arm/arm64: KVM: vgic: delay vgic allocation until init time
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
1a89dd91 34
b47ef92a
MZ
35/*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
43 * arch. timers).
b47ef92a
MZ
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
227844f5
CD
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
7e362919 54 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
58 *
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
62 *
63 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 64 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 69 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 70 * interrupt line to be sampled again.
faa1b46c
CD
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
b47ef92a
MZ
76 */
77
330690cd
CD
78#define VGIC_ADDR_UNDEF (-1)
79#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
80
fa20f5ae
CD
81#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
82#define IMPLEMENTER_ARM 0x43b
83#define GICC_ARCH_VERSION_V2 0x2
84
1a89dd91
MZ
85#define ACCESS_READ_VALUE (1 << 0)
86#define ACCESS_READ_RAZ (0 << 0)
87#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
88#define ACCESS_WRITE_IGNORED (0 << 1)
89#define ACCESS_WRITE_SETBIT (1 << 1)
90#define ACCESS_WRITE_CLEARBIT (2 << 1)
91#define ACCESS_WRITE_VALUE (3 << 1)
92#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
93
a1fcb44e 94static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 95static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
b47ef92a 96static void vgic_update_state(struct kvm *kvm);
5863c2ce 97static void vgic_kick_vcpus(struct kvm *kvm);
c1bfb577 98static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
b47ef92a 99static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
8d5c6b06
MZ
100static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
101static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
beee38b9
MZ
102static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
103static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
01ac5e34 104
8f186d52
MZ
105static const struct vgic_ops *vgic_ops;
106static const struct vgic_params *vgic;
b47ef92a 107
9662fb48 108/*
c1bfb577
MZ
109 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
110 * extracts u32s out of them.
9662fb48
VK
111 *
112 * This does not work on 64-bit BE systems, because the bitmap access
113 * will store two consecutive 32-bit words with the higher-addressed
114 * register's bits at the lower index and the lower-addressed register's
115 * bits at the higher index.
116 *
117 * Therefore, swizzle the register index when accessing the 32-bit word
118 * registers to access the right register's value.
119 */
120#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121#define REG_OFFSET_SWIZZLE 1
122#else
123#define REG_OFFSET_SWIZZLE 0
124#endif
b47ef92a 125
c1bfb577
MZ
126static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
127{
128 int nr_longs;
129
130 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
131
132 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
133 if (!b->private)
134 return -ENOMEM;
135
136 b->shared = b->private + nr_cpus;
137
138 return 0;
139}
140
141static void vgic_free_bitmap(struct vgic_bitmap *b)
142{
143 kfree(b->private);
144 b->private = NULL;
145 b->shared = NULL;
146}
147
b47ef92a
MZ
148static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
149 int cpuid, u32 offset)
150{
151 offset >>= 2;
152 if (!offset)
c1bfb577 153 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 154 else
c1bfb577 155 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
156}
157
158static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
159 int cpuid, int irq)
160{
161 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 162 return test_bit(irq, x->private + cpuid);
b47ef92a 163
c1bfb577 164 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
165}
166
167static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
168 int irq, int val)
169{
170 unsigned long *reg;
171
172 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 173 reg = x->private + cpuid;
b47ef92a 174 } else {
c1bfb577 175 reg = x->shared;
b47ef92a
MZ
176 irq -= VGIC_NR_PRIVATE_IRQS;
177 }
178
179 if (val)
180 set_bit(irq, reg);
181 else
182 clear_bit(irq, reg);
183}
184
185static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
186{
c1bfb577 187 return x->private + cpuid;
b47ef92a
MZ
188}
189
190static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
191{
c1bfb577
MZ
192 return x->shared;
193}
194
195static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
196{
197 int size;
198
199 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
200 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
201
202 x->private = kzalloc(size, GFP_KERNEL);
203 if (!x->private)
204 return -ENOMEM;
205
206 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
207 return 0;
208}
209
210static void vgic_free_bytemap(struct vgic_bytemap *b)
211{
212 kfree(b->private);
213 b->private = NULL;
214 b->shared = NULL;
b47ef92a
MZ
215}
216
217static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
218{
c1bfb577
MZ
219 u32 *reg;
220
221 if (offset < VGIC_NR_PRIVATE_IRQS) {
222 reg = x->private;
223 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
224 } else {
225 reg = x->shared;
226 offset -= VGIC_NR_PRIVATE_IRQS;
227 }
228
229 return reg + (offset / sizeof(u32));
b47ef92a
MZ
230}
231
232#define VGIC_CFG_LEVEL 0
233#define VGIC_CFG_EDGE 1
234
235static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
236{
237 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
238 int irq_val;
239
240 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
241 return irq_val == VGIC_CFG_EDGE;
242}
243
244static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
245{
246 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247
248 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
249}
250
dbf20f9d 251static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
252{
253 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
254
dbf20f9d 255 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
256}
257
dbf20f9d 258static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
259{
260 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
261
dbf20f9d 262 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
263}
264
dbf20f9d 265static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
266{
267 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
268
dbf20f9d 269 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
270}
271
faa1b46c
CD
272static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
273{
274 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
275
276 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
277}
278
279static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
280{
281 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
282
283 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
284}
285
286static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
287{
288 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
289
290 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
291}
292
293static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
294{
295 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
296
297 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
298}
299
300static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
301{
302 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
303
304 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
305}
306
9d949dce
MZ
307static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
308{
309 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310
227844f5 311 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
312}
313
227844f5 314static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
315{
316 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
317
227844f5 318 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
319}
320
227844f5 321static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
322{
323 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
324
227844f5 325 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
326}
327
328static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
329{
330 if (irq < VGIC_NR_PRIVATE_IRQS)
331 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
332 else
333 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
334 vcpu->arch.vgic_cpu.pending_shared);
335}
336
337static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
338{
339 if (irq < VGIC_NR_PRIVATE_IRQS)
340 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
341 else
342 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
343 vcpu->arch.vgic_cpu.pending_shared);
344}
345
dbf20f9d
CD
346static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
347{
348 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
349}
350
1a89dd91
MZ
351static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
352{
1c9f0471 353 return le32_to_cpu(*((u32 *)mmio->data)) & mask;
1a89dd91
MZ
354}
355
356static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
357{
1c9f0471 358 *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
1a89dd91
MZ
359}
360
361/**
362 * vgic_reg_access - access vgic register
363 * @mmio: pointer to the data describing the mmio access
364 * @reg: pointer to the virtual backing of vgic distributor data
365 * @offset: least significant 2 bits used for word offset
366 * @mode: ACCESS_ mode (see defines above)
367 *
368 * Helper to make vgic register access easier using one of the access
369 * modes defined for vgic register access
370 * (read,raz,write-ignored,setbit,clearbit,write)
371 */
372static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
373 phys_addr_t offset, int mode)
374{
375 int word_offset = (offset & 3) * 8;
376 u32 mask = (1UL << (mmio->len * 8)) - 1;
377 u32 regval;
378
379 /*
380 * Any alignment fault should have been delivered to the guest
381 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
382 */
383
384 if (reg) {
385 regval = *reg;
386 } else {
387 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
388 regval = 0;
389 }
390
391 if (mmio->is_write) {
