KVM: ARM: vgic: move underflow handling to vgic_ops
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
1a89dd91 34
b47ef92a
MZ
35/*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending
40 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
41 * bitmap (this bitmap is updated by both user land ioctls and guest
42 * mmio ops, and other in-kernel peripherals such as the
43 * arch. timers) and indicate the 'wire' state.
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
48 * - PPI: dist->irq_state & dist->irq_enable
49 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
50 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - The same is true when injecting an interrupt, except that we only
55 * consider a single interrupt at a time. The irq_spi_cpu array
56 * contains the target CPU for each SPI.
57 *
58 * The handling of level interrupts adds some extra complexity. We
59 * need to track when the interrupt has been EOIed, so we can sample
60 * the 'line' again. This is achieved as such:
61 *
62 * - When a level interrupt is moved onto a vcpu, the corresponding
63 * bit in irq_active is set. As long as this bit is set, the line
64 * will be ignored for further interrupts. The interrupt is injected
65 * into the vcpu with the GICH_LR_EOI bit set (generate a
66 * maintenance interrupt on EOI).
67 * - When the interrupt is EOIed, the maintenance interrupt fires,
68 * and clears the corresponding bit in irq_active. This allow the
69 * interrupt line to be sampled again.
70 */
71
330690cd
CD
72#define VGIC_ADDR_UNDEF (-1)
73#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
74
fa20f5ae
CD
75#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
76#define IMPLEMENTER_ARM 0x43b
77#define GICC_ARCH_VERSION_V2 0x2
78
01ac5e34
MZ
79/* Physical address of vgic virtual cpu interface */
80static phys_addr_t vgic_vcpu_base;
81
82/* Virtual control interface base address */
83static void __iomem *vgic_vctrl_base;
84
85static struct device_node *vgic_node;
86
1a89dd91
MZ
87#define ACCESS_READ_VALUE (1 << 0)
88#define ACCESS_READ_RAZ (0 << 0)
89#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
90#define ACCESS_WRITE_IGNORED (0 << 1)
91#define ACCESS_WRITE_SETBIT (1 << 1)
92#define ACCESS_WRITE_CLEARBIT (2 << 1)
93#define ACCESS_WRITE_VALUE (3 << 1)
94#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
95
a1fcb44e 96static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 97static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
b47ef92a 98static void vgic_update_state(struct kvm *kvm);
5863c2ce 99static void vgic_kick_vcpus(struct kvm *kvm);
b47ef92a 100static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
8d5c6b06
MZ
101static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
102static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
01ac5e34
MZ
103static u32 vgic_nr_lr;
104
105static unsigned int vgic_maint_irq;
b47ef92a
MZ
106
107static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
108 int cpuid, u32 offset)
109{
110 offset >>= 2;
111 if (!offset)
112 return x->percpu[cpuid].reg;
113 else
114 return x->shared.reg + offset - 1;
115}
116
117static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
118 int cpuid, int irq)
119{
120 if (irq < VGIC_NR_PRIVATE_IRQS)
121 return test_bit(irq, x->percpu[cpuid].reg_ul);
122
123 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
124}
125
126static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
127 int irq, int val)
128{
129 unsigned long *reg;
130
131 if (irq < VGIC_NR_PRIVATE_IRQS) {
132 reg = x->percpu[cpuid].reg_ul;
133 } else {
134 reg = x->shared.reg_ul;
135 irq -= VGIC_NR_PRIVATE_IRQS;
136 }
137
138 if (val)
139 set_bit(irq, reg);
140 else
141 clear_bit(irq, reg);
142}
143
144static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
145{
146 if (unlikely(cpuid >= VGIC_MAX_CPUS))
147 return NULL;
148 return x->percpu[cpuid].reg_ul;
149}
150
151static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
152{
153 return x->shared.reg_ul;
154}
155
156static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
157{
158 offset >>= 2;
159 BUG_ON(offset > (VGIC_NR_IRQS / 4));
8d98915b 160 if (offset < 8)
b47ef92a
MZ
161 return x->percpu[cpuid] + offset;
162 else
163 return x->shared + offset - 8;
164}
165
166#define VGIC_CFG_LEVEL 0
167#define VGIC_CFG_EDGE 1
168
169static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
170{
171 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
172 int irq_val;
173
174 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
175 return irq_val == VGIC_CFG_EDGE;
176}
177
178static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
179{
180 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
181
182 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
183}
184
9d949dce
MZ
185static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
186{
187 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
188
189 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
190}
191
192static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
193{
194 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
195
196 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
197}
198
199static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
200{
201 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
202
203 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
204}
205
206static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
207{
208 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
209
210 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
211}
212
b47ef92a
MZ
213static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
214{
215 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
216
217 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
218}
219
220static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
221{
222 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
223
224 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
225}
226
227static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
228{
229 if (irq < VGIC_NR_PRIVATE_IRQS)
230 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
231 else
232 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
233 vcpu->arch.vgic_cpu.pending_shared);
234}
235
236static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
237{
238 if (irq < VGIC_NR_PRIVATE_IRQS)
239 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
240 else
241 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
242 vcpu->arch.vgic_cpu.pending_shared);
243}
244
1a89dd91
MZ
245static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
246{
247 return *((u32 *)mmio->data) & mask;
248}
249
250static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
251{
252 *((u32 *)mmio->data) = value & mask;
253}
254
255/**
256 * vgic_reg_access - access vgic register
257 * @mmio: pointer to the data describing the mmio access
258 * @reg: pointer to the virtual backing of vgic distributor data
259 * @offset: least significant 2 bits used for word offset
260 * @mode: ACCESS_ mode (see defines above)
261 *
262 * Helper to make vgic register access easier using one of the access
263 * modes defined for vgic register access
264 * (read,raz,write-ignored,setbit,clearbit,write)
265 */
266static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
267 phys_addr_t offset, int mode)
268{
269 int word_offset = (offset & 3) * 8;
270 u32 mask = (1UL << (mmio->len * 8)) - 1;
271 u32 regval;
272
273 /*
274 * Any alignment fault should have been delivered to the guest
275 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
276 */
277
278 if (reg) {
279 regval = *reg;
280 } else {
281 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
282 regval = 0;
283 }
284
285 if (mmio->is_write) {
286 u32 data = mmio_data_read(mmio, mask) << word_offset;
287 switch (ACCESS_WRITE_MASK(mode)) {
288 case ACCESS_WRITE_IGNORED:
289 return;
290
291 case ACCESS_WRITE_SETBIT:
292 regval |= data;
293 break;
294
295 case ACCESS_WRITE_CLEARBIT:
296 regval &= ~data;
297 break;
298
299 case ACCESS_WRITE_VALUE:
300 regval = (regval & ~(mask << word_offset)) | data;
301 break;
302 }
303 *reg = regval;
304 } else {
305 switch (ACCESS_READ_MASK(mode)) {
306 case ACCESS_READ_RAZ:
307 regval = 0;
308 /* fall through */
309
310 case ACCESS_READ_VALUE:
311 mmio_data_write(mmio, mask, regval >> word_offset);
312 }
313 }
314}
315
b47ef92a
MZ
316static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
317 struct kvm_exit_mmio *mmio, phys_addr_t offset)
318{
319 u32 reg;
320 u32 word_offset = offset & 3;
321
322 switch (offset & ~3) {
fa20f5ae 323 case 0: /* GICD_CTLR */
b47ef92a
MZ
324 reg = vcpu->kvm->arch.vgic.enabled;
325 vgic_reg_access(mmio, &reg, word_offset,
326 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
