KVM: arm-vgic: Add GICD_SPENDSGIR and GICD_CPENDSGIR handlers
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27
28#include <linux/irqchip/arm-gic.h>
29
1a89dd91 30#include <asm/kvm_emulate.h>
01ac5e34
MZ
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
1a89dd91 33
b47ef92a
MZ
34/*
35 * How the whole thing works (courtesy of Christoffer Dall):
36 *
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44 * recalculated
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
56 *
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
60 *
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
69 */
70
330690cd
CD
71#define VGIC_ADDR_UNDEF (-1)
72#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
73
01ac5e34
MZ
74/* Physical address of vgic virtual cpu interface */
75static phys_addr_t vgic_vcpu_base;
76
77/* Virtual control interface base address */
78static void __iomem *vgic_vctrl_base;
79
80static struct device_node *vgic_node;
81
1a89dd91
MZ
82#define ACCESS_READ_VALUE (1 << 0)
83#define ACCESS_READ_RAZ (0 << 0)
84#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
85#define ACCESS_WRITE_IGNORED (0 << 1)
86#define ACCESS_WRITE_SETBIT (1 << 1)
87#define ACCESS_WRITE_CLEARBIT (2 << 1)
88#define ACCESS_WRITE_VALUE (3 << 1)
89#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
90
a1fcb44e 91static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
b47ef92a 92static void vgic_update_state(struct kvm *kvm);
5863c2ce 93static void vgic_kick_vcpus(struct kvm *kvm);
b47ef92a 94static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
01ac5e34
MZ
95static u32 vgic_nr_lr;
96
97static unsigned int vgic_maint_irq;
b47ef92a
MZ
98
99static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
100 int cpuid, u32 offset)
101{
102 offset >>= 2;
103 if (!offset)
104 return x->percpu[cpuid].reg;
105 else
106 return x->shared.reg + offset - 1;
107}
108
109static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
110 int cpuid, int irq)
111{
112 if (irq < VGIC_NR_PRIVATE_IRQS)
113 return test_bit(irq, x->percpu[cpuid].reg_ul);
114
115 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
116}
117
118static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
119 int irq, int val)
120{
121 unsigned long *reg;
122
123 if (irq < VGIC_NR_PRIVATE_IRQS) {
124 reg = x->percpu[cpuid].reg_ul;
125 } else {
126 reg = x->shared.reg_ul;
127 irq -= VGIC_NR_PRIVATE_IRQS;
128 }
129
130 if (val)
131 set_bit(irq, reg);
132 else
133 clear_bit(irq, reg);
134}
135
136static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
137{
138 if (unlikely(cpuid >= VGIC_MAX_CPUS))
139 return NULL;
140 return x->percpu[cpuid].reg_ul;
141}
142
143static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
144{
145 return x->shared.reg_ul;
146}
147
148static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
149{
150 offset >>= 2;
151 BUG_ON(offset > (VGIC_NR_IRQS / 4));
8d98915b 152 if (offset < 8)
b47ef92a
MZ
153 return x->percpu[cpuid] + offset;
154 else
155 return x->shared + offset - 8;
156}
157
158#define VGIC_CFG_LEVEL 0
159#define VGIC_CFG_EDGE 1
160
161static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
162{
163 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
164 int irq_val;
165
166 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
167 return irq_val == VGIC_CFG_EDGE;
168}
169
170static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
171{
172 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
173
174 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
175}
176
9d949dce
MZ
177static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
178{
179 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
180
181 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
182}
183
184static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
185{
186 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
187
188 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
189}
190
191static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
192{
193 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
194
195 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
196}
197
198static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
199{
200 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
201
202 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
203}
204
b47ef92a
MZ
205static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
206{
207 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
208
209 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
210}
211
212static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
213{
214 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
215
216 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
217}
218
219static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
220{
221 if (irq < VGIC_NR_PRIVATE_IRQS)
222 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
223 else
224 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
225 vcpu->arch.vgic_cpu.pending_shared);
226}
227
228static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
229{
230 if (irq < VGIC_NR_PRIVATE_IRQS)
231 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
232 else
233 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
234 vcpu->arch.vgic_cpu.pending_shared);
235}
236
1a89dd91
MZ
237static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
238{
239 return *((u32 *)mmio->data) & mask;
240}
241
242static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
243{
244 *((u32 *)mmio->data) = value & mask;
245}
246
247/**
248 * vgic_reg_access - access vgic register
249 * @mmio: pointer to the data describing the mmio access
250 * @reg: pointer to the virtual backing of vgic distributor data
251 * @offset: least significant 2 bits used for word offset
252 * @mode: ACCESS_ mode (see defines above)
253 *
254 * Helper to make vgic register access easier using one of the access
255 * modes defined for vgic register access
256 * (read,raz,write-ignored,setbit,clearbit,write)
257 */
258static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
259 phys_addr_t offset, int mode)
260{
261 int word_offset = (offset & 3) * 8;
262 u32 mask = (1UL << (mmio->len * 8)) - 1;
263 u32 regval;
264
265 /*
266 * Any alignment fault should have been delivered to the guest
267 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
268 */
269
270 if (reg) {
271 regval = *reg;
272 } else {
273 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
274 regval = 0;
275 }
276
277 if (mmio->is_write) {
278 u32 data = mmio_data_read(mmio, mask) << word_offset;
279 switch (ACCESS_WRITE_MASK(mode)) {
280 case ACCESS_WRITE_IGNORED:
281 return;
282
283 case ACCESS_WRITE_SETBIT:
284 regval |= data;
285 break;
286
287 case ACCESS_WRITE_CLEARBIT:
288 regval &= ~data;
289 break;
290
291 case ACCESS_WRITE_VALUE:
292 regval = (regval & ~(mask << word_offset)) | data;
293 break;
294 }
295 *reg = regval;
296 } else {
297 switch (ACCESS_READ_MASK(mode)) {
298 case ACCESS_READ_RAZ:
299 regval = 0;
300 /* fall through */
301
302 case ACCESS_READ_VALUE:
303 mmio_data_write(mmio, mask, regval >> word_offset);
304 }
305 }
306}
307
b47ef92a
MZ
308static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
309 struct kvm_exit_mmio *mmio, phys_addr_t offset)
310{
311 u32 reg;
312 u32 word_offset = offset & 3;
313
314 switch (offset & ~3) {
315 case 0: /* CTLR */
316 reg = vcpu->kvm->arch.vgic.enabled;
317 vgic_reg_access(mmio, &reg, word_offset,
318 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
319 if (mmio->is_write) {
320 vcpu->kvm->arch.vgic.enabled = reg & 1;
321 vgic_update_state(vcpu->kvm);
322 return true;
323 }
