KVM: arm: irqfd: fix value returned by kvm_irq_map_gsi
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
174178fe 34#include <trace/events/kvm.h>
6777f77f
AP
35#include <asm/kvm.h>
36#include <kvm/iodev.h>
1a89dd91 37
b47ef92a
MZ
38/*
39 * How the whole thing works (courtesy of Christoffer Dall):
40 *
41 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
42 * something is pending on the CPU interface.
43 * - Interrupts that are pending on the distributor are stored on the
44 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
45 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
46 * arch. timers).
b47ef92a
MZ
47 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
48 * recalculated
49 * - To calculate the oracle, we need info for each cpu from
50 * compute_pending_for_cpu, which considers:
227844f5
CD
51 * - PPI: dist->irq_pending & dist->irq_enable
52 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 53 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
54 * registers, stored on each vcpu. We only keep one bit of
55 * information per interrupt, making sure that only one vcpu can
56 * accept the interrupt.
7e362919 57 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
58 * - The same is true when injecting an interrupt, except that we only
59 * consider a single interrupt at a time. The irq_spi_cpu array
60 * contains the target CPU for each SPI.
61 *
62 * The handling of level interrupts adds some extra complexity. We
63 * need to track when the interrupt has been EOIed, so we can sample
64 * the 'line' again. This is achieved as such:
65 *
66 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 67 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
68 * will be ignored for further interrupts. The interrupt is injected
69 * into the vcpu with the GICH_LR_EOI bit set (generate a
70 * maintenance interrupt on EOI).
71 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 72 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 73 * interrupt line to be sampled again.
faa1b46c
CD
74 * - Note that level-triggered interrupts can also be set to pending from
75 * writes to GICD_ISPENDRn and lowering the external input line does not
76 * cause the interrupt to become inactive in such a situation.
77 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
78 * inactive as long as the external input line is held high.
b47ef92a
MZ
79 */
80
83215812 81#include "vgic.h"
330690cd 82
a1fcb44e 83static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 84static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
8d5c6b06
MZ
85static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
86static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
01ac5e34 87
8f186d52
MZ
88static const struct vgic_ops *vgic_ops;
89static const struct vgic_params *vgic;
b47ef92a 90
b26e5fda
AP
91static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
92{
93 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
94}
95
96static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
97{
98 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
99}
100
101int kvm_vgic_map_resources(struct kvm *kvm)
102{
103 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
104}
105
9662fb48 106/*
c1bfb577
MZ
107 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
108 * extracts u32s out of them.
9662fb48
VK
109 *
110 * This does not work on 64-bit BE systems, because the bitmap access
111 * will store two consecutive 32-bit words with the higher-addressed
112 * register's bits at the lower index and the lower-addressed register's
113 * bits at the higher index.
114 *
115 * Therefore, swizzle the register index when accessing the 32-bit word
116 * registers to access the right register's value.
117 */
118#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
119#define REG_OFFSET_SWIZZLE 1
120#else
121#define REG_OFFSET_SWIZZLE 0
122#endif
b47ef92a 123
c1bfb577
MZ
124static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
125{
126 int nr_longs;
127
128 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
129
130 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
131 if (!b->private)
132 return -ENOMEM;
133
134 b->shared = b->private + nr_cpus;
135
136 return 0;
137}
138
139static void vgic_free_bitmap(struct vgic_bitmap *b)
140{
141 kfree(b->private);
142 b->private = NULL;
143 b->shared = NULL;
144}
145
2df36a5d
CD
146/*
147 * Call this function to convert a u64 value to an unsigned long * bitmask
148 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
149 *
150 * Warning: Calling this function may modify *val.
151 */
152static unsigned long *u64_to_bitmask(u64 *val)
153{
154#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
155 *val = (*val >> 32) | (*val << 32);
156#endif
157 return (unsigned long *)val;
158}
159
83215812 160u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
b47ef92a
MZ
161{
162 offset >>= 2;
163 if (!offset)
c1bfb577 164 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 165 else
c1bfb577 166 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
167}
168
169static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
170 int cpuid, int irq)
171{
172 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 173 return test_bit(irq, x->private + cpuid);
b47ef92a 174
c1bfb577 175 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
176}
177
83215812
AP
178void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
179 int irq, int val)
b47ef92a
MZ
180{
181 unsigned long *reg;
182
183 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 184 reg = x->private + cpuid;
b47ef92a 185 } else {
c1bfb577 186 reg = x->shared;
b47ef92a
MZ
187 irq -= VGIC_NR_PRIVATE_IRQS;
188 }
189
190 if (val)
191 set_bit(irq, reg);
192 else
193 clear_bit(irq, reg);
194}
195
196static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
197{
c1bfb577 198 return x->private + cpuid;
b47ef92a
MZ
199}
200
83215812 201unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
b47ef92a 202{
c1bfb577
MZ
203 return x->shared;
204}
205
206static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
207{
208 int size;
209
210 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
211 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
212
213 x->private = kzalloc(size, GFP_KERNEL);
214 if (!x->private)
215 return -ENOMEM;
216
217 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
218 return 0;
219}
220
221static void vgic_free_bytemap(struct vgic_bytemap *b)
222{
223 kfree(b->private);
224 b->private = NULL;
225 b->shared = NULL;
b47ef92a
MZ
226}
227
83215812 228u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
b47ef92a 229{
c1bfb577
MZ
230 u32 *reg;
231
232 if (offset < VGIC_NR_PRIVATE_IRQS) {
233 reg = x->private;
234 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
235 } else {
236 reg = x->shared;
237 offset -= VGIC_NR_PRIVATE_IRQS;
238 }
239
240 return reg + (offset / sizeof(u32));
b47ef92a
MZ
241}
242
243#define VGIC_CFG_LEVEL 0
244#define VGIC_CFG_EDGE 1
245
246static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
247{
248 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
249 int irq_val;
250
251 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
252 return irq_val == VGIC_CFG_EDGE;
253}
254
255static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
256{
257 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
258
259 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
260}
261
dbf20f9d 262static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
263{
264 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
265
dbf20f9d 266 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
267}
268
47a98b15
CD
269static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
270{
271 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272
273 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
274}
275
dbf20f9d 276static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
277{
278 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
279
dbf20f9d 280 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
281}
282
dbf20f9d 283static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
284{
285 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
286
dbf20f9d 287 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
288}
289
47a98b15
CD
290static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
291{
292 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
293
294 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
295}
296
297static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
298{
299 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
300
301 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
302}
303
faa1b46c
CD
304static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
305{
306 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
307
308 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
309}
310
311static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
312{
313 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
314
315 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
316}
317
318static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
319{
320 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
321
322 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
323}
324
325static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
326{
327 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
328
329 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
330}
331
332static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
333{
334 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
335
336 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
337}
338
9d949dce
MZ
339static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
340{
341 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
342
