ARM: KVM: vgic: simplify vgic_get_target_reg
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27
28#include <linux/irqchip/arm-gic.h>
29
1a89dd91 30#include <asm/kvm_emulate.h>
01ac5e34
MZ
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
1a89dd91 33
b47ef92a
MZ
34/*
35 * How the whole thing works (courtesy of Christoffer Dall):
36 *
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44 * recalculated
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
56 *
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
60 *
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
69 */
70
330690cd
CD
71#define VGIC_ADDR_UNDEF (-1)
72#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
73
01ac5e34
MZ
74/* Physical address of vgic virtual cpu interface */
75static phys_addr_t vgic_vcpu_base;
76
77/* Virtual control interface base address */
78static void __iomem *vgic_vctrl_base;
79
80static struct device_node *vgic_node;
81
1a89dd91
MZ
82#define ACCESS_READ_VALUE (1 << 0)
83#define ACCESS_READ_RAZ (0 << 0)
84#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
85#define ACCESS_WRITE_IGNORED (0 << 1)
86#define ACCESS_WRITE_SETBIT (1 << 1)
87#define ACCESS_WRITE_CLEARBIT (2 << 1)
88#define ACCESS_WRITE_VALUE (3 << 1)
89#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
90
a1fcb44e 91static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
b47ef92a 92static void vgic_update_state(struct kvm *kvm);
5863c2ce 93static void vgic_kick_vcpus(struct kvm *kvm);
b47ef92a 94static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
01ac5e34
MZ
95static u32 vgic_nr_lr;
96
97static unsigned int vgic_maint_irq;
b47ef92a
MZ
98
99static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
100 int cpuid, u32 offset)
101{
102 offset >>= 2;
103 if (!offset)
104 return x->percpu[cpuid].reg;
105 else
106 return x->shared.reg + offset - 1;
107}
108
109static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
110 int cpuid, int irq)
111{
112 if (irq < VGIC_NR_PRIVATE_IRQS)
113 return test_bit(irq, x->percpu[cpuid].reg_ul);
114
115 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
116}
117
118static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
119 int irq, int val)
120{
121 unsigned long *reg;
122
123 if (irq < VGIC_NR_PRIVATE_IRQS) {
124 reg = x->percpu[cpuid].reg_ul;
125 } else {
126 reg = x->shared.reg_ul;
127 irq -= VGIC_NR_PRIVATE_IRQS;
128 }
129
130 if (val)
131 set_bit(irq, reg);
132 else
133 clear_bit(irq, reg);
134}
135
136static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
137{
138 if (unlikely(cpuid >= VGIC_MAX_CPUS))
139 return NULL;
140 return x->percpu[cpuid].reg_ul;
141}
142
143static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
144{
145 return x->shared.reg_ul;
146}
147
148static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
149{
150 offset >>= 2;
151 BUG_ON(offset > (VGIC_NR_IRQS / 4));
152 if (offset < 4)
153 return x->percpu[cpuid] + offset;
154 else
155 return x->shared + offset - 8;
156}
157
158#define VGIC_CFG_LEVEL 0
159#define VGIC_CFG_EDGE 1
160
161static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
162{
163 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
164 int irq_val;
165
166 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
167 return irq_val == VGIC_CFG_EDGE;
168}
169
170static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
171{
172 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
173
174 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
175}
176
9d949dce
MZ
177static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
178{
179 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
180
181 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
182}
183
184static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
185{
186 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
187
188 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
189}
190
191static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
192{
193 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
194
195 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
196}
197
198static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
199{
200 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
201
202 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
203}
204
b47ef92a
MZ
205static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
206{
207 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
208
209 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
210}
211
212static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
213{
214 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
215
216 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
217}
218
219static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
220{
221 if (irq < VGIC_NR_PRIVATE_IRQS)
222 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
223 else
224 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
225 vcpu->arch.vgic_cpu.pending_shared);
226}
227
228static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
229{
230 if (irq < VGIC_NR_PRIVATE_IRQS)
231 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
232 else
233 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
234 vcpu->arch.vgic_cpu.pending_shared);
235}
236
1a89dd91
MZ
237static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
238{
239 return *((u32 *)mmio->data) & mask;
240}
241
242static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
243{
244 *((u32 *)mmio->data) = value & mask;
245}
246
247/**
248 * vgic_reg_access - access vgic register
249 * @mmio: pointer to the data describing the mmio access