324 break;
325
326 case 4: /* TYPER */
327 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
328 reg |= (VGIC_NR_IRQS >> 5) - 1;
329 vgic_reg_access(mmio, &reg, word_offset,
330 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
331 break;
332
333 case 8: /* IIDR */
334 reg = 0x4B00043B;
335 vgic_reg_access(mmio, &reg, word_offset,
336 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337 break;
338 }
339
340 return false;
341}
342
343static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
344 struct kvm_exit_mmio *mmio, phys_addr_t offset)
345{
346 vgic_reg_access(mmio, NULL, offset,
347 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
348 return false;
349}
350
351static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
352 struct kvm_exit_mmio *mmio,
353 phys_addr_t offset)
354{
355 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
356 vcpu->vcpu_id, offset);
357 vgic_reg_access(mmio, reg, offset,
358 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
359 if (mmio->is_write) {
360 vgic_update_state(vcpu->kvm);
361 return true;
362 }
363
364 return false;
365}
366
367static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
368 struct kvm_exit_mmio *mmio,
369 phys_addr_t offset)
370{
371 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
372 vcpu->vcpu_id, offset);
373 vgic_reg_access(mmio, reg, offset,
374 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
375 if (mmio->is_write) {
376 if (offset < 4) /* Force SGI enabled */
377 *reg |= 0xffff;
a1fcb44e 378 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
379 vgic_update_state(vcpu->kvm);
380 return true;
381 }
382
383 return false;
384}
385
386static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
387 struct kvm_exit_mmio *mmio,
388 phys_addr_t offset)
389{
390 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
391 vcpu->vcpu_id, offset);
392 vgic_reg_access(mmio, reg, offset,
393 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
394 if (mmio->is_write) {
395 vgic_update_state(vcpu->kvm);
396 return true;
397 }
398
399 return false;
400}
401
402static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
403 struct kvm_exit_mmio *mmio,
404 phys_addr_t offset)
405{
406 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
407 vcpu->vcpu_id, offset);
408 vgic_reg_access(mmio, reg, offset,
409 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
410 if (mmio->is_write) {
411 vgic_update_state(vcpu->kvm);
412 return true;
413 }
414
415 return false;
416}
417
418static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
419 struct kvm_exit_mmio *mmio,
420 phys_addr_t offset)
421{
422 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
423 vcpu->vcpu_id, offset);
424 vgic_reg_access(mmio, reg, offset,
425 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
426 return false;
427}
428
429#define GICD_ITARGETSR_SIZE 32
430#define GICD_CPUTARGETS_BITS 8
431#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
433{
434 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 435 int i;
b47ef92a
MZ
436 u32 val = 0;
437
438 irq -= VGIC_NR_PRIVATE_IRQS;
439
986af8e0
MZ
440 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
441 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
442
443 return val;
444}
445
446static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
447{
448 struct vgic_dist *dist = &kvm->arch.vgic;
449 struct kvm_vcpu *vcpu;
450 int i, c;
451 unsigned long *bmap;
452 u32 target;
453
454 irq -= VGIC_NR_PRIVATE_IRQS;
455
456 /*
457 * Pick the LSB in each byte. This ensures we target exactly
458 * one vcpu per IRQ. If the byte is null, assume we target
459 * CPU0.
460 */
461 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
462 int shift = i * GICD_CPUTARGETS_BITS;
463 target = ffs((val >> shift) & 0xffU);
464 target = target ? (target - 1) : 0;
465 dist->irq_spi_cpu[irq + i] = target;
466 kvm_for_each_vcpu(c, vcpu, kvm) {
467 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
468 if (c == target)
469 set_bit(irq + i, bmap);
470 else
471 clear_bit(irq + i, bmap);
472 }
473 }
474}
475
476static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
477 struct kvm_exit_mmio *mmio,
478 phys_addr_t offset)
479{
480 u32 reg;
481
482 /* We treat the banked interrupts targets as read-only */
483 if (offset < 32) {
484 u32 roreg = 1 << vcpu->vcpu_id;
485 roreg |= roreg << 8;
486 roreg |= roreg << 16;
487
488 vgic_reg_access(mmio, &roreg, offset,
489 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
490 return false;
491 }
492
493 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
494 vgic_reg_access(mmio, &reg, offset,
495 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
496 if (mmio->is_write) {
497 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
498 vgic_update_state(vcpu->kvm);
499 return true;
500 }
501
502 return false;
503}
504
505static u32 vgic_cfg_expand(u16 val)
506{
507 u32 res = 0;
508 int i;
509
510 /*
511 * Turn a 16bit value like abcd...mnop into a 32bit word
512 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
513 */
514 for (i = 0; i < 16; i++)
515 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
516
517 return res;
518}
519
520static u16 vgic_cfg_compress(u32 val)
521{
522 u16 res = 0;
523 int i;
524
525 /*
526 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
527 * abcd...mnop which is what we really care about.
528 */
529 for (i = 0; i < 16; i++)
530 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
531
532 return res;
533}
534
535/*
536 * The distributor uses 2 bits per IRQ for the CFG register, but the
537 * LSB is always 0. As such, we only keep the upper bit, and use the
538 * two above functions to compress/expand the bits
539 */
540static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
541 struct kvm_exit_mmio *mmio, phys_addr_t offset)
542{
543 u32 val;
6545eae3
MZ
544 u32 *reg;
545
546 offset >>= 1;
547 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
548 vcpu->vcpu_id, offset);
549
b47ef92a
MZ
550 if (offset & 2)
551 val = *reg >> 16;
552 else
553 val = *reg & 0xffff;
554
555 val = vgic_cfg_expand(val);
556 vgic_reg_access(mmio, &val, offset,
557 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
558 if (mmio->is_write) {
559 if (offset < 4) {
560 *reg = ~0U; /* Force PPIs/SGIs to 1 */
561 return false;
562 }
563
564 val = vgic_cfg_compress(val);
565 if (offset & 2) {
566 *reg &= 0xffff;
567 *reg |= val << 16;
568 } else {
569 *reg &= 0xffff << 16;
570 *reg |= val;
571 }
572 }
573
574 return false;
575}
576
577static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
578 struct kvm_exit_mmio *mmio, phys_addr_t offset)
579{
580 u32 reg;
581 vgic_reg_access(mmio, &reg, offset,
582 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
583 if (mmio->is_write) {
584 vgic_dispatch_sgi(vcpu, reg);
585 vgic_update_state(vcpu->kvm);
586 return true;
587 }
588
589 return false;
590}
591
cbd333a4
CD
592#define LR_CPUID(lr) \
593 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
594#define LR_IRQID(lr) \
595 ((lr) & GICH_LR_VIRTUALID)
596
597static void vgic_retire_lr(int lr_nr, int irq, struct vgic_cpu *vgic_cpu)
598{
599 clear_bit(lr_nr, vgic_cpu->lr_used);
600 vgic_cpu->vgic_lr[lr_nr] &= ~GICH_LR_STATE;
601 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
602}
603
604/**
605 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
606 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
607 *
608 * Move any pending IRQs that have already been assigned to LRs back to the
609 * emulated distributor state so that the complete emulated state can be read
610 * from the main emulation structures without investigating the LRs.