227844f5 343 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
344}
345
83215812 346void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
347{
348 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
349
227844f5 350 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
351}
352
83215812 353void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
354{
355 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
356
227844f5 357 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
358}
359
360static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
361{
362 if (irq < VGIC_NR_PRIVATE_IRQS)
363 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
364 else
365 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
366 vcpu->arch.vgic_cpu.pending_shared);
367}
368
83215812 369void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
370{
371 if (irq < VGIC_NR_PRIVATE_IRQS)
372 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
373 else
374 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
375 vcpu->arch.vgic_cpu.pending_shared);
376}
377
dbf20f9d
CD
378static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
379{
380 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
381}
382
1a89dd91
MZ
383/**
384 * vgic_reg_access - access vgic register
385 * @mmio: pointer to the data describing the mmio access
386 * @reg: pointer to the virtual backing of vgic distributor data
387 * @offset: least significant 2 bits used for word offset
388 * @mode: ACCESS_ mode (see defines above)
389 *
390 * Helper to make vgic register access easier using one of the access
391 * modes defined for vgic register access
392 * (read,raz,write-ignored,setbit,clearbit,write)
393 */
83215812
AP
394void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
395 phys_addr_t offset, int mode)
1a89dd91
MZ
396{
397 int word_offset = (offset & 3) * 8;
398 u32 mask = (1UL << (mmio->len * 8)) - 1;
399 u32 regval;
400
401 /*
402 * Any alignment fault should have been delivered to the guest
403 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
404 */
405
406 if (reg) {
407 regval = *reg;
408 } else {
409 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
410 regval = 0;
411 }
412
413 if (mmio->is_write) {
414 u32 data = mmio_data_read(mmio, mask) << word_offset;
415 switch (ACCESS_WRITE_MASK(mode)) {
416 case ACCESS_WRITE_IGNORED:
417 return;
418
419 case ACCESS_WRITE_SETBIT:
420 regval |= data;
421 break;
422
423 case ACCESS_WRITE_CLEARBIT:
424 regval &= ~data;
425 break;
426
427 case ACCESS_WRITE_VALUE:
428 regval = (regval & ~(mask << word_offset)) | data;
429 break;
430 }
431 *reg = regval;
432 } else {
433 switch (ACCESS_READ_MASK(mode)) {
434 case ACCESS_READ_RAZ:
435 regval = 0;
436 /* fall through */
437
438 case ACCESS_READ_VALUE:
439 mmio_data_write(mmio, mask, regval >> word_offset);
440 }
441 }
442}
443
83215812
AP
444bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
445 phys_addr_t offset)
b47ef92a
MZ
446{
447 vgic_reg_access(mmio, NULL, offset,
448 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
449 return false;
450}
451
83215812
AP
452bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
453 phys_addr_t offset, int vcpu_id, int access)
b47ef92a 454{
d97f683d
AP
455 u32 *reg;
456 int mode = ACCESS_READ_VALUE | access;
457 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
458
459 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
460 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 461 if (mmio->is_write) {
d97f683d
AP
462 if (access & ACCESS_WRITE_CLEARBIT) {
463 if (offset < 4) /* Force SGI enabled */
464 *reg |= 0xffff;
465 vgic_retire_disabled_irqs(target_vcpu);
466 }
467 vgic_update_state(kvm);
b47ef92a
MZ
468 return true;
469 }
470
471 return false;
472}
473
83215812
AP
474bool vgic_handle_set_pending_reg(struct kvm *kvm,
475 struct kvm_exit_mmio *mmio,
476 phys_addr_t offset, int vcpu_id)
b47ef92a 477{
9da48b55 478 u32 *reg, orig;
faa1b46c 479 u32 level_mask;
d97f683d
AP
480 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
481 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 482
d97f683d 483 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
faa1b46c
CD
484 level_mask = (~(*reg));
485
486 /* Mark both level and edge triggered irqs as pending */
d97f683d 487 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 488 orig = *reg;
d97f683d 489 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 490
b47ef92a 491 if (mmio->is_write) {
faa1b46c
CD
492 /* Set the soft-pending flag only for level-triggered irqs */
493 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
494 vcpu_id, offset);
495 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c
CD
496 *reg &= level_mask;
497
9da48b55
CD
498 /* Ignore writes to SGIs */
499 if (offset < 2) {
500 *reg &= ~0xffff;
501 *reg |= orig & 0xffff;
502 }
503
d97f683d 504 vgic_update_state(kvm);
b47ef92a
MZ
505 return true;
506 }
507
508 return false;
509}
510
83215812
AP
511bool vgic_handle_clear_pending_reg(struct kvm *kvm,
512 struct kvm_exit_mmio *mmio,
513 phys_addr_t offset, int vcpu_id)
b47ef92a 514{
faa1b46c 515 u32 *level_active;
9da48b55 516 u32 *reg, orig;
d97f683d
AP
517 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
518 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 519
d97f683d 520 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 521 orig = *reg;
d97f683d 522 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 523 if (mmio->is_write) {
faa1b46c
CD
524 /* Re-set level triggered level-active interrupts */
525 level_active = vgic_bitmap_get_reg(&dist->irq_level,
d97f683d
AP
526 vcpu_id, offset);
527 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
faa1b46c
CD
528 *reg |= *level_active;
529
9da48b55
CD
530 /* Ignore writes to SGIs */
531 if (offset < 2) {
532 *reg &= ~0xffff;
533 *reg |= orig & 0xffff;
534 }
535
faa1b46c
CD
536 /* Clear soft-pending flags */
537 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
538 vcpu_id, offset);
539 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 540
d97f683d 541 vgic_update_state(kvm);
b47ef92a
MZ
542 return true;
543 }
b47ef92a
MZ
544 return false;
545}
546
47a98b15
CD
547bool vgic_handle_set_active_reg(struct kvm *kvm,
548 struct kvm_exit_mmio *mmio,
549 phys_addr_t offset, int vcpu_id)
550{
551 u32 *reg;
552 struct vgic_dist *dist = &kvm->arch.vgic;
553
554 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
555 vgic_reg_access(mmio, reg, offset,
556 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
557
558 if (mmio->is_write) {
559 vgic_update_state(kvm);
560 return true;
561 }
562
563 return false;
564}
565
566bool vgic_handle_clear_active_reg(struct kvm *kvm,
567 struct kvm_exit_mmio *mmio,
568 phys_addr_t offset, int vcpu_id)
569{
570 u32 *reg;
571 struct vgic_dist *dist = &kvm->arch.vgic;
572
573 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
574 vgic_reg_access(mmio, reg, offset,
575 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
576
577 if (mmio->is_write) {
578 vgic_update_state(kvm);
579 return true;
580 }
581
582 return false;
583}
584
b47ef92a
MZ
585static u32 vgic_cfg_expand(u16 val)
586{
587 u32 res = 0;
588 int i;
589
590 /*
591 * Turn a 16bit value like abcd...mnop into a 32bit word
592 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
593 */
594 for (i = 0; i < 16; i++)
595 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
596
597 return res;
598}
599
600static u16 vgic_cfg_compress(u32 val)
601{
602 u16 res = 0;
603 int i;
604
605 /*
606 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
607 * abcd...mnop which is what we really care about.
608 */
609 for (i = 0; i < 16; i++)
610 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
611
612 return res;
613}
614
615/*
616 * The distributor uses 2 bits per IRQ for the CFG register, but the
617 * LSB is always 0. As such, we only keep the upper bit, and use the
618 * two above functions to compress/expand the bits
619 */
83215812
AP
620bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
621 phys_addr_t offset)
b47ef92a
MZ
622{
623 u32 val;
6545eae3 624
f2ae85b2 625 if (offset & 4)
b47ef92a
MZ
626 val = *reg >> 16;
627 else
628 val = *reg & 0xffff;
629
630 val = vgic_cfg_expand(val);
631 vgic_reg_access(mmio, &val, offset,
632 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
633 if (mmio->is_write) {
f2ae85b2 634 if (offset < 8) {
b47ef92a
MZ
635 *reg = ~0U; /* Force PPIs/SGIs to 1 */
636 return false;
637 }
638
639 val = vgic_cfg_compress(val);
f2ae85b2 640 if (offset & 4) {
b47ef92a
MZ
641 *reg &= 0xffff;
642 *reg |= val << 16;
643 } else {
644 *reg &= 0xffff << 16;
645 *reg |= val;
646 }
647 }
648
649 return false;
650}
651
cbd333a4 652/**
47a98b15 653 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
cbd333a4
CD
654 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
655 *
47a98b15 656 * Move any IRQs that have already been assigned to LRs back to the
cbd333a4
CD
657 * emulated distributor state so that the complete emulated state can be read
658 * from the main emulation structures without investigating the LRs.
cbd333a4 659 */
83215812 660void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
cbd333a4 661{
cbd333a4 662 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 663 int i;
cbd333a4
CD
664
665 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 666 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
667
668 /*
669 * There are three options for the state bits:
670 *
671 * 01: pending
672 * 10: active
673 * 11: pending and active
cbd333a4 674 */
47a98b15
CD
675 BUG_ON(!(lr.state & LR_STATE_MASK));
676
677 /* Reestablish SGI source for pending and active IRQs */
678 if (lr.irq < VGIC_NR_SGIS)
679 add_sgi_source(vcpu, lr.irq, lr.source);
680
681 /*
682 * If the LR holds an active (10) or a pending and active (11)
683 * interrupt then move the active state to the
684 * distributor tracking bit.
