KVM: arm/arm64: simplify vgic_find_range() and callers
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
174178fe 34#include <trace/events/kvm.h>
1a89dd91 35
b47ef92a
MZ
36/*
37 * How the whole thing works (courtesy of Christoffer Dall):
38 *
39 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
40 * something is pending on the CPU interface.
41 * - Interrupts that are pending on the distributor are stored on the
42 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
43 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
44 * arch. timers).
b47ef92a
MZ
45 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
46 * recalculated
47 * - To calculate the oracle, we need info for each cpu from
48 * compute_pending_for_cpu, which considers:
227844f5
CD
49 * - PPI: dist->irq_pending & dist->irq_enable
50 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 51 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
52 * registers, stored on each vcpu. We only keep one bit of
53 * information per interrupt, making sure that only one vcpu can
54 * accept the interrupt.
7e362919 55 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
56 * - The same is true when injecting an interrupt, except that we only
57 * consider a single interrupt at a time. The irq_spi_cpu array
58 * contains the target CPU for each SPI.
59 *
60 * The handling of level interrupts adds some extra complexity. We
61 * need to track when the interrupt has been EOIed, so we can sample
62 * the 'line' again. This is achieved as such:
63 *
64 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 65 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
66 * will be ignored for further interrupts. The interrupt is injected
67 * into the vcpu with the GICH_LR_EOI bit set (generate a
68 * maintenance interrupt on EOI).
69 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 70 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 71 * interrupt line to be sampled again.
faa1b46c
CD
72 * - Note that level-triggered interrupts can also be set to pending from
73 * writes to GICD_ISPENDRn and lowering the external input line does not
74 * cause the interrupt to become inactive in such a situation.
75 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
76 * inactive as long as the external input line is held high.
b47ef92a
MZ
77 */
78
83215812 79#include "vgic.h"
330690cd 80
a1fcb44e 81static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 82static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
8d5c6b06
MZ
83static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
84static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
01ac5e34 85
8f186d52
MZ
86static const struct vgic_ops *vgic_ops;
87static const struct vgic_params *vgic;
b47ef92a 88
b26e5fda
AP
89static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
90{
91 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
92}
93
94static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
95{
96 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
97}
98
99int kvm_vgic_map_resources(struct kvm *kvm)
100{
101 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
102}
103
9662fb48 104/*
c1bfb577
MZ
105 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
106 * extracts u32s out of them.
9662fb48
VK
107 *
108 * This does not work on 64-bit BE systems, because the bitmap access
109 * will store two consecutive 32-bit words with the higher-addressed
110 * register's bits at the lower index and the lower-addressed register's
111 * bits at the higher index.
112 *
113 * Therefore, swizzle the register index when accessing the 32-bit word
114 * registers to access the right register's value.
115 */
116#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
117#define REG_OFFSET_SWIZZLE 1
118#else
119#define REG_OFFSET_SWIZZLE 0
120#endif
b47ef92a 121
c1bfb577
MZ
122static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
123{
124 int nr_longs;
125
126 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
127
128 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
129 if (!b->private)
130 return -ENOMEM;
131
132 b->shared = b->private + nr_cpus;
133
134 return 0;
135}
136
137static void vgic_free_bitmap(struct vgic_bitmap *b)
138{
139 kfree(b->private);
140 b->private = NULL;
141 b->shared = NULL;
142}
143
2df36a5d
CD
144/*
145 * Call this function to convert a u64 value to an unsigned long * bitmask
146 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
147 *
148 * Warning: Calling this function may modify *val.
149 */
150static unsigned long *u64_to_bitmask(u64 *val)
151{
152#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
153 *val = (*val >> 32) | (*val << 32);
154#endif
155 return (unsigned long *)val;
156}
157
83215812 158u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
b47ef92a
MZ
159{
160 offset >>= 2;
161 if (!offset)
c1bfb577 162 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 163 else
c1bfb577 164 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
165}
166
167static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
168 int cpuid, int irq)
169{
170 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 171 return test_bit(irq, x->private + cpuid);
b47ef92a 172
c1bfb577 173 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
174}
175
83215812
AP
176void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
177 int irq, int val)
b47ef92a
MZ
178{
179 unsigned long *reg;
180
181 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 182 reg = x->private + cpuid;
b47ef92a 183 } else {
c1bfb577 184 reg = x->shared;
b47ef92a
MZ
185 irq -= VGIC_NR_PRIVATE_IRQS;
186 }
187
188 if (val)
189 set_bit(irq, reg);
190 else
191 clear_bit(irq, reg);
192}
193
194static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
195{
c1bfb577 196 return x->private + cpuid;
b47ef92a
MZ
197}
198
83215812 199unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
b47ef92a 200{
c1bfb577
MZ
201 return x->shared;
202}
203
204static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
205{
206 int size;
207
208 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
209 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
210
211 x->private = kzalloc(size, GFP_KERNEL);
212 if (!x->private)
213 return -ENOMEM;
214
215 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
216 return 0;
217}
218
219static void vgic_free_bytemap(struct vgic_bytemap *b)
220{
221 kfree(b->private);
222 b->private = NULL;
223 b->shared = NULL;
b47ef92a
MZ
224}
225
83215812 226u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
b47ef92a 227{
c1bfb577
MZ
228 u32 *reg;
229
230 if (offset < VGIC_NR_PRIVATE_IRQS) {
231 reg = x->private;
232 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
233 } else {
234 reg = x->shared;
235 offset -= VGIC_NR_PRIVATE_IRQS;
236 }
237
238 return reg + (offset / sizeof(u32));
b47ef92a
MZ
239}
240
241#define VGIC_CFG_LEVEL 0
242#define VGIC_CFG_EDGE 1
243
244static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
245{
246 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247 int irq_val;
248
249 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
250 return irq_val == VGIC_CFG_EDGE;
251}
252
253static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
254{
255 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256
257 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
258}
259
dbf20f9d 260static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
261{
262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263
dbf20f9d 264 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
265}
266
47a98b15
CD
267static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
268{
269 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270
271 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
272}
273
dbf20f9d 274static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
275{
276 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
dbf20f9d 278 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
279}
280
dbf20f9d 281static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
282{
283 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
284
dbf20f9d 285 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
286}
287
47a98b15
CD
288static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
289{
290 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
291
292 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
293}
294
295static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
296{
297 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
298
299 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
300}
301
faa1b46c
CD
302static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
303{
304 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
305
306 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
307}
308
309static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
310{
311 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
312
313 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
314}
315
316static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
317{
318 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
319
320 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
321}
322
323static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
324{
325 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
326
327 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
328}
329
330static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
331{
332 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
333
334 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
335}
336
9d949dce
MZ
337static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
338{
339 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
340
227844f5 341 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
