arm/arm64: KVM: dont rely on a valid GICH base address
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
1a89dd91 34
b47ef92a
MZ
35/*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
43 * arch. timers).
b47ef92a
MZ
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
227844f5
CD
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
7e362919 54 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
58 *
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
62 *
63 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 64 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 69 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 70 * interrupt line to be sampled again.
faa1b46c
CD
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
b47ef92a
MZ
76 */
77
330690cd
CD
78#define VGIC_ADDR_UNDEF (-1)
79#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
80
fa20f5ae
CD
81#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
82#define IMPLEMENTER_ARM 0x43b
83#define GICC_ARCH_VERSION_V2 0x2
84
1a89dd91
MZ
85#define ACCESS_READ_VALUE (1 << 0)
86#define ACCESS_READ_RAZ (0 << 0)
87#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
88#define ACCESS_WRITE_IGNORED (0 << 1)
89#define ACCESS_WRITE_SETBIT (1 << 1)
90#define ACCESS_WRITE_CLEARBIT (2 << 1)
91#define ACCESS_WRITE_VALUE (3 << 1)
92#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
93
6d3cfbe2 94static int vgic_init(struct kvm *kvm);
a1fcb44e 95static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 96static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
b47ef92a 97static void vgic_update_state(struct kvm *kvm);
5863c2ce 98static void vgic_kick_vcpus(struct kvm *kvm);
c1bfb577 99static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
b47ef92a 100static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
8d5c6b06
MZ
101static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
102static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
beee38b9
MZ
103static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
104static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
01ac5e34 105
8f186d52
MZ
106static const struct vgic_ops *vgic_ops;
107static const struct vgic_params *vgic;
b47ef92a 108
b26e5fda
AP
109static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
110{
111 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
112}
113
114static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
115{
116 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
117}
118
119int kvm_vgic_map_resources(struct kvm *kvm)
120{
121 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
122}
123
9662fb48 124/*
c1bfb577
MZ
125 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
126 * extracts u32s out of them.
9662fb48
VK
127 *
128 * This does not work on 64-bit BE systems, because the bitmap access
129 * will store two consecutive 32-bit words with the higher-addressed
130 * register's bits at the lower index and the lower-addressed register's
131 * bits at the higher index.
132 *
133 * Therefore, swizzle the register index when accessing the 32-bit word
134 * registers to access the right register's value.
135 */
136#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
137#define REG_OFFSET_SWIZZLE 1
138#else
139#define REG_OFFSET_SWIZZLE 0
140#endif
b47ef92a 141
c1bfb577
MZ
142static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
143{
144 int nr_longs;
145
146 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
147
148 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
149 if (!b->private)
150 return -ENOMEM;
151
152 b->shared = b->private + nr_cpus;
153
154 return 0;
155}
156
157static void vgic_free_bitmap(struct vgic_bitmap *b)
158{
159 kfree(b->private);
160 b->private = NULL;
161 b->shared = NULL;
162}
163
2df36a5d
CD
164/*
165 * Call this function to convert a u64 value to an unsigned long * bitmask
166 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
167 *
168 * Warning: Calling this function may modify *val.
169 */
170static unsigned long *u64_to_bitmask(u64 *val)
171{
172#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
173 *val = (*val >> 32) | (*val << 32);
174#endif
175 return (unsigned long *)val;
176}
177
b47ef92a
MZ
178static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
179 int cpuid, u32 offset)
180{
181 offset >>= 2;
182 if (!offset)
c1bfb577 183 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 184 else
c1bfb577 185 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
186}
187
188static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
189 int cpuid, int irq)
190{
191 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 192 return test_bit(irq, x->private + cpuid);
b47ef92a 193
c1bfb577 194 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
195}
196
197static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
198 int irq, int val)
199{
200 unsigned long *reg;
201
202 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 203 reg = x->private + cpuid;
b47ef92a 204 } else {
c1bfb577 205 reg = x->shared;
b47ef92a
MZ
206 irq -= VGIC_NR_PRIVATE_IRQS;
207 }
208
209 if (val)
210 set_bit(irq, reg);
211 else
212 clear_bit(irq, reg);
213}
214
215static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
216{
c1bfb577 217 return x->private + cpuid;
b47ef92a
MZ
218}
219
220static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
221{
c1bfb577
MZ
222 return x->shared;
223}
224
225static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
226{
227 int size;
228
229 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
230 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
231
232 x->private = kzalloc(size, GFP_KERNEL);
233 if (!x->private)
234 return -ENOMEM;
235
236 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
237 return 0;
238}
239
240static void vgic_free_bytemap(struct vgic_bytemap *b)
241{
242 kfree(b->private);
243 b->private = NULL;
244 b->shared = NULL;
b47ef92a
MZ
245}
246
247static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
248{
c1bfb577
MZ
249 u32 *reg;
250
251 if (offset < VGIC_NR_PRIVATE_IRQS) {
252 reg = x->private;
253 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
254 } else {
255 reg = x->shared;
256 offset -= VGIC_NR_PRIVATE_IRQS;
257 }
258
259 return reg + (offset / sizeof(u32));
b47ef92a
MZ
260}
261
262#define VGIC_CFG_LEVEL 0
263#define VGIC_CFG_EDGE 1
264
265static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
266{
267 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
268 int irq_val;
269
270 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
271 return irq_val == VGIC_CFG_EDGE;
272}
273
274static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
275{
276 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
278 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
279}
280
dbf20f9d 281static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
282{
283 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
284
dbf20f9d 285 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
286}
287
dbf20f9d 288static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
289{
290 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
291
dbf20f9d 292 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
293}
294
dbf20f9d 295static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
296{
297 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
298
dbf20f9d 299 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
300}
301
faa1b46c
CD
302static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
303{
304 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
305
306 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
307}
308
309static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
310{
311 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
312
313 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
314}
315
316static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
317{
318 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
319
320 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
321}
322
323static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
324{
325 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
326
327 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
328}
329
330static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
331{
332 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
333
334 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
335}
336
9d949dce
MZ
337static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
338{
339 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
340
227844f5 341 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
342}
343
227844f5 344static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
345{
346 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
347
227844f5 348 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
349}
350
227844f5 351static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
352{
353 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
354
227844f5 355 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
356}
357
358static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
359{
360 if (irq < VGIC_NR_PRIVATE_IRQS)
361 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
362 else
363 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
364 vcpu->arch.vgic_cpu.pending_shared);
365}
366
367static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
368{
369 if (irq < VGIC_NR_PRIVATE_IRQS)
370 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
371 else
372 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
373 vcpu->arch.vgic_cpu.pending_shared);
374}
375
dbf20f9d
CD
376static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
377{
378 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
379}
380
1a89dd91
MZ
381static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
382{
1c9f0471 383 return le32_to_cpu(*((u32 *)mmio->data)) & mask;
1a89dd91
MZ
384}
385
386static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
387{
1c9f0471 388 *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
1a89dd91
MZ
389}
390
391/**
392 * vgic_reg_access - access vgic register
393 * @mmio: pointer to the data describing the mmio access
394 * @reg: pointer to the virtual backing of vgic distributor data
395 * @offset: least significant 2 bits used for word offset
396 * @mode: ACCESS_ mode (see defines above)
397 *
398 * Helper to make vgic register access easier using one of the access
399 * modes defined for vgic register access
400 * (read,raz,write-ignored,setbit,clearbit,write)
401 */
402static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
403 phys_addr_t offset, int mode)
404{
405 int word_offset = (offset & 3) * 8;
406 u32 mask = (1UL << (mmio->len * 8)) - 1;
407 u32 regval;
408
409 /*
410 * Any alignment fault should have been delivered to the guest
411 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
412 */
413
414 if (reg) {
415 regval = *reg;
416 } else {
417 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
418 regval = 0;
419 }
420
421 if (mmio->is_write) {
422 u32 data = mmio_data_read(mmio, mask) << word_offset;
423 switch (ACCESS_WRITE_MASK(mode)) {
424 case ACCESS_WRITE_IGNORED:
425 return;
426
427 case ACCESS_WRITE_SETBIT:
428 regval |= data;
429 break;
430
431 case ACCESS_WRITE_CLEARBIT:
432 regval &= ~data;
433 break;
434
435 case ACCESS_WRITE_VALUE:
436 regval = (regval & ~(mask << word_offset)) | data;
437 break;
438 }
439 *reg = regval;
440 } else {