392 u32 data = mmio_data_read(mmio, mask) << word_offset;
393 switch (ACCESS_WRITE_MASK(mode)) {
394 case ACCESS_WRITE_IGNORED:
395 return;
396
397 case ACCESS_WRITE_SETBIT:
398 regval |= data;
399 break;
400
401 case ACCESS_WRITE_CLEARBIT:
402 regval &= ~data;
403 break;
404
405 case ACCESS_WRITE_VALUE:
406 regval = (regval & ~(mask << word_offset)) | data;
407 break;
408 }
409 *reg = regval;
410 } else {
411 switch (ACCESS_READ_MASK(mode)) {
412 case ACCESS_READ_RAZ:
413 regval = 0;
414 /* fall through */
415
416 case ACCESS_READ_VALUE:
417 mmio_data_write(mmio, mask, regval >> word_offset);
418 }
419 }
420}
421
b47ef92a
MZ
422static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
423 struct kvm_exit_mmio *mmio, phys_addr_t offset)
424{
425 u32 reg;
426 u32 word_offset = offset & 3;
427
428 switch (offset & ~3) {
fa20f5ae 429 case 0: /* GICD_CTLR */
b47ef92a
MZ
430 reg = vcpu->kvm->arch.vgic.enabled;
431 vgic_reg_access(mmio, &reg, word_offset,
432 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
433 if (mmio->is_write) {
434 vcpu->kvm->arch.vgic.enabled = reg & 1;
435 vgic_update_state(vcpu->kvm);
436 return true;
437 }
438 break;
439
fa20f5ae 440 case 4: /* GICD_TYPER */
b47ef92a 441 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
5fb66da6 442 reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
b47ef92a
MZ
443 vgic_reg_access(mmio, &reg, word_offset,
444 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
445 break;
446
fa20f5ae
CD
447 case 8: /* GICD_IIDR */
448 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
b47ef92a
MZ
449 vgic_reg_access(mmio, &reg, word_offset,
450 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
451 break;
452 }
453
454 return false;
455}
456
457static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
458 struct kvm_exit_mmio *mmio, phys_addr_t offset)
459{
460 vgic_reg_access(mmio, NULL, offset,
461 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
462 return false;
463}
464
465static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
466 struct kvm_exit_mmio *mmio,
467 phys_addr_t offset)
468{
469 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
470 vcpu->vcpu_id, offset);
471 vgic_reg_access(mmio, reg, offset,
472 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
473 if (mmio->is_write) {
474 vgic_update_state(vcpu->kvm);
475 return true;
476 }
477
478 return false;
479}
480
481static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
482 struct kvm_exit_mmio *mmio,
483 phys_addr_t offset)
484{
485 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
486 vcpu->vcpu_id, offset);
487 vgic_reg_access(mmio, reg, offset,
488 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
489 if (mmio->is_write) {
490 if (offset < 4) /* Force SGI enabled */
491 *reg |= 0xffff;
a1fcb44e 492 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
493 vgic_update_state(vcpu->kvm);
494 return true;
495 }
496
497 return false;
498}
499
500static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
501 struct kvm_exit_mmio *mmio,
502 phys_addr_t offset)
503{
9da48b55 504 u32 *reg, orig;
faa1b46c
CD
505 u32 level_mask;
506 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
507
508 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
509 level_mask = (~(*reg));
510
511 /* Mark both level and edge triggered irqs as pending */
512 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
9da48b55 513 orig = *reg;
b47ef92a
MZ
514 vgic_reg_access(mmio, reg, offset,
515 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
faa1b46c 516
b47ef92a 517 if (mmio->is_write) {
faa1b46c
CD
518 /* Set the soft-pending flag only for level-triggered irqs */
519 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
520 vcpu->vcpu_id, offset);
521 vgic_reg_access(mmio, reg, offset,
522 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
523 *reg &= level_mask;
524
9da48b55
CD
525 /* Ignore writes to SGIs */
526 if (offset < 2) {
527 *reg &= ~0xffff;
528 *reg |= orig & 0xffff;
529 }
530
b47ef92a
MZ
531 vgic_update_state(vcpu->kvm);
532 return true;
533 }
534
535 return false;
536}
537
538static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
539 struct kvm_exit_mmio *mmio,
540 phys_addr_t offset)
541{
faa1b46c 542 u32 *level_active;
9da48b55 543 u32 *reg, orig;
faa1b46c
CD
544 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
545
546 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
9da48b55 547 orig = *reg;
b47ef92a
MZ
548 vgic_reg_access(mmio, reg, offset,
549 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
550 if (mmio->is_write) {
faa1b46c
CD
551 /* Re-set level triggered level-active interrupts */
552 level_active = vgic_bitmap_get_reg(&dist->irq_level,
553 vcpu->vcpu_id, offset);
554 reg = vgic_bitmap_get_reg(&dist->irq_pending,
555 vcpu->vcpu_id, offset);
556 *reg |= *level_active;
557
9da48b55
CD
558 /* Ignore writes to SGIs */
559 if (offset < 2) {
560 *reg &= ~0xffff;
561 *reg |= orig & 0xffff;
562 }
563
faa1b46c
CD
564 /* Clear soft-pending flags */
565 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
566 vcpu->vcpu_id, offset);
567 vgic_reg_access(mmio, reg, offset,
568 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
569
b47ef92a
MZ
570 vgic_update_state(vcpu->kvm);
571 return true;
572 }
573
574 return false;
575}
576
577static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
578 struct kvm_exit_mmio *mmio,
579 phys_addr_t offset)
580{
581 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
582 vcpu->vcpu_id, offset);
583 vgic_reg_access(mmio, reg, offset,
584 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
585 return false;
586}
587
588#define GICD_ITARGETSR_SIZE 32
589#define GICD_CPUTARGETS_BITS 8
590#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
591static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
592{
593 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 594 int i;
b47ef92a
MZ
595 u32 val = 0;
596
597 irq -= VGIC_NR_PRIVATE_IRQS;
598
986af8e0
MZ
599 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
600 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
601
602 return val;
603}
604
605static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
606{
607 struct vgic_dist *dist = &kvm->arch.vgic;
608 struct kvm_vcpu *vcpu;
609 int i, c;
610 unsigned long *bmap;
611 u32 target;
612
613 irq -= VGIC_NR_PRIVATE_IRQS;
614
615 /*
616 * Pick the LSB in each byte. This ensures we target exactly
617 * one vcpu per IRQ. If the byte is null, assume we target
618 * CPU0.
619 */
620 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
621 int shift = i * GICD_CPUTARGETS_BITS;
622 target = ffs((val >> shift) & 0xffU);
623 target = target ? (target - 1) : 0;
624 dist->irq_spi_cpu[irq + i] = target;
625 kvm_for_each_vcpu(c, vcpu, kvm) {
626 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
627 if (c == target)
628 set_bit(irq + i, bmap);
629 else
630 clear_bit(irq + i, bmap);
631 }
632 }
633}
634
635static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
636 struct kvm_exit_mmio *mmio,
637 phys_addr_t offset)
638{
639 u32 reg;
640
641 /* We treat the banked interrupts targets as read-only */
642 if (offset < 32) {
643 u32 roreg = 1 << vcpu->vcpu_id;
644 roreg |= roreg << 8;
645 roreg |= roreg << 16;
646
647 vgic_reg_access(mmio, &roreg, offset,
648 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
649 return false;
650 }
651
652 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
653 vgic_reg_access(mmio, &reg, offset,
654 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
655 if (mmio->is_write) {
656 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
657 vgic_update_state(vcpu->kvm);
658 return true;
659 }
660
661 return false;
662}
663
664static u32 vgic_cfg_expand(u16 val)
665{
666 u32 res = 0;
667 int i;
668
669 /*
670 * Turn a 16bit value like abcd...mnop into a 32bit word
671 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
672 */
673 for (i = 0; i < 16; i++)
674 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
675
676 return res;
677}
678
679static u16 vgic_cfg_compress(u32 val)
680{
681 u16 res = 0;
682 int i;
683
684 /*
685 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
686 * abcd...mnop which is what we really care about.
687 */
688 for (i = 0; i < 16; i++)
689 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
690
691 return res;
692}
693
694/*
695 * The distributor uses 2 bits per IRQ for the CFG register, but the
696 * LSB is always 0. As such, we only keep the upper bit, and use the
697 * two above functions to compress/expand the bits
698 */
699static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
700 struct kvm_exit_mmio *mmio, phys_addr_t offset)
701{
702 u32 val;
6545eae3
MZ
703 u32 *reg;
704
6545eae3 705 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
f2ae85b2 706 vcpu->vcpu_id, offset >> 1);
6545eae3 707
f2ae85b2 708 if (offset & 4)
b47ef92a
MZ
709 val = *reg >> 16;
710 else
711 val = *reg & 0xffff;
712
713 val = vgic_cfg_expand(val);
714 vgic_reg_access(mmio, &val, offset,
715 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
716 if (mmio->is_write) {
f2ae85b2 717 if (offset < 8) {
b47ef92a
MZ
718 *reg = ~0U; /* Force PPIs/SGIs to 1 */
719 return false;
720 }
721
722 val = vgic_cfg_compress(val);
f2ae85b2 723 if (offset & 4) {
b47ef92a
MZ
724 *reg &= 0xffff;
725 *reg |= val << 16;
726 } else {
727 *reg &= 0xffff << 16;
728 *reg |= val;
729 }
730 }
731
732 return false;
733}
734
735static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
736 struct kvm_exit_mmio *mmio, phys_addr_t offset)
737{
738 u32 reg;
739 vgic_reg_access(mmio, &reg, offset,
740 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
741 if (mmio->is_write) {
742 vgic_dispatch_sgi(vcpu, reg);
743 vgic_update_state(vcpu->kvm);
744 return true;
745 }
746
747 return false;
748}
749
cbd333a4
CD
750/**
751 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
752 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
753 *
754 * Move any pending IRQs that have already been assigned to LRs back to the
755 * emulated distributor state so that the complete emulated state can be read
756 * from the main emulation structures without investigating the LRs.