342}
343
83215812 344void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
345{
346 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
347
227844f5 348 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
349}
350
83215812 351void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
352{
353 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
354
227844f5 355 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
356}
357
358static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
359{
360 if (irq < VGIC_NR_PRIVATE_IRQS)
361 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
362 else
363 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
364 vcpu->arch.vgic_cpu.pending_shared);
365}
366
83215812 367void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
368{
369 if (irq < VGIC_NR_PRIVATE_IRQS)
370 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
371 else
372 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
373 vcpu->arch.vgic_cpu.pending_shared);
374}
375
dbf20f9d
CD
376static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
377{
378 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
379}
380
1a89dd91
MZ
381/**
382 * vgic_reg_access - access vgic register
383 * @mmio: pointer to the data describing the mmio access
384 * @reg: pointer to the virtual backing of vgic distributor data
385 * @offset: least significant 2 bits used for word offset
386 * @mode: ACCESS_ mode (see defines above)
387 *
388 * Helper to make vgic register access easier using one of the access
389 * modes defined for vgic register access
390 * (read,raz,write-ignored,setbit,clearbit,write)
391 */
83215812
AP
392void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
393 phys_addr_t offset, int mode)
1a89dd91
MZ
394{
395 int word_offset = (offset & 3) * 8;
396 u32 mask = (1UL << (mmio->len * 8)) - 1;
397 u32 regval;
398
399 /*
400 * Any alignment fault should have been delivered to the guest
401 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
402 */
403
404 if (reg) {
405 regval = *reg;
406 } else {
407 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
408 regval = 0;
409 }
410
411 if (mmio->is_write) {
412 u32 data = mmio_data_read(mmio, mask) << word_offset;
413 switch (ACCESS_WRITE_MASK(mode)) {
414 case ACCESS_WRITE_IGNORED:
415 return;
416
417 case ACCESS_WRITE_SETBIT:
418 regval |= data;
419 break;
420
421 case ACCESS_WRITE_CLEARBIT:
422 regval &= ~data;
423 break;
424
425 case ACCESS_WRITE_VALUE:
426 regval = (regval & ~(mask << word_offset)) | data;
427 break;
428 }
429 *reg = regval;
430 } else {
431 switch (ACCESS_READ_MASK(mode)) {
432 case ACCESS_READ_RAZ:
433 regval = 0;
434 /* fall through */
435
436 case ACCESS_READ_VALUE:
437 mmio_data_write(mmio, mask, regval >> word_offset);
438 }
439 }
440}
441
83215812
AP
442bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
443 phys_addr_t offset)
b47ef92a
MZ
444{
445 vgic_reg_access(mmio, NULL, offset,
446 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
447 return false;
448}
449
83215812
AP
450bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
451 phys_addr_t offset, int vcpu_id, int access)
b47ef92a 452{
d97f683d
AP
453 u32 *reg;
454 int mode = ACCESS_READ_VALUE | access;
455 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
456
457 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
458 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 459 if (mmio->is_write) {
d97f683d
AP
460 if (access & ACCESS_WRITE_CLEARBIT) {
461 if (offset < 4) /* Force SGI enabled */
462 *reg |= 0xffff;
463 vgic_retire_disabled_irqs(target_vcpu);
464 }
465 vgic_update_state(kvm);
b47ef92a
MZ
466 return true;
467 }
468
469 return false;
470}
471
83215812
AP
472bool vgic_handle_set_pending_reg(struct kvm *kvm,
473 struct kvm_exit_mmio *mmio,
474 phys_addr_t offset, int vcpu_id)
b47ef92a 475{
9da48b55 476 u32 *reg, orig;
faa1b46c 477 u32 level_mask;
d97f683d
AP
478 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
479 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 480
d97f683d 481 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
faa1b46c
CD
482 level_mask = (~(*reg));
483
484 /* Mark both level and edge triggered irqs as pending */
d97f683d 485 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 486 orig = *reg;
d97f683d 487 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 488
b47ef92a 489 if (mmio->is_write) {
faa1b46c
CD
490 /* Set the soft-pending flag only for level-triggered irqs */
491 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
492 vcpu_id, offset);
493 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c
CD
494 *reg &= level_mask;
495
9da48b55
CD
496 /* Ignore writes to SGIs */
497 if (offset < 2) {
498 *reg &= ~0xffff;
499 *reg |= orig & 0xffff;
500 }
501
d97f683d 502 vgic_update_state(kvm);
b47ef92a
MZ
503 return true;
504 }
505
506 return false;
507}
508
83215812
AP
509bool vgic_handle_clear_pending_reg(struct kvm *kvm,
510 struct kvm_exit_mmio *mmio,
511 phys_addr_t offset, int vcpu_id)
b47ef92a 512{
faa1b46c 513 u32 *level_active;
9da48b55 514 u32 *reg, orig;
d97f683d
AP
515 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
516 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 517
d97f683d 518 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 519 orig = *reg;
d97f683d 520 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 521 if (mmio->is_write) {
faa1b46c
CD
522 /* Re-set level triggered level-active interrupts */
523 level_active = vgic_bitmap_get_reg(&dist->irq_level,
d97f683d
AP
524 vcpu_id, offset);
525 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
faa1b46c
CD
526 *reg |= *level_active;
527
9da48b55
CD
528 /* Ignore writes to SGIs */
529 if (offset < 2) {
530 *reg &= ~0xffff;
531 *reg |= orig & 0xffff;
532 }
533
faa1b46c
CD
534 /* Clear soft-pending flags */
535 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
536 vcpu_id, offset);
537 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 538
d97f683d 539 vgic_update_state(kvm);
b47ef92a
MZ
540 return true;
541 }
b47ef92a
MZ
542 return false;
543}
544
47a98b15
CD
545bool vgic_handle_set_active_reg(struct kvm *kvm,
546 struct kvm_exit_mmio *mmio,
547 phys_addr_t offset, int vcpu_id)
548{
549 u32 *reg;
550 struct vgic_dist *dist = &kvm->arch.vgic;
551
552 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
553 vgic_reg_access(mmio, reg, offset,
554 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
555
556 if (mmio->is_write) {
557 vgic_update_state(kvm);
558 return true;
559 }
560
561 return false;
562}
563
564bool vgic_handle_clear_active_reg(struct kvm *kvm,
565 struct kvm_exit_mmio *mmio,
566 phys_addr_t offset, int vcpu_id)
567{
568 u32 *reg;
569 struct vgic_dist *dist = &kvm->arch.vgic;
570
571 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
572 vgic_reg_access(mmio, reg, offset,
573 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
574
575 if (mmio->is_write) {
576 vgic_update_state(kvm);
577 return true;
578 }
579
580 return false;
581}
582
b47ef92a
MZ
583static u32 vgic_cfg_expand(u16 val)
584{
585 u32 res = 0;
586 int i;
587
588 /*
589 * Turn a 16bit value like abcd...mnop into a 32bit word
590 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
591 */
592 for (i = 0; i < 16; i++)
593 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
594
595 return res;
596}
597
598static u16 vgic_cfg_compress(u32 val)
599{
600 u16 res = 0;
601 int i;
602
603 /*
604 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
605 * abcd...mnop which is what we really care about.
606 */
607 for (i = 0; i < 16; i++)
608 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
609
610 return res;
611}
612
613/*
614 * The distributor uses 2 bits per IRQ for the CFG register, but the
615 * LSB is always 0. As such, we only keep the upper bit, and use the
616 * two above functions to compress/expand the bits
617 */
83215812
AP
618bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
619 phys_addr_t offset)
b47ef92a
MZ
620{
621 u32 val;
6545eae3 622
f2ae85b2 623 if (offset & 4)
b47ef92a
MZ
624 val = *reg >> 16;
625 else
626 val = *reg & 0xffff;
627
628 val = vgic_cfg_expand(val);
629 vgic_reg_access(mmio, &val, offset,
630 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
631 if (mmio->is_write) {
f2ae85b2 632 if (offset < 8) {
b47ef92a
MZ
633 *reg = ~0U; /* Force PPIs/SGIs to 1 */
634 return false;
635 }
636
637 val = vgic_cfg_compress(val);
f2ae85b2 638 if (offset & 4) {
b47ef92a
MZ
639 *reg &= 0xffff;
640 *reg |= val << 16;
641 } else {
642 *reg &= 0xffff << 16;
643 *reg |= val;
644 }
645 }
646
647 return false;
648}
649
cbd333a4 650/**
47a98b15 651 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
cbd333a4
CD
652 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
653 *
47a98b15 654 * Move any IRQs that have already been assigned to LRs back to the
cbd333a4
CD
655 * emulated distributor state so that the complete emulated state can be read
656 * from the main emulation structures without investigating the LRs.
cbd333a4 657 */
83215812 658void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
cbd333a4 659{
cbd333a4 660 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 661 int i;
cbd333a4
CD
662
663 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 664 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
665
666 /*
667 * There are three options for the state bits:
668 *
669 * 01: pending
670 * 10: active
671 * 11: pending and active
cbd333a4 672 */
47a98b15
CD
673 BUG_ON(!(lr.state & LR_STATE_MASK));
674
675 /* Reestablish SGI source for pending and active IRQs */
676 if (lr.irq < VGIC_NR_SGIS)
677 add_sgi_source(vcpu, lr.irq, lr.source);
678
679 /*
680 * If the LR holds an active (10) or a pending and active (11)
681 * interrupt then move the active state to the
682 * distributor tracking bit.
