KVM: return an error code in kvm_vm_ioctl_register_coalesced_mmio()
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27
28#include <linux/irqchip/arm-gic.h>
29
1a89dd91 30#include <asm/kvm_emulate.h>
01ac5e34
MZ
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
1a89dd91 33
b47ef92a
MZ
34/*
35 * How the whole thing works (courtesy of Christoffer Dall):
36 *
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44 * recalculated
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
56 *
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
60 *
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
69 */
70
330690cd
CD
71#define VGIC_ADDR_UNDEF (-1)
72#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
73
fa20f5ae
CD
74#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
75#define IMPLEMENTER_ARM 0x43b
76#define GICC_ARCH_VERSION_V2 0x2
77
01ac5e34
MZ
78/* Physical address of vgic virtual cpu interface */
79static phys_addr_t vgic_vcpu_base;
80
81/* Virtual control interface base address */
82static void __iomem *vgic_vctrl_base;
83
84static struct device_node *vgic_node;
85
1a89dd91
MZ
86#define ACCESS_READ_VALUE (1 << 0)
87#define ACCESS_READ_RAZ (0 << 0)
88#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
89#define ACCESS_WRITE_IGNORED (0 << 1)
90#define ACCESS_WRITE_SETBIT (1 << 1)
91#define ACCESS_WRITE_CLEARBIT (2 << 1)
92#define ACCESS_WRITE_VALUE (3 << 1)
93#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
94
a1fcb44e 95static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
b47ef92a 96static void vgic_update_state(struct kvm *kvm);
5863c2ce 97static void vgic_kick_vcpus(struct kvm *kvm);
b47ef92a 98static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
01ac5e34
MZ
99static u32 vgic_nr_lr;
100
101static unsigned int vgic_maint_irq;
b47ef92a
MZ
102
103static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
104 int cpuid, u32 offset)
105{
106 offset >>= 2;
107 if (!offset)
108 return x->percpu[cpuid].reg;
109 else
110 return x->shared.reg + offset - 1;
111}
112
113static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
114 int cpuid, int irq)
115{
116 if (irq < VGIC_NR_PRIVATE_IRQS)
117 return test_bit(irq, x->percpu[cpuid].reg_ul);
118
119 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
120}
121
122static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
123 int irq, int val)
124{
125 unsigned long *reg;
126
127 if (irq < VGIC_NR_PRIVATE_IRQS) {
128 reg = x->percpu[cpuid].reg_ul;
129 } else {
130 reg = x->shared.reg_ul;
131 irq -= VGIC_NR_PRIVATE_IRQS;
132 }
133
134 if (val)
135 set_bit(irq, reg);
136 else
137 clear_bit(irq, reg);
138}
139
140static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
141{
142 if (unlikely(cpuid >= VGIC_MAX_CPUS))
143 return NULL;
144 return x->percpu[cpuid].reg_ul;
145}
146
147static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
148{
149 return x->shared.reg_ul;
150}
151
152static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
153{
154 offset >>= 2;
155 BUG_ON(offset > (VGIC_NR_IRQS / 4));
8d98915b 156 if (offset < 8)
b47ef92a
MZ
157 return x->percpu[cpuid] + offset;
158 else
159 return x->shared + offset - 8;
160}
161
162#define VGIC_CFG_LEVEL 0
163#define VGIC_CFG_EDGE 1
164
165static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
166{
167 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
168 int irq_val;
169
170 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
171 return irq_val == VGIC_CFG_EDGE;
172}
173
174static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
175{
176 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
177
178 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
179}
180
9d949dce
MZ
181static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
182{
183 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
184
185 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
186}
187
188static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
189{
190 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
191
192 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
193}
194
195static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
196{
197 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
198
199 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
200}
201
202static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
203{
204 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
205
206 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
207}
208
b47ef92a
MZ
209static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
210{
211 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
212
213 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
214}
215
216static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
217{
218 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
219
220 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
221}
222
223static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
224{
225 if (irq < VGIC_NR_PRIVATE_IRQS)
226 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
227 else
228 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
229 vcpu->arch.vgic_cpu.pending_shared);
230}
231
232static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
233{
234 if (irq < VGIC_NR_PRIVATE_IRQS)
235 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
236 else
237 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
238 vcpu->arch.vgic_cpu.pending_shared);
239}
240
1a89dd91
MZ
241static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
242{
243 return *((u32 *)mmio->data) & mask;
244}
245
246static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
247{
248 *((u32 *)mmio->data) = value & mask;
249}
250
251/**
252 * vgic_reg_access - access vgic register
253 * @mmio: pointer to the data describing the mmio access
254 * @reg: pointer to the virtual backing of vgic distributor data
255 * @offset: least significant 2 bits used for word offset
256 * @mode: ACCESS_ mode (see defines above)
257 *
258 * Helper to make vgic register access easier using one of the access
259 * modes defined for vgic register access
260 * (read,raz,write-ignored,setbit,clearbit,write)
261 */
262static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
263 phys_addr_t offset, int mode)
264{
265 int word_offset = (offset & 3) * 8;
266 u32 mask = (1UL << (mmio->len * 8)) - 1;
267 u32 regval;
268
269 /*
270 * Any alignment fault should have been delivered to the guest
271 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
272 */
273
274 if (reg) {
275 regval = *reg;
276 } else {
277 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
278 regval = 0;
279 }
280
281 if (mmio->is_write) {
282 u32 data = mmio_data_read(mmio, mask) << word_offset;
283 switch (ACCESS_WRITE_MASK(mode)) {
284 case ACCESS_WRITE_IGNORED:
285 return;
286
287 case ACCESS_WRITE_SETBIT:
288 regval |= data;
289 break;
290
291 case ACCESS_WRITE_CLEARBIT:
292 regval &= ~data;
293 break;
294
295 case ACCESS_WRITE_VALUE:
296 regval = (regval & ~(mask << word_offset)) | data;
297 break;
298 }
299 *reg = regval;
300 } else {
301 switch (ACCESS_READ_MASK(mode)) {
302 case ACCESS_READ_RAZ:
303 regval = 0;
304 /* fall through */
305
306 case ACCESS_READ_VALUE:
307 mmio_data_write(mmio, mask, regval >> word_offset);
308 }
309 }
310}
311
b47ef92a
MZ
312static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
313 struct kvm_exit_mmio *mmio, phys_addr_t offset)
314{
315 u32 reg;
316 u32 word_offset = offset & 3;
317
318 switch (offset & ~3) {
fa20f5ae 319 case 0: /* GICD_CTLR */
b47ef92a
MZ
320 reg = vcpu->kvm->arch.vgic.enabled;
321 vgic_reg_access(mmio, &reg, word_offset,
322 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
323 if (mmio->is_write) {
324 vcpu->kvm->arch.vgic.enabled = reg & 1;
325 vgic_update_state(vcpu->kvm);
326 return true;
