perf timechart: Get number of CPUs from perf header
[deliverable/linux.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
c85cffa5
JO
15#include <traceevent/event-parse.h>
16
10274989
AV
17#include "builtin.h"
18
19#include "util/util.h"
20
21#include "util/color.h"
22#include <linux/list.h>
23#include "util/cache.h"
5936678e 24#include "util/evlist.h"
e3f42609 25#include "util/evsel.h"
10274989
AV
26#include <linux/rbtree.h>
27#include "util/symbol.h"
10274989
AV
28#include "util/callchain.h"
29#include "util/strlist.h"
30
31#include "perf.h"
32#include "util/header.h"
33#include "util/parse-options.h"
34#include "util/parse-events.h"
5cbd0805 35#include "util/event.h"
301a0b02 36#include "util/session.h"
10274989 37#include "util/svghelper.h"
45694aa7 38#include "util/tool.h"
f5fc1412 39#include "util/data.h"
10274989 40
20c457b8
TR
41#define SUPPORT_OLD_POWER_EVENTS 1
42#define PWR_EVENT_EXIT -1
43
5e22f6d2 44struct per_pid;
66cc3ada 45struct power_event;
436b0da0 46struct wake_event;
5e22f6d2 47
985b12e6
ACM
48struct timechart {
49 struct perf_tool tool;
5e22f6d2 50 struct per_pid *all_data;
66cc3ada 51 struct power_event *power_events;
436b0da0 52 struct wake_event *wake_events;
985b12e6
ACM
53 int proc_num;
54 unsigned int numcpus;
55 u64 min_freq, /* Lowest CPU frequency seen */
56 max_freq, /* Highest CPU frequency seen */
57 turbo_frequency,
58 first_time, last_time;
59 bool power_only,
60 tasks_only,
61 with_backtrace;
62};
10274989 63
10274989 64struct per_pidcomm;
10274989 65struct cpu_sample;
10274989
AV
66
67/*
68 * Datastructure layout:
69 * We keep an list of "pid"s, matching the kernels notion of a task struct.
70 * Each "pid" entry, has a list of "comm"s.
71 * this is because we want to track different programs different, while
72 * exec will reuse the original pid (by design).
73 * Each comm has a list of samples that will be used to draw
74 * final graph.
75 */
76
77struct per_pid {
78 struct per_pid *next;
79
80 int pid;
81 int ppid;
82
83 u64 start_time;
84 u64 end_time;
85 u64 total_time;
86 int display;
87
88 struct per_pidcomm *all;
89 struct per_pidcomm *current;
10274989
AV
90};
91
92
93struct per_pidcomm {
94 struct per_pidcomm *next;
95
96 u64 start_time;
97 u64 end_time;
98 u64 total_time;
99
100 int Y;
101 int display;
102
103 long state;
104 u64 state_since;
105
106 char *comm;
107
108 struct cpu_sample *samples;
109};
110
111struct sample_wrapper {
112 struct sample_wrapper *next;
113
114 u64 timestamp;
115 unsigned char data[0];
116};
117
118#define TYPE_NONE 0
119#define TYPE_RUNNING 1
120#define TYPE_WAITING 2
121#define TYPE_BLOCKED 3
122
123struct cpu_sample {
124 struct cpu_sample *next;
125
126 u64 start_time;
127 u64 end_time;
128 int type;
129 int cpu;
6f8d67fa 130 const char *backtrace;
10274989
AV
131};
132
10274989
AV
133#define CSTATE 1
134#define PSTATE 2
135
136struct power_event {
137 struct power_event *next;
138 int type;
139 int state;
140 u64 start_time;
141 u64 end_time;
142 int cpu;
143};
144
145struct wake_event {
146 struct wake_event *next;
147 int waker;
148 int wakee;
149 u64 time;
6f8d67fa 150 const char *backtrace;
10274989
AV
151};
152
bbe2987b 153struct process_filter {
5cbd0805
LZ
154 char *name;
155 int pid;
156 struct process_filter *next;
bbe2987b
AV
157};
158
159static struct process_filter *process_filter;
160
161
5e22f6d2 162static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
10274989 163{
5e22f6d2 164 struct per_pid *cursor = tchart->all_data;
10274989
AV
165
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
170 }
e0dcd6fb 171 cursor = zalloc(sizeof(*cursor));
10274989 172 assert(cursor != NULL);
10274989 173 cursor->pid = pid;
5e22f6d2
ACM
174 cursor->next = tchart->all_data;
175 tchart->all_data = cursor;
10274989
AV
176 return cursor;
177}
178
5e22f6d2 179static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
10274989
AV
180{
181 struct per_pid *p;
182 struct per_pidcomm *c;
5e22f6d2 183 p = find_create_pid(tchart, pid);
10274989
AV
184 c = p->all;
185 while (c) {
186 if (c->comm && strcmp(c->comm, comm) == 0) {
187 p->current = c;
188 return;
189 }
190 if (!c->comm) {
191 c->comm = strdup(comm);
192 p->current = c;
193 return;
194 }
195 c = c->next;
196 }
e0dcd6fb 197 c = zalloc(sizeof(*c));
10274989 198 assert(c != NULL);
10274989
AV
199 c->comm = strdup(comm);
200 p->current = c;
201 c->next = p->all;
202 p->all = c;
203}
204