611 *
612 * Note that IRQs in the active state in the LRs get their pending state moved
613 * to the distributor but the active state stays in the LRs, because we don't
614 * track the active state on the distributor side.
615 */
616static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
617{
618 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
619 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
620 int vcpu_id = vcpu->vcpu_id;
621 int i, irq, source_cpu;
622 u32 *lr;
623
624 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
625 lr = &vgic_cpu->vgic_lr[i];
626 irq = LR_IRQID(*lr);
627 source_cpu = LR_CPUID(*lr);
628
629 /*
630 * There are three options for the state bits:
631 *
632 * 01: pending
633 * 10: active
634 * 11: pending and active
635 *
636 * If the LR holds only an active interrupt (not pending) then
637 * just leave it alone.
638 */
639 if ((*lr & GICH_LR_STATE) == GICH_LR_ACTIVE_BIT)
640 continue;
641
642 /*
643 * Reestablish the pending state on the distributor and the
644 * CPU interface. It may have already been pending, but that
645 * is fine, then we are only setting a few bits that were
646 * already set.
647 */
648 vgic_dist_irq_set(vcpu, irq);
649 if (irq < VGIC_NR_SGIS)
650 dist->irq_sgi_sources[vcpu_id][irq] |= 1 << source_cpu;
651 *lr &= ~GICH_LR_PENDING_BIT;
652
653 /*
654 * If there's no state left on the LR (it could still be
655 * active), then the LR does not hold any useful info and can
656 * be marked as free for other use.
657 */
658 if (!(*lr & GICH_LR_STATE))
659 vgic_retire_lr(i, irq, vgic_cpu);
660
661 /* Finally update the VGIC state. */
662 vgic_update_state(vcpu->kvm);
663 }
664}
665
90a5355e
CD
666/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
667static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
668 struct kvm_exit_mmio *mmio,
669 phys_addr_t offset)
c07a0191 670{
90a5355e
CD
671 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
672 int sgi;
673 int min_sgi = (offset & ~0x3) * 4;
674 int max_sgi = min_sgi + 3;
675 int vcpu_id = vcpu->vcpu_id;
676 u32 reg = 0;
677
678 /* Copy source SGIs from distributor side */
679 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
680 int shift = 8 * (sgi - min_sgi);
681 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
682 }
683
684 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
685 return false;
686}
687
90a5355e
CD
688static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
689 struct kvm_exit_mmio *mmio,
690 phys_addr_t offset, bool set)
691{
692 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
693 int sgi;
694 int min_sgi = (offset & ~0x3) * 4;
695 int max_sgi = min_sgi + 3;
696 int vcpu_id = vcpu->vcpu_id;
697 u32 reg;
698 bool updated = false;
699
700 reg = mmio_data_read(mmio, ~0);
701
702 /* Clear pending SGIs on the distributor */
703 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
704 u8 mask = reg >> (8 * (sgi - min_sgi));
705 if (set) {
706 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
707 updated = true;
708 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
709 } else {
710 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
711 updated = true;
712 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
713 }
714 }
715
716 if (updated)
717 vgic_update_state(vcpu->kvm);
718
719 return updated;
720}
721
c07a0191
CD
722static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
723 struct kvm_exit_mmio *mmio,
724 phys_addr_t offset)
725{
90a5355e
CD
726 if (!mmio->is_write)
727 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
728 else
729 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
730}
731
732static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
733 struct kvm_exit_mmio *mmio,
734 phys_addr_t offset)
735{
736 if (!mmio->is_write)
737 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
738 else
739 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
740}
741
1a89dd91
MZ
742/*
743 * I would have liked to use the kvm_bus_io_*() API instead, but it
744 * cannot cope with banked registers (only the VM pointer is passed
745 * around, and we need the vcpu). One of these days, someone please
746 * fix it!
