KVM: arm-vgic: Add vgic reg access from dev attr
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
27
28#include <linux/irqchip/arm-gic.h>
29
1a89dd91 30#include <asm/kvm_emulate.h>
01ac5e34
MZ
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
1a89dd91 33
b47ef92a
MZ
34/*
35 * How the whole thing works (courtesy of Christoffer Dall):
36 *
37 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
38 * something is pending
39 * - VGIC pending interrupts are stored on the vgic.irq_state vgic
40 * bitmap (this bitmap is updated by both user land ioctls and guest
41 * mmio ops, and other in-kernel peripherals such as the
42 * arch. timers) and indicate the 'wire' state.
43 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
44 * recalculated
45 * - To calculate the oracle, we need info for each cpu from
46 * compute_pending_for_cpu, which considers:
47 * - PPI: dist->irq_state & dist->irq_enable
48 * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target
49 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
50 * registers, stored on each vcpu. We only keep one bit of
51 * information per interrupt, making sure that only one vcpu can
52 * accept the interrupt.
53 * - The same is true when injecting an interrupt, except that we only
54 * consider a single interrupt at a time. The irq_spi_cpu array
55 * contains the target CPU for each SPI.
56 *
57 * The handling of level interrupts adds some extra complexity. We
58 * need to track when the interrupt has been EOIed, so we can sample
59 * the 'line' again. This is achieved as such:
60 *
61 * - When a level interrupt is moved onto a vcpu, the corresponding
62 * bit in irq_active is set. As long as this bit is set, the line
63 * will be ignored for further interrupts. The interrupt is injected
64 * into the vcpu with the GICH_LR_EOI bit set (generate a
65 * maintenance interrupt on EOI).
66 * - When the interrupt is EOIed, the maintenance interrupt fires,
67 * and clears the corresponding bit in irq_active. This allow the
68 * interrupt line to be sampled again.
69 */
70
330690cd
CD
71#define VGIC_ADDR_UNDEF (-1)
72#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
73
01ac5e34
MZ
74/* Physical address of vgic virtual cpu interface */
75static phys_addr_t vgic_vcpu_base;
76
77/* Virtual control interface base address */
78static void __iomem *vgic_vctrl_base;
79
80static struct device_node *vgic_node;
81
1a89dd91
MZ
82#define ACCESS_READ_VALUE (1 << 0)
83#define ACCESS_READ_RAZ (0 << 0)
84#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
85#define ACCESS_WRITE_IGNORED (0 << 1)
86#define ACCESS_WRITE_SETBIT (1 << 1)
87#define ACCESS_WRITE_CLEARBIT (2 << 1)
88#define ACCESS_WRITE_VALUE (3 << 1)
89#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
90
a1fcb44e 91static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
b47ef92a 92static void vgic_update_state(struct kvm *kvm);
5863c2ce 93static void vgic_kick_vcpus(struct kvm *kvm);
b47ef92a 94static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
01ac5e34
MZ
95static u32 vgic_nr_lr;
96
97static unsigned int vgic_maint_irq;
b47ef92a
MZ
98
99static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
100 int cpuid, u32 offset)
101{
102 offset >>= 2;
103 if (!offset)
104 return x->percpu[cpuid].reg;
105 else
106 return x->shared.reg + offset - 1;
107}
108
109static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
110 int cpuid, int irq)
111{
112 if (irq < VGIC_NR_PRIVATE_IRQS)
113 return test_bit(irq, x->percpu[cpuid].reg_ul);
114
115 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
116}
117
118static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
119 int irq, int val)
120{
121 unsigned long *reg;
122
123 if (irq < VGIC_NR_PRIVATE_IRQS) {
124 reg = x->percpu[cpuid].reg_ul;
125 } else {
126 reg = x->shared.reg_ul;
127 irq -= VGIC_NR_PRIVATE_IRQS;
128 }
129
130 if (val)
131 set_bit(irq, reg);
132 else
133 clear_bit(irq, reg);
134}
135
136static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
137{
138 if (unlikely(cpuid >= VGIC_MAX_CPUS))
139 return NULL;
140 return x->percpu[cpuid].reg_ul;
141}
142
143static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
144{
145 return x->shared.reg_ul;
146}
147
148static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
149{
150 offset >>= 2;
151 BUG_ON(offset > (VGIC_NR_IRQS / 4));
8d98915b 152 if (offset < 8)
b47ef92a
MZ
153 return x->percpu[cpuid] + offset;
154 else
155 return x->shared + offset - 8;
156}
157
158#define VGIC_CFG_LEVEL 0
159#define VGIC_CFG_EDGE 1
160
161static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
162{
163 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
164 int irq_val;
165
166 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
167 return irq_val == VGIC_CFG_EDGE;
168}
169
170static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
171{
172 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
173
174 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
175}
176
9d949dce
MZ
177static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
178{
179 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
180
181 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
182}
183
184static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
185{
186 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
187
188 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
189}
190
191static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
192{
193 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
194
195 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
196}
197
198static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
199{
200 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
201
202 return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq);
203}
204
b47ef92a
MZ
205static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq)
206{
207 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
208
209 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1);
210}
211
212static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq)
213{
214 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
215
216 vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0);
217}
218
219static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
220{
221 if (irq < VGIC_NR_PRIVATE_IRQS)
222 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
223 else
224 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
225 vcpu->arch.vgic_cpu.pending_shared);
226}
227
228static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
229{
230 if (irq < VGIC_NR_PRIVATE_IRQS)
231 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
232 else
233 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
234 vcpu->arch.vgic_cpu.pending_shared);
235}
236
1a89dd91
MZ
237static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
238{
239 return *((u32 *)mmio->data) & mask;
240}
241
242static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
243{
244 *((u32 *)mmio->data) = value & mask;
245}
246
247/**
248 * vgic_reg_access - access vgic register
249 * @mmio: pointer to the data describing the mmio access
250 * @reg: pointer to the virtual backing of vgic distributor data
251 * @offset: least significant 2 bits used for word offset
252 * @mode: ACCESS_ mode (see defines above)
