arm/arm64: KVM: vgic: switch to dynamic allocation
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
1a89dd91 34
b47ef92a
MZ
35/*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
39 * something is pending on the CPU interface.
40 * - Interrupts that are pending on the distributor are stored on the
41 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
42 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
43 * arch. timers).
b47ef92a
MZ
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
227844f5
CD
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 50 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
7e362919 54 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
55 * - The same is true when injecting an interrupt, except that we only
56 * consider a single interrupt at a time. The irq_spi_cpu array
57 * contains the target CPU for each SPI.
58 *
59 * The handling of level interrupts adds some extra complexity. We
60 * need to track when the interrupt has been EOIed, so we can sample
61 * the 'line' again. This is achieved as such:
62 *
63 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 64 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
65 * will be ignored for further interrupts. The interrupt is injected
66 * into the vcpu with the GICH_LR_EOI bit set (generate a
67 * maintenance interrupt on EOI).
68 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 69 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 70 * interrupt line to be sampled again.
faa1b46c
CD
71 * - Note that level-triggered interrupts can also be set to pending from
72 * writes to GICD_ISPENDRn and lowering the external input line does not
73 * cause the interrupt to become inactive in such a situation.
74 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
75 * inactive as long as the external input line is held high.
b47ef92a
MZ
76 */
77
330690cd
CD
78#define VGIC_ADDR_UNDEF (-1)
79#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
80
fa20f5ae
CD
81#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
82#define IMPLEMENTER_ARM 0x43b
83#define GICC_ARCH_VERSION_V2 0x2
84
1a89dd91
MZ
85#define ACCESS_READ_VALUE (1 << 0)
86#define ACCESS_READ_RAZ (0 << 0)
87#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
88#define ACCESS_WRITE_IGNORED (0 << 1)
89#define ACCESS_WRITE_SETBIT (1 << 1)
90#define ACCESS_WRITE_CLEARBIT (2 << 1)
91#define ACCESS_WRITE_VALUE (3 << 1)
92#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
93
a1fcb44e 94static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 95static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
b47ef92a 96static void vgic_update_state(struct kvm *kvm);
5863c2ce 97static void vgic_kick_vcpus(struct kvm *kvm);
c1bfb577 98static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi);
b47ef92a 99static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
8d5c6b06
MZ
100static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
101static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
beee38b9
MZ
102static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
103static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
01ac5e34 104
8f186d52
MZ
105static const struct vgic_ops *vgic_ops;
106static const struct vgic_params *vgic;
b47ef92a 107
9662fb48 108/*
c1bfb577
MZ
109 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
110 * extracts u32s out of them.
9662fb48
VK
111 *
112 * This does not work on 64-bit BE systems, because the bitmap access
113 * will store two consecutive 32-bit words with the higher-addressed
114 * register's bits at the lower index and the lower-addressed register's
115 * bits at the higher index.
116 *
117 * Therefore, swizzle the register index when accessing the 32-bit word
118 * registers to access the right register's value.
119 */
120#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
121#define REG_OFFSET_SWIZZLE 1
122#else
123#define REG_OFFSET_SWIZZLE 0
124#endif
b47ef92a 125
c1bfb577
MZ
126static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
127{
128 int nr_longs;
129
130 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
131
132 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
133 if (!b->private)
134 return -ENOMEM;
135
136 b->shared = b->private + nr_cpus;
137
138 return 0;
139}
140
141static void vgic_free_bitmap(struct vgic_bitmap *b)
142{
143 kfree(b->private);
144 b->private = NULL;
145 b->shared = NULL;
146}
147
b47ef92a
MZ
148static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
149 int cpuid, u32 offset)
150{
151 offset >>= 2;
152 if (!offset)
c1bfb577 153 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 154 else
c1bfb577 155 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
156}
157
158static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
159 int cpuid, int irq)
160{
161 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 162 return test_bit(irq, x->private + cpuid);
b47ef92a 163
c1bfb577 164 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
165}
166
167static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
168 int irq, int val)
169{
170 unsigned long *reg;
171
172 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 173 reg = x->private + cpuid;
b47ef92a 174 } else {
c1bfb577 175 reg = x->shared;
b47ef92a
MZ
176 irq -= VGIC_NR_PRIVATE_IRQS;
177 }
178
179 if (val)
180 set_bit(irq, reg);
181 else
182 clear_bit(irq, reg);
183}
184
185static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
186{
c1bfb577 187 return x->private + cpuid;
b47ef92a
MZ
188}
189
190static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
191{
c1bfb577
MZ
192 return x->shared;
193}
194
195static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
196{
197 int size;
198
199 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
200 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
201
202 x->private = kzalloc(size, GFP_KERNEL);
203 if (!x->private)
204 return -ENOMEM;
205
206 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
207 return 0;
208}
209
210static void vgic_free_bytemap(struct vgic_bytemap *b)
211{
212 kfree(b->private);
213 b->private = NULL;
214 b->shared = NULL;
b47ef92a
MZ
215}
216
217static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
218{
c1bfb577
MZ
219 u32 *reg;
220
221 if (offset < VGIC_NR_PRIVATE_IRQS) {
222 reg = x->private;
223 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
224 } else {
225 reg = x->shared;
226 offset -= VGIC_NR_PRIVATE_IRQS;
227 }
228
229 return reg + (offset / sizeof(u32));
b47ef92a
MZ
