completely generic ("here's my vring, attach to your vring") and would work
1367 * for any traffic. Of course, namespace and permissions issues need to be
1368 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1369 * multiple inter-guest channels behind one interface, although it would
1370 * require some manner of hotplugging new virtio channels.
1371 *
9f54288d 1372 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2e04ef76 1373:*/
8ca47e00
RR
1374
1375static u32 str2ip(const char *ipaddr)
1376{
dec6a2be 1377 unsigned int b[4];
8ca47e00 1378
dec6a2be
MM
1379 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1380 errx(1, "Failed to parse IP address '%s'", ipaddr);
1381 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1382}
1383
1384static void str2mac(const char *macaddr, unsigned char mac[6])
1385{
1386 unsigned int m[6];
1387 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1388 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1389 errx(1, "Failed to parse mac address '%s'", macaddr);
1390 mac[0] = m[0];
1391 mac[1] = m[1];
1392 mac[2] = m[2];
1393 mac[3] = m[3];
1394 mac[4] = m[4];
1395 mac[5] = m[5];
8ca47e00
RR
1396}
1397
2e04ef76
RR
1398/*
1399 * This code is "adapted" from libbridge: it attaches the Host end of the
dde79789
RR
1400 * network device to the bridge device specified by the command line.
1401 *
1402 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2e04ef76
RR
1403 * dislike bridging), and I just try not to break it.
1404 */
8ca47e00
RR
1405static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1406{
1407 int ifidx;
1408 struct ifreq ifr;
1409
1410 if (!*br_name)
1411 errx(1, "must specify bridge name");
1412
1413 ifidx = if_nametoindex(if_name);
1414 if (!ifidx)
1415 errx(1, "interface %s does not exist!", if_name);
1416
1417 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1418 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1419 ifr.ifr_ifindex = ifidx;
1420 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1421 err(1, "can't add %s to bridge %s", if_name, br_name);
1422}
1423
2e04ef76
RR
1424/*
1425 * This sets up the Host end of the network device with an IP address, brings
dde79789 1426 * it up so packets will flow, the copies the MAC address into the hwaddr
2e04ef76
RR
1427 * pointer.
1428 */
dec6a2be 1429static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1430{
1431 struct ifreq ifr;
f846619e 1432 struct sockaddr_in sin;
8ca47e00
RR
1433
1434 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1435 strcpy(ifr.ifr_name, tapif);
1436
1437 /* Don't read these incantations. Just cut & paste them like I did! */
f846619e
RR
1438 sin.sin_family = AF_INET;
1439 sin.sin_addr.s_addr = htonl(ipaddr);
1440 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
8ca47e00 1441 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1442 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1443 ifr.ifr_flags = IFF_UP;
1444 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1445 err(1, "Bringing interface %s up", tapif);
1446}
1447
dec6a2be 1448static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1449{
8ca47e00 1450 struct ifreq ifr;
dec6a2be
MM
1451 int netfd;
1452
1453 /* Start with this zeroed. Messy but sure. */
1454 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1455
2e04ef76
RR
1456 /*
1457 * We open the /dev/net/tun device and tell it we want a tap device. A
dde79789
RR
1458 * tap device is like a tun device, only somehow different. To tell
1459 * the truth, I completely blundered my way through this code, but it
2e04ef76
RR
1460 * works now!
1461 */
8ca47e00 1462 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1463 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1464 strcpy(ifr.ifr_name, "tap%d");
1465 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1466 err(1, "configuring /dev/net/tun");
dec6a2be 1467
398f187d
RR
1468 if (ioctl(netfd, TUNSETOFFLOAD,
1469 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1470 err(1, "Could not set features for tun device");
1471
2e04ef76
RR
1472 /*
1473 * We don't need checksums calculated for packets coming in this
1474 * device: trust us!
1475 */
8ca47e00
RR
1476 ioctl(netfd, TUNSETNOCSUM, 1);
1477
dec6a2be
MM
1478 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1479 return netfd;
1480}
1481
2e04ef76
RR
1482/*L:195
1483 * Our network is a Host<->Guest network. This can either use bridging or
dec6a2be
MM
1484 * routing, but the principle is the same: it uses the "tun" device to inject
1485 * packets into the Host as if they came in from a normal network card. We
2e04ef76
RR
1486 * just shunt packets between the Guest and the tun device.