683 */
684 if (lr.state & LR_STATE_ACTIVE) {
685 vgic_irq_set_active(vcpu, lr.irq);
686 lr.state &= ~LR_STATE_ACTIVE;
687 }
cbd333a4
CD
688
689 /*
690 * Reestablish the pending state on the distributor and the
691 * CPU interface. It may have already been pending, but that
692 * is fine, then we are only setting a few bits that were
693 * already set.
694 */
47a98b15
CD
695 if (lr.state & LR_STATE_PENDING) {
696 vgic_dist_irq_set_pending(vcpu, lr.irq);
697 lr.state &= ~LR_STATE_PENDING;
698 }
699
8d5c6b06 700 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
701
702 /*
47a98b15 703 * Mark the LR as free for other use.
cbd333a4 704 */
47a98b15
CD
705 BUG_ON(lr.state & LR_STATE_MASK);
706 vgic_retire_lr(i, lr.irq, vcpu);
707 vgic_irq_clear_queued(vcpu, lr.irq);
cbd333a4
CD
708
709 /* Finally update the VGIC state. */
710 vgic_update_state(vcpu->kvm);
711 }
712}
713
83215812 714const
cf50a1eb 715struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
9f199d0a 716 int len, gpa_t offset)
1a89dd91 717{
9f199d0a
AP
718 while (ranges->len) {
719 if (offset >= ranges->base &&
720 (offset + len) <= (ranges->base + ranges->len))
721 return ranges;
722 ranges++;
1a89dd91
MZ
723 }
724
725 return NULL;
726}
727
c3c91836 728static bool vgic_validate_access(const struct vgic_dist *dist,
cf50a1eb 729 const struct vgic_io_range *range,
c3c91836
MZ
730 unsigned long offset)
731{
732 int irq;
733
734 if (!range->bits_per_irq)
735 return true; /* Not an irq-based access */
736
737 irq = offset * 8 / range->bits_per_irq;
738 if (irq >= dist->nr_irqs)
739 return false;
740
741 return true;
742}
743
05bc8aaf
AP
744/*
745 * Call the respective handler function for the given range.
746 * We split up any 64 bit accesses into two consecutive 32 bit
747 * handler calls and merge the result afterwards.
748 * We do this in a little endian fashion regardless of the host's
749 * or guest's endianness, because the GIC is always LE and the rest of
750 * the code (vgic_reg_access) also puts it in a LE fashion already.
751 * At this point we have already identified the handle function, so
752 * range points to that one entry and offset is relative to this.
753 */
754static bool call_range_handler(struct kvm_vcpu *vcpu,
755 struct kvm_exit_mmio *mmio,
756 unsigned long offset,
cf50a1eb 757 const struct vgic_io_range *range)
05bc8aaf
AP
758{
759 u32 *data32 = (void *)mmio->data;
760 struct kvm_exit_mmio mmio32;
761 bool ret;
762
763 if (likely(mmio->len <= 4))
764 return range->handle_mmio(vcpu, mmio, offset);
765
766 /*
767 * Any access bigger than 4 bytes (that we currently handle in KVM)
768 * is actually 8 bytes long, caused by a 64-bit access
769 */
770
771 mmio32.len = 4;
772 mmio32.is_write = mmio->is_write;
9fedf146 773 mmio32.private = mmio->private;
05bc8aaf
AP
774
775 mmio32.phys_addr = mmio->phys_addr + 4;
776 if (mmio->is_write)
777 *(u32 *)mmio32.data = data32[1];
778 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
779 if (!mmio->is_write)
780 data32[1] = *(u32 *)mmio32.data;
781
782 mmio32.phys_addr = mmio->phys_addr;
783 if (mmio->is_write)
784 *(u32 *)mmio32.data = data32[0];
785 ret |= range->handle_mmio(vcpu, &mmio32, offset);
786 if (!mmio->is_write)
787 data32[0] = *(u32 *)mmio32.data;
788
789 return ret;
790}
791
1a89dd91 792/**
96415257 793 * vgic_handle_mmio_range - handle an in-kernel MMIO access
1a89dd91
MZ
794 * @vcpu: pointer to the vcpu performing the access
795 * @run: pointer to the kvm_run structure
796 * @mmio: pointer to the data describing the access
96415257
AP
797 * @ranges: array of MMIO ranges in a given region
798 * @mmio_base: base address of that region
1a89dd91 799 *
96415257 800 * returns true if the MMIO access could be performed
1a89dd91 801 */
83215812 802bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
96415257 803 struct kvm_exit_mmio *mmio,
cf50a1eb 804 const struct vgic_io_range *ranges,
96415257 805 unsigned long mmio_base)
1a89dd91 806{
cf50a1eb 807 const struct vgic_io_range *range;
b47ef92a 808 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
b47ef92a
MZ
809 bool updated_state;
810 unsigned long offset;
811
96415257 812 offset = mmio->phys_addr - mmio_base;
9f199d0a 813 range = vgic_find_range(ranges, mmio->len, offset);
b47ef92a
MZ
814 if (unlikely(!range || !range->handle_mmio)) {
815 pr_warn("Unhandled access %d %08llx %d\n",
816 mmio->is_write, mmio->phys_addr, mmio->len);
817 return false;
818 }
819
820 spin_lock(&vcpu->kvm->arch.vgic.lock);
96415257 821 offset -= range->base;
c3c91836 822 if (vgic_validate_access(dist, range, offset)) {
05bc8aaf 823 updated_state = call_range_handler(vcpu, mmio, offset, range);
c3c91836 824 } else {
05bc8aaf
AP
825 if (!mmio->is_write)
826 memset(mmio->data, 0, mmio->len);
c3c91836
MZ
827 updated_state = false;
828 }
b47ef92a
MZ
829 spin_unlock(&vcpu->kvm->arch.vgic.lock);
830 kvm_prepare_mmio(run, mmio);
831 kvm_handle_mmio_return(vcpu, run);
832
5863c2ce
MZ
833 if (updated_state)
834 vgic_kick_vcpus(vcpu->kvm);
835
b47ef92a
MZ
836 return true;
837}
838
96415257
AP
839/**
840 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
841 * @vcpu: pointer to the vcpu performing the access
842 * @run: pointer to the kvm_run structure
843 * @mmio: pointer to the data describing the access
844 *
845 * returns true if the MMIO access has been performed in kernel space,
846 * and false if it needs to be emulated in user space.
b26e5fda 847 * Calls the actual handling routine for the selected VGIC model.