757 *
758 * Note that IRQs in the active state in the LRs get their pending state moved
759 * to the distributor but the active state stays in the LRs, because we don't
760 * track the active state on the distributor side.
761 */
762static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
763{
764 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
765 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
766 int vcpu_id = vcpu->vcpu_id;
8d5c6b06 767 int i;
cbd333a4
CD
768
769 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 770 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
771
772 /*
773 * There are three options for the state bits:
774 *
775 * 01: pending
776 * 10: active
777 * 11: pending and active
778 *
779 * If the LR holds only an active interrupt (not pending) then
780 * just leave it alone.
781 */
8d5c6b06 782 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
cbd333a4
CD
783 continue;
784
785 /*
786 * Reestablish the pending state on the distributor and the
787 * CPU interface. It may have already been pending, but that
788 * is fine, then we are only setting a few bits that were
789 * already set.
790 */
227844f5 791 vgic_dist_irq_set_pending(vcpu, lr.irq);
8d5c6b06 792 if (lr.irq < VGIC_NR_SGIS)
c1bfb577 793 *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
8d5c6b06
MZ
794 lr.state &= ~LR_STATE_PENDING;
795 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
796
797 /*
798 * If there's no state left on the LR (it could still be
799 * active), then the LR does not hold any useful info and can
800 * be marked as free for other use.
801 */
cced50c9 802 if (!(lr.state & LR_STATE_MASK)) {
8d5c6b06 803 vgic_retire_lr(i, lr.irq, vcpu);
cced50c9
CD
804 vgic_irq_clear_queued(vcpu, lr.irq);
805 }
cbd333a4
CD
806
807 /* Finally update the VGIC state. */
808 vgic_update_state(vcpu->kvm);
809 }
810}
811
90a5355e
CD
812/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
813static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
814 struct kvm_exit_mmio *mmio,
815 phys_addr_t offset)
c07a0191 816{
90a5355e
CD
817 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
818 int sgi;
819 int min_sgi = (offset & ~0x3) * 4;
820 int max_sgi = min_sgi + 3;
821 int vcpu_id = vcpu->vcpu_id;
822 u32 reg = 0;
823
824 /* Copy source SGIs from distributor side */
825 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
826 int shift = 8 * (sgi - min_sgi);
c1bfb577 827 reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
90a5355e
CD
828 }
829
830 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
831 return false;
832}
833
90a5355e
CD
834static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
835 struct kvm_exit_mmio *mmio,
836 phys_addr_t offset, bool set)
837{
838 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
839 int sgi;
840 int min_sgi = (offset & ~0x3) * 4;
841 int max_sgi = min_sgi + 3;
842 int vcpu_id = vcpu->vcpu_id;
843 u32 reg;
844 bool updated = false;
845
846 reg = mmio_data_read(mmio, ~0);
847
848 /* Clear pending SGIs on the distributor */
849 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
850 u8 mask = reg >> (8 * (sgi - min_sgi));
c1bfb577 851 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
90a5355e 852 if (set) {
c1bfb577 853 if ((*src & mask) != mask)
90a5355e 854 updated = true;
c1bfb577 855 *src |= mask;
90a5355e 856 } else {
c1bfb577 857 if (*src & mask)
90a5355e 858 updated = true;
c1bfb577 859 *src &= ~mask;
90a5355e
CD
860 }
861 }
862
863 if (updated)
864 vgic_update_state(vcpu->kvm);
865
866 return updated;
867}
868
c07a0191
CD
869static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
870 struct kvm_exit_mmio *mmio,
871 phys_addr_t offset)
872{
90a5355e
CD
873 if (!mmio->is_write)
874 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
875 else
876 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
877}
878
879static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
880 struct kvm_exit_mmio *mmio,
881 phys_addr_t offset)
882{
883 if (!mmio->is_write)
884 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
885 else
886 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
887}
888
1a89dd91
MZ
889/*
890 * I would have liked to use the kvm_bus_io_*() API instead, but it
891 * cannot cope with banked registers (only the VM pointer is passed
892 * around, and we need the vcpu). One of these days, someone please
893 * fix it!
894 */
895struct mmio_range {
896 phys_addr_t base;
897 unsigned long len;
c3c91836 898 int bits_per_irq;
1a89dd91
MZ
899 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
900 phys_addr_t offset);
901};
902
1006e8cb 903static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
904 {
905 .base = GIC_DIST_CTRL,
906 .len = 12,
c3c91836 907 .bits_per_irq = 0,
b47ef92a
MZ
908 .handle_mmio = handle_mmio_misc,
909 },
910 {
911 .base = GIC_DIST_IGROUP,
c3c91836
MZ
912 .len = VGIC_MAX_IRQS / 8,
913 .bits_per_irq = 1,
b47ef92a
MZ
914 .handle_mmio = handle_mmio_raz_wi,
915 },
916 {
917 .base = GIC_DIST_ENABLE_SET,
c3c91836
MZ
918 .len = VGIC_MAX_IRQS / 8,
919 .bits_per_irq = 1,
b47ef92a
MZ
920 .handle_mmio = handle_mmio_set_enable_reg,
921 },
922 {
923 .base = GIC_DIST_ENABLE_CLEAR,
c3c91836
MZ
924 .len = VGIC_MAX_IRQS / 8,
925 .bits_per_irq = 1,
b47ef92a
MZ
926 .handle_mmio = handle_mmio_clear_enable_reg,
927 },
928 {
929 .base = GIC_DIST_PENDING_SET,
c3c91836
MZ
930 .len = VGIC_MAX_IRQS / 8,
931 .bits_per_irq = 1,
b47ef92a
MZ
932 .handle_mmio = handle_mmio_set_pending_reg,
933 },
934 {
935 .base = GIC_DIST_PENDING_CLEAR,
c3c91836
MZ
936 .len = VGIC_MAX_IRQS / 8,
937 .bits_per_irq = 1,
b47ef92a
MZ
938 .handle_mmio = handle_mmio_clear_pending_reg,
939 },
940 {
941 .base = GIC_DIST_ACTIVE_SET,
c3c91836
MZ
942 .len = VGIC_MAX_IRQS / 8,
943 .bits_per_irq = 1,
b47ef92a
MZ
944 .handle_mmio = handle_mmio_raz_wi,
945 },
946 {
947 .base = GIC_DIST_ACTIVE_CLEAR,
c3c91836
MZ
948 .len = VGIC_MAX_IRQS / 8,
949 .bits_per_irq = 1,
b47ef92a
MZ
950 .handle_mmio = handle_mmio_raz_wi,
951 },
952 {
953 .base = GIC_DIST_PRI,
c3c91836
MZ
954 .len = VGIC_MAX_IRQS,
955 .bits_per_irq = 8,
b47ef92a
MZ
956 .handle_mmio = handle_mmio_priority_reg,
957 },
958 {
959 .base = GIC_DIST_TARGET,
c3c91836
MZ
960 .len = VGIC_MAX_IRQS,
961 .bits_per_irq = 8,
b47ef92a
MZ
962 .handle_mmio = handle_mmio_target_reg,
963 },
964 {
965 .base = GIC_DIST_CONFIG,
c3c91836
MZ
966 .len = VGIC_MAX_IRQS / 4,
967 .bits_per_irq = 2,
b47ef92a
MZ
968 .handle_mmio = handle_mmio_cfg_reg,
969 },
970 {
971 .base = GIC_DIST_SOFTINT,
972 .len = 4,
973 .handle_mmio = handle_mmio_sgi_reg,
974 },
c07a0191
CD
975 {
976 .base = GIC_DIST_SGI_PENDING_CLEAR,
977 .len = VGIC_NR_SGIS,
978 .handle_mmio = handle_mmio_sgi_clear,
979 },
980 {
981 .base = GIC_DIST_SGI_PENDING_SET,
982 .len = VGIC_NR_SGIS,
983 .handle_mmio = handle_mmio_sgi_set,
984 },
1a89dd91
MZ
985 {}
986};
987
988static const
989struct mmio_range *find_matching_range(const struct mmio_range *ranges,
990 struct kvm_exit_mmio *mmio,
1006e8cb 991 phys_addr_t offset)
1a89dd91
MZ
992{
993 const struct mmio_range *r = ranges;
1a89dd91
MZ
994
995 while (r->len) {
1006e8cb
CD
996 if (offset >= r->base &&
997 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
998 return r;
999 r++;
1000 }
1001
1002 return NULL;
1003}
1004
c3c91836
MZ
1005static bool vgic_validate_access(const struct vgic_dist *dist,
1006 const struct mmio_range *range,
1007 unsigned long offset)
1008{
1009 int irq;
1010
1011 if (!range->bits_per_irq)
1012 return true; /* Not an irq-based access */
1013
1014 irq = offset * 8 / range->bits_per_irq;
1015 if (irq >= dist->nr_irqs)
1016 return false;
1017
1018 return true;
1019}
1020
1a89dd91
MZ
1021/**
1022 * vgic_handle_mmio - handle an in-kernel MMIO access
1023 * @vcpu: pointer to the vcpu performing the access
1024 * @run: pointer to the kvm_run structure
1025 * @mmio: pointer to the data describing the access
1026 *
1027 * returns true if the MMIO access has been performed in kernel space,
1028 * and false if it needs to be emulated in user space.