327 if (mmio->is_write) {
328 vcpu->kvm->arch.vgic.enabled = reg & 1;
329 vgic_update_state(vcpu->kvm);
330 return true;
331 }
332 break;
333
fa20f5ae 334 case 4: /* GICD_TYPER */
b47ef92a
MZ
335 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
336 reg |= (VGIC_NR_IRQS >> 5) - 1;
337 vgic_reg_access(mmio, &reg, word_offset,
338 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
339 break;
340
fa20f5ae
CD
341 case 8: /* GICD_IIDR */
342 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
b47ef92a
MZ
343 vgic_reg_access(mmio, &reg, word_offset,
344 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
345 break;
346 }
347
348 return false;
349}
350
351static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
352 struct kvm_exit_mmio *mmio, phys_addr_t offset)
353{
354 vgic_reg_access(mmio, NULL, offset,
355 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
356 return false;
357}
358
359static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
360 struct kvm_exit_mmio *mmio,
361 phys_addr_t offset)
362{
363 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
364 vcpu->vcpu_id, offset);
365 vgic_reg_access(mmio, reg, offset,
366 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
367 if (mmio->is_write) {
368 vgic_update_state(vcpu->kvm);
369 return true;
370 }
371
372 return false;
373}
374
375static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
376 struct kvm_exit_mmio *mmio,
377 phys_addr_t offset)
378{
379 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
380 vcpu->vcpu_id, offset);
381 vgic_reg_access(mmio, reg, offset,
382 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
383 if (mmio->is_write) {
384 if (offset < 4) /* Force SGI enabled */
385 *reg |= 0xffff;
a1fcb44e 386 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
387 vgic_update_state(vcpu->kvm);
388 return true;
389 }
390
391 return false;
392}
393
394static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
395 struct kvm_exit_mmio *mmio,
396 phys_addr_t offset)
397{
398 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
399 vcpu->vcpu_id, offset);
400 vgic_reg_access(mmio, reg, offset,
401 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
402 if (mmio->is_write) {
403 vgic_update_state(vcpu->kvm);
404 return true;
405 }
406
407 return false;
408}
409
410static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
411 struct kvm_exit_mmio *mmio,
412 phys_addr_t offset)
413{
414 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
415 vcpu->vcpu_id, offset);
416 vgic_reg_access(mmio, reg, offset,
417 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
418 if (mmio->is_write) {
419 vgic_update_state(vcpu->kvm);
420 return true;
421 }
422
423 return false;
424}
425
426static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
427 struct kvm_exit_mmio *mmio,
428 phys_addr_t offset)
429{
430 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
431 vcpu->vcpu_id, offset);
432 vgic_reg_access(mmio, reg, offset,
433 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
434 return false;
435}
436
437#define GICD_ITARGETSR_SIZE 32
438#define GICD_CPUTARGETS_BITS 8
439#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
440static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
441{
442 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 443 int i;
b47ef92a
MZ
444 u32 val = 0;
445
446 irq -= VGIC_NR_PRIVATE_IRQS;
447
986af8e0
MZ
448 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
449 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
450
451 return val;
452}
453
454static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
455{
456 struct vgic_dist *dist = &kvm->arch.vgic;
457 struct kvm_vcpu *vcpu;
458 int i, c;
459 unsigned long *bmap;
460 u32 target;
461
462 irq -= VGIC_NR_PRIVATE_IRQS;
463
464 /*
465 * Pick the LSB in each byte. This ensures we target exactly
466 * one vcpu per IRQ. If the byte is null, assume we target
467 * CPU0.
468 */
469 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
470 int shift = i * GICD_CPUTARGETS_BITS;
471 target = ffs((val >> shift) & 0xffU);
472 target = target ? (target - 1) : 0;
473 dist->irq_spi_cpu[irq + i] = target;
474 kvm_for_each_vcpu(c, vcpu, kvm) {
475 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
476 if (c == target)
477 set_bit(irq + i, bmap);
478 else
479 clear_bit(irq + i, bmap);
480 }
481 }
482}
483
484static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
485 struct kvm_exit_mmio *mmio,
486 phys_addr_t offset)
487{
488 u32 reg;
489
490 /* We treat the banked interrupts targets as read-only */
491 if (offset < 32) {
492 u32 roreg = 1 << vcpu->vcpu_id;
493 roreg |= roreg << 8;
494 roreg |= roreg << 16;
495
496 vgic_reg_access(mmio, &roreg, offset,
497 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
498 return false;
499 }
500
501 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
502 vgic_reg_access(mmio, &reg, offset,
503 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
504 if (mmio->is_write) {
505 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
506 vgic_update_state(vcpu->kvm);
507 return true;
508 }
509
510 return false;
511}
512
513static u32 vgic_cfg_expand(u16 val)
514{
515 u32 res = 0;
516 int i;
517
518 /*
519 * Turn a 16bit value like abcd...mnop into a 32bit word
520 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
521 */
522 for (i = 0; i < 16; i++)
523 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
524
525 return res;
526}
527
528static u16 vgic_cfg_compress(u32 val)
529{
530 u16 res = 0;
531 int i;
532
533 /*
534 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
535 * abcd...mnop which is what we really care about.
536 */
537 for (i = 0; i < 16; i++)
538 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
539
540 return res;
541}
542
543/*
544 * The distributor uses 2 bits per IRQ for the CFG register, but the
545 * LSB is always 0. As such, we only keep the upper bit, and use the
546 * two above functions to compress/expand the bits
547 */
548static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
549 struct kvm_exit_mmio *mmio, phys_addr_t offset)
550{
551 u32 val;
6545eae3
MZ
552 u32 *reg;
553
6545eae3 554 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
f2ae85b2 555 vcpu->vcpu_id, offset >> 1);
6545eae3 556
f2ae85b2 557 if (offset & 4)
b47ef92a
MZ
558 val = *reg >> 16;
559 else
560 val = *reg & 0xffff;
561
562 val = vgic_cfg_expand(val);
563 vgic_reg_access(mmio, &val, offset,
564 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
565 if (mmio->is_write) {
f2ae85b2 566 if (offset < 8) {
b47ef92a
MZ
567 *reg = ~0U; /* Force PPIs/SGIs to 1 */
568 return false;
569 }
570
571 val = vgic_cfg_compress(val);
f2ae85b2 572 if (offset & 4) {
b47ef92a
MZ
573 *reg &= 0xffff;
574 *reg |= val << 16;
575 } else {
576 *reg &= 0xffff << 16;
577 *reg |= val;
578 }
579 }
580
581 return false;
582}
583
584static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
585 struct kvm_exit_mmio *mmio, phys_addr_t offset)
586{
587 u32 reg;
588 vgic_reg_access(mmio, &reg, offset,
589 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
590 if (mmio->is_write) {
591 vgic_dispatch_sgi(vcpu, reg);
592 vgic_update_state(vcpu->kvm);
593 return true;
594 }
595
596 return false;
597}
598
cbd333a4
CD
599/**
600 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
601 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
602 *
603 * Move any pending IRQs that have already been assigned to LRs back to the
604 * emulated distributor state so that the complete emulated state can be read
605 * from the main emulation structures without investigating the LRs.
606 *
607 * Note that IRQs in the active state in the LRs get their pending state moved
608 * to the distributor but the active state stays in the LRs, because we don't
609 * track the active state on the distributor side.
610 */
611static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
612{
613 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
614 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
615 int vcpu_id = vcpu->vcpu_id;
8d5c6b06 616 int i;
cbd333a4
CD
617
618 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 619 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
620
621 /*
622 * There are three options for the state bits:
623 *
624 * 01: pending
625 * 10: active
626 * 11: pending and active
627 *
628 * If the LR holds only an active interrupt (not pending) then
629 * just leave it alone.
630 */
8d5c6b06 631 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
cbd333a4
CD
632 continue;
633
634 /*
635 * Reestablish the pending state on the distributor and the
636 * CPU interface. It may have already been pending, but that
637 * is fine, then we are only setting a few bits that were
638 * already set.