441 switch (ACCESS_READ_MASK(mode)) {
442 case ACCESS_READ_RAZ:
443 regval = 0;
444 /* fall through */
445
446 case ACCESS_READ_VALUE:
447 mmio_data_write(mmio, mask, regval >> word_offset);
448 }
449 }
450}
451
b47ef92a
MZ
452static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
453 struct kvm_exit_mmio *mmio, phys_addr_t offset)
454{
455 u32 reg;
456 u32 word_offset = offset & 3;
457
458 switch (offset & ~3) {
fa20f5ae 459 case 0: /* GICD_CTLR */
b47ef92a
MZ
460 reg = vcpu->kvm->arch.vgic.enabled;
461 vgic_reg_access(mmio, &reg, word_offset,
462 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
463 if (mmio->is_write) {
464 vcpu->kvm->arch.vgic.enabled = reg & 1;
465 vgic_update_state(vcpu->kvm);
466 return true;
467 }
468 break;
469
fa20f5ae 470 case 4: /* GICD_TYPER */
b47ef92a 471 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
5fb66da6 472 reg |= (vcpu->kvm->arch.vgic.nr_irqs >> 5) - 1;
b47ef92a
MZ
473 vgic_reg_access(mmio, &reg, word_offset,
474 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
475 break;
476
fa20f5ae
CD
477 case 8: /* GICD_IIDR */
478 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
b47ef92a
MZ
479 vgic_reg_access(mmio, &reg, word_offset,
480 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
481 break;
482 }
483
484 return false;
485}
486
487static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
488 struct kvm_exit_mmio *mmio, phys_addr_t offset)
489{
490 vgic_reg_access(mmio, NULL, offset,
491 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
492 return false;
493}
494
495static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
496 struct kvm_exit_mmio *mmio,
497 phys_addr_t offset)
498{
499 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
500 vcpu->vcpu_id, offset);
501 vgic_reg_access(mmio, reg, offset,
502 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
503 if (mmio->is_write) {
504 vgic_update_state(vcpu->kvm);
505 return true;
506 }
507
508 return false;
509}
510
511static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
512 struct kvm_exit_mmio *mmio,
513 phys_addr_t offset)
514{
515 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
516 vcpu->vcpu_id, offset);
517 vgic_reg_access(mmio, reg, offset,
518 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
519 if (mmio->is_write) {
520 if (offset < 4) /* Force SGI enabled */
521 *reg |= 0xffff;
a1fcb44e 522 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
523 vgic_update_state(vcpu->kvm);
524 return true;
525 }
526
527 return false;
528}
529
530static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
531 struct kvm_exit_mmio *mmio,
532 phys_addr_t offset)
533{
9da48b55 534 u32 *reg, orig;
faa1b46c
CD
535 u32 level_mask;
536 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
537
538 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
539 level_mask = (~(*reg));
540
541 /* Mark both level and edge triggered irqs as pending */
542 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
9da48b55 543 orig = *reg;
b47ef92a
MZ
544 vgic_reg_access(mmio, reg, offset,
545 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
faa1b46c 546
b47ef92a 547 if (mmio->is_write) {
faa1b46c
CD
548 /* Set the soft-pending flag only for level-triggered irqs */
549 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
550 vcpu->vcpu_id, offset);
551 vgic_reg_access(mmio, reg, offset,
552 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
553 *reg &= level_mask;
554
9da48b55
CD
555 /* Ignore writes to SGIs */
556 if (offset < 2) {
557 *reg &= ~0xffff;
558 *reg |= orig & 0xffff;
559 }
560
b47ef92a
MZ
561 vgic_update_state(vcpu->kvm);
562 return true;
563 }
564
565 return false;
566}
567
568static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
569 struct kvm_exit_mmio *mmio,
570 phys_addr_t offset)
571{
faa1b46c 572 u32 *level_active;
9da48b55 573 u32 *reg, orig;
faa1b46c
CD
574 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
575
576 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
9da48b55 577 orig = *reg;
b47ef92a
MZ
578 vgic_reg_access(mmio, reg, offset,
579 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
580 if (mmio->is_write) {
faa1b46c
CD
581 /* Re-set level triggered level-active interrupts */
582 level_active = vgic_bitmap_get_reg(&dist->irq_level,
583 vcpu->vcpu_id, offset);
584 reg = vgic_bitmap_get_reg(&dist->irq_pending,
585 vcpu->vcpu_id, offset);
586 *reg |= *level_active;
587
9da48b55
CD
588 /* Ignore writes to SGIs */
589 if (offset < 2) {
590 *reg &= ~0xffff;
591 *reg |= orig & 0xffff;
592 }
593
faa1b46c
CD
594 /* Clear soft-pending flags */
595 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
596 vcpu->vcpu_id, offset);
597 vgic_reg_access(mmio, reg, offset,
598 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
599
b47ef92a
MZ
600 vgic_update_state(vcpu->kvm);
601 return true;
602 }
603
604 return false;
605}
606
607static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
608 struct kvm_exit_mmio *mmio,
609 phys_addr_t offset)
610{
611 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
612 vcpu->vcpu_id, offset);
613 vgic_reg_access(mmio, reg, offset,
614 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
615 return false;
616}
617
618#define GICD_ITARGETSR_SIZE 32
619#define GICD_CPUTARGETS_BITS 8
620#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
621static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
622{
623 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 624 int i;
b47ef92a
MZ
625 u32 val = 0;
626
627 irq -= VGIC_NR_PRIVATE_IRQS;
628
986af8e0
MZ
629 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
630 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
631
632 return val;
633}
634
635static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
636{
637 struct vgic_dist *dist = &kvm->arch.vgic;
638 struct kvm_vcpu *vcpu;
639 int i, c;
640 unsigned long *bmap;
641 u32 target;
642
643 irq -= VGIC_NR_PRIVATE_IRQS;
644
645 /*
646 * Pick the LSB in each byte. This ensures we target exactly
647 * one vcpu per IRQ. If the byte is null, assume we target
648 * CPU0.
649 */
650 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
651 int shift = i * GICD_CPUTARGETS_BITS;
652 target = ffs((val >> shift) & 0xffU);
653 target = target ? (target - 1) : 0;
654 dist->irq_spi_cpu[irq + i] = target;
655 kvm_for_each_vcpu(c, vcpu, kvm) {
656 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
657 if (c == target)
658 set_bit(irq + i, bmap);
659 else
660 clear_bit(irq + i, bmap);
661 }
662 }
663}
664
665static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
666 struct kvm_exit_mmio *mmio,
667 phys_addr_t offset)
668{
669 u32 reg;
670
671 /* We treat the banked interrupts targets as read-only */
672 if (offset < 32) {
673 u32 roreg = 1 << vcpu->vcpu_id;
674 roreg |= roreg << 8;
675 roreg |= roreg << 16;
676
677 vgic_reg_access(mmio, &roreg, offset,
678 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
679 return false;
680 }
681
682 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
683 vgic_reg_access(mmio, &reg, offset,
684 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
685 if (mmio->is_write) {
686 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
687 vgic_update_state(vcpu->kvm);
688 return true;
689 }
690
691 return false;
692}
693
694static u32 vgic_cfg_expand(u16 val)
695{
696 u32 res = 0;
697 int i;
698
699 /*
700 * Turn a 16bit value like abcd...mnop into a 32bit word
701 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
702 */
703 for (i = 0; i < 16; i++)
704 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
705
706 return res;
707}
708
709static u16 vgic_cfg_compress(u32 val)
710{
711 u16 res = 0;
712 int i;
713
714 /*
715 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
716 * abcd...mnop which is what we really care about.
717 */
718 for (i = 0; i < 16; i++)
719 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
720
721 return res;
722}
723
724/*
725 * The distributor uses 2 bits per IRQ for the CFG register, but the
726 * LSB is always 0. As such, we only keep the upper bit, and use the
727 * two above functions to compress/expand the bits
728 */
729static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
730 struct kvm_exit_mmio *mmio, phys_addr_t offset)
731{
732 u32 val;
6545eae3
MZ
733 u32 *reg;
734
6545eae3 735 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
f2ae85b2 736 vcpu->vcpu_id, offset >> 1);
6545eae3 737
f2ae85b2 738 if (offset & 4)
b47ef92a
MZ
739 val = *reg >> 16;
740 else
741 val = *reg & 0xffff;
742
743 val = vgic_cfg_expand(val);
744 vgic_reg_access(mmio, &val, offset,
745 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
746 if (mmio->is_write) {
f2ae85b2 747 if (offset < 8) {
b47ef92a
MZ
748 *reg = ~0U; /* Force PPIs/SGIs to 1 */
749 return false;
750 }
751
752 val = vgic_cfg_compress(val);
f2ae85b2 753 if (offset & 4) {
b47ef92a
MZ
754 *reg &= 0xffff;
755 *reg |= val << 16;
756 } else {
757 *reg &= 0xffff << 16;
758 *reg |= val;
759 }
760 }
761
762 return false;
763}
764
765static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
766 struct kvm_exit_mmio *mmio, phys_addr_t offset)
767{
768 u32 reg;
769 vgic_reg_access(mmio, &reg, offset,
770 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
771 if (mmio->is_write) {
772 vgic_dispatch_sgi(vcpu, reg);
773 vgic_update_state(vcpu->kvm);
774 return true;
775 }
776
777 return false;
778}
779
b26e5fda
AP
780static void vgic_v2_add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
781{
782 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
783
784 *vgic_get_sgi_sources(dist, vcpu->vcpu_id, irq) |= 1 << source;
785}
786
cbd333a4
CD
787/**
788 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
789 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
790 *
791 * Move any pending IRQs that have already been assigned to LRs back to the
792 * emulated distributor state so that the complete emulated state can be read
793 * from the main emulation structures without investigating the LRs.
794 *
795 * Note that IRQs in the active state in the LRs get their pending state moved
796 * to the distributor but the active state stays in the LRs, because we don't
797 * track the active state on the distributor side.
798 */
799static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
800{
cbd333a4 801 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 802 int i;
cbd333a4
CD
803
804 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 805 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
806
807 /*
808 * There are three options for the state bits:
809 *
810 * 01: pending
811 * 10: active
812 * 11: pending and active
813 *
814 * If the LR holds only an active interrupt (not pending) then
815 * just leave it alone.
816 */
8d5c6b06 817 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
cbd333a4
CD
818 continue;
819
820 /*
821 * Reestablish the pending state on the distributor and the
822 * CPU interface. It may have already been pending, but that
823 * is fine, then we are only setting a few bits that were
824 * already set.
825 */
227844f5 826 vgic_dist_irq_set_pending(vcpu, lr.irq);
8d5c6b06 827 if (lr.irq < VGIC_NR_SGIS)
b26e5fda 828 add_sgi_source(vcpu, lr.irq, lr.source);
8d5c6b06
MZ
829 lr.state &= ~LR_STATE_PENDING;
830 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
831
832 /*
833 * If there's no state left on the LR (it could still be
834 * active), then the LR does not hold any useful info and can
835 * be marked as free for other use.