230}
231
232#define VGIC_CFG_LEVEL 0
233#define VGIC_CFG_EDGE 1
234
235static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
236{
237 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
238 int irq_val;
239
240 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
241 return irq_val == VGIC_CFG_EDGE;
242}
243
244static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
245{
246 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247
248 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
249}
250
dbf20f9d 251static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
252{
253 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
254
dbf20f9d 255 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
256}
257
dbf20f9d 258static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
259{
260 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
261
dbf20f9d 262 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
263}
264
dbf20f9d 265static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
266{
267 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
268
dbf20f9d 269 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
270}
271
faa1b46c
CD
272static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
273{
274 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
275
276 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
277}
278
279static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
280{
281 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
282
283 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
284}
285
286static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
287{
288 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
289
290 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
291}
292
293static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
294{
295 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
296
297 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
298}
299
300static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
301{
302 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
303
304 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
305}
306
9d949dce
MZ
307static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
308{
309 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
310
227844f5 311 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
312}
313
227844f5 314static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
315{
316 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
317
227844f5 318 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
319}
320
227844f5 321static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
322{
323 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
324
227844f5 325 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
326}
327
328static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
329{
330 if (irq < VGIC_NR_PRIVATE_IRQS)
331 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
332 else
333 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
334 vcpu->arch.vgic_cpu.pending_shared);
335}
336
337static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
338{
339 if (irq < VGIC_NR_PRIVATE_IRQS)
340 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
341 else
342 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
343 vcpu->arch.vgic_cpu.pending_shared);
344}
345
dbf20f9d
CD
346static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
347{
348 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
349}
350
1a89dd91
MZ
351static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
352{
1c9f0471 353 return le32_to_cpu(*((u32 *)mmio->data)) & mask;
1a89dd91
MZ
354}
355
356static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
357{
1c9f0471 358 *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
1a89dd91
MZ
359}
360
361/**
362 * vgic_reg_access - access vgic register
363 * @mmio: pointer to the data describing the mmio access
364 * @reg: pointer to the virtual backing of vgic distributor data
365 * @offset: least significant 2 bits used for word offset
366 * @mode: ACCESS_ mode (see defines above)
367 *
368 * Helper to make vgic register access easier using one of the access
369 * modes defined for vgic register access
370 * (read,raz,write-ignored,setbit,clearbit,write)
371 */
372static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
373 phys_addr_t offset, int mode)
374{
375 int word_offset = (offset & 3) * 8;
376 u32 mask = (1UL << (mmio->len * 8)) - 1;
377 u32 regval;
378
379 /*
380 * Any alignment fault should have been delivered to the guest
381 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
382 */
383
384 if (reg) {
385 regval = *reg;
386 } else {
387 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
388 regval = 0;
389 }
390
391 if (mmio->is_write) {
392 u32 data = mmio_data_read(mmio, mask) << word_offset;
393 switch (ACCESS_WRITE_MASK(mode)) {
394 case ACCESS_WRITE_IGNORED:
395 return;
396
397 case ACCESS_WRITE_SETBIT:
398 regval |= data;
399 break;
400
401 case ACCESS_WRITE_CLEARBIT:
402 regval &= ~data;
403 break;
404
405 case ACCESS_WRITE_VALUE:
406 regval = (regval & ~(mask << word_offset)) | data;
407 break;
408 }
409 *reg = regval;
410 } else {
411 switch (ACCESS_READ_MASK(mode)) {
412 case ACCESS_READ_RAZ:
413 regval = 0;
414 /* fall through */
415
416 case ACCESS_READ_VALUE:
417 mmio_data_write(mmio, mask, regval >> word_offset);
418 }
419 }
420}
421
b47ef92a
MZ
422static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
423 struct kvm_exit_mmio *mmio, phys_addr_t offset)
424{
425 u32 reg;
426 u32 word_offset = offset & 3;
427
428 switch (offset & ~3) {
fa20f5ae 429 case 0: /* GICD_CTLR */
b47ef92a
MZ
430 reg = vcpu->kvm->arch.vgic.enabled;
431 vgic_reg_access(mmio, &reg, word_offset,
432 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
433 if (mmio->is_write) {
434 vcpu->kvm->arch.vgic.enabled = reg & 1;
435 vgic_update_state(vcpu->kvm);
436 return true;
437 }
438 break;
439
fa20f5ae 440 case 4: /* GICD_TYPER */
b47ef92a
MZ
441 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
442 reg |= (VGIC_NR_IRQS >> 5) - 1;
443 vgic_reg_access(mmio, &reg, word_offset,
444 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
445 break;
446
fa20f5ae
CD
447 case 8: /* GICD_IIDR */
448 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
b47ef92a
MZ
449 vgic_reg_access(mmio, &reg, word_offset,
450 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
451 break;
452 }
453
454 return false;
455}
456