685 */
686 if (lr.state & LR_STATE_ACTIVE) {
687 vgic_irq_set_active(vcpu, lr.irq);
688 lr.state &= ~LR_STATE_ACTIVE;
689 }
cbd333a4
CD
690
691 /*
692 * Reestablish the pending state on the distributor and the
693 * CPU interface. It may have already been pending, but that
694 * is fine, then we are only setting a few bits that were
695 * already set.
696 */
47a98b15
CD
697 if (lr.state & LR_STATE_PENDING) {
698 vgic_dist_irq_set_pending(vcpu, lr.irq);
699 lr.state &= ~LR_STATE_PENDING;
700 }
701
8d5c6b06 702 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
703
704 /*
47a98b15 705 * Mark the LR as free for other use.
cbd333a4 706 */
47a98b15
CD
707 BUG_ON(lr.state & LR_STATE_MASK);
708 vgic_retire_lr(i, lr.irq, vcpu);
709 vgic_irq_clear_queued(vcpu, lr.irq);
cbd333a4
CD
710
711 /* Finally update the VGIC state. */
712 vgic_update_state(vcpu->kvm);
713 }
714}
715
83215812 716const
cf50a1eb 717struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
9f199d0a 718 int len, gpa_t offset)
1a89dd91 719{
9f199d0a
AP
720 while (ranges->len) {
721 if (offset >= ranges->base &&
722 (offset + len) <= (ranges->base + ranges->len))
723 return ranges;
724 ranges++;
1a89dd91
MZ
725 }
726
727 return NULL;
728}
729
c3c91836 730static bool vgic_validate_access(const struct vgic_dist *dist,
cf50a1eb 731 const struct vgic_io_range *range,
c3c91836
MZ
732 unsigned long offset)
733{
734 int irq;
735
736 if (!range->bits_per_irq)
737 return true; /* Not an irq-based access */
738
739 irq = offset * 8 / range->bits_per_irq;
740 if (irq >= dist->nr_irqs)
741 return false;
742
743 return true;
744}
745
05bc8aaf
AP
746/*
747 * Call the respective handler function for the given range.
748 * We split up any 64 bit accesses into two consecutive 32 bit
749 * handler calls and merge the result afterwards.
750 * We do this in a little endian fashion regardless of the host's
751 * or guest's endianness, because the GIC is always LE and the rest of
752 * the code (vgic_reg_access) also puts it in a LE fashion already.
753 * At this point we have already identified the handle function, so
754 * range points to that one entry and offset is relative to this.
755 */
756static bool call_range_handler(struct kvm_vcpu *vcpu,
757 struct kvm_exit_mmio *mmio,
758 unsigned long offset,
cf50a1eb 759 const struct vgic_io_range *range)
05bc8aaf 760{
05bc8aaf
AP
761 struct kvm_exit_mmio mmio32;
762 bool ret;
763
764 if (likely(mmio->len <= 4))
765 return range->handle_mmio(vcpu, mmio, offset);
766
767 /*
768 * Any access bigger than 4 bytes (that we currently handle in KVM)
769 * is actually 8 bytes long, caused by a 64-bit access
770 */
771
772 mmio32.len = 4;
773 mmio32.is_write = mmio->is_write;
9fedf146 774 mmio32.private = mmio->private;
05bc8aaf
AP
775
776 mmio32.phys_addr = mmio->phys_addr + 4;
950324ab 777 mmio32.data = &((u32 *)mmio->data)[1];
05bc8aaf 778 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
05bc8aaf
AP
779
780 mmio32.phys_addr = mmio->phys_addr;
950324ab 781 mmio32.data = &((u32 *)mmio->data)[0];
05bc8aaf 782 ret |= range->handle_mmio(vcpu, &mmio32, offset);
05bc8aaf
AP
783
784 return ret;
785}
786
1a89dd91 787/**
6777f77f
AP
788 * vgic_handle_mmio_access - handle an in-kernel MMIO access
789 * This is called by the read/write KVM IO device wrappers below.
1a89dd91 790 * @vcpu: pointer to the vcpu performing the access
6777f77f
AP
791 * @this: pointer to the KVM IO device in charge
792 * @addr: guest physical address of the access
793 * @len: size of the access
794 * @val: pointer to the data region
795 * @is_write: read or write access
1a89dd91 796 *
96415257 797 * returns true if the MMIO access could be performed
1a89dd91 798 */
6777f77f
AP
799static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
800 struct kvm_io_device *this, gpa_t addr,
801 int len, void *val, bool is_write)
1a89dd91 802{
b47ef92a 803 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
6777f77f
AP
804 struct vgic_io_device *iodev = container_of(this,
805 struct vgic_io_device, dev);
806 struct kvm_run *run = vcpu->run;
807 const struct vgic_io_range *range;
808 struct kvm_exit_mmio mmio;
b47ef92a 809 bool updated_state;
6777f77f 810 gpa_t offset;
b47ef92a 811
6777f77f
AP
812 offset = addr - iodev->addr;
813 range = vgic_find_range(iodev->reg_ranges, len, offset);
b47ef92a 814 if (unlikely(!range || !range->handle_mmio)) {
6777f77f
AP
815 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
816 return -ENXIO;
b47ef92a
MZ
817 }
818
6777f77f
AP
819 mmio.phys_addr = addr;
820 mmio.len = len;
821 mmio.is_write = is_write;
950324ab 822 mmio.data = val;
6777f77f
AP
823 mmio.private = iodev->redist_vcpu;
824
825 spin_lock(&dist->lock);
96415257 826 offset -= range->base;
c3c91836 827 if (vgic_validate_access(dist, range, offset)) {
6777f77f 828 updated_state = call_range_handler(vcpu, &mmio, offset, range);
c3c91836 829 } else {
6777f77f
AP
830 if (!is_write)
831 memset(val, 0, len);
c3c91836
MZ
832 updated_state = false;
833 }
6777f77f 834 spin_unlock(&dist->lock);
950324ab
AP
835 run->mmio.is_write = is_write;
836 run->mmio.len = len;
837 run->mmio.phys_addr = addr;
838 memcpy(run->mmio.data, val, len);
839
b47ef92a
MZ
840 kvm_handle_mmio_return(vcpu, run);
841
5863c2ce
MZ
842 if (updated_state)
843 vgic_kick_vcpus(vcpu->kvm);
844
6777f77f
AP
845 return 0;
846}
847
6777f77f
AP
848static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
849 struct kvm_io_device *this,
850 gpa_t addr, int len, void *val)
851{
852 return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
b47ef92a
MZ
853}
854
6777f77f
AP
855static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
856 struct kvm_io_device *this,
857 gpa_t addr, int len, const void *val)
858{
859 return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
860 true);
861}
862
863struct kvm_io_device_ops vgic_io_ops = {
864 .read = vgic_handle_mmio_read,
865 .write = vgic_handle_mmio_write,
866};
867
96415257 868/**
6777f77f
AP
869 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
870 * @kvm: The VM structure pointer
871 * @base: The (guest) base address for the register frame
872 * @len: Length of the register frame window
873 * @ranges: Describing the handler functions for each register
874 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
875 * @iodev: Points to memory to be passed on to the handler
96415257 876 *
6777f77f
AP
877 * @iodev stores the parameters of this function to be usable by the handler
878 * respectively the dispatcher function (since the KVM I/O bus framework lacks
879 * an opaque parameter). Initialization is done in this function, but the
880 * reference should be valid and unique for the whole VGIC lifetime.