96415257
AP
848 */
849bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
850 struct kvm_exit_mmio *mmio)
851{
852 if (!irqchip_in_kernel(vcpu->kvm))
853 return false;
854
b26e5fda
AP
855 /*
856 * This will currently call either vgic_v2_handle_mmio() or
857 * vgic_v3_handle_mmio(), which in turn will call
858 * vgic_handle_mmio_range() defined above.
859 */
860 return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
96415257
AP
861}
862
fb65ab63
MZ
863static int vgic_nr_shared_irqs(struct vgic_dist *dist)
864{
865 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
866}
867
47a98b15
CD
868static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
869{
870 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
871 unsigned long *active, *enabled, *act_percpu, *act_shared;
872 unsigned long active_private, active_shared;
873 int nr_shared = vgic_nr_shared_irqs(dist);
874 int vcpu_id;
875
876 vcpu_id = vcpu->vcpu_id;
877 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
878 act_shared = vcpu->arch.vgic_cpu.active_shared;
879
880 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
881 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
882 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
883
884 active = vgic_bitmap_get_shared_map(&dist->irq_active);
885 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
886 bitmap_and(act_shared, active, enabled, nr_shared);
887 bitmap_and(act_shared, act_shared,
888 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
889 nr_shared);
890
891 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
892 active_shared = find_first_bit(act_shared, nr_shared);
893
894 return (active_private < VGIC_NR_PRIVATE_IRQS ||
895 active_shared < nr_shared);
896}
897
b47ef92a
MZ
898static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
899{
9d949dce
MZ
900 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
901 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
902 unsigned long pending_private, pending_shared;
fb65ab63 903 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
904 int vcpu_id;
905
906 vcpu_id = vcpu->vcpu_id;
907 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
908 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
909
227844f5 910 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
911 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
912 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
913
227844f5 914 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce 915 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
fb65ab63 916 bitmap_and(pend_shared, pending, enabled, nr_shared);
9d949dce
MZ
917 bitmap_and(pend_shared, pend_shared,
918 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
fb65ab63 919 nr_shared);
9d949dce
MZ
920
921 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
fb65ab63 922 pending_shared = find_first_bit(pend_shared, nr_shared);
9d949dce 923 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
fb65ab63 924 pending_shared < vgic_nr_shared_irqs(dist));
b47ef92a
MZ
925}
926
927/*
928 * Update the interrupt state and determine which CPUs have pending
47a98b15 929 * or active interrupts. Must be called with distributor lock held.
b47ef92a 930 */
83215812 931void vgic_update_state(struct kvm *kvm)
b47ef92a
MZ
932{
933 struct vgic_dist *dist = &kvm->arch.vgic;
934 struct kvm_vcpu *vcpu;
935 int c;
936
937 if (!dist->enabled) {
c1bfb577 938 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
939 return;
940 }
941
942 kvm_for_each_vcpu(c, vcpu, kvm) {
47a98b15 943 if (compute_pending_for_cpu(vcpu))
c1bfb577 944 set_bit(c, dist->irq_pending_on_cpu);
47a98b15
CD
945
946 if (compute_active_for_cpu(vcpu))
947 set_bit(c, dist->irq_active_on_cpu);
948 else
949 clear_bit(c, dist->irq_active_on_cpu);
b47ef92a 950 }
1a89dd91 951}
330690cd 952
8d5c6b06
MZ
953static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
954{
8f186d52 955 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
956}
957
958static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
959 struct vgic_lr vlr)
960{
8f186d52 961 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
962}
963
69bb2c9f
MZ
964static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
965 struct vgic_lr vlr)
966{
8f186d52 967 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
968}
969
970static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
971{
8f186d52 972 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
973}
974
8d6a0313
MZ
975static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
976{
8f186d52 977 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
978}
979
495dd859
MZ
980static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
981{
8f186d52 982 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
983}
984
909d9b50
MZ
985static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
986{
8f186d52 987 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
988}
989
990static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
991{
8f186d52 992 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
993}
994
83215812 995void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 996{
8f186d52 997 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
998}
999
83215812 1000void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1001{
8f186d52 1002 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1003}
1004
da8dafd1
MZ
1005static inline void vgic_enable(struct kvm_vcpu *vcpu)
1006{
8f186d52 1007 vgic_ops->enable(vcpu);
da8dafd1
MZ
1008}
1009
8d5c6b06
MZ
1010static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1011{
1012 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1013 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1014
1015 vlr.state = 0;
1016 vgic_set_lr(vcpu, lr_nr, vlr);
1017 clear_bit(lr_nr, vgic_cpu->lr_used);
1018 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1019}
a1fcb44e
MZ
1020
1021/*
1022 * An interrupt may have been disabled after being made pending on the
1023 * CPU interface (the classic case is a timer running while we're
1024 * rebooting the guest - the interrupt would kick as soon as the CPU
1025 * interface gets enabled, with deadly consequences).
1026 *
1027 * The solution is to examine already active LRs, and check the
1028 * interrupt is still enabled. If not, just retire it.
1029 */
1030static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1031{
1032 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1033 int lr;
1034
8f186d52 1035 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1036 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1037
8d5c6b06
MZ
1038 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1039 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1040 if (vgic_irq_is_queued(vcpu, vlr.irq))
1041 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1042 }
1043 }
1044}
1045
71760950
AB
1046static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1047 int lr_nr, struct vgic_lr vlr)
1048{
47a98b15
CD
1049 if (vgic_irq_is_active(vcpu, irq)) {
1050 vlr.state |= LR_STATE_ACTIVE;
1051 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1052 vgic_irq_clear_active(vcpu, irq);
1053 vgic_update_state(vcpu->kvm);
1054 } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
71760950
AB
1055 vlr.state |= LR_STATE_PENDING;
1056 kvm_debug("Set pending: 0x%x\n", vlr.state);
1057 }
1058
1059 if (!vgic_irq_is_edge(vcpu, irq))
1060 vlr.state |= LR_EOI_INT;
1061
1062 vgic_set_lr(vcpu, lr_nr, vlr);
1063}
1064
9d949dce
MZ
1065/*
1066 * Queue an interrupt to a CPU virtual interface. Return true on success,
1067 * or false if it wasn't possible to queue it.
1d916229 1068 * sgi_source must be zero for any non-SGI interrupts.
9d949dce 1069 */
83215812 1070bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
9d949dce
MZ
1071{
1072 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5fb66da6 1073 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
8d5c6b06 1074 struct vgic_lr vlr;
9d949dce
MZ
1075 int lr;
1076
1077 /* Sanitize the input... */
1078 BUG_ON(sgi_source_id & ~7);
1079 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
5fb66da6 1080 BUG_ON(irq >= dist->nr_irqs);
9d949dce
MZ
1081
1082 kvm_debug("Queue IRQ%d\n", irq);
1083
1084 lr = vgic_cpu->vgic_irq_lr_map[irq];
1085
1086 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1087 if (lr != LR_EMPTY) {
1088 vlr = vgic_get_lr(vcpu, lr);
1089 if (vlr.source == sgi_source_id) {
1090 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1091 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
71760950 1092 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
8d5c6b06
MZ
1093 return true;
1094 }
9d949dce
MZ
1095 }
1096
1097 /* Try to use another LR for this interrupt */
1098 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1099 vgic->nr_lr);
1100 if (lr >= vgic->nr_lr)
9d949dce
MZ
1101 return false;
1102
1103 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1104 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1105 set_bit(lr, vgic_cpu->lr_used);
1106
8d5c6b06
MZ
1107 vlr.irq = irq;
1108 vlr.source = sgi_source_id;
71760950
AB
1109 vlr.state = 0;
1110 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
9d949dce
MZ
1111
1112 return true;
1113}
1114
9d949dce
MZ
1115static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1116{
dbf20f9d 1117 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1118 return true; /* level interrupt, already queued */
1119
1120 if (vgic_queue_irq(vcpu, 0, irq)) {
1121 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1122 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1123 vgic_cpu_irq_clear(vcpu, irq);
1124 } else {
dbf20f9d 1125 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1126 }
1127
1128 return true;
1129 }
1130
1131 return false;
1132}
1133
1134/*
1135 * Fill the list registers with pending interrupts before running the
1136 * guest.