253 *
254 * Helper to make vgic register access easier using one of the access
255 * modes defined for vgic register access
256 * (read,raz,write-ignored,setbit,clearbit,write)
257 */
258static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
259 phys_addr_t offset, int mode)
260{
261 int word_offset = (offset & 3) * 8;
262 u32 mask = (1UL << (mmio->len * 8)) - 1;
263 u32 regval;
264
265 /*
266 * Any alignment fault should have been delivered to the guest
267 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
268 */
269
270 if (reg) {
271 regval = *reg;
272 } else {
273 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
274 regval = 0;
275 }
276
277 if (mmio->is_write) {
278 u32 data = mmio_data_read(mmio, mask) << word_offset;
279 switch (ACCESS_WRITE_MASK(mode)) {
280 case ACCESS_WRITE_IGNORED:
281 return;
282
283 case ACCESS_WRITE_SETBIT:
284 regval |= data;
285 break;
286
287 case ACCESS_WRITE_CLEARBIT:
288 regval &= ~data;
289 break;
290
291 case ACCESS_WRITE_VALUE:
292 regval = (regval & ~(mask << word_offset)) | data;
293 break;
294 }
295 *reg = regval;
296 } else {
297 switch (ACCESS_READ_MASK(mode)) {
298 case ACCESS_READ_RAZ:
299 regval = 0;
300 /* fall through */
301
302 case ACCESS_READ_VALUE:
303 mmio_data_write(mmio, mask, regval >> word_offset);
304 }
305 }
306}
307
b47ef92a
MZ
308static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
309 struct kvm_exit_mmio *mmio, phys_addr_t offset)
310{
311 u32 reg;
312 u32 word_offset = offset & 3;
313
314 switch (offset & ~3) {
315 case 0: /* CTLR */
316 reg = vcpu->kvm->arch.vgic.enabled;
317 vgic_reg_access(mmio, &reg, word_offset,
318 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
319 if (mmio->is_write) {
320 vcpu->kvm->arch.vgic.enabled = reg & 1;
321 vgic_update_state(vcpu->kvm);
322 return true;
323 }
324 break;
325
326 case 4: /* TYPER */
327 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
328 reg |= (VGIC_NR_IRQS >> 5) - 1;
329 vgic_reg_access(mmio, &reg, word_offset,
330 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
331 break;
332
333 case 8: /* IIDR */
334 reg = 0x4B00043B;
335 vgic_reg_access(mmio, &reg, word_offset,
336 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
337 break;
338 }
339
340 return false;
341}
342
343static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
344 struct kvm_exit_mmio *mmio, phys_addr_t offset)
345{
346 vgic_reg_access(mmio, NULL, offset,
347 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
348 return false;
349}
350
351static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
352 struct kvm_exit_mmio *mmio,
353 phys_addr_t offset)
354{
355 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
356 vcpu->vcpu_id, offset);
357 vgic_reg_access(mmio, reg, offset,
358 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
359 if (mmio->is_write) {
360 vgic_update_state(vcpu->kvm);
361 return true;
362 }
363
364 return false;
365}
366
367static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
368 struct kvm_exit_mmio *mmio,
369 phys_addr_t offset)
370{
371 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
372 vcpu->vcpu_id, offset);
373 vgic_reg_access(mmio, reg, offset,
374 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
375 if (mmio->is_write) {
376 if (offset < 4) /* Force SGI enabled */
377 *reg |= 0xffff;
a1fcb44e 378 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
379 vgic_update_state(vcpu->kvm);
380 return true;
381 }
382
383 return false;
384}
385
386static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
387 struct kvm_exit_mmio *mmio,
388 phys_addr_t offset)
389{
390 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
391 vcpu->vcpu_id, offset);
392 vgic_reg_access(mmio, reg, offset,
393 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
394 if (mmio->is_write) {
395 vgic_update_state(vcpu->kvm);
396 return true;
397 }
398
399 return false;
400}
401
402static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
403 struct kvm_exit_mmio *mmio,
404 phys_addr_t offset)
405{
406 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state,
407 vcpu->vcpu_id, offset);
408 vgic_reg_access(mmio, reg, offset,
409 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
410 if (mmio->is_write) {
411 vgic_update_state(vcpu->kvm);
412 return true;
413 }
414
415 return false;
416}
417
418static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
419 struct kvm_exit_mmio *mmio,
420 phys_addr_t offset)
421{
422 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
423 vcpu->vcpu_id, offset);
424 vgic_reg_access(mmio, reg, offset,
425 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
426 return false;
427}
428
429#define GICD_ITARGETSR_SIZE 32
430#define GICD_CPUTARGETS_BITS 8
431#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
432static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
433{
434 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 435 int i;
b47ef92a
MZ
436 u32 val = 0;
437
438 irq -= VGIC_NR_PRIVATE_IRQS;
439
986af8e0
MZ
440 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
441 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
442
443 return val;
444}
445
446static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
447{
448 struct vgic_dist *dist = &kvm->arch.vgic;
449 struct kvm_vcpu *vcpu;
450 int i, c;
451 unsigned long *bmap;
452 u32 target;
453
454 irq -= VGIC_NR_PRIVATE_IRQS;
455
456 /*
457 * Pick the LSB in each byte. This ensures we target exactly
458 * one vcpu per IRQ. If the byte is null, assume we target
459 * CPU0.
460 */
461 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
462 int shift = i * GICD_CPUTARGETS_BITS;
463 target = ffs((val >> shift) & 0xffU);
464 target = target ? (target - 1) : 0;
465 dist->irq_spi_cpu[irq + i] = target;
466 kvm_for_each_vcpu(c, vcpu, kvm) {
467 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
468 if (c == target)
469 set_bit(irq + i, bmap);
470 else
471 clear_bit(irq + i, bmap);
472 }
473 }
474}
475
476static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
477 struct kvm_exit_mmio *mmio,
478 phys_addr_t offset)
479{
480 u32 reg;
481
482 /* We treat the banked interrupts targets as read-only */
483 if (offset < 32) {
484 u32 roreg = 1 << vcpu->vcpu_id;
485 roreg |= roreg << 8;
486 roreg |= roreg << 16;
487
488 vgic_reg_access(mmio, &roreg, offset,
489 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
490 return false;
491 }
492
493 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
494 vgic_reg_access(mmio, &reg, offset,
495 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
496 if (mmio->is_write) {
497 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
498 vgic_update_state(vcpu->kvm);
499 return true;
500 }
501
502 return false;
503}
504
505static u32 vgic_cfg_expand(u16 val)
506{
507 u32 res = 0;
508 int i;
509
510 /*
511 * Turn a 16bit value like abcd...mnop into a 32bit word
512 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
513 */
514 for (i = 0; i < 16; i++)
515 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
516
517 return res;
518}
519
520static u16 vgic_cfg_compress(u32 val)
521{
522 u16 res = 0;
523 int i;
524
525 /*
526 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
527 * abcd...mnop which is what we really care about.