836 */
cced50c9 837 if (!(lr.state & LR_STATE_MASK)) {
8d5c6b06 838 vgic_retire_lr(i, lr.irq, vcpu);
cced50c9
CD
839 vgic_irq_clear_queued(vcpu, lr.irq);
840 }
cbd333a4
CD
841
842 /* Finally update the VGIC state. */
843 vgic_update_state(vcpu->kvm);
844 }
845}
846
90a5355e
CD
847/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
848static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
849 struct kvm_exit_mmio *mmio,
850 phys_addr_t offset)
c07a0191 851{
90a5355e
CD
852 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
853 int sgi;
0fea6d76 854 int min_sgi = (offset & ~0x3);
90a5355e
CD
855 int max_sgi = min_sgi + 3;
856 int vcpu_id = vcpu->vcpu_id;
857 u32 reg = 0;
858
859 /* Copy source SGIs from distributor side */
860 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
861 int shift = 8 * (sgi - min_sgi);
c1bfb577 862 reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
90a5355e
CD
863 }
864
865 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
866 return false;
867}
868
90a5355e
CD
869static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
870 struct kvm_exit_mmio *mmio,
871 phys_addr_t offset, bool set)
872{
873 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
874 int sgi;
0fea6d76 875 int min_sgi = (offset & ~0x3);
90a5355e
CD
876 int max_sgi = min_sgi + 3;
877 int vcpu_id = vcpu->vcpu_id;
878 u32 reg;
879 bool updated = false;
880
881 reg = mmio_data_read(mmio, ~0);
882
883 /* Clear pending SGIs on the distributor */
884 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
885 u8 mask = reg >> (8 * (sgi - min_sgi));
c1bfb577 886 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
90a5355e 887 if (set) {
c1bfb577 888 if ((*src & mask) != mask)
90a5355e 889 updated = true;
c1bfb577 890 *src |= mask;
90a5355e 891 } else {
c1bfb577 892 if (*src & mask)
90a5355e 893 updated = true;
c1bfb577 894 *src &= ~mask;
90a5355e
CD
895 }
896 }
897
898 if (updated)
899 vgic_update_state(vcpu->kvm);
900
901 return updated;
902}
903
c07a0191
CD
904static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
905 struct kvm_exit_mmio *mmio,
906 phys_addr_t offset)
907{
90a5355e
CD
908 if (!mmio->is_write)
909 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
910 else
911 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
912}
913
914static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
915 struct kvm_exit_mmio *mmio,
916 phys_addr_t offset)
917{
918 if (!mmio->is_write)
919 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
920 else
921 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
922}
923
1a89dd91
MZ
924/*
925 * I would have liked to use the kvm_bus_io_*() API instead, but it
926 * cannot cope with banked registers (only the VM pointer is passed
927 * around, and we need the vcpu). One of these days, someone please
928 * fix it!
929 */
930struct mmio_range {
931 phys_addr_t base;
932 unsigned long len;
c3c91836 933 int bits_per_irq;
1a89dd91
MZ
934 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
935 phys_addr_t offset);
936};
937
1006e8cb 938static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
939 {
940 .base = GIC_DIST_CTRL,
941 .len = 12,
c3c91836 942 .bits_per_irq = 0,
b47ef92a
MZ
943 .handle_mmio = handle_mmio_misc,
944 },
945 {
946 .base = GIC_DIST_IGROUP,
c3c91836
MZ
947 .len = VGIC_MAX_IRQS / 8,
948 .bits_per_irq = 1,
b47ef92a
MZ
949 .handle_mmio = handle_mmio_raz_wi,
950 },
951 {
952 .base = GIC_DIST_ENABLE_SET,
c3c91836
MZ
953 .len = VGIC_MAX_IRQS / 8,
954 .bits_per_irq = 1,
b47ef92a
MZ
955 .handle_mmio = handle_mmio_set_enable_reg,
956 },
957 {
958 .base = GIC_DIST_ENABLE_CLEAR,
c3c91836
MZ
959 .len = VGIC_MAX_IRQS / 8,
960 .bits_per_irq = 1,
b47ef92a
MZ
961 .handle_mmio = handle_mmio_clear_enable_reg,
962 },
963 {
964 .base = GIC_DIST_PENDING_SET,
c3c91836
MZ
965 .len = VGIC_MAX_IRQS / 8,
966 .bits_per_irq = 1,
b47ef92a
MZ
967 .handle_mmio = handle_mmio_set_pending_reg,
968 },
969 {
970 .base = GIC_DIST_PENDING_CLEAR,
c3c91836
MZ
971 .len = VGIC_MAX_IRQS / 8,
972 .bits_per_irq = 1,
b47ef92a
MZ
973 .handle_mmio = handle_mmio_clear_pending_reg,
974 },
975 {
976 .base = GIC_DIST_ACTIVE_SET,
c3c91836
MZ
977 .len = VGIC_MAX_IRQS / 8,
978 .bits_per_irq = 1,
b47ef92a
MZ
979 .handle_mmio = handle_mmio_raz_wi,
980 },
981 {
982 .base = GIC_DIST_ACTIVE_CLEAR,
c3c91836
MZ
983 .len = VGIC_MAX_IRQS / 8,
984 .bits_per_irq = 1,
b47ef92a
MZ
985 .handle_mmio = handle_mmio_raz_wi,
986 },
987 {
988 .base = GIC_DIST_PRI,
c3c91836
MZ
989 .len = VGIC_MAX_IRQS,
990 .bits_per_irq = 8,
b47ef92a
MZ
991 .handle_mmio = handle_mmio_priority_reg,
992 },
993 {
994 .base = GIC_DIST_TARGET,
c3c91836
MZ
995 .len = VGIC_MAX_IRQS,
996 .bits_per_irq = 8,
b47ef92a
MZ
997 .handle_mmio = handle_mmio_target_reg,
998 },
999 {
1000 .base = GIC_DIST_CONFIG,
c3c91836
MZ
1001 .len = VGIC_MAX_IRQS / 4,
1002 .bits_per_irq = 2,
b47ef92a
MZ
1003 .handle_mmio = handle_mmio_cfg_reg,
1004 },
1005 {
1006 .base = GIC_DIST_SOFTINT,
1007 .len = 4,
1008 .handle_mmio = handle_mmio_sgi_reg,
1009 },
c07a0191
CD
1010 {
1011 .base = GIC_DIST_SGI_PENDING_CLEAR,
1012 .len = VGIC_NR_SGIS,
1013 .handle_mmio = handle_mmio_sgi_clear,
1014 },
1015 {
1016 .base = GIC_DIST_SGI_PENDING_SET,
1017 .len = VGIC_NR_SGIS,
1018 .handle_mmio = handle_mmio_sgi_set,
1019 },
1a89dd91
MZ
1020 {}
1021};
1022
1023static const
1024struct mmio_range *find_matching_range(const struct mmio_range *ranges,
1025 struct kvm_exit_mmio *mmio,
1006e8cb 1026 phys_addr_t offset)
1a89dd91
MZ
1027{
1028 const struct mmio_range *r = ranges;
1a89dd91
MZ
1029
1030 while (r->len) {
1006e8cb
CD
1031 if (offset >= r->base &&
1032 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
1033 return r;
1034 r++;
1035 }
1036
1037 return NULL;
1038}
1039
c3c91836
MZ
1040static bool vgic_validate_access(const struct vgic_dist *dist,
1041 const struct mmio_range *range,
1042 unsigned long offset)
1043{
1044 int irq;
1045
1046 if (!range->bits_per_irq)
1047 return true; /* Not an irq-based access */
1048
1049 irq = offset * 8 / range->bits_per_irq;
1050 if (irq >= dist->nr_irqs)
1051 return false;
1052
1053 return true;
1054}
1055
05bc8aaf
AP
1056/*
1057 * Call the respective handler function for the given range.
1058 * We split up any 64 bit accesses into two consecutive 32 bit
1059 * handler calls and merge the result afterwards.
1060 * We do this in a little endian fashion regardless of the host's
1061 * or guest's endianness, because the GIC is always LE and the rest of
1062 * the code (vgic_reg_access) also puts it in a LE fashion already.
1063 * At this point we have already identified the handle function, so
1064 * range points to that one entry and offset is relative to this.
