KVM: arm: use GIC support unconditionally
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
6c3d63c9 27#include <linux/rculist.h>
2a2f3e26 28#include <linux/uaccess.h>
01ac5e34 29
1a89dd91 30#include <asm/kvm_emulate.h>
01ac5e34
MZ
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
174178fe 33#include <trace/events/kvm.h>
6777f77f
AP
34#include <asm/kvm.h>
35#include <kvm/iodev.h>
1a89dd91 36
b47ef92a
MZ
37/*
38 * How the whole thing works (courtesy of Christoffer Dall):
39 *
40 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
41 * something is pending on the CPU interface.
42 * - Interrupts that are pending on the distributor are stored on the
43 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
44 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
45 * arch. timers).
b47ef92a
MZ
46 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
47 * recalculated
48 * - To calculate the oracle, we need info for each cpu from
49 * compute_pending_for_cpu, which considers:
227844f5
CD
50 * - PPI: dist->irq_pending & dist->irq_enable
51 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 52 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
53 * registers, stored on each vcpu. We only keep one bit of
54 * information per interrupt, making sure that only one vcpu can
55 * accept the interrupt.
7e362919 56 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
57 * - The same is true when injecting an interrupt, except that we only
58 * consider a single interrupt at a time. The irq_spi_cpu array
59 * contains the target CPU for each SPI.
60 *
61 * The handling of level interrupts adds some extra complexity. We
62 * need to track when the interrupt has been EOIed, so we can sample
63 * the 'line' again. This is achieved as such:
64 *
65 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 66 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
67 * will be ignored for further interrupts. The interrupt is injected
68 * into the vcpu with the GICH_LR_EOI bit set (generate a
69 * maintenance interrupt on EOI).
70 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 71 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 72 * interrupt line to be sampled again.
faa1b46c
CD
73 * - Note that level-triggered interrupts can also be set to pending from
74 * writes to GICD_ISPENDRn and lowering the external input line does not
75 * cause the interrupt to become inactive in such a situation.
76 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
77 * inactive as long as the external input line is held high.
6c3d63c9
MZ
78 *
79 *
80 * Initialization rules: there are multiple stages to the vgic
81 * initialization, both for the distributor and the CPU interfaces.
82 *
83 * Distributor:
84 *
85 * - kvm_vgic_early_init(): initialization of static data that doesn't
86 * depend on any sizing information or emulation type. No allocation
87 * is allowed there.
88 *
89 * - vgic_init(): allocation and initialization of the generic data
90 * structures that depend on sizing information (number of CPUs,
91 * number of interrupts). Also initializes the vcpu specific data
92 * structures. Can be executed lazily for GICv2.
93 * [to be renamed to kvm_vgic_init??]
94 *
95 * CPU Interface:
96 *
97 * - kvm_vgic_cpu_early_init(): initialization of static data that
98 * doesn't depend on any sizing information or emulation type. No
99 * allocation is allowed there.
b47ef92a
MZ
100 */
101
83215812 102#include "vgic.h"
330690cd 103
a1fcb44e 104static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 105static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
8d5c6b06
MZ
106static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
107static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
6c3d63c9
MZ
108static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
109 int virt_irq);
01ac5e34 110
8f186d52
MZ
111static const struct vgic_ops *vgic_ops;
112static const struct vgic_params *vgic;
b47ef92a 113
b26e5fda
AP
114static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
115{
116 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
117}
118
119static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
120{
121 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
122}
123
124int kvm_vgic_map_resources(struct kvm *kvm)
125{
126 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
127}
128
9662fb48 129/*
c1bfb577
MZ
130 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
131 * extracts u32s out of them.
9662fb48
VK
132 *
133 * This does not work on 64-bit BE systems, because the bitmap access
134 * will store two consecutive 32-bit words with the higher-addressed
135 * register's bits at the lower index and the lower-addressed register's
136 * bits at the higher index.
137 *
138 * Therefore, swizzle the register index when accessing the 32-bit word
139 * registers to access the right register's value.
140 */
141#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
142#define REG_OFFSET_SWIZZLE 1
143#else
144#define REG_OFFSET_SWIZZLE 0
145#endif
b47ef92a 146
c1bfb577
MZ
147static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
148{
149 int nr_longs;
150
151 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
152
153 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
154 if (!b->private)
155 return -ENOMEM;
156
157 b->shared = b->private + nr_cpus;
158
159 return 0;
160}
161
162static void vgic_free_bitmap(struct vgic_bitmap *b)
163{
164 kfree(b->private);
165 b->private = NULL;
166 b->shared = NULL;
167}
168
2df36a5d
CD
169/*
170 * Call this function to convert a u64 value to an unsigned long * bitmask
171 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
172 *
173 * Warning: Calling this function may modify *val.
174 */
175static unsigned long *u64_to_bitmask(u64 *val)
176{
177#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
178 *val = (*val >> 32) | (*val << 32);
179#endif
180 return (unsigned long *)val;
181}
182
83215812 183u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
b47ef92a
MZ
184{
185 offset >>= 2;
186 if (!offset)
c1bfb577 187 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 188 else
c1bfb577 189 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
190}
191
192static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
193 int cpuid, int irq)
194{
195 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 196 return test_bit(irq, x->private + cpuid);
b47ef92a 197
c1bfb577 198 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
199}
200
83215812
AP
201void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
202 int irq, int val)
b47ef92a
MZ
203{
204 unsigned long *reg;
205
206 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 207 reg = x->private + cpuid;
b47ef92a 208 } else {
c1bfb577 209 reg = x->shared;
b47ef92a
MZ
210 irq -= VGIC_NR_PRIVATE_IRQS;
211 }
212
213 if (val)
214 set_bit(irq, reg);
215 else
216 clear_bit(irq, reg);
217}
218
219static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
220{
c1bfb577 221 return x->private + cpuid;
b47ef92a
MZ
222}
223
83215812 224unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
b47ef92a 225{
c1bfb577
MZ
226 return x->shared;
227}
228
229static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
230{
231 int size;
232
233 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
234 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
235
236 x->private = kzalloc(size, GFP_KERNEL);
237 if (!x->private)
238 return -ENOMEM;
239
240 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
241 return 0;
242}
243
244static void vgic_free_bytemap(struct vgic_bytemap *b)
245{
246 kfree(b->private);
247 b->private = NULL;
248 b->shared = NULL;
b47ef92a
MZ
249}
250
83215812 251u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
b47ef92a 252{
c1bfb577
MZ
253 u32 *reg;
254
255 if (offset < VGIC_NR_PRIVATE_IRQS) {
256 reg = x->private;
257 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
258 } else {
259 reg = x->shared;
260 offset -= VGIC_NR_PRIVATE_IRQS;
261 }
262
263 return reg + (offset / sizeof(u32));
b47ef92a
MZ
264}
265
266#define VGIC_CFG_LEVEL 0
267#define VGIC_CFG_EDGE 1
268
269static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
270{
271 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272 int irq_val;
273
274 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
275 return irq_val == VGIC_CFG_EDGE;
276}
277
278static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
279{
280 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
281
282 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
283}
284
dbf20f9d 285static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
286{
287 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
288
dbf20f9d 289 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
290}
291
47a98b15
CD
292static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
293{
294 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
295
296 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
297}
298
dbf20f9d 299static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
300{
301 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
302
dbf20f9d 303 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
304}
305
dbf20f9d 306static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
307{
308 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
309
dbf20f9d 310 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
311}
312
47a98b15
CD
313static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
314{
315 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
316
317 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
318}
319
320static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
321{
322 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
323
324 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
325}
326
faa1b46c
CD
327static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
328{
329 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
330
331 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
332}
333
334static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
335{
336 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
337
338 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
339}
340
341static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
342{
343 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
344
345 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
346}
347
348static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
349{
350 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
351
352 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
353}
354
355static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
356{
357 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
358
359 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
360}
361
9d949dce
MZ
362static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
363{
364 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
365
227844f5 366 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
367}
368
83215812 369void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
370{
371 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
372
227844f5 373 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
374}
375