1029 */
1030bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1031 struct kvm_exit_mmio *mmio)
1032{
b47ef92a
MZ
1033 const struct mmio_range *range;
1034 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1035 unsigned long base = dist->vgic_dist_base;
1036 bool updated_state;
1037 unsigned long offset;
1038
1039 if (!irqchip_in_kernel(vcpu->kvm) ||
1040 mmio->phys_addr < base ||
1041 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
1042 return false;
1043
1044 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
1045 if (mmio->len > 4) {
1046 kvm_inject_dabt(vcpu, mmio->phys_addr);
1047 return true;
1048 }
1049
1006e8cb
CD
1050 offset = mmio->phys_addr - base;
1051 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
1052 if (unlikely(!range || !range->handle_mmio)) {
1053 pr_warn("Unhandled access %d %08llx %d\n",
1054 mmio->is_write, mmio->phys_addr, mmio->len);
1055 return false;
1056 }
1057
1058 spin_lock(&vcpu->kvm->arch.vgic.lock);
1059 offset = mmio->phys_addr - range->base - base;
c3c91836
MZ
1060 if (vgic_validate_access(dist, range, offset)) {
1061 updated_state = range->handle_mmio(vcpu, mmio, offset);
1062 } else {
1063 vgic_reg_access(mmio, NULL, offset,
1064 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
1065 updated_state = false;
1066 }
b47ef92a
MZ
1067 spin_unlock(&vcpu->kvm->arch.vgic.lock);
1068 kvm_prepare_mmio(run, mmio);
1069 kvm_handle_mmio_return(vcpu, run);
1070
5863c2ce
MZ
1071 if (updated_state)
1072 vgic_kick_vcpus(vcpu->kvm);
1073
b47ef92a
MZ
1074 return true;
1075}
1076
c1bfb577
MZ
1077static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
1078{
1079 return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
1080}
1081
b47ef92a
MZ
1082static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
1083{
1084 struct kvm *kvm = vcpu->kvm;
1085 struct vgic_dist *dist = &kvm->arch.vgic;
1086 int nrcpus = atomic_read(&kvm->online_vcpus);
1087 u8 target_cpus;
1088 int sgi, mode, c, vcpu_id;
1089
1090 vcpu_id = vcpu->vcpu_id;
1091
1092 sgi = reg & 0xf;
1093 target_cpus = (reg >> 16) & 0xff;
1094 mode = (reg >> 24) & 3;
1095
1096 switch (mode) {
1097 case 0:
1098 if (!target_cpus)
1099 return;
91021a6c 1100 break;
b47ef92a
MZ
1101
1102 case 1:
1103 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1104 break;
1105
1106 case 2:
1107 target_cpus = 1 << vcpu_id;
1108 break;
1109 }
1110
1111 kvm_for_each_vcpu(c, vcpu, kvm) {
1112 if (target_cpus & 1) {
1113 /* Flag the SGI as pending */
227844f5 1114 vgic_dist_irq_set_pending(vcpu, sgi);
c1bfb577 1115 *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
b47ef92a
MZ
1116 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1117 }
1118
1119 target_cpus >>= 1;
1120 }
1121}
1122
fb65ab63
MZ
1123static int vgic_nr_shared_irqs(struct vgic_dist *dist)
1124{
1125 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
1126}
1127
b47ef92a
MZ
1128static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1129{
9d949dce
MZ
1130 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1131 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1132 unsigned long pending_private, pending_shared;
fb65ab63 1133 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
1134 int vcpu_id;
1135
1136 vcpu_id = vcpu->vcpu_id;
1137 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1138 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1139
227844f5 1140 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
1141 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1142 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1143
227844f5 1144 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce 1145 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
fb65ab63 1146 bitmap_and(pend_shared, pending, enabled, nr_shared);
9d949dce
MZ
1147 bitmap_and(pend_shared, pend_shared,
1148 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
fb65ab63 1149 nr_shared);
9d949dce
MZ
1150
1151 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
fb65ab63 1152 pending_shared = find_first_bit(pend_shared, nr_shared);
9d949dce 1153 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
fb65ab63 1154 pending_shared < vgic_nr_shared_irqs(dist));
b47ef92a
MZ
1155}
1156
1157/*
1158 * Update the interrupt state and determine which CPUs have pending
1159 * interrupts. Must be called with distributor lock held.
1160 */
1161static void vgic_update_state(struct kvm *kvm)
1162{
1163 struct vgic_dist *dist = &kvm->arch.vgic;
1164 struct kvm_vcpu *vcpu;
1165 int c;
1166
1167 if (!dist->enabled) {
c1bfb577 1168 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
1169 return;
1170 }
1171
1172 kvm_for_each_vcpu(c, vcpu, kvm) {
1173 if (compute_pending_for_cpu(vcpu)) {
1174 pr_debug("CPU%d has pending interrupts\n", c);
c1bfb577 1175 set_bit(c, dist->irq_pending_on_cpu);
b47ef92a
MZ
1176 }
1177 }
1a89dd91 1178}
330690cd 1179
8d5c6b06
MZ
1180static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1181{
8f186d52 1182 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
1183}
1184
1185static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1186 struct vgic_lr vlr)
1187{
8f186d52 1188 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
1189}
1190
69bb2c9f
MZ
1191static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1192 struct vgic_lr vlr)
1193{
8f186d52 1194 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
1195}
1196
1197static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1198{
8f186d52 1199 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
1200}
1201
8d6a0313
MZ
1202static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1203{
8f186d52 1204 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
1205}
1206
495dd859
MZ
1207static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1208{
8f186d52 1209 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
1210}
1211
909d9b50
MZ
1212static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1213{
8f186d52 1214 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
1215}
1216
1217static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1218{
8f186d52 1219 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
1220}
1221
beee38b9
MZ
1222static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1223{
8f186d52 1224 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1225}
1226
1227static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1228{
8f186d52 1229 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1230}
1231
da8dafd1
MZ
1232static inline void vgic_enable(struct kvm_vcpu *vcpu)
1233{
8f186d52 1234 vgic_ops->enable(vcpu);
da8dafd1
MZ
1235}
1236
8d5c6b06
MZ
1237static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1238{
1239 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1240 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1241
1242 vlr.state = 0;
1243 vgic_set_lr(vcpu, lr_nr, vlr);
1244 clear_bit(lr_nr, vgic_cpu->lr_used);
1245 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1246}
a1fcb44e
MZ
1247
1248/*
1249 * An interrupt may have been disabled after being made pending on the
1250 * CPU interface (the classic case is a timer running while we're
1251 * rebooting the guest - the interrupt would kick as soon as the CPU
1252 * interface gets enabled, with deadly consequences).
1253 *
1254 * The solution is to examine already active LRs, and check the
1255 * interrupt is still enabled. If not, just retire it.
1256 */
1257static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1258{
1259 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1260 int lr;
1261
8f186d52 1262 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1263 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1264
8d5c6b06
MZ
1265 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1266 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1267 if (vgic_irq_is_queued(vcpu, vlr.irq))
1268 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1269 }
1270 }
1271}
1272
9d949dce
MZ
1273/*
1274 * Queue an interrupt to a CPU virtual interface. Return true on success,
1275 * or false if it wasn't possible to queue it.