457static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
458 struct kvm_exit_mmio *mmio, phys_addr_t offset)
459{
460 vgic_reg_access(mmio, NULL, offset,
461 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
462 return false;
463}
464
465static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
466 struct kvm_exit_mmio *mmio,
467 phys_addr_t offset)
468{
469 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
470 vcpu->vcpu_id, offset);
471 vgic_reg_access(mmio, reg, offset,
472 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
473 if (mmio->is_write) {
474 vgic_update_state(vcpu->kvm);
475 return true;
476 }
477
478 return false;
479}
480
481static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
482 struct kvm_exit_mmio *mmio,
483 phys_addr_t offset)
484{
485 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
486 vcpu->vcpu_id, offset);
487 vgic_reg_access(mmio, reg, offset,
488 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
489 if (mmio->is_write) {
490 if (offset < 4) /* Force SGI enabled */
491 *reg |= 0xffff;
a1fcb44e 492 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
493 vgic_update_state(vcpu->kvm);
494 return true;
495 }
496
497 return false;
498}
499
500static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
501 struct kvm_exit_mmio *mmio,
502 phys_addr_t offset)
503{
9da48b55 504 u32 *reg, orig;
faa1b46c
CD
505 u32 level_mask;
506 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
507
508 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu->vcpu_id, offset);
509 level_mask = (~(*reg));
510
511 /* Mark both level and edge triggered irqs as pending */
512 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
9da48b55 513 orig = *reg;
b47ef92a
MZ
514 vgic_reg_access(mmio, reg, offset,
515 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
faa1b46c 516
b47ef92a 517 if (mmio->is_write) {
faa1b46c
CD
518 /* Set the soft-pending flag only for level-triggered irqs */
519 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
520 vcpu->vcpu_id, offset);
521 vgic_reg_access(mmio, reg, offset,
522 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
523 *reg &= level_mask;
524
9da48b55
CD
525 /* Ignore writes to SGIs */
526 if (offset < 2) {
527 *reg &= ~0xffff;
528 *reg |= orig & 0xffff;
529 }
530
b47ef92a
MZ
531 vgic_update_state(vcpu->kvm);
532 return true;
533 }
534
535 return false;
536}
537
538static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
539 struct kvm_exit_mmio *mmio,
540 phys_addr_t offset)
541{
faa1b46c 542 u32 *level_active;
9da48b55 543 u32 *reg, orig;
faa1b46c
CD
544 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
545
546 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu->vcpu_id, offset);
9da48b55 547 orig = *reg;
b47ef92a
MZ
548 vgic_reg_access(mmio, reg, offset,
549 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
550 if (mmio->is_write) {
faa1b46c
CD
551 /* Re-set level triggered level-active interrupts */
552 level_active = vgic_bitmap_get_reg(&dist->irq_level,
553 vcpu->vcpu_id, offset);
554 reg = vgic_bitmap_get_reg(&dist->irq_pending,
555 vcpu->vcpu_id, offset);
556 *reg |= *level_active;
557
9da48b55
CD
558 /* Ignore writes to SGIs */
559 if (offset < 2) {
560 *reg &= ~0xffff;
561 *reg |= orig & 0xffff;
562 }
563
faa1b46c
CD
564 /* Clear soft-pending flags */
565 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
566 vcpu->vcpu_id, offset);
567 vgic_reg_access(mmio, reg, offset,
568 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
569
b47ef92a
MZ
570 vgic_update_state(vcpu->kvm);
571 return true;
572 }
573
574 return false;
575}
576
577static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
578 struct kvm_exit_mmio *mmio,
579 phys_addr_t offset)
580{
581 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
582 vcpu->vcpu_id, offset);
583 vgic_reg_access(mmio, reg, offset,
584 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
585 return false;
586}
587
588#define GICD_ITARGETSR_SIZE 32
589#define GICD_CPUTARGETS_BITS 8
590#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
591static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
592{
593 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 594 int i;
b47ef92a
MZ
595 u32 val = 0;
596
597 irq -= VGIC_NR_PRIVATE_IRQS;
598
986af8e0
MZ
599 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
600 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
601
602 return val;
603}
604
605static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
606{
607 struct vgic_dist *dist = &kvm->arch.vgic;
608 struct kvm_vcpu *vcpu;
609 int i, c;
610 unsigned long *bmap;
611 u32 target;
612
613 irq -= VGIC_NR_PRIVATE_IRQS;
614
615 /*
616 * Pick the LSB in each byte. This ensures we target exactly
617 * one vcpu per IRQ. If the byte is null, assume we target
618 * CPU0.
619 */
620 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
621 int shift = i * GICD_CPUTARGETS_BITS;
622 target = ffs((val >> shift) & 0xffU);
623 target = target ? (target - 1) : 0;
624 dist->irq_spi_cpu[irq + i] = target;
625 kvm_for_each_vcpu(c, vcpu, kvm) {
626 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
627 if (c == target)
628 set_bit(irq + i, bmap);
629 else
630 clear_bit(irq + i, bmap);
631 }
632 }
633}
634
635static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
636 struct kvm_exit_mmio *mmio,
637 phys_addr_t offset)
638{
639 u32 reg;
640
641 /* We treat the banked interrupts targets as read-only */
642 if (offset < 32) {
643 u32 roreg = 1 << vcpu->vcpu_id;
644 roreg |= roreg << 8;
645 roreg |= roreg << 16;
646
647 vgic_reg_access(mmio, &roreg, offset,
648 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
649 return false;
650 }
651
652 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
653 vgic_reg_access(mmio, &reg, offset,
654 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
655 if (mmio->is_write) {
656 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
657 vgic_update_state(vcpu->kvm);
658 return true;
659 }
660
661 return false;
662}
663
664static u32 vgic_cfg_expand(u16 val)
665{
666 u32 res = 0;
667 int i;
668
669 /*
670 * Turn a 16bit value like abcd...mnop into a 32bit word
671 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
672 */
673 for (i = 0; i < 16; i++)
674 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
675
676 return res;
677}
678
679static u16 vgic_cfg_compress(u32 val)
680{
681 u16 res = 0;
682 int i;
683
684 /*
685 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
686 * abcd...mnop which is what we really care about.