5e22f6d2 205static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
10274989
AV
206{
207 struct per_pid *p, *pp;
5e22f6d2
ACM
208 p = find_create_pid(tchart, pid);
209 pp = find_create_pid(tchart, ppid);
10274989
AV
210 p->ppid = ppid;
211 if (pp->current && pp->current->comm && !p->current)
5e22f6d2 212 pid_set_comm(tchart, pid, pp->current->comm);
10274989
AV
213
214 p->start_time = timestamp;
215 if (p->current) {
216 p->current->start_time = timestamp;
217 p->current->state_since = timestamp;
218 }
219}
220
5e22f6d2 221static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
10274989
AV
222{
223 struct per_pid *p;
5e22f6d2 224 p = find_create_pid(tchart, pid);
10274989
AV
225 p->end_time = timestamp;
226 if (p->current)
227 p->current->end_time = timestamp;
228}
229
5e22f6d2
ACM
230static void pid_put_sample(struct timechart *tchart, int pid, int type,
231 unsigned int cpu, u64 start, u64 end,
232 const char *backtrace)
10274989
AV
233{
234 struct per_pid *p;
235 struct per_pidcomm *c;
236 struct cpu_sample *sample;
237
5e22f6d2 238 p = find_create_pid(tchart, pid);
10274989
AV
239 c = p->current;
240 if (!c) {
e0dcd6fb 241 c = zalloc(sizeof(*c));
10274989 242 assert(c != NULL);
10274989
AV
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
246 }
247
e0dcd6fb 248 sample = zalloc(sizeof(*sample));
10274989 249 assert(sample != NULL);
10274989
AV
250 sample->start_time = start;
251 sample->end_time = end;
252 sample->type = type;
253 sample->next = c->samples;
254 sample->cpu = cpu;
6f8d67fa 255 sample->backtrace = backtrace;
10274989
AV
256 c->samples = sample;
257
258 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259 c->total_time += (end-start);
260 p->total_time += (end-start);
261 }
262
263 if (c->start_time == 0 || c->start_time > start)
264 c->start_time = start;
265 if (p->start_time == 0 || p->start_time > start)
266 p->start_time = start;
10274989
AV
267}
268
269#define MAX_CPUS 4096
270
271static u64 cpus_cstate_start_times[MAX_CPUS];
272static int cpus_cstate_state[MAX_CPUS];
273static u64 cpus_pstate_start_times[MAX_CPUS];
274static u64 cpus_pstate_state[MAX_CPUS];
275
5e22f6d2 276static int process_comm_event(struct perf_tool *tool,
d20deb64 277 union perf_event *event,
1d037ca1
IT
278 struct perf_sample *sample __maybe_unused,
279 struct machine *machine __maybe_unused)
10274989 280{
5e22f6d2
ACM
281 struct timechart *tchart = container_of(tool, struct timechart, tool);
282 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
10274989
AV
283 return 0;
284}
d8f66248 285
5e22f6d2 286static int process_fork_event(struct perf_tool *tool,
d20deb64 287 union perf_event *event,
1d037ca1
IT
288 struct perf_sample *sample __maybe_unused,
289 struct machine *machine __maybe_unused)
10274989 290{
5e22f6d2
ACM
291 struct timechart *tchart = container_of(tool, struct timechart, tool);
292 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
10274989
AV
293 return 0;
294}
295
5e22f6d2 296static int process_exit_event(struct perf_tool *tool,
d20deb64 297 union perf_event *event,
1d037ca1
IT
298 struct perf_sample *sample __maybe_unused,
299 struct machine *machine __maybe_unused)
10274989 300{
5e22f6d2
ACM
301 struct timechart *tchart = container_of(tool, struct timechart, tool);
302 pid_exit(tchart, event->fork.pid, event->fork.time);
10274989
AV
303 return 0;
304}
305
20c457b8
TR
306#ifdef SUPPORT_OLD_POWER_EVENTS
307static int use_old_power_events;
20c457b8
TR
308#endif
309
10274989
AV
310static void c_state_start(int cpu, u64 timestamp, int state)
311{
312 cpus_cstate_start_times[cpu] = timestamp;
313 cpus_cstate_state[cpu] = state;
314}
315
66cc3ada 316static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
10274989 317{
e0dcd6fb
ACM
318 struct power_event *pwr = zalloc(sizeof(*pwr));
319
10274989
AV
320 if (!pwr)
321 return;
10274989
AV
322
323 pwr->state = cpus_cstate_state[cpu];
324 pwr->start_time = cpus_cstate_start_times[cpu];
325 pwr->end_time = timestamp;
326 pwr->cpu = cpu;
327 pwr->type = CSTATE;
66cc3ada 328 pwr->next = tchart->power_events;
10274989 329
66cc3ada 330 tchart->power_events = pwr;
10274989
AV
331}
332
985b12e6 333static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
10274989
AV
334{
335 struct power_event *pwr;
10274989
AV
336
337 if (new_freq > 8000000) /* detect invalid data */
338 return;
339
e0dcd6fb 340 pwr = zalloc(sizeof(*pwr));
10274989
AV
341 if (!pwr)
342 return;
10274989
AV
343
344 pwr->state = cpus_pstate_state[cpu];