1276 */
1277static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1278{
1279 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5fb66da6 1280 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
8d5c6b06 1281 struct vgic_lr vlr;
9d949dce
MZ
1282 int lr;
1283
1284 /* Sanitize the input... */
1285 BUG_ON(sgi_source_id & ~7);
1286 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
5fb66da6 1287 BUG_ON(irq >= dist->nr_irqs);
9d949dce
MZ
1288
1289 kvm_debug("Queue IRQ%d\n", irq);
1290
1291 lr = vgic_cpu->vgic_irq_lr_map[irq];
1292
1293 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1294 if (lr != LR_EMPTY) {
1295 vlr = vgic_get_lr(vcpu, lr);
1296 if (vlr.source == sgi_source_id) {
1297 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1298 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1299 vlr.state |= LR_STATE_PENDING;
1300 vgic_set_lr(vcpu, lr, vlr);
1301 return true;
1302 }
9d949dce
MZ
1303 }
1304
1305 /* Try to use another LR for this interrupt */
1306 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1307 vgic->nr_lr);
1308 if (lr >= vgic->nr_lr)
9d949dce
MZ
1309 return false;
1310
1311 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1312 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1313 set_bit(lr, vgic_cpu->lr_used);
1314
8d5c6b06
MZ
1315 vlr.irq = irq;
1316 vlr.source = sgi_source_id;
1317 vlr.state = LR_STATE_PENDING;
9d949dce 1318 if (!vgic_irq_is_edge(vcpu, irq))
8d5c6b06
MZ
1319 vlr.state |= LR_EOI_INT;
1320
1321 vgic_set_lr(vcpu, lr, vlr);
9d949dce
MZ
1322
1323 return true;
1324}
1325
1326static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1327{
1328 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1329 unsigned long sources;
1330 int vcpu_id = vcpu->vcpu_id;
1331 int c;
1332
c1bfb577 1333 sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
9d949dce 1334
fc675e35 1335 for_each_set_bit(c, &sources, dist->nr_cpus) {
9d949dce
MZ
1336 if (vgic_queue_irq(vcpu, c, irq))
1337 clear_bit(c, &sources);
1338 }
1339
c1bfb577 1340 *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
9d949dce
MZ
1341
1342 /*
1343 * If the sources bitmap has been cleared it means that we
1344 * could queue all the SGIs onto link registers (see the
1345 * clear_bit above), and therefore we are done with them in
1346 * our emulated gic and can get rid of them.
1347 */
1348 if (!sources) {
227844f5 1349 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1350 vgic_cpu_irq_clear(vcpu, irq);
1351 return true;
1352 }
1353
1354 return false;
1355}
1356
1357static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1358{
dbf20f9d 1359 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1360 return true; /* level interrupt, already queued */
1361
1362 if (vgic_queue_irq(vcpu, 0, irq)) {
1363 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1364 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1365 vgic_cpu_irq_clear(vcpu, irq);
1366 } else {
dbf20f9d 1367 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1368 }
1369
1370 return true;
1371 }
1372
1373 return false;
1374}
1375
1376/*
1377 * Fill the list registers with pending interrupts before running the
1378 * guest.
1379 */
1380static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1381{
1382 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1383 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1384 int i, vcpu_id;
1385 int overflow = 0;
1386
1387 vcpu_id = vcpu->vcpu_id;
1388
1389 /*
1390 * We may not have any pending interrupt, or the interrupts
1391 * may have been serviced from another vcpu. In all cases,
1392 * move along.
1393 */
1394 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1395 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1396 goto epilog;
1397 }
1398
1399 /* SGIs */
1400 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1401 if (!vgic_queue_sgi(vcpu, i))
1402 overflow = 1;
1403 }
1404
1405 /* PPIs */
1406 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1407 if (!vgic_queue_hwirq(vcpu, i))
1408 overflow = 1;
1409 }
1410
1411 /* SPIs */
fb65ab63 1412 for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
9d949dce
MZ
1413 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1414 overflow = 1;
1415 }
1416
1417epilog:
1418 if (overflow) {
909d9b50 1419 vgic_enable_underflow(vcpu);
9d949dce 1420 } else {
909d9b50 1421 vgic_disable_underflow(vcpu);
9d949dce
MZ
1422 /*
1423 * We're about to run this VCPU, and we've consumed
1424 * everything the distributor had in store for
1425 * us. Claim we don't have anything pending. We'll
1426 * adjust that if needed while exiting.
1427 */
c1bfb577 1428 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1429 }
1430}
1431
1432static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1433{
495dd859 1434 u32 status = vgic_get_interrupt_status(vcpu);
9d949dce
MZ
1435 bool level_pending = false;
1436
495dd859 1437 kvm_debug("STATUS = %08x\n", status);
9d949dce 1438
495dd859 1439 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1440 /*
1441 * Some level interrupts have been EOIed. Clear their
1442 * active bit.
1443 */
8d6a0313
MZ
1444 u64 eisr = vgic_get_eisr(vcpu);
1445 unsigned long *eisr_ptr = (unsigned long *)&eisr;
8d5c6b06 1446 int lr;
9d949dce 1447
8f186d52 1448 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1449 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1450 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1451
dbf20f9d 1452 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1453 WARN_ON(vlr.state & LR_STATE_MASK);
1454 vlr.state = 0;
1455 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1456
faa1b46c
CD
1457 /*
1458 * If the IRQ was EOIed it was also ACKed and we we
1459 * therefore assume we can clear the soft pending
1460 * state (should it had been set) for this interrupt.
1461 *
1462 * Note: if the IRQ soft pending state was set after
1463 * the IRQ was acked, it actually shouldn't be
1464 * cleared, but we have no way of knowing that unless
1465 * we start trapping ACKs when the soft-pending state
1466 * is set.
1467 */
1468 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1469
9d949dce 1470 /* Any additional pending interrupt? */
faa1b46c 1471 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1472 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1473 level_pending = true;
1474 } else {
faa1b46c 1475 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1476 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1477 }
75da01e1
MZ
1478
1479 /*
1480 * Despite being EOIed, the LR may not have
1481 * been marked as empty.
1482 */
69bb2c9f 1483 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1484 }
1485 }
1486
495dd859 1487 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1488 vgic_disable_underflow(vcpu);
9d949dce
MZ
1489
1490 return level_pending;
1491}
1492
1493/*
33c83cb3
MZ
1494 * Sync back the VGIC state after a guest run. The distributor lock is
1495 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1496 */
1497static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1498{
1499 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1500 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1501 u64 elrsr;
1502 unsigned long *elrsr_ptr;
9d949dce
MZ
1503 int lr, pending;
1504 bool level_pending;
1505
1506 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f
MZ
1507 elrsr = vgic_get_elrsr(vcpu);
1508 elrsr_ptr = (unsigned long *)&elrsr;
9d949dce
MZ
1509
1510 /* Clear mappings for empty LRs */
8f186d52 1511 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
8d5c6b06 1512 struct vgic_lr vlr;
9d949dce
MZ
1513
1514 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1515 continue;
1516
8d5c6b06 1517 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1518
5fb66da6 1519 BUG_ON(vlr.irq >= dist->nr_irqs);
8d5c6b06 1520 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1521 }
1522
1523 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1524 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1525 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1526 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1527}
1528
1529void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1530{
1531 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1532
1533 if (!irqchip_in_kernel(vcpu->kvm))
1534 return;
1535
1536 spin_lock(&dist->lock);
1537 __kvm_vgic_flush_hwstate(vcpu);
1538 spin_unlock(&dist->lock);
1539}
1540
1541void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1542{
33c83cb3
MZ
1543 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1544
9d949dce
MZ
1545 if (!irqchip_in_kernel(vcpu->kvm))
1546 return;
1547
33c83cb3 1548 spin_lock(&dist->lock);
9d949dce 1549 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1550 spin_unlock(&dist->lock);
9d949dce
MZ
1551}
1552
1553int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1554{
1555 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1556
1557 if (!irqchip_in_kernel(vcpu->kvm))
1558 return 0;
1559
c1bfb577 1560 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1561}
1562
5863c2ce
MZ
1563static void vgic_kick_vcpus(struct kvm *kvm)
1564{
1565 struct kvm_vcpu *vcpu;
1566 int c;
1567
1568 /*
1569 * We've injected an interrupt, time to find out who deserves
1570 * a good kick...