83215812 376void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
377{
378 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
379
227844f5 380 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
381}
382
383static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
384{
385 if (irq < VGIC_NR_PRIVATE_IRQS)
386 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
387 else
388 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
389 vcpu->arch.vgic_cpu.pending_shared);
390}
391
83215812 392void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
393{
394 if (irq < VGIC_NR_PRIVATE_IRQS)
395 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
396 else
397 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
398 vcpu->arch.vgic_cpu.pending_shared);
399}
400
dbf20f9d
CD
401static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
402{
7a67b4b7 403 return !vgic_irq_is_queued(vcpu, irq);
dbf20f9d
CD
404}
405
1a89dd91
MZ
406/**
407 * vgic_reg_access - access vgic register
408 * @mmio: pointer to the data describing the mmio access
409 * @reg: pointer to the virtual backing of vgic distributor data
410 * @offset: least significant 2 bits used for word offset
411 * @mode: ACCESS_ mode (see defines above)
412 *
413 * Helper to make vgic register access easier using one of the access
414 * modes defined for vgic register access
415 * (read,raz,write-ignored,setbit,clearbit,write)
416 */
83215812
AP
417void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
418 phys_addr_t offset, int mode)
1a89dd91
MZ
419{
420 int word_offset = (offset & 3) * 8;
421 u32 mask = (1UL << (mmio->len * 8)) - 1;
422 u32 regval;
423
424 /*
425 * Any alignment fault should have been delivered to the guest
426 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
427 */
428
429 if (reg) {
430 regval = *reg;
431 } else {
432 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
433 regval = 0;
434 }
435
436 if (mmio->is_write) {
437 u32 data = mmio_data_read(mmio, mask) << word_offset;
438 switch (ACCESS_WRITE_MASK(mode)) {
439 case ACCESS_WRITE_IGNORED:
440 return;
441
442 case ACCESS_WRITE_SETBIT:
443 regval |= data;
444 break;
445
446 case ACCESS_WRITE_CLEARBIT:
447 regval &= ~data;
448 break;
449
450 case ACCESS_WRITE_VALUE:
451 regval = (regval & ~(mask << word_offset)) | data;
452 break;
453 }
454 *reg = regval;
455 } else {
456 switch (ACCESS_READ_MASK(mode)) {
457 case ACCESS_READ_RAZ:
458 regval = 0;
459 /* fall through */
460
461 case ACCESS_READ_VALUE:
462 mmio_data_write(mmio, mask, regval >> word_offset);
463 }
464 }
465}
466
83215812
AP
467bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
468 phys_addr_t offset)
b47ef92a
MZ
469{
470 vgic_reg_access(mmio, NULL, offset,
471 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
472 return false;
473}
474
83215812
AP
475bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
476 phys_addr_t offset, int vcpu_id, int access)
b47ef92a 477{
d97f683d
AP
478 u32 *reg;
479 int mode = ACCESS_READ_VALUE | access;
480 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
481
482 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
483 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 484 if (mmio->is_write) {
d97f683d
AP
485 if (access & ACCESS_WRITE_CLEARBIT) {
486 if (offset < 4) /* Force SGI enabled */
487 *reg |= 0xffff;
488 vgic_retire_disabled_irqs(target_vcpu);
489 }
490 vgic_update_state(kvm);
b47ef92a
MZ
491 return true;
492 }
493
494 return false;
495}
496
83215812
AP
497bool vgic_handle_set_pending_reg(struct kvm *kvm,
498 struct kvm_exit_mmio *mmio,
499 phys_addr_t offset, int vcpu_id)
b47ef92a 500{
9da48b55 501 u32 *reg, orig;
faa1b46c 502 u32 level_mask;
d97f683d
AP
503 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
504 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 505
d97f683d 506 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
faa1b46c
CD
507 level_mask = (~(*reg));
508
509 /* Mark both level and edge triggered irqs as pending */
d97f683d 510 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 511 orig = *reg;
d97f683d 512 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 513
b47ef92a 514 if (mmio->is_write) {
faa1b46c
CD
515 /* Set the soft-pending flag only for level-triggered irqs */
516 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
517 vcpu_id, offset);
518 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c
CD
519 *reg &= level_mask;
520
9da48b55
CD
521 /* Ignore writes to SGIs */
522 if (offset < 2) {
523 *reg &= ~0xffff;
524 *reg |= orig & 0xffff;
525 }
526
d97f683d 527 vgic_update_state(kvm);
b47ef92a
MZ
528 return true;
529 }
530
531 return false;
532}
533
83215812
AP
534bool vgic_handle_clear_pending_reg(struct kvm *kvm,
535 struct kvm_exit_mmio *mmio,
536 phys_addr_t offset, int vcpu_id)
b47ef92a 537{
faa1b46c 538 u32 *level_active;
9da48b55 539 u32 *reg, orig;
d97f683d
AP
540 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
541 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 542
d97f683d 543 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 544 orig = *reg;
d97f683d 545 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 546 if (mmio->is_write) {
faa1b46c
CD
547 /* Re-set level triggered level-active interrupts */
548 level_active = vgic_bitmap_get_reg(&dist->irq_level,
d97f683d
AP
549 vcpu_id, offset);
550 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
faa1b46c
CD
551 *reg |= *level_active;
552
9da48b55
CD
553 /* Ignore writes to SGIs */
554 if (offset < 2) {
555 *reg &= ~0xffff;
556 *reg |= orig & 0xffff;
557 }
558
faa1b46c
CD
559 /* Clear soft-pending flags */
560 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
561 vcpu_id, offset);
562 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 563
d97f683d 564 vgic_update_state(kvm);
b47ef92a
MZ
565 return true;
566 }
b47ef92a
MZ
567 return false;
568}
569
47a98b15
CD
570bool vgic_handle_set_active_reg(struct kvm *kvm,
571 struct kvm_exit_mmio *mmio,
572 phys_addr_t offset, int vcpu_id)
573{
574 u32 *reg;
575 struct vgic_dist *dist = &kvm->arch.vgic;
576
577 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
578 vgic_reg_access(mmio, reg, offset,
579 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
580
581 if (mmio->is_write) {
582 vgic_update_state(kvm);
583 return true;
584 }
585
586 return false;
587}
588
589bool vgic_handle_clear_active_reg(struct kvm *kvm,
590 struct kvm_exit_mmio *mmio,
591 phys_addr_t offset, int vcpu_id)
592{
593 u32 *reg;
594 struct vgic_dist *dist = &kvm->arch.vgic;
595
596 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
597 vgic_reg_access(mmio, reg, offset,
598 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
599
600 if (mmio->is_write) {
601 vgic_update_state(kvm);
602 return true;
603 }
604
605 return false;
606}
607
b47ef92a
MZ
608static u32 vgic_cfg_expand(u16 val)
609{
610 u32 res = 0;
611 int i;
612
613 /*
614 * Turn a 16bit value like abcd...mnop into a 32bit word
615 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
616 */
617 for (i = 0; i < 16; i++)
618 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
619
620 return res;
621}
622
623static u16 vgic_cfg_compress(u32 val)
624{
625 u16 res = 0;
626 int i;
627
628 /*
629 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
630 * abcd...mnop which is what we really care about.
631 */
632 for (i = 0; i < 16; i++)
633 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
634
635 return res;
636}
637
638/*
639 * The distributor uses 2 bits per IRQ for the CFG register, but the
640 * LSB is always 0. As such, we only keep the upper bit, and use the
641 * two above functions to compress/expand the bits
642 */
83215812
AP
643bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
644 phys_addr_t offset)
b47ef92a
MZ
645{
646 u32 val;
6545eae3 647
f2ae85b2 648 if (offset & 4)
b47ef92a
MZ
649 val = *reg >> 16;
650 else
651 val = *reg & 0xffff;
652
653 val = vgic_cfg_expand(val);
654 vgic_reg_access(mmio, &val, offset,
655 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
656 if (mmio->is_write) {
f2ae85b2 657 if (offset < 8) {
b47ef92a
MZ
658 *reg = ~0U; /* Force PPIs/SGIs to 1 */
659 return false;
660 }
661
662 val = vgic_cfg_compress(val);
f2ae85b2 663 if (offset & 4) {
b47ef92a
MZ
664 *reg &= 0xffff;
665 *reg |= val << 16;
666 } else {
667 *reg &= 0xffff << 16;
668 *reg |= val;
669 }
670 }
671
672 return false;
673}
674
cbd333a4 675/**
47a98b15 676 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
cbd333a4
CD
677 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
678 *
47a98b15 679 * Move any IRQs that have already been assigned to LRs back to the
cbd333a4
CD
680 * emulated distributor state so that the complete emulated state can be read
681 * from the main emulation structures without investigating the LRs.
cbd333a4 682 */
83215812 683void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
cbd333a4 684{
cbd333a4 685 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 686 int i;
cbd333a4
CD
687
688 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 689 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
690
691 /*
692 * There are three options for the state bits:
693 *
694 * 01: pending
695 * 10: active
696 * 11: pending and active
cbd333a4 697 */
47a98b15
CD
698 BUG_ON(!(lr.state & LR_STATE_MASK));
699
700 /* Reestablish SGI source for pending and active IRQs */
701 if (lr.irq < VGIC_NR_SGIS)
702 add_sgi_source(vcpu, lr.irq, lr.source);
703
704 /*
705 * If the LR holds an active (10) or a pending and active (11)
706 * interrupt then move the active state to the
707 * distributor tracking bit.
708 */
709 if (lr.state & LR_STATE_ACTIVE) {
710 vgic_irq_set_active(vcpu, lr.irq);
711 lr.state &= ~LR_STATE_ACTIVE;
712 }
cbd333a4
CD
713
714 /*
715 * Reestablish the pending state on the distributor and the
716 * CPU interface. It may have already been pending, but that
717 * is fine, then we are only setting a few bits that were
718 * already set.
719 */
47a98b15
CD
720 if (lr.state & LR_STATE_PENDING) {
721 vgic_dist_irq_set_pending(vcpu, lr.irq);
722 lr.state &= ~LR_STATE_PENDING;
723 }
724
8d5c6b06 725 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
726
727 /*
47a98b15 728 * Mark the LR as free for other use.
cbd333a4 729 */
47a98b15
CD
730 BUG_ON(lr.state & LR_STATE_MASK);
731 vgic_retire_lr(i, lr.irq, vcpu);
732 vgic_irq_clear_queued(vcpu, lr.irq);
cbd333a4
CD
733
734 /* Finally update the VGIC state. */
735 vgic_update_state(vcpu->kvm);
736 }
737}
738
83215812 739const
cf50a1eb 740struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
9f199d0a 741 int len, gpa_t offset)
1a89dd91 742{
9f199d0a
AP
743 while (ranges->len) {
744 if (offset >= ranges->base &&
745 (offset + len) <= (ranges->base + ranges->len))
746 return ranges;
747 ranges++;
1a89dd91
MZ
748 }
749
750 return NULL;
751}
752
c3c91836 753static bool vgic_validate_access(const struct vgic_dist *dist,
cf50a1eb 754 const struct vgic_io_range *range,
c3c91836
MZ
755 unsigned long offset)
756{
757 int irq;
758
759 if (!range->bits_per_irq)
760 return true; /* Not an irq-based access */
761
762 irq = offset * 8 / range->bits_per_irq;
763 if (irq >= dist->nr_irqs)
764 return false;
765
766 return true;
767}
768
05bc8aaf
AP
769/*
770 * Call the respective handler function for the given range.