881 * If the register frame is not mapped for a specific VCPU, pass -1 to
882 * @redist_vcpu_id.
96415257 883 */
6777f77f
AP
884int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
885 const struct vgic_io_range *ranges,
886 int redist_vcpu_id,
887 struct vgic_io_device *iodev)
96415257 888{
6777f77f
AP
889 struct kvm_vcpu *vcpu = NULL;
890 int ret;
96415257 891
6777f77f
AP
892 if (redist_vcpu_id >= 0)
893 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
894
895 iodev->addr = base;
896 iodev->len = len;
897 iodev->reg_ranges = ranges;
898 iodev->redist_vcpu = vcpu;
899
900 kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
901
902 mutex_lock(&kvm->slots_lock);
903
904 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
905 &iodev->dev);
906 mutex_unlock(&kvm->slots_lock);
907
908 /* Mark the iodev as invalid if registration fails. */
909 if (ret)
910 iodev->dev.ops = NULL;
911
912 return ret;
96415257
AP
913}
914
fb65ab63
MZ
915static int vgic_nr_shared_irqs(struct vgic_dist *dist)
916{
917 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
918}
919
47a98b15
CD
920static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
921{
922 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
923 unsigned long *active, *enabled, *act_percpu, *act_shared;
924 unsigned long active_private, active_shared;
925 int nr_shared = vgic_nr_shared_irqs(dist);
926 int vcpu_id;
927
928 vcpu_id = vcpu->vcpu_id;
929 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
930 act_shared = vcpu->arch.vgic_cpu.active_shared;
931
932 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
933 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
934 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
935
936 active = vgic_bitmap_get_shared_map(&dist->irq_active);
937 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
938 bitmap_and(act_shared, active, enabled, nr_shared);
939 bitmap_and(act_shared, act_shared,
940 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
941 nr_shared);
942
943 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
944 active_shared = find_first_bit(act_shared, nr_shared);
945
946 return (active_private < VGIC_NR_PRIVATE_IRQS ||
947 active_shared < nr_shared);
948}
949
b47ef92a
MZ
950static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
951{
9d949dce
MZ
952 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
953 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
954 unsigned long pending_private, pending_shared;
fb65ab63 955 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
956 int vcpu_id;
957
958 vcpu_id = vcpu->vcpu_id;
959 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
960 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
961
227844f5 962 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
963 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
964 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
965
227844f5 966 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce 967 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
fb65ab63 968 bitmap_and(pend_shared, pending, enabled, nr_shared);
9d949dce
MZ
969 bitmap_and(pend_shared, pend_shared,
970 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
fb65ab63 971 nr_shared);
9d949dce
MZ
972
973 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
fb65ab63 974 pending_shared = find_first_bit(pend_shared, nr_shared);
9d949dce 975 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
fb65ab63 976 pending_shared < vgic_nr_shared_irqs(dist));
b47ef92a
MZ
977}
978
979/*
980 * Update the interrupt state and determine which CPUs have pending
47a98b15 981 * or active interrupts. Must be called with distributor lock held.
b47ef92a 982 */
83215812 983void vgic_update_state(struct kvm *kvm)
b47ef92a
MZ
984{
985 struct vgic_dist *dist = &kvm->arch.vgic;
986 struct kvm_vcpu *vcpu;
987 int c;
988
989 if (!dist->enabled) {
c1bfb577 990 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
991 return;
992 }
993
994 kvm_for_each_vcpu(c, vcpu, kvm) {
47a98b15 995 if (compute_pending_for_cpu(vcpu))
c1bfb577 996 set_bit(c, dist->irq_pending_on_cpu);
47a98b15
CD
997
998 if (compute_active_for_cpu(vcpu))
999 set_bit(c, dist->irq_active_on_cpu);
1000 else
1001 clear_bit(c, dist->irq_active_on_cpu);
b47ef92a 1002 }
1a89dd91 1003}
330690cd 1004
8d5c6b06
MZ
1005static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1006{
8f186d52 1007 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
1008}
1009
1010static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1011 struct vgic_lr vlr)
1012{
8f186d52 1013 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
1014}
1015
69bb2c9f
MZ
1016static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1017 struct vgic_lr vlr)
1018{
8f186d52 1019 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
1020}
1021
1022static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1023{
8f186d52 1024 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
1025}
1026
8d6a0313
MZ
1027static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1028{
8f186d52 1029 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
1030}
1031
ae705930
CD
1032static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1033{
1034 vgic_ops->clear_eisr(vcpu);
1035}
1036
495dd859
MZ
1037static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1038{
8f186d52 1039 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
1040}
1041
909d9b50
MZ
1042static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1043{
8f186d52 1044 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
1045}
1046
1047static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1048{
8f186d52 1049 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
1050}
1051
83215812 1052void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1053{
8f186d52 1054 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1055}
1056
83215812 1057void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1058{
8f186d52 1059 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1060}
1061
da8dafd1
MZ
1062static inline void vgic_enable(struct kvm_vcpu *vcpu)
1063{
8f186d52 1064 vgic_ops->enable(vcpu);
da8dafd1
MZ
1065}
1066
8d5c6b06
MZ
1067static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1068{
1069 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1070 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1071
1072 vlr.state = 0;
1073 vgic_set_lr(vcpu, lr_nr, vlr);
1074 clear_bit(lr_nr, vgic_cpu->lr_used);
1075 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
ae705930 1076 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
8d5c6b06 1077}
a1fcb44e
MZ
1078
1079/*
1080 * An interrupt may have been disabled after being made pending on the
1081 * CPU interface (the classic case is a timer running while we're
1082 * rebooting the guest - the interrupt would kick as soon as the CPU
1083 * interface gets enabled, with deadly consequences).
1084 *
1085 * The solution is to examine already active LRs, and check the
1086 * interrupt is still enabled. If not, just retire it.
1087 */
1088static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1089{
1090 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1091 int lr;
1092
8f186d52 1093 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1094 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1095
8d5c6b06
MZ
1096 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1097 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1098 if (vgic_irq_is_queued(vcpu, vlr.irq))
1099 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1100 }
1101 }
1102}
1103
71760950
AB
1104static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1105 int lr_nr, struct vgic_lr vlr)
1106{
47a98b15
CD
1107 if (vgic_irq_is_active(vcpu, irq)) {
1108 vlr.state |= LR_STATE_ACTIVE;
1109 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1110 vgic_irq_clear_active(vcpu, irq);
1111 vgic_update_state(vcpu->kvm);
1112 } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
71760950
AB
1113 vlr.state |= LR_STATE_PENDING;
1114 kvm_debug("Set pending: 0x%x\n", vlr.state);
1115 }
1116
1117 if (!vgic_irq_is_edge(vcpu, irq))
1118 vlr.state |= LR_EOI_INT;
1119
1120 vgic_set_lr(vcpu, lr_nr, vlr);
bf0fb67c 1121 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
71760950
AB
1122}
1123
9d949dce
MZ
1124/*
1125 * Queue an interrupt to a CPU virtual interface. Return true on success,
1126 * or false if it wasn't possible to queue it.
1d916229 1127 * sgi_source must be zero for any non-SGI interrupts.