687 */
688 for (i = 0; i < 16; i++)
689 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
690
691 return res;
692}
693
694/*
695 * The distributor uses 2 bits per IRQ for the CFG register, but the
696 * LSB is always 0. As such, we only keep the upper bit, and use the
697 * two above functions to compress/expand the bits
698 */
699static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
700 struct kvm_exit_mmio *mmio, phys_addr_t offset)
701{
702 u32 val;
6545eae3
MZ
703 u32 *reg;
704
6545eae3 705 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
f2ae85b2 706 vcpu->vcpu_id, offset >> 1);
6545eae3 707
f2ae85b2 708 if (offset & 4)
b47ef92a
MZ
709 val = *reg >> 16;
710 else
711 val = *reg & 0xffff;
712
713 val = vgic_cfg_expand(val);
714 vgic_reg_access(mmio, &val, offset,
715 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
716 if (mmio->is_write) {
f2ae85b2 717 if (offset < 8) {
b47ef92a
MZ
718 *reg = ~0U; /* Force PPIs/SGIs to 1 */
719 return false;
720 }
721
722 val = vgic_cfg_compress(val);
f2ae85b2 723 if (offset & 4) {
b47ef92a
MZ
724 *reg &= 0xffff;
725 *reg |= val << 16;
726 } else {
727 *reg &= 0xffff << 16;
728 *reg |= val;
729 }
730 }
731
732 return false;
733}
734
735static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
736 struct kvm_exit_mmio *mmio, phys_addr_t offset)
737{
738 u32 reg;
739 vgic_reg_access(mmio, &reg, offset,
740 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
741 if (mmio->is_write) {
742 vgic_dispatch_sgi(vcpu, reg);
743 vgic_update_state(vcpu->kvm);
744 return true;
745 }
746
747 return false;
748}
749
cbd333a4
CD
750/**
751 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
752 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
753 *
754 * Move any pending IRQs that have already been assigned to LRs back to the
755 * emulated distributor state so that the complete emulated state can be read
756 * from the main emulation structures without investigating the LRs.
757 *
758 * Note that IRQs in the active state in the LRs get their pending state moved
759 * to the distributor but the active state stays in the LRs, because we don't
760 * track the active state on the distributor side.
761 */
762static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
763{
764 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
765 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
766 int vcpu_id = vcpu->vcpu_id;
8d5c6b06 767 int i;
cbd333a4
CD
768
769 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 770 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
771
772 /*
773 * There are three options for the state bits:
774 *
775 * 01: pending
776 * 10: active
777 * 11: pending and active
778 *
779 * If the LR holds only an active interrupt (not pending) then
780 * just leave it alone.
781 */
8d5c6b06 782 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
cbd333a4
CD
783 continue;
784
785 /*
786 * Reestablish the pending state on the distributor and the
787 * CPU interface. It may have already been pending, but that
788 * is fine, then we are only setting a few bits that were
789 * already set.
790 */
227844f5 791 vgic_dist_irq_set_pending(vcpu, lr.irq);
8d5c6b06 792 if (lr.irq < VGIC_NR_SGIS)
c1bfb577 793 *vgic_get_sgi_sources(dist, vcpu_id, lr.irq) |= 1 << lr.source;
8d5c6b06
MZ
794 lr.state &= ~LR_STATE_PENDING;
795 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
796
797 /*
798 * If there's no state left on the LR (it could still be
799 * active), then the LR does not hold any useful info and can
800 * be marked as free for other use.
801 */
cced50c9 802 if (!(lr.state & LR_STATE_MASK)) {
8d5c6b06 803 vgic_retire_lr(i, lr.irq, vcpu);
cced50c9
CD
804 vgic_irq_clear_queued(vcpu, lr.irq);
805 }
cbd333a4
CD
806
807 /* Finally update the VGIC state. */
808 vgic_update_state(vcpu->kvm);
809 }
810}
811
90a5355e
CD
812/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
813static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
814 struct kvm_exit_mmio *mmio,
815 phys_addr_t offset)
c07a0191 816{
90a5355e
CD
817 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
818 int sgi;
819 int min_sgi = (offset & ~0x3) * 4;
820 int max_sgi = min_sgi + 3;
821 int vcpu_id = vcpu->vcpu_id;
822 u32 reg = 0;
823
824 /* Copy source SGIs from distributor side */
825 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
826 int shift = 8 * (sgi - min_sgi);
c1bfb577 827 reg |= ((u32)*vgic_get_sgi_sources(dist, vcpu_id, sgi)) << shift;
90a5355e
CD
828 }
829
830 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
831 return false;
832}
833
90a5355e
CD
834static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
835 struct kvm_exit_mmio *mmio,
836 phys_addr_t offset, bool set)
837{
838 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
839 int sgi;
840 int min_sgi = (offset & ~0x3) * 4;
841 int max_sgi = min_sgi + 3;
842 int vcpu_id = vcpu->vcpu_id;
843 u32 reg;
844 bool updated = false;
845
846 reg = mmio_data_read(mmio, ~0);
847
848 /* Clear pending SGIs on the distributor */
849 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
850 u8 mask = reg >> (8 * (sgi - min_sgi));
c1bfb577 851 u8 *src = vgic_get_sgi_sources(dist, vcpu_id, sgi);
90a5355e 852 if (set) {
c1bfb577 853 if ((*src & mask) != mask)
90a5355e 854 updated = true;
c1bfb577 855 *src |= mask;
90a5355e 856 } else {
c1bfb577 857 if (*src & mask)
90a5355e 858 updated = true;
c1bfb577 859 *src &= ~mask;
90a5355e
CD
860 }
861 }
862
863 if (updated)
864 vgic_update_state(vcpu->kvm);
865
866 return updated;
867}
868
c07a0191
CD
869static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
870 struct kvm_exit_mmio *mmio,
871 phys_addr_t offset)
872{
90a5355e
CD
873 if (!mmio->is_write)
874 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
875 else
876 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
877}
878
879static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
880 struct kvm_exit_mmio *mmio,
881 phys_addr_t offset)
882{
883 if (!mmio->is_write)
884 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
885 else
886 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
887}
888
1a89dd91
MZ
889/*
890 * I would have liked to use the kvm_bus_io_*() API instead, but it
891 * cannot cope with banked registers (only the VM pointer is passed
892 * around, and we need the vcpu). One of these days, someone please
893 * fix it!