1487 */
dec6a2be
MM
1488static void setup_tun_net(char *arg)
1489{
1490 struct device *dev;
659a0e66
RR
1491 struct net_info *net_info = malloc(sizeof(*net_info));
1492 int ipfd;
dec6a2be
MM
1493 u32 ip = INADDR_ANY;
1494 bool bridging = false;
1495 char tapif[IFNAMSIZ], *p;
1496 struct virtio_net_config conf;
1497
659a0e66 1498 net_info->tunfd = get_tun_device(tapif);
dec6a2be 1499
17cbca2b 1500 /* First we create a new network device. */
659a0e66
RR
1501 dev = new_device("net", VIRTIO_ID_NET);
1502 dev->priv = net_info;
dde79789 1503
2e04ef76 1504 /* Network devices need a recv and a send queue, just like console. */
659a0e66
RR
1505 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1506 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
8ca47e00 1507
2e04ef76
RR
1508 /*
1509 * We need a socket to perform the magic network ioctls to bring up the
1510 * tap interface, connect to the bridge etc. Any socket will do!
1511 */
8ca47e00
RR
1512 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1513 if (ipfd < 0)
1514 err(1, "opening IP socket");
1515
dde79789 1516 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1517 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1518 arg += strlen(BRIDGE_PFX);
1519 bridging = true;
1520 }
1521
1522 /* A mac address may follow the bridge name or IP address */
1523 p = strchr(arg, ':');
1524 if (p) {
1525 str2mac(p+1, conf.mac);
40c42076 1526 add_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 1527 *p = '\0';
dec6a2be
MM
1528 }
1529
1530 /* arg is now either an IP address or a bridge name */
1531 if (bridging)
1532 add_to_bridge(ipfd, tapif, arg);
1533 else
8ca47e00
RR
1534 ip = str2ip(arg);
1535
dec6a2be
MM
1536 /* Set up the tun device. */
1537 configure_device(ipfd, tapif, ip);
8ca47e00 1538
398f187d
RR
1539 /* Expect Guest to handle everything except UFO */
1540 add_feature(dev, VIRTIO_NET_F_CSUM);
1541 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
398f187d
RR
1542 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1543 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1544 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1545 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1546 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1547 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
d1f0132e
MM
1548 /* We handle indirect ring entries */
1549 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
a586d4f6 1550 set_config(dev, sizeof(conf), &conf);
8ca47e00 1551
a586d4f6 1552 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1553 close(ipfd);
1554
dec6a2be
MM
1555 devices.device_num++;
1556
1557 if (bridging)
1558 verbose("device %u: tun %s attached to bridge: %s\n",
1559 devices.device_num, tapif, arg);
1560 else
1561 verbose("device %u: tun %s: %s\n",
1562 devices.device_num, tapif, arg);
8ca47e00 1563}
a91d74a3 1564/*:*/
17cbca2b 1565
e1e72965 1566/* This hangs off device->priv. */
1842f23c 1567struct vblk_info {
17cbca2b
RR
1568 /* The size of the file. */
1569 off64_t len;
1570
1571 /* The file descriptor for the file. */
1572 int fd;
1573
17cbca2b
RR
1574};
1575
e1e72965
RR
1576/*L:210
1577 * The Disk
1578 *
a91d74a3
RR
1579 * The disk only has one virtqueue, so it only has one thread. It is really
1580 * simple: the Guest asks for a block number and we read or write that position
1581 * in the file.
1582 *
1583 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1584 * slow: the Guest waits until the read is finished before running anything
1585 * else, even if it could have been doing useful work.
1586 *
1587 * We could have used async I/O, except it's reputed to suck so hard that
1588 * characters actually go missing from your code when you try to use it.
e1e72965 1589 */
659a0e66 1590static void blk_request(struct virtqueue *vq)
17cbca2b 1591{
659a0e66 1592 struct vblk_info *vblk = vq->dev->priv;
17cbca2b
RR
1593 unsigned int head, out_num, in_num, wlen;
1594 int ret;
cb38fa23 1595 u8 *in;
17cbca2b 1596 struct virtio_blk_outhdr *out;
659a0e66 1597 struct iovec iov[vq->vring.num];
17cbca2b
RR
1598 off64_t off;
1599
a91d74a3
RR
1600 /*
1601 * Get the next request, where we normally wait. It triggers the
1602 * interrupt to acknowledge previously serviced requests (if any).
1603 */
659a0e66 1604 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 1605
2e04ef76
RR
1606 /*
1607 * Every block request should contain at least one output buffer
e1e72965 1608 * (detailing the location on disk and the type of request) and one
2e04ef76
RR
1609 * input buffer (to hold the result).