1065 */
1066static bool call_range_handler(struct kvm_vcpu *vcpu,
1067 struct kvm_exit_mmio *mmio,
1068 unsigned long offset,
1069 const struct mmio_range *range)
1070{
1071 u32 *data32 = (void *)mmio->data;
1072 struct kvm_exit_mmio mmio32;
1073 bool ret;
1074
1075 if (likely(mmio->len <= 4))
1076 return range->handle_mmio(vcpu, mmio, offset);
1077
1078 /*
1079 * Any access bigger than 4 bytes (that we currently handle in KVM)
1080 * is actually 8 bytes long, caused by a 64-bit access
1081 */
1082
1083 mmio32.len = 4;
1084 mmio32.is_write = mmio->is_write;
1085
1086 mmio32.phys_addr = mmio->phys_addr + 4;
1087 if (mmio->is_write)
1088 *(u32 *)mmio32.data = data32[1];
1089 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
1090 if (!mmio->is_write)
1091 data32[1] = *(u32 *)mmio32.data;
1092
1093 mmio32.phys_addr = mmio->phys_addr;
1094 if (mmio->is_write)
1095 *(u32 *)mmio32.data = data32[0];
1096 ret |= range->handle_mmio(vcpu, &mmio32, offset);
1097 if (!mmio->is_write)
1098 data32[0] = *(u32 *)mmio32.data;
1099
1100 return ret;
1101}
1102
1a89dd91 1103/**
96415257 1104 * vgic_handle_mmio_range - handle an in-kernel MMIO access
1a89dd91
MZ
1105 * @vcpu: pointer to the vcpu performing the access
1106 * @run: pointer to the kvm_run structure
1107 * @mmio: pointer to the data describing the access
96415257
AP
1108 * @ranges: array of MMIO ranges in a given region
1109 * @mmio_base: base address of that region
1a89dd91 1110 *
96415257 1111 * returns true if the MMIO access could be performed
1a89dd91 1112 */
96415257
AP
1113static bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
1114 struct kvm_exit_mmio *mmio,
1115 const struct mmio_range *ranges,
1116 unsigned long mmio_base)
1a89dd91 1117{
b47ef92a
MZ
1118 const struct mmio_range *range;
1119 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
b47ef92a
MZ
1120 bool updated_state;
1121 unsigned long offset;
1122
96415257
AP
1123 offset = mmio->phys_addr - mmio_base;
1124 range = find_matching_range(ranges, mmio, offset);
b47ef92a
MZ
1125 if (unlikely(!range || !range->handle_mmio)) {
1126 pr_warn("Unhandled access %d %08llx %d\n",
1127 mmio->is_write, mmio->phys_addr, mmio->len);
1128 return false;
1129 }
1130
1131 spin_lock(&vcpu->kvm->arch.vgic.lock);
96415257 1132 offset -= range->base;
c3c91836 1133 if (vgic_validate_access(dist, range, offset)) {
05bc8aaf 1134 updated_state = call_range_handler(vcpu, mmio, offset, range);
c3c91836 1135 } else {
05bc8aaf
AP
1136 if (!mmio->is_write)
1137 memset(mmio->data, 0, mmio->len);
c3c91836
MZ
1138 updated_state = false;
1139 }
b47ef92a
MZ
1140 spin_unlock(&vcpu->kvm->arch.vgic.lock);
1141 kvm_prepare_mmio(run, mmio);
1142 kvm_handle_mmio_return(vcpu, run);
1143
5863c2ce
MZ
1144 if (updated_state)
1145 vgic_kick_vcpus(vcpu->kvm);
1146
b47ef92a
MZ
1147 return true;
1148}
1149
96415257
AP
1150static inline bool is_in_range(phys_addr_t addr, unsigned long len,
1151 phys_addr_t baseaddr, unsigned long size)
1152{
1153 return (addr >= baseaddr) && (addr + len <= baseaddr + size);
1154}
1155
1156static bool vgic_v2_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1157 struct kvm_exit_mmio *mmio)
1158{
1159 unsigned long base = vcpu->kvm->arch.vgic.vgic_dist_base;
1160
1161 if (!is_in_range(mmio->phys_addr, mmio->len, base,
1162 KVM_VGIC_V2_DIST_SIZE))
1163 return false;
1164
1165 /* GICv2 does not support accesses wider than 32 bits */
1166 if (mmio->len > 4) {
1167 kvm_inject_dabt(vcpu, mmio->phys_addr);
1168 return true;
1169 }
1170
1171 return vgic_handle_mmio_range(vcpu, run, mmio, vgic_dist_ranges, base);
1172}
1173
1174/**
1175 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
1176 * @vcpu: pointer to the vcpu performing the access
1177 * @run: pointer to the kvm_run structure
1178 * @mmio: pointer to the data describing the access
1179 *
1180 * returns true if the MMIO access has been performed in kernel space,
1181 * and false if it needs to be emulated in user space.
b26e5fda 1182 * Calls the actual handling routine for the selected VGIC model.
96415257
AP
1183 */
1184bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1185 struct kvm_exit_mmio *mmio)
1186{
1187 if (!irqchip_in_kernel(vcpu->kvm))
1188 return false;
1189
b26e5fda
AP
1190 /*
1191 * This will currently call either vgic_v2_handle_mmio() or
1192 * vgic_v3_handle_mmio(), which in turn will call
1193 * vgic_handle_mmio_range() defined above.
1194 */
1195 return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
96415257
AP
1196}
1197
c1bfb577
MZ
1198static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
1199{
1200 return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
1201}
1202
b47ef92a
MZ
1203static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
1204{
1205 struct kvm *kvm = vcpu->kvm;
1206 struct vgic_dist *dist = &kvm->arch.vgic;
1207 int nrcpus = atomic_read(&kvm->online_vcpus);
1208 u8 target_cpus;
1209 int sgi, mode, c, vcpu_id;
1210
1211 vcpu_id = vcpu->vcpu_id;
1212
1213 sgi = reg & 0xf;
1214 target_cpus = (reg >> 16) & 0xff;
1215 mode = (reg >> 24) & 3;
1216
1217 switch (mode) {
1218 case 0:
1219 if (!target_cpus)
1220 return;
91021a6c 1221 break;
b47ef92a
MZ
1222
1223 case 1:
1224 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1225 break;
1226
1227 case 2:
1228 target_cpus = 1 << vcpu_id;
1229 break;
1230 }
1231
1232 kvm_for_each_vcpu(c, vcpu, kvm) {
1233 if (target_cpus & 1) {
1234 /* Flag the SGI as pending */
227844f5 1235 vgic_dist_irq_set_pending(vcpu, sgi);
c1bfb577 1236 *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
b47ef92a
MZ
1237 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1238 }
1239
1240 target_cpus >>= 1;
1241 }
1242}
1243
fb65ab63
MZ
1244static int vgic_nr_shared_irqs(struct vgic_dist *dist)
1245{
1246 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
1247}
1248
b47ef92a
MZ
1249static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1250{
9d949dce
MZ
1251 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1252 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1253 unsigned long pending_private, pending_shared;
fb65ab63 1254 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
1255 int vcpu_id;
1256
1257 vcpu_id = vcpu->vcpu_id;
1258 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1259 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1260
227844f5 1261 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
1262 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1263 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1264
227844f5 1265 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce 1266 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
fb65ab63 1267 bitmap_and(pend_shared, pending, enabled, nr_shared);
9d949dce
MZ
1268 bitmap_and(pend_shared, pend_shared,
1269 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
fb65ab63 1270 nr_shared);
9d949dce
MZ
1271
1272 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
fb65ab63 1273 pending_shared = find_first_bit(pend_shared, nr_shared);
9d949dce 1274 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
fb65ab63 1275 pending_shared < vgic_nr_shared_irqs(dist));
b47ef92a
MZ
1276}
1277
1278/*
1279 * Update the interrupt state and determine which CPUs have pending
1280 * interrupts. Must be called with distributor lock held.
1281 */
1282static void vgic_update_state(struct kvm *kvm)
1283{
1284 struct vgic_dist *dist = &kvm->arch.vgic;
1285 struct kvm_vcpu *vcpu;
1286 int c;
1287
1288 if (!dist->enabled) {
c1bfb577 1289 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
1290 return;
1291 }
1292
1293 kvm_for_each_vcpu(c, vcpu, kvm) {
1294 if (compute_pending_for_cpu(vcpu)) {
1295 pr_debug("CPU%d has pending interrupts\n", c);
c1bfb577 1296 set_bit(c, dist->irq_pending_on_cpu);
b47ef92a
MZ
1297 }
1298 }
1a89dd91 1299}
330690cd 1300
8d5c6b06
MZ
1301static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1302{
8f186d52 1303 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
1304}
1305
1306static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1307 struct vgic_lr vlr)
1308{
8f186d52 1309 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
1310}
1311
69bb2c9f
MZ
1312static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1313 struct vgic_lr vlr)
1314{
8f186d52 1315 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
1316}
1317
1318static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1319{
8f186d52 1320 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
1321}
1322
8d6a0313
MZ
1323static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1324{
8f186d52 1325 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
1326}
1327
495dd859
MZ
1328static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1329{
8f186d52 1330 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
1331}
1332
909d9b50
MZ
1333static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1334{
8f186d52 1335 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
1336}
1337
1338static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1339{
8f186d52 1340 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
1341}
1342
beee38b9
MZ
1343static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1344{
8f186d52 1345 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1346}
1347
1348static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1349{
8f186d52 1350 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1351}
1352
da8dafd1
MZ
1353static inline void vgic_enable(struct kvm_vcpu *vcpu)
1354{
8f186d52 1355 vgic_ops->enable(vcpu);
da8dafd1
MZ
1356}
1357
8d5c6b06
MZ
1358static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1359{
1360 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1361 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1362
1363 vlr.state = 0;
1364 vgic_set_lr(vcpu, lr_nr, vlr);
1365 clear_bit(lr_nr, vgic_cpu->lr_used);
1366 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1367}
a1fcb44e
MZ
1368
1369/*
1370 * An interrupt may have been disabled after being made pending on the
1371 * CPU interface (the classic case is a timer running while we're
1372 * rebooting the guest - the interrupt would kick as soon as the CPU
1373 * interface gets enabled, with deadly consequences).
1374 *
1375 * The solution is to examine already active LRs, and check the
1376 * interrupt is still enabled. If not, just retire it.
1377 */
1378static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1379{
1380 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1381 int lr;
1382
8f186d52 1383 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1384 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1385
8d5c6b06
MZ
1386 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1387 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1388 if (vgic_irq_is_queued(vcpu, vlr.irq))
1389 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1390 }
1391 }
1392}
1393
9d949dce
MZ
1394/*
1395 * Queue an interrupt to a CPU virtual interface. Return true on success,
1396 * or false if it wasn't possible to queue it.