528 */
529 for (i = 0; i < 16; i++)
530 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
531
532 return res;
533}
534
535/*
536 * The distributor uses 2 bits per IRQ for the CFG register, but the
537 * LSB is always 0. As such, we only keep the upper bit, and use the
538 * two above functions to compress/expand the bits
539 */
540static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
541 struct kvm_exit_mmio *mmio, phys_addr_t offset)
542{
543 u32 val;
6545eae3
MZ
544 u32 *reg;
545
546 offset >>= 1;
547 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
548 vcpu->vcpu_id, offset);
549
b47ef92a
MZ
550 if (offset & 2)
551 val = *reg >> 16;
552 else
553 val = *reg & 0xffff;
554
555 val = vgic_cfg_expand(val);
556 vgic_reg_access(mmio, &val, offset,
557 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
558 if (mmio->is_write) {
559 if (offset < 4) {
560 *reg = ~0U; /* Force PPIs/SGIs to 1 */
561 return false;
562 }
563
564 val = vgic_cfg_compress(val);
565 if (offset & 2) {
566 *reg &= 0xffff;
567 *reg |= val << 16;
568 } else {
569 *reg &= 0xffff << 16;
570 *reg |= val;
571 }
572 }
573
574 return false;
575}
576
577static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
578 struct kvm_exit_mmio *mmio, phys_addr_t offset)
579{
580 u32 reg;
581 vgic_reg_access(mmio, &reg, offset,
582 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
583 if (mmio->is_write) {
584 vgic_dispatch_sgi(vcpu, reg);
585 vgic_update_state(vcpu->kvm);
586 return true;
587 }
588
589 return false;
590}
591
c07a0191
CD
592static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
593 struct kvm_exit_mmio *mmio,
594 phys_addr_t offset)
595{
596 return false;
597}
598
599static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
600 struct kvm_exit_mmio *mmio,
601 phys_addr_t offset)
602{
603 return false;
604}
605
1a89dd91
MZ
606/*
607 * I would have liked to use the kvm_bus_io_*() API instead, but it
608 * cannot cope with banked registers (only the VM pointer is passed
609 * around, and we need the vcpu). One of these days, someone please
610 * fix it!
611 */
612struct mmio_range {
613 phys_addr_t base;
614 unsigned long len;
615 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
616 phys_addr_t offset);
617};
618
1006e8cb 619static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
620 {
621 .base = GIC_DIST_CTRL,
622 .len = 12,
623 .handle_mmio = handle_mmio_misc,
624 },
625 {
626 .base = GIC_DIST_IGROUP,
627 .len = VGIC_NR_IRQS / 8,
628 .handle_mmio = handle_mmio_raz_wi,
629 },
630 {
631 .base = GIC_DIST_ENABLE_SET,
632 .len = VGIC_NR_IRQS / 8,
633 .handle_mmio = handle_mmio_set_enable_reg,
634 },
635 {
636 .base = GIC_DIST_ENABLE_CLEAR,
637 .len = VGIC_NR_IRQS / 8,
638 .handle_mmio = handle_mmio_clear_enable_reg,
639 },
640 {
641 .base = GIC_DIST_PENDING_SET,
642 .len = VGIC_NR_IRQS / 8,
643 .handle_mmio = handle_mmio_set_pending_reg,
644 },
645 {
646 .base = GIC_DIST_PENDING_CLEAR,
647 .len = VGIC_NR_IRQS / 8,
648 .handle_mmio = handle_mmio_clear_pending_reg,
649 },
650 {
651 .base = GIC_DIST_ACTIVE_SET,
652 .len = VGIC_NR_IRQS / 8,
653 .handle_mmio = handle_mmio_raz_wi,
654 },
655 {
656 .base = GIC_DIST_ACTIVE_CLEAR,
657 .len = VGIC_NR_IRQS / 8,
658 .handle_mmio = handle_mmio_raz_wi,
659 },
660 {
661 .base = GIC_DIST_PRI,
662 .len = VGIC_NR_IRQS,
663 .handle_mmio = handle_mmio_priority_reg,
664 },
665 {
666 .base = GIC_DIST_TARGET,
667 .len = VGIC_NR_IRQS,
668 .handle_mmio = handle_mmio_target_reg,
669 },
670 {
671 .base = GIC_DIST_CONFIG,
672 .len = VGIC_NR_IRQS / 4,
673 .handle_mmio = handle_mmio_cfg_reg,
674 },
675 {
676 .base = GIC_DIST_SOFTINT,
677 .len = 4,
678 .handle_mmio = handle_mmio_sgi_reg,
679 },
c07a0191
CD
680 {
681 .base = GIC_DIST_SGI_PENDING_CLEAR,
682 .len = VGIC_NR_SGIS,
683 .handle_mmio = handle_mmio_sgi_clear,
684 },
685 {
686 .base = GIC_DIST_SGI_PENDING_SET,
687 .len = VGIC_NR_SGIS,
688 .handle_mmio = handle_mmio_sgi_set,
689 },
1a89dd91
MZ
690 {}
691};
692
693static const
694struct mmio_range *find_matching_range(const struct mmio_range *ranges,
695 struct kvm_exit_mmio *mmio,
1006e8cb 696 phys_addr_t offset)
1a89dd91
MZ
697{
698 const struct mmio_range *r = ranges;
1a89dd91
MZ
699
700 while (r->len) {
1006e8cb
CD
701 if (offset >= r->base &&
702 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
703 return r;
704 r++;
705 }
706
707 return NULL;
708}
709
710/**
711 * vgic_handle_mmio - handle an in-kernel MMIO access
712 * @vcpu: pointer to the vcpu performing the access
713 * @run: pointer to the kvm_run structure
714 * @mmio: pointer to the data describing the access
715 *
716 * returns true if the MMIO access has been performed in kernel space,
717 * and false if it needs to be emulated in user space.