771 * We split up any 64 bit accesses into two consecutive 32 bit
772 * handler calls and merge the result afterwards.
773 * We do this in a little endian fashion regardless of the host's
774 * or guest's endianness, because the GIC is always LE and the rest of
775 * the code (vgic_reg_access) also puts it in a LE fashion already.
776 * At this point we have already identified the handle function, so
777 * range points to that one entry and offset is relative to this.
778 */
779static bool call_range_handler(struct kvm_vcpu *vcpu,
780 struct kvm_exit_mmio *mmio,
781 unsigned long offset,
cf50a1eb 782 const struct vgic_io_range *range)
05bc8aaf 783{
05bc8aaf
AP
784 struct kvm_exit_mmio mmio32;
785 bool ret;
786
787 if (likely(mmio->len <= 4))
788 return range->handle_mmio(vcpu, mmio, offset);
789
790 /*
791 * Any access bigger than 4 bytes (that we currently handle in KVM)
792 * is actually 8 bytes long, caused by a 64-bit access
793 */
794
795 mmio32.len = 4;
796 mmio32.is_write = mmio->is_write;
9fedf146 797 mmio32.private = mmio->private;
05bc8aaf
AP
798
799 mmio32.phys_addr = mmio->phys_addr + 4;
950324ab 800 mmio32.data = &((u32 *)mmio->data)[1];
05bc8aaf 801 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
05bc8aaf
AP
802
803 mmio32.phys_addr = mmio->phys_addr;
950324ab 804 mmio32.data = &((u32 *)mmio->data)[0];
05bc8aaf 805 ret |= range->handle_mmio(vcpu, &mmio32, offset);
05bc8aaf
AP
806
807 return ret;
808}
809
1a89dd91 810/**
6777f77f
AP
811 * vgic_handle_mmio_access - handle an in-kernel MMIO access
812 * This is called by the read/write KVM IO device wrappers below.
1a89dd91 813 * @vcpu: pointer to the vcpu performing the access
6777f77f
AP
814 * @this: pointer to the KVM IO device in charge
815 * @addr: guest physical address of the access
816 * @len: size of the access
817 * @val: pointer to the data region
818 * @is_write: read or write access
1a89dd91 819 *
96415257 820 * returns true if the MMIO access could be performed
1a89dd91 821 */
6777f77f
AP
822static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
823 struct kvm_io_device *this, gpa_t addr,
824 int len, void *val, bool is_write)
1a89dd91 825{
b47ef92a 826 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
6777f77f
AP
827 struct vgic_io_device *iodev = container_of(this,
828 struct vgic_io_device, dev);
829 struct kvm_run *run = vcpu->run;
830 const struct vgic_io_range *range;
831 struct kvm_exit_mmio mmio;
b47ef92a 832 bool updated_state;
6777f77f 833 gpa_t offset;
b47ef92a 834
6777f77f
AP
835 offset = addr - iodev->addr;
836 range = vgic_find_range(iodev->reg_ranges, len, offset);
b47ef92a 837 if (unlikely(!range || !range->handle_mmio)) {
6777f77f
AP
838 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
839 return -ENXIO;
b47ef92a
MZ
840 }
841
6777f77f
AP
842 mmio.phys_addr = addr;
843 mmio.len = len;
844 mmio.is_write = is_write;
950324ab 845 mmio.data = val;
6777f77f
AP
846 mmio.private = iodev->redist_vcpu;
847
848 spin_lock(&dist->lock);
96415257 849 offset -= range->base;
c3c91836 850 if (vgic_validate_access(dist, range, offset)) {
6777f77f 851 updated_state = call_range_handler(vcpu, &mmio, offset, range);
c3c91836 852 } else {
6777f77f
AP
853 if (!is_write)
854 memset(val, 0, len);
c3c91836
MZ
855 updated_state = false;
856 }
6777f77f 857 spin_unlock(&dist->lock);
950324ab
AP
858 run->mmio.is_write = is_write;
859 run->mmio.len = len;
860 run->mmio.phys_addr = addr;
861 memcpy(run->mmio.data, val, len);
862
b47ef92a
MZ
863 kvm_handle_mmio_return(vcpu, run);
864
5863c2ce
MZ
865 if (updated_state)
866 vgic_kick_vcpus(vcpu->kvm);
867
6777f77f
AP
868 return 0;
869}
870
6777f77f
AP
871static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
872 struct kvm_io_device *this,
873 gpa_t addr, int len, void *val)
874{
875 return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
b47ef92a
MZ
876}
877
6777f77f
AP
878static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
879 struct kvm_io_device *this,
880 gpa_t addr, int len, const void *val)
881{
882 return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
883 true);
884}
885
886struct kvm_io_device_ops vgic_io_ops = {
887 .read = vgic_handle_mmio_read,
888 .write = vgic_handle_mmio_write,
889};
890
96415257 891/**
6777f77f
AP
892 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
893 * @kvm: The VM structure pointer
894 * @base: The (guest) base address for the register frame
895 * @len: Length of the register frame window
896 * @ranges: Describing the handler functions for each register
897 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
898 * @iodev: Points to memory to be passed on to the handler
96415257 899 *
6777f77f
AP
900 * @iodev stores the parameters of this function to be usable by the handler
901 * respectively the dispatcher function (since the KVM I/O bus framework lacks
902 * an opaque parameter). Initialization is done in this function, but the
903 * reference should be valid and unique for the whole VGIC lifetime.
904 * If the register frame is not mapped for a specific VCPU, pass -1 to
905 * @redist_vcpu_id.
96415257 906 */
6777f77f
AP
907int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
908 const struct vgic_io_range *ranges,
909 int redist_vcpu_id,
910 struct vgic_io_device *iodev)
96415257 911{
6777f77f
AP
912 struct kvm_vcpu *vcpu = NULL;
913 int ret;
96415257 914
6777f77f
AP
915 if (redist_vcpu_id >= 0)
916 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
917
918 iodev->addr = base;
919 iodev->len = len;
920 iodev->reg_ranges = ranges;
921 iodev->redist_vcpu = vcpu;
922
923 kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
924
925 mutex_lock(&kvm->slots_lock);
926
927 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
928 &iodev->dev);
929 mutex_unlock(&kvm->slots_lock);
930
931 /* Mark the iodev as invalid if registration fails. */
932 if (ret)
933 iodev->dev.ops = NULL;
934
935 return ret;
96415257
AP
936}
937
fb65ab63
MZ
938static int vgic_nr_shared_irqs(struct vgic_dist *dist)
939{
940 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
941}
942
47a98b15
CD
943static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
944{
945 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
946 unsigned long *active, *enabled, *act_percpu, *act_shared;
947 unsigned long active_private, active_shared;
948 int nr_shared = vgic_nr_shared_irqs(dist);
949 int vcpu_id;
950
951 vcpu_id = vcpu->vcpu_id;
952 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
953 act_shared = vcpu->arch.vgic_cpu.active_shared;
954
955 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
956 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
957 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
958
959 active = vgic_bitmap_get_shared_map(&dist->irq_active);
960 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
961 bitmap_and(act_shared, active, enabled, nr_shared);
962 bitmap_and(act_shared, act_shared,
963 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
964 nr_shared);
965
966 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
967 active_shared = find_first_bit(act_shared, nr_shared);
968
969 return (active_private < VGIC_NR_PRIVATE_IRQS ||
970 active_shared < nr_shared);
971}
972
b47ef92a
MZ
973static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
974{
9d949dce
MZ
975 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
976 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
977 unsigned long pending_private, pending_shared;
fb65ab63 978 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
979 int vcpu_id;
980
981 vcpu_id = vcpu->vcpu_id;
982 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
983 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
984
227844f5 985 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
986 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
987 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
988
227844f5 989 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce 990 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
fb65ab63 991 bitmap_and(pend_shared, pending, enabled, nr_shared);
9d949dce
MZ
992 bitmap_and(pend_shared, pend_shared,
993 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
fb65ab63 994 nr_shared);
9d949dce
MZ
995
996 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
fb65ab63 997 pending_shared = find_first_bit(pend_shared, nr_shared);
9d949dce 998 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
fb65ab63 999 pending_shared < vgic_nr_shared_irqs(dist));
b47ef92a
MZ
1000}
1001
1002/*
1003 * Update the interrupt state and determine which CPUs have pending
47a98b15 1004 * or active interrupts. Must be called with distributor lock held.