639 */
8d5c6b06
MZ
640 vgic_dist_irq_set(vcpu, lr.irq);
641 if (lr.irq < VGIC_NR_SGIS)
642 dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
643 lr.state &= ~LR_STATE_PENDING;
644 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
645
646 /*
647 * If there's no state left on the LR (it could still be
648 * active), then the LR does not hold any useful info and can
649 * be marked as free for other use.
650 */
8d5c6b06
MZ
651 if (!(lr.state & LR_STATE_MASK))
652 vgic_retire_lr(i, lr.irq, vcpu);
cbd333a4
CD
653
654 /* Finally update the VGIC state. */
655 vgic_update_state(vcpu->kvm);
656 }
657}
658
90a5355e
CD
659/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
660static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
661 struct kvm_exit_mmio *mmio,
662 phys_addr_t offset)
c07a0191 663{
90a5355e
CD
664 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
665 int sgi;
666 int min_sgi = (offset & ~0x3) * 4;
667 int max_sgi = min_sgi + 3;
668 int vcpu_id = vcpu->vcpu_id;
669 u32 reg = 0;
670
671 /* Copy source SGIs from distributor side */
672 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
673 int shift = 8 * (sgi - min_sgi);
674 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
675 }
676
677 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
678 return false;
679}
680
90a5355e
CD
681static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
682 struct kvm_exit_mmio *mmio,
683 phys_addr_t offset, bool set)
684{
685 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
686 int sgi;
687 int min_sgi = (offset & ~0x3) * 4;
688 int max_sgi = min_sgi + 3;
689 int vcpu_id = vcpu->vcpu_id;
690 u32 reg;
691 bool updated = false;
692
693 reg = mmio_data_read(mmio, ~0);
694
695 /* Clear pending SGIs on the distributor */
696 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
697 u8 mask = reg >> (8 * (sgi - min_sgi));
698 if (set) {
699 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
700 updated = true;
701 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
702 } else {
703 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
704 updated = true;
705 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
706 }
707 }
708
709 if (updated)
710 vgic_update_state(vcpu->kvm);
711
712 return updated;
713}
714
c07a0191
CD
715static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
716 struct kvm_exit_mmio *mmio,
717 phys_addr_t offset)
718{
90a5355e
CD
719 if (!mmio->is_write)
720 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
721 else
722 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
723}
724
725static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
726 struct kvm_exit_mmio *mmio,
727 phys_addr_t offset)
728{
729 if (!mmio->is_write)
730 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
731 else
732 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
733}
734
1a89dd91
MZ
735/*
736 * I would have liked to use the kvm_bus_io_*() API instead, but it
737 * cannot cope with banked registers (only the VM pointer is passed
738 * around, and we need the vcpu). One of these days, someone please
739 * fix it!
740 */
741struct mmio_range {
742 phys_addr_t base;
743 unsigned long len;
744 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
745 phys_addr_t offset);
746};
747
1006e8cb 748static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
749 {
750 .base = GIC_DIST_CTRL,
751 .len = 12,
752 .handle_mmio = handle_mmio_misc,
753 },
754 {
755 .base = GIC_DIST_IGROUP,
756 .len = VGIC_NR_IRQS / 8,
757 .handle_mmio = handle_mmio_raz_wi,
758 },
759 {
760 .base = GIC_DIST_ENABLE_SET,
761 .len = VGIC_NR_IRQS / 8,
762 .handle_mmio = handle_mmio_set_enable_reg,
763 },
764 {
765 .base = GIC_DIST_ENABLE_CLEAR,
766 .len = VGIC_NR_IRQS / 8,
767 .handle_mmio = handle_mmio_clear_enable_reg,
768 },
769 {
770 .base = GIC_DIST_PENDING_SET,
771 .len = VGIC_NR_IRQS / 8,
772 .handle_mmio = handle_mmio_set_pending_reg,
773 },
774 {
775 .base = GIC_DIST_PENDING_CLEAR,
776 .len = VGIC_NR_IRQS / 8,
777 .handle_mmio = handle_mmio_clear_pending_reg,
778 },
779 {
780 .base = GIC_DIST_ACTIVE_SET,
781 .len = VGIC_NR_IRQS / 8,
782 .handle_mmio = handle_mmio_raz_wi,
783 },
784 {
785 .base = GIC_DIST_ACTIVE_CLEAR,
786 .len = VGIC_NR_IRQS / 8,
787 .handle_mmio = handle_mmio_raz_wi,
788 },
789 {
790 .base = GIC_DIST_PRI,
791 .len = VGIC_NR_IRQS,
792 .handle_mmio = handle_mmio_priority_reg,
793 },
794 {
795 .base = GIC_DIST_TARGET,
796 .len = VGIC_NR_IRQS,
797 .handle_mmio = handle_mmio_target_reg,
798 },
799 {
800 .base = GIC_DIST_CONFIG,
801 .len = VGIC_NR_IRQS / 4,
802 .handle_mmio = handle_mmio_cfg_reg,
803 },
804 {
805 .base = GIC_DIST_SOFTINT,
806 .len = 4,
807 .handle_mmio = handle_mmio_sgi_reg,
808 },
c07a0191
CD
809 {
810 .base = GIC_DIST_SGI_PENDING_CLEAR,
811 .len = VGIC_NR_SGIS,
812 .handle_mmio = handle_mmio_sgi_clear,
813 },
814 {
815 .base = GIC_DIST_SGI_PENDING_SET,
816 .len = VGIC_NR_SGIS,
817 .handle_mmio = handle_mmio_sgi_set,
818 },
1a89dd91
MZ
819 {}
820};
821
822static const
823struct mmio_range *find_matching_range(const struct mmio_range *ranges,
824 struct kvm_exit_mmio *mmio,
1006e8cb 825 phys_addr_t offset)
1a89dd91
MZ
826{
827 const struct mmio_range *r = ranges;
1a89dd91
MZ
828
829 while (r->len) {
1006e8cb
CD
830 if (offset >= r->base &&
831 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
832 return r;
833 r++;
834 }
835
836 return NULL;
837}
838
839/**
840 * vgic_handle_mmio - handle an in-kernel MMIO access
841 * @vcpu: pointer to the vcpu performing the access
842 * @run: pointer to the kvm_run structure
843 * @mmio: pointer to the data describing the access
844 *
845 * returns true if the MMIO access has been performed in kernel space,
846 * and false if it needs to be emulated in user space.