1571 */
1572 kvm_for_each_vcpu(c, vcpu, kvm) {
1573 if (kvm_vgic_vcpu_pending_irq(vcpu))
1574 kvm_vcpu_kick(vcpu);
1575 }
1576}
1577
1578static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1579{
227844f5 1580 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1581
1582 /*
1583 * Only inject an interrupt if:
1584 * - edge triggered and we have a rising edge
1585 * - level triggered and we change level
1586 */
faa1b46c
CD
1587 if (edge_triggered) {
1588 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1589 return level > state;
faa1b46c
CD
1590 } else {
1591 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1592 return level != state;
faa1b46c 1593 }
5863c2ce
MZ
1594}
1595
227844f5 1596static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
5863c2ce
MZ
1597 unsigned int irq_num, bool level)
1598{
1599 struct vgic_dist *dist = &kvm->arch.vgic;
1600 struct kvm_vcpu *vcpu;
227844f5 1601 int edge_triggered, level_triggered;
5863c2ce
MZ
1602 int enabled;
1603 bool ret = true;
1604
1605 spin_lock(&dist->lock);
1606
1607 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1608 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1609 level_triggered = !edge_triggered;
5863c2ce
MZ
1610
1611 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1612 ret = false;
1613 goto out;
1614 }
1615
1616 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1617 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1618 vcpu = kvm_get_vcpu(kvm, cpuid);
1619 }
1620
1621 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1622
faa1b46c
CD
1623 if (level) {
1624 if (level_triggered)
1625 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1626 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1627 } else {
1628 if (level_triggered) {
1629 vgic_dist_irq_clear_level(vcpu, irq_num);
1630 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1631 vgic_dist_irq_clear_pending(vcpu, irq_num);
1632 } else {
1633 vgic_dist_irq_clear_pending(vcpu, irq_num);
1634 }
1635 }
5863c2ce
MZ
1636
1637 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1638
1639 if (!enabled) {
1640 ret = false;
1641 goto out;
1642 }
1643
dbf20f9d 1644 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1645 /*
1646 * Level interrupt in progress, will be picked up
1647 * when EOId.
1648 */
1649 ret = false;
1650 goto out;
1651 }
1652
1653 if (level) {
1654 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1655 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1656 }
1657
1658out:
1659 spin_unlock(&dist->lock);
1660
1661 return ret;
1662}
1663
1664/**
1665 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1666 * @kvm: The VM structure pointer
1667 * @cpuid: The CPU for PPIs
1668 * @irq_num: The IRQ number that is assigned to the device
1669 * @level: Edge-triggered: true: to trigger the interrupt
1670 * false: to ignore the call
1671 * Level-sensitive true: activates an interrupt
1672 * false: deactivates an interrupt
1673 *
1674 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1675 * level-sensitive interrupts. You can think of the level parameter as 1
1676 * being HIGH and 0 being LOW and all devices being active-HIGH.
1677 */
1678int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1679 bool level)
1680{
71afaba4
MZ
1681 if (likely(vgic_initialized(kvm)) &&
1682 vgic_update_irq_pending(kvm, cpuid, irq_num, level))
5863c2ce
MZ
1683 vgic_kick_vcpus(kvm);
1684
1685 return 0;
1686}
1687
01ac5e34
MZ
1688static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1689{
1690 /*
1691 * We cannot rely on the vgic maintenance interrupt to be
1692 * delivered synchronously. This means we can only use it to
1693 * exit the VM, and we perform the handling of EOIed
1694 * interrupts on the exit path (see vgic_process_maintenance).
1695 */
1696 return IRQ_HANDLED;
1697}
1698
c1bfb577
MZ
1699void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1700{
1701 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1702
1703 kfree(vgic_cpu->pending_shared);
1704 kfree(vgic_cpu->vgic_irq_lr_map);
1705 vgic_cpu->pending_shared = NULL;
1706 vgic_cpu->vgic_irq_lr_map = NULL;
1707}
1708
1709static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1710{
1711 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1712
1713 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1714 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1715 vgic_cpu->vgic_irq_lr_map = kzalloc(nr_irqs, GFP_KERNEL);
1716
1717 if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1718 kvm_vgic_vcpu_destroy(vcpu);
1719 return -ENOMEM;
1720 }
1721
1722 return 0;
1723}
1724
e1ba0207
CD
1725/**
1726 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1727 * @vcpu: pointer to the vcpu struct
1728 *
1729 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1730 * this vcpu and enable the VGIC for this VCPU
1731 */
4956f2bc 1732static void kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
01ac5e34
MZ
1733{
1734 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1735 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1736 int i;
1737
5fb66da6 1738 for (i = 0; i < dist->nr_irqs; i++) {
01ac5e34
MZ
1739 if (i < VGIC_NR_PPIS)
1740 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1741 vcpu->vcpu_id, i, 1);
1742 if (i < VGIC_NR_PRIVATE_IRQS)
1743 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1744 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1745
1746 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1747 }
1748
1749 /*
ca85f623
MZ
1750 * Store the number of LRs per vcpu, so we don't have to go
1751 * all the way to the distributor structure to find out. Only
1752 * assembly code should use this one.
01ac5e34 1753 */
8f186d52 1754 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1755
da8dafd1 1756 vgic_enable(vcpu);
01ac5e34
MZ
1757}
1758
c1bfb577
MZ
1759void kvm_vgic_destroy(struct kvm *kvm)
1760{
1761 struct vgic_dist *dist = &kvm->arch.vgic;
1762 struct kvm_vcpu *vcpu;
1763 int i;
1764
1765 kvm_for_each_vcpu(i, vcpu, kvm)
1766 kvm_vgic_vcpu_destroy(vcpu);
1767
1768 vgic_free_bitmap(&dist->irq_enabled);
1769 vgic_free_bitmap(&dist->irq_level);
1770 vgic_free_bitmap(&dist->irq_pending);
1771 vgic_free_bitmap(&dist->irq_soft_pend);
1772 vgic_free_bitmap(&dist->irq_queued);
1773 vgic_free_bitmap(&dist->irq_cfg);
1774 vgic_free_bytemap(&dist->irq_priority);
1775 if (dist->irq_spi_target) {
1776 for (i = 0; i < dist->nr_cpus; i++)
1777 vgic_free_bitmap(&dist->irq_spi_target[i]);
1778 }
1779 kfree(dist->irq_sgi_sources);
1780 kfree(dist->irq_spi_cpu);
1781 kfree(dist->irq_spi_target);
1782 kfree(dist->irq_pending_on_cpu);
1783 dist->irq_sgi_sources = NULL;
1784 dist->irq_spi_cpu = NULL;
1785 dist->irq_spi_target = NULL;
1786 dist->irq_pending_on_cpu = NULL;
1787}
1788
1789/*
1790 * Allocate and initialize the various data structures. Must be called
1791 * with kvm->lock held!
1792 */
1793static int vgic_init_maps(struct kvm *kvm)
1794{
1795 struct vgic_dist *dist = &kvm->arch.vgic;
1796 struct kvm_vcpu *vcpu;
1797 int nr_cpus, nr_irqs;
1798 int ret, i;
1799
4956f2bc
MZ
1800 if (dist->nr_cpus) /* Already allocated */
1801 return 0;
1802
1803 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1804 if (!nr_cpus) /* No vcpus? Can't be good... */
1805 return -EINVAL;
5fb66da6 1806
4956f2bc
MZ
1807 /*
1808 * If nobody configured the number of interrupts, use the
1809 * legacy one.