718 */
719bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
720 struct kvm_exit_mmio *mmio)
721{
b47ef92a
MZ
722 const struct mmio_range *range;
723 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
724 unsigned long base = dist->vgic_dist_base;
725 bool updated_state;
726 unsigned long offset;
727
728 if (!irqchip_in_kernel(vcpu->kvm) ||
729 mmio->phys_addr < base ||
730 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
731 return false;
732
733 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
734 if (mmio->len > 4) {
735 kvm_inject_dabt(vcpu, mmio->phys_addr);
736 return true;
737 }
738
1006e8cb
CD
739 offset = mmio->phys_addr - base;
740 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
741 if (unlikely(!range || !range->handle_mmio)) {
742 pr_warn("Unhandled access %d %08llx %d\n",
743 mmio->is_write, mmio->phys_addr, mmio->len);
744 return false;
745 }
746
747 spin_lock(&vcpu->kvm->arch.vgic.lock);
748 offset = mmio->phys_addr - range->base - base;
749 updated_state = range->handle_mmio(vcpu, mmio, offset);
750 spin_unlock(&vcpu->kvm->arch.vgic.lock);
751 kvm_prepare_mmio(run, mmio);
752 kvm_handle_mmio_return(vcpu, run);
753
5863c2ce
MZ
754 if (updated_state)
755 vgic_kick_vcpus(vcpu->kvm);
756
b47ef92a
MZ
757 return true;
758}
759
760static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
761{
762 struct kvm *kvm = vcpu->kvm;
763 struct vgic_dist *dist = &kvm->arch.vgic;
764 int nrcpus = atomic_read(&kvm->online_vcpus);
765 u8 target_cpus;
766 int sgi, mode, c, vcpu_id;
767
768 vcpu_id = vcpu->vcpu_id;
769
770 sgi = reg & 0xf;
771 target_cpus = (reg >> 16) & 0xff;
772 mode = (reg >> 24) & 3;
773
774 switch (mode) {
775 case 0:
776 if (!target_cpus)
777 return;
778
779 case 1:
780 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
781 break;
782
783 case 2:
784 target_cpus = 1 << vcpu_id;
785 break;
786 }
787
788 kvm_for_each_vcpu(c, vcpu, kvm) {
789 if (target_cpus & 1) {
790 /* Flag the SGI as pending */
791 vgic_dist_irq_set(vcpu, sgi);
792 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
793 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
794 }
795
796 target_cpus >>= 1;
797 }
798}
799
800static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
801{
9d949dce
MZ
802 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
803 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
804 unsigned long pending_private, pending_shared;
805 int vcpu_id;
806
807 vcpu_id = vcpu->vcpu_id;
808 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
809 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
810
811 pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id);
812 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
813 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
814
815 pending = vgic_bitmap_get_shared_map(&dist->irq_state);
816 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
817 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
818 bitmap_and(pend_shared, pend_shared,
819 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
820 VGIC_NR_SHARED_IRQS);
821
822 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
823 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
824 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
825 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
826}
827
828/*
829 * Update the interrupt state and determine which CPUs have pending
830 * interrupts. Must be called with distributor lock held.
831 */
832static void vgic_update_state(struct kvm *kvm)
833{
834 struct vgic_dist *dist = &kvm->arch.vgic;
835 struct kvm_vcpu *vcpu;
836 int c;
837
838 if (!dist->enabled) {
839 set_bit(0, &dist->irq_pending_on_cpu);
840 return;
841 }
842
843 kvm_for_each_vcpu(c, vcpu, kvm) {
844 if (compute_pending_for_cpu(vcpu)) {
845 pr_debug("CPU%d has pending interrupts\n", c);
846 set_bit(c, &dist->irq_pending_on_cpu);
847 }
848 }
1a89dd91 849}
330690cd 850
9d949dce
MZ
851#define LR_CPUID(lr) \
852 (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT)
853#define MK_LR_PEND(src, irq) \
854 (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq))
a1fcb44e
MZ
855
856/*
857 * An interrupt may have been disabled after being made pending on the
858 * CPU interface (the classic case is a timer running while we're
859 * rebooting the guest - the interrupt would kick as soon as the CPU
860 * interface gets enabled, with deadly consequences).
861 *
862 * The solution is to examine already active LRs, and check the
863 * interrupt is still enabled. If not, just retire it.
864 */
865static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
866{
867 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
868 int lr;
869
870 for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
871 int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
872
873 if (!vgic_irq_is_enabled(vcpu, irq)) {
874 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
875 clear_bit(lr, vgic_cpu->lr_used);
876 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE;
877 if (vgic_irq_is_active(vcpu, irq))
878 vgic_irq_clear_active(vcpu, irq);
879 }
880 }
881}
882
9d949dce
MZ
883/*
884 * Queue an interrupt to a CPU virtual interface. Return true on success,
885 * or false if it wasn't possible to queue it.
886 */
887static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
888{
889 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
890 int lr;
891
892 /* Sanitize the input... */
893 BUG_ON(sgi_source_id & ~7);
894 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
895 BUG_ON(irq >= VGIC_NR_IRQS);
896
897 kvm_debug("Queue IRQ%d\n", irq);
898
899 lr = vgic_cpu->vgic_irq_lr_map[irq];
900
901 /* Do we have an active interrupt for the same CPUID? */
902 if (lr != LR_EMPTY &&
903 (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) {
904 kvm_debug("LR%d piggyback for IRQ%d %x\n",
905 lr, irq, vgic_cpu->vgic_lr[lr]);
906 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
907 vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT;
75da01e1 908 return true;
9d949dce
MZ
909 }
910
911 /* Try to use another LR for this interrupt */
912 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
913 vgic_cpu->nr_lr);
914 if (lr >= vgic_cpu->nr_lr)
915 return false;
916
917 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
918 vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq);
919 vgic_cpu->vgic_irq_lr_map[irq] = lr;
920 set_bit(lr, vgic_cpu->lr_used);
921
9d949dce
MZ
922 if (!vgic_irq_is_edge(vcpu, irq))
923 vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI;
924
925 return true;
926}
927
928static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
929{
930 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
931 unsigned long sources;
932 int vcpu_id = vcpu->vcpu_id;
933 int c;
934
935 sources = dist->irq_sgi_sources[vcpu_id][irq];
936
937 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
938 if (vgic_queue_irq(vcpu, c, irq))
939 clear_bit(c, &sources);
940 }
941
942 dist->irq_sgi_sources[vcpu_id][irq] = sources;
943
944 /*
945 * If the sources bitmap has been cleared it means that we
946 * could queue all the SGIs onto link registers (see the
947 * clear_bit above), and therefore we are done with them in
948 * our emulated gic and can get rid of them.