847 */
848bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
849 struct kvm_exit_mmio *mmio)
850{
b47ef92a
MZ
851 const struct mmio_range *range;
852 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
853 unsigned long base = dist->vgic_dist_base;
854 bool updated_state;
855 unsigned long offset;
856
857 if (!irqchip_in_kernel(vcpu->kvm) ||
858 mmio->phys_addr < base ||
859 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
860 return false;
861
862 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
863 if (mmio->len > 4) {
864 kvm_inject_dabt(vcpu, mmio->phys_addr);
865 return true;
866 }
867
1006e8cb
CD
868 offset = mmio->phys_addr - base;
869 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
870 if (unlikely(!range || !range->handle_mmio)) {
871 pr_warn("Unhandled access %d %08llx %d\n",
872 mmio->is_write, mmio->phys_addr, mmio->len);
873 return false;
874 }
875
876 spin_lock(&vcpu->kvm->arch.vgic.lock);
877 offset = mmio->phys_addr - range->base - base;
878 updated_state = range->handle_mmio(vcpu, mmio, offset);
879 spin_unlock(&vcpu->kvm->arch.vgic.lock);
880 kvm_prepare_mmio(run, mmio);
881 kvm_handle_mmio_return(vcpu, run);
882
5863c2ce
MZ
883 if (updated_state)
884 vgic_kick_vcpus(vcpu->kvm);
885
b47ef92a
MZ
886 return true;
887}
888
889static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
890{
891 struct kvm *kvm = vcpu->kvm;
892 struct vgic_dist *dist = &kvm->arch.vgic;
893 int nrcpus = atomic_read(&kvm->online_vcpus);
894 u8 target_cpus;
895 int sgi, mode, c, vcpu_id;
896
897 vcpu_id = vcpu->vcpu_id;
898
899 sgi = reg & 0xf;
900 target_cpus = (reg >> 16) & 0xff;
901 mode = (reg >> 24) & 3;
902
903 switch (mode) {
904 case 0:
905 if (!target_cpus)
906 return;
91021a6c 907 break;
b47ef92a
MZ
908
909 case 1:
910 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
911 break;
912
913 case 2:
914 target_cpus = 1 << vcpu_id;
915 break;
916 }
917
918 kvm_for_each_vcpu(c, vcpu, kvm) {
919 if (target_cpus & 1) {
920 /* Flag the SGI as pending */
921 vgic_dist_irq_set(vcpu, sgi);
922 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
923 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
924 }
925
926 target_cpus >>= 1;
927 }
928}
929
930static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
931{
9d949dce
MZ
932 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
933 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
934 unsigned long pending_private, pending_shared;
935 int vcpu_id;
936
937 vcpu_id = vcpu->vcpu_id;
938 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
939 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
940
941 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
942 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
943 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
944
945 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
946 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
947 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
948 bitmap_and(pend_shared, pend_shared,
949 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
950 VGIC_NR_SHARED_IRQS);
951
952 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
953 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
954 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
955 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
956}
957
958/*
959 * Update the interrupt state and determine which CPUs have pending
960 * interrupts. Must be called with distributor lock held.
961 */
962static void vgic_update_state(struct kvm *kvm)
963{
964 struct vgic_dist *dist = &kvm->arch.vgic;
965 struct kvm_vcpu *vcpu;
966 int c;
967
968 if (!dist->enabled) {
969 set_bit(0, &dist->irq_pending_on_cpu);
970 return;
971 }
972
973 kvm_for_each_vcpu(c, vcpu, kvm) {
974 if (compute_pending_for_cpu(vcpu)) {
975 pr_debug("CPU%d has pending interrupts\n", c);
976 set_bit(c, &dist->irq_pending_on_cpu);
977 }
978 }
1a89dd91 979}
330690cd 980
8d5c6b06
MZ
981static struct vgic_lr vgic_v2_get_lr(const struct kvm_vcpu *vcpu, int lr)
982{
983 struct vgic_lr lr_desc;
984 u32 val = vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr];
985
986 lr_desc.irq = val & GICH_LR_VIRTUALID;
987 if (lr_desc.irq <= 15)
988 lr_desc.source = (val >> GICH_LR_PHYSID_CPUID_SHIFT) & 0x7;
989 else
990 lr_desc.source = 0;
991 lr_desc.state = 0;
992
993 if (val & GICH_LR_PENDING_BIT)
994 lr_desc.state |= LR_STATE_PENDING;
995 if (val & GICH_LR_ACTIVE_BIT)
996 lr_desc.state |= LR_STATE_ACTIVE;
997 if (val & GICH_LR_EOI)
998 lr_desc.state |= LR_EOI_INT;
999
1000 return lr_desc;
1001}
1002
1003static void vgic_v2_set_lr(struct kvm_vcpu *vcpu, int lr,
1004 struct vgic_lr lr_desc)
1005{
1006 u32 lr_val = (lr_desc.source << GICH_LR_PHYSID_CPUID_SHIFT) | lr_desc.irq;
1007
1008 if (lr_desc.state & LR_STATE_PENDING)
1009 lr_val |= GICH_LR_PENDING_BIT;
1010 if (lr_desc.state & LR_STATE_ACTIVE)
1011 lr_val |= GICH_LR_ACTIVE_BIT;
1012 if (lr_desc.state & LR_EOI_INT)
1013 lr_val |= GICH_LR_EOI;
1014
1015 vcpu->arch.vgic_cpu.vgic_v2.vgic_lr[lr] = lr_val;
1016}
1017
69bb2c9f
MZ
1018static void vgic_v2_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1019 struct vgic_lr lr_desc)
1020{
1021 if (!(lr_desc.state & LR_STATE_MASK))
1022 set_bit(lr, (unsigned long *)vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr);
1023}
1024
1025static u64 vgic_v2_get_elrsr(const struct kvm_vcpu *vcpu)
1026{
1027 u64 val;
1028
1029#if BITS_PER_LONG == 64
1030 val = vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr[1];
1031 val <<= 32;
1032 val |= vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr[0];
1033#else
1034 val = *(u64 *)vcpu->arch.vgic_cpu.vgic_v2.vgic_elrsr;
1035#endif
1036 return val;
1037}
1038
8d6a0313
MZ
1039static u64 vgic_v2_get_eisr(const struct kvm_vcpu *vcpu)
1040{
1041 u64 val;
1042
1043#if BITS_PER_LONG == 64
1044 val = vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr[1];
1045 val <<= 32;
1046 val |= vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr[0];
1047#else
1048 val = *(u64 *)vcpu->arch.vgic_cpu.vgic_v2.vgic_eisr;
1049#endif
1050 return val;
1051}
1052
495dd859
MZ
1053static u32 vgic_v2_get_interrupt_status(const struct kvm_vcpu *vcpu)
1054{
1055 u32 misr = vcpu->arch.vgic_cpu.vgic_v2.vgic_misr;
1056 u32 ret = 0;
1057
1058 if (misr & GICH_MISR_EOI)
1059 ret |= INT_STATUS_EOI;
1060 if (misr & GICH_MISR_U)
1061 ret |= INT_STATUS_UNDERFLOW;
1062
1063 return ret;
1064}
1065
909d9b50
MZ
1066static void vgic_v2_enable_underflow(struct kvm_vcpu *vcpu)
1067{
1068 vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr |= GICH_HCR_UIE;
1069}
1070
1071static void vgic_v2_disable_underflow(struct kvm_vcpu *vcpu)
1072{
1073 vcpu->arch.vgic_cpu.vgic_v2.vgic_hcr &= ~GICH_HCR_UIE;
1074}
1075
8d5c6b06
MZ
1076static const struct vgic_ops vgic_ops = {
1077 .get_lr = vgic_v2_get_lr,
1078 .set_lr = vgic_v2_set_lr,
69bb2c9f
MZ
1079 .sync_lr_elrsr = vgic_v2_sync_lr_elrsr,
1080 .get_elrsr = vgic_v2_get_elrsr,
8d6a0313 1081 .get_eisr = vgic_v2_get_eisr,
495dd859 1082 .get_interrupt_status = vgic_v2_get_interrupt_status,
909d9b50
MZ
1083 .enable_underflow = vgic_v2_enable_underflow,
1084 .disable_underflow = vgic_v2_disable_underflow,
8d5c6b06
MZ
1085};
1086
1087static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1088{
1089 return vgic_ops.get_lr(vcpu, lr);
1090}
1091
1092static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1093 struct vgic_lr vlr)
1094{
1095 vgic_ops.set_lr(vcpu, lr, vlr);
1096}
1097
69bb2c9f
MZ
1098static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1099 struct vgic_lr vlr)
1100{
1101 vgic_ops.sync_lr_elrsr(vcpu, lr, vlr);
1102}
1103
1104static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1105{
1106 return vgic_ops.get_elrsr(vcpu);
1107}
1108
8d6a0313
MZ
1109static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1110{
1111 return vgic_ops.get_eisr(vcpu);
1112}
1113
495dd859
MZ
1114static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1115{
1116 return vgic_ops.get_interrupt_status(vcpu);
1117}
1118
909d9b50
MZ
1119static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1120{
1121 vgic_ops.enable_underflow(vcpu);
1122}
1123
1124static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1125{
1126 vgic_ops.disable_underflow(vcpu);
1127}
1128
8d5c6b06
MZ
1129static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1130{
1131 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1132 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1133
1134 vlr.state = 0;
1135 vgic_set_lr(vcpu, lr_nr, vlr);
1136 clear_bit(lr_nr, vgic_cpu->lr_used);
1137 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1138}
a1fcb44e
MZ
1139
1140/*
1141 * An interrupt may have been disabled after being made pending on the
1142 * CPU interface (the classic case is a timer running while we're
1143 * rebooting the guest - the interrupt would kick as soon as the CPU
1144 * interface gets enabled, with deadly consequences).