1610 */
17cbca2b
RR
1611 if (out_num == 0 || in_num == 0)
1612 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1613 head, out_num, in_num);
1614
1615 out = convert(&iov[0], struct virtio_blk_outhdr);
cb38fa23 1616 in = convert(&iov[out_num+in_num-1], u8);
a91d74a3
RR
1617 /*
1618 * For historical reasons, block operations are expressed in 512 byte
1619 * "sectors".
1620 */
17cbca2b
RR
1621 off = out->sector * 512;
1622
2e04ef76
RR
1623 /*
1624 * In general the virtio block driver is allowed to try SCSI commands.
1625 * It'd be nice if we supported eject, for example, but we don't.
1626 */
17cbca2b
RR
1627 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1628 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1629 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1630 wlen = sizeof(*in);
17cbca2b 1631 } else if (out->type & VIRTIO_BLK_T_OUT) {
2e04ef76
RR
1632 /*
1633 * Write
1634 *
1635 * Move to the right location in the block file. This can fail
1636 * if they try to write past end.
1637 */
17cbca2b
RR
1638 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1639 err(1, "Bad seek to sector %llu", out->sector);
1640
1641 ret = writev(vblk->fd, iov+1, out_num-1);
1642 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1643
2e04ef76
RR
1644 /*
1645 * Grr... Now we know how long the descriptor they sent was, we
17cbca2b 1646 * make sure they didn't try to write over the end of the block
2e04ef76
RR
1647 * file (possibly extending it).
1648 */
17cbca2b
RR
1649 if (ret > 0 && off + ret > vblk->len) {
1650 /* Trim it back to the correct length */
1651 ftruncate64(vblk->fd, vblk->len);
1652 /* Die, bad Guest, die. */
1653 errx(1, "Write past end %llu+%u", off, ret);
1654 }
7bc9fdda
TH
1655
1656 wlen = sizeof(*in);
1657 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1658 } else if (out->type & VIRTIO_BLK_T_FLUSH) {
1659 /* Flush */
1660 ret = fdatasync(vblk->fd);
1661 verbose("FLUSH fdatasync: %i\n", ret);
1200e646 1662 wlen = sizeof(*in);
cb38fa23 1663 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b 1664 } else {
2e04ef76
RR
1665 /*
1666 * Read
1667 *
1668 * Move to the right location in the block file. This can fail
1669 * if they try to read past end.
1670 */
17cbca2b
RR
1671 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1672 err(1, "Bad seek to sector %llu", out->sector);
1673
1674 ret = readv(vblk->fd, iov+1, in_num-1);
1675 verbose("READ from sector %llu: %i\n", out->sector, ret);
1676 if (ret >= 0) {
1200e646 1677 wlen = sizeof(*in) + ret;
cb38fa23 1678 *in = VIRTIO_BLK_S_OK;
17cbca2b 1679 } else {
1200e646 1680 wlen = sizeof(*in);
cb38fa23 1681 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1682 }
1683 }
1684
a91d74a3 1685 /* Finished that request. */
38bc2b8c 1686 add_used(vq, head, wlen);
17cbca2b
RR
1687}
1688
e1e72965 1689/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1690static void setup_block_file(const char *filename)
1691{
17cbca2b
RR
1692 struct device *dev;
1693 struct vblk_info *vblk;
a586d4f6 1694 struct virtio_blk_config conf;
17cbca2b 1695
2e04ef76 1696 /* Creat the device. */
659a0e66 1697 dev = new_device("block", VIRTIO_ID_BLOCK);
17cbca2b 1698
e1e72965 1699 /* The device has one virtqueue, where the Guest places requests. */
659a0e66 1700 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
17cbca2b
RR
1701
1702 /* Allocate the room for our own bookkeeping */
1703 vblk = dev->priv = malloc(sizeof(*vblk));
1704
1705 /* First we open the file and store the length. */
1706 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1707 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1708
7bc9fdda
TH
1709 /* We support FLUSH. */
1710 add_feature(dev, VIRTIO_BLK_F_FLUSH);
a586d4f6 1711
17cbca2b 1712 /* Tell Guest how many sectors this device has. */
a586d4f6 1713 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b 1714
2e04ef76
RR
1715 /*
1716 * Tell Guest not to put in too many descriptors at once: two are used
1717 * for the in and out elements.