949 */
950 if (!sources) {
951 vgic_dist_irq_clear(vcpu, irq);
952 vgic_cpu_irq_clear(vcpu, irq);
953 return true;
954 }
955
956 return false;
957}
958
959static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
960{
961 if (vgic_irq_is_active(vcpu, irq))
962 return true; /* level interrupt, already queued */
963
964 if (vgic_queue_irq(vcpu, 0, irq)) {
965 if (vgic_irq_is_edge(vcpu, irq)) {
966 vgic_dist_irq_clear(vcpu, irq);
967 vgic_cpu_irq_clear(vcpu, irq);
968 } else {
969 vgic_irq_set_active(vcpu, irq);
970 }
971
972 return true;
973 }
974
975 return false;
976}
977
978/*
979 * Fill the list registers with pending interrupts before running the
980 * guest.
981 */
982static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
983{
984 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
985 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
986 int i, vcpu_id;
987 int overflow = 0;
988
989 vcpu_id = vcpu->vcpu_id;
990
991 /*
992 * We may not have any pending interrupt, or the interrupts
993 * may have been serviced from another vcpu. In all cases,
994 * move along.
995 */
996 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
997 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
998 goto epilog;
999 }
1000
1001 /* SGIs */
1002 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1003 if (!vgic_queue_sgi(vcpu, i))
1004 overflow = 1;
1005 }
1006
1007 /* PPIs */
1008 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1009 if (!vgic_queue_hwirq(vcpu, i))
1010 overflow = 1;
1011 }
1012
1013 /* SPIs */
1014 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1015 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1016 overflow = 1;
1017 }
1018
1019epilog:
1020 if (overflow) {
1021 vgic_cpu->vgic_hcr |= GICH_HCR_UIE;
1022 } else {
1023 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1024 /*
1025 * We're about to run this VCPU, and we've consumed
1026 * everything the distributor had in store for
1027 * us. Claim we don't have anything pending. We'll
1028 * adjust that if needed while exiting.
1029 */
1030 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1031 }
1032}
1033
1034static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1035{
1036 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1037 bool level_pending = false;
1038
1039 kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr);
1040
9d949dce
MZ
1041 if (vgic_cpu->vgic_misr & GICH_MISR_EOI) {
1042 /*
1043 * Some level interrupts have been EOIed. Clear their
1044 * active bit.
1045 */
1046 int lr, irq;
1047
1048 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr,
1049 vgic_cpu->nr_lr) {
1050 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1051
1052 vgic_irq_clear_active(vcpu, irq);
1053 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI;
1054
1055 /* Any additional pending interrupt? */
1056 if (vgic_dist_irq_is_pending(vcpu, irq)) {
1057 vgic_cpu_irq_set(vcpu, irq);
1058 level_pending = true;
1059 } else {
1060 vgic_cpu_irq_clear(vcpu, irq);
1061 }
75da01e1
MZ
1062
1063 /*
1064 * Despite being EOIed, the LR may not have
1065 * been marked as empty.
1066 */
1067 set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr);
1068 vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT;
9d949dce
MZ
1069 }
1070 }
1071
1072 if (vgic_cpu->vgic_misr & GICH_MISR_U)
1073 vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE;
1074
1075 return level_pending;
1076}
1077
1078/*
33c83cb3
MZ
1079 * Sync back the VGIC state after a guest run. The distributor lock is
1080 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1081 */
1082static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1083{
1084 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1085 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1086 int lr, pending;
1087 bool level_pending;
1088
1089 level_pending = vgic_process_maintenance(vcpu);
1090
1091 /* Clear mappings for empty LRs */
1092 for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr,
1093 vgic_cpu->nr_lr) {
1094 int irq;
1095
1096 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1097 continue;
1098
1099 irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID;
1100
1101 BUG_ON(irq >= VGIC_NR_IRQS);
1102 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1103 }
1104
1105 /* Check if we still have something up our sleeve... */
1106 pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr,
1107 vgic_cpu->nr_lr);
1108 if (level_pending || pending < vgic_cpu->nr_lr)
1109 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1110}
1111
1112void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1113{
1114 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1115
1116 if (!irqchip_in_kernel(vcpu->kvm))
1117 return;
1118
1119 spin_lock(&dist->lock);
1120 __kvm_vgic_flush_hwstate(vcpu);
1121 spin_unlock(&dist->lock);
1122}
1123
1124void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1125{
33c83cb3
MZ
1126 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1127
9d949dce
MZ
1128 if (!irqchip_in_kernel(vcpu->kvm))
1129 return;
1130
33c83cb3 1131 spin_lock(&dist->lock);
9d949dce 1132 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1133 spin_unlock(&dist->lock);
9d949dce
MZ
1134}
1135
1136int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1137{
1138 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1139
1140 if (!irqchip_in_kernel(vcpu->kvm))
1141 return 0;
1142
1143 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1144}
1145
5863c2ce
MZ
1146static void vgic_kick_vcpus(struct kvm *kvm)
1147{
1148 struct kvm_vcpu *vcpu;
1149 int c;
1150
1151 /*
1152 * We've injected an interrupt, time to find out who deserves
1153 * a good kick...