1145 *
1146 * The solution is to examine already active LRs, and check the
1147 * interrupt is still enabled. If not, just retire it.
1148 */
1149static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1150{
1151 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1152 int lr;
1153
1154 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 1155 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1156
8d5c6b06
MZ
1157 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1158 vgic_retire_lr(lr, vlr.irq, vcpu);
1159 if (vgic_irq_is_active(vcpu, vlr.irq))
1160 vgic_irq_clear_active(vcpu, vlr.irq);
a1fcb44e
MZ
1161 }
1162 }
1163}
1164
9d949dce
MZ
1165/*
1166 * Queue an interrupt to a CPU virtual interface. Return true on success,
1167 * or false if it wasn't possible to queue it.
1168 */
1169static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1170{
1171 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 1172 struct vgic_lr vlr;
9d949dce
MZ
1173 int lr;
1174
1175 /* Sanitize the input... */
1176 BUG_ON(sgi_source_id & ~7);
1177 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1178 BUG_ON(irq >= VGIC_NR_IRQS);
1179
1180 kvm_debug("Queue IRQ%d\n", irq);
1181
1182 lr = vgic_cpu->vgic_irq_lr_map[irq];
1183
1184 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1185 if (lr != LR_EMPTY) {
1186 vlr = vgic_get_lr(vcpu, lr);
1187 if (vlr.source == sgi_source_id) {
1188 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1189 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1190 vlr.state |= LR_STATE_PENDING;
1191 vgic_set_lr(vcpu, lr, vlr);
1192 return true;
1193 }
9d949dce
MZ
1194 }
1195
1196 /* Try to use another LR for this interrupt */
1197 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1198 vgic_cpu->nr_lr);
1199 if (lr >= vgic_cpu->nr_lr)
1200 return false;
1201
1202 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1203 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1204 set_bit(lr, vgic_cpu->lr_used);
1205
8d5c6b06
MZ
1206 vlr.irq = irq;
1207 vlr.source = sgi_source_id;
1208 vlr.state = LR_STATE_PENDING;
9d949dce 1209 if (!vgic_irq_is_edge(vcpu, irq))
8d5c6b06
MZ
1210 vlr.state |= LR_EOI_INT;
1211
1212 vgic_set_lr(vcpu, lr, vlr);
9d949dce
MZ
1213
1214 return true;
1215}
1216
1217static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1218{
1219 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1220 unsigned long sources;
1221 int vcpu_id = vcpu->vcpu_id;
1222 int c;
1223
1224 sources = dist->irq_sgi_sources[vcpu_id][irq];
1225
1226 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1227 if (vgic_queue_irq(vcpu, c, irq))
1228 clear_bit(c, &sources);
1229 }
1230
1231 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1232
1233 /*
1234 * If the sources bitmap has been cleared it means that we
1235 * could queue all the SGIs onto link registers (see the
1236 * clear_bit above), and therefore we are done with them in
1237 * our emulated gic and can get rid of them.
1238 */
1239 if (!sources) {
1240 vgic_dist_irq_clear(vcpu, irq);
1241 vgic_cpu_irq_clear(vcpu, irq);
1242 return true;
1243 }
1244
1245 return false;
1246}
1247
1248static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1249{
1250 if (vgic_irq_is_active(vcpu, irq))
1251 return true; /* level interrupt, already queued */
1252
1253 if (vgic_queue_irq(vcpu, 0, irq)) {
1254 if (vgic_irq_is_edge(vcpu, irq)) {
1255 vgic_dist_irq_clear(vcpu, irq);
1256 vgic_cpu_irq_clear(vcpu, irq);
1257 } else {
1258 vgic_irq_set_active(vcpu, irq);
1259 }
1260
1261 return true;
1262 }
1263
1264 return false;
1265}
1266
1267/*
1268 * Fill the list registers with pending interrupts before running the
1269 * guest.
1270 */
1271static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1272{
1273 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1274 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1275 int i, vcpu_id;
1276 int overflow = 0;
1277
1278 vcpu_id = vcpu->vcpu_id;
1279
1280 /*
1281 * We may not have any pending interrupt, or the interrupts
1282 * may have been serviced from another vcpu. In all cases,
1283 * move along.
1284 */
1285 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1286 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1287 goto epilog;
1288 }
1289
1290 /* SGIs */
1291 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1292 if (!vgic_queue_sgi(vcpu, i))
1293 overflow = 1;
1294 }
1295
1296 /* PPIs */
1297 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1298 if (!vgic_queue_hwirq(vcpu, i))
1299 overflow = 1;
1300 }
1301
1302 /* SPIs */
1303 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1304 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1305 overflow = 1;
1306 }
1307
1308epilog:
1309 if (overflow) {
909d9b50 1310 vgic_enable_underflow(vcpu);
9d949dce 1311 } else {
909d9b50 1312 vgic_disable_underflow(vcpu);
9d949dce
MZ
1313 /*
1314 * We're about to run this VCPU, and we've consumed
1315 * everything the distributor had in store for
1316 * us. Claim we don't have anything pending. We'll
1317 * adjust that if needed while exiting.
1318 */
1319 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1320 }
1321}
1322
1323static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1324{
1325 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
495dd859 1326 u32 status = vgic_get_interrupt_status(vcpu);
9d949dce
MZ
1327 bool level_pending = false;
1328
495dd859 1329 kvm_debug("STATUS = %08x\n", status);
9d949dce 1330
495dd859 1331 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1332 /*
1333 * Some level interrupts have been EOIed. Clear their
1334 * active bit.
1335 */
8d6a0313
MZ
1336 u64 eisr = vgic_get_eisr(vcpu);
1337 unsigned long *eisr_ptr = (unsigned long *)&eisr;
8d5c6b06 1338 int lr;
9d949dce 1339
8d6a0313 1340 for_each_set_bit(lr, eisr_ptr, vgic_cpu->nr_lr) {
8d5c6b06 1341 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
9d949dce 1342
8d5c6b06
MZ
1343 vgic_irq_clear_active(vcpu, vlr.irq);
1344 WARN_ON(vlr.state & LR_STATE_MASK);
1345 vlr.state = 0;
1346 vgic_set_lr(vcpu, lr, vlr);
9d949dce
MZ
1347
1348 /* Any additional pending interrupt? */
8d5c6b06
MZ
1349 if (vgic_dist_irq_is_pending(vcpu, vlr.irq)) {
1350 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1351 level_pending = true;
1352 } else {
8d5c6b06 1353 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1354 }
75da01e1
MZ
1355
1356 /*
1357 * Despite being EOIed, the LR may not have
1358 * been marked as empty.