1397 */
1398static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1399{
1400 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5fb66da6 1401 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
8d5c6b06 1402 struct vgic_lr vlr;
9d949dce
MZ
1403 int lr;
1404
1405 /* Sanitize the input... */
1406 BUG_ON(sgi_source_id & ~7);
1407 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
5fb66da6 1408 BUG_ON(irq >= dist->nr_irqs);
9d949dce
MZ
1409
1410 kvm_debug("Queue IRQ%d\n", irq);
1411
1412 lr = vgic_cpu->vgic_irq_lr_map[irq];
1413
1414 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1415 if (lr != LR_EMPTY) {
1416 vlr = vgic_get_lr(vcpu, lr);
1417 if (vlr.source == sgi_source_id) {
1418 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1419 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1420 vlr.state |= LR_STATE_PENDING;
1421 vgic_set_lr(vcpu, lr, vlr);
1422 return true;
1423 }
9d949dce
MZ
1424 }
1425
1426 /* Try to use another LR for this interrupt */
1427 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1428 vgic->nr_lr);
1429 if (lr >= vgic->nr_lr)
9d949dce
MZ
1430 return false;
1431
1432 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1433 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1434 set_bit(lr, vgic_cpu->lr_used);
1435
8d5c6b06
MZ
1436 vlr.irq = irq;
1437 vlr.source = sgi_source_id;
1438 vlr.state = LR_STATE_PENDING;
9d949dce 1439 if (!vgic_irq_is_edge(vcpu, irq))
8d5c6b06
MZ
1440 vlr.state |= LR_EOI_INT;
1441
1442 vgic_set_lr(vcpu, lr, vlr);
9d949dce
MZ
1443
1444 return true;
1445}
1446
b26e5fda 1447static bool vgic_v2_queue_sgi(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
1448{
1449 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1450 unsigned long sources;
1451 int vcpu_id = vcpu->vcpu_id;
1452 int c;
1453
c1bfb577 1454 sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
9d949dce 1455
fc675e35 1456 for_each_set_bit(c, &sources, dist->nr_cpus) {
9d949dce
MZ
1457 if (vgic_queue_irq(vcpu, c, irq))
1458 clear_bit(c, &sources);
1459 }
1460
c1bfb577 1461 *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
9d949dce
MZ
1462
1463 /*
1464 * If the sources bitmap has been cleared it means that we
1465 * could queue all the SGIs onto link registers (see the
1466 * clear_bit above), and therefore we are done with them in
1467 * our emulated gic and can get rid of them.
1468 */
1469 if (!sources) {
227844f5 1470 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1471 vgic_cpu_irq_clear(vcpu, irq);
1472 return true;
1473 }
1474
1475 return false;
1476}
1477
1478static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1479{
dbf20f9d 1480 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1481 return true; /* level interrupt, already queued */
1482
1483 if (vgic_queue_irq(vcpu, 0, irq)) {
1484 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1485 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1486 vgic_cpu_irq_clear(vcpu, irq);
1487 } else {
dbf20f9d 1488 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1489 }
1490
1491 return true;
1492 }
1493
1494 return false;
1495}
1496
1497/*
1498 * Fill the list registers with pending interrupts before running the
1499 * guest.
1500 */
1501static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1502{
1503 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1504 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1505 int i, vcpu_id;
1506 int overflow = 0;
1507
1508 vcpu_id = vcpu->vcpu_id;
1509
1510 /*
1511 * We may not have any pending interrupt, or the interrupts
1512 * may have been serviced from another vcpu. In all cases,
1513 * move along.
1514 */
1515 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1516 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1517 goto epilog;
1518 }
1519
1520 /* SGIs */
1521 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
b26e5fda 1522 if (!queue_sgi(vcpu, i))
9d949dce
MZ
1523 overflow = 1;
1524 }
1525
1526 /* PPIs */
1527 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1528 if (!vgic_queue_hwirq(vcpu, i))
1529 overflow = 1;
1530 }
1531
1532 /* SPIs */
fb65ab63 1533 for_each_set_bit(i, vgic_cpu->pending_shared, vgic_nr_shared_irqs(dist)) {
9d949dce
MZ
1534 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1535 overflow = 1;
1536 }
1537
1538epilog:
1539 if (overflow) {
909d9b50 1540 vgic_enable_underflow(vcpu);
9d949dce 1541 } else {
909d9b50 1542 vgic_disable_underflow(vcpu);
9d949dce
MZ
1543 /*
1544 * We're about to run this VCPU, and we've consumed
1545 * everything the distributor had in store for
1546 * us. Claim we don't have anything pending. We'll
1547 * adjust that if needed while exiting.
1548 */
c1bfb577 1549 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1550 }
1551}
1552
1553static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1554{
495dd859 1555 u32 status = vgic_get_interrupt_status(vcpu);
9d949dce
MZ
1556 bool level_pending = false;
1557
495dd859 1558 kvm_debug("STATUS = %08x\n", status);
9d949dce 1559
495dd859 1560 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1561 /*
1562 * Some level interrupts have been EOIed. Clear their
1563 * active bit.
1564 */
8d6a0313 1565 u64 eisr = vgic_get_eisr(vcpu);
2df36a5d 1566 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
8d5c6b06 1567 int lr;
9d949dce 1568
8f186d52 1569 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1570 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1571 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1572
dbf20f9d 1573 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1574 WARN_ON(vlr.state & LR_STATE_MASK);
1575 vlr.state = 0;
1576 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1577
faa1b46c
CD
1578 /*
1579 * If the IRQ was EOIed it was also ACKed and we we
1580 * therefore assume we can clear the soft pending
1581 * state (should it had been set) for this interrupt.
1582 *
1583 * Note: if the IRQ soft pending state was set after
1584 * the IRQ was acked, it actually shouldn't be
1585 * cleared, but we have no way of knowing that unless
1586 * we start trapping ACKs when the soft-pending state
1587 * is set.
1588 */
1589 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1590
9d949dce 1591 /* Any additional pending interrupt? */
faa1b46c 1592 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1593 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1594 level_pending = true;
1595 } else {
faa1b46c 1596 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1597 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1598 }
75da01e1
MZ
1599
1600 /*
1601 * Despite being EOIed, the LR may not have
1602 * been marked as empty.
1603 */
69bb2c9f 1604 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1605 }
1606 }
1607
495dd859 1608 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1609 vgic_disable_underflow(vcpu);
9d949dce
MZ
1610
1611 return level_pending;
1612}
1613
1614/*
33c83cb3
MZ
1615 * Sync back the VGIC state after a guest run. The distributor lock is
1616 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1617 */
1618static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1619{
1620 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1621 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1622 u64 elrsr;
1623 unsigned long *elrsr_ptr;
9d949dce
MZ
1624 int lr, pending;
1625 bool level_pending;
1626
1627 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f 1628 elrsr = vgic_get_elrsr(vcpu);
2df36a5d 1629 elrsr_ptr = u64_to_bitmask(&elrsr);
9d949dce
MZ
1630
1631 /* Clear mappings for empty LRs */
8f186d52 1632 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
8d5c6b06 1633 struct vgic_lr vlr;
9d949dce
MZ
1634
1635 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1636 continue;
1637
8d5c6b06 1638 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1639
5fb66da6 1640 BUG_ON(vlr.irq >= dist->nr_irqs);
8d5c6b06 1641 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1642 }
1643
1644 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1645 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1646 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1647 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1648}
1649
1650void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1651{
1652 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1653
1654 if (!irqchip_in_kernel(vcpu->kvm))
1655 return;
1656
1657 spin_lock(&dist->lock);
1658 __kvm_vgic_flush_hwstate(vcpu);
1659 spin_unlock(&dist->lock);
1660}
1661
1662void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1663{
33c83cb3
MZ
1664 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1665
9d949dce
MZ
1666 if (!irqchip_in_kernel(vcpu->kvm))
1667 return;
1668
33c83cb3 1669 spin_lock(&dist->lock);
9d949dce 1670 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1671 spin_unlock(&dist->lock);
9d949dce
MZ
1672}
1673
1674int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1675{
1676 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1677
1678 if (!irqchip_in_kernel(vcpu->kvm))
1679 return 0;
1680
c1bfb577 1681 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1682}
1683
5863c2ce
MZ
1684static void vgic_kick_vcpus(struct kvm *kvm)
1685{
1686 struct kvm_vcpu *vcpu;
1687 int c;
1688
1689 /*
1690 * We've injected an interrupt, time to find out who deserves
1691 * a good kick...
1692 */
1693 kvm_for_each_vcpu(c, vcpu, kvm) {
1694 if (kvm_vgic_vcpu_pending_irq(vcpu))
1695 kvm_vcpu_kick(vcpu);
1696 }
1697}
1698
1699static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1700{
227844f5 1701 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1702
1703 /*
1704 * Only inject an interrupt if:
1705 * - edge triggered and we have a rising edge
1706 * - level triggered and we change level
1707 */
faa1b46c
CD
1708 if (edge_triggered) {
1709 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1710 return level > state;
faa1b46c
CD
1711 } else {
1712 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1713 return level != state;
faa1b46c 1714 }
5863c2ce
MZ
1715}
1716
016ed39c 1717static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
5863c2ce
MZ
1718 unsigned int irq_num, bool level)
1719{
1720 struct vgic_dist *dist = &kvm->arch.vgic;
1721 struct kvm_vcpu *vcpu;
227844f5 1722 int edge_triggered, level_triggered;
5863c2ce
MZ
1723 int enabled;
1724 bool ret = true;
1725
1726 spin_lock(&dist->lock);
1727
1728 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1729 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1730 level_triggered = !edge_triggered;
5863c2ce
MZ
1731
1732 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1733 ret = false;
1734 goto out;
1735 }
1736
1737 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1738 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1739 vcpu = kvm_get_vcpu(kvm, cpuid);
1740 }
1741
1742 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1743
faa1b46c
CD
1744 if (level) {
1745 if (level_triggered)
1746 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1747 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1748 } else {
1749 if (level_triggered) {
1750 vgic_dist_irq_clear_level(vcpu, irq_num);
1751 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1752 vgic_dist_irq_clear_pending(vcpu, irq_num);
faa1b46c 1753 }
7d39f9e3 1754
1755 ret = false;
1756 goto out;
faa1b46c 1757 }
5863c2ce
MZ
1758
1759 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1760
1761 if (!enabled) {
1762 ret = false;
1763 goto out;
1764 }
1765
dbf20f9d 1766 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1767 /*
1768 * Level interrupt in progress, will be picked up
1769 * when EOId.