327 }
328 break;
329
fa20f5ae 330 case 4: /* GICD_TYPER */
b47ef92a
MZ
331 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
332 reg |= (VGIC_NR_IRQS >> 5) - 1;
333 vgic_reg_access(mmio, &reg, word_offset,
334 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
335 break;
336
fa20f5ae
CD
337 case 8: /* GICD_IIDR */
338 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
b47ef92a
MZ
339 vgic_reg_access(mmio, &reg, word_offset,
340 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
341 break;
342 }
343
344 return false;
345}
346
347static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
348 struct kvm_exit_mmio *mmio, phys_addr_t offset)
349{
350 vgic_reg_access(mmio, NULL, offset,
351 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
352 return false;
353}
354
355static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
356 struct kvm_exit_mmio *mmio,
357 phys_addr_t offset)
358{
359 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
360 vcpu->vcpu_id, offset);
361 vgic_reg_access(mmio, reg, offset,
362 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
363 if (mmio->is_write) {
364 vgic_update_state(vcpu->kvm);
365 return true;
366 }
367
368 return false;
369}
370
371static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
372 struct kvm_exit_mmio *mmio,
373 phys_addr_t offset)
374{
375 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
376 vcpu->vcpu_id, offset);
377 vgic_reg_access(mmio, reg, offset,
378 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
379 if (mmio->is_write) {
380 if (offset < 4) /* Force SGI enabled */
381 *reg |= 0xffff;
a1fcb44e 382 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
383 vgic_update_state(vcpu->kvm);
384 return true;
385 }
386
387 return false;
388}
389
390static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
391 struct kvm_exit_mmio *mmio,
392 phys_addr_t offset)
393{
394 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
395 vcpu->vcpu_id, offset);
396 vgic_reg_access(mmio, reg, offset,
397 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
398 if (mmio->is_write) {
399 vgic_update_state(vcpu->kvm);
400 return true;
401 }
402
403 return false;
404}
405
406static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
407 struct kvm_exit_mmio *mmio,
408 phys_addr_t offset)
409{
410 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
411 vcpu->vcpu_id, offset);
412 vgic_reg_access(mmio, reg, offset,
413 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
414 if (mmio->is_write) {
415 vgic_update_state(vcpu->kvm);
416 return true;
417 }
418
419 return false;
420}
421
422static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
423 struct kvm_exit_mmio *mmio,
424 phys_addr_t offset)
425{
426 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
427 vcpu->vcpu_id, offset);
428 vgic_reg_access(mmio, reg, offset,
429 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
430 return false;
431}
432
433#define GICD_ITARGETSR_SIZE 32
434#define GICD_CPUTARGETS_BITS 8
435#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
436static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
437{
438 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 439 int i;
b47ef92a
MZ
440 u32 val = 0;
441
442 irq -= VGIC_NR_PRIVATE_IRQS;
443
986af8e0
MZ
444 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
445 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
446
447 return val;
448}
449
450static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
451{
452 struct vgic_dist *dist = &kvm->arch.vgic;
453 struct kvm_vcpu *vcpu;
454 int i, c;
455 unsigned long *bmap;
456 u32 target;
457
458 irq -= VGIC_NR_PRIVATE_IRQS;
459
460 /*
461 * Pick the LSB in each byte. This ensures we target exactly
462 * one vcpu per IRQ. If the byte is null, assume we target
463 * CPU0.
464 */
465 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
466 int shift = i * GICD_CPUTARGETS_BITS;
467 target = ffs((val >> shift) & 0xffU);
468 target = target ? (target - 1) : 0;
469 dist->irq_spi_cpu[irq + i] = target;
470 kvm_for_each_vcpu(c, vcpu, kvm) {
471 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
472 if (c == target)
473 set_bit(irq + i, bmap);
474 else
475 clear_bit(irq + i, bmap);
476 }
477 }
478}
479
480static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
481 struct kvm_exit_mmio *mmio,
482 phys_addr_t offset)
483{
484 u32 reg;
485
486 /* We treat the banked interrupts targets as read-only */
487 if (offset < 32) {
488 u32 roreg = 1 << vcpu->vcpu_id;
489 roreg |= roreg << 8;
490 roreg |= roreg << 16;
491
492 vgic_reg_access(mmio, &roreg, offset,
493 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
494 return false;
495 }
496
497 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
498 vgic_reg_access(mmio, &reg, offset,
499 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
500 if (mmio->is_write) {
501 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
502 vgic_update_state(vcpu->kvm);
503 return true;
504 }
505
506 return false;
507}
508
509static u32 vgic_cfg_expand(u16 val)
510{
511 u32 res = 0;
512 int i;
513
514 /*
515 * Turn a 16bit value like abcd...mnop into a 32bit word
516 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
517 */
518 for (i = 0; i < 16; i++)
519 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
520
521 return res;
522}
523
524static u16 vgic_cfg_compress(u32 val)
525{
526 u16 res = 0;
527 int i;
528
529 /*
530 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
531 * abcd...mnop which is what we really care about.
532 */
533 for (i = 0; i < 16; i++)
534 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
535
536 return res;
537}
538
539/*
540 * The distributor uses 2 bits per IRQ for the CFG register, but the
541 * LSB is always 0. As such, we only keep the upper bit, and use the
542 * two above functions to compress/expand the bits
543 */
544static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
545 struct kvm_exit_mmio *mmio, phys_addr_t offset)
546{
547 u32 val;
6545eae3
MZ
548 u32 *reg;
549
550 offset >>= 1;
551 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
552 vcpu->vcpu_id, offset);
553
b47ef92a
MZ
554 if (offset & 2)
555 val = *reg >> 16;
556 else
557 val = *reg & 0xffff;
558
559 val = vgic_cfg_expand(val);
560 vgic_reg_access(mmio, &val, offset,
561 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
562 if (mmio->is_write) {
563 if (offset < 4) {
564 *reg = ~0U; /* Force PPIs/SGIs to 1 */
565 return false;
566 }
567
568 val = vgic_cfg_compress(val);
569 if (offset & 2) {
570 *reg &= 0xffff;
571 *reg |= val << 16;
572 } else {
573 *reg &= 0xffff << 16;
574 *reg |= val;
575 }
576 }
577
578 return false;
579}
580
581static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
582 struct kvm_exit_mmio *mmio, phys_addr_t offset)
583{
584 u32 reg;
585 vgic_reg_access(mmio, &reg, offset,
586 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
587 if (mmio->is_write) {
588 vgic_dispatch_sgi(vcpu, reg);
589 vgic_update_state(vcpu->kvm);
590 return true;
591 }
592
593 return false;
594}
595
cbd333a4
CD
596#define LR_CPUID(lr) \
597 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
598#define LR_IRQID(lr) \
599 ((lr) & GICH_LR_VIRTUALID)
600
601static void vgic_retire_lr(int lr_nr, int irq, struct vgic_cpu *vgic_cpu)
602{
603 clear_bit(lr_nr, vgic_cpu->lr_used);
604 vgic_cpu->vgic_lr[lr_nr] &= ~GICH_LR_STATE;
605 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
606}
607
608/**
609 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
610 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
611 *
612 * Move any pending IRQs that have already been assigned to LRs back to the
613 * emulated distributor state so that the complete emulated state can be read
614 * from the main emulation structures without investigating the LRs.