345 pwr->start_time = cpus_pstate_start_times[cpu];
346 pwr->end_time = timestamp;
347 pwr->cpu = cpu;
348 pwr->type = PSTATE;
66cc3ada 349 pwr->next = tchart->power_events;
10274989
AV
350
351 if (!pwr->start_time)
985b12e6 352 pwr->start_time = tchart->first_time;
10274989 353
66cc3ada 354 tchart->power_events = pwr;
10274989
AV
355
356 cpus_pstate_state[cpu] = new_freq;
357 cpus_pstate_start_times[cpu] = timestamp;
358
985b12e6
ACM
359 if ((u64)new_freq > tchart->max_freq)
360 tchart->max_freq = new_freq;
10274989 361
985b12e6
ACM
362 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
363 tchart->min_freq = new_freq;
10274989 364
985b12e6
ACM
365 if (new_freq == tchart->max_freq - 1000)
366 tchart->turbo_frequency = tchart->max_freq;
10274989
AV
367}
368
5e22f6d2
ACM
369static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
370 int waker, int wakee, u8 flags, const char *backtrace)
10274989 371{
10274989 372 struct per_pid *p;
e0dcd6fb 373 struct wake_event *we = zalloc(sizeof(*we));
10274989 374
10274989
AV
375 if (!we)
376 return;
377
10274989 378 we->time = timestamp;
3ed0d21e 379 we->waker = waker;
6f8d67fa 380 we->backtrace = backtrace;
10274989 381
3ed0d21e 382 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
10274989
AV
383 we->waker = -1;
384
3ed0d21e 385 we->wakee = wakee;
436b0da0
ACM
386 we->next = tchart->wake_events;
387 tchart->wake_events = we;
5e22f6d2 388 p = find_create_pid(tchart, we->wakee);
10274989
AV
389
390 if (p && p->current && p->current->state == TYPE_NONE) {
391 p->current->state_since = timestamp;
392 p->current->state = TYPE_WAITING;
393 }
394 if (p && p->current && p->current->state == TYPE_BLOCKED) {
5e22f6d2 395 pid_put_sample(tchart, p->pid, p->current->state, cpu,
6f8d67fa 396 p->current->state_since, timestamp, NULL);
10274989
AV
397 p->current->state_since = timestamp;
398 p->current->state = TYPE_WAITING;
399 }
400}
401
5e22f6d2
ACM
402static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
403 int prev_pid, int next_pid, u64 prev_state,
404 const char *backtrace)
10274989
AV
405{
406 struct per_pid *p = NULL, *prev_p;
10274989 407
5e22f6d2 408 prev_p = find_create_pid(tchart, prev_pid);
10274989 409
5e22f6d2 410 p = find_create_pid(tchart, next_pid);
10274989
AV
411
412 if (prev_p->current && prev_p->current->state != TYPE_NONE)
5e22f6d2 413 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
6f8d67fa
SF
414 prev_p->current->state_since, timestamp,
415 backtrace);
10274989
AV
416 if (p && p->current) {
417 if (p->current->state != TYPE_NONE)
5e22f6d2 418 pid_put_sample(tchart, next_pid, p->current->state, cpu,
6f8d67fa
SF
419 p->current->state_since, timestamp,
420 backtrace);
10274989 421
33e26a1b
JL
422 p->current->state_since = timestamp;
423 p->current->state = TYPE_RUNNING;
10274989
AV
424 }
425
426 if (prev_p->current) {
427 prev_p->current->state = TYPE_NONE;
428 prev_p->current->state_since = timestamp;
3ed0d21e 429 if (prev_state & 2)
10274989 430 prev_p->current->state = TYPE_BLOCKED;
3ed0d21e 431 if (prev_state == 0)
10274989
AV
432 prev_p->current->state = TYPE_WAITING;
433 }
434}
435
6f8d67fa
SF
436static const char *cat_backtrace(union perf_event *event,
437 struct perf_sample *sample,
438 struct machine *machine)
439{
440 struct addr_location al;
441 unsigned int i;
442 char *p = NULL;
443 size_t p_len;
444 u8 cpumode = PERF_RECORD_MISC_USER;
445 struct addr_location tal;
446 struct ip_callchain *chain = sample->callchain;
447 FILE *f = open_memstream(&p, &p_len);
448
449 if (!f) {
450 perror("open_memstream error");
451 return NULL;
452 }
453
454 if (!chain)
455 goto exit;
456
457 if (perf_event__preprocess_sample(event, machine, &al, sample) < 0) {
458 fprintf(stderr, "problem processing %d event, skipping it.\n",
459 event->header.type);
460 goto exit;
461 }
462
463 for (i = 0; i < chain->nr; i++) {
464 u64 ip;
465
466 if (callchain_param.order == ORDER_CALLEE)
467 ip = chain->ips[i];
468 else
469 ip = chain->ips[chain->nr - i - 1];
470
471 if (ip >= PERF_CONTEXT_MAX) {
472 switch (ip) {
473 case PERF_CONTEXT_HV:
474 cpumode = PERF_RECORD_MISC_HYPERVISOR;
475 break;
476 case PERF_CONTEXT_KERNEL:
477 cpumode = PERF_RECORD_MISC_KERNEL;
478 break;
479 case PERF_CONTEXT_USER:
480 cpumode = PERF_RECORD_MISC_USER;
481 break;
482 default:
483 pr_debug("invalid callchain context: "
484 "%"PRId64"\n", (s64) ip);
485
486 /*
487 * It seems the callchain is corrupted.
488 * Discard all.