1770 */
1771 ret = false;
1772 goto out;
1773 }
1774
1775 if (level) {
1776 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1777 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1778 }
1779
1780out:
1781 spin_unlock(&dist->lock);
1782
016ed39c 1783 return ret ? cpuid : -EINVAL;
5863c2ce
MZ
1784}
1785
1786/**
1787 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1788 * @kvm: The VM structure pointer
1789 * @cpuid: The CPU for PPIs
1790 * @irq_num: The IRQ number that is assigned to the device
1791 * @level: Edge-triggered: true: to trigger the interrupt
1792 * false: to ignore the call
1793 * Level-sensitive true: activates an interrupt
1794 * false: deactivates an interrupt
1795 *
1796 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1797 * level-sensitive interrupts. You can think of the level parameter as 1
1798 * being HIGH and 0 being LOW and all devices being active-HIGH.
1799 */
1800int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1801 bool level)
1802{
ca7d9c82 1803 int ret = 0;
016ed39c 1804 int vcpu_id;
5863c2ce 1805
ca7d9c82 1806 if (unlikely(!vgic_initialized(kvm))) {
59892136
AP
1807 /*
1808 * We only provide the automatic initialization of the VGIC
1809 * for the legacy case of a GICv2. Any other type must
1810 * be explicitly initialized once setup with the respective
1811 * KVM device call.
1812 */
1813 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1814 ret = -EBUSY;
1815 goto out;
1816 }
ca7d9c82
CD
1817 mutex_lock(&kvm->lock);
1818 ret = vgic_init(kvm);
1819 mutex_unlock(&kvm->lock);
1820
1821 if (ret)
1822 goto out;
016ed39c 1823 }
5863c2ce 1824
ca7d9c82
CD
1825 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1826 if (vcpu_id >= 0) {
1827 /* kick the specified vcpu */
1828 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1829 }
1830
1831out:
1832 return ret;
5863c2ce
MZ
1833}
1834
01ac5e34
MZ
1835static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1836{
1837 /*
1838 * We cannot rely on the vgic maintenance interrupt to be
1839 * delivered synchronously. This means we can only use it to
1840 * exit the VM, and we perform the handling of EOIed
1841 * interrupts on the exit path (see vgic_process_maintenance).
1842 */
1843 return IRQ_HANDLED;
1844}
1845
c1bfb577
MZ
1846void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1847{
1848 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1849
1850 kfree(vgic_cpu->pending_shared);
1851 kfree(vgic_cpu->vgic_irq_lr_map);
1852 vgic_cpu->pending_shared = NULL;
1853 vgic_cpu->vgic_irq_lr_map = NULL;
1854}
1855
1856static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1857{
1858 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1859
1860 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1861 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
6d3cfbe2 1862 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
c1bfb577
MZ
1863
1864 if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1865 kvm_vgic_vcpu_destroy(vcpu);
1866 return -ENOMEM;
1867 }
1868
6d3cfbe2 1869 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
01ac5e34
MZ
1870
1871 /*
ca85f623
MZ
1872 * Store the number of LRs per vcpu, so we don't have to go
1873 * all the way to the distributor structure to find out. Only
1874 * assembly code should use this one.
01ac5e34 1875 */
8f186d52 1876 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1877
6d3cfbe2 1878 return 0;
01ac5e34
MZ
1879}
1880
c1bfb577
MZ
1881void kvm_vgic_destroy(struct kvm *kvm)
1882{
1883 struct vgic_dist *dist = &kvm->arch.vgic;
1884 struct kvm_vcpu *vcpu;
1885 int i;
1886
1887 kvm_for_each_vcpu(i, vcpu, kvm)
1888 kvm_vgic_vcpu_destroy(vcpu);
1889
1890 vgic_free_bitmap(&dist->irq_enabled);
1891 vgic_free_bitmap(&dist->irq_level);
1892 vgic_free_bitmap(&dist->irq_pending);
1893 vgic_free_bitmap(&dist->irq_soft_pend);
1894 vgic_free_bitmap(&dist->irq_queued);
1895 vgic_free_bitmap(&dist->irq_cfg);
1896 vgic_free_bytemap(&dist->irq_priority);
1897 if (dist->irq_spi_target) {
1898 for (i = 0; i < dist->nr_cpus; i++)
1899 vgic_free_bitmap(&dist->irq_spi_target[i]);
1900 }
1901 kfree(dist->irq_sgi_sources);
1902 kfree(dist->irq_spi_cpu);
1903 kfree(dist->irq_spi_target);
1904 kfree(dist->irq_pending_on_cpu);
1905 dist->irq_sgi_sources = NULL;
1906 dist->irq_spi_cpu = NULL;
1907 dist->irq_spi_target = NULL;
1908 dist->irq_pending_on_cpu = NULL;
1f57be28 1909 dist->nr_cpus = 0;
c1bfb577
MZ
1910}
1911
b26e5fda
AP
1912static int vgic_v2_init_model(struct kvm *kvm)
1913{
1914 int i;
1915
1916 for (i = VGIC_NR_PRIVATE_IRQS; i < kvm->arch.vgic.nr_irqs; i += 4)
1917 vgic_set_target_reg(kvm, 0, i);
1918
1919 return 0;
1920}
1921
c1bfb577
MZ
1922/*
1923 * Allocate and initialize the various data structures. Must be called
1924 * with kvm->lock held!
1925 */
6d3cfbe2 1926static int vgic_init(struct kvm *kvm)
c1bfb577
MZ
1927{
1928 struct vgic_dist *dist = &kvm->arch.vgic;
1929 struct kvm_vcpu *vcpu;
1930 int nr_cpus, nr_irqs;
6d3cfbe2 1931 int ret, i, vcpu_id;
c1bfb577 1932
1f57be28 1933 if (vgic_initialized(kvm))
4956f2bc
MZ
1934 return 0;
1935
1936 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1937 if (!nr_cpus) /* No vcpus? Can't be good... */
66b030e4 1938 return -ENODEV;
5fb66da6 1939
4956f2bc
MZ
1940 /*
1941 * If nobody configured the number of interrupts, use the
1942 * legacy one.
1943 */
5fb66da6
MZ
1944 if (!dist->nr_irqs)
1945 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1946
1947 nr_irqs = dist->nr_irqs;
c1bfb577
MZ
1948
1949 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1950 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1951 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1952 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1953 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1954 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1955 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1956
1957 if (ret)
1958 goto out;
1959
1960 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1961 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1962 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1963 GFP_KERNEL);
1964 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1965 GFP_KERNEL);
1966 if (!dist->irq_sgi_sources ||
1967 !dist->irq_spi_cpu ||
1968 !dist->irq_spi_target ||
1969 !dist->irq_pending_on_cpu) {
1970 ret = -ENOMEM;
1971 goto out;
1972 }
1973
1974 for (i = 0; i < nr_cpus; i++)
1975 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1976 nr_cpus, nr_irqs);
1977
1978 if (ret)
1979 goto out;
1980
b26e5fda
AP
1981 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1982 if (ret)
1983 goto out;
6d3cfbe2
PM
1984
1985 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
c1bfb577
MZ
1986 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1987 if (ret) {
1988 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1989 break;
1990 }
c1bfb577 1991
6d3cfbe2
PM
1992 for (i = 0; i < dist->nr_irqs; i++) {
1993 if (i < VGIC_NR_PPIS)
1994 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1995 vcpu->vcpu_id, i, 1);
1996 if (i < VGIC_NR_PRIVATE_IRQS)
1997 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1998 vcpu->vcpu_id, i,
1999 VGIC_CFG_EDGE);
2000 }
2001
2002 vgic_enable(vcpu);
2003 }
4956f2bc 2004
c1bfb577
MZ
2005out:
2006 if (ret)
2007 kvm_vgic_destroy(kvm);
2008
2009 return ret;
2010}
2011
e1ba0207 2012/**
6d3cfbe2 2013 * kvm_vgic_map_resources - Configure global VGIC state before running any VCPUs
e1ba0207
CD
2014 * @kvm: pointer to the kvm struct
2015 *
2016 * Map the virtual CPU interface into the VM before running any VCPUs. We
2017 * can't do this at creation time, because user space must first set the
6d3cfbe2 2018 * virtual CPU interface address in the guest physical address space.
e1ba0207 2019 */
b26e5fda
AP
2020static int vgic_v2_map_resources(struct kvm *kvm,
2021 const struct vgic_params *params)
01ac5e34 2022{
6d3cfbe2 2023 int ret = 0;
01ac5e34 2024
e1ba0207
CD
2025 if (!irqchip_in_kernel(kvm))
2026 return 0;
2027
01ac5e34
MZ
2028 mutex_lock(&kvm->lock);
2029
c52edf5f 2030 if (vgic_ready(kvm))
01ac5e34
MZ
2031 goto out;
2032
2033 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
2034 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
2035 kvm_err("Need to set vgic cpu and dist addresses first\n");
2036 ret = -ENXIO;
2037 goto out;
2038 }
2039
6d3cfbe2
PM
2040 /*
2041 * Initialize the vgic if this hasn't already been done on demand by
2042 * accessing the vgic state from userspace.