615 *
616 * Note that IRQs in the active state in the LRs get their pending state moved
617 * to the distributor but the active state stays in the LRs, because we don't
618 * track the active state on the distributor side.
619 */
620static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
621{
622 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
623 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
624 int vcpu_id = vcpu->vcpu_id;
625 int i, irq, source_cpu;
626 u32 *lr;
627
628 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
629 lr = &vgic_cpu->vgic_lr[i];
630 irq = LR_IRQID(*lr);
631 source_cpu = LR_CPUID(*lr);
632
633 /*
634 * There are three options for the state bits:
635 *
636 * 01: pending
637 * 10: active
638 * 11: pending and active
639 *
640 * If the LR holds only an active interrupt (not pending) then
641 * just leave it alone.
642 */
643 if ((*lr & GICH_LR_STATE) == GICH_LR_ACTIVE_BIT)
644 continue;
645
646 /*
647 * Reestablish the pending state on the distributor and the
648 * CPU interface. It may have already been pending, but that
649 * is fine, then we are only setting a few bits that were
650 * already set.
651 */
652 vgic_dist_irq_set(vcpu, irq);
653 if (irq < VGIC_NR_SGIS)
654 dist->irq_sgi_sources[vcpu_id][irq] |= 1 << source_cpu;
655 *lr &= ~GICH_LR_PENDING_BIT;
656
657 /*
658 * If there's no state left on the LR (it could still be
659 * active), then the LR does not hold any useful info and can
660 * be marked as free for other use.
661 */
662 if (!(*lr & GICH_LR_STATE))
663 vgic_retire_lr(i, irq, vgic_cpu);
664
665 /* Finally update the VGIC state. */
666 vgic_update_state(vcpu->kvm);
667 }
668}
669
90a5355e
CD
670/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
671static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
672 struct kvm_exit_mmio *mmio,
673 phys_addr_t offset)
c07a0191 674{
90a5355e
CD
675 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
676 int sgi;
677 int min_sgi = (offset & ~0x3) * 4;
678 int max_sgi = min_sgi + 3;
679 int vcpu_id = vcpu->vcpu_id;
680 u32 reg = 0;
681
682 /* Copy source SGIs from distributor side */
683 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
684 int shift = 8 * (sgi - min_sgi);
685 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
686 }
687
688 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
689 return false;
690}
691
90a5355e
CD
692static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
693 struct kvm_exit_mmio *mmio,
694 phys_addr_t offset, bool set)
695{
696 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
697 int sgi;
698 int min_sgi = (offset & ~0x3) * 4;
699 int max_sgi = min_sgi + 3;
700 int vcpu_id = vcpu->vcpu_id;
701 u32 reg;
702 bool updated = false;
703
704 reg = mmio_data_read(mmio, ~0);
705
706 /* Clear pending SGIs on the distributor */
707 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
708 u8 mask = reg >> (8 * (sgi - min_sgi));
709 if (set) {
710 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
711 updated = true;
712 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
713 } else {
714 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
715 updated = true;
716 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
717 }
718 }
719
720 if (updated)
721 vgic_update_state(vcpu->kvm);
722
723 return updated;
724}
725
c07a0191
CD
726static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
727 struct kvm_exit_mmio *mmio,
728 phys_addr_t offset)
729{
90a5355e
CD
730 if (!mmio->is_write)
731 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
732 else
733 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
734}
735
736static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
737 struct kvm_exit_mmio *mmio,
738 phys_addr_t offset)
739{
740 if (!mmio->is_write)
741 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
742 else
743 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
744}
745
1a89dd91
MZ
746/*
747 * I would have liked to use the kvm_bus_io_*() API instead, but it
748 * cannot cope with banked registers (only the VM pointer is passed
749 * around, and we need the vcpu). One of these days, someone please
750 * fix it!
751 */
752struct mmio_range {
753 phys_addr_t base;
754 unsigned long len;
755 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
756 phys_addr_t offset);
757};
758
1006e8cb 759static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
760 {
761 .base = GIC_DIST_CTRL,
762 .len = 12,
763 .handle_mmio = handle_mmio_misc,
764 },
765 {
766 .base = GIC_DIST_IGROUP,
767 .len = VGIC_NR_IRQS / 8,
768 .handle_mmio = handle_mmio_raz_wi,
769 },
770 {
771 .base = GIC_DIST_ENABLE_SET,
772 .len = VGIC_NR_IRQS / 8,
773 .handle_mmio = handle_mmio_set_enable_reg,
774 },
775 {
776 .base = GIC_DIST_ENABLE_CLEAR,
777 .len = VGIC_NR_IRQS / 8,
778 .handle_mmio = handle_mmio_clear_enable_reg,
779 },
780 {
781 .base = GIC_DIST_PENDING_SET,
782 .len = VGIC_NR_IRQS / 8,
783 .handle_mmio = handle_mmio_set_pending_reg,
784 },
785 {
786 .base = GIC_DIST_PENDING_CLEAR,
787 .len = VGIC_NR_IRQS / 8,
788 .handle_mmio = handle_mmio_clear_pending_reg,
789 },
790 {
791 .base = GIC_DIST_ACTIVE_SET,
792 .len = VGIC_NR_IRQS / 8,
793 .handle_mmio = handle_mmio_raz_wi,
794 },
795 {
796 .base = GIC_DIST_ACTIVE_CLEAR,
797 .len = VGIC_NR_IRQS / 8,
798 .handle_mmio = handle_mmio_raz_wi,
799 },
800 {
801 .base = GIC_DIST_PRI,
802 .len = VGIC_NR_IRQS,
803 .handle_mmio = handle_mmio_priority_reg,
804 },
805 {
806 .base = GIC_DIST_TARGET,
807 .len = VGIC_NR_IRQS,
808 .handle_mmio = handle_mmio_target_reg,
809 },
810 {
811 .base = GIC_DIST_CONFIG,
812 .len = VGIC_NR_IRQS / 4,
813 .handle_mmio = handle_mmio_cfg_reg,
814 },
815 {
816 .base = GIC_DIST_SOFTINT,
817 .len = 4,
818 .handle_mmio = handle_mmio_sgi_reg,
819 },
c07a0191
CD
820 {
821 .base = GIC_DIST_SGI_PENDING_CLEAR,
822 .len = VGIC_NR_SGIS,
823 .handle_mmio = handle_mmio_sgi_clear,
824 },
825 {
826 .base = GIC_DIST_SGI_PENDING_SET,
827 .len = VGIC_NR_SGIS,
828 .handle_mmio = handle_mmio_sgi_set,
829 },
1a89dd91
MZ
830 {}
831};
832
833static const
834struct mmio_range *find_matching_range(const struct mmio_range *ranges,
835 struct kvm_exit_mmio *mmio,
1006e8cb 836 phys_addr_t offset)
1a89dd91
MZ
837{
838 const struct mmio_range *r = ranges;
1a89dd91
MZ
839
840 while (r->len) {
1006e8cb
CD
841 if (offset >= r->base &&
842 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
843 return r;
844 r++;
845 }
846
847 return NULL;
848}
849
850/**
851 * vgic_handle_mmio - handle an in-kernel MMIO access
852 * @vcpu: pointer to the vcpu performing the access
853 * @run: pointer to the kvm_run structure
854 * @mmio: pointer to the data describing the access
855 *
856 * returns true if the MMIO access has been performed in kernel space,
857 * and false if it needs to be emulated in user space.