747 */
748struct mmio_range {
749 phys_addr_t base;
750 unsigned long len;
751 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
752 phys_addr_t offset);
753};
754
1006e8cb 755static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
756 {
757 .base = GIC_DIST_CTRL,
758 .len = 12,
759 .handle_mmio = handle_mmio_misc,
760 },
761 {
762 .base = GIC_DIST_IGROUP,
763 .len = VGIC_NR_IRQS / 8,
764 .handle_mmio = handle_mmio_raz_wi,
765 },
766 {
767 .base = GIC_DIST_ENABLE_SET,
768 .len = VGIC_NR_IRQS / 8,
769 .handle_mmio = handle_mmio_set_enable_reg,
770 },
771 {
772 .base = GIC_DIST_ENABLE_CLEAR,
773 .len = VGIC_NR_IRQS / 8,
774 .handle_mmio = handle_mmio_clear_enable_reg,
775 },
776 {
777 .base = GIC_DIST_PENDING_SET,
778 .len = VGIC_NR_IRQS / 8,
779 .handle_mmio = handle_mmio_set_pending_reg,
780 },
781 {
782 .base = GIC_DIST_PENDING_CLEAR,
783 .len = VGIC_NR_IRQS / 8,
784 .handle_mmio = handle_mmio_clear_pending_reg,
785 },
786 {
787 .base = GIC_DIST_ACTIVE_SET,
788 .len = VGIC_NR_IRQS / 8,
789 .handle_mmio = handle_mmio_raz_wi,
790 },
791 {
792 .base = GIC_DIST_ACTIVE_CLEAR,
793 .len = VGIC_NR_IRQS / 8,
794 .handle_mmio = handle_mmio_raz_wi,
795 },
796 {
797 .base = GIC_DIST_PRI,
798 .len = VGIC_NR_IRQS,
799 .handle_mmio = handle_mmio_priority_reg,
800 },
801 {
802 .base = GIC_DIST_TARGET,
803 .len = VGIC_NR_IRQS,
804 .handle_mmio = handle_mmio_target_reg,
805 },
806 {
807 .base = GIC_DIST_CONFIG,
808 .len = VGIC_NR_IRQS / 4,
809 .handle_mmio = handle_mmio_cfg_reg,
810 },
811 {
812 .base = GIC_DIST_SOFTINT,
813 .len = 4,
814 .handle_mmio = handle_mmio_sgi_reg,
815 },
c07a0191
CD
816 {
817 .base = GIC_DIST_SGI_PENDING_CLEAR,
818 .len = VGIC_NR_SGIS,
819 .handle_mmio = handle_mmio_sgi_clear,
820 },
821 {
822 .base = GIC_DIST_SGI_PENDING_SET,
823 .len = VGIC_NR_SGIS,
824 .handle_mmio = handle_mmio_sgi_set,
825 },
1a89dd91
MZ
826 {}
827};
828
829static const
830struct mmio_range *find_matching_range(const struct mmio_range *ranges,
831 struct kvm_exit_mmio *mmio,
1006e8cb 832 phys_addr_t offset)
1a89dd91
MZ
833{
834 const struct mmio_range *r = ranges;
1a89dd91
MZ
835
836 while (r->len) {
1006e8cb
CD
837 if (offset >= r->base &&
838 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
839 return r;
840 r++;
841 }
842
843 return NULL;
844}
845
846/**
847 * vgic_handle_mmio - handle an in-kernel MMIO access
848 * @vcpu: pointer to the vcpu performing the access
849 * @run: pointer to the kvm_run structure
850 * @mmio: pointer to the data describing the access
851 *
852 * returns true if the MMIO access has been performed in kernel space,
853 * and false if it needs to be emulated in user space.
854 */
855bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
856 struct kvm_exit_mmio *mmio)
857{
b47ef92a
MZ
858 const struct mmio_range *range;
859 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
860 unsigned long base = dist->vgic_dist_base;
861 bool updated_state;
862 unsigned long offset;
863
864 if (!irqchip_in_kernel(vcpu->kvm) ||
865 mmio->phys_addr < base ||
866 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
867 return false;
868
869 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
870 if (mmio->len > 4) {
871 kvm_inject_dabt(vcpu, mmio->phys_addr);
872 return true;
873 }
874
1006e8cb
CD
875 offset = mmio->phys_addr - base;
876 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
877 if (unlikely(!range || !range->handle_mmio)) {
878 pr_warn("Unhandled access %d %08llx %d\n",
879 mmio->is_write, mmio->phys_addr, mmio->len);
880 return false;
881 }
882
883 spin_lock(&vcpu->kvm->arch.vgic.lock);
884 offset = mmio->phys_addr - range->base - base;
885 updated_state = range->handle_mmio(vcpu, mmio, offset);
886 spin_unlock(&vcpu->kvm->arch.vgic.lock);
887 kvm_prepare_mmio(run, mmio);
888 kvm_handle_mmio_return(vcpu, run);
889
5863c2ce
MZ
890 if (updated_state)
891 vgic_kick_vcpus(vcpu->kvm);
892
b47ef92a
MZ
893 return true;
894}
895
896static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
897{
898 struct kvm *kvm = vcpu->kvm;
899 struct vgic_dist *dist = &kvm->arch.vgic;
900 int nrcpus = atomic_read(&kvm->online_vcpus);
901 u8 target_cpus;
902 int sgi, mode, c, vcpu_id;
903
904 vcpu_id = vcpu->vcpu_id;
905
906 sgi = reg & 0xf;
907 target_cpus = (reg >> 16) & 0xff;
908 mode = (reg >> 24) & 3;
909
910 switch (mode) {
911 case 0:
912 if (!target_cpus)
913 return;
914
915 case 1:
916 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
917 break;
918
919 case 2:
920 target_cpus = 1 << vcpu_id;
921 break;
922 }
923
924 kvm_for_each_vcpu(c, vcpu, kvm) {
925 if (target_cpus & 1) {
926 /* Flag the SGI as pending */
927 vgic_dist_irq_set(vcpu, sgi);
928 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
929 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
930 }
931
932 target_cpus >>= 1;
933 }
934}
935
936static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
937{
9d949dce
MZ
938 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
939 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
940 unsigned long pending_private, pending_shared;
941 int vcpu_id;
942
943 vcpu_id = vcpu->vcpu_id;
944 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
945 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
946
947 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
948 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
949 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
950
951 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
952 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
953 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
954 bitmap_and(pend_shared, pend_shared,
955 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
956 VGIC_NR_SHARED_IRQS);
957
958 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
959 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
960 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
961 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
962}
963
964/*
965 * Update the interrupt state and determine which CPUs have pending
966 * interrupts. Must be called with distributor lock held.
967 */
968static void vgic_update_state(struct kvm *kvm)
969{
970 struct vgic_dist *dist = &kvm->arch.vgic;
971 struct kvm_vcpu *vcpu;
972 int c;
973
974 if (!dist->enabled) {
975 set_bit(0, &dist->irq_pending_on_cpu);
976 return;
977 }
978
979 kvm_for_each_vcpu(c, vcpu, kvm) {
980 if (compute_pending_for_cpu(vcpu)) {
981 pr_debug("CPU%d has pending interrupts\n", c);
982 set_bit(c, &dist->irq_pending_on_cpu);
983 }
984 }
1a89dd91 985}
330690cd 986
9d949dce
MZ
987#define MK_LR_PEND(src, irq) \
988 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
a1fcb44e
MZ
989
990/*
991 * An interrupt may have been disabled after being made pending on the
992 * CPU interface (the classic case is a timer running while we're
993 * rebooting the guest - the interrupt would kick as soon as the CPU
994 * interface gets enabled, with deadly consequences).
995 *
996 * The solution is to examine already active LRs, and check the
997 * interrupt is still enabled. If not, just retire it.