1154 */
1155 kvm_for_each_vcpu(c, vcpu, kvm) {
1156 if (kvm_vgic_vcpu_pending_irq(vcpu))
1157 kvm_vcpu_kick(vcpu);
1158 }
1159}
1160
1161static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1162{
1163 int is_edge = vgic_irq_is_edge(vcpu, irq);
1164 int state = vgic_dist_irq_is_pending(vcpu, irq);
1165
1166 /*
1167 * Only inject an interrupt if:
1168 * - edge triggered and we have a rising edge
1169 * - level triggered and we change level
1170 */
1171 if (is_edge)
1172 return level > state;
1173 else
1174 return level != state;
1175}
1176
1177static bool vgic_update_irq_state(struct kvm *kvm, int cpuid,
1178 unsigned int irq_num, bool level)
1179{
1180 struct vgic_dist *dist = &kvm->arch.vgic;
1181 struct kvm_vcpu *vcpu;
1182 int is_edge, is_level;
1183 int enabled;
1184 bool ret = true;
1185
1186 spin_lock(&dist->lock);
1187
1188 vcpu = kvm_get_vcpu(kvm, cpuid);
1189 is_edge = vgic_irq_is_edge(vcpu, irq_num);
1190 is_level = !is_edge;
1191
1192 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1193 ret = false;
1194 goto out;
1195 }
1196
1197 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1198 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1199 vcpu = kvm_get_vcpu(kvm, cpuid);
1200 }
1201
1202 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1203
1204 if (level)
1205 vgic_dist_irq_set(vcpu, irq_num);
1206 else
1207 vgic_dist_irq_clear(vcpu, irq_num);
1208
1209 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1210
1211 if (!enabled) {
1212 ret = false;
1213 goto out;
1214 }
1215
1216 if (is_level && vgic_irq_is_active(vcpu, irq_num)) {
1217 /*
1218 * Level interrupt in progress, will be picked up
1219 * when EOId.
1220 */
1221 ret = false;
1222 goto out;
1223 }
1224
1225 if (level) {
1226 vgic_cpu_irq_set(vcpu, irq_num);
1227 set_bit(cpuid, &dist->irq_pending_on_cpu);
1228 }
1229
1230out:
1231 spin_unlock(&dist->lock);
1232
1233 return ret;
1234}
1235
1236/**
1237 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1238 * @kvm: The VM structure pointer
1239 * @cpuid: The CPU for PPIs
1240 * @irq_num: The IRQ number that is assigned to the device
1241 * @level: Edge-triggered: true: to trigger the interrupt
1242 * false: to ignore the call
1243 * Level-sensitive true: activates an interrupt
1244 * false: deactivates an interrupt
1245 *
1246 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1247 * level-sensitive interrupts. You can think of the level parameter as 1
1248 * being HIGH and 0 being LOW and all devices being active-HIGH.
1249 */
1250int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1251 bool level)
1252{
1253 if (vgic_update_irq_state(kvm, cpuid, irq_num, level))
1254 vgic_kick_vcpus(kvm);
1255
1256 return 0;
1257}
1258
01ac5e34
MZ
1259static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1260{
1261 /*
1262 * We cannot rely on the vgic maintenance interrupt to be
1263 * delivered synchronously. This means we can only use it to
1264 * exit the VM, and we perform the handling of EOIed
1265 * interrupts on the exit path (see vgic_process_maintenance).
1266 */
1267 return IRQ_HANDLED;
1268}
1269
e1ba0207
CD
1270/**
1271 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1272 * @vcpu: pointer to the vcpu struct
1273 *
1274 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1275 * this vcpu and enable the VGIC for this VCPU
1276 */
01ac5e34
MZ
1277int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1278{
1279 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1280 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1281 int i;
1282
01ac5e34
MZ
1283 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1284 return -EBUSY;
1285
1286 for (i = 0; i < VGIC_NR_IRQS; i++) {
1287 if (i < VGIC_NR_PPIS)
1288 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1289 vcpu->vcpu_id, i, 1);
1290 if (i < VGIC_NR_PRIVATE_IRQS)
1291 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1292 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1293
1294 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1295 }
1296
1297 /*
1298 * By forcing VMCR to zero, the GIC will restore the binary
1299 * points to their reset values. Anything else resets to zero
1300 * anyway.
1301 */
1302 vgic_cpu->vgic_vmcr = 0;
1303
1304 vgic_cpu->nr_lr = vgic_nr_lr;
1305 vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */
1306
1307 return 0;
1308}
1309
1310static void vgic_init_maintenance_interrupt(void *info)
1311{
1312 enable_percpu_irq(vgic_maint_irq, 0);
1313}
1314
1315static int vgic_cpu_notify(struct notifier_block *self,
1316 unsigned long action, void *cpu)
1317{
1318 switch (action) {
1319 case CPU_STARTING:
1320 case CPU_STARTING_FROZEN:
1321 vgic_init_maintenance_interrupt(NULL);
1322 break;
1323 case CPU_DYING:
1324 case CPU_DYING_FROZEN:
1325 disable_percpu_irq(vgic_maint_irq);
1326 break;
1327 }
1328
1329 return NOTIFY_OK;
1330}
1331
1332static struct notifier_block vgic_cpu_nb = {
1333 .notifier_call = vgic_cpu_notify,
1334};
1335
1336int kvm_vgic_hyp_init(void)
1337{
1338 int ret;
1339 struct resource vctrl_res;
1340 struct resource vcpu_res;
1341
1342 vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic");
1343 if (!vgic_node) {
1344 kvm_err("error: no compatible vgic node in DT\n");
1345 return -ENODEV;
1346 }
1347
1348 vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0);
1349 if (!vgic_maint_irq) {
1350 kvm_err("error getting vgic maintenance irq from DT\n");
1351 ret = -ENXIO;
1352 goto out;
1353 }
1354
1355 ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler,
1356 "vgic", kvm_get_running_vcpus());
1357 if (ret) {