489 */
490 free(p);
491 p = NULL;
492 goto exit;
493 }
494 continue;
495 }
496
497 tal.filtered = false;
498 thread__find_addr_location(al.thread, machine, cpumode,
499 MAP__FUNCTION, ip, &tal);
500
501 if (tal.sym)
502 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
503 tal.sym->name);
504 else
505 fprintf(f, "..... %016" PRIx64 "\n", ip);
506 }
507
508exit:
509 fclose(f);
510
511 return p;
512}
513
985b12e6
ACM
514typedef int (*tracepoint_handler)(struct timechart *tchart,
515 struct perf_evsel *evsel,
6f8d67fa
SF
516 struct perf_sample *sample,
517 const char *backtrace);
10274989 518
985b12e6 519static int process_sample_event(struct perf_tool *tool,
972ec653 520 union perf_event *event,
8d50e5b4 521 struct perf_sample *sample,
e3f42609 522 struct perf_evsel *evsel,
985b12e6 523 struct machine *machine)
10274989 524{
985b12e6
ACM
525 struct timechart *tchart = container_of(tool, struct timechart, tool);
526
e3f42609 527 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
985b12e6
ACM
528 if (!tchart->first_time || tchart->first_time > sample->time)
529 tchart->first_time = sample->time;
530 if (tchart->last_time < sample->time)
531 tchart->last_time = sample->time;
10274989 532 }
180f95e2 533
744a9719
ACM
534 if (evsel->handler != NULL) {
535 tracepoint_handler f = evsel->handler;
58b9a18e
SF
536 return f(tchart, evsel, sample,
537 cat_backtrace(event, sample, machine));
5936678e
JO
538 }
539
540 return 0;
541}
542
543static int
985b12e6
ACM
544process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
545 struct perf_evsel *evsel,
6f8d67fa
SF
546 struct perf_sample *sample,
547 const char *backtrace __maybe_unused)
5936678e 548{
3ed0d21e
SF
549 u32 state = perf_evsel__intval(evsel, sample, "state");
550 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 551
3ed0d21e 552 if (state == (u32)PWR_EVENT_EXIT)
66cc3ada 553 c_state_end(tchart, cpu_id, sample->time);
5936678e 554 else
3ed0d21e 555 c_state_start(cpu_id, sample->time, state);
5936678e
JO
556 return 0;
557}
558
559static int
985b12e6
ACM
560process_sample_cpu_frequency(struct timechart *tchart,
561 struct perf_evsel *evsel,
6f8d67fa
SF
562 struct perf_sample *sample,
563 const char *backtrace __maybe_unused)
5936678e 564{
3ed0d21e
SF
565 u32 state = perf_evsel__intval(evsel, sample, "state");
566 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
5936678e 567
985b12e6 568 p_state_change(tchart, cpu_id, sample->time, state);
5936678e
JO
569 return 0;
570}
571
572static int
5e22f6d2 573process_sample_sched_wakeup(struct timechart *tchart,
985b12e6 574 struct perf_evsel *evsel,
6f8d67fa
SF
575 struct perf_sample *sample,
576 const char *backtrace)
5936678e 577{
3ed0d21e
SF
578 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
579 int waker = perf_evsel__intval(evsel, sample, "common_pid");
580 int wakee = perf_evsel__intval(evsel, sample, "pid");
5936678e 581
5e22f6d2 582 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
5936678e
JO
583 return 0;
584}
10274989 585
5936678e 586static int
5e22f6d2 587process_sample_sched_switch(struct timechart *tchart,
985b12e6 588 struct perf_evsel *evsel,
6f8d67fa
SF
589 struct perf_sample *sample,
590 const char *backtrace)
5936678e 591{
3ed0d21e
SF
592 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
593 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
594 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
10274989 595
5e22f6d2
ACM
596 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
597 prev_state, backtrace);
5936678e
JO
598 return 0;
599}
20c457b8
TR
600
601#ifdef SUPPORT_OLD_POWER_EVENTS
5936678e 602static int
985b12e6
ACM
603process_sample_power_start(struct timechart *tchart __maybe_unused,
604 struct perf_evsel *evsel,
6f8d67fa
SF
605 struct perf_sample *sample,
606 const char *backtrace __maybe_unused)
5936678e 607{
3ed0d21e
SF
608 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
609 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 610
3ed0d21e 611 c_state_start(cpu_id, sample->time, value);
5936678e
JO
612 return 0;
613}
614
615static int
66cc3ada 616process_sample_power_end(struct timechart *tchart,
985b12e6 617 struct perf_evsel *evsel __maybe_unused,
6f8d67fa
SF
618 struct perf_sample *sample,
619 const char *backtrace __maybe_unused)
5936678e 620{
66cc3ada 621 c_state_end(tchart, sample->cpu, sample->time);
5936678e
JO
622 return 0;
623}
624
625static int
985b12e6
ACM
626process_sample_power_frequency(struct timechart *tchart,
627 struct perf_evsel *evsel,
6f8d67fa
SF
628 struct perf_sample *sample,
629 const char *backtrace __maybe_unused)
5936678e 630{
3ed0d21e
SF
631 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
632 u64 value = perf_evsel__intval(evsel, sample, "value");
5936678e 633
985b12e6 634 p_state_change(tchart, cpu_id, sample->time, value);
10274989
AV
635 return 0;
636}
5936678e 637#endif /* SUPPORT_OLD_POWER_EVENTS */
10274989
AV
638
639/*
640 * After the last sample we need to wrap up the current C/P state
641 * and close out each CPU for these.