858 */
859bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
860 struct kvm_exit_mmio *mmio)
861{
b47ef92a
MZ
862 const struct mmio_range *range;
863 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
864 unsigned long base = dist->vgic_dist_base;
865 bool updated_state;
866 unsigned long offset;
867
868 if (!irqchip_in_kernel(vcpu->kvm) ||
869 mmio->phys_addr < base ||
870 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
871 return false;
872
873 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
874 if (mmio->len > 4) {
875 kvm_inject_dabt(vcpu, mmio->phys_addr);
876 return true;
877 }
878
1006e8cb
CD
879 offset = mmio->phys_addr - base;
880 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
881 if (unlikely(!range || !range->handle_mmio)) {
882 pr_warn("Unhandled access %d %08llx %d\n",
883 mmio->is_write, mmio->phys_addr, mmio->len);
884 return false;
885 }
886
887 spin_lock(&vcpu->kvm->arch.vgic.lock);
888 offset = mmio->phys_addr - range->base - base;
889 updated_state = range->handle_mmio(vcpu, mmio, offset);
890 spin_unlock(&vcpu->kvm->arch.vgic.lock);
891 kvm_prepare_mmio(run, mmio);
892 kvm_handle_mmio_return(vcpu, run);
893
5863c2ce
MZ
894 if (updated_state)
895 vgic_kick_vcpus(vcpu->kvm);
896
b47ef92a
MZ
897 return true;
898}
899
900static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
901{
902 struct kvm *kvm = vcpu->kvm;
903 struct vgic_dist *dist = &kvm->arch.vgic;
904 int nrcpus = atomic_read(&kvm->online_vcpus);
905 u8 target_cpus;
906 int sgi, mode, c, vcpu_id;
907
908 vcpu_id = vcpu->vcpu_id;
909
910 sgi = reg & 0xf;
911 target_cpus = (reg >> 16) & 0xff;
912 mode = (reg >> 24) & 3;
913
914 switch (mode) {
915 case 0:
916 if (!target_cpus)
917 return;
918
919 case 1:
920 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
921 break;
922
923 case 2:
924 target_cpus = 1 << vcpu_id;
925 break;
926 }
927
928 kvm_for_each_vcpu(c, vcpu, kvm) {
929 if (target_cpus & 1) {
930 /* Flag the SGI as pending */
931 vgic_dist_irq_set(vcpu, sgi);
932 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
933 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
934 }
935
936 target_cpus >>= 1;
937 }
938}
939
940static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
941{
9d949dce
MZ
942 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
943 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
944 unsigned long pending_private, pending_shared;
945 int vcpu_id;
946
947 vcpu_id = vcpu->vcpu_id;
948 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
949 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
950
951 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
952 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
953 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
954
955 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
956 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
957 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
958 bitmap_and(pend_shared, pend_shared,
959 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
960 VGIC_NR_SHARED_IRQS);
961
962 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
963 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
964 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
965 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
966}
967
968/*
969 * Update the interrupt state and determine which CPUs have pending
970 * interrupts. Must be called with distributor lock held.
971 */
972static void vgic_update_state(struct kvm *kvm)
973{
974 struct vgic_dist *dist = &kvm->arch.vgic;
975 struct kvm_vcpu *vcpu;
976 int c;
977
978 if (!dist->enabled) {
979 set_bit(0, &dist->irq_pending_on_cpu);
980 return;
981 }
982
983 kvm_for_each_vcpu(c, vcpu, kvm) {
984 if (compute_pending_for_cpu(vcpu)) {
985 pr_debug("CPU%d has pending interrupts\n", c);
986 set_bit(c, &dist->irq_pending_on_cpu);
987 }
988 }
1a89dd91 989}
330690cd 990
9d949dce
MZ
991#define MK_LR_PEND(src, irq) \
992 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
a1fcb44e
MZ
993
994/*
995 * An interrupt may have been disabled after being made pending on the
996 * CPU interface (the classic case is a timer running while we're
997 * rebooting the guest - the interrupt would kick as soon as the CPU
998 * interface gets enabled, with deadly consequences).
999 *
1000 * The solution is to examine already active LRs, and check the
1001 * interrupt is still enabled. If not, just retire it.
1002 */
1003static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1004{
1005 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1006 int lr;
1007
1008 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
1009 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1010
1011 if (!vgic_irq_is_enabled(vcpu, irq)) {
cbd333a4 1012 vgic_retire_lr(lr, irq, vgic_cpu);
a1fcb44e
MZ
1013 if (vgic_irq_is_active(vcpu, irq))
1014 vgic_irq_clear_active(vcpu, irq);
1015 }
1016 }
1017}
1018
9d949dce
MZ
1019/*
1020 * Queue an interrupt to a CPU virtual interface. Return true on success,
1021 * or false if it wasn't possible to queue it.