1359 */
69bb2c9f 1360 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1361 }
1362 }
1363
495dd859 1364 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1365 vgic_disable_underflow(vcpu);
9d949dce
MZ
1366
1367 return level_pending;
1368}
1369
1370/*
33c83cb3
MZ
1371 * Sync back the VGIC state after a guest run. The distributor lock is
1372 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1373 */
1374static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1375{
1376 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1377 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1378 u64 elrsr;
1379 unsigned long *elrsr_ptr;
9d949dce
MZ
1380 int lr, pending;
1381 bool level_pending;
1382
1383 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f
MZ
1384 elrsr = vgic_get_elrsr(vcpu);
1385 elrsr_ptr = (unsigned long *)&elrsr;
9d949dce
MZ
1386
1387 /* Clear mappings for empty LRs */
69bb2c9f 1388 for_each_set_bit(lr, elrsr_ptr, vgic_cpu->nr_lr) {
8d5c6b06 1389 struct vgic_lr vlr;
9d949dce
MZ
1390
1391 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1392 continue;
1393
8d5c6b06 1394 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1395
8d5c6b06
MZ
1396 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1397 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1398 }
1399
1400 /* Check if we still have something up our sleeve... */
69bb2c9f 1401 pending = find_first_zero_bit(elrsr_ptr, vgic_cpu->nr_lr);
9d949dce
MZ
1402 if (level_pending || pending < vgic_cpu->nr_lr)
1403 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1404}
1405
1406void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1407{
1408 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1409
1410 if (!irqchip_in_kernel(vcpu->kvm))
1411 return;
1412
1413 spin_lock(&dist->lock);
1414 __kvm_vgic_flush_hwstate(vcpu);
1415 spin_unlock(&dist->lock);
1416}
1417
1418void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1419{
33c83cb3
MZ
1420 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1421
9d949dce
MZ
1422 if (!irqchip_in_kernel(vcpu->kvm))
1423 return;
1424
33c83cb3 1425 spin_lock(&dist->lock);
9d949dce 1426 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1427 spin_unlock(&dist->lock);
9d949dce
MZ
1428}
1429
1430int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1431{
1432 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1433
1434 if (!irqchip_in_kernel(vcpu->kvm))
1435 return 0;
1436
1437 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1438}
1439
5863c2ce
MZ
1440static void vgic_kick_vcpus(struct kvm *kvm)
1441{
1442 struct kvm_vcpu *vcpu;
1443 int c;
1444
1445 /*
1446 * We've injected an interrupt, time to find out who deserves
1447 * a good kick...
1448 */
1449 kvm_for_each_vcpu(c, vcpu, kvm) {
1450 if (kvm_vgic_vcpu_pending_irq(vcpu))
1451 kvm_vcpu_kick(vcpu);
1452 }
1453}
1454
1455static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1456{
1457 int is_edge = vgic_irq_is_edge(vcpu, irq);
1458 int state = vgic_dist_irq_is_pending(vcpu, irq);
1459
1460 /*
1461 * Only inject an interrupt if:
1462 * - edge triggered and we have a rising edge
1463 * - level triggered and we change level
1464 */
1465 if (is_edge)
1466 return level > state;
1467 else
1468 return level != state;
1469}
1470
1471static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1472 unsigned int irq_num, bool level)
1473{
1474 struct vgic_dist *dist = &kvm->arch.vgic;
1475 struct kvm_vcpu *vcpu;
1476 int is_edge, is_level;
1477 int enabled;
1478 bool ret = true;
1479
1480 spin_lock(&dist->lock);
1481
1482 vcpu = kvm_get_vcpu(kvm, cpuid);
1483 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1484 is_level = !is_edge;
1485
1486 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1487 ret = false;
1488 goto out;
1489 }
1490
1491 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1492 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1493 vcpu = kvm_get_vcpu(kvm, cpuid);
1494 }
1495
1496 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1497
1498 if (level)
1499 vgic_dist_irq_set(vcpu, irq_num);
1500 else
1501 vgic_dist_irq_clear(vcpu, irq_num);
1502
1503 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1504
1505 if (!enabled) {
1506 ret = false;
1507 goto out;
1508 }
1509
1510 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1511 /*
1512 * Level interrupt in progress, will be picked up
1513 * when EOId.
1514 */
1515 ret = false;
1516 goto out;
1517 }
1518
1519 if (level) {
1520 vgic_cpu_irq_set(vcpu, irq_num);
1521 set_bit(cpuid, &dist->irq_pending_on_cpu);
1522 }
1523
1524out:
1525 spin_unlock(&dist->lock);
1526
1527 return ret;
1528}
1529
1530/**
1531 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1532 * @kvm: The VM structure pointer
1533 * @cpuid: The CPU for PPIs
1534 * @irq_num: The IRQ number that is assigned to the device
1535 * @level: Edge-triggered: true: to trigger the interrupt
1536 * false: to ignore the call
1537 * Level-sensitive true: activates an interrupt
1538 * false: deactivates an interrupt
1539 *
1540 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1541 * level-sensitive interrupts. You can think of the level parameter as 1
1542 * being HIGH and 0 being LOW and all devices being active-HIGH.
1543 */
1544int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1545 bool level)
1546{
1547 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1548 vgic_kick_vcpus(kvm);
1549
1550 return 0;
1551}
1552
01ac5e34
MZ
1553static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1554{
1555 /*
1556 * We cannot rely on the vgic maintenance interrupt to be
1557 * delivered synchronously. This means we can only use it to
1558 * exit the VM, and we perform the handling of EOIed
1559 * interrupts on the exit path (see vgic_process_maintenance).
1560 */
1561 return IRQ_HANDLED;
1562}
1563
e1ba0207
CD
1564/**
1565 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1566 * @vcpu: pointer to the vcpu struct
1567 *
1568 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1569 * this vcpu and enable the VGIC for this VCPU
1570 */
01ac5e34
MZ
1571int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1572{
1573 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1574 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1575 int i;
1576
01ac5e34
MZ
1577 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1578 return -EBUSY;
1579
1580 for (i = 0; i < VGIC_NR_IRQS; i++) {
1581 if (i < VGIC_NR_PPIS)
1582 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1583 vcpu->vcpu_id, i, 1);
1584 if (i < VGIC_NR_PRIVATE_IRQS)
1585 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1586 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1587
1588 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1589 }
1590
1591 /*
1592 * By forcing VMCR to zero, the GIC will restore the binary
1593 * points to their reset values. Anything else resets to zero
1594 * anyway.