894 */
895struct mmio_range {
896 phys_addr_t base;
897 unsigned long len;
898 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
899 phys_addr_t offset);
900};
901
1006e8cb 902static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
903 {
904 .base = GIC_DIST_CTRL,
905 .len = 12,
906 .handle_mmio = handle_mmio_misc,
907 },
908 {
909 .base = GIC_DIST_IGROUP,
910 .len = VGIC_NR_IRQS / 8,
911 .handle_mmio = handle_mmio_raz_wi,
912 },
913 {
914 .base = GIC_DIST_ENABLE_SET,
915 .len = VGIC_NR_IRQS / 8,
916 .handle_mmio = handle_mmio_set_enable_reg,
917 },
918 {
919 .base = GIC_DIST_ENABLE_CLEAR,
920 .len = VGIC_NR_IRQS / 8,
921 .handle_mmio = handle_mmio_clear_enable_reg,
922 },
923 {
924 .base = GIC_DIST_PENDING_SET,
925 .len = VGIC_NR_IRQS / 8,
926 .handle_mmio = handle_mmio_set_pending_reg,
927 },
928 {
929 .base = GIC_DIST_PENDING_CLEAR,
930 .len = VGIC_NR_IRQS / 8,
931 .handle_mmio = handle_mmio_clear_pending_reg,
932 },
933 {
934 .base = GIC_DIST_ACTIVE_SET,
935 .len = VGIC_NR_IRQS / 8,
936 .handle_mmio = handle_mmio_raz_wi,
937 },
938 {
939 .base = GIC_DIST_ACTIVE_CLEAR,
940 .len = VGIC_NR_IRQS / 8,
941 .handle_mmio = handle_mmio_raz_wi,
942 },
943 {
944 .base = GIC_DIST_PRI,
945 .len = VGIC_NR_IRQS,
946 .handle_mmio = handle_mmio_priority_reg,
947 },
948 {
949 .base = GIC_DIST_TARGET,
950 .len = VGIC_NR_IRQS,
951 .handle_mmio = handle_mmio_target_reg,
952 },
953 {
954 .base = GIC_DIST_CONFIG,
955 .len = VGIC_NR_IRQS / 4,
956 .handle_mmio = handle_mmio_cfg_reg,
957 },
958 {
959 .base = GIC_DIST_SOFTINT,
960 .len = 4,
961 .handle_mmio = handle_mmio_sgi_reg,
962 },
c07a0191
CD
963 {
964 .base = GIC_DIST_SGI_PENDING_CLEAR,
965 .len = VGIC_NR_SGIS,
966 .handle_mmio = handle_mmio_sgi_clear,
967 },
968 {
969 .base = GIC_DIST_SGI_PENDING_SET,
970 .len = VGIC_NR_SGIS,
971 .handle_mmio = handle_mmio_sgi_set,
972 },
1a89dd91
MZ
973 {}
974};
975
976static const
977struct mmio_range *find_matching_range(const struct mmio_range *ranges,
978 struct kvm_exit_mmio *mmio,
1006e8cb 979 phys_addr_t offset)
1a89dd91
MZ
980{
981 const struct mmio_range *r = ranges;
1a89dd91
MZ
982
983 while (r->len) {
1006e8cb
CD
984 if (offset >= r->base &&
985 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
986 return r;
987 r++;
988 }
989
990 return NULL;
991}
992
993/**
994 * vgic_handle_mmio - handle an in-kernel MMIO access
995 * @vcpu: pointer to the vcpu performing the access
996 * @run: pointer to the kvm_run structure
997 * @mmio: pointer to the data describing the access
998 *
999 * returns true if the MMIO access has been performed in kernel space,
1000 * and false if it needs to be emulated in user space.