9d949dce 1128 */
83215812 1129bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
9d949dce
MZ
1130{
1131 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5fb66da6 1132 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
8d5c6b06 1133 struct vgic_lr vlr;
9d949dce
MZ
1134 int lr;
1135
1136 /* Sanitize the input... */
1137 BUG_ON(sgi_source_id & ~7);
1138 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
5fb66da6 1139 BUG_ON(irq >= dist->nr_irqs);
9d949dce
MZ
1140
1141 kvm_debug("Queue IRQ%d\n", irq);
1142
1143 lr = vgic_cpu->vgic_irq_lr_map[irq];
1144
1145 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1146 if (lr != LR_EMPTY) {
1147 vlr = vgic_get_lr(vcpu, lr);
1148 if (vlr.source == sgi_source_id) {
1149 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1150 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
71760950 1151 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
8d5c6b06
MZ
1152 return true;
1153 }
9d949dce
MZ
1154 }
1155
1156 /* Try to use another LR for this interrupt */
1157 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1158 vgic->nr_lr);
1159 if (lr >= vgic->nr_lr)
9d949dce
MZ
1160 return false;
1161
1162 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1163 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1164 set_bit(lr, vgic_cpu->lr_used);
1165
8d5c6b06
MZ
1166 vlr.irq = irq;
1167 vlr.source = sgi_source_id;
71760950
AB
1168 vlr.state = 0;
1169 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
9d949dce
MZ
1170
1171 return true;
1172}
1173
9d949dce
MZ
1174static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1175{
dbf20f9d 1176 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1177 return true; /* level interrupt, already queued */
1178
1179 if (vgic_queue_irq(vcpu, 0, irq)) {
1180 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1181 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1182 vgic_cpu_irq_clear(vcpu, irq);
1183 } else {
dbf20f9d 1184 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1185 }
1186
1187 return true;
1188 }
1189
1190 return false;
1191}
1192
1193/*
1194 * Fill the list registers with pending interrupts before running the
1195 * guest.
1196 */
1197static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1198{
1199 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1200 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
47a98b15 1201 unsigned long *pa_percpu, *pa_shared;
9d949dce
MZ
1202 int i, vcpu_id;
1203 int overflow = 0;
47a98b15 1204 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
1205
1206 vcpu_id = vcpu->vcpu_id;
1207
47a98b15
CD
1208 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1209 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1210
1211 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1212 VGIC_NR_PRIVATE_IRQS);
1213 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1214 nr_shared);
9d949dce
MZ
1215 /*
1216 * We may not have any pending interrupt, or the interrupts
1217 * may have been serviced from another vcpu. In all cases,
1218 * move along.
1219 */
47a98b15 1220 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
9d949dce 1221 goto epilog;
9d949dce
MZ
1222
1223 /* SGIs */
47a98b15 1224 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
b26e5fda 1225 if (!queue_sgi(vcpu, i))
9d949dce
MZ
1226 overflow = 1;
1227 }
1228
1229 /* PPIs */
47a98b15 1230 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
9d949dce
MZ
1231 if (!vgic_queue_hwirq(vcpu, i))
1232 overflow = 1;
1233 }
1234
1235 /* SPIs */
47a98b15 1236 for_each_set_bit(i, pa_shared, nr_shared) {
9d949dce
MZ
1237 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1238 overflow = 1;
1239 }
1240
47a98b15
CD
1241
1242
1243
9d949dce
MZ
1244epilog:
1245 if (overflow) {
909d9b50 1246 vgic_enable_underflow(vcpu);
9d949dce 1247 } else {
909d9b50 1248 vgic_disable_underflow(vcpu);
9d949dce
MZ
1249 /*
1250 * We're about to run this VCPU, and we've consumed
1251 * everything the distributor had in store for
1252 * us. Claim we don't have anything pending. We'll
1253 * adjust that if needed while exiting.
1254 */
c1bfb577 1255 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1256 }
1257}
1258
1259static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1260{
495dd859 1261 u32 status = vgic_get_interrupt_status(vcpu);
649cf739 1262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
9d949dce 1263 bool level_pending = false;
174178fe 1264 struct kvm *kvm = vcpu->kvm;
9d949dce 1265
495dd859 1266 kvm_debug("STATUS = %08x\n", status);
9d949dce 1267
495dd859 1268 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1269 /*
1270 * Some level interrupts have been EOIed. Clear their
1271 * active bit.
1272 */
8d6a0313 1273 u64 eisr = vgic_get_eisr(vcpu);
2df36a5d 1274 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
8d5c6b06 1275 int lr;
9d949dce 1276
8f186d52 1277 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1278 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1279 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1280
649cf739 1281 spin_lock(&dist->lock);
dbf20f9d 1282 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1283 WARN_ON(vlr.state & LR_STATE_MASK);
1284 vlr.state = 0;
1285 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1286
faa1b46c
CD
1287 /*
1288 * If the IRQ was EOIed it was also ACKed and we we
1289 * therefore assume we can clear the soft pending
1290 * state (should it had been set) for this interrupt.
1291 *
1292 * Note: if the IRQ soft pending state was set after
1293 * the IRQ was acked, it actually shouldn't be
1294 * cleared, but we have no way of knowing that unless
1295 * we start trapping ACKs when the soft-pending state
1296 * is set.
1297 */
1298 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1299
174178fe
EA
1300 /*
1301 * kvm_notify_acked_irq calls kvm_set_irq()
1302 * to reset the IRQ level. Need to release the
1303 * lock for kvm_set_irq to grab it.
1304 */
1305 spin_unlock(&dist->lock);
1306
1307 kvm_notify_acked_irq(kvm, 0,
1308 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1309 spin_lock(&dist->lock);
1310
9d949dce 1311 /* Any additional pending interrupt? */
faa1b46c 1312 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1313 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1314 level_pending = true;
1315 } else {
faa1b46c 1316 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1317 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1318 }
75da01e1 1319
649cf739
EA
1320 spin_unlock(&dist->lock);
1321
75da01e1
MZ
1322 /*
1323 * Despite being EOIed, the LR may not have
1324 * been marked as empty.
1325 */
69bb2c9f 1326 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1327 }
1328 }
1329
495dd859 1330 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1331 vgic_disable_underflow(vcpu);
9d949dce 1332
ae705930
CD
1333 /*
1334 * In the next iterations of the vcpu loop, if we sync the vgic state
1335 * after flushing it, but before entering the guest (this happens for
1336 * pending signals and vmid rollovers), then make sure we don't pick
1337 * up any old maintenance interrupts here.
1338 */
1339 vgic_clear_eisr(vcpu);
1340
9d949dce
MZ
1341 return level_pending;
1342}
1343
649cf739 1344/* Sync back the VGIC state after a guest run */
9d949dce
MZ
1345static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1346{
1347 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1348 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1349 u64 elrsr;
1350 unsigned long *elrsr_ptr;
9d949dce
MZ
1351 int lr, pending;
1352 bool level_pending;
1353
1354 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f 1355 elrsr = vgic_get_elrsr(vcpu);
2df36a5d 1356 elrsr_ptr = u64_to_bitmask(&elrsr);
9d949dce
MZ
1357
1358 /* Clear mappings for empty LRs */
8f186d52 1359 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
8d5c6b06 1360 struct vgic_lr vlr;
9d949dce
MZ
1361
1362 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1363 continue;
1364
8d5c6b06 1365 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1366
5fb66da6 1367 BUG_ON(vlr.irq >= dist->nr_irqs);
8d5c6b06 1368 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1369 }
1370
1371 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1372 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1373 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1374 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1375}
1376
1377void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1378{
1379 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1380
1381 if (!irqchip_in_kernel(vcpu->kvm))
1382 return;
1383
1384 spin_lock(&dist->lock);
1385 __kvm_vgic_flush_hwstate(vcpu);
1386 spin_unlock(&dist->lock);
1387}
1388
1389void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1390{
1391 if (!irqchip_in_kernel(vcpu->kvm))
1392 return;
1393
1394 __kvm_vgic_sync_hwstate(vcpu);
1395}
1396
1397int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1398{
1399 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1400
1401 if (!irqchip_in_kernel(vcpu->kvm))
1402 return 0;
1403
c1bfb577 1404 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1405}
1406
47a98b15
CD
1407int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1408{
1409 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1410
1411 if (!irqchip_in_kernel(vcpu->kvm))
1412 return 0;
1413
1414 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1415}
1416
1417
83215812 1418void vgic_kick_vcpus(struct kvm *kvm)
5863c2ce
MZ
1419{
1420 struct kvm_vcpu *vcpu;
1421 int c;
1422
1423 /*
1424 * We've injected an interrupt, time to find out who deserves
1425 * a good kick...