1137 */
1138static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1139{
1140 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1141 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
47a98b15 1142 unsigned long *pa_percpu, *pa_shared;
9d949dce
MZ
1143 int i, vcpu_id;
1144 int overflow = 0;
47a98b15 1145 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
1146
1147 vcpu_id = vcpu->vcpu_id;
1148
47a98b15
CD
1149 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1150 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1151
1152 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1153 VGIC_NR_PRIVATE_IRQS);
1154 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1155 nr_shared);
9d949dce
MZ
1156 /*
1157 * We may not have any pending interrupt, or the interrupts
1158 * may have been serviced from another vcpu. In all cases,
1159 * move along.
1160 */
47a98b15 1161 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
9d949dce 1162 goto epilog;
9d949dce
MZ
1163
1164 /* SGIs */
47a98b15 1165 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
b26e5fda 1166 if (!queue_sgi(vcpu, i))
9d949dce
MZ
1167 overflow = 1;
1168 }
1169
1170 /* PPIs */
47a98b15 1171 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
9d949dce
MZ
1172 if (!vgic_queue_hwirq(vcpu, i))
1173 overflow = 1;
1174 }
1175
1176 /* SPIs */
47a98b15 1177 for_each_set_bit(i, pa_shared, nr_shared) {
9d949dce
MZ
1178 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1179 overflow = 1;
1180 }
1181
47a98b15
CD
1182
1183
1184
9d949dce
MZ
1185epilog:
1186 if (overflow) {
909d9b50 1187 vgic_enable_underflow(vcpu);
9d949dce 1188 } else {
909d9b50 1189 vgic_disable_underflow(vcpu);
9d949dce
MZ
1190 /*
1191 * We're about to run this VCPU, and we've consumed
1192 * everything the distributor had in store for
1193 * us. Claim we don't have anything pending. We'll
1194 * adjust that if needed while exiting.
1195 */
c1bfb577 1196 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1197 }
1198}
1199
1200static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1201{
495dd859 1202 u32 status = vgic_get_interrupt_status(vcpu);
649cf739 1203 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
9d949dce 1204 bool level_pending = false;
174178fe 1205 struct kvm *kvm = vcpu->kvm;
9d949dce 1206
495dd859 1207 kvm_debug("STATUS = %08x\n", status);
9d949dce 1208
495dd859 1209 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1210 /*
1211 * Some level interrupts have been EOIed. Clear their
1212 * active bit.
1213 */
8d6a0313 1214 u64 eisr = vgic_get_eisr(vcpu);
2df36a5d 1215 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
8d5c6b06 1216 int lr;
9d949dce 1217
8f186d52 1218 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1219 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1220 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1221
649cf739 1222 spin_lock(&dist->lock);
dbf20f9d 1223 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1224 WARN_ON(vlr.state & LR_STATE_MASK);
1225 vlr.state = 0;
1226 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1227
faa1b46c
CD
1228 /*
1229 * If the IRQ was EOIed it was also ACKed and we we
1230 * therefore assume we can clear the soft pending
1231 * state (should it had been set) for this interrupt.
1232 *
1233 * Note: if the IRQ soft pending state was set after
1234 * the IRQ was acked, it actually shouldn't be
1235 * cleared, but we have no way of knowing that unless
1236 * we start trapping ACKs when the soft-pending state
1237 * is set.
1238 */
1239 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1240
174178fe
EA
1241 /*
1242 * kvm_notify_acked_irq calls kvm_set_irq()
1243 * to reset the IRQ level. Need to release the
1244 * lock for kvm_set_irq to grab it.
1245 */
1246 spin_unlock(&dist->lock);
1247
1248 kvm_notify_acked_irq(kvm, 0,
1249 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1250 spin_lock(&dist->lock);
1251
9d949dce 1252 /* Any additional pending interrupt? */
faa1b46c 1253 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1254 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1255 level_pending = true;
1256 } else {
faa1b46c 1257 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1258 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1259 }
75da01e1 1260
649cf739
EA
1261 spin_unlock(&dist->lock);
1262
75da01e1
MZ
1263 /*
1264 * Despite being EOIed, the LR may not have
1265 * been marked as empty.
1266 */
69bb2c9f 1267 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1268 }
1269 }
1270
495dd859 1271 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1272 vgic_disable_underflow(vcpu);
9d949dce
MZ
1273
1274 return level_pending;
1275}
1276
649cf739 1277/* Sync back the VGIC state after a guest run */
9d949dce
MZ
1278static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1279{
1280 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1281 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1282 u64 elrsr;
1283 unsigned long *elrsr_ptr;
9d949dce
MZ
1284 int lr, pending;
1285 bool level_pending;
1286
1287 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f 1288 elrsr = vgic_get_elrsr(vcpu);
2df36a5d 1289 elrsr_ptr = u64_to_bitmask(&elrsr);
9d949dce
MZ
1290
1291 /* Clear mappings for empty LRs */
8f186d52 1292 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
8d5c6b06 1293 struct vgic_lr vlr;
9d949dce
MZ
1294
1295 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1296 continue;
1297
8d5c6b06 1298 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1299
5fb66da6 1300 BUG_ON(vlr.irq >= dist->nr_irqs);
8d5c6b06 1301 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1302 }
1303
1304 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1305 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1306 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1307 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1308}
1309
1310void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1311{
1312 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1313
1314 if (!irqchip_in_kernel(vcpu->kvm))
1315 return;
1316
1317 spin_lock(&dist->lock);
1318 __kvm_vgic_flush_hwstate(vcpu);
1319 spin_unlock(&dist->lock);
1320}
1321
1322void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1323{
1324 if (!irqchip_in_kernel(vcpu->kvm))
1325 return;
1326
1327 __kvm_vgic_sync_hwstate(vcpu);
1328}
1329
1330int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1331{
1332 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1333
1334 if (!irqchip_in_kernel(vcpu->kvm))
1335 return 0;
1336
c1bfb577 1337 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1338}
1339
47a98b15
CD
1340int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1341{
1342 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1343
1344 if (!irqchip_in_kernel(vcpu->kvm))
1345 return 0;
1346
1347 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1348}
1349
1350
83215812 1351void vgic_kick_vcpus(struct kvm *kvm)
5863c2ce
MZ
1352{
1353 struct kvm_vcpu *vcpu;
1354 int c;
1355
1356 /*
1357 * We've injected an interrupt, time to find out who deserves
1358 * a good kick...