250 * @reg: pointer to the virtual backing of vgic distributor data
251 * @offset: least significant 2 bits used for word offset
252 * @mode: ACCESS_ mode (see defines above)
253 *
254 * Helper to make vgic register access easier using one of the access
255 * modes defined for vgic register access
256 * (read,raz,write-ignored,setbit,clearbit,write)
257 */
258static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
259 phys_addr_t offset, int mode)
260{
261 int word_offset = (offset & 3) * 8;
262 u32 mask = (1UL << (mmio->len * 8)) - 1;
263 u32 regval;
264
265 /*
266 * Any alignment fault should have been delivered to the guest
267 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
268 */
269
270 if (reg) {
271 regval = *reg;
272 } else {
273 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
274 regval = 0;
275 }
276
277 if (mmio->is_write) {
278 u32 data = mmio_data_read(mmio, mask) << word_offset;
279 switch (ACCESS_WRITE_MASK(mode)) {
280 case ACCESS_WRITE_IGNORED:
281 return;
282
283 case ACCESS_WRITE_SETBIT:
284 regval |= data;
285 break;
286
287 case ACCESS_WRITE_CLEARBIT:
288 regval &= ~data;
289 break;
290
291 case ACCESS_WRITE_VALUE:
292 regval = (regval & ~(mask << word_offset)) | data;
293 break;
294 }
295 *reg = regval;
296 } else {
297 switch (ACCESS_READ_MASK(mode)) {
298 case ACCESS_READ_RAZ:
299 regval = 0;
300 /* fall through */
301
302 case ACCESS_READ_VALUE:
303 mmio_data_write(mmio, mask, regval >> word_offset);
304 }
305 }
306}
307
b47ef92a
MZ
308static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
309 struct kvm_exit_mmio *mmio, phys_addr_t offset)
310{
311 u32 reg;
312 u32 word_offset = offset & 3;
313
314 switch (offset & ~3) {
315 case 0: /* CTLR */
316 reg = vcpu->kvm->arch.vgic.enabled;
317 vgic_reg_access(mmio, &reg, word_offset,
318 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
319 if (mmio->is_write) {
320 vcpu->kvm->arch.vgic.enabled = reg & 1;
321 vgic_update_state(vcpu->kvm);
322 return true;
323 }
324 break;
325
326 case 4: /* TYPER */
327 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
328 reg |= (VGIC_NR_IRQS >> 5) - 1;
329 vgic_reg_access(mmio, &reg, word_offset,
330 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
331 break;
332
333 case 8: /* IIDR */
334 reg = 0x4B00043B;
335 vgic_reg_access(mmio, &reg, word_offset,
336 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337 break;
338 }
339
340 return false;
341}
342
343static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
344 struct kvm_exit_mmio *mmio, phys_addr_t offset)
345{
346 vgic_reg_access(mmio, NULL, offset,
347 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
348 return false;
349}
350
351static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
352 struct kvm_exit_mmio *mmio,
353 phys_addr_t offset)
354{
355 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
356 vcpu->vcpu_id, offset);
357 vgic_reg_access(mmio, reg, offset,
358 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
359 if (mmio->is_write) {
360 vgic_update_state(vcpu->kvm);
361 return true;
362 }
363
364 return false;
365}
366
367static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
368 struct kvm_exit_mmio *mmio,
369 phys_addr_t offset)
370{
371 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
372 vcpu->vcpu_id, offset);
373 vgic_reg_access(mmio, reg, offset,
374 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
375 if (mmio->is_write) {
376 if (offset < 4) /* Force SGI enabled */
377 *reg |= 0xffff;
a1fcb44e 378 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
379 vgic_update_state(vcpu->kvm);
380 return true;
381 }
382
383 return false;
384}
385
386static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
387 struct kvm_exit_mmio *mmio,
388 phys_addr_t offset)
389{
390 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
391 vcpu->vcpu_id, offset);
392 vgic_reg_access(mmio, reg, offset,
393 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
394 if (mmio->is_write) {
395 vgic_update_state(vcpu->kvm);
396 return true;
397 }
398
399 return false;
400}
401
402static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
403 struct kvm_exit_mmio *mmio,
404 phys_addr_t offset)
405{
406 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
407 vcpu->vcpu_id, offset);
408 vgic_reg_access(mmio, reg, offset,
409 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
410 if (mmio->is_write) {
411 vgic_update_state(vcpu->kvm);
412 return true;
413 }
414
415 return false;
416}
417
418static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
419 struct kvm_exit_mmio *mmio,
420 phys_addr_t offset)
421{
422 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
423 vcpu->vcpu_id, offset);
424 vgic_reg_access(mmio, reg, offset,
425 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
426 return false;
427}
428
429#define GICD_ITARGETSR_SIZE 32
430#define GICD_CPUTARGETS_BITS 8
431#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
433{
434 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 435 int i;
b47ef92a
MZ
436 u32 val = 0;
437
438 irq -= VGIC_NR_PRIVATE_IRQS;
439
986af8e0
MZ
440 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
441 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
442
443 return val;
444}
445
446static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
447{
448 struct vgic_dist *dist = &kvm->arch.vgic;
449 struct kvm_vcpu *vcpu;
450 int i, c;
451 unsigned long *bmap;
452 u32 target;
453
454 irq -= VGIC_NR_PRIVATE_IRQS;
455
456 /*
457 * Pick the LSB in each byte. This ensures we target exactly
458 * one vcpu per IRQ. If the byte is null, assume we target
459 * CPU0.