1595 */
eede821d 1596 vgic_cpu->vgic_v2.vgic_vmcr = 0;
01ac5e34
MZ
1597
1598 vgic_cpu->nr_lr = vgic_nr_lr;
eede821d 1599 vgic_cpu->vgic_v2.vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
01ac5e34
MZ
1600
1601 return 0;
1602}
1603
1604static void vgic_init_maintenance_interrupt(void *info)
1605{
1606 enable_percpu_irq(vgic_maint_irq, 0);
1607}
1608
1609static int vgic_cpu_notify(struct notifier_block *self,
1610 unsigned long action, void *cpu)
1611{
1612 switch (action) {
1613 case CPU_STARTING:
1614 case CPU_STARTING_FROZEN:
1615 vgic_init_maintenance_interrupt(NULL);
1616 break;
1617 case CPU_DYING:
1618 case CPU_DYING_FROZEN:
1619 disable_percpu_irq(vgic_maint_irq);
1620 break;
1621 }
1622
1623 return NOTIFY_OK;
1624}
1625
1626static struct notifier_block vgic_cpu_nb = {
1627 .notifier_call = vgic_cpu_notify,
1628};
1629
1630int kvm_vgic_hyp_init(void)
1631{
1632 int ret;
1633 struct resource vctrl_res;
1634 struct resource vcpu_res;
1635
1636 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1637 if (!vgic_node) {
1638 kvm_err("error: no compatible vgic node in DT\n");
1639 return -ENODEV;
1640 }
1641
1642 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1643 if (!vgic_maint_irq) {
1644 kvm_err("error getting vgic maintenance irq from DT\n");
1645 ret = -ENXIO;
1646 goto out;
1647 }
1648
1649 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1650 "vgic", kvm_get_running_vcpus());
1651 if (ret) {
1652 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1653 goto out;
1654 }
1655
553f809e 1656 ret = __register_cpu_notifier(&vgic_cpu_nb);
01ac5e34
MZ
1657 if (ret) {
1658 kvm_err("Cannot register vgic CPU notifier\n");
1659 goto out_free_irq;
1660 }
1661
1662 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1663 if (ret) {
1664 kvm_err("Cannot obtain VCTRL resource\n");
1665 goto out_free_irq;
1666 }
1667
1668 vgic_vctrl_base = of_iomap(vgic_node, 2);
1669 if (!vgic_vctrl_base) {
1670 kvm_err("Cannot ioremap VCTRL\n");
1671 ret = -ENOMEM;
1672 goto out_free_irq;
1673 }
1674
1675 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1676 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1677
1678 ret = create_hyp_io_mappings(vgic_vctrl_base,
1679 vgic_vctrl_base + resource_size(&vctrl_res),
1680 vctrl_res.start);
1681 if (ret) {
1682 kvm_err("Cannot map VCTRL into hyp\n");
1683 goto out_unmap;
1684 }
1685
1686 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1687 vctrl_res.start, vgic_maint_irq);
1688 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1689
1690 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1691 kvm_err("Cannot obtain VCPU resource\n");
1692 ret = -ENXIO;
1693 goto out_unmap;
1694 }
1695 vgic_vcpu_base = vcpu_res.start;
1696
1697 goto out;
1698
1699out_unmap:
1700 iounmap(vgic_vctrl_base);
1701out_free_irq:
1702 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1703out:
1704 of_node_put(vgic_node);
1705 return ret;
1706}
1707
e1ba0207
CD
1708/**
1709 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1710 * @kvm: pointer to the kvm struct
1711 *
1712 * Map the virtual CPU interface into the VM before running any VCPUs. We
1713 * can't do this at creation time, because user space must first set the
1714 * virtual CPU interface address in the guest physical address space. Also
1715 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1716 */
01ac5e34
MZ
1717int kvm_vgic_init(struct kvm *kvm)
1718{
1719 int ret = 0, i;
1720
e1ba0207
CD
1721 if (!irqchip_in_kernel(kvm))
1722 return 0;
1723
01ac5e34
MZ
1724 mutex_lock(&kvm->lock);
1725
1726 if (vgic_initialized(kvm))
1727 goto out;
1728
1729 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1730 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1731 kvm_err("Need to set vgic cpu and dist addresses first\n");
1732 ret = -ENXIO;
1733 goto out;
1734 }
1735
1736 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1737 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1738 if (ret) {
1739 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1740 goto out;
1741 }
1742
1743 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1744 vgic_set_target_reg(kvm, 0, i);
1745
1746 kvm->arch.vgic.ready = true;
1747out:
1748 mutex_unlock(&kvm->lock);
1749 return ret;
1750}
1751
1752int kvm_vgic_create(struct kvm *kvm)
1753{
7330672b
CD
1754 int i, vcpu_lock_idx = -1, ret = 0;
1755 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1756
1757 mutex_lock(&kvm->lock);
1758
7330672b 1759 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1760 ret = -EEXIST;
1761 goto out;
1762 }
1763
7330672b
CD
1764 /*
1765 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1766 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1767 * that no other VCPUs are run while we create the vgic.
1768 */
1769 kvm_for_each_vcpu(i, vcpu, kvm) {
1770 if (!mutex_trylock(&vcpu->mutex))
1771 goto out_unlock;
1772 vcpu_lock_idx = i;
1773 }
1774
1775 kvm_for_each_vcpu(i, vcpu, kvm) {
1776 if (vcpu->arch.has_run_once) {
1777 ret = -EBUSY;
1778 goto out_unlock;
1779 }
1780 }
1781
01ac5e34
MZ
1782 spin_lock_init(&kvm->arch.vgic.lock);
1783 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1784 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1785 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1786
7330672b
CD
1787out_unlock:
1788 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1789 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1790 mutex_unlock(&vcpu->mutex);
1791 }
1792
01ac5e34
MZ
1793out:
1794 mutex_unlock(&kvm->lock);
1795 return ret;
1796}
1797
330690cd
CD
1798static bool vgic_ioaddr_overlap(struct kvm *kvm)
1799{
1800 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1801 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1802
1803 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1804 return 0;
1805 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1806 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1807 return -EBUSY;
1808 return 0;
1809}
1810
1811static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1812 phys_addr_t addr, phys_addr_t size)
1813{
1814 int ret;
1815
ce01e4e8
CD
1816 if (addr & ~KVM_PHYS_MASK)
1817 return -E2BIG;
1818
1819 if (addr & (SZ_4K - 1))
1820 return -EINVAL;
1821
330690cd
CD
1822 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1823 return -EEXIST;
1824 if (addr + size < addr)
1825 return -EINVAL;
1826
30c21170 1827 *ioaddr = addr;
330690cd
CD
1828 ret = vgic_ioaddr_overlap(kvm);
1829 if (ret)
30c21170
HW
1830 *ioaddr = VGIC_ADDR_UNDEF;
1831
330690cd
CD
1832 return ret;
1833}
1834
ce01e4e8
CD
1835/**
1836 * kvm_vgic_addr - set or get vgic VM base addresses
1837 * @kvm: pointer to the vm struct
1838 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1839 * @addr: pointer to address value
1840 * @write: if true set the address in the VM address space, if false read the
1841 * address
1842 *
1843 * Set or get the vgic base addresses for the distributor and the virtual CPU
1844 * interface in the VM physical address space. These addresses are properties
1845 * of the emulated core/SoC and therefore user space initially knows this
1846 * information.
1847 */
1848int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1849{
1850 int r = 0;
1851 struct vgic_dist *vgic = &kvm->arch.vgic;
1852
330690cd
CD
1853 mutex_lock(&kvm->lock);
1854 switch (type) {
1855 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
1856 if (write) {
1857 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1858 *addr, KVM_VGIC_V2_DIST_SIZE);
1859 } else {
1860 *addr = vgic->vgic_dist_base;
1861 }
330690cd
CD
1862 break;
1863 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
1864 if (write) {
1865 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1866 *addr, KVM_VGIC_V2_CPU_SIZE);
1867 } else {
1868 *addr = vgic->vgic_cpu_base;
1869 }
330690cd
CD
1870 break;
1871 default:
1872 r = -ENODEV;
1873 }
1874
1875 mutex_unlock(&kvm->lock);
1876 return r;
1877}
7330672b 1878
c07a0191
CD
1879static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1880 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1881{
fa20f5ae
CD
1882 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1883 u32 reg, mask = 0, shift = 0;
1884 bool updated = false;
1885
1886 switch (offset & ~0x3) {
1887 case GIC_CPU_CTRL:
1888 mask = GICH_VMCR_CTRL_MASK;
1889 shift = GICH_VMCR_CTRL_SHIFT;
1890 break;
1891 case GIC_CPU_PRIMASK:
1892 mask = GICH_VMCR_PRIMASK_MASK;
1893 shift = GICH_VMCR_PRIMASK_SHIFT;
1894 break;
1895 case GIC_CPU_BINPOINT:
1896 mask = GICH_VMCR_BINPOINT_MASK;
1897 shift = GICH_VMCR_BINPOINT_SHIFT;
1898 break;
1899 case GIC_CPU_ALIAS_BINPOINT:
1900 mask = GICH_VMCR_ALIAS_BINPOINT_MASK;
1901 shift = GICH_VMCR_ALIAS_BINPOINT_SHIFT;
1902 break;
1903 }
1904
1905 if (!mmio->is_write) {
eede821d 1906 reg = (vgic_cpu->vgic_v2.vgic_vmcr & mask) >> shift;
fa20f5ae
CD
1907 mmio_data_write(mmio, ~0, reg);
1908 } else {
1909 reg = mmio_data_read(mmio, ~0);
1910 reg = (reg << shift) & mask;
eede821d 1911 if (reg != (vgic_cpu->vgic_v2.vgic_vmcr & mask))
fa20f5ae 1912 updated = true;
eede821d
MZ
1913 vgic_cpu->vgic_v2.vgic_vmcr &= ~mask;
1914 vgic_cpu->vgic_v2.vgic_vmcr |= reg;
fa20f5ae
CD
1915 }
1916 return updated;
1917}
1918
1919static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1920 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1921{
1922 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
c07a0191
CD
1923}
1924
fa20f5ae
CD
1925static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1926 struct kvm_exit_mmio *mmio,
1927 phys_addr_t offset)
1928{
1929 u32 reg;
1930
1931 if (mmio->is_write)
1932 return false;
1933
1934 /* GICC_IIDR */
1935 reg = (PRODUCT_ID_KVM << 20) |
1936 (GICC_ARCH_VERSION_V2 << 16) |
1937 (IMPLEMENTER_ARM << 0);
1938 mmio_data_write(mmio, ~0, reg);
1939 return false;
1940}
1941
1942/*
1943 * CPU Interface Register accesses - these are not accessed by the VM, but by
1944 * user space for saving and restoring VGIC state.