1022 */
1023static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1024{
1025 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1026 int lr;
1027
1028 /* Sanitize the input... */
1029 BUG_ON(sgi_source_id & ~7);
1030 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1031 BUG_ON(irq >= VGIC_NR_IRQS);
1032
1033 kvm_debug("Queue IRQ%d\n", irq);
1034
1035 lr = vgic_cpu->vgic_irq_lr_map[irq];
1036
1037 /* Do we have an active interrupt for the same CPUID? */
1038 if (lr != LR_EMPTY &&
1039 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
1040 kvm_debug("LR%d piggyback for IRQ%d %x\n",
1041 lr, irq, vgic_cpu->vgic_lr[lr]);
1042 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1043 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
75da01e1 1044 return true;
9d949dce
MZ
1045 }
1046
1047 /* Try to use another LR for this interrupt */
1048 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
1049 vgic_cpu->nr_lr);
1050 if (lr >= vgic_cpu->nr_lr)
1051 return false;
1052
1053 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
1054 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
1055 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1056 set_bit(lr, vgic_cpu->lr_used);
1057
9d949dce
MZ
1058 if (!vgic_irq_is_edge(vcpu, irq))
1059 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
1060
1061 return true;
1062}
1063
1064static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1065{
1066 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1067 unsigned long sources;
1068 int vcpu_id = vcpu->vcpu_id;
1069 int c;
1070
1071 sources = dist->irq_sgi_sources[vcpu_id][irq];
1072
1073 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1074 if (vgic_queue_irq(vcpu, c, irq))
1075 clear_bit(c, &sources);
1076 }
1077
1078 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1079
1080 /*
1081 * If the sources bitmap has been cleared it means that we
1082 * could queue all the SGIs onto link registers (see the
1083 * clear_bit above), and therefore we are done with them in
1084 * our emulated gic and can get rid of them.
1085 */
1086 if (!sources) {
1087 vgic_dist_irq_clear(vcpu, irq);
1088 vgic_cpu_irq_clear(vcpu, irq);
1089 return true;
1090 }
1091
1092 return false;
1093}
1094
1095static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1096{
1097 if (vgic_irq_is_active(vcpu, irq))
1098 return true; /* level interrupt, already queued */
1099
1100 if (vgic_queue_irq(vcpu, 0, irq)) {
1101 if (vgic_irq_is_edge(vcpu, irq)) {
1102 vgic_dist_irq_clear(vcpu, irq);
1103 vgic_cpu_irq_clear(vcpu, irq);
1104 } else {
1105 vgic_irq_set_active(vcpu, irq);
1106 }
1107
1108 return true;
1109 }
1110
1111 return false;
1112}
1113
1114/*
1115 * Fill the list registers with pending interrupts before running the
1116 * guest.
1117 */
1118static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1119{
1120 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1121 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1122 int i, vcpu_id;
1123 int overflow = 0;
1124
1125 vcpu_id = vcpu->vcpu_id;
1126
1127 /*
1128 * We may not have any pending interrupt, or the interrupts
1129 * may have been serviced from another vcpu. In all cases,
1130 * move along.
1131 */
1132 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1133 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1134 goto epilog;
1135 }
1136
1137 /* SGIs */
1138 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1139 if (!vgic_queue_sgi(vcpu, i))
1140 overflow = 1;
1141 }
1142
1143 /* PPIs */
1144 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1145 if (!vgic_queue_hwirq(vcpu, i))
1146 overflow = 1;
1147 }
1148
1149 /* SPIs */
1150 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1151 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1152 overflow = 1;
1153 }
1154
1155epilog:
1156 if (overflow) {
1157 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1158 } else {
1159 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1160 /*
1161 * We're about to run this VCPU, and we've consumed
1162 * everything the distributor had in store for
1163 * us. Claim we don't have anything pending. We'll
1164 * adjust that if needed while exiting.
1165 */
1166 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1167 }
1168}
1169
1170static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1171{
1172 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1173 bool level_pending = false;
1174
1175 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1176
9d949dce
MZ
1177 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1178 /*
1179 * Some level interrupts have been EOIed. Clear their
1180 * active bit.
1181 */
1182 int lr, irq;
1183
1184 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1185 vgic_cpu->nr_lr) {
1186 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1187
1188 vgic_irq_clear_active(vcpu, irq);
1189 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1190
1191 /* Any additional pending interrupt? */
1192 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1193 vgic_cpu_irq_set(vcpu, irq);
1194 level_pending = true;
1195 } else {
1196 vgic_cpu_irq_clear(vcpu, irq);
1197 }
75da01e1
MZ
1198
1199 /*
1200 * Despite being EOIed, the LR may not have
1201 * been marked as empty.
1202 */
1203 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1204 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
9d949dce
MZ
1205 }
1206 }
1207
1208 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1209 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1210
1211 return level_pending;
1212}
1213
1214/*
33c83cb3
MZ
1215 * Sync back the VGIC state after a guest run. The distributor lock is
1216 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1217 */
1218static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1219{
1220 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1221 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1222 int lr, pending;
1223 bool level_pending;
1224
1225 level_pending = vgic_process_maintenance(vcpu);
1226
1227 /* Clear mappings for empty LRs */
1228 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1229 vgic_cpu->nr_lr) {
1230 int irq;
1231
1232 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1233 continue;
1234
1235 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1236
1237 BUG_ON(irq >= VGIC_NR_IRQS);
1238 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1239 }
1240
1241 /* Check if we still have something up our sleeve... */
1242 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1243 vgic_cpu->nr_lr);
1244 if (level_pending || pending < vgic_cpu->nr_lr)
1245 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1246}
1247
1248void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1249{
1250 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1251
1252 if (!irqchip_in_kernel(vcpu->kvm))
1253 return;
1254
1255 spin_lock(&dist->lock);
1256 __kvm_vgic_flush_hwstate(vcpu);
1257 spin_unlock(&dist->lock);
1258}
1259
1260void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1261{
33c83cb3
MZ
1262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1263
9d949dce
MZ
1264 if (!irqchip_in_kernel(vcpu->kvm))
1265 return;
1266
33c83cb3 1267 spin_lock(&dist->lock);
9d949dce 1268 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1269 spin_unlock(&dist->lock);
9d949dce
MZ
1270}
1271
1272int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1273{
1274 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1275
1276 if (!irqchip_in_kernel(vcpu->kvm))
1277 return 0;
1278
1279 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1280}
1281
5863c2ce
MZ
1282static void vgic_kick_vcpus(struct kvm *kvm)
1283{
1284 struct kvm_vcpu *vcpu;
1285 int c;
1286
1287 /*
1288 * We've injected an interrupt, time to find out who deserves
1289 * a good kick...