460 */
461 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
462 int shift = i * GICD_CPUTARGETS_BITS;
463 target = ffs((val >> shift) & 0xffU);
464 target = target ? (target - 1) : 0;
465 dist->irq_spi_cpu[irq + i] = target;
466 kvm_for_each_vcpu(c, vcpu, kvm) {
467 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
468 if (c == target)
469 set_bit(irq + i, bmap);
470 else
471 clear_bit(irq + i, bmap);
472 }
473 }
474}
475
476static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
477 struct kvm_exit_mmio *mmio,
478 phys_addr_t offset)
479{
480 u32 reg;
481
482 /* We treat the banked interrupts targets as read-only */
483 if (offset < 32) {
484 u32 roreg = 1 << vcpu->vcpu_id;
485 roreg |= roreg << 8;
486 roreg |= roreg << 16;
487
488 vgic_reg_access(mmio, &roreg, offset,
489 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
490 return false;
491 }
492
493 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
494 vgic_reg_access(mmio, &reg, offset,
495 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
496 if (mmio->is_write) {
497 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
498 vgic_update_state(vcpu->kvm);
499 return true;
500 }
501
502 return false;
503}
504
505static u32 vgic_cfg_expand(u16 val)
506{
507 u32 res = 0;
508 int i;
509
510 /*
511 * Turn a 16bit value like abcd...mnop into a 32bit word
512 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
513 */
514 for (i = 0; i < 16; i++)
515 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
516
517 return res;
518}
519
520static u16 vgic_cfg_compress(u32 val)
521{
522 u16 res = 0;
523 int i;
524
525 /*
526 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
527 * abcd...mnop which is what we really care about.
528 */
529 for (i = 0; i < 16; i++)
530 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
531
532 return res;
533}
534
535/*
536 * The distributor uses 2 bits per IRQ for the CFG register, but the
537 * LSB is always 0. As such, we only keep the upper bit, and use the
538 * two above functions to compress/expand the bits
539 */
540static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
541 struct kvm_exit_mmio *mmio, phys_addr_t offset)
542{
543 u32 val;
544 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
545 vcpu->vcpu_id, offset >> 1);
546 if (offset & 2)
547 val = *reg >> 16;
548 else
549 val = *reg & 0xffff;
550
551 val = vgic_cfg_expand(val);
552 vgic_reg_access(mmio, &val, offset,
553 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
554 if (mmio->is_write) {
555 if (offset < 4) {
556 *reg = ~0U; /* Force PPIs/SGIs to 1 */
557 return false;
558 }
559
560 val = vgic_cfg_compress(val);
561 if (offset & 2) {
562 *reg &= 0xffff;
563 *reg |= val << 16;
564 } else {
565 *reg &= 0xffff << 16;
566 *reg |= val;
567 }
568 }
569
570 return false;
571}
572
573static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
574 struct kvm_exit_mmio *mmio, phys_addr_t offset)
575{
576 u32 reg;
577 vgic_reg_access(mmio, &reg, offset,
578 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
579 if (mmio->is_write) {
580 vgic_dispatch_sgi(vcpu, reg);
581 vgic_update_state(vcpu->kvm);
582 return true;
583 }
584
585 return false;
586}
587
1a89dd91
MZ
588/*
589 * I would have liked to use the kvm_bus_io_*() API instead, but it
590 * cannot cope with banked registers (only the VM pointer is passed
591 * around, and we need the vcpu). One of these days, someone please
592 * fix it!