1718 */
a586d4f6
RR
1719 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1720 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1721
8ef562d1
RR
1722 /* Don't try to put whole struct: we have 8 bit limit. */
1723 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
17cbca2b 1724
17cbca2b 1725 verbose("device %u: virtblock %llu sectors\n",
659a0e66 1726 ++devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1727}
28fd6d7f 1728
2e04ef76
RR
1729/*L:211
1730 * Our random number generator device reads from /dev/random into the Guest's
28fd6d7f
RR
1731 * input buffers. The usual case is that the Guest doesn't want random numbers
1732 * and so has no buffers although /dev/random is still readable, whereas
1733 * console is the reverse.
1734 *
2e04ef76
RR
1735 * The same logic applies, however.
1736 */
1737struct rng_info {
1738 int rfd;
1739};
1740
659a0e66 1741static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
1742{
1743 int len;
1744 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
1745 struct rng_info *rng_info = vq->dev->priv;
1746 struct iovec iov[vq->vring.num];
28fd6d7f
RR
1747
1748 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 1749 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
1750 if (out_num)
1751 errx(1, "Output buffers in rng?");
1752
2e04ef76 1753 /*
a91d74a3
RR
1754 * Just like the console write, we loop to cover the whole iovec.
1755 * In this case, short reads actually happen quite a bit.
2e04ef76 1756 */
28fd6d7f 1757 while (!iov_empty(iov, in_num)) {
659a0e66 1758 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f
RR
1759 if (len <= 0)
1760 err(1, "Read from /dev/random gave %i", len);
1761 iov_consume(iov, in_num, len);
1762 totlen += len;
1763 }
1764
1765 /* Tell the Guest about the new input. */
38bc2b8c 1766 add_used(vq, head, totlen);
28fd6d7f
RR
1767}
1768
2e04ef76
RR
1769/*L:199
1770 * This creates a "hardware" random number device for the Guest.
1771 */
28fd6d7f
RR
1772static void setup_rng(void)
1773{
1774 struct device *dev;
659a0e66 1775 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 1776
2e04ef76 1777 /* Our device's privat info simply contains the /dev/random fd. */
659a0e66 1778 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
28fd6d7f 1779
2e04ef76 1780 /* Create the new device. */
659a0e66
RR
1781 dev = new_device("rng", VIRTIO_ID_RNG);
1782 dev->priv = rng_info;
28fd6d7f
RR
1783
1784 /* The device has one virtqueue, where the Guest places inbufs. */
659a0e66 1785 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
28fd6d7f
RR
1786
1787 verbose("device %u: rng\n", devices.device_num++);
1788}
a6bd8e13 1789/* That's the end of device setup. */
ec04b13f 1790
a6bd8e13 1791/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1792static void __attribute__((noreturn)) restart_guest(void)
1793{
1794 unsigned int i;
1795
2e04ef76
RR
1796 /*
1797 * Since we don't track all open fds, we simply close everything beyond
1798 * stderr.
1799 */
ec04b13f
BR
1800 for (i = 3; i < FD_SETSIZE; i++)
1801 close(i);
8c79873d 1802
659a0e66
RR
1803 /* Reset all the devices (kills all threads). */
1804 cleanup_devices();
1805
ec04b13f
BR
1806 execv(main_args[0], main_args);
1807 err(1, "Could not exec %s", main_args[0]);
1808}
8ca47e00 1809
2e04ef76
RR
1810/*L:220
1811 * Finally we reach the core of the Launcher which runs the Guest, serves
1812 * its input and output, and finally, lays it to rest.
1813 */
56739c80 1814static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
1815{
1816 for (;;) {
17cbca2b 1817 unsigned long notify_addr;
8ca47e00
RR
1818 int readval;
1819
1820 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1821 readval = pread(lguest_fd, &notify_addr,
1822 sizeof(notify_addr), cpu_id);
8ca47e00 1823
17cbca2b
RR
1824 /* One unsigned long means the Guest did HCALL_NOTIFY */
1825 if (readval == sizeof(notify_addr)) {
1826 verbose("Notify on address %#lx\n", notify_addr);
56739c80 1827 handle_output(notify_addr);
dde79789 1828 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1829 } else if (errno == ENOENT) {
1830 char reason[1024] = { 0 };
e3283fa0 1831 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1832 errx(1, "%s", reason);
ec04b13f
BR
1833 /* ERESTART means that we need to reboot the guest */
1834 } else if (errno == ERESTART) {
1835 restart_guest();
659a0e66
RR
1836 /* Anything else means a bug or incompatible change. */
1837 } else
8ca47e00 1838 err(1, "Running guest failed");
8ca47e00
RR
1839 }
1840}
a6bd8e13 1841/*L:240
e1e72965
RR
1842 * This is the end of the Launcher. The good news: we are over halfway
1843 * through! The bad news: the most fiendish part of the code still lies ahead
1844 * of us.
dde79789 1845 *
e1e72965
RR
1846 * Are you ready? Take a deep breath and join me in the core of the Host, in
1847 * "make Host".