1945 */
c07a0191
CD
1946static const struct mmio_range vgic_cpu_ranges[] = {
1947 {
1948 .base = GIC_CPU_CTRL,
1949 .len = 12,
1950 .handle_mmio = handle_cpu_mmio_misc,
1951 },
1952 {
1953 .base = GIC_CPU_ALIAS_BINPOINT,
1954 .len = 4,
fa20f5ae 1955 .handle_mmio = handle_mmio_abpr,
c07a0191
CD
1956 },
1957 {
1958 .base = GIC_CPU_ACTIVEPRIO,
1959 .len = 16,
fa20f5ae 1960 .handle_mmio = handle_mmio_raz_wi,
c07a0191
CD
1961 },
1962 {
1963 .base = GIC_CPU_IDENT,
1964 .len = 4,
fa20f5ae 1965 .handle_mmio = handle_cpu_mmio_ident,
c07a0191
CD
1966 },
1967};
1968
1969static int vgic_attr_regs_access(struct kvm_device *dev,
1970 struct kvm_device_attr *attr,
1971 u32 *reg, bool is_write)
1972{
1973 const struct mmio_range *r = NULL, *ranges;
1974 phys_addr_t offset;
1975 int ret, cpuid, c;
1976 struct kvm_vcpu *vcpu, *tmp_vcpu;
1977 struct vgic_dist *vgic;
1978 struct kvm_exit_mmio mmio;
1979
1980 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1981 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1982 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1983
1984 mutex_lock(&dev->kvm->lock);
1985
1986 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1987 ret = -EINVAL;
1988 goto out;
1989 }
1990
1991 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1992 vgic = &dev->kvm->arch.vgic;
1993
1994 mmio.len = 4;
1995 mmio.is_write = is_write;
1996 if (is_write)
1997 mmio_data_write(&mmio, ~0, *reg);
1998 switch (attr->group) {
1999 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2000 mmio.phys_addr = vgic->vgic_dist_base + offset;
2001 ranges = vgic_dist_ranges;
2002 break;
2003 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2004 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2005 ranges = vgic_cpu_ranges;
2006 break;
2007 default:
2008 BUG();
2009 }
2010 r = find_matching_range(ranges, &mmio, offset);
2011
2012 if (unlikely(!r || !r->handle_mmio)) {
2013 ret = -ENXIO;
2014 goto out;
2015 }
2016
2017
2018 spin_lock(&vgic->lock);
2019
2020 /*
2021 * Ensure that no other VCPU is running by checking the vcpu->cpu
2022 * field. If no other VPCUs are running we can safely access the VGIC
2023 * state, because even if another VPU is run after this point, that
2024 * VCPU will not touch the vgic state, because it will block on
2025 * getting the vgic->lock in kvm_vgic_sync_hwstate().
2026 */
2027 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2028 if (unlikely(tmp_vcpu->cpu != -1)) {
2029 ret = -EBUSY;
2030 goto out_vgic_unlock;
2031 }
2032 }
2033
cbd333a4
CD
2034 /*
2035 * Move all pending IRQs from the LRs on all VCPUs so the pending
2036 * state can be properly represented in the register state accessible
2037 * through this API.
2038 */
2039 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2040 vgic_unqueue_irqs(tmp_vcpu);
2041
c07a0191
CD
2042 offset -= r->base;
2043 r->handle_mmio(vcpu, &mmio, offset);
2044
2045 if (!is_write)
2046 *reg = mmio_data_read(&mmio, ~0);
2047
2048 ret = 0;
2049out_vgic_unlock:
2050 spin_unlock(&vgic->lock);
2051out:
2052 mutex_unlock(&dev->kvm->lock);
2053 return ret;
2054}
2055
7330672b
CD
2056static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2057{
ce01e4e8
CD
2058 int r;
2059
2060 switch (attr->group) {
2061 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2062 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2063 u64 addr;
2064 unsigned long type = (unsigned long)attr->attr;
2065
2066 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2067 return -EFAULT;
2068
2069 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2070 return (r == -ENODEV) ? -ENXIO : r;
2071 }
c07a0191
CD
2072
2073 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2074 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2075 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2076 u32 reg;
2077
2078 if (get_user(reg, uaddr))
2079 return -EFAULT;
2080
2081 return vgic_attr_regs_access(dev, attr, &reg, true);
2082 }
2083
ce01e4e8
CD
2084 }
2085
7330672b
CD
2086 return -ENXIO;
2087}
2088
2089static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2090{
ce01e4e8
CD
2091 int r = -ENXIO;
2092
2093 switch (attr->group) {
2094 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2095 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2096 u64 addr;
2097 unsigned long type = (unsigned long)attr->attr;
2098
2099 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2100 if (r)
2101 return (r == -ENODEV) ? -ENXIO : r;
2102
2103 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2104 return -EFAULT;
c07a0191
CD
2105 break;
2106 }
2107
2108 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2109 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2110 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2111 u32 reg = 0;
2112
2113 r = vgic_attr_regs_access(dev, attr, &reg, false);
2114 if (r)
2115 return r;
2116 r = put_user(reg, uaddr);
2117 break;
ce01e4e8 2118 }
c07a0191 2119
ce01e4e8
CD
2120 }
2121
2122 return r;
7330672b
CD
2123}
2124
c07a0191
CD
2125static int vgic_has_attr_regs(const struct mmio_range *ranges,
2126 phys_addr_t offset)
2127{
2128 struct kvm_exit_mmio dev_attr_mmio;
2129
2130 dev_attr_mmio.len = 4;
2131 if (find_matching_range(ranges, &dev_attr_mmio, offset))
2132 return 0;
2133 else
2134 return -ENXIO;
2135}
2136
7330672b
CD
2137static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2138{
c07a0191
CD
2139 phys_addr_t offset;
2140
ce01e4e8
CD
2141 switch (attr->group) {
2142 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2143 switch (attr->attr) {
2144 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2145 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2146 return 0;
2147 }
2148 break;
c07a0191
CD
2149 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2150 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2151 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2152 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2153 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2154 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 2155 }
7330672b
CD
2156 return -ENXIO;
2157}
2158
2159static void vgic_destroy(struct kvm_device *dev)
2160{
2161 kfree(dev);
2162}
2163
2164static int vgic_create(struct kvm_device *dev, u32 type)
2165{
2166 return kvm_vgic_create(dev->kvm);
2167}
2168
2169struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2170 .name = "kvm-arm-vgic",
2171 .create = vgic_create,
2172 .destroy = vgic_destroy,
2173 .set_attr = vgic_set_attr,
2174 .get_attr = vgic_get_attr,
2175 .has_attr = vgic_has_attr,
2176};
This page took 0.185683 seconds and 5 git commands to generate.