593 */
594struct mmio_range {
595 phys_addr_t base;
596 unsigned long len;
597 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
598 phys_addr_t offset);
599};
600
601static const struct mmio_range vgic_ranges[] = {
b47ef92a
MZ
602 {
603 .base = GIC_DIST_CTRL,
604 .len = 12,
605 .handle_mmio = handle_mmio_misc,
606 },
607 {
608 .base = GIC_DIST_IGROUP,
609 .len = VGIC_NR_IRQS / 8,
610 .handle_mmio = handle_mmio_raz_wi,
611 },
612 {
613 .base = GIC_DIST_ENABLE_SET,
614 .len = VGIC_NR_IRQS / 8,
615 .handle_mmio = handle_mmio_set_enable_reg,
616 },
617 {
618 .base = GIC_DIST_ENABLE_CLEAR,
619 .len = VGIC_NR_IRQS / 8,
620 .handle_mmio = handle_mmio_clear_enable_reg,
621 },
622 {
623 .base = GIC_DIST_PENDING_SET,
624 .len = VGIC_NR_IRQS / 8,
625 .handle_mmio = handle_mmio_set_pending_reg,
626 },
627 {
628 .base = GIC_DIST_PENDING_CLEAR,
629 .len = VGIC_NR_IRQS / 8,
630 .handle_mmio = handle_mmio_clear_pending_reg,
631 },
632 {
633 .base = GIC_DIST_ACTIVE_SET,
634 .len = VGIC_NR_IRQS / 8,
635 .handle_mmio = handle_mmio_raz_wi,
636 },
637 {
638 .base = GIC_DIST_ACTIVE_CLEAR,
639 .len = VGIC_NR_IRQS / 8,
640 .handle_mmio = handle_mmio_raz_wi,
641 },
642 {
643 .base = GIC_DIST_PRI,
644 .len = VGIC_NR_IRQS,
645 .handle_mmio = handle_mmio_priority_reg,
646 },
647 {
648 .base = GIC_DIST_TARGET,
649 .len = VGIC_NR_IRQS,
650 .handle_mmio = handle_mmio_target_reg,
651 },
652 {
653 .base = GIC_DIST_CONFIG,
654 .len = VGIC_NR_IRQS / 4,
655 .handle_mmio = handle_mmio_cfg_reg,
656 },
657 {
658 .base = GIC_DIST_SOFTINT,
659 .len = 4,
660 .handle_mmio = handle_mmio_sgi_reg,
661 },
1a89dd91
MZ
662 {}
663};
664
665static const
666struct mmio_range *find_matching_range(const struct mmio_range *ranges,
667 struct kvm_exit_mmio *mmio,
668 phys_addr_t base)
669{
670 const struct mmio_range *r = ranges;
671 phys_addr_t addr = mmio->phys_addr - base;
672
673 while (r->len) {
674 if (addr >= r->base &&
675 (addr + mmio->len) <= (r->base + r->len))
676 return r;
677 r++;
678 }
679
680 return NULL;
681}
682
683/**
684 * vgic_handle_mmio - handle an in-kernel MMIO access
685 * @vcpu: pointer to the vcpu performing the access
686 * @run: pointer to the kvm_run structure
687 * @mmio: pointer to the data describing the access
688 *
689 * returns true if the MMIO access has been performed in kernel space,
690 * and false if it needs to be emulated in user space.
691 */
692bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
693 struct kvm_exit_mmio *mmio)
694{
b47ef92a
MZ
695 const struct mmio_range *range;
696 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
697 unsigned long base = dist->vgic_dist_base;
698 bool updated_state;
699 unsigned long offset;
700
701 if (!irqchip_in_kernel(vcpu->kvm) ||
702 mmio->phys_addr < base ||
703 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
704 return false;
705
706 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
707 if (mmio->len > 4) {
708 kvm_inject_dabt(vcpu, mmio->phys_addr);
709 return true;
710 }
711
712 range = find_matching_range(vgic_ranges, mmio, base);
713 if (unlikely(!range || !range->handle_mmio)) {
714 pr_warn("Unhandled access %d %08llx %d\n",
715 mmio->is_write, mmio->phys_addr, mmio->len);
716 return false;
717 }
718
719 spin_lock(&vcpu->kvm->arch.vgic.lock);
720 offset = mmio->phys_addr - range->base - base;
721 updated_state = range->handle_mmio(vcpu, mmio, offset);
722 spin_unlock(&vcpu->kvm->arch.vgic.lock);
723 kvm_prepare_mmio(run, mmio);
724 kvm_handle_mmio_return(vcpu, run);
725
5863c2ce
MZ
726 if (updated_state)
727 vgic_kick_vcpus(vcpu->kvm);
728
b47ef92a
MZ
729 return true;
730}
731
732static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
733{
734 struct kvm *kvm = vcpu->kvm;
735 struct vgic_dist *dist = &kvm->arch.vgic;
736 int nrcpus = atomic_read(&kvm->online_vcpus);
737 u8 target_cpus;
738 int sgi, mode, c, vcpu_id;
739
740 vcpu_id = vcpu->vcpu_id;
741
742 sgi = reg & 0xf;
743 target_cpus = (reg >> 16) & 0xff;
744 mode = (reg >> 24) & 3;
745
746 switch (mode) {
747 case 0:
748 if (!target_cpus)
749 return;
750
751 case 1:
752 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
753 break;
754
755 case 2:
756 target_cpus = 1 << vcpu_id;
757 break;
758 }
759
760 kvm_for_each_vcpu(c, vcpu, kvm) {
761 if (target_cpus & 1) {
762 /* Flag the SGI as pending */
763 vgic_dist_irq_set(vcpu, sgi);
764 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
765 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
766 }
767
768 target_cpus >>= 1;
769 }
770}
771
772static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
773{
9d949dce
MZ
774 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
775 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
776 unsigned long pending_private, pending_shared;
777 int vcpu_id;
778
779 vcpu_id = vcpu->vcpu_id;
780 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
781 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
782
783 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
784 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
785 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
786
787 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
788 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
789 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
790 bitmap_and(pend_shared, pend_shared,
791 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
792 VGIC_NR_SHARED_IRQS);
793
794 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
795 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
796 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
797 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
798}
799
800/*
801 * Update the interrupt state and determine which CPUs have pending
802 * interrupts. Must be called with distributor lock held.