2e04ef76 1848:*/
8ca47e00
RR
1849
1850static struct option opts[] = {
1851 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1852 { "tunnet", 1, NULL, 't' },
1853 { "block", 1, NULL, 'b' },
28fd6d7f 1854 { "rng", 0, NULL, 'r' },
8ca47e00 1855 { "initrd", 1, NULL, 'i' },
8aeb36e8
PS
1856 { "username", 1, NULL, 'u' },
1857 { "chroot", 1, NULL, 'c' },
8ca47e00
RR
1858 { NULL },
1859};
1860static void usage(void)
1861{
1862 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1863 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1864 "|--block=<filename>|--initrd=<filename>]...\n"
1865 "<mem-in-mb> vmlinux [args...]");
1866}
1867
3c6b5bfa 1868/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1869int main(int argc, char *argv[])
1870{
2e04ef76 1871 /* Memory, code startpoint and size of the (optional) initrd. */
58a24566 1872 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
1873 /* Two temporaries. */
1874 int i, c;
3c6b5bfa 1875 /* The boot information for the Guest. */
43d33b21 1876 struct boot_params *boot;
dde79789 1877 /* If they specify an initrd file to load. */
8ca47e00
RR
1878 const char *initrd_name = NULL;
1879
8aeb36e8
PS
1880 /* Password structure for initgroups/setres[gu]id */
1881 struct passwd *user_details = NULL;
1882
1883 /* Directory to chroot to */
1884 char *chroot_path = NULL;
1885
ec04b13f
BR
1886 /* Save the args: we "reboot" by execing ourselves again. */
1887 main_args = argv;
ec04b13f 1888
2e04ef76
RR
1889 /*
1890 * First we initialize the device list. We keep a pointer to the last
659a0e66 1891 * device, and the next interrupt number to use for devices (1:
2e04ef76
RR
1892 * remember that 0 is used by the timer).
1893 */
a586d4f6 1894 devices.lastdev = NULL;
17cbca2b 1895 devices.next_irq = 1;
8ca47e00 1896
a91d74a3 1897 /* We're CPU 0. In fact, that's the only CPU possible right now. */
e3283fa0 1898 cpu_id = 0;
a91d74a3 1899
2e04ef76
RR
1900 /*
1901 * We need to know how much memory so we can set up the device
dde79789
RR
1902 * descriptor and memory pages for the devices as we parse the command
1903 * line. So we quickly look through the arguments to find the amount
2e04ef76
RR
1904 * of memory now.
1905 */
6570c459
RR
1906 for (i = 1; i < argc; i++) {
1907 if (argv[i][0] != '-') {
3c6b5bfa 1908 mem = atoi(argv[i]) * 1024 * 1024;
2e04ef76
RR
1909 /*
1910 * We start by mapping anonymous pages over all of
3c6b5bfa
RR
1911 * guest-physical memory range. This fills it with 0,
1912 * and ensures that the Guest won't be killed when it
2e04ef76
RR
1913 * tries to access it.
1914 */
3c6b5bfa
RR
1915 guest_base = map_zeroed_pages(mem / getpagesize()
1916 + DEVICE_PAGES);
1917 guest_limit = mem;
1918 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1919 devices.descpage = get_pages(1);
6570c459
RR
1920 break;
1921 }
1922 }
dde79789
RR
1923
1924 /* The options are fairly straight-forward */
8ca47e00
RR
1925 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1926 switch (c) {
1927 case 'v':
1928 verbose = true;
1929 break;
8ca47e00 1930 case 't':
17cbca2b 1931 setup_tun_net(optarg);
8ca47e00
RR
1932 break;
1933 case 'b':
17cbca2b 1934 setup_block_file(optarg);
8ca47e00 1935 break;
28fd6d7f
RR
1936 case 'r':
1937 setup_rng();
1938 break;
8ca47e00
RR
1939 case 'i':
1940 initrd_name = optarg;
1941 break;
8aeb36e8
PS
1942 case 'u':
1943 user_details = getpwnam(optarg);
1944 if (!user_details)
1945 err(1, "getpwnam failed, incorrect username?");
1946 break;
1947 case 'c':
1948 chroot_path = optarg;
1949 break;
8ca47e00
RR
1950 default:
1951 warnx("Unknown argument %s", argv[optind]);
1952 usage();
1953 }
1954 }
2e04ef76
RR
1955 /*
1956 * After the other arguments we expect memory and kernel image name,
1957 * followed by command line arguments for the kernel.