1001 */
1002bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
1003 struct kvm_exit_mmio *mmio)
1004{
b47ef92a
MZ
1005 const struct mmio_range *range;
1006 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1007 unsigned long base = dist->vgic_dist_base;
1008 bool updated_state;
1009 unsigned long offset;
1010
1011 if (!irqchip_in_kernel(vcpu->kvm) ||
1012 mmio->phys_addr < base ||
1013 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
1014 return false;
1015
1016 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
1017 if (mmio->len > 4) {
1018 kvm_inject_dabt(vcpu, mmio->phys_addr);
1019 return true;
1020 }
1021
1006e8cb
CD
1022 offset = mmio->phys_addr - base;
1023 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
1024 if (unlikely(!range || !range->handle_mmio)) {
1025 pr_warn("Unhandled access %d %08llx %d\n",
1026 mmio->is_write, mmio->phys_addr, mmio->len);
1027 return false;
1028 }
1029
1030 spin_lock(&vcpu->kvm->arch.vgic.lock);
1031 offset = mmio->phys_addr - range->base - base;
1032 updated_state = range->handle_mmio(vcpu, mmio, offset);
1033 spin_unlock(&vcpu->kvm->arch.vgic.lock);
1034 kvm_prepare_mmio(run, mmio);
1035 kvm_handle_mmio_return(vcpu, run);
1036
5863c2ce
MZ
1037 if (updated_state)
1038 vgic_kick_vcpus(vcpu->kvm);
1039
b47ef92a
MZ
1040 return true;
1041}
1042
c1bfb577
MZ
1043static u8 *vgic_get_sgi_sources(struct vgic_dist *dist, int vcpu_id, int sgi)
1044{
1045 return dist->irq_sgi_sources + vcpu_id * VGIC_NR_SGIS + sgi;
1046}
1047
b47ef92a
MZ
1048static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
1049{
1050 struct kvm *kvm = vcpu->kvm;
1051 struct vgic_dist *dist = &kvm->arch.vgic;
1052 int nrcpus = atomic_read(&kvm->online_vcpus);
1053 u8 target_cpus;
1054 int sgi, mode, c, vcpu_id;
1055
1056 vcpu_id = vcpu->vcpu_id;
1057
1058 sgi = reg & 0xf;
1059 target_cpus = (reg >> 16) & 0xff;
1060 mode = (reg >> 24) & 3;
1061
1062 switch (mode) {
1063 case 0:
1064 if (!target_cpus)
1065 return;
91021a6c 1066 break;
b47ef92a
MZ
1067
1068 case 1:
1069 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
1070 break;
1071
1072 case 2:
1073 target_cpus = 1 << vcpu_id;
1074 break;
1075 }
1076
1077 kvm_for_each_vcpu(c, vcpu, kvm) {
1078 if (target_cpus & 1) {
1079 /* Flag the SGI as pending */
227844f5 1080 vgic_dist_irq_set_pending(vcpu, sgi);
c1bfb577 1081 *vgic_get_sgi_sources(dist, c, sgi) |= 1 << vcpu_id;
b47ef92a
MZ
1082 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
1083 }
1084
1085 target_cpus >>= 1;
1086 }
1087}
1088
1089static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
1090{
9d949dce
MZ
1091 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1092 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
1093 unsigned long pending_private, pending_shared;
1094 int vcpu_id;
1095
1096 vcpu_id = vcpu->vcpu_id;
1097 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
1098 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
1099
227844f5 1100 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
1101 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
1102 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
1103
227844f5 1104 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce
MZ
1105 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
1106 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
1107 bitmap_and(pend_shared, pend_shared,
1108 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
1109 VGIC_NR_SHARED_IRQS);
1110
1111 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
1112 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
1113 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
1114 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
1115}
1116
1117/*
1118 * Update the interrupt state and determine which CPUs have pending
1119 * interrupts. Must be called with distributor lock held.
1120 */
1121static void vgic_update_state(struct kvm *kvm)
1122{
1123 struct vgic_dist *dist = &kvm->arch.vgic;
1124 struct kvm_vcpu *vcpu;
1125 int c;
1126
1127 if (!dist->enabled) {
c1bfb577 1128 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
1129 return;
1130 }
1131
1132 kvm_for_each_vcpu(c, vcpu, kvm) {
1133 if (compute_pending_for_cpu(vcpu)) {
1134 pr_debug("CPU%d has pending interrupts\n", c);
c1bfb577 1135 set_bit(c, dist->irq_pending_on_cpu);
b47ef92a
MZ
1136 }
1137 }
1a89dd91 1138}
330690cd 1139
8d5c6b06
MZ
1140static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1141{
8f186d52 1142 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
1143}
1144
1145static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1146 struct vgic_lr vlr)
1147{
8f186d52 1148 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
1149}
1150
69bb2c9f
MZ
1151static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1152 struct vgic_lr vlr)
1153{
8f186d52 1154 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
1155}
1156
1157static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1158{
8f186d52 1159 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
1160}
1161
8d6a0313
MZ
1162static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1163{
8f186d52 1164 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
1165}
1166
495dd859
MZ
1167static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1168{
8f186d52 1169 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
1170}
1171
909d9b50
MZ
1172static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1173{
8f186d52 1174 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
1175}
1176
1177static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1178{
8f186d52 1179 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
1180}
1181
beee38b9
MZ
1182static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1183{
8f186d52 1184 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1185}
1186
1187static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1188{
8f186d52 1189 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1190}
1191
da8dafd1
MZ
1192static inline void vgic_enable(struct kvm_vcpu *vcpu)
1193{
8f186d52 1194 vgic_ops->enable(vcpu);
da8dafd1
MZ
1195}
1196
8d5c6b06
MZ
1197static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1198{
1199 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1200 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1201
1202 vlr.state = 0;
1203 vgic_set_lr(vcpu, lr_nr, vlr);
1204 clear_bit(lr_nr, vgic_cpu->lr_used);
1205 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1206}
a1fcb44e
MZ
1207
1208/*
1209 * An interrupt may have been disabled after being made pending on the
1210 * CPU interface (the classic case is a timer running while we're
1211 * rebooting the guest - the interrupt would kick as soon as the CPU
1212 * interface gets enabled, with deadly consequences).