998 */
999static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1000{
1001 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1002 int lr;
1003
1004 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
1005 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1006
1007 if (!vgic_irq_is_enabled(vcpu, irq)) {
cbd333a4 1008 vgic_retire_lr(lr, irq, vgic_cpu);
a1fcb44e
MZ
1009 if (vgic_irq_is_active(vcpu, irq))
1010 vgic_irq_clear_active(vcpu, irq);
1011 }
1012 }
1013}
1014
9d949dce
MZ
1015/*
1016 * Queue an interrupt to a CPU virtual interface. Return true on success,
1017 * or false if it wasn't possible to queue it.
1018 */
1019static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1020{
1021 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1022 int lr;
1023
1024 /* Sanitize the input... */
1025 BUG_ON(sgi_source_id & ~7);
1026 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1027 BUG_ON(irq >= VGIC_NR_IRQS);
1028
1029 kvm_debug("Queue IRQ%d\n", irq);
1030
1031 lr = vgic_cpu->vgic_irq_lr_map[irq];
1032
1033 /* Do we have an active interrupt for the same CPUID? */
1034 if (lr != LR_EMPTY &&
1035 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
1036 kvm_debug("LR%d piggyback for IRQ%d %x\n",
1037 lr, irq, vgic_cpu->vgic_lr[lr]);
1038 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1039 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
75da01e1 1040 return true;
9d949dce
MZ
1041 }
1042
1043 /* Try to use another LR for this interrupt */
1044 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1045 vgic_cpu->nr_lr);
1046 if (lr >= vgic_cpu->nr_lr)
1047 return false;
1048
1049 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1050 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
1051 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1052 set_bit(lr, vgic_cpu->lr_used);
1053
9d949dce
MZ
1054 if (!vgic_irq_is_edge(vcpu, irq))
1055 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
1056
1057 return true;
1058}
1059
1060static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1061{
1062 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1063 unsigned long sources;
1064 int vcpu_id = vcpu->vcpu_id;
1065 int c;
1066
1067 sources = dist->irq_sgi_sources[vcpu_id][irq];
1068
1069 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1070 if (vgic_queue_irq(vcpu, c, irq))
1071 clear_bit(c, &sources);
1072 }
1073
1074 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1075
1076 /*
1077 * If the sources bitmap has been cleared it means that we
1078 * could queue all the SGIs onto link registers (see the
1079 * clear_bit above), and therefore we are done with them in
1080 * our emulated gic and can get rid of them.
1081 */
1082 if (!sources) {
1083 vgic_dist_irq_clear(vcpu, irq);
1084 vgic_cpu_irq_clear(vcpu, irq);
1085 return true;
1086 }
1087
1088 return false;
1089}
1090
1091static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1092{
1093 if (vgic_irq_is_active(vcpu, irq))
1094 return true; /* level interrupt, already queued */
1095
1096 if (vgic_queue_irq(vcpu, 0, irq)) {
1097 if (vgic_irq_is_edge(vcpu, irq)) {
1098 vgic_dist_irq_clear(vcpu, irq);
1099 vgic_cpu_irq_clear(vcpu, irq);
1100 } else {
1101 vgic_irq_set_active(vcpu, irq);
1102 }
1103
1104 return true;
1105 }
1106
1107 return false;
1108}
1109
1110/*
1111 * Fill the list registers with pending interrupts before running the
1112 * guest.
1113 */
1114static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1115{
1116 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1117 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1118 int i, vcpu_id;
1119 int overflow = 0;
1120
1121 vcpu_id = vcpu->vcpu_id;
1122
1123 /*
1124 * We may not have any pending interrupt, or the interrupts
1125 * may have been serviced from another vcpu. In all cases,
1126 * move along.
1127 */
1128 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1129 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1130 goto epilog;
1131 }
1132
1133 /* SGIs */
1134 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1135 if (!vgic_queue_sgi(vcpu, i))
1136 overflow = 1;
1137 }
1138
1139 /* PPIs */
1140 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1141 if (!vgic_queue_hwirq(vcpu, i))
1142 overflow = 1;
1143 }
1144
1145 /* SPIs */
1146 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1147 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1148 overflow = 1;
1149 }
1150
1151epilog:
1152 if (overflow) {
1153 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1154 } else {
1155 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1156 /*
1157 * We're about to run this VCPU, and we've consumed
1158 * everything the distributor had in store for
1159 * us. Claim we don't have anything pending. We'll
1160 * adjust that if needed while exiting.
1161 */
1162 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1163 }
1164}
1165
1166static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1167{
1168 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1169 bool level_pending = false;
1170
1171 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1172
9d949dce
MZ
1173 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1174 /*
1175 * Some level interrupts have been EOIed. Clear their
1176 * active bit.
1177 */
1178 int lr, irq;
1179
1180 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1181 vgic_cpu->nr_lr) {
1182 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1183
1184 vgic_irq_clear_active(vcpu, irq);
1185 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1186
1187 /* Any additional pending interrupt? */
1188 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1189 vgic_cpu_irq_set(vcpu, irq);
1190 level_pending = true;
1191 } else {
1192 vgic_cpu_irq_clear(vcpu, irq);
1193 }
75da01e1
MZ
1194
1195 /*
1196 * Despite being EOIed, the LR may not have
1197 * been marked as empty.
1198 */
1199 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1200 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
9d949dce
MZ
1201 }
1202 }
1203
1204 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1205 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1206
1207 return level_pending;
1208}
1209
1210/*
33c83cb3
MZ
1211 * Sync back the VGIC state after a guest run. The distributor lock is
1212 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1213 */
1214static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1215{
1216 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1217 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1218 int lr, pending;
1219 bool level_pending;
1220
1221 level_pending = vgic_process_maintenance(vcpu);
1222
1223 /* Clear mappings for empty LRs */
1224 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1225 vgic_cpu->nr_lr) {
1226 int irq;
1227
1228 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1229 continue;
1230
1231 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1232
1233 BUG_ON(irq >= VGIC_NR_IRQS);
1234 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1235 }
1236
1237 /* Check if we still have something up our sleeve... */
1238 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1239 vgic_cpu->nr_lr);
1240 if (level_pending || pending < vgic_cpu->nr_lr)
1241 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1242}
1243
1244void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1245{
1246 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1247
1248 if (!irqchip_in_kernel(vcpu->kvm))
1249 return;
1250
1251 spin_lock(&dist->lock);
1252 __kvm_vgic_flush_hwstate(vcpu);
1253 spin_unlock(&dist->lock);
1254}
1255
1256void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1257{
33c83cb3
MZ
1258 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1259
9d949dce
MZ
1260 if (!irqchip_in_kernel(vcpu->kvm))
1261 return;
1262
33c83cb3 1263 spin_lock(&dist->lock);
9d949dce 1264 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1265 spin_unlock(&dist->lock);
9d949dce
MZ
1266}
1267
1268int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1269{
1270 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1271
1272 if (!irqchip_in_kernel(vcpu->kvm))
1273 return 0;
1274
1275 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1276}
1277
5863c2ce
MZ
1278static void vgic_kick_vcpus(struct kvm *kvm)
1279{
1280 struct kvm_vcpu *vcpu;
1281 int c;
1282
1283 /*
1284 * We've injected an interrupt, time to find out who deserves
1285 * a good kick...