1359 */
1360 kvm_for_each_vcpu(c, vcpu, kvm) {
1361 if (kvm_vgic_vcpu_pending_irq(vcpu))
1362 kvm_vcpu_kick(vcpu);
1363 }
1364}
1365
1366static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1367{
227844f5 1368 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1369
1370 /*
1371 * Only inject an interrupt if:
1372 * - edge triggered and we have a rising edge
1373 * - level triggered and we change level
1374 */
faa1b46c
CD
1375 if (edge_triggered) {
1376 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1377 return level > state;
faa1b46c
CD
1378 } else {
1379 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1380 return level != state;
faa1b46c 1381 }
5863c2ce
MZ
1382}
1383
016ed39c 1384static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
5863c2ce
MZ
1385 unsigned int irq_num, bool level)
1386{
1387 struct vgic_dist *dist = &kvm->arch.vgic;
1388 struct kvm_vcpu *vcpu;
227844f5 1389 int edge_triggered, level_triggered;
5863c2ce 1390 int enabled;
a0675c25 1391 bool ret = true, can_inject = true;
5863c2ce
MZ
1392
1393 spin_lock(&dist->lock);
1394
1395 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1396 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1397 level_triggered = !edge_triggered;
5863c2ce
MZ
1398
1399 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1400 ret = false;
1401 goto out;
1402 }
1403
1404 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1405 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
a0675c25
AP
1406 if (cpuid == VCPU_NOT_ALLOCATED) {
1407 /* Pretend we use CPU0, and prevent injection */
1408 cpuid = 0;
1409 can_inject = false;
1410 }
5863c2ce
MZ
1411 vcpu = kvm_get_vcpu(kvm, cpuid);
1412 }
1413
1414 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1415
faa1b46c
CD
1416 if (level) {
1417 if (level_triggered)
1418 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1419 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1420 } else {
1421 if (level_triggered) {
1422 vgic_dist_irq_clear_level(vcpu, irq_num);
1423 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1424 vgic_dist_irq_clear_pending(vcpu, irq_num);
faa1b46c 1425 }
7d39f9e3 1426
1427 ret = false;
1428 goto out;
faa1b46c 1429 }
5863c2ce
MZ
1430
1431 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1432
a0675c25 1433 if (!enabled || !can_inject) {
5863c2ce
MZ
1434 ret = false;
1435 goto out;
1436 }
1437
dbf20f9d 1438 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1439 /*
1440 * Level interrupt in progress, will be picked up
1441 * when EOId.
1442 */
1443 ret = false;
1444 goto out;
1445 }
1446
1447 if (level) {
1448 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1449 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1450 }
1451
1452out:
1453 spin_unlock(&dist->lock);
1454
016ed39c 1455 return ret ? cpuid : -EINVAL;
5863c2ce
MZ
1456}
1457
1458/**
1459 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1460 * @kvm: The VM structure pointer
1461 * @cpuid: The CPU for PPIs
1462 * @irq_num: The IRQ number that is assigned to the device
1463 * @level: Edge-triggered: true: to trigger the interrupt
1464 * false: to ignore the call
1465 * Level-sensitive true: activates an interrupt
1466 * false: deactivates an interrupt
1467 *
1468 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1469 * level-sensitive interrupts. You can think of the level parameter as 1
1470 * being HIGH and 0 being LOW and all devices being active-HIGH.
1471 */
1472int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1473 bool level)
1474{
ca7d9c82 1475 int ret = 0;
016ed39c 1476 int vcpu_id;
5863c2ce 1477
ca7d9c82 1478 if (unlikely(!vgic_initialized(kvm))) {
59892136
AP
1479 /*
1480 * We only provide the automatic initialization of the VGIC
1481 * for the legacy case of a GICv2. Any other type must
1482 * be explicitly initialized once setup with the respective
1483 * KVM device call.
1484 */
1485 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1486 ret = -EBUSY;
1487 goto out;
1488 }
ca7d9c82
CD
1489 mutex_lock(&kvm->lock);
1490 ret = vgic_init(kvm);
1491 mutex_unlock(&kvm->lock);
1492
1493 if (ret)
1494 goto out;
016ed39c 1495 }
5863c2ce 1496
ca7d9c82
CD
1497 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1498 if (vcpu_id >= 0) {
1499 /* kick the specified vcpu */
1500 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1501 }
1502
1503out:
1504 return ret;
5863c2ce
MZ
1505}
1506
01ac5e34
MZ
1507static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1508{
1509 /*
1510 * We cannot rely on the vgic maintenance interrupt to be
1511 * delivered synchronously. This means we can only use it to
1512 * exit the VM, and we perform the handling of EOIed
1513 * interrupts on the exit path (see vgic_process_maintenance).
1514 */
1515 return IRQ_HANDLED;
1516}
1517
c1bfb577
MZ
1518void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1519{
1520 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1521
1522 kfree(vgic_cpu->pending_shared);
47a98b15
CD
1523 kfree(vgic_cpu->active_shared);
1524 kfree(vgic_cpu->pend_act_shared);
c1bfb577
MZ
1525 kfree(vgic_cpu->vgic_irq_lr_map);
1526 vgic_cpu->pending_shared = NULL;
47a98b15
CD
1527 vgic_cpu->active_shared = NULL;
1528 vgic_cpu->pend_act_shared = NULL;
c1bfb577
MZ
1529 vgic_cpu->vgic_irq_lr_map = NULL;
1530}
1531
1532static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1533{
1534 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1535
1536 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1537 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
47a98b15
CD
1538 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1539 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
6d3cfbe2 1540 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
c1bfb577 1541
47a98b15
CD
1542 if (!vgic_cpu->pending_shared
1543 || !vgic_cpu->active_shared
1544 || !vgic_cpu->pend_act_shared
1545 || !vgic_cpu->vgic_irq_lr_map) {
c1bfb577
MZ
1546 kvm_vgic_vcpu_destroy(vcpu);
1547 return -ENOMEM;
1548 }
1549
6d3cfbe2 1550 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
01ac5e34
MZ
1551
1552 /*
ca85f623
MZ
1553 * Store the number of LRs per vcpu, so we don't have to go
1554 * all the way to the distributor structure to find out. Only
1555 * assembly code should use this one.
01ac5e34 1556 */
8f186d52 1557 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1558
6d3cfbe2 1559 return 0;
01ac5e34
MZ
1560}
1561
3caa2d8c
AP
1562/**
1563 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1564 *
1565 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1566 * can use.
1567 */
1568int kvm_vgic_get_max_vcpus(void)
1569{
1570 return vgic->max_gic_vcpus;
1571}
1572
c1bfb577
MZ
1573void kvm_vgic_destroy(struct kvm *kvm)
1574{
1575 struct vgic_dist *dist = &kvm->arch.vgic;
1576 struct kvm_vcpu *vcpu;
1577 int i;
1578
1579 kvm_for_each_vcpu(i, vcpu, kvm)
1580 kvm_vgic_vcpu_destroy(vcpu);
1581
1582 vgic_free_bitmap(&dist->irq_enabled);
1583 vgic_free_bitmap(&dist->irq_level);
1584 vgic_free_bitmap(&dist->irq_pending);
1585 vgic_free_bitmap(&dist->irq_soft_pend);
1586 vgic_free_bitmap(&dist->irq_queued);
1587 vgic_free_bitmap(&dist->irq_cfg);
1588 vgic_free_bytemap(&dist->irq_priority);
1589 if (dist->irq_spi_target) {
1590 for (i = 0; i < dist->nr_cpus; i++)
1591 vgic_free_bitmap(&dist->irq_spi_target[i]);
1592 }
1593 kfree(dist->irq_sgi_sources);
1594 kfree(dist->irq_spi_cpu);
a0675c25 1595 kfree(dist->irq_spi_mpidr);
c1bfb577
MZ
1596 kfree(dist->irq_spi_target);
1597 kfree(dist->irq_pending_on_cpu);
47a98b15 1598 kfree(dist->irq_active_on_cpu);
c1bfb577
MZ
1599 dist->irq_sgi_sources = NULL;
1600 dist->irq_spi_cpu = NULL;
1601 dist->irq_spi_target = NULL;
1602 dist->irq_pending_on_cpu = NULL;
47a98b15 1603 dist->irq_active_on_cpu = NULL;
1f57be28 1604 dist->nr_cpus = 0;
c1bfb577
MZ
1605}
1606
1607/*
1608 * Allocate and initialize the various data structures. Must be called
1609 * with kvm->lock held!