1290 */
1291 kvm_for_each_vcpu(c, vcpu, kvm) {
1292 if (kvm_vgic_vcpu_pending_irq(vcpu))
1293 kvm_vcpu_kick(vcpu);
1294 }
1295}
1296
1297static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1298{
1299 int is_edge = vgic_irq_is_edge(vcpu, irq);
1300 int state = vgic_dist_irq_is_pending(vcpu, irq);
1301
1302 /*
1303 * Only inject an interrupt if:
1304 * - edge triggered and we have a rising edge
1305 * - level triggered and we change level
1306 */
1307 if (is_edge)
1308 return level > state;
1309 else
1310 return level != state;
1311}
1312
1313static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1314 unsigned int irq_num, bool level)
1315{
1316 struct vgic_dist *dist = &kvm->arch.vgic;
1317 struct kvm_vcpu *vcpu;
1318 int is_edge, is_level;
1319 int enabled;
1320 bool ret = true;
1321
1322 spin_lock(&dist->lock);
1323
1324 vcpu = kvm_get_vcpu(kvm, cpuid);
1325 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1326 is_level = !is_edge;
1327
1328 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1329 ret = false;
1330 goto out;
1331 }
1332
1333 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1334 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1335 vcpu = kvm_get_vcpu(kvm, cpuid);
1336 }
1337
1338 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1339
1340 if (level)
1341 vgic_dist_irq_set(vcpu, irq_num);
1342 else
1343 vgic_dist_irq_clear(vcpu, irq_num);
1344
1345 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1346
1347 if (!enabled) {
1348 ret = false;
1349 goto out;
1350 }
1351
1352 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1353 /*
1354 * Level interrupt in progress, will be picked up
1355 * when EOId.
1356 */
1357 ret = false;
1358 goto out;
1359 }
1360
1361 if (level) {
1362 vgic_cpu_irq_set(vcpu, irq_num);
1363 set_bit(cpuid, &dist->irq_pending_on_cpu);
1364 }
1365
1366out:
1367 spin_unlock(&dist->lock);
1368
1369 return ret;
1370}
1371
1372/**
1373 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1374 * @kvm: The VM structure pointer
1375 * @cpuid: The CPU for PPIs
1376 * @irq_num: The IRQ number that is assigned to the device
1377 * @level: Edge-triggered: true: to trigger the interrupt
1378 * false: to ignore the call
1379 * Level-sensitive true: activates an interrupt
1380 * false: deactivates an interrupt
1381 *
1382 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1383 * level-sensitive interrupts. You can think of the level parameter as 1
1384 * being HIGH and 0 being LOW and all devices being active-HIGH.
1385 */
1386int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1387 bool level)
1388{
1389 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1390 vgic_kick_vcpus(kvm);
1391
1392 return 0;
1393}
1394
01ac5e34
MZ
1395static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1396{
1397 /*
1398 * We cannot rely on the vgic maintenance interrupt to be
1399 * delivered synchronously. This means we can only use it to
1400 * exit the VM, and we perform the handling of EOIed
1401 * interrupts on the exit path (see vgic_process_maintenance).
1402 */
1403 return IRQ_HANDLED;
1404}
1405
e1ba0207
CD
1406/**
1407 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1408 * @vcpu: pointer to the vcpu struct
1409 *
1410 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1411 * this vcpu and enable the VGIC for this VCPU
1412 */
01ac5e34
MZ
1413int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1414{
1415 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1416 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1417 int i;
1418
01ac5e34
MZ
1419 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1420 return -EBUSY;
1421
1422 for (i = 0; i < VGIC_NR_IRQS; i++) {
1423 if (i < VGIC_NR_PPIS)
1424 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1425 vcpu->vcpu_id, i, 1);
1426 if (i < VGIC_NR_PRIVATE_IRQS)
1427 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1428 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1429
1430 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1431 }
1432
1433 /*
1434 * By forcing VMCR to zero, the GIC will restore the binary
1435 * points to their reset values. Anything else resets to zero
1436 * anyway.
1437 */
1438 vgic_cpu->vgic_vmcr = 0;
1439
1440 vgic_cpu->nr_lr = vgic_nr_lr;
1441 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1442
1443 return 0;
1444}
1445
1446static void vgic_init_maintenance_interrupt(void *info)
1447{
1448 enable_percpu_irq(vgic_maint_irq, 0);
1449}
1450
1451static int vgic_cpu_notify(struct notifier_block *self,
1452 unsigned long action, void *cpu)
1453{
1454 switch (action) {
1455 case CPU_STARTING:
1456 case CPU_STARTING_FROZEN:
1457 vgic_init_maintenance_interrupt(NULL);
1458 break;
1459 case CPU_DYING:
1460 case CPU_DYING_FROZEN:
1461 disable_percpu_irq(vgic_maint_irq);
1462 break;
1463 }
1464
1465 return NOTIFY_OK;
1466}
1467
1468static struct notifier_block vgic_cpu_nb = {
1469 .notifier_call = vgic_cpu_notify,
1470};
1471
1472int kvm_vgic_hyp_init(void)
1473{
1474 int ret;
1475 struct resource vctrl_res;
1476 struct resource vcpu_res;
1477
1478 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1479 if (!vgic_node) {
1480 kvm_err("error: no compatible vgic node in DT\n");
1481 return -ENODEV;
1482 }
1483
1484 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1485 if (!vgic_maint_irq) {
1486 kvm_err("error getting vgic maintenance irq from DT\n");
1487 ret = -ENXIO;
1488 goto out;
1489 }
1490
1491 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1492 "vgic", kvm_get_running_vcpus());
1493 if (ret) {
1494 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1495 goto out;
1496 }
1497
1498 ret = register_cpu_notifier(&vgic_cpu_nb);
1499 if (ret) {
1500 kvm_err("Cannot register vgic CPU notifier\n");
1501 goto out_free_irq;
1502 }
1503
1504 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1505 if (ret) {
1506 kvm_err("Cannot obtain VCTRL resource\n");
1507 goto out_free_irq;
1508 }
1509
1510 vgic_vctrl_base = of_iomap(vgic_node, 2);
1511 if (!vgic_vctrl_base) {
1512 kvm_err("Cannot ioremap VCTRL\n");
1513 ret = -ENOMEM;
1514 goto out_free_irq;
1515 }
1516
1517 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1518 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1519
1520 ret = create_hyp_io_mappings(vgic_vctrl_base,
1521 vgic_vctrl_base + resource_size(&vctrl_res),
1522 vctrl_res.start);
1523 if (ret) {
1524 kvm_err("Cannot map VCTRL into hyp\n");
1525 goto out_unmap;
1526 }
1527
1528 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1529 vctrl_res.start, vgic_maint_irq);
1530 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1531
1532 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1533 kvm_err("Cannot obtain VCPU resource\n");
1534 ret = -ENXIO;
1535 goto out_unmap;
1536 }
1537 vgic_vcpu_base = vcpu_res.start;
1538
1539 goto out;
1540
1541out_unmap:
1542 iounmap(vgic_vctrl_base);
1543out_free_irq:
1544 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1545out:
1546 of_node_put(vgic_node);
1547 return ret;
1548}
1549
e1ba0207
CD
1550/**
1551 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1552 * @kvm: pointer to the kvm struct
1553 *
1554 * Map the virtual CPU interface into the VM before running any VCPUs. We
1555 * can't do this at creation time, because user space must first set the
1556 * virtual CPU interface address in the guest physical address space. Also
1557 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1558 */
01ac5e34
MZ
1559int kvm_vgic_init(struct kvm *kvm)
1560{
1561 int ret = 0, i;
1562
e1ba0207
CD
1563 if (!irqchip_in_kernel(kvm))
1564 return 0;
1565
01ac5e34
MZ
1566 mutex_lock(&kvm->lock);
1567
1568 if (vgic_initialized(kvm))
1569 goto out;
1570
1571 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1572 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1573 kvm_err("Need to set vgic cpu and dist addresses first\n");
1574 ret = -ENXIO;
1575 goto out;
1576 }
1577
1578 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1579 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1580 if (ret) {
1581 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1582 goto out;
1583 }
1584
1585 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1586 vgic_set_target_reg(kvm, 0, i);
1587
1588 kvm->arch.vgic.ready = true;
1589out:
1590 mutex_unlock(&kvm->lock);
1591 return ret;
1592}
1593
1594int kvm_vgic_create(struct kvm *kvm)
1595{
7330672b
CD
1596 int i, vcpu_lock_idx = -1, ret = 0;
1597 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1598
1599 mutex_lock(&kvm->lock);
1600
7330672b 1601 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1602 ret = -EEXIST;
1603 goto out;
1604 }
1605
7330672b
CD
1606 /*
1607 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1608 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1609 * that no other VCPUs are run while we create the vgic.