b47ef92a 1005 */
83215812 1006void vgic_update_state(struct kvm *kvm)
b47ef92a
MZ
1007{
1008 struct vgic_dist *dist = &kvm->arch.vgic;
1009 struct kvm_vcpu *vcpu;
1010 int c;
1011
1012 if (!dist->enabled) {
c1bfb577 1013 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
1014 return;
1015 }
1016
1017 kvm_for_each_vcpu(c, vcpu, kvm) {
47a98b15 1018 if (compute_pending_for_cpu(vcpu))
c1bfb577 1019 set_bit(c, dist->irq_pending_on_cpu);
47a98b15
CD
1020
1021 if (compute_active_for_cpu(vcpu))
1022 set_bit(c, dist->irq_active_on_cpu);
1023 else
1024 clear_bit(c, dist->irq_active_on_cpu);
b47ef92a 1025 }
1a89dd91 1026}
330690cd 1027
8d5c6b06
MZ
1028static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1029{
8f186d52 1030 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
1031}
1032
1033static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1034 struct vgic_lr vlr)
1035{
8f186d52 1036 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
1037}
1038
69bb2c9f
MZ
1039static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1040 struct vgic_lr vlr)
1041{
8f186d52 1042 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
1043}
1044
1045static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1046{
8f186d52 1047 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
1048}
1049
8d6a0313
MZ
1050static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1051{
8f186d52 1052 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
1053}
1054
ae705930
CD
1055static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1056{
1057 vgic_ops->clear_eisr(vcpu);
1058}
1059
495dd859
MZ
1060static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1061{
8f186d52 1062 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
1063}
1064
909d9b50
MZ
1065static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1066{
8f186d52 1067 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
1068}
1069
1070static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1071{
8f186d52 1072 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
1073}
1074
83215812 1075void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1076{
8f186d52 1077 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1078}
1079
83215812 1080void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1081{
8f186d52 1082 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1083}
1084
da8dafd1
MZ
1085static inline void vgic_enable(struct kvm_vcpu *vcpu)
1086{
8f186d52 1087 vgic_ops->enable(vcpu);
da8dafd1
MZ
1088}
1089
8d5c6b06
MZ
1090static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1091{
1092 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1093 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1094
1095 vlr.state = 0;
1096 vgic_set_lr(vcpu, lr_nr, vlr);
1097 clear_bit(lr_nr, vgic_cpu->lr_used);
1098 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
ae705930 1099 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
8d5c6b06 1100}
a1fcb44e
MZ
1101
1102/*
1103 * An interrupt may have been disabled after being made pending on the
1104 * CPU interface (the classic case is a timer running while we're
1105 * rebooting the guest - the interrupt would kick as soon as the CPU
1106 * interface gets enabled, with deadly consequences).
1107 *
1108 * The solution is to examine already active LRs, and check the
1109 * interrupt is still enabled. If not, just retire it.
1110 */
1111static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1112{
1113 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1114 int lr;
1115
8f186d52 1116 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1117 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1118
8d5c6b06
MZ
1119 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1120 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1121 if (vgic_irq_is_queued(vcpu, vlr.irq))
1122 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1123 }
1124 }
1125}
1126
71760950
AB
1127static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1128 int lr_nr, struct vgic_lr vlr)
1129{
47a98b15
CD
1130 if (vgic_irq_is_active(vcpu, irq)) {
1131 vlr.state |= LR_STATE_ACTIVE;
1132 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1133 vgic_irq_clear_active(vcpu, irq);
1134 vgic_update_state(vcpu->kvm);
437f9963
PF
1135 } else {
1136 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
71760950
AB
1137 vlr.state |= LR_STATE_PENDING;
1138 kvm_debug("Set pending: 0x%x\n", vlr.state);
1139 }
1140
1141 if (!vgic_irq_is_edge(vcpu, irq))
1142 vlr.state |= LR_EOI_INT;
1143
08fd6461
MZ
1144 if (vlr.irq >= VGIC_NR_SGIS) {
1145 struct irq_phys_map *map;
1146 map = vgic_irq_map_search(vcpu, irq);
1147
08fd6461 1148 if (map) {
08fd6461
MZ
1149 vlr.hwirq = map->phys_irq;
1150 vlr.state |= LR_HW;
1151 vlr.state &= ~LR_EOI_INT;
1152
08fd6461
MZ
1153 /*
1154 * Make sure we're not going to sample this
1155 * again, as a HW-backed interrupt cannot be
1156 * in the PENDING_ACTIVE stage.
1157 */
1158 vgic_irq_set_queued(vcpu, irq);
1159 }
1160 }
1161
71760950 1162 vgic_set_lr(vcpu, lr_nr, vlr);
bf0fb67c 1163 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
71760950
AB
1164}
1165
9d949dce
MZ
1166/*
1167 * Queue an interrupt to a CPU virtual interface. Return true on success,
1168 * or false if it wasn't possible to queue it.
1d916229 1169 * sgi_source must be zero for any non-SGI interrupts.
9d949dce 1170 */
83215812 1171bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
9d949dce
MZ
1172{
1173 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5fb66da6 1174 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
8d5c6b06 1175 struct vgic_lr vlr;
9d949dce
MZ
1176 int lr;
1177
1178 /* Sanitize the input... */
1179 BUG_ON(sgi_source_id & ~7);
1180 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
5fb66da6 1181 BUG_ON(irq >= dist->nr_irqs);
9d949dce
MZ
1182
1183 kvm_debug("Queue IRQ%d\n", irq);
1184
1185 lr = vgic_cpu->vgic_irq_lr_map[irq];
1186
1187 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1188 if (lr != LR_EMPTY) {
1189 vlr = vgic_get_lr(vcpu, lr);
1190 if (vlr.source == sgi_source_id) {
1191 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1192 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
71760950 1193 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
8d5c6b06
MZ
1194 return true;
1195 }
9d949dce
MZ
1196 }
1197
1198 /* Try to use another LR for this interrupt */
1199 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1200 vgic->nr_lr);
1201 if (lr >= vgic->nr_lr)
9d949dce
MZ
1202 return false;
1203
1204 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1205 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1206 set_bit(lr, vgic_cpu->lr_used);
1207
8d5c6b06
MZ
1208 vlr.irq = irq;
1209 vlr.source = sgi_source_id;
71760950
AB
1210 vlr.state = 0;
1211 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
9d949dce
MZ
1212
1213 return true;
1214}
1215
9d949dce
MZ
1216static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1217{
dbf20f9d 1218 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1219 return true; /* level interrupt, already queued */
1220
1221 if (vgic_queue_irq(vcpu, 0, irq)) {
1222 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1223 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1224 vgic_cpu_irq_clear(vcpu, irq);
1225 } else {
dbf20f9d 1226 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1227 }
1228
1229 return true;
1230 }
1231
1232 return false;
1233}
1234
1235/*
1236 * Fill the list registers with pending interrupts before running the
1237 * guest.
1238 */
1239static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1240{
1241 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1242 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
47a98b15 1243 unsigned long *pa_percpu, *pa_shared;
04bdfa8a 1244 int i, vcpu_id, lr, ret;
9d949dce 1245 int overflow = 0;
47a98b15 1246 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
1247
1248 vcpu_id = vcpu->vcpu_id;
1249
47a98b15
CD
1250 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1251 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1252
1253 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1254 VGIC_NR_PRIVATE_IRQS);
1255 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1256 nr_shared);
9d949dce
MZ
1257 /*
1258 * We may not have any pending interrupt, or the interrupts
1259 * may have been serviced from another vcpu. In all cases,
1260 * move along.
1261 */
47a98b15 1262 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
9d949dce 1263 goto epilog;
9d949dce
MZ
1264
1265 /* SGIs */
47a98b15 1266 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
b26e5fda 1267 if (!queue_sgi(vcpu, i))
9d949dce
MZ
1268 overflow = 1;
1269 }
1270
1271 /* PPIs */
47a98b15 1272 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
9d949dce
MZ
1273 if (!vgic_queue_hwirq(vcpu, i))
1274 overflow = 1;
1275 }
1276
1277 /* SPIs */
47a98b15 1278 for_each_set_bit(i, pa_shared, nr_shared) {
9d949dce
MZ
1279 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1280 overflow = 1;
1281 }
1282
47a98b15
CD
1283
1284
1285
9d949dce
MZ
1286epilog:
1287 if (overflow) {
909d9b50 1288 vgic_enable_underflow(vcpu);
9d949dce 1289 } else {
909d9b50 1290 vgic_disable_underflow(vcpu);
9d949dce
MZ
1291 /*
1292 * We're about to run this VCPU, and we've consumed
1293 * everything the distributor had in store for
1294 * us. Claim we don't have anything pending. We'll
1295 * adjust that if needed while exiting.
1296 */
c1bfb577 1297 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce 1298 }
04bdfa8a
CD
1299
1300 for (lr = 0; lr < vgic->nr_lr; lr++) {
1301 struct vgic_lr vlr;
1302
1303 if (!test_bit(lr, vgic_cpu->lr_used))
1304 continue;
1305
1306 vlr = vgic_get_lr(vcpu, lr);
1307
1308 /*
1309 * If we have a mapping, and the virtual interrupt is
1310 * presented to the guest (as pending or active), then we must
1311 * set the state to active in the physical world. See
1312 * Documentation/virtual/kvm/arm/vgic-mapped-irqs.txt.