1958 */
8ca47e00
RR
1959 if (optind + 2 > argc)
1960 usage();
1961
3c6b5bfa
RR
1962 verbose("Guest base is at %p\n", guest_base);
1963
dde79789 1964 /* We always have a console device */
17cbca2b 1965 setup_console();
8ca47e00 1966
8ca47e00 1967 /* Now we load the kernel */
47436aa4 1968 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1969
3c6b5bfa
RR
1970 /* Boot information is stashed at physical address 0 */
1971 boot = from_guest_phys(0);
1972
dde79789 1973 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1974 if (initrd_name) {
1975 initrd_size = load_initrd(initrd_name, mem);
2e04ef76
RR
1976 /*
1977 * These are the location in the Linux boot header where the
1978 * start and size of the initrd are expected to be found.
1979 */
43d33b21
RR
1980 boot->hdr.ramdisk_image = mem - initrd_size;
1981 boot->hdr.ramdisk_size = initrd_size;
dde79789 1982 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 1983 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
1984 }
1985
2e04ef76
RR
1986 /*
1987 * The Linux boot header contains an "E820" memory map: ours is a
1988 * simple, single region.
1989 */
43d33b21
RR
1990 boot->e820_entries = 1;
1991 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2e04ef76
RR
1992 /*
1993 * The boot header contains a command line pointer: we put the command
1994 * line after the boot header.
1995 */
43d33b21 1996 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 1997 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 1998 concat((char *)(boot + 1), argv+optind+2);
dde79789 1999
e22a5398
RR
2000 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
2001 boot->hdr.kernel_alignment = 0x1000000;
2002
814a0e5c 2003 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 2004 boot->hdr.version = 0x207;
814a0e5c
RR
2005
2006 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 2007 boot->hdr.hardware_subarch = 1;
814a0e5c 2008
43d33b21
RR
2009 /* Tell the entry path not to try to reload segment registers. */
2010 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 2011
9f54288d 2012 /* We tell the kernel to initialize the Guest. */
56739c80 2013 tell_kernel(start);
dde79789 2014
a91d74a3 2015 /* Ensure that we terminate if a device-servicing child dies. */
659a0e66
RR
2016 signal(SIGCHLD, kill_launcher);
2017
2018 /* If we exit via err(), this kills all the threads, restores tty. */
2019 atexit(cleanup_devices);
8ca47e00 2020
8aeb36e8
PS
2021 /* If requested, chroot to a directory */
2022 if (chroot_path) {
2023 if (chroot(chroot_path) != 0)
2024 err(1, "chroot(\"%s\") failed", chroot_path);
2025
2026 if (chdir("/") != 0)
2027 err(1, "chdir(\"/\") failed");
2028
2029 verbose("chroot done\n");
2030 }
2031
2032 /* If requested, drop privileges */
2033 if (user_details) {
2034 uid_t u;
2035 gid_t g;
2036
2037 u = user_details->pw_uid;
2038 g = user_details->pw_gid;
2039
2040 if (initgroups(user_details->pw_name, g) != 0)
2041 err(1, "initgroups failed");
2042
2043 if (setresgid(g, g, g) != 0)
2044 err(1, "setresgid failed");
2045
2046 if (setresuid(u, u, u) != 0)
2047 err(1, "setresuid failed");
2048
2049 verbose("Dropping privileges completed\n");
2050 }
2051
dde79789 2052 /* Finally, run the Guest. This doesn't return. */
56739c80 2053 run_guest();
8ca47e00 2054}
f56a384e
RR
2055/*:*/
2056
2057/*M:999
2058 * Mastery is done: you now know everything I do.
2059 *
2060 * But surely you have seen code, features and bugs in your wanderings which
2061 * you now yearn to attack? That is the real game, and I look forward to you
2062 * patching and forking lguest into the Your-Name-Here-visor.
2063 *
2064 * Farewell, and good coding!
2065 * Rusty Russell.
2066 */
This page took 0.7261 seconds and 5 git commands to generate.