1610 */
1611 kvm_for_each_vcpu(i, vcpu, kvm) {
1612 if (!mutex_trylock(&vcpu->mutex))
1613 goto out_unlock;
1614 vcpu_lock_idx = i;
1615 }
1616
1617 kvm_for_each_vcpu(i, vcpu, kvm) {
1618 if (vcpu->arch.has_run_once) {
1619 ret = -EBUSY;
1620 goto out_unlock;
1621 }
1622 }
1623
01ac5e34
MZ
1624 spin_lock_init(&kvm->arch.vgic.lock);
1625 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1626 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1627 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1628
7330672b
CD
1629out_unlock:
1630 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1631 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1632 mutex_unlock(&vcpu->mutex);
1633 }
1634
01ac5e34
MZ
1635out:
1636 mutex_unlock(&kvm->lock);
1637 return ret;
1638}
1639
330690cd
CD
1640static bool vgic_ioaddr_overlap(struct kvm *kvm)
1641{
1642 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1643 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1644
1645 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1646 return 0;
1647 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1648 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1649 return -EBUSY;
1650 return 0;
1651}
1652
1653static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1654 phys_addr_t addr, phys_addr_t size)
1655{
1656 int ret;
1657
ce01e4e8
CD
1658 if (addr & ~KVM_PHYS_MASK)
1659 return -E2BIG;
1660
1661 if (addr & (SZ_4K - 1))
1662 return -EINVAL;
1663
330690cd
CD
1664 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1665 return -EEXIST;
1666 if (addr + size < addr)
1667 return -EINVAL;
1668
1669 ret = vgic_ioaddr_overlap(kvm);
1670 if (ret)
1671 return ret;
1672 *ioaddr = addr;
1673 return ret;
1674}
1675
ce01e4e8
CD
1676/**
1677 * kvm_vgic_addr - set or get vgic VM base addresses
1678 * @kvm: pointer to the vm struct
1679 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1680 * @addr: pointer to address value
1681 * @write: if true set the address in the VM address space, if false read the
1682 * address
1683 *
1684 * Set or get the vgic base addresses for the distributor and the virtual CPU
1685 * interface in the VM physical address space. These addresses are properties
1686 * of the emulated core/SoC and therefore user space initially knows this
1687 * information.
1688 */
1689int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1690{
1691 int r = 0;
1692 struct vgic_dist *vgic = &kvm->arch.vgic;
1693
330690cd
CD
1694 mutex_lock(&kvm->lock);
1695 switch (type) {
1696 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
1697 if (write) {
1698 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1699 *addr, KVM_VGIC_V2_DIST_SIZE);
1700 } else {
1701 *addr = vgic->vgic_dist_base;
1702 }
330690cd
CD
1703 break;
1704 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
1705 if (write) {
1706 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1707 *addr, KVM_VGIC_V2_CPU_SIZE);
1708 } else {
1709 *addr = vgic->vgic_cpu_base;
1710 }
330690cd
CD
1711 break;
1712 default:
1713 r = -ENODEV;
1714 }
1715
1716 mutex_unlock(&kvm->lock);
1717 return r;
1718}
7330672b 1719
c07a0191
CD
1720static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1721 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1722{
fa20f5ae
CD
1723 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1724 u32 reg, mask = 0, shift = 0;
1725 bool updated = false;
1726
1727 switch (offset & ~0x3) {
1728 case GIC_CPU_CTRL:
1729 mask = GICH_VMCR_CTRL_MASK;
1730 shift = GICH_VMCR_CTRL_SHIFT;
1731 break;
1732 case GIC_CPU_PRIMASK:
1733 mask = GICH_VMCR_PRIMASK_MASK;
1734 shift = GICH_VMCR_PRIMASK_SHIFT;
1735 break;
1736 case GIC_CPU_BINPOINT:
1737 mask = GICH_VMCR_BINPOINT_MASK;
1738 shift = GICH_VMCR_BINPOINT_SHIFT;
1739 break;
1740 case GIC_CPU_ALIAS_BINPOINT:
1741 mask = GICH_VMCR_ALIAS_BINPOINT_MASK;
1742 shift = GICH_VMCR_ALIAS_BINPOINT_SHIFT;
1743 break;
1744 }
1745
1746 if (!mmio->is_write) {
1747 reg = (vgic_cpu->vgic_vmcr & mask) >> shift;
1748 mmio_data_write(mmio, ~0, reg);
1749 } else {
1750 reg = mmio_data_read(mmio, ~0);
1751 reg = (reg << shift) & mask;
1752 if (reg != (vgic_cpu->vgic_vmcr & mask))
1753 updated = true;
1754 vgic_cpu->vgic_vmcr &= ~mask;
1755 vgic_cpu->vgic_vmcr |= reg;
1756 }
1757 return updated;
1758}
1759
1760static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1761 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1762{
1763 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
c07a0191
CD
1764}
1765
fa20f5ae
CD
1766static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1767 struct kvm_exit_mmio *mmio,
1768 phys_addr_t offset)
1769{
1770 u32 reg;
1771
1772 if (mmio->is_write)
1773 return false;
1774
1775 /* GICC_IIDR */
1776 reg = (PRODUCT_ID_KVM << 20) |
1777 (GICC_ARCH_VERSION_V2 << 16) |
1778 (IMPLEMENTER_ARM << 0);
1779 mmio_data_write(mmio, ~0, reg);
1780 return false;
1781}
1782
1783/*
1784 * CPU Interface Register accesses - these are not accessed by the VM, but by
1785 * user space for saving and restoring VGIC state.