1426 */
1427 kvm_for_each_vcpu(c, vcpu, kvm) {
1428 if (kvm_vgic_vcpu_pending_irq(vcpu))
1429 kvm_vcpu_kick(vcpu);
1430 }
1431}
1432
1433static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1434{
227844f5 1435 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1436
1437 /*
1438 * Only inject an interrupt if:
1439 * - edge triggered and we have a rising edge
1440 * - level triggered and we change level
1441 */
faa1b46c
CD
1442 if (edge_triggered) {
1443 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1444 return level > state;
faa1b46c
CD
1445 } else {
1446 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1447 return level != state;
faa1b46c 1448 }
5863c2ce
MZ
1449}
1450
016ed39c 1451static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
5863c2ce
MZ
1452 unsigned int irq_num, bool level)
1453{
1454 struct vgic_dist *dist = &kvm->arch.vgic;
1455 struct kvm_vcpu *vcpu;
227844f5 1456 int edge_triggered, level_triggered;
5863c2ce 1457 int enabled;
a0675c25 1458 bool ret = true, can_inject = true;
5863c2ce
MZ
1459
1460 spin_lock(&dist->lock);
1461
1462 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1463 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1464 level_triggered = !edge_triggered;
5863c2ce
MZ
1465
1466 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1467 ret = false;
1468 goto out;
1469 }
1470
1471 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1472 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
a0675c25
AP
1473 if (cpuid == VCPU_NOT_ALLOCATED) {
1474 /* Pretend we use CPU0, and prevent injection */
1475 cpuid = 0;
1476 can_inject = false;
1477 }
5863c2ce
MZ
1478 vcpu = kvm_get_vcpu(kvm, cpuid);
1479 }
1480
1481 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1482
faa1b46c
CD
1483 if (level) {
1484 if (level_triggered)
1485 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1486 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1487 } else {
1488 if (level_triggered) {
1489 vgic_dist_irq_clear_level(vcpu, irq_num);
1490 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1491 vgic_dist_irq_clear_pending(vcpu, irq_num);
faa1b46c 1492 }
7d39f9e3 1493
1494 ret = false;
1495 goto out;
faa1b46c 1496 }
5863c2ce
MZ
1497
1498 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1499
a0675c25 1500 if (!enabled || !can_inject) {
5863c2ce
MZ
1501 ret = false;
1502 goto out;
1503 }
1504
dbf20f9d 1505 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1506 /*
1507 * Level interrupt in progress, will be picked up
1508 * when EOId.
1509 */
1510 ret = false;
1511 goto out;
1512 }
1513
1514 if (level) {
1515 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1516 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1517 }
1518
1519out:
1520 spin_unlock(&dist->lock);
1521
016ed39c 1522 return ret ? cpuid : -EINVAL;
5863c2ce
MZ
1523}
1524
1525/**
1526 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1527 * @kvm: The VM structure pointer
1528 * @cpuid: The CPU for PPIs
1529 * @irq_num: The IRQ number that is assigned to the device
1530 * @level: Edge-triggered: true: to trigger the interrupt
1531 * false: to ignore the call
1532 * Level-sensitive true: activates an interrupt
1533 * false: deactivates an interrupt
1534 *
1535 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1536 * level-sensitive interrupts. You can think of the level parameter as 1
1537 * being HIGH and 0 being LOW and all devices being active-HIGH.
1538 */
1539int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1540 bool level)
1541{
ca7d9c82 1542 int ret = 0;
016ed39c 1543 int vcpu_id;
5863c2ce 1544
ca7d9c82 1545 if (unlikely(!vgic_initialized(kvm))) {
59892136
AP
1546 /*
1547 * We only provide the automatic initialization of the VGIC
1548 * for the legacy case of a GICv2. Any other type must
1549 * be explicitly initialized once setup with the respective
1550 * KVM device call.
1551 */
1552 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1553 ret = -EBUSY;
1554 goto out;
1555 }
ca7d9c82
CD
1556 mutex_lock(&kvm->lock);
1557 ret = vgic_init(kvm);
1558 mutex_unlock(&kvm->lock);
1559
1560 if (ret)
1561 goto out;
016ed39c 1562 }
5863c2ce 1563
ca7d9c82
CD
1564 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1565 if (vcpu_id >= 0) {
1566 /* kick the specified vcpu */
1567 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1568 }
1569
1570out:
1571 return ret;
5863c2ce
MZ
1572}
1573
01ac5e34
MZ
1574static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1575{
1576 /*
1577 * We cannot rely on the vgic maintenance interrupt to be
1578 * delivered synchronously. This means we can only use it to
1579 * exit the VM, and we perform the handling of EOIed
1580 * interrupts on the exit path (see vgic_process_maintenance).
1581 */
1582 return IRQ_HANDLED;
1583}
1584
c1bfb577
MZ
1585void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1586{
1587 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1588
1589 kfree(vgic_cpu->pending_shared);
47a98b15
CD
1590 kfree(vgic_cpu->active_shared);
1591 kfree(vgic_cpu->pend_act_shared);
c1bfb577
MZ
1592 kfree(vgic_cpu->vgic_irq_lr_map);
1593 vgic_cpu->pending_shared = NULL;
47a98b15
CD
1594 vgic_cpu->active_shared = NULL;
1595 vgic_cpu->pend_act_shared = NULL;
c1bfb577
MZ
1596 vgic_cpu->vgic_irq_lr_map = NULL;
1597}
1598
1599static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1600{
1601 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1602
1603 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1604 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
47a98b15
CD
1605 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1606 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
6d3cfbe2 1607 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
c1bfb577 1608
47a98b15
CD
1609 if (!vgic_cpu->pending_shared
1610 || !vgic_cpu->active_shared
1611 || !vgic_cpu->pend_act_shared
1612 || !vgic_cpu->vgic_irq_lr_map) {
c1bfb577
MZ
1613 kvm_vgic_vcpu_destroy(vcpu);
1614 return -ENOMEM;
1615 }
1616
6d3cfbe2 1617 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
01ac5e34
MZ
1618
1619 /*
ca85f623
MZ
1620 * Store the number of LRs per vcpu, so we don't have to go
1621 * all the way to the distributor structure to find out. Only
1622 * assembly code should use this one.
01ac5e34 1623 */
8f186d52 1624 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1625
6d3cfbe2 1626 return 0;
01ac5e34
MZ
1627}
1628
3caa2d8c
AP
1629/**
1630 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1631 *
1632 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1633 * can use.
1634 */
1635int kvm_vgic_get_max_vcpus(void)
1636{
1637 return vgic->max_gic_vcpus;
1638}
1639
c1bfb577
MZ
1640void kvm_vgic_destroy(struct kvm *kvm)
1641{
1642 struct vgic_dist *dist = &kvm->arch.vgic;
1643 struct kvm_vcpu *vcpu;
1644 int i;
1645
1646 kvm_for_each_vcpu(i, vcpu, kvm)
1647 kvm_vgic_vcpu_destroy(vcpu);
1648
1649 vgic_free_bitmap(&dist->irq_enabled);
1650 vgic_free_bitmap(&dist->irq_level);
1651 vgic_free_bitmap(&dist->irq_pending);
1652 vgic_free_bitmap(&dist->irq_soft_pend);
1653 vgic_free_bitmap(&dist->irq_queued);
1654 vgic_free_bitmap(&dist->irq_cfg);
1655 vgic_free_bytemap(&dist->irq_priority);
1656 if (dist->irq_spi_target) {
1657 for (i = 0; i < dist->nr_cpus; i++)
1658 vgic_free_bitmap(&dist->irq_spi_target[i]);
1659 }
1660 kfree(dist->irq_sgi_sources);
1661 kfree(dist->irq_spi_cpu);
a0675c25 1662 kfree(dist->irq_spi_mpidr);
c1bfb577
MZ
1663 kfree(dist->irq_spi_target);
1664 kfree(dist->irq_pending_on_cpu);
47a98b15 1665 kfree(dist->irq_active_on_cpu);
c1bfb577
MZ
1666 dist->irq_sgi_sources = NULL;
1667 dist->irq_spi_cpu = NULL;
1668 dist->irq_spi_target = NULL;
1669 dist->irq_pending_on_cpu = NULL;
47a98b15 1670 dist->irq_active_on_cpu = NULL;
1f57be28 1671 dist->nr_cpus = 0;
c1bfb577
MZ
1672}
1673
1674/*
1675 * Allocate and initialize the various data structures. Must be called
1676 * with kvm->lock held!