1313 */
1314 if (vlr.state & LR_HW) {
1315 struct irq_phys_map *map;
1316 map = vgic_irq_map_search(vcpu, vlr.irq);
1317
1318 ret = irq_set_irqchip_state(map->irq,
1319 IRQCHIP_STATE_ACTIVE,
1320 true);
1321 WARN_ON(ret);
1322 }
1323 }
9d949dce
MZ
1324}
1325
1326static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1327{
495dd859 1328 u32 status = vgic_get_interrupt_status(vcpu);
649cf739 1329 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
9d949dce 1330 bool level_pending = false;
174178fe 1331 struct kvm *kvm = vcpu->kvm;
9d949dce 1332
495dd859 1333 kvm_debug("STATUS = %08x\n", status);
9d949dce 1334
495dd859 1335 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1336 /*
1337 * Some level interrupts have been EOIed. Clear their
1338 * active bit.
1339 */
8d6a0313 1340 u64 eisr = vgic_get_eisr(vcpu);
2df36a5d 1341 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
8d5c6b06 1342 int lr;
9d949dce 1343
8f186d52 1344 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1345 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1346 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1347
649cf739 1348 spin_lock(&dist->lock);
dbf20f9d 1349 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1350 WARN_ON(vlr.state & LR_STATE_MASK);
1351 vlr.state = 0;
1352 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1353
faa1b46c
CD
1354 /*
1355 * If the IRQ was EOIed it was also ACKed and we we
1356 * therefore assume we can clear the soft pending
1357 * state (should it had been set) for this interrupt.
1358 *
1359 * Note: if the IRQ soft pending state was set after
1360 * the IRQ was acked, it actually shouldn't be
1361 * cleared, but we have no way of knowing that unless
1362 * we start trapping ACKs when the soft-pending state
1363 * is set.
1364 */
1365 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1366
174178fe
EA
1367 /*
1368 * kvm_notify_acked_irq calls kvm_set_irq()
1369 * to reset the IRQ level. Need to release the
1370 * lock for kvm_set_irq to grab it.
1371 */
1372 spin_unlock(&dist->lock);
1373
1374 kvm_notify_acked_irq(kvm, 0,
1375 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1376 spin_lock(&dist->lock);
1377
9d949dce 1378 /* Any additional pending interrupt? */
faa1b46c 1379 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1380 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1381 level_pending = true;
1382 } else {
faa1b46c 1383 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1384 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1385 }
75da01e1 1386
649cf739
EA
1387 spin_unlock(&dist->lock);
1388
75da01e1
MZ
1389 /*
1390 * Despite being EOIed, the LR may not have
1391 * been marked as empty.
1392 */
69bb2c9f 1393 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1394 }
1395 }
1396
495dd859 1397 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1398 vgic_disable_underflow(vcpu);
9d949dce 1399
ae705930
CD
1400 /*
1401 * In the next iterations of the vcpu loop, if we sync the vgic state
1402 * after flushing it, but before entering the guest (this happens for
1403 * pending signals and vmid rollovers), then make sure we don't pick
1404 * up any old maintenance interrupts here.
1405 */
1406 vgic_clear_eisr(vcpu);
1407
9d949dce
MZ
1408 return level_pending;
1409}
1410
08fd6461
MZ
1411/*
1412 * Save the physical active state, and reset it to inactive.
1413 *
1414 * Return 1 if HW interrupt went from active to inactive, and 0 otherwise.
1415 */
1416static int vgic_sync_hwirq(struct kvm_vcpu *vcpu, struct vgic_lr vlr)
1417{
1418 struct irq_phys_map *map;
1419 int ret;
1420
1421 if (!(vlr.state & LR_HW))
1422 return 0;
1423
1424 map = vgic_irq_map_search(vcpu, vlr.irq);
1425 BUG_ON(!map || !map->active);
1426
1427 ret = irq_get_irqchip_state(map->irq,
1428 IRQCHIP_STATE_ACTIVE,
1429 &map->active);
1430
1431 WARN_ON(ret);
1432
1433 if (map->active) {
1434 ret = irq_set_irqchip_state(map->irq,
1435 IRQCHIP_STATE_ACTIVE,
1436 false);
1437 WARN_ON(ret);
1438 return 0;
1439 }
1440
1441 return 1;
1442}
1443
649cf739 1444/* Sync back the VGIC state after a guest run */
9d949dce
MZ
1445static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1446{
1447 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1448 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1449 u64 elrsr;
1450 unsigned long *elrsr_ptr;
9d949dce
MZ
1451 int lr, pending;
1452 bool level_pending;
1453
1454 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f 1455 elrsr = vgic_get_elrsr(vcpu);
2df36a5d 1456 elrsr_ptr = u64_to_bitmask(&elrsr);
9d949dce 1457
08fd6461
MZ
1458 /* Deal with HW interrupts, and clear mappings for empty LRs */
1459 for (lr = 0; lr < vgic->nr_lr; lr++) {
8d5c6b06 1460 struct vgic_lr vlr;
9d949dce 1461
08fd6461 1462 if (!test_bit(lr, vgic_cpu->lr_used))
9d949dce
MZ
1463 continue;
1464
8d5c6b06 1465 vlr = vgic_get_lr(vcpu, lr);
08fd6461
MZ
1466 if (vgic_sync_hwirq(vcpu, vlr)) {
1467 /*
1468 * So this is a HW interrupt that the guest
1469 * EOI-ed. Clean the LR state and allow the
1470 * interrupt to be sampled again.
1471 */
1472 vlr.state = 0;
1473 vlr.hwirq = 0;
1474 vgic_set_lr(vcpu, lr, vlr);
1475 vgic_irq_clear_queued(vcpu, vlr.irq);
1476 set_bit(lr, elrsr_ptr);
1477 }
1478
1479 if (!test_bit(lr, elrsr_ptr))
1480 continue;
1481
1482 clear_bit(lr, vgic_cpu->lr_used);
9d949dce 1483
5fb66da6 1484 BUG_ON(vlr.irq >= dist->nr_irqs);
8d5c6b06 1485 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1486 }
1487
1488 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1489 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1490 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1491 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1492}
1493
1494void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1495{
1496 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1497
1498 if (!irqchip_in_kernel(vcpu->kvm))
1499 return;
1500
1501 spin_lock(&dist->lock);
1502 __kvm_vgic_flush_hwstate(vcpu);
1503 spin_unlock(&dist->lock);
1504}
1505
1506void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1507{
1508 if (!irqchip_in_kernel(vcpu->kvm))
1509 return;
1510
1511 __kvm_vgic_sync_hwstate(vcpu);
1512}
1513
1514int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1515{
1516 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1517
1518 if (!irqchip_in_kernel(vcpu->kvm))
1519 return 0;
1520
c1bfb577 1521 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1522}
1523
47a98b15
CD
1524int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1525{
1526 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1527
1528 if (!irqchip_in_kernel(vcpu->kvm))
1529 return 0;
1530
1531 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1532}
1533
1534
83215812 1535void vgic_kick_vcpus(struct kvm *kvm)
5863c2ce
MZ
1536{
1537 struct kvm_vcpu *vcpu;
1538 int c;
1539
1540 /*
1541 * We've injected an interrupt, time to find out who deserves
1542 * a good kick...
1543 */
1544 kvm_for_each_vcpu(c, vcpu, kvm) {
1545 if (kvm_vgic_vcpu_pending_irq(vcpu))
1546 kvm_vcpu_kick(vcpu);
1547 }
1548}
1549
1550static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1551{
227844f5 1552 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1553
1554 /*
1555 * Only inject an interrupt if:
1556 * - edge triggered and we have a rising edge
1557 * - level triggered and we change level
1558 */
faa1b46c
CD
1559 if (edge_triggered) {
1560 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1561 return level > state;
faa1b46c
CD
1562 } else {
1563 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1564 return level != state;
faa1b46c 1565 }
5863c2ce
MZ
1566}
1567
016ed39c 1568static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
773299a5
MZ
1569 struct irq_phys_map *map,
1570 unsigned int irq_num, bool level)
5863c2ce
MZ
1571{
1572 struct vgic_dist *dist = &kvm->arch.vgic;
1573 struct kvm_vcpu *vcpu;
227844f5 1574 int edge_triggered, level_triggered;
5863c2ce 1575 int enabled;
a0675c25 1576 bool ret = true, can_inject = true;
5863c2ce 1577
773299a5
MZ
1578 if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1579 return -EINVAL;
1580
5863c2ce
MZ
1581 spin_lock(&dist->lock);
1582
1583 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1584 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1585 level_triggered = !edge_triggered;
5863c2ce
MZ
1586
1587 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1588 ret = false;
1589 goto out;
1590 }
1591
1592 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1593 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
a0675c25
AP
1594 if (cpuid == VCPU_NOT_ALLOCATED) {
1595 /* Pretend we use CPU0, and prevent injection */
1596 cpuid = 0;
1597 can_inject = false;
1598 }
5863c2ce
MZ
1599 vcpu = kvm_get_vcpu(kvm, cpuid);
1600 }
1601
1602 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1603
faa1b46c
CD
1604 if (level) {
1605 if (level_triggered)
1606 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1607 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1608 } else {
1609 if (level_triggered) {
1610 vgic_dist_irq_clear_level(vcpu, irq_num);
437f9963 1611 if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
faa1b46c 1612 vgic_dist_irq_clear_pending(vcpu, irq_num);
437f9963
PF
1613 vgic_cpu_irq_clear(vcpu, irq_num);
1614 if (!compute_pending_for_cpu(vcpu))
1615 clear_bit(cpuid, dist->irq_pending_on_cpu);
1616 }
faa1b46c 1617 }
7d39f9e3 1618
1619 ret = false;
1620 goto out;
faa1b46c 1621 }
5863c2ce
MZ
1622
1623 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1624
a0675c25 1625 if (!enabled || !can_inject) {
5863c2ce
MZ
1626 ret = false;
1627 goto out;
1628 }
1629
dbf20f9d 1630 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1631 /*
1632 * Level interrupt in progress, will be picked up
1633 * when EOId.