1810 */
5fb66da6
MZ
1811 if (!dist->nr_irqs)
1812 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1813
1814 nr_irqs = dist->nr_irqs;
c1bfb577
MZ
1815
1816 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1817 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1818 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1819 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1820 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1821 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1822 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1823
1824 if (ret)
1825 goto out;
1826
1827 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1828 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1829 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1830 GFP_KERNEL);
1831 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1832 GFP_KERNEL);
1833 if (!dist->irq_sgi_sources ||
1834 !dist->irq_spi_cpu ||
1835 !dist->irq_spi_target ||
1836 !dist->irq_pending_on_cpu) {
1837 ret = -ENOMEM;
1838 goto out;
1839 }
1840
1841 for (i = 0; i < nr_cpus; i++)
1842 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1843 nr_cpus, nr_irqs);
1844
1845 if (ret)
1846 goto out;
1847
1848 kvm_for_each_vcpu(i, vcpu, kvm) {
1849 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1850 if (ret) {
1851 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1852 break;
1853 }
1854 }
1855
4956f2bc
MZ
1856 for (i = VGIC_NR_PRIVATE_IRQS; i < dist->nr_irqs; i += 4)
1857 vgic_set_target_reg(kvm, 0, i);
1858
c1bfb577
MZ
1859out:
1860 if (ret)
1861 kvm_vgic_destroy(kvm);
1862
1863 return ret;
1864}
1865
e1ba0207
CD
1866/**
1867 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1868 * @kvm: pointer to the kvm struct
1869 *
1870 * Map the virtual CPU interface into the VM before running any VCPUs. We
1871 * can't do this at creation time, because user space must first set the
1872 * virtual CPU interface address in the guest physical address space. Also
1873 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1874 */
01ac5e34
MZ
1875int kvm_vgic_init(struct kvm *kvm)
1876{
4956f2bc 1877 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1878 int ret = 0, i;
1879
e1ba0207
CD
1880 if (!irqchip_in_kernel(kvm))
1881 return 0;
1882
01ac5e34
MZ
1883 mutex_lock(&kvm->lock);
1884
1885 if (vgic_initialized(kvm))
1886 goto out;
1887
1888 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1889 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1890 kvm_err("Need to set vgic cpu and dist addresses first\n");
1891 ret = -ENXIO;
1892 goto out;
1893 }
1894
4956f2bc
MZ
1895 ret = vgic_init_maps(kvm);
1896 if (ret) {
1897 kvm_err("Unable to allocate maps\n");
1898 goto out;
1899 }
1900
01ac5e34 1901 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
8f186d52 1902 vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
01ac5e34
MZ
1903 if (ret) {
1904 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1905 goto out;
1906 }
1907
4956f2bc
MZ
1908 kvm_for_each_vcpu(i, vcpu, kvm)
1909 kvm_vgic_vcpu_init(vcpu);
01ac5e34
MZ
1910
1911 kvm->arch.vgic.ready = true;
1912out:
4956f2bc
MZ
1913 if (ret)
1914 kvm_vgic_destroy(kvm);
01ac5e34
MZ
1915 mutex_unlock(&kvm->lock);
1916 return ret;
1917}
1918
1919int kvm_vgic_create(struct kvm *kvm)
1920{
7330672b
CD
1921 int i, vcpu_lock_idx = -1, ret = 0;
1922 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1923
1924 mutex_lock(&kvm->lock);
1925
7330672b 1926 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1927 ret = -EEXIST;
1928 goto out;
1929 }
1930
7330672b
CD
1931 /*
1932 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1933 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1934 * that no other VCPUs are run while we create the vgic.
1935 */
1936 kvm_for_each_vcpu(i, vcpu, kvm) {
1937 if (!mutex_trylock(&vcpu->mutex))
1938 goto out_unlock;
1939 vcpu_lock_idx = i;
1940 }
1941
1942 kvm_for_each_vcpu(i, vcpu, kvm) {
1943 if (vcpu->arch.has_run_once) {
1944 ret = -EBUSY;
1945 goto out_unlock;
1946 }
1947 }
1948
01ac5e34 1949 spin_lock_init(&kvm->arch.vgic.lock);
f982cf4e 1950 kvm->arch.vgic.in_kernel = true;
8f186d52 1951 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
1952 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1953 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1954
7330672b
CD
1955out_unlock:
1956 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1957 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1958 mutex_unlock(&vcpu->mutex);
1959 }
1960
01ac5e34
MZ
1961out:
1962 mutex_unlock(&kvm->lock);
1963 return ret;
1964}
1965
1fa451bc 1966static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
1967{
1968 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1969 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1970
1971 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1972 return 0;
1973 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1974 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1975 return -EBUSY;
1976 return 0;
1977}
1978
1979static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1980 phys_addr_t addr, phys_addr_t size)
1981{
1982 int ret;
1983
ce01e4e8
CD
1984 if (addr & ~KVM_PHYS_MASK)
1985 return -E2BIG;
1986
1987 if (addr & (SZ_4K - 1))
1988 return -EINVAL;
1989
330690cd
CD
1990 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1991 return -EEXIST;
1992 if (addr + size < addr)
1993 return -EINVAL;
1994
30c21170 1995 *ioaddr = addr;
330690cd
CD
1996 ret = vgic_ioaddr_overlap(kvm);
1997 if (ret)
30c21170
HW
1998 *ioaddr = VGIC_ADDR_UNDEF;
1999
330690cd
CD
2000 return ret;
2001}
2002
ce01e4e8
CD
2003/**
2004 * kvm_vgic_addr - set or get vgic VM base addresses
2005 * @kvm: pointer to the vm struct
2006 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
2007 * @addr: pointer to address value
2008 * @write: if true set the address in the VM address space, if false read the
2009 * address
2010 *
2011 * Set or get the vgic base addresses for the distributor and the virtual CPU
2012 * interface in the VM physical address space. These addresses are properties
2013 * of the emulated core/SoC and therefore user space initially knows this
2014 * information.
2015 */
2016int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
2017{
2018 int r = 0;
2019 struct vgic_dist *vgic = &kvm->arch.vgic;
2020
330690cd
CD
2021 mutex_lock(&kvm->lock);
2022 switch (type) {
2023 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
2024 if (write) {
2025 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
2026 *addr, KVM_VGIC_V2_DIST_SIZE);
2027 } else {
2028 *addr = vgic->vgic_dist_base;
2029 }
330690cd
CD
2030 break;
2031 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
2032 if (write) {
2033 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
2034 *addr, KVM_VGIC_V2_CPU_SIZE);
2035 } else {
2036 *addr = vgic->vgic_cpu_base;
2037 }
330690cd
CD
2038 break;
2039 default:
2040 r = -ENODEV;
2041 }
2042
2043 mutex_unlock(&kvm->lock);
2044 return r;
2045}
7330672b 2046
c07a0191
CD
2047static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
2048 struct kvm_exit_mmio *mmio, phys_addr_t offset)
2049{
fa20f5ae 2050 bool updated = false;
beee38b9
MZ
2051 struct vgic_vmcr vmcr;
2052 u32 *vmcr_field;
2053 u32 reg;
2054
2055 vgic_get_vmcr(vcpu, &vmcr);
fa20f5ae
CD
2056
2057 switch (offset & ~0x3) {
2058 case GIC_CPU_CTRL:
beee38b9 2059 vmcr_field = &vmcr.ctlr;
fa20f5ae
CD
2060 break;
2061 case GIC_CPU_PRIMASK:
beee38b9 2062 vmcr_field = &vmcr.pmr;
fa20f5ae
CD
2063 break;
2064 case GIC_CPU_BINPOINT:
beee38b9 2065 vmcr_field = &vmcr.bpr;
fa20f5ae
CD
2066 break;
2067 case GIC_CPU_ALIAS_BINPOINT:
beee38b9 2068 vmcr_field = &vmcr.abpr;
fa20f5ae 2069 break;
beee38b9
MZ
2070 default:
2071 BUG();
fa20f5ae
CD
2072 }
2073
2074 if (!mmio->is_write) {
beee38b9 2075 reg = *vmcr_field;
fa20f5ae
CD
2076 mmio_data_write(mmio, ~0, reg);
2077 } else {
2078 reg = mmio_data_read(mmio, ~0);
beee38b9
MZ
2079 if (reg != *vmcr_field) {
2080 *vmcr_field = reg;
2081 vgic_set_vmcr(vcpu, &vmcr);
fa20f5ae 2082 updated = true;
beee38b9 2083 }
fa20f5ae
CD
2084 }
2085 return updated;
2086}
2087
2088static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
2089 struct kvm_exit_mmio *mmio, phys_addr_t offset)
2090{
2091 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
c07a0191
CD
2092}
2093
fa20f5ae
CD
2094static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
2095 struct kvm_exit_mmio *mmio,
2096 phys_addr_t offset)
2097{
2098 u32 reg;
2099
2100 if (mmio->is_write)
2101 return false;
2102
2103 /* GICC_IIDR */
2104 reg = (PRODUCT_ID_KVM << 20) |
2105 (GICC_ARCH_VERSION_V2 << 16) |
2106 (IMPLEMENTER_ARM << 0);
2107 mmio_data_write(mmio, ~0, reg);
2108 return false;
2109}
2110
2111/*
2112 * CPU Interface Register accesses - these are not accessed by the VM, but by
2113 * user space for saving and restoring VGIC state.