1677 */
83215812 1678int vgic_init(struct kvm *kvm)
c1bfb577
MZ
1679{
1680 struct vgic_dist *dist = &kvm->arch.vgic;
1681 struct kvm_vcpu *vcpu;
1682 int nr_cpus, nr_irqs;
6d3cfbe2 1683 int ret, i, vcpu_id;
c1bfb577 1684
1f57be28 1685 if (vgic_initialized(kvm))
4956f2bc
MZ
1686 return 0;
1687
1688 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1689 if (!nr_cpus) /* No vcpus? Can't be good... */
66b030e4 1690 return -ENODEV;
5fb66da6 1691
4956f2bc
MZ
1692 /*
1693 * If nobody configured the number of interrupts, use the
1694 * legacy one.
1695 */
5fb66da6
MZ
1696 if (!dist->nr_irqs)
1697 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1698
1699 nr_irqs = dist->nr_irqs;
c1bfb577
MZ
1700
1701 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1702 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1703 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1704 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1705 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
47a98b15 1706 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
c1bfb577
MZ
1707 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1708 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1709
1710 if (ret)
1711 goto out;
1712
1713 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1714 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1715 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1716 GFP_KERNEL);
1717 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1718 GFP_KERNEL);
47a98b15
CD
1719 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1720 GFP_KERNEL);
c1bfb577
MZ
1721 if (!dist->irq_sgi_sources ||
1722 !dist->irq_spi_cpu ||
1723 !dist->irq_spi_target ||
47a98b15
CD
1724 !dist->irq_pending_on_cpu ||
1725 !dist->irq_active_on_cpu) {
c1bfb577
MZ
1726 ret = -ENOMEM;
1727 goto out;
1728 }
1729
1730 for (i = 0; i < nr_cpus; i++)
1731 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1732 nr_cpus, nr_irqs);
1733
1734 if (ret)
1735 goto out;
1736
b26e5fda
AP
1737 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1738 if (ret)
1739 goto out;
6d3cfbe2
PM
1740
1741 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
c1bfb577
MZ
1742 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1743 if (ret) {
1744 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1745 break;
1746 }
c1bfb577 1747
6d3cfbe2
PM
1748 for (i = 0; i < dist->nr_irqs; i++) {
1749 if (i < VGIC_NR_PPIS)
1750 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1751 vcpu->vcpu_id, i, 1);
1752 if (i < VGIC_NR_PRIVATE_IRQS)
1753 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1754 vcpu->vcpu_id, i,
1755 VGIC_CFG_EDGE);
1756 }
1757
1758 vgic_enable(vcpu);
1759 }
4956f2bc 1760
c1bfb577
MZ
1761out:
1762 if (ret)
1763 kvm_vgic_destroy(kvm);
1764
1765 return ret;
1766}
1767
b26e5fda
AP
1768static int init_vgic_model(struct kvm *kvm, int type)
1769{
1770 switch (type) {
1771 case KVM_DEV_TYPE_ARM_VGIC_V2:
1772 vgic_v2_init_emulation(kvm);
1773 break;
b5d84ff6
AP
1774#ifdef CONFIG_ARM_GIC_V3
1775 case KVM_DEV_TYPE_ARM_VGIC_V3:
1776 vgic_v3_init_emulation(kvm);
1777 break;
1778#endif
b26e5fda
AP
1779 default:
1780 return -ENODEV;
1781 }
1782
3caa2d8c
AP
1783 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1784 return -E2BIG;
1785
b26e5fda
AP
1786 return 0;
1787}
1788
59892136 1789int kvm_vgic_create(struct kvm *kvm, u32 type)
01ac5e34 1790{
6b50f540 1791 int i, vcpu_lock_idx = -1, ret;
7330672b 1792 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1793
1794 mutex_lock(&kvm->lock);
1795
4ce7ebdf 1796 if (irqchip_in_kernel(kvm)) {
01ac5e34
MZ
1797 ret = -EEXIST;
1798 goto out;
1799 }
1800
b5d84ff6
AP
1801 /*
1802 * This function is also called by the KVM_CREATE_IRQCHIP handler,
1803 * which had no chance yet to check the availability of the GICv2
1804 * emulation. So check this here again. KVM_CREATE_DEVICE does
1805 * the proper checks already.
1806 */
b52104e5
WY
1807 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
1808 ret = -ENODEV;
1809 goto out;
1810 }
b5d84ff6 1811
7330672b
CD
1812 /*
1813 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1814 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1815 * that no other VCPUs are run while we create the vgic.
1816 */
6b50f540 1817 ret = -EBUSY;
7330672b
CD
1818 kvm_for_each_vcpu(i, vcpu, kvm) {
1819 if (!mutex_trylock(&vcpu->mutex))
1820 goto out_unlock;
1821 vcpu_lock_idx = i;
1822 }
1823
1824 kvm_for_each_vcpu(i, vcpu, kvm) {
6b50f540 1825 if (vcpu->arch.has_run_once)
7330672b 1826 goto out_unlock;
7330672b 1827 }
6b50f540 1828 ret = 0;
7330672b 1829
b26e5fda
AP
1830 ret = init_vgic_model(kvm, type);
1831 if (ret)
1832 goto out_unlock;
1833
01ac5e34 1834 spin_lock_init(&kvm->arch.vgic.lock);
f982cf4e 1835 kvm->arch.vgic.in_kernel = true;
59892136 1836 kvm->arch.vgic.vgic_model = type;
8f186d52 1837 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
1838 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1839 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
a0675c25 1840 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
01ac5e34 1841
7330672b
CD
1842out_unlock:
1843 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1844 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1845 mutex_unlock(&vcpu->mutex);
1846 }
1847
01ac5e34
MZ
1848out:
1849 mutex_unlock(&kvm->lock);
1850 return ret;
1851}
1852
1fa451bc 1853static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
1854{
1855 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1856 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1857
1858 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1859 return 0;
1860 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1861 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1862 return -EBUSY;
1863 return 0;
1864}
1865
1866static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1867 phys_addr_t addr, phys_addr_t size)
1868{
1869 int ret;
1870
ce01e4e8
CD
1871 if (addr & ~KVM_PHYS_MASK)
1872 return -E2BIG;
1873
1874 if (addr & (SZ_4K - 1))
1875 return -EINVAL;
1876
330690cd
CD
1877 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1878 return -EEXIST;
1879 if (addr + size < addr)
1880 return -EINVAL;
1881
30c21170 1882 *ioaddr = addr;
330690cd
CD
1883 ret = vgic_ioaddr_overlap(kvm);
1884 if (ret)
30c21170
HW
1885 *ioaddr = VGIC_ADDR_UNDEF;
1886
330690cd
CD
1887 return ret;
1888}
1889
ce01e4e8
CD
1890/**
1891 * kvm_vgic_addr - set or get vgic VM base addresses
1892 * @kvm: pointer to the vm struct
ac3d3735 1893 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
ce01e4e8
CD
1894 * @addr: pointer to address value
1895 * @write: if true set the address in the VM address space, if false read the
1896 * address
1897 *
1898 * Set or get the vgic base addresses for the distributor and the virtual CPU
1899 * interface in the VM physical address space. These addresses are properties
1900 * of the emulated core/SoC and therefore user space initially knows this
1901 * information.