803 */
804static void vgic_update_state(struct kvm *kvm)
805{
806 struct vgic_dist *dist = &kvm->arch.vgic;
807 struct kvm_vcpu *vcpu;
808 int c;
809
810 if (!dist->enabled) {
811 set_bit(0, &dist->irq_pending_on_cpu);
812 return;
813 }
814
815 kvm_for_each_vcpu(c, vcpu, kvm) {
816 if (compute_pending_for_cpu(vcpu)) {
817 pr_debug("CPU%d has pending interrupts\n", c);
818 set_bit(c, &dist->irq_pending_on_cpu);
819 }
820 }
1a89dd91 821}
330690cd 822
9d949dce
MZ
823#define LR_CPUID(lr) \
824 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
825#define MK_LR_PEND(src, irq) \
826 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
a1fcb44e
MZ
827
828/*
829 * An interrupt may have been disabled after being made pending on the
830 * CPU interface (the classic case is a timer running while we're
831 * rebooting the guest - the interrupt would kick as soon as the CPU
832 * interface gets enabled, with deadly consequences).
833 *
834 * The solution is to examine already active LRs, and check the
835 * interrupt is still enabled. If not, just retire it.
836 */
837static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
838{
839 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
840 int lr;
841
842 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
843 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
844
845 if (!vgic_irq_is_enabled(vcpu, irq)) {
846 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
847 clear_bit(lr, vgic_cpu->lr_used);
848 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE;
849 if (vgic_irq_is_active(vcpu, irq))
850 vgic_irq_clear_active(vcpu, irq);
851 }
852 }
853}
854
9d949dce
MZ
855/*
856 * Queue an interrupt to a CPU virtual interface. Return true on success,
857 * or false if it wasn't possible to queue it.
858 */
859static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
860{
861 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
862 int lr;
863
864 /* Sanitize the input... */
865 BUG_ON(sgi_source_id & ~7);
866 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
867 BUG_ON(irq >= VGIC_NR_IRQS);
868
869 kvm_debug("Queue IRQ%d\n", irq);
870
871 lr = vgic_cpu->vgic_irq_lr_map[irq];
872
873 /* Do we have an active interrupt for the same CPUID? */
874 if (lr != LR_EMPTY &&
875 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
876 kvm_debug("LR%d piggyback for IRQ%d %x\n",
877 lr, irq, vgic_cpu->vgic_lr[lr]);
878 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
879 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
75da01e1 880 return true;
9d949dce
MZ
881 }
882
883 /* Try to use another LR for this interrupt */
884 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
885 vgic_cpu->nr_lr);
886 if (lr >= vgic_cpu->nr_lr)
887 return false;
888
889 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
890 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
891 vgic_cpu->vgic_irq_lr_map[irq] = lr;
892 set_bit(lr, vgic_cpu->lr_used);
893
9d949dce
MZ
894 if (!vgic_irq_is_edge(vcpu, irq))
895 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
896
897 return true;
898}
899
900static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
901{
902 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
903 unsigned long sources;
904 int vcpu_id = vcpu->vcpu_id;
905 int c;
906
907 sources = dist->irq_sgi_sources[vcpu_id][irq];
908
909 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
910 if (vgic_queue_irq(vcpu, c, irq))
911 clear_bit(c, &sources);
912 }
913
914 dist->irq_sgi_sources[vcpu_id][irq] = sources;
915
916 /*
917 * If the sources bitmap has been cleared it means that we
918 * could queue all the SGIs onto link registers (see the
919 * clear_bit above), and therefore we are done with them in
920 * our emulated gic and can get rid of them.