1286 */
1287 kvm_for_each_vcpu(c, vcpu, kvm) {
1288 if (kvm_vgic_vcpu_pending_irq(vcpu))
1289 kvm_vcpu_kick(vcpu);
1290 }
1291}
1292
1293static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1294{
1295 int is_edge = vgic_irq_is_edge(vcpu, irq);
1296 int state = vgic_dist_irq_is_pending(vcpu, irq);
1297
1298 /*
1299 * Only inject an interrupt if:
1300 * - edge triggered and we have a rising edge
1301 * - level triggered and we change level
1302 */
1303 if (is_edge)
1304 return level > state;
1305 else
1306 return level != state;
1307}
1308
1309static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1310 unsigned int irq_num, bool level)
1311{
1312 struct vgic_dist *dist = &kvm->arch.vgic;
1313 struct kvm_vcpu *vcpu;
1314 int is_edge, is_level;
1315 int enabled;
1316 bool ret = true;
1317
1318 spin_lock(&dist->lock);
1319
1320 vcpu = kvm_get_vcpu(kvm, cpuid);
1321 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1322 is_level = !is_edge;
1323
1324 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1325 ret = false;
1326 goto out;
1327 }
1328
1329 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1330 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1331 vcpu = kvm_get_vcpu(kvm, cpuid);
1332 }
1333
1334 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1335
1336 if (level)
1337 vgic_dist_irq_set(vcpu, irq_num);
1338 else
1339 vgic_dist_irq_clear(vcpu, irq_num);
1340
1341 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1342
1343 if (!enabled) {
1344 ret = false;
1345 goto out;
1346 }
1347
1348 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1349 /*
1350 * Level interrupt in progress, will be picked up
1351 * when EOId.
1352 */
1353 ret = false;
1354 goto out;
1355 }
1356
1357 if (level) {
1358 vgic_cpu_irq_set(vcpu, irq_num);
1359 set_bit(cpuid, &dist->irq_pending_on_cpu);
1360 }
1361
1362out:
1363 spin_unlock(&dist->lock);
1364
1365 return ret;
1366}
1367
1368/**
1369 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1370 * @kvm: The VM structure pointer
1371 * @cpuid: The CPU for PPIs
1372 * @irq_num: The IRQ number that is assigned to the device
1373 * @level: Edge-triggered: true: to trigger the interrupt
1374 * false: to ignore the call
1375 * Level-sensitive true: activates an interrupt
1376 * false: deactivates an interrupt
1377 *
1378 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1379 * level-sensitive interrupts. You can think of the level parameter as 1
1380 * being HIGH and 0 being LOW and all devices being active-HIGH.
1381 */
1382int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1383 bool level)
1384{
1385 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1386 vgic_kick_vcpus(kvm);
1387
1388 return 0;
1389}
1390
01ac5e34
MZ
1391static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1392{
1393 /*
1394 * We cannot rely on the vgic maintenance interrupt to be
1395 * delivered synchronously. This means we can only use it to
1396 * exit the VM, and we perform the handling of EOIed
1397 * interrupts on the exit path (see vgic_process_maintenance).
1398 */
1399 return IRQ_HANDLED;
1400}
1401
e1ba0207
CD
1402/**
1403 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1404 * @vcpu: pointer to the vcpu struct
1405 *
1406 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1407 * this vcpu and enable the VGIC for this VCPU
1408 */
01ac5e34
MZ
1409int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1410{
1411 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1412 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1413 int i;
1414
01ac5e34
MZ
1415 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1416 return -EBUSY;
1417
1418 for (i = 0; i < VGIC_NR_IRQS; i++) {
1419 if (i < VGIC_NR_PPIS)
1420 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1421 vcpu->vcpu_id, i, 1);
1422 if (i < VGIC_NR_PRIVATE_IRQS)
1423 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1424 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1425
1426 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1427 }
1428
1429 /*
1430 * By forcing VMCR to zero, the GIC will restore the binary
1431 * points to their reset values. Anything else resets to zero
1432 * anyway.