2043 */
2044 ret = vgic_init(kvm);
4956f2bc
MZ
2045 if (ret) {
2046 kvm_err("Unable to allocate maps\n");
2047 goto out;
2048 }
2049
01ac5e34 2050 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
b26e5fda 2051 params->vcpu_base, KVM_VGIC_V2_CPU_SIZE,
c40f2f8f 2052 true);
01ac5e34
MZ
2053 if (ret) {
2054 kvm_err("Unable to remap VGIC CPU to VCPU\n");
2055 goto out;
2056 }
2057
01ac5e34
MZ
2058 kvm->arch.vgic.ready = true;
2059out:
4956f2bc
MZ
2060 if (ret)
2061 kvm_vgic_destroy(kvm);
01ac5e34
MZ
2062 mutex_unlock(&kvm->lock);
2063 return ret;
2064}
2065
b26e5fda
AP
2066static void vgic_v2_init_emulation(struct kvm *kvm)
2067{
2068 struct vgic_dist *dist = &kvm->arch.vgic;
2069
2070 dist->vm_ops.handle_mmio = vgic_v2_handle_mmio;
2071 dist->vm_ops.queue_sgi = vgic_v2_queue_sgi;
2072 dist->vm_ops.add_sgi_source = vgic_v2_add_sgi_source;
2073 dist->vm_ops.init_model = vgic_v2_init_model;
2074 dist->vm_ops.map_resources = vgic_v2_map_resources;
2075}
2076
2077static int init_vgic_model(struct kvm *kvm, int type)
2078{
2079 switch (type) {
2080 case KVM_DEV_TYPE_ARM_VGIC_V2:
2081 vgic_v2_init_emulation(kvm);
2082 break;
2083 default:
2084 return -ENODEV;
2085 }
2086
2087 return 0;
2088}
2089
59892136 2090int kvm_vgic_create(struct kvm *kvm, u32 type)
01ac5e34 2091{
6b50f540 2092 int i, vcpu_lock_idx = -1, ret;
7330672b 2093 struct kvm_vcpu *vcpu;
01ac5e34
MZ
2094
2095 mutex_lock(&kvm->lock);
2096
4ce7ebdf 2097 if (irqchip_in_kernel(kvm)) {
01ac5e34
MZ
2098 ret = -EEXIST;
2099 goto out;
2100 }
2101
7330672b
CD
2102 /*
2103 * Any time a vcpu is run, vcpu_load is called which tries to grab the
2104 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
2105 * that no other VCPUs are run while we create the vgic.
2106 */
6b50f540 2107 ret = -EBUSY;
7330672b
CD
2108 kvm_for_each_vcpu(i, vcpu, kvm) {
2109 if (!mutex_trylock(&vcpu->mutex))
2110 goto out_unlock;
2111 vcpu_lock_idx = i;
2112 }
2113
2114 kvm_for_each_vcpu(i, vcpu, kvm) {
6b50f540 2115 if (vcpu->arch.has_run_once)
7330672b 2116 goto out_unlock;
7330672b 2117 }
6b50f540 2118 ret = 0;
7330672b 2119
b26e5fda
AP
2120 ret = init_vgic_model(kvm, type);
2121 if (ret)
2122 goto out_unlock;
2123
01ac5e34 2124 spin_lock_init(&kvm->arch.vgic.lock);
f982cf4e 2125 kvm->arch.vgic.in_kernel = true;
59892136 2126 kvm->arch.vgic.vgic_model = type;
8f186d52 2127 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
2128 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2129 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
2130
7330672b
CD
2131out_unlock:
2132 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2133 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2134 mutex_unlock(&vcpu->mutex);
2135 }
2136
01ac5e34
MZ
2137out:
2138 mutex_unlock(&kvm->lock);
2139 return ret;
2140}
2141
1fa451bc 2142static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
2143{
2144 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2145 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2146
2147 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2148 return 0;
2149 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2150 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2151 return -EBUSY;
2152 return 0;
2153}
2154
2155static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2156 phys_addr_t addr, phys_addr_t size)
2157{
2158 int ret;
2159
ce01e4e8
CD
2160 if (addr & ~KVM_PHYS_MASK)
2161 return -E2BIG;
2162
2163 if (addr & (SZ_4K - 1))
2164 return -EINVAL;
2165
330690cd
CD
2166 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2167 return -EEXIST;
2168 if (addr + size < addr)
2169 return -EINVAL;
2170
30c21170 2171 *ioaddr = addr;
330690cd
CD
2172 ret = vgic_ioaddr_overlap(kvm);
2173 if (ret)
30c21170
HW
2174 *ioaddr = VGIC_ADDR_UNDEF;
2175
330690cd
CD
2176 return ret;
2177}
2178
ce01e4e8
CD
2179/**
2180 * kvm_vgic_addr - set or get vgic VM base addresses
2181 * @kvm: pointer to the vm struct
2182 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
2183 * @addr: pointer to address value
2184 * @write: if true set the address in the VM address space, if false read the
2185 * address
2186 *
2187 * Set or get the vgic base addresses for the distributor and the virtual CPU
2188 * interface in the VM physical address space. These addresses are properties
2189 * of the emulated core/SoC and therefore user space initially knows this
2190 * information.
2191 */
2192int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
2193{
2194 int r = 0;
2195 struct vgic_dist *vgic = &kvm->arch.vgic;
2196
330690cd
CD
2197 mutex_lock(&kvm->lock);
2198 switch (type) {
2199 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
2200 if (write) {
2201 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
2202 *addr, KVM_VGIC_V2_DIST_SIZE);
2203 } else {
2204 *addr = vgic->vgic_dist_base;
2205 }
330690cd
CD
2206 break;
2207 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
2208 if (write) {
2209 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
2210 *addr, KVM_VGIC_V2_CPU_SIZE);
2211 } else {
2212 *addr = vgic->vgic_cpu_base;
2213 }
330690cd
CD
2214 break;
2215 default:
2216 r = -ENODEV;
2217 }
2218
2219 mutex_unlock(&kvm->lock);
2220 return r;
2221}
7330672b 2222
c07a0191
CD
2223static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
2224 struct kvm_exit_mmio *mmio, phys_addr_t offset)
2225{
fa20f5ae 2226 bool updated = false;
beee38b9
MZ
2227 struct vgic_vmcr vmcr;
2228 u32 *vmcr_field;
2229 u32 reg;
2230
2231 vgic_get_vmcr(vcpu, &vmcr);
fa20f5ae
CD
2232
2233 switch (offset & ~0x3) {
2234 case GIC_CPU_CTRL:
beee38b9 2235 vmcr_field = &vmcr.ctlr;
fa20f5ae
CD
2236 break;
2237 case GIC_CPU_PRIMASK:
beee38b9 2238 vmcr_field = &vmcr.pmr;
fa20f5ae
CD
2239 break;
2240 case GIC_CPU_BINPOINT:
beee38b9 2241 vmcr_field = &vmcr.bpr;
fa20f5ae
CD
2242 break;
2243 case GIC_CPU_ALIAS_BINPOINT:
beee38b9 2244 vmcr_field = &vmcr.abpr;
fa20f5ae 2245 break;
beee38b9
MZ
2246 default:
2247 BUG();
fa20f5ae
CD
2248 }
2249
2250 if (!mmio->is_write) {
beee38b9 2251 reg = *vmcr_field;
fa20f5ae
CD
2252 mmio_data_write(mmio, ~0, reg);
2253 } else {
2254 reg = mmio_data_read(mmio, ~0);
beee38b9
MZ
2255 if (reg != *vmcr_field) {
2256 *vmcr_field = reg;
2257 vgic_set_vmcr(vcpu, &vmcr);
fa20f5ae 2258 updated = true;
beee38b9 2259 }
fa20f5ae
CD
2260 }
2261 return updated;
2262}
2263
2264static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
2265 struct kvm_exit_mmio *mmio, phys_addr_t offset)
2266{
2267 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
c07a0191
CD
2268}
2269
fa20f5ae
CD
2270static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
2271 struct kvm_exit_mmio *mmio,
2272 phys_addr_t offset)
2273{
2274 u32 reg;
2275
2276 if (mmio->is_write)
2277 return false;
2278
2279 /* GICC_IIDR */
2280 reg = (PRODUCT_ID_KVM << 20) |
2281 (GICC_ARCH_VERSION_V2 << 16) |
2282 (IMPLEMENTER_ARM << 0);
2283 mmio_data_write(mmio, ~0, reg);
2284 return false;
2285}
2286
2287/*
2288 * CPU Interface Register accesses - these are not accessed by the VM, but by
2289 * user space for saving and restoring VGIC state.