642 */
985b12e6 643static void end_sample_processing(struct timechart *tchart)
10274989
AV
644{
645 u64 cpu;
646 struct power_event *pwr;
647
985b12e6 648 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
e0dcd6fb
ACM
649 /* C state */
650#if 0
651 pwr = zalloc(sizeof(*pwr));
10274989
AV
652 if (!pwr)
653 return;
10274989 654
10274989
AV
655 pwr->state = cpus_cstate_state[cpu];
656 pwr->start_time = cpus_cstate_start_times[cpu];
985b12e6 657 pwr->end_time = tchart->last_time;
10274989
AV
658 pwr->cpu = cpu;
659 pwr->type = CSTATE;
66cc3ada 660 pwr->next = tchart->power_events;
10274989 661
66cc3ada 662 tchart->power_events = pwr;
10274989
AV
663#endif
664 /* P state */
665
e0dcd6fb 666 pwr = zalloc(sizeof(*pwr));
10274989
AV
667 if (!pwr)
668 return;
10274989
AV
669
670 pwr->state = cpus_pstate_state[cpu];
671 pwr->start_time = cpus_pstate_start_times[cpu];
985b12e6 672 pwr->end_time = tchart->last_time;
10274989
AV
673 pwr->cpu = cpu;
674 pwr->type = PSTATE;
66cc3ada 675 pwr->next = tchart->power_events;
10274989
AV
676
677 if (!pwr->start_time)
985b12e6 678 pwr->start_time = tchart->first_time;
10274989 679 if (!pwr->state)
985b12e6 680 pwr->state = tchart->min_freq;
66cc3ada 681 tchart->power_events = pwr;
10274989
AV
682 }
683}
684
10274989
AV
685/*
686 * Sort the pid datastructure
687 */
5e22f6d2 688static void sort_pids(struct timechart *tchart)
10274989
AV
689{
690 struct per_pid *new_list, *p, *cursor, *prev;
691 /* sort by ppid first, then by pid, lowest to highest */
692
693 new_list = NULL;
694
5e22f6d2
ACM
695 while (tchart->all_data) {
696 p = tchart->all_data;
697 tchart->all_data = p->next;
10274989
AV
698 p->next = NULL;
699
700 if (new_list == NULL) {
701 new_list = p;
702 p->next = NULL;
703 continue;
704 }
705 prev = NULL;
706 cursor = new_list;
707 while (cursor) {
708 if (cursor->ppid > p->ppid ||
709 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
710 /* must insert before */
711 if (prev) {
712 p->next = prev->next;
713 prev->next = p;
714 cursor = NULL;
715 continue;
716 } else {
717 p->next = new_list;
718 new_list = p;
719 cursor = NULL;
720 continue;
721 }
722 }
723
724 prev = cursor;
725 cursor = cursor->next;
726 if (!cursor)
727 prev->next = p;
728 }
729 }
5e22f6d2 730 tchart->all_data = new_list;
10274989
AV
731}
732
733
985b12e6 734static void draw_c_p_states(struct timechart *tchart)
10274989
AV
735{
736 struct power_event *pwr;
66cc3ada 737 pwr = tchart->power_events;
10274989
AV
738
739 /*
740 * two pass drawing so that the P state bars are on top of the C state blocks
741 */
742 while (pwr) {
743 if (pwr->type == CSTATE)
744 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
745 pwr = pwr->next;
746 }
747
66cc3ada 748 pwr = tchart->power_events;
10274989
AV
749 while (pwr) {
750 if (pwr->type == PSTATE) {
751 if (!pwr->state)
985b12e6 752 pwr->state = tchart->min_freq;
10274989
AV
753 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
754 }
755 pwr = pwr->next;
756 }
757}
758
5e22f6d2 759static void draw_wakeups(struct timechart *tchart)
10274989
AV
760{
761 struct wake_event *we;
762 struct per_pid *p;
763 struct per_pidcomm *c;
764
436b0da0 765 we = tchart->wake_events;
10274989
AV
766 while (we) {
767 int from = 0, to = 0;
4f1202c8 768 char *task_from = NULL, *task_to = NULL;
10274989
AV
769
770 /* locate the column of the waker and wakee */
5e22f6d2 771 p = tchart->all_data;
10274989
AV
772 while (p) {
773 if (p->pid == we->waker || p->pid == we->wakee) {
774 c = p->all;
775 while (c) {
776 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
bbe2987b 777 if (p->pid == we->waker && !from) {
10274989 778 from = c->Y;
3bc2a39c 779 task_from = strdup(c->comm);
4f1202c8 780 }
bbe2987b 781 if (p->pid == we->wakee && !to) {
10274989 782 to = c->Y;
3bc2a39c 783 task_to = strdup(c->comm);
4f1202c8 784 }
10274989
AV
785 }
786 c = c->next;
787 }
3bc2a39c
AV
788 c = p->all;
789 while (c) {
790 if (p->pid == we->waker && !from) {
791 from = c->Y;
792 task_from = strdup(c->comm);
793 }
794 if (p->pid == we->wakee && !to) {
795 to = c->Y;
796 task_to = strdup(c->comm);
797 }
798 c = c->next;
799 }
10274989
AV
800 }
801 p = p->next;
802 }
803
3bc2a39c
AV
804 if (!task_from) {
805 task_from = malloc(40);
806 sprintf(task_from, "[%i]", we->waker);
807 }
808 if (!task_to) {
809 task_to = malloc(40);
810 sprintf(task_to, "[%i]", we->wakee);
811 }
812
10274989 813 if (we->waker == -1)
6f8d67fa 814 svg_interrupt(we->time, to, we->backtrace);
10274989 815 else if (from && to && abs(from - to) == 1)
6f8d67fa 816 svg_wakeline(we->time, from, to, we->backtrace);
10274989 817 else
6f8d67fa
SF
818 svg_partial_wakeline(we->time, from, task_from, to,
819 task_to, we->backtrace);
10274989 820 we = we->next;
3bc2a39c
AV
821
822 free(task_from);