1634 */
1635 ret = false;
1636 goto out;
1637 }
1638
1639 if (level) {
1640 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1641 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1642 }
1643
1644out:
1645 spin_unlock(&dist->lock);
1646
773299a5
MZ
1647 if (ret) {
1648 /* kick the specified vcpu */
1649 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1650 }
1651
1652 return 0;
1653}
1654
1655static int vgic_lazy_init(struct kvm *kvm)
1656{
1657 int ret = 0;
1658
1659 if (unlikely(!vgic_initialized(kvm))) {
1660 /*
1661 * We only provide the automatic initialization of the VGIC
1662 * for the legacy case of a GICv2. Any other type must
1663 * be explicitly initialized once setup with the respective
1664 * KVM device call.
1665 */
1666 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1667 return -EBUSY;
1668
1669 mutex_lock(&kvm->lock);
1670 ret = vgic_init(kvm);
1671 mutex_unlock(&kvm->lock);
1672 }
1673
1674 return ret;
5863c2ce
MZ
1675}
1676
1677/**
1678 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1679 * @kvm: The VM structure pointer
1680 * @cpuid: The CPU for PPIs
773299a5
MZ
1681 * @irq_num: The IRQ number that is assigned to the device. This IRQ
1682 * must not be mapped to a HW interrupt.
5863c2ce
MZ
1683 * @level: Edge-triggered: true: to trigger the interrupt
1684 * false: to ignore the call
773299a5
MZ
1685 * Level-sensitive true: raise the input signal
1686 * false: lower the input signal
5863c2ce
MZ
1687 *
1688 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1689 * level-sensitive interrupts. You can think of the level parameter as 1
1690 * being HIGH and 0 being LOW and all devices being active-HIGH.
1691 */
1692int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1693 bool level)
1694{
773299a5
MZ
1695 struct irq_phys_map *map;
1696 int ret;
ca7d9c82 1697
773299a5
MZ
1698 ret = vgic_lazy_init(kvm);
1699 if (ret)
1700 return ret;
5863c2ce 1701
773299a5
MZ
1702 map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1703 if (map)
fd1d0ddf
AP
1704 return -EINVAL;
1705
773299a5
MZ
1706 return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1707}
ca7d9c82 1708
773299a5
MZ
1709/**
1710 * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1711 * @kvm: The VM structure pointer
1712 * @cpuid: The CPU for PPIs
1713 * @map: Pointer to a irq_phys_map structure describing the mapping
1714 * @level: Edge-triggered: true: to trigger the interrupt
1715 * false: to ignore the call
1716 * Level-sensitive true: raise the input signal
1717 * false: lower the input signal
1718 *
1719 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1720 * level-sensitive interrupts. You can think of the level parameter as 1
1721 * being HIGH and 0 being LOW and all devices being active-HIGH.
1722 */
1723int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1724 struct irq_phys_map *map, bool level)
1725{
1726 int ret;
1727
1728 ret = vgic_lazy_init(kvm);
1729 if (ret)
1730 return ret;
1731
1732 return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
5863c2ce
MZ
1733}
1734
01ac5e34
MZ
1735static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1736{
1737 /*
1738 * We cannot rely on the vgic maintenance interrupt to be
1739 * delivered synchronously. This means we can only use it to
1740 * exit the VM, and we perform the handling of EOIed
1741 * interrupts on the exit path (see vgic_process_maintenance).
1742 */
1743 return IRQ_HANDLED;
1744}
1745
6c3d63c9
MZ
1746static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1747 int virt_irq)
1748{
1749 if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1750 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1751 else
1752 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1753}
1754
1755/**
1756 * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1757 * @vcpu: The VCPU pointer
1758 * @virt_irq: The virtual irq number
1759 * @irq: The Linux IRQ number
1760 *
1761 * Establish a mapping between a guest visible irq (@virt_irq) and a
1762 * Linux irq (@irq). On injection, @virt_irq will be associated with
1763 * the physical interrupt represented by @irq. This mapping can be
1764 * established multiple times as long as the parameters are the same.
1765 *
1766 * Returns a valid pointer on success, and an error pointer otherwise
1767 */
1768struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1769 int virt_irq, int irq)
1770{
1771 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1772 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1773 struct irq_phys_map *map;
1774 struct irq_phys_map_entry *entry;
1775 struct irq_desc *desc;
1776 struct irq_data *data;
1777 int phys_irq;
1778
1779 desc = irq_to_desc(irq);
1780 if (!desc) {
1781 kvm_err("%s: no interrupt descriptor\n", __func__);
1782 return ERR_PTR(-EINVAL);
1783 }
1784
1785 data = irq_desc_get_irq_data(desc);
1786 while (data->parent_data)
1787 data = data->parent_data;
1788
1789 phys_irq = data->hwirq;
1790
1791 /* Create a new mapping */
1792 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1793 if (!entry)
1794 return ERR_PTR(-ENOMEM);
1795
1796 spin_lock(&dist->irq_phys_map_lock);
1797
1798 /* Try to match an existing mapping */
1799 map = vgic_irq_map_search(vcpu, virt_irq);
1800 if (map) {
1801 /* Make sure this mapping matches */
1802 if (map->phys_irq != phys_irq ||
1803 map->irq != irq)
1804 map = ERR_PTR(-EINVAL);
1805
1806 /* Found an existing, valid mapping */
1807 goto out;
1808 }
1809
1810 map = &entry->map;
1811 map->virt_irq = virt_irq;
1812 map->phys_irq = phys_irq;
1813 map->irq = irq;
1814
1815 list_add_tail_rcu(&entry->entry, root);
1816
1817out:
1818 spin_unlock(&dist->irq_phys_map_lock);
1819 /* If we've found a hit in the existing list, free the useless
1820 * entry */
1821 if (IS_ERR(map) || map != &entry->map)
1822 kfree(entry);
1823 return map;
1824}
1825
1826static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1827 int virt_irq)
1828{
1829 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1830 struct irq_phys_map_entry *entry;
1831 struct irq_phys_map *map;
1832
1833 rcu_read_lock();
1834
1835 list_for_each_entry_rcu(entry, root, entry) {
1836 map = &entry->map;
1837 if (map->virt_irq == virt_irq) {
1838 rcu_read_unlock();
1839 return map;
1840 }
1841 }
1842
1843 rcu_read_unlock();
1844
1845 return NULL;
1846}
1847
1848static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1849{
1850 struct irq_phys_map_entry *entry;
1851
1852 entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1853 kfree(entry);
1854}
1855
6e84e0e0
MZ
1856/**
1857 * kvm_vgic_get_phys_irq_active - Return the active state of a mapped IRQ
1858 *
1859 * Return the logical active state of a mapped interrupt. This doesn't
1860 * necessarily reflects the current HW state.
1861 */
1862bool kvm_vgic_get_phys_irq_active(struct irq_phys_map *map)
1863{
1864 BUG_ON(!map);
1865 return map->active;
1866}
1867
1868/**
1869 * kvm_vgic_set_phys_irq_active - Set the active state of a mapped IRQ
1870 *
1871 * Set the logical active state of a mapped interrupt. This doesn't
1872 * immediately affects the HW state.
1873 */
1874void kvm_vgic_set_phys_irq_active(struct irq_phys_map *map, bool active)
1875{
1876 BUG_ON(!map);
1877 map->active = active;
1878}
1879
6c3d63c9
MZ
1880/**
1881 * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1882 * @vcpu: The VCPU pointer
1883 * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1884 *
1885 * Remove an existing mapping between virtual and physical interrupts.
1886 */
1887int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1888{
1889 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1890 struct irq_phys_map_entry *entry;
1891 struct list_head *root;
1892
1893 if (!map)
1894 return -EINVAL;
1895
1896 root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1897
1898 spin_lock(&dist->irq_phys_map_lock);
1899
1900 list_for_each_entry(entry, root, entry) {
1901 if (&entry->map == map) {
1902 list_del_rcu(&entry->entry);
1903 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1904 break;
1905 }
1906 }
1907
1908 spin_unlock(&dist->irq_phys_map_lock);
1909
1910 return 0;
1911}
1912
1913static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1914{
1915 struct vgic_dist *dist = &kvm->arch.vgic;
1916 struct irq_phys_map_entry *entry;
1917
1918 spin_lock(&dist->irq_phys_map_lock);
1919
1920 list_for_each_entry(entry, root, entry) {
1921 list_del_rcu(&entry->entry);
1922 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1923 }
1924
1925 spin_unlock(&dist->irq_phys_map_lock);
1926}
1927
c1bfb577
MZ
1928void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1929{
1930 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1931
1932 kfree(vgic_cpu->pending_shared);
47a98b15
CD
1933 kfree(vgic_cpu->active_shared);
1934 kfree(vgic_cpu->pend_act_shared);
c1bfb577 1935 kfree(vgic_cpu->vgic_irq_lr_map);
6c3d63c9 1936 vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
c1bfb577 1937 vgic_cpu->pending_shared = NULL;
47a98b15
CD
1938 vgic_cpu->active_shared = NULL;
1939 vgic_cpu->pend_act_shared = NULL;
c1bfb577
MZ
1940 vgic_cpu->vgic_irq_lr_map = NULL;
1941}
1942
1943static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1944{
1945 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1946
1947 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1948 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
47a98b15
CD
1949 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1950 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
6d3cfbe2 1951 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
c1bfb577 1952
47a98b15
CD
1953 if (!vgic_cpu->pending_shared
1954 || !vgic_cpu->active_shared
1955 || !vgic_cpu->pend_act_shared
1956 || !vgic_cpu->vgic_irq_lr_map) {
c1bfb577
MZ
1957 kvm_vgic_vcpu_destroy(vcpu);
1958 return -ENOMEM;
1959 }
1960
6d3cfbe2 1961 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
01ac5e34
MZ
1962
1963 /*
ca85f623
MZ
1964 * Store the number of LRs per vcpu, so we don't have to go
1965 * all the way to the distributor structure to find out. Only
1966 * assembly code should use this one.