921 */
922 if (!sources) {
923 vgic_dist_irq_clear(vcpu, irq);
924 vgic_cpu_irq_clear(vcpu, irq);
925 return true;
926 }
927
928 return false;
929}
930
931static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
932{
933 if (vgic_irq_is_active(vcpu, irq))
934 return true; /* level interrupt, already queued */
935
936 if (vgic_queue_irq(vcpu, 0, irq)) {
937 if (vgic_irq_is_edge(vcpu, irq)) {
938 vgic_dist_irq_clear(vcpu, irq);
939 vgic_cpu_irq_clear(vcpu, irq);
940 } else {
941 vgic_irq_set_active(vcpu, irq);
942 }
943
944 return true;
945 }
946
947 return false;
948}
949
950/*
951 * Fill the list registers with pending interrupts before running the
952 * guest.
953 */
954static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
955{
956 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
957 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
958 int i, vcpu_id;
959 int overflow = 0;
960
961 vcpu_id = vcpu->vcpu_id;
962
963 /*
964 * We may not have any pending interrupt, or the interrupts
965 * may have been serviced from another vcpu. In all cases,
966 * move along.
967 */
968 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
969 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
970 goto epilog;
971 }
972
973 /* SGIs */
974 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
975 if (!vgic_queue_sgi(vcpu, i))
976 overflow = 1;
977 }
978
979 /* PPIs */
980 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
981 if (!vgic_queue_hwirq(vcpu, i))
982 overflow = 1;
983 }
984
985 /* SPIs */
986 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
987 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
988 overflow = 1;
989 }
990
991epilog:
992 if (overflow) {
993 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
994 } else {
995 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
996 /*
997 * We're about to run this VCPU, and we've consumed
998 * everything the distributor had in store for
999 * us. Claim we don't have anything pending. We'll
1000 * adjust that if needed while exiting.
1001 */
1002 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1003 }
1004}
1005
1006static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1007{
1008 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1009 bool level_pending = false;
1010
1011 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1012
9d949dce
MZ
1013 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1014 /*
1015 * Some level interrupts have been EOIed. Clear their
1016 * active bit.
1017 */
1018 int lr, irq;
1019
1020 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1021 vgic_cpu->nr_lr) {
1022 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1023
1024 vgic_irq_clear_active(vcpu, irq);
1025 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1026
1027 /* Any additional pending interrupt? */
1028 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1029 vgic_cpu_irq_set(vcpu, irq);
1030 level_pending = true;
1031 } else {
1032 vgic_cpu_irq_clear(vcpu, irq);
1033 }
75da01e1
MZ
1034
1035 /*
1036 * Despite being EOIed, the LR may not have
1037 * been marked as empty.
1038 */
1039 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1040 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
9d949dce
MZ
1041 }
1042 }
1043
1044 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1045 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1046
1047 return level_pending;
1048}
1049
1050/*
33c83cb3
MZ
1051 * Sync back the VGIC state after a guest run. The distributor lock is
1052 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1053 */
1054static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1055{
1056 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1057 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1058 int lr, pending;
1059 bool level_pending;
1060
1061 level_pending = vgic_process_maintenance(vcpu);
1062
1063 /* Clear mappings for empty LRs */
1064 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1065 vgic_cpu->nr_lr) {
1066 int irq;
1067
1068 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1069 continue;
1070
1071 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1072
1073 BUG_ON(irq >= VGIC_NR_IRQS);
1074 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1075 }
1076
1077 /* Check if we still have something up our sleeve... */
1078 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1079 vgic_cpu->nr_lr);
1080 if (level_pending || pending < vgic_cpu->nr_lr)
1081 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1082}
1083
1084void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1085{
1086 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1087
1088 if (!irqchip_in_kernel(vcpu->kvm))
1089 return;
1090
1091 spin_lock(&dist->lock);
1092 __kvm_vgic_flush_hwstate(vcpu);
1093 spin_unlock(&dist->lock);
1094}
1095
1096void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1097{
33c83cb3
MZ
1098 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1099
9d949dce
MZ
1100 if (!irqchip_in_kernel(vcpu->kvm))
1101 return;
1102
33c83cb3 1103 spin_lock(&dist->lock);
9d949dce 1104 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1105 spin_unlock(&dist->lock);
9d949dce
MZ
1106}
1107
1108int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1109{
1110 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1111
1112 if (!irqchip_in_kernel(vcpu->kvm))
1113 return 0;
1114
1115 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1116}
1117
5863c2ce
MZ
1118static void vgic_kick_vcpus(struct kvm *kvm)
1119{
1120 struct kvm_vcpu *vcpu;
1121 int c;
1122
1123 /*
1124 * We've injected an interrupt, time to find out who deserves
1125 * a good kick...