1358 kvm_err("Cannot register interrupt %d\n", vgic_maint_irq);
1359 goto out;
1360 }
1361
1362 ret = register_cpu_notifier(&vgic_cpu_nb);
1363 if (ret) {
1364 kvm_err("Cannot register vgic CPU notifier\n");
1365 goto out_free_irq;
1366 }
1367
1368 ret = of_address_to_resource(vgic_node, 2, &vctrl_res);
1369 if (ret) {
1370 kvm_err("Cannot obtain VCTRL resource\n");
1371 goto out_free_irq;
1372 }
1373
1374 vgic_vctrl_base = of_iomap(vgic_node, 2);
1375 if (!vgic_vctrl_base) {
1376 kvm_err("Cannot ioremap VCTRL\n");
1377 ret = -ENOMEM;
1378 goto out_free_irq;
1379 }
1380
1381 vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR);
1382 vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1;
1383
1384 ret = create_hyp_io_mappings(vgic_vctrl_base,
1385 vgic_vctrl_base + resource_size(&vctrl_res),
1386 vctrl_res.start);
1387 if (ret) {
1388 kvm_err("Cannot map VCTRL into hyp\n");
1389 goto out_unmap;
1390 }
1391
1392 kvm_info("%s@%llx IRQ%d\n", vgic_node->name,
1393 vctrl_res.start, vgic_maint_irq);
1394 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
1395
1396 if (of_address_to_resource(vgic_node, 3, &vcpu_res)) {
1397 kvm_err("Cannot obtain VCPU resource\n");
1398 ret = -ENXIO;
1399 goto out_unmap;
1400 }
1401 vgic_vcpu_base = vcpu_res.start;
1402
1403 goto out;
1404
1405out_unmap:
1406 iounmap(vgic_vctrl_base);
1407out_free_irq:
1408 free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus());
1409out:
1410 of_node_put(vgic_node);
1411 return ret;
1412}
1413
e1ba0207
CD
1414/**
1415 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1416 * @kvm: pointer to the kvm struct
1417 *
1418 * Map the virtual CPU interface into the VM before running any VCPUs. We
1419 * can't do this at creation time, because user space must first set the
1420 * virtual CPU interface address in the guest physical address space. Also
1421 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1422 */
01ac5e34
MZ
1423int kvm_vgic_init(struct kvm *kvm)
1424{
1425 int ret = 0, i;
1426
e1ba0207
CD
1427 if (!irqchip_in_kernel(kvm))
1428 return 0;
1429
01ac5e34
MZ
1430 mutex_lock(&kvm->lock);
1431
1432 if (vgic_initialized(kvm))
1433 goto out;
1434
1435 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1436 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1437 kvm_err("Need to set vgic cpu and dist addresses first\n");
1438 ret = -ENXIO;
1439 goto out;
1440 }
1441
1442 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
1443 vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE);
1444 if (ret) {
1445 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1446 goto out;
1447 }
1448
1449 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1450 vgic_set_target_reg(kvm, 0, i);
1451
1452 kvm->arch.vgic.ready = true;
1453out:
1454 mutex_unlock(&kvm->lock);
1455 return ret;
1456}
1457
1458int kvm_vgic_create(struct kvm *kvm)
1459{
7330672b
CD
1460 int i, vcpu_lock_idx = -1, ret = 0;
1461 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1462
1463 mutex_lock(&kvm->lock);
1464
7330672b 1465 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1466 ret = -EEXIST;
1467 goto out;
1468 }
1469
7330672b
CD
1470 /*
1471 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1472 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1473 * that no other VCPUs are run while we create the vgic.
1474 */
1475 kvm_for_each_vcpu(i, vcpu, kvm) {
1476 if (!mutex_trylock(&vcpu->mutex))
1477 goto out_unlock;
1478 vcpu_lock_idx = i;
1479 }
1480
1481 kvm_for_each_vcpu(i, vcpu, kvm) {
1482 if (vcpu->arch.has_run_once) {
1483 ret = -EBUSY;
1484 goto out_unlock;
1485 }
1486 }
1487
01ac5e34
MZ
1488 spin_lock_init(&kvm->arch.vgic.lock);
1489 kvm->arch.vgic.vctrl_base = vgic_vctrl_base;
1490 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1491 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1492
7330672b
CD
1493out_unlock:
1494 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1495 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1496 mutex_unlock(&vcpu->mutex);
1497 }
1498
01ac5e34
MZ
1499out:
1500 mutex_unlock(&kvm->lock);
1501 return ret;
1502}
1503
330690cd
CD
1504static bool vgic_ioaddr_overlap(struct kvm *kvm)
1505{
1506 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1507 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1508
1509 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1510 return 0;
1511 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1512 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1513 return -EBUSY;
1514 return 0;
1515}
1516
1517static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1518 phys_addr_t addr, phys_addr_t size)
1519{
1520 int ret;
1521
ce01e4e8
CD
1522 if (addr & ~KVM_PHYS_MASK)
1523 return -E2BIG;
1524
1525 if (addr & (SZ_4K - 1))
1526 return -EINVAL;
1527
330690cd
CD
1528 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1529 return -EEXIST;
1530 if (addr + size < addr)
1531 return -EINVAL;
1532
1533 ret = vgic_ioaddr_overlap(kvm);
1534 if (ret)
1535 return ret;
1536 *ioaddr = addr;
1537 return ret;
1538}
1539
ce01e4e8
CD
1540/**
1541 * kvm_vgic_addr - set or get vgic VM base addresses
1542 * @kvm: pointer to the vm struct
1543 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1544 * @addr: pointer to address value
1545 * @write: if true set the address in the VM address space, if false read the
1546 * address
1547 *
1548 * Set or get the vgic base addresses for the distributor and the virtual CPU
1549 * interface in the VM physical address space. These addresses are properties
1550 * of the emulated core/SoC and therefore user space initially knows this
1551 * information.