1213 *
1214 * The solution is to examine already active LRs, and check the
1215 * interrupt is still enabled. If not, just retire it.
1216 */
1217static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1218{
1219 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1220 int lr;
1221
8f186d52 1222 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1223 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1224
8d5c6b06
MZ
1225 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1226 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1227 if (vgic_irq_is_queued(vcpu, vlr.irq))
1228 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1229 }
1230 }
1231}
1232
9d949dce
MZ
1233/*
1234 * Queue an interrupt to a CPU virtual interface. Return true on success,
1235 * or false if it wasn't possible to queue it.
1236 */
1237static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1238{
1239 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 1240 struct vgic_lr vlr;
9d949dce
MZ
1241 int lr;
1242
1243 /* Sanitize the input... */
1244 BUG_ON(sgi_source_id & ~7);
1245 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1246 BUG_ON(irq >= VGIC_NR_IRQS);
1247
1248 kvm_debug("Queue IRQ%d\n", irq);
1249
1250 lr = vgic_cpu->vgic_irq_lr_map[irq];
1251
1252 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1253 if (lr != LR_EMPTY) {
1254 vlr = vgic_get_lr(vcpu, lr);
1255 if (vlr.source == sgi_source_id) {
1256 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1257 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1258 vlr.state |= LR_STATE_PENDING;
1259 vgic_set_lr(vcpu, lr, vlr);
1260 return true;
1261 }
9d949dce
MZ
1262 }
1263
1264 /* Try to use another LR for this interrupt */
1265 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1266 vgic->nr_lr);
1267 if (lr >= vgic->nr_lr)
9d949dce
MZ
1268 return false;
1269
1270 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1271 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1272 set_bit(lr, vgic_cpu->lr_used);
1273
8d5c6b06
MZ
1274 vlr.irq = irq;
1275 vlr.source = sgi_source_id;
1276 vlr.state = LR_STATE_PENDING;
9d949dce 1277 if (!vgic_irq_is_edge(vcpu, irq))
8d5c6b06
MZ
1278 vlr.state |= LR_EOI_INT;
1279
1280 vgic_set_lr(vcpu, lr, vlr);
9d949dce
MZ
1281
1282 return true;
1283}
1284
1285static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1286{
1287 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1288 unsigned long sources;
1289 int vcpu_id = vcpu->vcpu_id;
1290 int c;
1291
c1bfb577 1292 sources = *vgic_get_sgi_sources(dist, vcpu_id, irq);
9d949dce
MZ
1293
1294 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1295 if (vgic_queue_irq(vcpu, c, irq))
1296 clear_bit(c, &sources);
1297 }
1298
c1bfb577 1299 *vgic_get_sgi_sources(dist, vcpu_id, irq) = sources;
9d949dce
MZ
1300
1301 /*
1302 * If the sources bitmap has been cleared it means that we
1303 * could queue all the SGIs onto link registers (see the
1304 * clear_bit above), and therefore we are done with them in
1305 * our emulated gic and can get rid of them.
1306 */
1307 if (!sources) {
227844f5 1308 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1309 vgic_cpu_irq_clear(vcpu, irq);
1310 return true;
1311 }
1312
1313 return false;
1314}
1315
1316static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1317{
dbf20f9d 1318 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1319 return true; /* level interrupt, already queued */
1320
1321 if (vgic_queue_irq(vcpu, 0, irq)) {
1322 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1323 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1324 vgic_cpu_irq_clear(vcpu, irq);
1325 } else {
dbf20f9d 1326 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1327 }
1328
1329 return true;
1330 }
1331
1332 return false;
1333}
1334
1335/*
1336 * Fill the list registers with pending interrupts before running the
1337 * guest.
1338 */
1339static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1340{
1341 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1342 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1343 int i, vcpu_id;
1344 int overflow = 0;
1345
1346 vcpu_id = vcpu->vcpu_id;
1347
1348 /*
1349 * We may not have any pending interrupt, or the interrupts
1350 * may have been serviced from another vcpu. In all cases,
1351 * move along.
1352 */
1353 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1354 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1355 goto epilog;
1356 }
1357
1358 /* SGIs */
1359 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1360 if (!vgic_queue_sgi(vcpu, i))
1361 overflow = 1;
1362 }
1363
1364 /* PPIs */
1365 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1366 if (!vgic_queue_hwirq(vcpu, i))
1367 overflow = 1;
1368 }
1369
1370 /* SPIs */
1371 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1372 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1373 overflow = 1;
1374 }
1375
1376epilog:
1377 if (overflow) {
909d9b50 1378 vgic_enable_underflow(vcpu);
9d949dce 1379 } else {
909d9b50 1380 vgic_disable_underflow(vcpu);
9d949dce
MZ
1381 /*
1382 * We're about to run this VCPU, and we've consumed
1383 * everything the distributor had in store for
1384 * us. Claim we don't have anything pending. We'll
1385 * adjust that if needed while exiting.