2290 */
c07a0191
CD
2291static const struct mmio_range vgic_cpu_ranges[] = {
2292 {
2293 .base = GIC_CPU_CTRL,
2294 .len = 12,
2295 .handle_mmio = handle_cpu_mmio_misc,
2296 },
2297 {
2298 .base = GIC_CPU_ALIAS_BINPOINT,
2299 .len = 4,
fa20f5ae 2300 .handle_mmio = handle_mmio_abpr,
c07a0191
CD
2301 },
2302 {
2303 .base = GIC_CPU_ACTIVEPRIO,
2304 .len = 16,
fa20f5ae 2305 .handle_mmio = handle_mmio_raz_wi,
c07a0191
CD
2306 },
2307 {
2308 .base = GIC_CPU_IDENT,
2309 .len = 4,
fa20f5ae 2310 .handle_mmio = handle_cpu_mmio_ident,
c07a0191
CD
2311 },
2312};
2313
2314static int vgic_attr_regs_access(struct kvm_device *dev,
2315 struct kvm_device_attr *attr,
2316 u32 *reg, bool is_write)
2317{
2318 const struct mmio_range *r = NULL, *ranges;
2319 phys_addr_t offset;
2320 int ret, cpuid, c;
2321 struct kvm_vcpu *vcpu, *tmp_vcpu;
2322 struct vgic_dist *vgic;
2323 struct kvm_exit_mmio mmio;
2324
2325 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2326 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
2327 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
2328
2329 mutex_lock(&dev->kvm->lock);
2330
6d3cfbe2 2331 ret = vgic_init(dev->kvm);
4956f2bc
MZ
2332 if (ret)
2333 goto out;
2334
c07a0191
CD
2335 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
2336 ret = -EINVAL;
2337 goto out;
2338 }
2339
2340 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
2341 vgic = &dev->kvm->arch.vgic;
2342
2343 mmio.len = 4;
2344 mmio.is_write = is_write;
2345 if (is_write)
2346 mmio_data_write(&mmio, ~0, *reg);
2347 switch (attr->group) {
2348 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2349 mmio.phys_addr = vgic->vgic_dist_base + offset;
2350 ranges = vgic_dist_ranges;
2351 break;
2352 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2353 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2354 ranges = vgic_cpu_ranges;
2355 break;
2356 default:
2357 BUG();
2358 }
2359 r = find_matching_range(ranges, &mmio, offset);
2360
2361 if (unlikely(!r || !r->handle_mmio)) {
2362 ret = -ENXIO;
2363 goto out;
2364 }
2365
2366
2367 spin_lock(&vgic->lock);
2368
2369 /*
2370 * Ensure that no other VCPU is running by checking the vcpu->cpu
2371 * field. If no other VPCUs are running we can safely access the VGIC
2372 * state, because even if another VPU is run after this point, that
2373 * VCPU will not touch the vgic state, because it will block on
2374 * getting the vgic->lock in kvm_vgic_sync_hwstate().
2375 */
2376 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2377 if (unlikely(tmp_vcpu->cpu != -1)) {
2378 ret = -EBUSY;
2379 goto out_vgic_unlock;
2380 }
2381 }
2382
cbd333a4
CD
2383 /*
2384 * Move all pending IRQs from the LRs on all VCPUs so the pending
2385 * state can be properly represented in the register state accessible
2386 * through this API.
2387 */
2388 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2389 vgic_unqueue_irqs(tmp_vcpu);
2390
c07a0191
CD
2391 offset -= r->base;
2392 r->handle_mmio(vcpu, &mmio, offset);
2393
2394 if (!is_write)
2395 *reg = mmio_data_read(&mmio, ~0);
2396
2397 ret = 0;
2398out_vgic_unlock:
2399 spin_unlock(&vgic->lock);
2400out:
2401 mutex_unlock(&dev->kvm->lock);
2402 return ret;
2403}
2404
7330672b
CD
2405static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2406{
ce01e4e8
CD
2407 int r;
2408
2409 switch (attr->group) {
2410 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2411 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2412 u64 addr;
2413 unsigned long type = (unsigned long)attr->attr;
2414
2415 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2416 return -EFAULT;
2417
2418 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2419 return (r == -ENODEV) ? -ENXIO : r;
2420 }
c07a0191
CD
2421
2422 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2423 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2424 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2425 u32 reg;
2426
2427 if (get_user(reg, uaddr))
2428 return -EFAULT;
2429
2430 return vgic_attr_regs_access(dev, attr, &reg, true);
2431 }
a98f26f1
MZ
2432 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2433 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2434 u32 val;
2435 int ret = 0;
2436
2437 if (get_user(val, uaddr))
2438 return -EFAULT;
2439
2440 /*
2441 * We require:
2442 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2443 * - at most 1024 interrupts
2444 * - a multiple of 32 interrupts
2445 */
2446 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2447 val > VGIC_MAX_IRQS ||
2448 (val & 31))
2449 return -EINVAL;
2450
2451 mutex_lock(&dev->kvm->lock);
2452
c52edf5f 2453 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
a98f26f1
MZ
2454 ret = -EBUSY;
2455 else
2456 dev->kvm->arch.vgic.nr_irqs = val;
2457
2458 mutex_unlock(&dev->kvm->lock);
2459
2460 return ret;
2461 }
065c0034
EA
2462 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2463 switch (attr->attr) {
2464 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2465 r = vgic_init(dev->kvm);
2466 return r;
2467 }
2468 break;
2469 }
ce01e4e8
CD
2470 }
2471
7330672b
CD
2472 return -ENXIO;
2473}
2474
2475static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2476{
ce01e4e8
CD
2477 int r = -ENXIO;
2478
2479 switch (attr->group) {
2480 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2481 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2482 u64 addr;
2483 unsigned long type = (unsigned long)attr->attr;
2484
2485 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2486 if (r)
2487 return (r == -ENODEV) ? -ENXIO : r;
2488
2489 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2490 return -EFAULT;
c07a0191
CD
2491 break;
2492 }
2493
2494 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2495 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2496 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2497 u32 reg = 0;
2498
2499 r = vgic_attr_regs_access(dev, attr, &reg, false);
2500 if (r)
2501 return r;
2502 r = put_user(reg, uaddr);
2503 break;
ce01e4e8 2504 }
a98f26f1
MZ
2505 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2506 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2507 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2508 break;
2509 }
c07a0191 2510
ce01e4e8
CD
2511 }
2512
2513 return r;
7330672b
CD
2514}
2515
c07a0191
CD
2516static int vgic_has_attr_regs(const struct mmio_range *ranges,
2517 phys_addr_t offset)
2518{
2519 struct kvm_exit_mmio dev_attr_mmio;
2520
2521 dev_attr_mmio.len = 4;
2522 if (find_matching_range(ranges, &dev_attr_mmio, offset))
2523 return 0;
2524 else
2525 return -ENXIO;
2526}
2527
7330672b
CD
2528static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2529{
c07a0191
CD
2530 phys_addr_t offset;
2531
ce01e4e8
CD
2532 switch (attr->group) {
2533 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2534 switch (attr->attr) {
2535 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2536 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2537 return 0;
2538 }
2539 break;
c07a0191
CD
2540 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2541 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2542 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2543 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2544 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2545 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
a98f26f1
MZ
2546 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS:
2547 return 0;
065c0034
EA
2548 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2549 switch (attr->attr) {
2550 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2551 return 0;
2552 }
ce01e4e8 2553 }
7330672b
CD
2554 return -ENXIO;
2555}
2556
2557static void vgic_destroy(struct kvm_device *dev)
2558{
2559 kfree(dev);
2560}
2561
2562static int vgic_create(struct kvm_device *dev, u32 type)
2563{
59892136 2564 return kvm_vgic_create(dev->kvm, type);
7330672b
CD
2565}
2566
ea2f83a7 2567struct kvm_device_ops kvm_arm_vgic_v2_ops = {
7330672b
CD
2568 .name = "kvm-arm-vgic",
2569 .create = vgic_create,
2570 .destroy = vgic_destroy,
2571 .set_attr = vgic_set_attr,
2572 .get_attr = vgic_get_attr,
2573 .has_attr = vgic_has_attr,
2574};
c06a841b
WD
2575
2576static void vgic_init_maintenance_interrupt(void *info)
2577{
2578 enable_percpu_irq(vgic->maint_irq, 0);
2579}
2580
2581static int vgic_cpu_notify(struct notifier_block *self,
2582 unsigned long action, void *cpu)
2583{
2584 switch (action) {
2585 case CPU_STARTING:
2586 case CPU_STARTING_FROZEN:
2587 vgic_init_maintenance_interrupt(NULL);
2588 break;
2589 case CPU_DYING:
2590 case CPU_DYING_FROZEN:
2591 disable_percpu_irq(vgic->maint_irq);
2592 break;
2593 }
2594
2595 return NOTIFY_OK;
2596}
2597
2598static struct notifier_block vgic_cpu_nb = {
2599 .notifier_call = vgic_cpu_notify,
2600};
2601
2602static const struct of_device_id vgic_ids[] = {
2603 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2604 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2605 {},
2606};
2607
2608int kvm_vgic_hyp_init(void)
2609{
2610 const struct of_device_id *matched_id;
a875dafc
CD
2611 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2612 const struct vgic_params **);
c06a841b
WD
2613 struct device_node *vgic_node;
2614 int ret;
2615
2616 vgic_node = of_find_matching_node_and_match(NULL,
2617 vgic_ids, &matched_id);
2618 if (!vgic_node) {
2619 kvm_err("error: no compatible GIC node found\n");
2620 return -ENODEV;
2621 }
2622
2623 vgic_probe = matched_id->data;
2624 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2625 if (ret)
2626 return ret;
2627
2628 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2629 "vgic", kvm_get_running_vcpus());
2630 if (ret) {
2631 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2632 return ret;
2633 }
2634
2635 ret = __register_cpu_notifier(&vgic_cpu_nb);
2636 if (ret) {
2637 kvm_err("Cannot register vgic CPU notifier\n");
2638 goto out_free_irq;
2639 }
2640
2641 /* Callback into for arch code for setup */
2642 vgic_arch_setup(vgic);
2643
2644 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2645
ea2f83a7 2646 return 0;
c06a841b
WD
2647
2648out_free_irq:
2649 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2650 return ret;
2651}
This page took 0.340059 seconds and 5 git commands to generate.