01ac5e34 1967 */
8f186d52 1968 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1969
6d3cfbe2 1970 return 0;
01ac5e34
MZ
1971}
1972
6c3d63c9
MZ
1973/**
1974 * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1975 *
1976 * No memory allocation should be performed here, only static init.
1977 */
1978void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1979{
1980 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1981 INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1982}
1983
3caa2d8c
AP
1984/**
1985 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1986 *
1987 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1988 * can use.
1989 */
1990int kvm_vgic_get_max_vcpus(void)
1991{
1992 return vgic->max_gic_vcpus;
1993}
1994
c1bfb577
MZ
1995void kvm_vgic_destroy(struct kvm *kvm)
1996{
1997 struct vgic_dist *dist = &kvm->arch.vgic;
1998 struct kvm_vcpu *vcpu;
1999 int i;
2000
2001 kvm_for_each_vcpu(i, vcpu, kvm)
2002 kvm_vgic_vcpu_destroy(vcpu);
2003
2004 vgic_free_bitmap(&dist->irq_enabled);
2005 vgic_free_bitmap(&dist->irq_level);
2006 vgic_free_bitmap(&dist->irq_pending);
2007 vgic_free_bitmap(&dist->irq_soft_pend);
2008 vgic_free_bitmap(&dist->irq_queued);
2009 vgic_free_bitmap(&dist->irq_cfg);
2010 vgic_free_bytemap(&dist->irq_priority);
2011 if (dist->irq_spi_target) {
2012 for (i = 0; i < dist->nr_cpus; i++)
2013 vgic_free_bitmap(&dist->irq_spi_target[i]);
2014 }
2015 kfree(dist->irq_sgi_sources);
2016 kfree(dist->irq_spi_cpu);
a0675c25 2017 kfree(dist->irq_spi_mpidr);
c1bfb577
MZ
2018 kfree(dist->irq_spi_target);
2019 kfree(dist->irq_pending_on_cpu);
47a98b15 2020 kfree(dist->irq_active_on_cpu);
6c3d63c9 2021 vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
c1bfb577
MZ
2022 dist->irq_sgi_sources = NULL;
2023 dist->irq_spi_cpu = NULL;
2024 dist->irq_spi_target = NULL;
2025 dist->irq_pending_on_cpu = NULL;
47a98b15 2026 dist->irq_active_on_cpu = NULL;
1f57be28 2027 dist->nr_cpus = 0;
c1bfb577
MZ
2028}
2029
2030/*
2031 * Allocate and initialize the various data structures. Must be called
2032 * with kvm->lock held!
2033 */
83215812 2034int vgic_init(struct kvm *kvm)
c1bfb577
MZ
2035{
2036 struct vgic_dist *dist = &kvm->arch.vgic;
2037 struct kvm_vcpu *vcpu;
2038 int nr_cpus, nr_irqs;
6d3cfbe2 2039 int ret, i, vcpu_id;
c1bfb577 2040
1f57be28 2041 if (vgic_initialized(kvm))
4956f2bc
MZ
2042 return 0;
2043
2044 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
2045 if (!nr_cpus) /* No vcpus? Can't be good... */
66b030e4 2046 return -ENODEV;
5fb66da6 2047
4956f2bc
MZ
2048 /*
2049 * If nobody configured the number of interrupts, use the
2050 * legacy one.
2051 */
5fb66da6
MZ
2052 if (!dist->nr_irqs)
2053 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2054
2055 nr_irqs = dist->nr_irqs;
c1bfb577
MZ
2056
2057 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2058 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2059 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2060 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2061 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
47a98b15 2062 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
c1bfb577
MZ
2063 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2064 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2065
2066 if (ret)
2067 goto out;
2068
2069 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2070 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2071 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2072 GFP_KERNEL);
2073 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2074 GFP_KERNEL);
47a98b15
CD
2075 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2076 GFP_KERNEL);
c1bfb577
MZ
2077 if (!dist->irq_sgi_sources ||
2078 !dist->irq_spi_cpu ||
2079 !dist->irq_spi_target ||
47a98b15
CD
2080 !dist->irq_pending_on_cpu ||
2081 !dist->irq_active_on_cpu) {
c1bfb577
MZ
2082 ret = -ENOMEM;
2083 goto out;
2084 }
2085
2086 for (i = 0; i < nr_cpus; i++)
2087 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2088 nr_cpus, nr_irqs);
2089
2090 if (ret)
2091 goto out;
2092
b26e5fda
AP
2093 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2094 if (ret)
2095 goto out;
6d3cfbe2
PM
2096
2097 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
c1bfb577
MZ
2098 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2099 if (ret) {
2100 kvm_err("VGIC: Failed to allocate vcpu memory\n");
2101 break;
2102 }
c1bfb577 2103
6d3cfbe2
PM
2104 for (i = 0; i < dist->nr_irqs; i++) {
2105 if (i < VGIC_NR_PPIS)
2106 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2107 vcpu->vcpu_id, i, 1);
2108 if (i < VGIC_NR_PRIVATE_IRQS)
2109 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2110 vcpu->vcpu_id, i,
2111 VGIC_CFG_EDGE);
2112 }
2113
2114 vgic_enable(vcpu);
2115 }
4956f2bc 2116
c1bfb577
MZ
2117out:
2118 if (ret)
2119 kvm_vgic_destroy(kvm);
2120
2121 return ret;
2122}
2123
b26e5fda
AP
2124static int init_vgic_model(struct kvm *kvm, int type)
2125{
2126 switch (type) {
2127 case KVM_DEV_TYPE_ARM_VGIC_V2:
2128 vgic_v2_init_emulation(kvm);
2129 break;
b5d84ff6
AP
2130#ifdef CONFIG_ARM_GIC_V3
2131 case KVM_DEV_TYPE_ARM_VGIC_V3:
2132 vgic_v3_init_emulation(kvm);
2133 break;
2134#endif
b26e5fda
AP
2135 default:
2136 return -ENODEV;
2137 }
2138
3caa2d8c
AP
2139 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2140 return -E2BIG;
2141
b26e5fda
AP
2142 return 0;
2143}
2144
6c3d63c9
MZ
2145/**
2146 * kvm_vgic_early_init - Earliest possible vgic initialization stage
2147 *
2148 * No memory allocation should be performed here, only static init.
2149 */
2150void kvm_vgic_early_init(struct kvm *kvm)
2151{
2152 spin_lock_init(&kvm->arch.vgic.lock);
2153 spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2154 INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2155}
2156
59892136 2157int kvm_vgic_create(struct kvm *kvm, u32 type)
01ac5e34 2158{
6b50f540 2159 int i, vcpu_lock_idx = -1, ret;
7330672b 2160 struct kvm_vcpu *vcpu;
01ac5e34
MZ
2161
2162 mutex_lock(&kvm->lock);
2163
4ce7ebdf 2164 if (irqchip_in_kernel(kvm)) {
01ac5e34
MZ
2165 ret = -EEXIST;
2166 goto out;
2167 }
2168
b5d84ff6
AP
2169 /*
2170 * This function is also called by the KVM_CREATE_IRQCHIP handler,
2171 * which had no chance yet to check the availability of the GICv2
2172 * emulation. So check this here again. KVM_CREATE_DEVICE does
2173 * the proper checks already.
2174 */
b52104e5
WY
2175 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2176 ret = -ENODEV;
2177 goto out;
2178 }
b5d84ff6 2179
7330672b
CD
2180 /*
2181 * Any time a vcpu is run, vcpu_load is called which tries to grab the
2182 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
2183 * that no other VCPUs are run while we create the vgic.