1126 */
1127 kvm_for_each_vcpu(c, vcpu, kvm) {
1128 if (kvm_vgic_vcpu_pending_irq(vcpu))
1129 kvm_vcpu_kick(vcpu);
1130 }
1131}
1132
1133static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1134{
1135 int is_edge = vgic_irq_is_edge(vcpu, irq);
1136 int state = vgic_dist_irq_is_pending(vcpu, irq);
1137
1138 /*
1139 * Only inject an interrupt if:
1140 * - edge triggered and we have a rising edge
1141 * - level triggered and we change level
1142 */
1143 if (is_edge)
1144 return level > state;
1145 else
1146 return level != state;
1147}
1148
1149static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1150 unsigned int irq_num, bool level)
1151{
1152 struct vgic_dist *dist = &kvm->arch.vgic;
1153 struct kvm_vcpu *vcpu;
1154 int is_edge, is_level;
1155 int enabled;
1156 bool ret = true;
1157
1158 spin_lock(&dist->lock);
1159
1160 vcpu = kvm_get_vcpu(kvm, cpuid);
1161 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1162 is_level = !is_edge;
1163
1164 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1165 ret = false;
1166 goto out;
1167 }
1168
1169 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1170 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1171 vcpu = kvm_get_vcpu(kvm, cpuid);
1172 }
1173
1174 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1175
1176 if (level)
1177 vgic_dist_irq_set(vcpu, irq_num);
1178 else
1179 vgic_dist_irq_clear(vcpu, irq_num);
1180
1181 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1182
1183 if (!enabled) {
1184 ret = false;
1185 goto out;
1186 }
1187
1188 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1189 /*
1190 * Level interrupt in progress, will be picked up
1191 * when EOId.
1192 */
1193 ret = false;
1194 goto out;
1195 }
1196
1197 if (level) {
1198 vgic_cpu_irq_set(vcpu, irq_num);
1199 set_bit(cpuid, &dist->irq_pending_on_cpu);
1200 }
1201
1202out:
1203 spin_unlock(&dist->lock);
1204
1205 return ret;
1206}
1207
1208/**
1209 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1210 * @kvm: The VM structure pointer
1211 * @cpuid: The CPU for PPIs
1212 * @irq_num: The IRQ number that is assigned to the device
1213 * @level: Edge-triggered: true: to trigger the interrupt
1214 * false: to ignore the call
1215 * Level-sensitive true: activates an interrupt
1216 * false: deactivates an interrupt
1217 *
1218 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1219 * level-sensitive interrupts. You can think of the level parameter as 1
1220 * being HIGH and 0 being LOW and all devices being active-HIGH.
1221 */
1222int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1223 bool level)
1224{
1225 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1226 vgic_kick_vcpus(kvm);
1227
1228 return 0;
1229}
1230
01ac5e34
MZ
1231static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1232{
1233 /*
1234 * We cannot rely on the vgic maintenance interrupt to be
1235 * delivered synchronously. This means we can only use it to
1236 * exit the VM, and we perform the handling of EOIed
1237 * interrupts on the exit path (see vgic_process_maintenance).
1238 */
1239 return IRQ_HANDLED;
1240}
1241
1242int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1243{
1244 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1245 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1246 int i;
1247
1248 if (!irqchip_in_kernel(vcpu->kvm))
1249 return 0;
1250
1251 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1252 return -EBUSY;
1253
1254 for (i = 0; i < VGIC_NR_IRQS; i++) {
1255 if (i < VGIC_NR_PPIS)
1256 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1257 vcpu->vcpu_id, i, 1);
1258 if (i < VGIC_NR_PRIVATE_IRQS)
1259 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1260 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1261
1262 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1263 }
1264
1265 /*
1266 * By forcing VMCR to zero, the GIC will restore the binary
1267 * points to their reset values. Anything else resets to zero
1268 * anyway.