1552 */
1553int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1554{
1555 int r = 0;
1556 struct vgic_dist *vgic = &kvm->arch.vgic;
1557
330690cd
CD
1558 mutex_lock(&kvm->lock);
1559 switch (type) {
1560 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
1561 if (write) {
1562 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1563 *addr, KVM_VGIC_V2_DIST_SIZE);
1564 } else {
1565 *addr = vgic->vgic_dist_base;
1566 }
330690cd
CD
1567 break;
1568 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
1569 if (write) {
1570 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1571 *addr, KVM_VGIC_V2_CPU_SIZE);
1572 } else {
1573 *addr = vgic->vgic_cpu_base;
1574 }
330690cd
CD
1575 break;
1576 default:
1577 r = -ENODEV;
1578 }
1579
1580 mutex_unlock(&kvm->lock);
1581 return r;
1582}
7330672b 1583
c07a0191
CD
1584static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1585 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1586{
1587 return true;
1588}
1589
1590static const struct mmio_range vgic_cpu_ranges[] = {
1591 {
1592 .base = GIC_CPU_CTRL,
1593 .len = 12,
1594 .handle_mmio = handle_cpu_mmio_misc,
1595 },
1596 {
1597 .base = GIC_CPU_ALIAS_BINPOINT,
1598 .len = 4,
1599 .handle_mmio = handle_cpu_mmio_misc,
1600 },
1601 {
1602 .base = GIC_CPU_ACTIVEPRIO,
1603 .len = 16,
1604 .handle_mmio = handle_cpu_mmio_misc,
1605 },
1606 {
1607 .base = GIC_CPU_IDENT,
1608 .len = 4,
1609 .handle_mmio = handle_cpu_mmio_misc,
1610 },
1611};
1612
1613static int vgic_attr_regs_access(struct kvm_device *dev,
1614 struct kvm_device_attr *attr,
1615 u32 *reg, bool is_write)
1616{
1617 const struct mmio_range *r = NULL, *ranges;
1618 phys_addr_t offset;
1619 int ret, cpuid, c;
1620 struct kvm_vcpu *vcpu, *tmp_vcpu;
1621 struct vgic_dist *vgic;
1622 struct kvm_exit_mmio mmio;
1623
1624 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1625 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1626 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1627
1628 mutex_lock(&dev->kvm->lock);
1629
1630 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1631 ret = -EINVAL;
1632 goto out;
1633 }
1634
1635 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1636 vgic = &dev->kvm->arch.vgic;
1637
1638 mmio.len = 4;
1639 mmio.is_write = is_write;
1640 if (is_write)
1641 mmio_data_write(&mmio, ~0, *reg);
1642 switch (attr->group) {
1643 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1644 mmio.phys_addr = vgic->vgic_dist_base + offset;
1645 ranges = vgic_dist_ranges;
1646 break;
1647 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1648 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1649 ranges = vgic_cpu_ranges;
1650 break;
1651 default:
1652 BUG();
1653 }
1654 r = find_matching_range(ranges, &mmio, offset);
1655
1656 if (unlikely(!r || !r->handle_mmio)) {
1657 ret = -ENXIO;
1658 goto out;
1659 }
1660
1661
1662 spin_lock(&vgic->lock);
1663
1664 /*
1665 * Ensure that no other VCPU is running by checking the vcpu->cpu
1666 * field. If no other VPCUs are running we can safely access the VGIC
1667 * state, because even if another VPU is run after this point, that
1668 * VCPU will not touch the vgic state, because it will block on
1669 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1670 */
1671 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1672 if (unlikely(tmp_vcpu->cpu != -1)) {
1673 ret = -EBUSY;
1674 goto out_vgic_unlock;
1675 }
1676 }
1677
1678 offset -= r->base;
1679 r->handle_mmio(vcpu, &mmio, offset);
1680
1681 if (!is_write)
1682 *reg = mmio_data_read(&mmio, ~0);
1683
1684 ret = 0;
1685out_vgic_unlock:
1686 spin_unlock(&vgic->lock);
1687out:
1688 mutex_unlock(&dev->kvm->lock);
1689 return ret;
1690}
1691
7330672b
CD
1692static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1693{
ce01e4e8
CD
1694 int r;
1695
1696 switch (attr->group) {
1697 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1698 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1699 u64 addr;
1700 unsigned long type = (unsigned long)attr->attr;
1701
1702 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1703 return -EFAULT;
1704
1705 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1706 return (r == -ENODEV) ? -ENXIO : r;
1707 }
c07a0191
CD
1708
1709 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1710 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1711 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1712 u32 reg;
1713
1714 if (get_user(reg, uaddr))
1715 return -EFAULT;
1716
1717 return vgic_attr_regs_access(dev, attr, &reg, true);
1718 }
1719
ce01e4e8
CD
1720 }
1721
7330672b
CD
1722 return -ENXIO;
1723}
1724
1725static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1726{
ce01e4e8
CD
1727 int r = -ENXIO;
1728
1729 switch (attr->group) {
1730 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1731 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1732 u64 addr;
1733 unsigned long type = (unsigned long)attr->attr;
1734
1735 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1736 if (r)
1737 return (r == -ENODEV) ? -ENXIO : r;
1738
1739 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1740 return -EFAULT;
c07a0191
CD
1741 break;
1742 }
1743
1744 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1745 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1746 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1747 u32 reg = 0;
1748
1749 r = vgic_attr_regs_access(dev, attr, &reg, false);
1750 if (r)
1751 return r;
1752 r = put_user(reg, uaddr);
1753 break;
ce01e4e8 1754 }
c07a0191 1755
ce01e4e8
CD
1756 }
1757
1758 return r;
7330672b
CD
1759}
1760
c07a0191
CD
1761static int vgic_has_attr_regs(const struct mmio_range *ranges,
1762 phys_addr_t offset)
1763{
1764 struct kvm_exit_mmio dev_attr_mmio;
1765
1766 dev_attr_mmio.len = 4;
1767 if (find_matching_range(ranges, &dev_attr_mmio, offset))
1768 return 0;
1769 else
1770 return -ENXIO;
1771}
1772
7330672b
CD
1773static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1774{
c07a0191
CD
1775 phys_addr_t offset;
1776
ce01e4e8
CD
1777 switch (attr->group) {
1778 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1779 switch (attr->attr) {
1780 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1781 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1782 return 0;
1783 }
1784 break;
c07a0191
CD
1785 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1786 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1787 return vgic_has_attr_regs(vgic_dist_ranges, offset);
1788 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1789 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1790 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 1791 }
7330672b
CD
1792 return -ENXIO;
1793}
1794
1795static void vgic_destroy(struct kvm_device *dev)
1796{
1797 kfree(dev);
1798}
1799
1800static int vgic_create(struct kvm_device *dev, u32 type)
1801{
1802 return kvm_vgic_create(dev->kvm);
1803}
1804
1805struct kvm_device_ops kvm_arm_vgic_v2_ops = {
1806 .name = "kvm-arm-vgic",
1807 .create = vgic_create,
1808 .destroy = vgic_destroy,
1809 .set_attr = vgic_set_attr,
1810 .get_attr = vgic_get_attr,
1811 .has_attr = vgic_has_attr,
1812};
This page took 0.156388 seconds and 5 git commands to generate.