823 free(task_to);
10274989
AV
824 }
825}
826
5e22f6d2 827static void draw_cpu_usage(struct timechart *tchart)
10274989
AV
828{
829 struct per_pid *p;
830 struct per_pidcomm *c;
831 struct cpu_sample *sample;
5e22f6d2 832 p = tchart->all_data;
10274989
AV
833 while (p) {
834 c = p->all;
835 while (c) {
836 sample = c->samples;
837 while (sample) {
8b6dcca0
SF
838 if (sample->type == TYPE_RUNNING) {
839 svg_process(sample->cpu,
840 sample->start_time,
841 sample->end_time,
de996228 842 p->pid,
8b6dcca0
SF
843 "sample",
844 c->comm,
845 sample->backtrace);
846 }
10274989
AV
847
848 sample = sample->next;
849 }
850 c = c->next;
851 }
852 p = p->next;
853 }
854}
855
985b12e6 856static void draw_process_bars(struct timechart *tchart)
10274989
AV
857{
858 struct per_pid *p;
859 struct per_pidcomm *c;
860 struct cpu_sample *sample;
861 int Y = 0;
862
985b12e6 863 Y = 2 * tchart->numcpus + 2;
10274989 864
5e22f6d2 865 p = tchart->all_data;
10274989
AV
866 while (p) {
867 c = p->all;
868 while (c) {
869 if (!c->display) {
870 c->Y = 0;
871 c = c->next;
872 continue;
873 }
874
a92fe7b3 875 svg_box(Y, c->start_time, c->end_time, "process");
10274989
AV
876 sample = c->samples;
877 while (sample) {
878 if (sample->type == TYPE_RUNNING)
6f8d67fa
SF
879 svg_running(Y, sample->cpu,
880 sample->start_time,
881 sample->end_time,
882 sample->backtrace);
10274989 883 if (sample->type == TYPE_BLOCKED)
6f8d67fa
SF
884 svg_blocked(Y, sample->cpu,
885 sample->start_time,
886 sample->end_time,
887 sample->backtrace);
10274989 888 if (sample->type == TYPE_WAITING)
6f8d67fa
SF
889 svg_waiting(Y, sample->cpu,
890 sample->start_time,
891 sample->end_time,
892 sample->backtrace);
10274989
AV
893 sample = sample->next;
894 }
895
896 if (c->comm) {
897 char comm[256];
898 if (c->total_time > 5000000000) /* 5 seconds */
899 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
900 else
901 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
902
903 svg_text(Y, c->start_time, comm);
904 }
905 c->Y = Y;
906 Y++;
907 c = c->next;
908 }
909 p = p->next;
910 }
911}
912
bbe2987b
AV
913static void add_process_filter(const char *string)
914{
e0dcd6fb
ACM
915 int pid = strtoull(string, NULL, 10);
916 struct process_filter *filt = malloc(sizeof(*filt));
bbe2987b 917
bbe2987b
AV
918 if (!filt)
919 return;
920
921 filt->name = strdup(string);
922 filt->pid = pid;
923 filt->next = process_filter;
924
925 process_filter = filt;
926}
927
928static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
929{
930 struct process_filter *filt;
931 if (!process_filter)
932 return 1;
933
934 filt = process_filter;
935 while (filt) {
936 if (filt->pid && p->pid == filt->pid)
937 return 1;
938 if (strcmp(filt->name, c->comm) == 0)
939 return 1;
940 filt = filt->next;
941 }
942 return 0;
943}
944
985b12e6 945static int determine_display_tasks_filtered(struct timechart *tchart)
bbe2987b
AV
946{
947 struct per_pid *p;
948 struct per_pidcomm *c;
949 int count = 0;
950
5e22f6d2 951 p = tchart->all_data;
bbe2987b
AV
952 while (p) {
953 p->display = 0;
954 if (p->start_time == 1)
985b12e6 955 p->start_time = tchart->first_time;
bbe2987b
AV
956
957 /* no exit marker, task kept running to the end */
958 if (p->end_time == 0)
985b12e6 959 p->end_time = tchart->last_time;
bbe2987b
AV
960
961 c = p->all;
962
963 while (c) {
964 c->display = 0;
965
966 if (c->start_time == 1)
985b12e6 967 c->start_time = tchart->first_time;
bbe2987b
AV
968
969 if (passes_filter(p, c)) {
970 c->display = 1;
971 p->display = 1;
972 count++;
973 }
974
975 if (c->end_time == 0)
985b12e6 976 c->end_time = tchart->last_time;
bbe2987b
AV
977
978 c = c->next;
979 }
980 p = p->next;
981 }
982 return count;
983}
984
985b12e6 985static int determine_display_tasks(struct timechart *tchart, u64 threshold)
10274989
AV
986{
987 struct per_pid *p;
988 struct per_pidcomm *c;
989 int count = 0;
990
bbe2987b 991 if (process_filter)
985b12e6 992 return determine_display_tasks_filtered(tchart);
bbe2987b 993
5e22f6d2 994 p = tchart->all_data;
10274989
AV
995 while (p) {
996 p->display = 0;
997 if (p->start_time == 1)
985b12e6 998 p->start_time = tchart->first_time;
10274989
AV
999
1000 /* no exit marker, task kept running to the end */
1001 if (p->end_time == 0)
985b12e6 1002 p->end_time = tchart->last_time;
753c505d 1003 if (p->total_time >= threshold)
10274989
AV
1004 p->display = 1;
1005
1006 c = p->all;
1007
1008 while (c) {
1009 c->display = 0;
1010
1011 if (c->start_time == 1)
985b12e6 1012 c->start_time = tchart->first_time;
10274989 1013
753c505d 1014 if (c->total_time >= threshold) {
10274989
AV
1015 c->display = 1;
1016 count++;
1017 }
1018
1019 if (c->end_time == 0)
985b12e6 1020 c->end_time = tchart->last_time;
10274989
AV
1021
1022 c = c->next;
1023 }