1902 */
1903int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1904{
1905 int r = 0;
1906 struct vgic_dist *vgic = &kvm->arch.vgic;
ac3d3735
AP
1907 int type_needed;
1908 phys_addr_t *addr_ptr, block_size;
4fa96afd 1909 phys_addr_t alignment;
330690cd 1910
330690cd
CD
1911 mutex_lock(&kvm->lock);
1912 switch (type) {
1913 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ac3d3735
AP
1914 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1915 addr_ptr = &vgic->vgic_dist_base;
1916 block_size = KVM_VGIC_V2_DIST_SIZE;
4fa96afd 1917 alignment = SZ_4K;
330690cd
CD
1918 break;
1919 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ac3d3735
AP
1920 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1921 addr_ptr = &vgic->vgic_cpu_base;
1922 block_size = KVM_VGIC_V2_CPU_SIZE;
4fa96afd 1923 alignment = SZ_4K;
330690cd 1924 break;
ac3d3735
AP
1925#ifdef CONFIG_ARM_GIC_V3
1926 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1927 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1928 addr_ptr = &vgic->vgic_dist_base;
1929 block_size = KVM_VGIC_V3_DIST_SIZE;
4fa96afd 1930 alignment = SZ_64K;
ac3d3735
AP
1931 break;
1932 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1933 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1934 addr_ptr = &vgic->vgic_redist_base;
1935 block_size = KVM_VGIC_V3_REDIST_SIZE;
4fa96afd 1936 alignment = SZ_64K;
ac3d3735
AP
1937 break;
1938#endif
330690cd
CD
1939 default:
1940 r = -ENODEV;
ac3d3735
AP
1941 goto out;
1942 }
1943
1944 if (vgic->vgic_model != type_needed) {
1945 r = -ENODEV;
1946 goto out;
330690cd
CD
1947 }
1948
4fa96afd
AP
1949 if (write) {
1950 if (!IS_ALIGNED(*addr, alignment))
1951 r = -EINVAL;
1952 else
1953 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1954 block_size);
1955 } else {
ac3d3735 1956 *addr = *addr_ptr;
4fa96afd 1957 }
ac3d3735
AP
1958
1959out:
330690cd
CD
1960 mutex_unlock(&kvm->lock);
1961 return r;
1962}
7330672b 1963
83215812 1964int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 1965{
ce01e4e8
CD
1966 int r;
1967
1968 switch (attr->group) {
1969 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1970 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1971 u64 addr;
1972 unsigned long type = (unsigned long)attr->attr;
1973
1974 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1975 return -EFAULT;
1976
1977 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1978 return (r == -ENODEV) ? -ENXIO : r;
1979 }
a98f26f1
MZ
1980 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1981 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1982 u32 val;
1983 int ret = 0;
1984
1985 if (get_user(val, uaddr))
1986 return -EFAULT;
1987
1988 /*
1989 * We require:
1990 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1991 * - at most 1024 interrupts
1992 * - a multiple of 32 interrupts
1993 */
1994 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1995 val > VGIC_MAX_IRQS ||
1996 (val & 31))
1997 return -EINVAL;
1998
1999 mutex_lock(&dev->kvm->lock);
2000
c52edf5f 2001 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
a98f26f1
MZ
2002 ret = -EBUSY;
2003 else
2004 dev->kvm->arch.vgic.nr_irqs = val;
2005
2006 mutex_unlock(&dev->kvm->lock);
2007
2008 return ret;
2009 }
065c0034
EA
2010 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2011 switch (attr->attr) {
2012 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2013 r = vgic_init(dev->kvm);
2014 return r;
2015 }
2016 break;
2017 }
ce01e4e8
CD
2018 }
2019
7330672b
CD
2020 return -ENXIO;
2021}
2022
83215812 2023int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 2024{
ce01e4e8
CD
2025 int r = -ENXIO;
2026
2027 switch (attr->group) {
2028 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2029 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2030 u64 addr;
2031 unsigned long type = (unsigned long)attr->attr;
2032
2033 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2034 if (r)
2035 return (r == -ENODEV) ? -ENXIO : r;
2036
2037 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2038 return -EFAULT;
c07a0191
CD
2039 break;
2040 }
b60da146
AP
2041 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2042 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2043
2044 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2045 break;
2046 }
2047
2048 }
2049
2050 return r;
2051}
2052
cf50a1eb 2053int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
c07a0191 2054{
9f199d0a 2055 if (vgic_find_range(ranges, 4, offset))
c07a0191
CD
2056 return 0;
2057 else
2058 return -ENXIO;
2059}
2060
c06a841b
WD
2061static void vgic_init_maintenance_interrupt(void *info)
2062{
2063 enable_percpu_irq(vgic->maint_irq, 0);
2064}
2065
2066static int vgic_cpu_notify(struct notifier_block *self,
2067 unsigned long action, void *cpu)
2068{
2069 switch (action) {
2070 case CPU_STARTING:
2071 case CPU_STARTING_FROZEN:
2072 vgic_init_maintenance_interrupt(NULL);
2073 break;
2074 case CPU_DYING:
2075 case CPU_DYING_FROZEN:
2076 disable_percpu_irq(vgic->maint_irq);
2077 break;
2078 }
2079
2080 return NOTIFY_OK;
2081}
2082
2083static struct notifier_block vgic_cpu_nb = {
2084 .notifier_call = vgic_cpu_notify,
2085};
2086
2087static const struct of_device_id vgic_ids[] = {
0f372475
MR
2088 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2089 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2090 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2091 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
c06a841b
WD
2092 {},
2093};
2094
2095int kvm_vgic_hyp_init(void)
2096{
2097 const struct of_device_id *matched_id;
a875dafc
CD
2098 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2099 const struct vgic_params **);
c06a841b
WD
2100 struct device_node *vgic_node;
2101 int ret;
2102
2103 vgic_node = of_find_matching_node_and_match(NULL,
2104 vgic_ids, &matched_id);
2105 if (!vgic_node) {
2106 kvm_err("error: no compatible GIC node found\n");
2107 return -ENODEV;
2108 }
2109
2110 vgic_probe = matched_id->data;
2111 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2112 if (ret)
2113 return ret;
2114
2115 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2116 "vgic", kvm_get_running_vcpus());
2117 if (ret) {
2118 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2119 return ret;
2120 }
2121
2122 ret = __register_cpu_notifier(&vgic_cpu_nb);
2123 if (ret) {
2124 kvm_err("Cannot register vgic CPU notifier\n");
2125 goto out_free_irq;
2126 }
2127
2128 /* Callback into for arch code for setup */
2129 vgic_arch_setup(vgic);
2130
2131 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2132
ea2f83a7 2133 return 0;
c06a841b
WD
2134
2135out_free_irq:
2136 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2137 return ret;
2138}
174178fe
EA
2139
2140int kvm_irq_map_gsi(struct kvm *kvm,
2141 struct kvm_kernel_irq_routing_entry *entries,
2142 int gsi)
2143{
0b3289eb 2144 return 0;
174178fe
EA
2145}
2146
2147int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2148{
2149 return pin;
2150}
2151
2152int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2153 u32 irq, int level, bool line_status)
2154{
2155 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2156
2157 trace_kvm_set_irq(irq, level, irq_source_id);
2158
2159 BUG_ON(!vgic_initialized(kvm));
2160
2161 if (spi > kvm->arch.vgic.nr_irqs)
2162 return -EINVAL;
2163 return kvm_vgic_inject_irq(kvm, 0, spi, level);
2164
2165}
2166
2167/* MSI not implemented yet */
2168int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2169 struct kvm *kvm, int irq_source_id,
2170 int level, bool line_status)
2171{
2172 return 0;
2173}
This page took 0.313391 seconds and 5 git commands to generate.