1610 */
83215812 1611int vgic_init(struct kvm *kvm)
c1bfb577
MZ
1612{
1613 struct vgic_dist *dist = &kvm->arch.vgic;
1614 struct kvm_vcpu *vcpu;
1615 int nr_cpus, nr_irqs;
6d3cfbe2 1616 int ret, i, vcpu_id;
c1bfb577 1617
1f57be28 1618 if (vgic_initialized(kvm))
4956f2bc
MZ
1619 return 0;
1620
1621 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1622 if (!nr_cpus) /* No vcpus? Can't be good... */
66b030e4 1623 return -ENODEV;
5fb66da6 1624
4956f2bc
MZ
1625 /*
1626 * If nobody configured the number of interrupts, use the
1627 * legacy one.
1628 */
5fb66da6
MZ
1629 if (!dist->nr_irqs)
1630 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1631
1632 nr_irqs = dist->nr_irqs;
c1bfb577
MZ
1633
1634 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1635 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1636 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1637 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1638 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
47a98b15 1639 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
c1bfb577
MZ
1640 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1641 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1642
1643 if (ret)
1644 goto out;
1645
1646 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1647 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1648 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1649 GFP_KERNEL);
1650 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1651 GFP_KERNEL);
47a98b15
CD
1652 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1653 GFP_KERNEL);
c1bfb577
MZ
1654 if (!dist->irq_sgi_sources ||
1655 !dist->irq_spi_cpu ||
1656 !dist->irq_spi_target ||
47a98b15
CD
1657 !dist->irq_pending_on_cpu ||
1658 !dist->irq_active_on_cpu) {
c1bfb577
MZ
1659 ret = -ENOMEM;
1660 goto out;
1661 }
1662
1663 for (i = 0; i < nr_cpus; i++)
1664 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1665 nr_cpus, nr_irqs);
1666
1667 if (ret)
1668 goto out;
1669
b26e5fda
AP
1670 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1671 if (ret)
1672 goto out;
6d3cfbe2
PM
1673
1674 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
c1bfb577
MZ
1675 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1676 if (ret) {
1677 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1678 break;
1679 }
c1bfb577 1680
6d3cfbe2
PM
1681 for (i = 0; i < dist->nr_irqs; i++) {
1682 if (i < VGIC_NR_PPIS)
1683 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1684 vcpu->vcpu_id, i, 1);
1685 if (i < VGIC_NR_PRIVATE_IRQS)
1686 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1687 vcpu->vcpu_id, i,
1688 VGIC_CFG_EDGE);
1689 }
1690
1691 vgic_enable(vcpu);
1692 }
4956f2bc 1693
c1bfb577
MZ
1694out:
1695 if (ret)
1696 kvm_vgic_destroy(kvm);
1697
1698 return ret;
1699}
1700
b26e5fda
AP
1701static int init_vgic_model(struct kvm *kvm, int type)
1702{
1703 switch (type) {
1704 case KVM_DEV_TYPE_ARM_VGIC_V2:
1705 vgic_v2_init_emulation(kvm);
1706 break;
b5d84ff6
AP
1707#ifdef CONFIG_ARM_GIC_V3
1708 case KVM_DEV_TYPE_ARM_VGIC_V3:
1709 vgic_v3_init_emulation(kvm);
1710 break;
1711#endif
b26e5fda
AP
1712 default:
1713 return -ENODEV;
1714 }
1715
3caa2d8c
AP
1716 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1717 return -E2BIG;
1718
b26e5fda
AP
1719 return 0;
1720}
1721
59892136 1722int kvm_vgic_create(struct kvm *kvm, u32 type)
01ac5e34 1723{
6b50f540 1724 int i, vcpu_lock_idx = -1, ret;
7330672b 1725 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1726
1727 mutex_lock(&kvm->lock);
1728
4ce7ebdf 1729 if (irqchip_in_kernel(kvm)) {
01ac5e34
MZ
1730 ret = -EEXIST;
1731 goto out;
1732 }
1733
b5d84ff6
AP
1734 /*
1735 * This function is also called by the KVM_CREATE_IRQCHIP handler,
1736 * which had no chance yet to check the availability of the GICv2
1737 * emulation. So check this here again. KVM_CREATE_DEVICE does
1738 * the proper checks already.
1739 */
1740 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2)
1741 return -ENODEV;
1742
7330672b
CD
1743 /*
1744 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1745 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1746 * that no other VCPUs are run while we create the vgic.
1747 */
6b50f540 1748 ret = -EBUSY;
7330672b
CD
1749 kvm_for_each_vcpu(i, vcpu, kvm) {
1750 if (!mutex_trylock(&vcpu->mutex))
1751 goto out_unlock;
1752 vcpu_lock_idx = i;
1753 }
1754
1755 kvm_for_each_vcpu(i, vcpu, kvm) {
6b50f540 1756 if (vcpu->arch.has_run_once)
7330672b 1757 goto out_unlock;
7330672b 1758 }
6b50f540 1759 ret = 0;
7330672b 1760
b26e5fda
AP
1761 ret = init_vgic_model(kvm, type);
1762 if (ret)
1763 goto out_unlock;
1764
01ac5e34 1765 spin_lock_init(&kvm->arch.vgic.lock);
f982cf4e 1766 kvm->arch.vgic.in_kernel = true;
59892136 1767 kvm->arch.vgic.vgic_model = type;
8f186d52 1768 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
1769 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1770 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
a0675c25 1771 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
01ac5e34 1772
7330672b
CD
1773out_unlock:
1774 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1775 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1776 mutex_unlock(&vcpu->mutex);
1777 }
1778
01ac5e34
MZ
1779out:
1780 mutex_unlock(&kvm->lock);
1781 return ret;
1782}
1783
1fa451bc 1784static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
1785{
1786 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1787 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1788
1789 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1790 return 0;
1791 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1792 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1793 return -EBUSY;
1794 return 0;
1795}
1796
1797static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1798 phys_addr_t addr, phys_addr_t size)
1799{
1800 int ret;
1801
ce01e4e8
CD
1802 if (addr & ~KVM_PHYS_MASK)
1803 return -E2BIG;
1804
1805 if (addr & (SZ_4K - 1))
1806 return -EINVAL;
1807
330690cd
CD
1808 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1809 return -EEXIST;
1810 if (addr + size < addr)
1811 return -EINVAL;
1812
30c21170 1813 *ioaddr = addr;
330690cd
CD
1814 ret = vgic_ioaddr_overlap(kvm);
1815 if (ret)
30c21170
HW
1816 *ioaddr = VGIC_ADDR_UNDEF;
1817
330690cd
CD
1818 return ret;
1819}
1820
ce01e4e8
CD
1821/**
1822 * kvm_vgic_addr - set or get vgic VM base addresses
1823 * @kvm: pointer to the vm struct
ac3d3735 1824 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
ce01e4e8
CD
1825 * @addr: pointer to address value
1826 * @write: if true set the address in the VM address space, if false read the
1827 * address
1828 *
1829 * Set or get the vgic base addresses for the distributor and the virtual CPU
1830 * interface in the VM physical address space. These addresses are properties
1831 * of the emulated core/SoC and therefore user space initially knows this
1832 * information.