1024 p = p->next;
1025 }
1026 return count;
1027}
1028
1029
1030
1031#define TIME_THRESH 10000000
1032
985b12e6 1033static void write_svg_file(struct timechart *tchart, const char *filename)
10274989
AV
1034{
1035 u64 i;
1036 int count;
0a8eb275 1037 int thresh = TIME_THRESH;
10274989 1038
985b12e6
ACM
1039 if (tchart->power_only)
1040 tchart->proc_num = 0;
10274989 1041
0a8eb275
SF
1042 /* We'd like to show at least proc_num tasks;
1043 * be less picky if we have fewer */
1044 do {
985b12e6 1045 count = determine_display_tasks(tchart, thresh);
0a8eb275 1046 thresh /= 10;
985b12e6 1047 } while (!process_filter && thresh && count < tchart->proc_num);
10274989 1048
985b12e6 1049 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
10274989 1050
5094b655 1051 svg_time_grid();
10274989
AV
1052 svg_legenda();
1053
985b12e6
ACM
1054 for (i = 0; i < tchart->numcpus; i++)
1055 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
10274989 1056
5e22f6d2 1057 draw_cpu_usage(tchart);
985b12e6
ACM
1058 if (tchart->proc_num)
1059 draw_process_bars(tchart);
1060 if (!tchart->tasks_only)
1061 draw_c_p_states(tchart);
1062 if (tchart->proc_num)
5e22f6d2 1063 draw_wakeups(tchart);
10274989
AV
1064
1065 svg_close();
1066}
1067
58b9a18e
SF
1068static int process_header(struct perf_file_section *section __maybe_unused,
1069 struct perf_header *ph,
1070 int feat,
1071 int fd __maybe_unused,
1072 void *data)
1073{
1074 struct timechart *tchart = data;
1075
1076 switch (feat) {
1077 case HEADER_NRCPUS:
1078 tchart->numcpus = ph->env.nr_cpus_avail;
1079 break;
1080 default:
1081 break;
1082 }
1083
1084 return 0;
1085}
1086
985b12e6 1087static int __cmd_timechart(struct timechart *tchart, const char *output_name)
5cbd0805 1088{
5936678e
JO
1089 const struct perf_evsel_str_handler power_tracepoints[] = {
1090 { "power:cpu_idle", process_sample_cpu_idle },
1091 { "power:cpu_frequency", process_sample_cpu_frequency },
1092 { "sched:sched_wakeup", process_sample_sched_wakeup },
1093 { "sched:sched_switch", process_sample_sched_switch },
1094#ifdef SUPPORT_OLD_POWER_EVENTS
1095 { "power:power_start", process_sample_power_start },
1096 { "power:power_end", process_sample_power_end },
1097 { "power:power_frequency", process_sample_power_frequency },
1098#endif
1099 };
f5fc1412
JO
1100 struct perf_data_file file = {
1101 .path = input_name,
1102 .mode = PERF_DATA_MODE_READ,
1103 };
1104
1105 struct perf_session *session = perf_session__new(&file, false,
985b12e6 1106 &tchart->tool);
d549c769 1107 int ret = -EINVAL;
10274989 1108
94c744b6
ACM
1109 if (session == NULL)
1110 return -ENOMEM;
1111
58b9a18e
SF
1112 (void)perf_header__process_sections(&session->header,
1113 perf_data_file__fd(session->file),
1114 tchart,
1115 process_header);
1116
d549c769
ACM
1117 if (!perf_session__has_traces(session, "timechart record"))
1118 goto out_delete;
1119
5936678e
JO
1120 if (perf_session__set_tracepoints_handlers(session,
1121 power_tracepoints)) {
1122 pr_err("Initializing session tracepoint handlers failed\n");
1123 goto out_delete;
1124 }
1125
985b12e6 1126 ret = perf_session__process_events(session, &tchart->tool);
5cbd0805 1127 if (ret)
94c744b6 1128 goto out_delete;
10274989 1129
985b12e6 1130 end_sample_processing(tchart);
10274989 1131
5e22f6d2 1132 sort_pids(tchart);
10274989 1133
985b12e6 1134 write_svg_file(tchart, output_name);
10274989 1135
6beba7ad 1136 pr_info("Written %2.1f seconds of trace to %s.\n",
985b12e6 1137 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
94c744b6
ACM
1138out_delete:
1139 perf_session__delete(session);
1140 return ret;
10274989
AV
1141}
1142
985b12e6 1143static int timechart__record(struct timechart *tchart, int argc, const char **argv)
3c09eebd 1144{
367b3152
SF
1145 unsigned int rec_argc, i, j;
1146 const char **rec_argv;
1147 const char **p;
1148 unsigned int record_elems;
1149
1150 const char * const common_args[] = {
4a4d371a 1151 "record", "-a", "-R", "-c", "1",
367b3152
SF
1152 };
1153 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1154
6f8d67fa
SF
1155 const char * const backtrace_args[] = {
1156 "-g",
1157 };
1158 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1159
367b3152
SF
1160 const char * const power_args[] = {
1161 "-e", "power:cpu_frequency",
1162 "-e", "power:cpu_idle",
1163 };
1164 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1165
1166 const char * const old_power_args[] = {
1167#ifdef SUPPORT_OLD_POWER_EVENTS
73bdc715
ACM
1168 "-e", "power:power_start",
1169 "-e", "power:power_end",
1170 "-e", "power:power_frequency",
73bdc715 1171#endif
367b3152
SF
1172 };
1173 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1174
1175 const char * const tasks_args[] = {
73bdc715
ACM
1176 "-e", "sched:sched_wakeup",
1177 "-e", "sched:sched_switch",