1269 */
1270 vgic_cpu->vgic_vmcr = 0;
1271
1272 vgic_cpu->nr_lr = vgic_nr_lr;
1273 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1274
1275 return 0;
1276}
1277
1278static void vgic_init_maintenance_interrupt(void *info)
1279{
1280 enable_percpu_irq(vgic_maint_irq, 0);
1281}
1282
1283static int vgic_cpu_notify(struct notifier_block *self,
1284 unsigned long action, void *cpu)
1285{
1286 switch (action) {
1287 case CPU_STARTING:
1288 case CPU_STARTING_FROZEN:
1289 vgic_init_maintenance_interrupt(NULL);
1290 break;
1291 case CPU_DYING:
1292 case CPU_DYING_FROZEN:
1293 disable_percpu_irq(vgic_maint_irq);
1294 break;
1295 }
1296
1297 return NOTIFY_OK;
1298}
1299
1300static struct notifier_block vgic_cpu_nb = {
1301 .notifier_call = vgic_cpu_notify,
1302};
1303
1304int kvm_vgic_hyp_init(void)
1305{
1306 int ret;
1307 struct resource vctrl_res;
1308 struct resource vcpu_res;
1309
1310 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1311 if (!vgic_node) {
1312 kvm_err("error: no compatible vgic node in DT\n");
1313 return -ENODEV;
1314 }
1315
1316 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1317 if (!vgic_maint_irq) {
1318 kvm_err("error getting vgic maintenance irq from DT\n");
1319 ret = -ENXIO;
1320 goto out;
1321 }
1322
1323 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1324 "vgic", kvm_get_running_vcpus());
1325 if (ret) {
1326 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1327 goto out;
1328 }
1329
1330 ret = register_cpu_notifier(&vgic_cpu_nb);
1331 if (ret) {
1332 kvm_err("Cannot register vgic CPU notifier\n");
1333 goto out_free_irq;
1334 }
1335
1336 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1337 if (ret) {
1338 kvm_err("Cannot obtain VCTRL resource\n");
1339 goto out_free_irq;
1340 }
1341
1342 vgic_vctrl_base = of_iomap(vgic_node, 2);
1343 if (!vgic_vctrl_base) {
1344 kvm_err("Cannot ioremap VCTRL\n");
1345 ret = -ENOMEM;
1346 goto out_free_irq;
1347 }
1348
1349 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1350 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1351
1352 ret = create_hyp_io_mappings(vgic_vctrl_base,
1353 vgic_vctrl_base + resource_size(&vctrl_res),
1354 vctrl_res.start);
1355 if (ret) {
1356 kvm_err("Cannot map VCTRL into hyp\n");
1357 goto out_unmap;
1358 }
1359
1360 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1361 vctrl_res.start, vgic_maint_irq);
1362 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1363
1364 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1365 kvm_err("Cannot obtain VCPU resource\n");
1366 ret = -ENXIO;
1367 goto out_unmap;
1368 }
1369 vgic_vcpu_base = vcpu_res.start;
1370
1371 goto out;
1372
1373out_unmap:
1374 iounmap(vgic_vctrl_base);
1375out_free_irq:
1376 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1377out:
1378 of_node_put(vgic_node);
1379 return ret;
1380}
1381
1382int kvm_vgic_init(struct kvm *kvm)
1383{
1384 int ret = 0, i;
1385
1386 mutex_lock(&kvm->lock);
1387
1388 if (vgic_initialized(kvm))
1389 goto out;
1390
1391 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1392 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1393 kvm_err("Need to set vgic cpu and dist addresses first\n");
1394 ret = -ENXIO;
1395 goto out;
1396 }
1397
1398 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1399 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1400 if (ret) {
1401 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1402 goto out;
1403 }
1404
1405 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1406 vgic_set_target_reg(kvm, 0, i);
1407
967f8427 1408 kvm_timer_init(kvm);
01ac5e34
MZ
1409 kvm->arch.vgic.ready = true;
1410out:
1411 mutex_unlock(&kvm->lock);
1412 return ret;
1413}
1414
1415int kvm_vgic_create(struct kvm *kvm)
1416{
1417 int ret = 0;
1418
1419 mutex_lock(&kvm->lock);
1420
1421 if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) {
1422 ret = -EEXIST;
1423 goto out;
1424 }
1425
1426 spin_lock_init(&kvm->arch.vgic.lock);
1427 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1428 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1429 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1430
1431out:
1432 mutex_unlock(&kvm->lock);
1433 return ret;
1434}
1435
330690cd
CD
1436static bool vgic_ioaddr_overlap(struct kvm *kvm)
1437{
1438 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1439 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1440
1441 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1442 return 0;
1443 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1444 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1445 return -EBUSY;
1446 return 0;
1447}
1448
1449static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1450 phys_addr_t addr, phys_addr_t size)
1451{
1452 int ret;
1453
1454 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1455 return -EEXIST;
1456 if (addr + size < addr)
1457 return -EINVAL;
1458
1459 ret = vgic_ioaddr_overlap(kvm);
1460 if (ret)
1461 return ret;
1462 *ioaddr = addr;
1463 return ret;
1464}
1465
1466int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr)
1467{
1468 int r = 0;
1469 struct vgic_dist *vgic = &kvm->arch.vgic;
1470
1471 if (addr & ~KVM_PHYS_MASK)
1472 return -E2BIG;
1473
d7bb0777 1474 if (addr & (SZ_4K - 1))
330690cd
CD
1475 return -EINVAL;
1476
1477 mutex_lock(&kvm->lock);
1478 switch (type) {
1479 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1480 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1481 addr, KVM_VGIC_V2_DIST_SIZE);
1482 break;
1483 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1484 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1485 addr, KVM_VGIC_V2_CPU_SIZE);
1486 break;
1487 default:
1488 r = -ENODEV;
1489 }
1490
1491 mutex_unlock(&kvm->lock);
1492 return r;
1493}
This page took 0.249727 seconds and 5 git commands to generate.