2114 */
c07a0191
CD
2115static const struct mmio_range vgic_cpu_ranges[] = {
2116 {
2117 .base = GIC_CPU_CTRL,
2118 .len = 12,
2119 .handle_mmio = handle_cpu_mmio_misc,
2120 },
2121 {
2122 .base = GIC_CPU_ALIAS_BINPOINT,
2123 .len = 4,
fa20f5ae 2124 .handle_mmio = handle_mmio_abpr,
c07a0191
CD
2125 },
2126 {
2127 .base = GIC_CPU_ACTIVEPRIO,
2128 .len = 16,
fa20f5ae 2129 .handle_mmio = handle_mmio_raz_wi,
c07a0191
CD
2130 },
2131 {
2132 .base = GIC_CPU_IDENT,
2133 .len = 4,
fa20f5ae 2134 .handle_mmio = handle_cpu_mmio_ident,
c07a0191
CD
2135 },
2136};
2137
2138static int vgic_attr_regs_access(struct kvm_device *dev,
2139 struct kvm_device_attr *attr,
2140 u32 *reg, bool is_write)
2141{
2142 const struct mmio_range *r = NULL, *ranges;
2143 phys_addr_t offset;
2144 int ret, cpuid, c;
2145 struct kvm_vcpu *vcpu, *tmp_vcpu;
2146 struct vgic_dist *vgic;
2147 struct kvm_exit_mmio mmio;
2148
2149 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2150 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
2151 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
2152
2153 mutex_lock(&dev->kvm->lock);
2154
4956f2bc
MZ
2155 ret = vgic_init_maps(dev->kvm);
2156 if (ret)
2157 goto out;
2158
c07a0191
CD
2159 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
2160 ret = -EINVAL;
2161 goto out;
2162 }
2163
2164 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
2165 vgic = &dev->kvm->arch.vgic;
2166
2167 mmio.len = 4;
2168 mmio.is_write = is_write;
2169 if (is_write)
2170 mmio_data_write(&mmio, ~0, *reg);
2171 switch (attr->group) {
2172 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2173 mmio.phys_addr = vgic->vgic_dist_base + offset;
2174 ranges = vgic_dist_ranges;
2175 break;
2176 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2177 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2178 ranges = vgic_cpu_ranges;
2179 break;
2180 default:
2181 BUG();
2182 }
2183 r = find_matching_range(ranges, &mmio, offset);
2184
2185 if (unlikely(!r || !r->handle_mmio)) {
2186 ret = -ENXIO;
2187 goto out;
2188 }
2189
2190
2191 spin_lock(&vgic->lock);
2192
2193 /*
2194 * Ensure that no other VCPU is running by checking the vcpu->cpu
2195 * field. If no other VPCUs are running we can safely access the VGIC
2196 * state, because even if another VPU is run after this point, that
2197 * VCPU will not touch the vgic state, because it will block on
2198 * getting the vgic->lock in kvm_vgic_sync_hwstate().
2199 */
2200 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2201 if (unlikely(tmp_vcpu->cpu != -1)) {
2202 ret = -EBUSY;
2203 goto out_vgic_unlock;
2204 }
2205 }
2206
cbd333a4
CD
2207 /*
2208 * Move all pending IRQs from the LRs on all VCPUs so the pending
2209 * state can be properly represented in the register state accessible
2210 * through this API.
2211 */
2212 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2213 vgic_unqueue_irqs(tmp_vcpu);
2214
c07a0191
CD
2215 offset -= r->base;
2216 r->handle_mmio(vcpu, &mmio, offset);
2217
2218 if (!is_write)
2219 *reg = mmio_data_read(&mmio, ~0);
2220
2221 ret = 0;
2222out_vgic_unlock:
2223 spin_unlock(&vgic->lock);
2224out:
2225 mutex_unlock(&dev->kvm->lock);
2226 return ret;
2227}
2228
7330672b
CD
2229static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2230{
ce01e4e8
CD
2231 int r;
2232
2233 switch (attr->group) {
2234 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2235 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2236 u64 addr;
2237 unsigned long type = (unsigned long)attr->attr;
2238
2239 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2240 return -EFAULT;
2241
2242 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2243 return (r == -ENODEV) ? -ENXIO : r;
2244 }
c07a0191
CD
2245
2246 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2247 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2248 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2249 u32 reg;
2250
2251 if (get_user(reg, uaddr))
2252 return -EFAULT;
2253
2254 return vgic_attr_regs_access(dev, attr, &reg, true);
2255 }
2256
ce01e4e8
CD
2257 }
2258
7330672b
CD
2259 return -ENXIO;
2260}
2261
2262static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2263{
ce01e4e8
CD
2264 int r = -ENXIO;
2265
2266 switch (attr->group) {
2267 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2268 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2269 u64 addr;
2270 unsigned long type = (unsigned long)attr->attr;
2271
2272 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2273 if (r)
2274 return (r == -ENODEV) ? -ENXIO : r;
2275
2276 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2277 return -EFAULT;
c07a0191
CD
2278 break;
2279 }
2280
2281 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2282 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2283 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2284 u32 reg = 0;
2285
2286 r = vgic_attr_regs_access(dev, attr, &reg, false);
2287 if (r)
2288 return r;
2289 r = put_user(reg, uaddr);
2290 break;
ce01e4e8 2291 }
c07a0191 2292
ce01e4e8
CD
2293 }
2294
2295 return r;
7330672b
CD
2296}
2297
c07a0191
CD
2298static int vgic_has_attr_regs(const struct mmio_range *ranges,
2299 phys_addr_t offset)
2300{
2301 struct kvm_exit_mmio dev_attr_mmio;
2302
2303 dev_attr_mmio.len = 4;
2304 if (find_matching_range(ranges, &dev_attr_mmio, offset))
2305 return 0;
2306 else
2307 return -ENXIO;
2308}
2309
7330672b
CD
2310static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2311{
c07a0191
CD
2312 phys_addr_t offset;
2313
ce01e4e8
CD
2314 switch (attr->group) {
2315 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2316 switch (attr->attr) {
2317 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2318 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2319 return 0;
2320 }
2321 break;
c07a0191
CD
2322 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2323 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2324 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2325 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2326 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2327 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 2328 }
7330672b
CD
2329 return -ENXIO;
2330}
2331
2332static void vgic_destroy(struct kvm_device *dev)
2333{
2334 kfree(dev);
2335}
2336
2337static int vgic_create(struct kvm_device *dev, u32 type)
2338{
2339 return kvm_vgic_create(dev->kvm);
2340}
2341
c06a841b 2342static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
7330672b
CD
2343 .name = "kvm-arm-vgic",
2344 .create = vgic_create,
2345 .destroy = vgic_destroy,
2346 .set_attr = vgic_set_attr,
2347 .get_attr = vgic_get_attr,
2348 .has_attr = vgic_has_attr,
2349};
c06a841b
WD
2350
2351static void vgic_init_maintenance_interrupt(void *info)
2352{
2353 enable_percpu_irq(vgic->maint_irq, 0);
2354}
2355
2356static int vgic_cpu_notify(struct notifier_block *self,
2357 unsigned long action, void *cpu)
2358{
2359 switch (action) {
2360 case CPU_STARTING:
2361 case CPU_STARTING_FROZEN:
2362 vgic_init_maintenance_interrupt(NULL);
2363 break;
2364 case CPU_DYING:
2365 case CPU_DYING_FROZEN:
2366 disable_percpu_irq(vgic->maint_irq);
2367 break;
2368 }
2369
2370 return NOTIFY_OK;
2371}
2372
2373static struct notifier_block vgic_cpu_nb = {
2374 .notifier_call = vgic_cpu_notify,
2375};
2376
2377static const struct of_device_id vgic_ids[] = {
2378 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2379 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2380 {},
2381};
2382
2383int kvm_vgic_hyp_init(void)
2384{
2385 const struct of_device_id *matched_id;
a875dafc
CD
2386 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2387 const struct vgic_params **);
c06a841b
WD
2388 struct device_node *vgic_node;
2389 int ret;
2390
2391 vgic_node = of_find_matching_node_and_match(NULL,
2392 vgic_ids, &matched_id);
2393 if (!vgic_node) {
2394 kvm_err("error: no compatible GIC node found\n");
2395 return -ENODEV;
2396 }
2397
2398 vgic_probe = matched_id->data;
2399 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2400 if (ret)
2401 return ret;
2402
2403 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2404 "vgic", kvm_get_running_vcpus());
2405 if (ret) {
2406 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2407 return ret;
2408 }
2409
2410 ret = __register_cpu_notifier(&vgic_cpu_nb);
2411 if (ret) {
2412 kvm_err("Cannot register vgic CPU notifier\n");
2413 goto out_free_irq;
2414 }
2415
2416 /* Callback into for arch code for setup */
2417 vgic_arch_setup(vgic);
2418
2419 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2420
2421 return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2422 KVM_DEV_TYPE_ARM_VGIC_V2);
2423
2424out_free_irq:
2425 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2426 return ret;
2427}
This page took 0.499155 seconds and 5 git commands to generate.