1833 */
1834int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1835{
1836 int r = 0;
1837 struct vgic_dist *vgic = &kvm->arch.vgic;
ac3d3735
AP
1838 int type_needed;
1839 phys_addr_t *addr_ptr, block_size;
4fa96afd 1840 phys_addr_t alignment;
330690cd 1841
330690cd
CD
1842 mutex_lock(&kvm->lock);
1843 switch (type) {
1844 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ac3d3735
AP
1845 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1846 addr_ptr = &vgic->vgic_dist_base;
1847 block_size = KVM_VGIC_V2_DIST_SIZE;
4fa96afd 1848 alignment = SZ_4K;
330690cd
CD
1849 break;
1850 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ac3d3735
AP
1851 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1852 addr_ptr = &vgic->vgic_cpu_base;
1853 block_size = KVM_VGIC_V2_CPU_SIZE;
4fa96afd 1854 alignment = SZ_4K;
330690cd 1855 break;
ac3d3735
AP
1856#ifdef CONFIG_ARM_GIC_V3
1857 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1858 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1859 addr_ptr = &vgic->vgic_dist_base;
1860 block_size = KVM_VGIC_V3_DIST_SIZE;
4fa96afd 1861 alignment = SZ_64K;
ac3d3735
AP
1862 break;
1863 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1864 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1865 addr_ptr = &vgic->vgic_redist_base;
1866 block_size = KVM_VGIC_V3_REDIST_SIZE;
4fa96afd 1867 alignment = SZ_64K;
ac3d3735
AP
1868 break;
1869#endif
330690cd
CD
1870 default:
1871 r = -ENODEV;
ac3d3735
AP
1872 goto out;
1873 }
1874
1875 if (vgic->vgic_model != type_needed) {
1876 r = -ENODEV;
1877 goto out;
330690cd
CD
1878 }
1879
4fa96afd
AP
1880 if (write) {
1881 if (!IS_ALIGNED(*addr, alignment))
1882 r = -EINVAL;
1883 else
1884 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1885 block_size);
1886 } else {
ac3d3735 1887 *addr = *addr_ptr;
4fa96afd 1888 }
ac3d3735
AP
1889
1890out:
330690cd
CD
1891 mutex_unlock(&kvm->lock);
1892 return r;
1893}
7330672b 1894
83215812 1895int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 1896{
ce01e4e8
CD
1897 int r;
1898
1899 switch (attr->group) {
1900 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1901 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1902 u64 addr;
1903 unsigned long type = (unsigned long)attr->attr;
1904
1905 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1906 return -EFAULT;
1907
1908 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1909 return (r == -ENODEV) ? -ENXIO : r;
1910 }
a98f26f1
MZ
1911 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1912 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1913 u32 val;
1914 int ret = 0;
1915
1916 if (get_user(val, uaddr))
1917 return -EFAULT;
1918
1919 /*
1920 * We require:
1921 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1922 * - at most 1024 interrupts
1923 * - a multiple of 32 interrupts
1924 */
1925 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1926 val > VGIC_MAX_IRQS ||
1927 (val & 31))
1928 return -EINVAL;
1929
1930 mutex_lock(&dev->kvm->lock);
1931
c52edf5f 1932 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
a98f26f1
MZ
1933 ret = -EBUSY;
1934 else
1935 dev->kvm->arch.vgic.nr_irqs = val;
1936
1937 mutex_unlock(&dev->kvm->lock);
1938
1939 return ret;
1940 }
065c0034
EA
1941 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
1942 switch (attr->attr) {
1943 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1944 r = vgic_init(dev->kvm);
1945 return r;
1946 }
1947 break;
1948 }
ce01e4e8
CD
1949 }
1950
7330672b
CD
1951 return -ENXIO;
1952}
1953
83215812 1954int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 1955{
ce01e4e8
CD
1956 int r = -ENXIO;
1957
1958 switch (attr->group) {
1959 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1960 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1961 u64 addr;
1962 unsigned long type = (unsigned long)attr->attr;
1963
1964 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1965 if (r)
1966 return (r == -ENODEV) ? -ENXIO : r;
1967
1968 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1969 return -EFAULT;
c07a0191
CD
1970 break;
1971 }
b60da146
AP
1972 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1973 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1974
1975 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
1976 break;
1977 }
1978
1979 }
1980
1981 return r;
1982}
1983
cf50a1eb 1984int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
c07a0191 1985{
9f199d0a 1986 if (vgic_find_range(ranges, 4, offset))
c07a0191
CD
1987 return 0;
1988 else
1989 return -ENXIO;
1990}
1991
c06a841b
WD
1992static void vgic_init_maintenance_interrupt(void *info)
1993{
1994 enable_percpu_irq(vgic->maint_irq, 0);
1995}
1996
1997static int vgic_cpu_notify(struct notifier_block *self,
1998 unsigned long action, void *cpu)
1999{
2000 switch (action) {
2001 case CPU_STARTING:
2002 case CPU_STARTING_FROZEN:
2003 vgic_init_maintenance_interrupt(NULL);
2004 break;
2005 case CPU_DYING:
2006 case CPU_DYING_FROZEN:
2007 disable_percpu_irq(vgic->maint_irq);
2008 break;
2009 }
2010
2011 return NOTIFY_OK;
2012}
2013
2014static struct notifier_block vgic_cpu_nb = {
2015 .notifier_call = vgic_cpu_notify,
2016};
2017
2018static const struct of_device_id vgic_ids[] = {
0f372475
MR
2019 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2020 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2021 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2022 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
c06a841b
WD
2023 {},
2024};
2025
2026int kvm_vgic_hyp_init(void)
2027{
2028 const struct of_device_id *matched_id;
a875dafc
CD
2029 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2030 const struct vgic_params **);
c06a841b
WD
2031 struct device_node *vgic_node;
2032 int ret;
2033
2034 vgic_node = of_find_matching_node_and_match(NULL,
2035 vgic_ids, &matched_id);
2036 if (!vgic_node) {
2037 kvm_err("error: no compatible GIC node found\n");
2038 return -ENODEV;
2039 }
2040
2041 vgic_probe = matched_id->data;
2042 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2043 if (ret)
2044 return ret;
2045
2046 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2047 "vgic", kvm_get_running_vcpus());
2048 if (ret) {
2049 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2050 return ret;
2051 }
2052
2053 ret = __register_cpu_notifier(&vgic_cpu_nb);
2054 if (ret) {
2055 kvm_err("Cannot register vgic CPU notifier\n");
2056 goto out_free_irq;
2057 }
2058
2059 /* Callback into for arch code for setup */
2060 vgic_arch_setup(vgic);
2061
2062 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2063
ea2f83a7 2064 return 0;
c06a841b
WD
2065
2066out_free_irq:
2067 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2068 return ret;
2069}
174178fe
EA
2070
2071int kvm_irq_map_gsi(struct kvm *kvm,
2072 struct kvm_kernel_irq_routing_entry *entries,
2073 int gsi)
2074{
2075 return gsi;
2076}
2077
2078int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2079{
2080 return pin;
2081}
2082
2083int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2084 u32 irq, int level, bool line_status)
2085{
2086 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2087
2088 trace_kvm_set_irq(irq, level, irq_source_id);
2089
2090 BUG_ON(!vgic_initialized(kvm));
2091
2092 if (spi > kvm->arch.vgic.nr_irqs)
2093 return -EINVAL;
2094 return kvm_vgic_inject_irq(kvm, 0, spi, level);
2095
2096}
2097
2098/* MSI not implemented yet */
2099int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2100 struct kvm *kvm, int irq_source_id,
2101 int level, bool line_status)
2102{
2103 return 0;
2104}
This page took 0.270182 seconds and 5 git commands to generate.