1786 */
c07a0191
CD
1787static const struct mmio_range vgic_cpu_ranges[] = {
1788 {
1789 .base = GIC_CPU_CTRL,
1790 .len = 12,
1791 .handle_mmio = handle_cpu_mmio_misc,
1792 },
1793 {
1794 .base = GIC_CPU_ALIAS_BINPOINT,
1795 .len = 4,
fa20f5ae 1796 .handle_mmio = handle_mmio_abpr,
c07a0191
CD
1797 },
1798 {
1799 .base = GIC_CPU_ACTIVEPRIO,
1800 .len = 16,
fa20f5ae 1801 .handle_mmio = handle_mmio_raz_wi,
c07a0191
CD
1802 },
1803 {
1804 .base = GIC_CPU_IDENT,
1805 .len = 4,
fa20f5ae 1806 .handle_mmio = handle_cpu_mmio_ident,
c07a0191
CD
1807 },
1808};
1809
1810static int vgic_attr_regs_access(struct kvm_device *dev,
1811 struct kvm_device_attr *attr,
1812 u32 *reg, bool is_write)
1813{
1814 const struct mmio_range *r = NULL, *ranges;
1815 phys_addr_t offset;
1816 int ret, cpuid, c;
1817 struct kvm_vcpu *vcpu, *tmp_vcpu;
1818 struct vgic_dist *vgic;
1819 struct kvm_exit_mmio mmio;
1820
1821 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1822 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1823 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1824
1825 mutex_lock(&dev->kvm->lock);
1826
1827 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1828 ret = -EINVAL;
1829 goto out;
1830 }
1831
1832 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1833 vgic = &dev->kvm->arch.vgic;
1834
1835 mmio.len = 4;
1836 mmio.is_write = is_write;
1837 if (is_write)
1838 mmio_data_write(&mmio, ~0, *reg);
1839 switch (attr->group) {
1840 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1841 mmio.phys_addr = vgic->vgic_dist_base + offset;
1842 ranges = vgic_dist_ranges;
1843 break;
1844 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1845 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1846 ranges = vgic_cpu_ranges;
1847 break;
1848 default:
1849 BUG();
1850 }
1851 r = find_matching_range(ranges, &mmio, offset);
1852
1853 if (unlikely(!r || !r->handle_mmio)) {
1854 ret = -ENXIO;
1855 goto out;
1856 }
1857
1858
1859 spin_lock(&vgic->lock);
1860
1861 /*
1862 * Ensure that no other VCPU is running by checking the vcpu->cpu
1863 * field. If no other VPCUs are running we can safely access the VGIC
1864 * state, because even if another VPU is run after this point, that
1865 * VCPU will not touch the vgic state, because it will block on
1866 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1867 */
1868 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1869 if (unlikely(tmp_vcpu->cpu != -1)) {
1870 ret = -EBUSY;
1871 goto out_vgic_unlock;
1872 }
1873 }
1874
cbd333a4
CD
1875 /*
1876 * Move all pending IRQs from the LRs on all VCPUs so the pending
1877 * state can be properly represented in the register state accessible
1878 * through this API.
1879 */
1880 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1881 vgic_unqueue_irqs(tmp_vcpu);
1882
c07a0191
CD
1883 offset -= r->base;
1884 r->handle_mmio(vcpu, &mmio, offset);
1885
1886 if (!is_write)
1887 *reg = mmio_data_read(&mmio, ~0);
1888
1889 ret = 0;
1890out_vgic_unlock:
1891 spin_unlock(&vgic->lock);
1892out:
1893 mutex_unlock(&dev->kvm->lock);
1894 return ret;
1895}
1896
7330672b
CD
1897static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1898{
ce01e4e8
CD
1899 int r;
1900
1901 switch (attr->group) {
1902 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1903 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1904 u64 addr;
1905 unsigned long type = (unsigned long)attr->attr;
1906
1907 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1908 return -EFAULT;
1909
1910 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1911 return (r == -ENODEV) ? -ENXIO : r;
1912 }
c07a0191
CD
1913
1914 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1915 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1916 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1917 u32 reg;
1918
1919 if (get_user(reg, uaddr))
1920 return -EFAULT;
1921
1922 return vgic_attr_regs_access(dev, attr, &reg, true);
1923 }
1924
ce01e4e8
CD
1925 }
1926
7330672b
CD
1927 return -ENXIO;
1928}
1929
1930static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1931{
ce01e4e8
CD
1932 int r = -ENXIO;
1933
1934 switch (attr->group) {
1935 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1936 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1937 u64 addr;
1938 unsigned long type = (unsigned long)attr->attr;
1939
1940 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1941 if (r)
1942 return (r == -ENODEV) ? -ENXIO : r;
1943
1944 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1945 return -EFAULT;
c07a0191
CD
1946 break;
1947 }
1948
1949 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1950 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1951 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1952 u32 reg = 0;
1953
1954 r = vgic_attr_regs_access(dev, attr, &reg, false);
1955 if (r)
1956 return r;
1957 r = put_user(reg, uaddr);
1958 break;
ce01e4e8 1959 }
c07a0191 1960
ce01e4e8
CD
1961 }
1962
1963 return r;
7330672b
CD
1964}
1965
c07a0191
CD
1966static int vgic_has_attr_regs(const struct mmio_range *ranges,
1967 phys_addr_t offset)
1968{
1969 struct kvm_exit_mmio dev_attr_mmio;
1970
1971 dev_attr_mmio.len = 4;
1972 if (find_matching_range(ranges, &dev_attr_mmio, offset))
1973 return 0;
1974 else
1975 return -ENXIO;
1976}
1977
7330672b
CD
1978static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1979{
c07a0191
CD
1980 phys_addr_t offset;
1981
ce01e4e8
CD
1982 switch (attr->group) {
1983 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1984 switch (attr->attr) {
1985 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1986 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1987 return 0;
1988 }
1989 break;
c07a0191
CD
1990 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1991 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1992 return vgic_has_attr_regs(vgic_dist_ranges, offset);
1993 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1994 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1995 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 1996 }
7330672b
CD
1997 return -ENXIO;
1998}
1999
2000static void vgic_destroy(struct kvm_device *dev)
2001{
2002 kfree(dev);
2003}
2004
2005static int vgic_create(struct kvm_device *dev, u32 type)
2006{
2007 return kvm_vgic_create(dev->kvm);
2008}
2009
2010struct kvm_device_ops kvm_arm_vgic_v2_ops = {
2011 .name = "kvm-arm-vgic",
2012 .create = vgic_create,
2013 .destroy = vgic_destroy,
2014 .set_attr = vgic_set_attr,
2015 .get_attr = vgic_get_attr,
2016 .has_attr = vgic_has_attr,
2017};
This page took 0.194662 seconds and 5 git commands to generate.