1433 */
1434 vgic_cpu->vgic_vmcr = 0;
1435
1436 vgic_cpu->nr_lr = vgic_nr_lr;
1437 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1438
1439 return 0;
1440}
1441
1442static void vgic_init_maintenance_interrupt(void *info)
1443{
1444 enable_percpu_irq(vgic_maint_irq, 0);
1445}
1446
1447static int vgic_cpu_notify(struct notifier_block *self,
1448 unsigned long action, void *cpu)
1449{
1450 switch (action) {
1451 case CPU_STARTING:
1452 case CPU_STARTING_FROZEN:
1453 vgic_init_maintenance_interrupt(NULL);
1454 break;
1455 case CPU_DYING:
1456 case CPU_DYING_FROZEN:
1457 disable_percpu_irq(vgic_maint_irq);
1458 break;
1459 }
1460
1461 return NOTIFY_OK;
1462}
1463
1464static struct notifier_block vgic_cpu_nb = {
1465 .notifier_call = vgic_cpu_notify,
1466};
1467
1468int kvm_vgic_hyp_init(void)
1469{
1470 int ret;
1471 struct resource vctrl_res;
1472 struct resource vcpu_res;
1473
1474 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1475 if (!vgic_node) {
1476 kvm_err("error: no compatible vgic node in DT\n");
1477 return -ENODEV;
1478 }
1479
1480 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1481 if (!vgic_maint_irq) {
1482 kvm_err("error getting vgic maintenance irq from DT\n");
1483 ret = -ENXIO;
1484 goto out;
1485 }
1486
1487 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1488 "vgic", kvm_get_running_vcpus());
1489 if (ret) {
1490 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1491 goto out;
1492 }
1493
1494 ret = register_cpu_notifier(&vgic_cpu_nb);
1495 if (ret) {
1496 kvm_err("Cannot register vgic CPU notifier\n");
1497 goto out_free_irq;
1498 }
1499
1500 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1501 if (ret) {
1502 kvm_err("Cannot obtain VCTRL resource\n");
1503 goto out_free_irq;
1504 }
1505
1506 vgic_vctrl_base = of_iomap(vgic_node, 2);
1507 if (!vgic_vctrl_base) {
1508 kvm_err("Cannot ioremap VCTRL\n");
1509 ret = -ENOMEM;
1510 goto out_free_irq;
1511 }
1512
1513 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1514 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1515
1516 ret = create_hyp_io_mappings(vgic_vctrl_base,
1517 vgic_vctrl_base + resource_size(&vctrl_res),
1518 vctrl_res.start);
1519 if (ret) {
1520 kvm_err("Cannot map VCTRL into hyp\n");
1521 goto out_unmap;
1522 }
1523
1524 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1525 vctrl_res.start, vgic_maint_irq);
1526 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1527
1528 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1529 kvm_err("Cannot obtain VCPU resource\n");
1530 ret = -ENXIO;
1531 goto out_unmap;
1532 }
1533 vgic_vcpu_base = vcpu_res.start;
1534
1535 goto out;
1536
1537out_unmap:
1538 iounmap(vgic_vctrl_base);
1539out_free_irq:
1540 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1541out:
1542 of_node_put(vgic_node);
1543 return ret;
1544}
1545
e1ba0207
CD
1546/**
1547 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1548 * @kvm: pointer to the kvm struct
1549 *
1550 * Map the virtual CPU interface into the VM before running any VCPUs. We
1551 * can't do this at creation time, because user space must first set the
1552 * virtual CPU interface address in the guest physical address space. Also
1553 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1554 */
01ac5e34
MZ
1555int kvm_vgic_init(struct kvm *kvm)
1556{
1557 int ret = 0, i;
1558
e1ba0207
CD
1559 if (!irqchip_in_kernel(kvm))
1560 return 0;
1561
01ac5e34
MZ
1562 mutex_lock(&kvm->lock);
1563
1564 if (vgic_initialized(kvm))
1565 goto out;
1566
1567 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1568 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1569 kvm_err("Need to set vgic cpu and dist addresses first\n");
1570 ret = -ENXIO;
1571 goto out;
1572 }
1573
1574 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1575 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1576 if (ret) {
1577 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1578 goto out;
1579 }
1580
1581 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1582 vgic_set_target_reg(kvm, 0, i);
1583
1584 kvm->arch.vgic.ready = true;
1585out:
1586 mutex_unlock(&kvm->lock);
1587 return ret;
1588}
1589
1590int kvm_vgic_create(struct kvm *kvm)
1591{
7330672b
CD
1592 int i, vcpu_lock_idx = -1, ret = 0;
1593 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1594
1595 mutex_lock(&kvm->lock);
1596
7330672b 1597 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1598 ret = -EEXIST;
1599 goto out;
1600 }
1601
7330672b
CD
1602 /*
1603 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1604 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1605 * that no other VCPUs are run while we create the vgic.
1606 */
1607 kvm_for_each_vcpu(i, vcpu, kvm) {
1608 if (!mutex_trylock(&vcpu->mutex))
1609 goto out_unlock;
1610 vcpu_lock_idx = i;
1611 }
1612
1613 kvm_for_each_vcpu(i, vcpu, kvm) {
1614 if (vcpu->arch.has_run_once) {
1615 ret = -EBUSY;
1616 goto out_unlock;
1617 }
1618 }
1619
01ac5e34
MZ
1620 spin_lock_init(&kvm->arch.vgic.lock);
1621 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1622 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1623 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1624
7330672b
CD
1625out_unlock:
1626 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1627 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1628 mutex_unlock(&vcpu->mutex);
1629 }
1630
01ac5e34
MZ
1631out:
1632 mutex_unlock(&kvm->lock);
1633 return ret;
1634}
1635
330690cd
CD
1636static bool vgic_ioaddr_overlap(struct kvm *kvm)
1637{
1638 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1639 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1640
1641 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1642 return 0;
1643 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1644 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1645 return -EBUSY;
1646 return 0;
1647}
1648
1649static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1650 phys_addr_t addr, phys_addr_t size)
1651{
1652 int ret;
1653
ce01e4e8
CD
1654 if (addr & ~KVM_PHYS_MASK)
1655 return -E2BIG;
1656
1657 if (addr & (SZ_4K - 1))
1658 return -EINVAL;
1659
330690cd
CD
1660 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1661 return -EEXIST;
1662 if (addr + size < addr)
1663 return -EINVAL;
1664
1665 ret = vgic_ioaddr_overlap(kvm);
1666 if (ret)
1667 return ret;
1668 *ioaddr = addr;
1669 return ret;
1670}
1671
ce01e4e8
CD
1672/**
1673 * kvm_vgic_addr - set or get vgic VM base addresses
1674 * @kvm: pointer to the vm struct
1675 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1676 * @addr: pointer to address value
1677 * @write: if true set the address in the VM address space, if false read the
1678 * address
1679 *
1680 * Set or get the vgic base addresses for the distributor and the virtual CPU
1681 * interface in the VM physical address space. These addresses are properties
1682 * of the emulated core/SoC and therefore user space initially knows this
1683 * information.