2184 */
6b50f540 2185 ret = -EBUSY;
7330672b
CD
2186 kvm_for_each_vcpu(i, vcpu, kvm) {
2187 if (!mutex_trylock(&vcpu->mutex))
2188 goto out_unlock;
2189 vcpu_lock_idx = i;
2190 }
2191
2192 kvm_for_each_vcpu(i, vcpu, kvm) {
6b50f540 2193 if (vcpu->arch.has_run_once)
7330672b 2194 goto out_unlock;
7330672b 2195 }
6b50f540 2196 ret = 0;
7330672b 2197
b26e5fda
AP
2198 ret = init_vgic_model(kvm, type);
2199 if (ret)
2200 goto out_unlock;
2201
f982cf4e 2202 kvm->arch.vgic.in_kernel = true;
59892136 2203 kvm->arch.vgic.vgic_model = type;
8f186d52 2204 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
2205 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2206 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
a0675c25 2207 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
01ac5e34 2208
7330672b
CD
2209out_unlock:
2210 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2211 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2212 mutex_unlock(&vcpu->mutex);
2213 }
2214
01ac5e34
MZ
2215out:
2216 mutex_unlock(&kvm->lock);
2217 return ret;
2218}
2219
1fa451bc 2220static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
2221{
2222 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2223 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2224
2225 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2226 return 0;
2227 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2228 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2229 return -EBUSY;
2230 return 0;
2231}
2232
2233static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2234 phys_addr_t addr, phys_addr_t size)
2235{
2236 int ret;
2237
ce01e4e8
CD
2238 if (addr & ~KVM_PHYS_MASK)
2239 return -E2BIG;
2240
2241 if (addr & (SZ_4K - 1))
2242 return -EINVAL;
2243
330690cd
CD
2244 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2245 return -EEXIST;
2246 if (addr + size < addr)
2247 return -EINVAL;
2248
30c21170 2249 *ioaddr = addr;
330690cd
CD
2250 ret = vgic_ioaddr_overlap(kvm);
2251 if (ret)
30c21170
HW
2252 *ioaddr = VGIC_ADDR_UNDEF;
2253
330690cd
CD
2254 return ret;
2255}
2256
ce01e4e8
CD
2257/**
2258 * kvm_vgic_addr - set or get vgic VM base addresses
2259 * @kvm: pointer to the vm struct
ac3d3735 2260 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
ce01e4e8
CD
2261 * @addr: pointer to address value
2262 * @write: if true set the address in the VM address space, if false read the
2263 * address
2264 *
2265 * Set or get the vgic base addresses for the distributor and the virtual CPU
2266 * interface in the VM physical address space. These addresses are properties
2267 * of the emulated core/SoC and therefore user space initially knows this
2268 * information.
2269 */
2270int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
2271{
2272 int r = 0;
2273 struct vgic_dist *vgic = &kvm->arch.vgic;
ac3d3735
AP
2274 int type_needed;
2275 phys_addr_t *addr_ptr, block_size;
4fa96afd 2276 phys_addr_t alignment;
330690cd 2277
330690cd
CD
2278 mutex_lock(&kvm->lock);
2279 switch (type) {
2280 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ac3d3735
AP
2281 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2282 addr_ptr = &vgic->vgic_dist_base;
2283 block_size = KVM_VGIC_V2_DIST_SIZE;
4fa96afd 2284 alignment = SZ_4K;
330690cd
CD
2285 break;
2286 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ac3d3735
AP
2287 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2288 addr_ptr = &vgic->vgic_cpu_base;
2289 block_size = KVM_VGIC_V2_CPU_SIZE;
4fa96afd 2290 alignment = SZ_4K;
330690cd 2291 break;
ac3d3735
AP
2292#ifdef CONFIG_ARM_GIC_V3
2293 case KVM_VGIC_V3_ADDR_TYPE_DIST:
2294 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2295 addr_ptr = &vgic->vgic_dist_base;
2296 block_size = KVM_VGIC_V3_DIST_SIZE;
4fa96afd 2297 alignment = SZ_64K;
ac3d3735
AP
2298 break;
2299 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2300 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2301 addr_ptr = &vgic->vgic_redist_base;
2302 block_size = KVM_VGIC_V3_REDIST_SIZE;
4fa96afd 2303 alignment = SZ_64K;
ac3d3735
AP
2304 break;
2305#endif
330690cd
CD
2306 default:
2307 r = -ENODEV;
ac3d3735
AP
2308 goto out;
2309 }
2310
2311 if (vgic->vgic_model != type_needed) {
2312 r = -ENODEV;
2313 goto out;
330690cd
CD
2314 }
2315
4fa96afd
AP
2316 if (write) {
2317 if (!IS_ALIGNED(*addr, alignment))
2318 r = -EINVAL;
2319 else
2320 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2321 block_size);
2322 } else {
ac3d3735 2323 *addr = *addr_ptr;
4fa96afd 2324 }
ac3d3735
AP
2325
2326out:
330690cd
CD
2327 mutex_unlock(&kvm->lock);
2328 return r;
2329}
7330672b 2330
83215812 2331int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 2332{
ce01e4e8
CD
2333 int r;
2334
2335 switch (attr->group) {
2336 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2337 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2338 u64 addr;
2339 unsigned long type = (unsigned long)attr->attr;
2340
2341 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2342 return -EFAULT;
2343
2344 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2345 return (r == -ENODEV) ? -ENXIO : r;
2346 }
a98f26f1
MZ
2347 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2348 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2349 u32 val;
2350 int ret = 0;
2351
2352 if (get_user(val, uaddr))
2353 return -EFAULT;
2354
2355 /*
2356 * We require:
2357 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2358 * - at most 1024 interrupts
2359 * - a multiple of 32 interrupts
2360 */
2361 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2362 val > VGIC_MAX_IRQS ||
2363 (val & 31))
2364 return -EINVAL;
2365
2366 mutex_lock(&dev->kvm->lock);
2367
c52edf5f 2368 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
a98f26f1
MZ
2369 ret = -EBUSY;
2370 else
2371 dev->kvm->arch.vgic.nr_irqs = val;
2372
2373 mutex_unlock(&dev->kvm->lock);
2374
2375 return ret;
2376 }
065c0034
EA
2377 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2378 switch (attr->attr) {
2379 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2380 r = vgic_init(dev->kvm);
2381 return r;
2382 }
2383 break;
2384 }
ce01e4e8
CD
2385 }
2386
7330672b
CD
2387 return -ENXIO;
2388}
2389
83215812 2390int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 2391{
ce01e4e8
CD
2392 int r = -ENXIO;
2393
2394 switch (attr->group) {
2395 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2396 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2397 u64 addr;
2398 unsigned long type = (unsigned long)attr->attr;
2399
2400 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2401 if (r)
2402 return (r == -ENODEV) ? -ENXIO : r;
2403
2404 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2405 return -EFAULT;
c07a0191
CD
2406 break;
2407 }
b60da146
AP
2408 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2409 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2410
2411 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2412 break;
2413 }
2414
2415 }
2416
2417 return r;
2418}
2419
cf50a1eb 2420int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
c07a0191 2421{
9f199d0a 2422 if (vgic_find_range(ranges, 4, offset))
c07a0191
CD
2423 return 0;
2424 else
2425 return -ENXIO;
2426}
2427
c06a841b
WD
2428static void vgic_init_maintenance_interrupt(void *info)
2429{
2430 enable_percpu_irq(vgic->maint_irq, 0);
2431}
2432
2433static int vgic_cpu_notify(struct notifier_block *self,
2434 unsigned long action, void *cpu)
2435{
2436 switch (action) {
2437 case CPU_STARTING:
2438 case CPU_STARTING_FROZEN:
2439 vgic_init_maintenance_interrupt(NULL);
2440 break;
2441 case CPU_DYING:
2442 case CPU_DYING_FROZEN:
2443 disable_percpu_irq(vgic->maint_irq);
2444 break;
2445 }
2446
2447 return NOTIFY_OK;
2448}
2449
2450static struct notifier_block vgic_cpu_nb = {
2451 .notifier_call = vgic_cpu_notify,
2452};
2453
2454static const struct of_device_id vgic_ids[] = {
0f372475
MR
2455 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2456 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2457 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2458 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
c06a841b
WD
2459 {},
2460};
2461
2462int kvm_vgic_hyp_init(void)
2463{
2464 const struct of_device_id *matched_id;
a875dafc
CD
2465 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2466 const struct vgic_params **);
c06a841b
WD
2467 struct device_node *vgic_node;
2468 int ret;
2469
2470 vgic_node = of_find_matching_node_and_match(NULL,
2471 vgic_ids, &matched_id);
2472 if (!vgic_node) {
2473 kvm_err("error: no compatible GIC node found\n");
2474 return -ENODEV;
2475 }
2476
2477 vgic_probe = matched_id->data;
2478 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2479 if (ret)
2480 return ret;
2481
2482 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2483 "vgic", kvm_get_running_vcpus());
2484 if (ret) {
2485 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2486 return ret;
2487 }
2488
2489 ret = __register_cpu_notifier(&vgic_cpu_nb);
2490 if (ret) {
2491 kvm_err("Cannot register vgic CPU notifier\n");
2492 goto out_free_irq;
2493 }
2494
c06a841b
WD
2495 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2496
ea2f83a7 2497 return 0;
c06a841b
WD
2498
2499out_free_irq:
2500 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2501 return ret;
2502}
174178fe
EA
2503
2504int kvm_irq_map_gsi(struct kvm *kvm,
2505 struct kvm_kernel_irq_routing_entry *entries,
2506 int gsi)
2507{
0b3289eb 2508 return 0;
174178fe
EA
2509}
2510
2511int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2512{
2513 return pin;
2514}
2515
2516int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2517 u32 irq, int level, bool line_status)
2518{
2519 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2520
2521 trace_kvm_set_irq(irq, level, irq_source_id);
2522
2523 BUG_ON(!vgic_initialized(kvm));
2524
174178fe 2525 return kvm_vgic_inject_irq(kvm, 0, spi, level);
174178fe
EA
2526}
2527
2528/* MSI not implemented yet */
2529int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2530 struct kvm *kvm, int irq_source_id,
2531 int level, bool line_status)
2532{
2533 return 0;
2534}
This page took 0.299027 seconds and 5 git commands to generate.