1178 };
367b3152 1179 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
20c457b8
TR
1180
1181#ifdef SUPPORT_OLD_POWER_EVENTS
1182 if (!is_valid_tracepoint("power:cpu_idle") &&
1183 is_valid_tracepoint("power:power_start")) {
1184 use_old_power_events = 1;
367b3152
SF
1185 power_args_nr = 0;
1186 } else {
1187 old_power_args_nr = 0;
20c457b8
TR
1188 }
1189#endif
3c09eebd 1190
985b12e6 1191 if (tchart->power_only)
367b3152
SF
1192 tasks_args_nr = 0;
1193
985b12e6 1194 if (tchart->tasks_only) {
367b3152
SF
1195 power_args_nr = 0;
1196 old_power_args_nr = 0;
1197 }
1198
985b12e6 1199 if (!tchart->with_backtrace)
6f8d67fa
SF
1200 backtrace_args_no = 0;
1201
367b3152 1202 record_elems = common_args_nr + tasks_args_nr +
6f8d67fa 1203 power_args_nr + old_power_args_nr + backtrace_args_no;
367b3152
SF
1204
1205 rec_argc = record_elems + argc;
3c09eebd
AV
1206 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1207
ce47dc56
CS
1208 if (rec_argv == NULL)
1209 return -ENOMEM;
1210
367b3152
SF
1211 p = rec_argv;
1212 for (i = 0; i < common_args_nr; i++)
1213 *p++ = strdup(common_args[i]);
1214
6f8d67fa
SF
1215 for (i = 0; i < backtrace_args_no; i++)
1216 *p++ = strdup(backtrace_args[i]);
1217
367b3152
SF
1218 for (i = 0; i < tasks_args_nr; i++)
1219 *p++ = strdup(tasks_args[i]);
1220
1221 for (i = 0; i < power_args_nr; i++)
1222 *p++ = strdup(power_args[i]);
3c09eebd 1223
367b3152
SF
1224 for (i = 0; i < old_power_args_nr; i++)
1225 *p++ = strdup(old_power_args[i]);
3c09eebd 1226
367b3152
SF
1227 for (j = 1; j < (unsigned int)argc; j++)
1228 *p++ = argv[j];
1229
1230 return cmd_record(rec_argc, rec_argv, NULL);
3c09eebd
AV
1231}
1232
bbe2987b 1233static int
1d037ca1
IT
1234parse_process(const struct option *opt __maybe_unused, const char *arg,
1235 int __maybe_unused unset)
bbe2987b
AV
1236{
1237 if (arg)
1238 add_process_filter(arg);
1239 return 0;
1240}
1241
73bdc715
ACM
1242int cmd_timechart(int argc, const char **argv,
1243 const char *prefix __maybe_unused)
1244{
985b12e6
ACM
1245 struct timechart tchart = {
1246 .tool = {
1247 .comm = process_comm_event,
1248 .fork = process_fork_event,
1249 .exit = process_exit_event,
1250 .sample = process_sample_event,
1251 .ordered_samples = true,
1252 },
1253 .proc_num = 15,
1254 };
73bdc715 1255 const char *output_name = "output.svg";
367b3152 1256 const struct option timechart_options[] = {
73bdc715
ACM
1257 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1258 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1259 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
985b12e6
ACM
1260 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1261 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
c87097d3 1262 "output processes data only"),
bbe2987b
AV
1263 OPT_CALLBACK('p', "process", NULL, "process",
1264 "process selector. Pass a pid or process name.",
1265 parse_process),
ec5761ea
DA
1266 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1267 "Look for files with symbols relative to this directory"),
985b12e6 1268 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
54874e32 1269 "min. number of tasks to print"),
10274989 1270 OPT_END()
73bdc715
ACM
1271 };
1272 const char * const timechart_usage[] = {
1273 "perf timechart [<options>] {record}",
1274 NULL
1275 };
10274989 1276
367b3152 1277 const struct option record_options[] = {
985b12e6
ACM
1278 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1279 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
367b3152 1280 "output processes data only"),
985b12e6 1281 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
367b3152
SF
1282 OPT_END()
1283 };
1284 const char * const record_usage[] = {
1285 "perf timechart record [<options>]",
1286 NULL
1287 };
1288 argc = parse_options(argc, argv, timechart_options, timechart_usage,
3c09eebd 1289 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1290
985b12e6 1291 if (tchart.power_only && tchart.tasks_only) {
c87097d3
SF
1292 pr_err("-P and -T options cannot be used at the same time.\n");
1293 return -1;
1294 }
1295
655000e7
ACM
1296 symbol__init();
1297
367b3152
SF
1298 if (argc && !strncmp(argv[0], "rec", 3)) {
1299 argc = parse_options(argc, argv, record_options, record_usage,
1300 PARSE_OPT_STOP_AT_NON_OPTION);
1301
985b12e6 1302 if (tchart.power_only && tchart.tasks_only) {
367b3152
SF
1303 pr_err("-P and -T options cannot be used at the same time.\n");
1304 return -1;
1305 }
1306
985b12e6 1307 return timechart__record(&tchart, argc, argv);
367b3152
SF
1308 } else if (argc)
1309 usage_with_options(timechart_usage, timechart_options);
10274989
AV
1310
1311 setup_pager();
1312
985b12e6 1313 return __cmd_timechart(&tchart, output_name);
10274989 1314}
This page took 0.281826 seconds and 5 git commands to generate.