1684 */
1685int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1686{
1687 int r = 0;
1688 struct vgic_dist *vgic = &kvm->arch.vgic;
1689
330690cd
CD
1690 mutex_lock(&kvm->lock);
1691 switch (type) {
1692 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
1693 if (write) {
1694 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1695 *addr, KVM_VGIC_V2_DIST_SIZE);
1696 } else {
1697 *addr = vgic->vgic_dist_base;
1698 }
330690cd
CD
1699 break;
1700 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
1701 if (write) {
1702 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1703 *addr, KVM_VGIC_V2_CPU_SIZE);
1704 } else {
1705 *addr = vgic->vgic_cpu_base;
1706 }
330690cd
CD
1707 break;
1708 default:
1709 r = -ENODEV;
1710 }
1711
1712 mutex_unlock(&kvm->lock);
1713 return r;
1714}
7330672b 1715
c07a0191
CD
1716static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1717 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1718{
1719 return true;
1720}
1721
1722static const struct mmio_range vgic_cpu_ranges[] = {
1723 {
1724 .base = GIC_CPU_CTRL,
1725 .len = 12,
1726 .handle_mmio = handle_cpu_mmio_misc,
1727 },
1728 {
1729 .base = GIC_CPU_ALIAS_BINPOINT,
1730 .len = 4,
1731 .handle_mmio = handle_cpu_mmio_misc,
1732 },
1733 {
1734 .base = GIC_CPU_ACTIVEPRIO,
1735 .len = 16,
1736 .handle_mmio = handle_cpu_mmio_misc,
1737 },
1738 {
1739 .base = GIC_CPU_IDENT,
1740 .len = 4,
1741 .handle_mmio = handle_cpu_mmio_misc,
1742 },
1743};
1744
1745static int vgic_attr_regs_access(struct kvm_device *dev,
1746 struct kvm_device_attr *attr,
1747 u32 *reg, bool is_write)
1748{
1749 const struct mmio_range *r = NULL, *ranges;
1750 phys_addr_t offset;
1751 int ret, cpuid, c;
1752 struct kvm_vcpu *vcpu, *tmp_vcpu;
1753 struct vgic_dist *vgic;
1754 struct kvm_exit_mmio mmio;
1755
1756 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1757 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1758 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1759
1760 mutex_lock(&dev->kvm->lock);
1761
1762 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1763 ret = -EINVAL;
1764 goto out;
1765 }
1766
1767 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1768 vgic = &dev->kvm->arch.vgic;
1769
1770 mmio.len = 4;
1771 mmio.is_write = is_write;
1772 if (is_write)
1773 mmio_data_write(&mmio, ~0, *reg);
1774 switch (attr->group) {
1775 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1776 mmio.phys_addr = vgic->vgic_dist_base + offset;
1777 ranges = vgic_dist_ranges;
1778 break;
1779 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1780 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1781 ranges = vgic_cpu_ranges;
1782 break;
1783 default:
1784 BUG();
1785 }
1786 r = find_matching_range(ranges, &mmio, offset);
1787
1788 if (unlikely(!r || !r->handle_mmio)) {
1789 ret = -ENXIO;
1790 goto out;
1791 }
1792
1793
1794 spin_lock(&vgic->lock);
1795
1796 /*
1797 * Ensure that no other VCPU is running by checking the vcpu->cpu
1798 * field. If no other VPCUs are running we can safely access the VGIC
1799 * state, because even if another VPU is run after this point, that
1800 * VCPU will not touch the vgic state, because it will block on
1801 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1802 */
1803 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1804 if (unlikely(tmp_vcpu->cpu != -1)) {
1805 ret = -EBUSY;
1806 goto out_vgic_unlock;
1807 }
1808 }
1809
cbd333a4
CD
1810 /*
1811 * Move all pending IRQs from the LRs on all VCPUs so the pending
1812 * state can be properly represented in the register state accessible
1813 * through this API.
1814 */
1815 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1816 vgic_unqueue_irqs(tmp_vcpu);
1817
c07a0191
CD
1818 offset -= r->base;
1819 r->handle_mmio(vcpu, &mmio, offset);
1820
1821 if (!is_write)
1822 *reg = mmio_data_read(&mmio, ~0);
1823
1824 ret = 0;
1825out_vgic_unlock:
1826 spin_unlock(&vgic->lock);
1827out:
1828 mutex_unlock(&dev->kvm->lock);
1829 return ret;
1830}
1831
7330672b
CD
1832static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1833{
ce01e4e8
CD
1834 int r;
1835
1836 switch (attr->group) {
1837 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1838 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1839 u64 addr;
1840 unsigned long type = (unsigned long)attr->attr;
1841
1842 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1843 return -EFAULT;
1844
1845 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1846 return (r == -ENODEV) ? -ENXIO : r;
1847 }
c07a0191
CD
1848
1849 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1850 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1851 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1852 u32 reg;
1853
1854 if (get_user(reg, uaddr))
1855 return -EFAULT;
1856
1857 return vgic_attr_regs_access(dev, attr, &reg, true);
1858 }
1859
ce01e4e8
CD
1860 }
1861
7330672b
CD
1862 return -ENXIO;
1863}
1864
1865static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1866{
ce01e4e8
CD
1867 int r = -ENXIO;
1868
1869 switch (attr->group) {
1870 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1871 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1872 u64 addr;
1873 unsigned long type = (unsigned long)attr->attr;
1874
1875 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1876 if (r)
1877 return (r == -ENODEV) ? -ENXIO : r;
1878
1879 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1880 return -EFAULT;
c07a0191
CD
1881 break;
1882 }
1883
1884 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1885 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1886 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1887 u32 reg = 0;
1888
1889 r = vgic_attr_regs_access(dev, attr, &reg, false);
1890 if (r)
1891 return r;
1892 r = put_user(reg, uaddr);
1893 break;
ce01e4e8 1894 }
c07a0191 1895
ce01e4e8
CD
1896 }
1897
1898 return r;
7330672b
CD
1899}
1900
c07a0191
CD
1901static int vgic_has_attr_regs(const struct mmio_range *ranges,
1902 phys_addr_t offset)
1903{
1904 struct kvm_exit_mmio dev_attr_mmio;
1905
1906 dev_attr_mmio.len = 4;
1907 if (find_matching_range(ranges, &dev_attr_mmio, offset))
1908 return 0;
1909 else
1910 return -ENXIO;
1911}
1912
7330672b
CD
1913static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1914{
c07a0191
CD
1915 phys_addr_t offset;
1916
ce01e4e8
CD
1917 switch (attr->group) {
1918 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1919 switch (attr->attr) {
1920 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1921 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1922 return 0;
1923 }
1924 break;
c07a0191
CD
1925 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1926 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1927 return vgic_has_attr_regs(vgic_dist_ranges, offset);
1928 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1929 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1930 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 1931 }
7330672b
CD
1932 return -ENXIO;
1933}
1934
1935static void vgic_destroy(struct kvm_device *dev)
1936{
1937 kfree(dev);
1938}
1939
1940static int vgic_create(struct kvm_device *dev, u32 type)
1941{
1942 return kvm_vgic_create(dev->kvm);
1943}
1944
1945struct kvm_device_ops kvm_arm_vgic_v2_ops = {
1946 .name = "kvm-arm-vgic",
1947 .create = vgic_create,
1948 .destroy = vgic_destroy,
1949 .set_attr = vgic_set_attr,
1950 .get_attr = vgic_get_attr,
1951 .has_attr = vgic_has_attr,
1952};
This page took 0.152981 seconds and 5 git commands to generate.