1386 */
c1bfb577 1387 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1388 }
1389}
1390
1391static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1392{
495dd859 1393 u32 status = vgic_get_interrupt_status(vcpu);
9d949dce
MZ
1394 bool level_pending = false;
1395
495dd859 1396 kvm_debug("STATUS = %08x\n", status);
9d949dce 1397
495dd859 1398 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1399 /*
1400 * Some level interrupts have been EOIed. Clear their
1401 * active bit.
1402 */
8d6a0313
MZ
1403 u64 eisr = vgic_get_eisr(vcpu);
1404 unsigned long *eisr_ptr = (unsigned long *)&eisr;
8d5c6b06 1405 int lr;
9d949dce 1406
8f186d52 1407 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1408 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1409 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1410
dbf20f9d 1411 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1412 WARN_ON(vlr.state & LR_STATE_MASK);
1413 vlr.state = 0;
1414 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1415
faa1b46c
CD
1416 /*
1417 * If the IRQ was EOIed it was also ACKed and we we
1418 * therefore assume we can clear the soft pending
1419 * state (should it had been set) for this interrupt.
1420 *
1421 * Note: if the IRQ soft pending state was set after
1422 * the IRQ was acked, it actually shouldn't be
1423 * cleared, but we have no way of knowing that unless
1424 * we start trapping ACKs when the soft-pending state
1425 * is set.
1426 */
1427 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1428
9d949dce 1429 /* Any additional pending interrupt? */
faa1b46c 1430 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1431 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1432 level_pending = true;
1433 } else {
faa1b46c 1434 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1435 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1436 }
75da01e1
MZ
1437
1438 /*
1439 * Despite being EOIed, the LR may not have
1440 * been marked as empty.
1441 */
69bb2c9f 1442 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1443 }
1444 }
1445
495dd859 1446 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1447 vgic_disable_underflow(vcpu);
9d949dce
MZ
1448
1449 return level_pending;
1450}
1451
1452/*
33c83cb3
MZ
1453 * Sync back the VGIC state after a guest run. The distributor lock is
1454 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1455 */
1456static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1457{
1458 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1459 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1460 u64 elrsr;
1461 unsigned long *elrsr_ptr;
9d949dce
MZ
1462 int lr, pending;
1463 bool level_pending;
1464
1465 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f
MZ
1466 elrsr = vgic_get_elrsr(vcpu);
1467 elrsr_ptr = (unsigned long *)&elrsr;
9d949dce
MZ
1468
1469 /* Clear mappings for empty LRs */
8f186d52 1470 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
8d5c6b06 1471 struct vgic_lr vlr;
9d949dce
MZ
1472
1473 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1474 continue;
1475
8d5c6b06 1476 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1477
8d5c6b06
MZ
1478 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1479 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1480 }
1481
1482 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1483 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1484 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1485 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1486}
1487
1488void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1489{
1490 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1491
1492 if (!irqchip_in_kernel(vcpu->kvm))
1493 return;
1494
1495 spin_lock(&dist->lock);
1496 __kvm_vgic_flush_hwstate(vcpu);
1497 spin_unlock(&dist->lock);
1498}
1499
1500void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1501{
33c83cb3
MZ
1502 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1503
9d949dce
MZ
1504 if (!irqchip_in_kernel(vcpu->kvm))
1505 return;
1506
33c83cb3 1507 spin_lock(&dist->lock);
9d949dce 1508 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1509 spin_unlock(&dist->lock);
9d949dce
MZ
1510}
1511
1512int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1513{
1514 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1515
1516 if (!irqchip_in_kernel(vcpu->kvm))
1517 return 0;
1518
c1bfb577 1519 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1520}
1521
5863c2ce
MZ
1522static void vgic_kick_vcpus(struct kvm *kvm)
1523{
1524 struct kvm_vcpu *vcpu;
1525 int c;
1526
1527 /*
1528 * We've injected an interrupt, time to find out who deserves
1529 * a good kick...
1530 */
1531 kvm_for_each_vcpu(c, vcpu, kvm) {
1532 if (kvm_vgic_vcpu_pending_irq(vcpu))
1533 kvm_vcpu_kick(vcpu);
1534 }
1535}
1536
1537static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1538{
227844f5 1539 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1540
1541 /*
1542 * Only inject an interrupt if:
1543 * - edge triggered and we have a rising edge
1544 * - level triggered and we change level
1545 */
faa1b46c
CD
1546 if (edge_triggered) {
1547 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1548 return level > state;
faa1b46c
CD
1549 } else {
1550 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1551 return level != state;
faa1b46c 1552 }
5863c2ce
MZ
1553}
1554
227844f5 1555static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
5863c2ce
MZ
1556 unsigned int irq_num, bool level)
1557{
1558 struct vgic_dist *dist = &kvm->arch.vgic;
1559 struct kvm_vcpu *vcpu;
227844f5 1560 int edge_triggered, level_triggered;
5863c2ce
MZ
1561 int enabled;
1562 bool ret = true;
1563
1564 spin_lock(&dist->lock);
1565
1566 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1567 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1568 level_triggered = !edge_triggered;
5863c2ce
MZ
1569
1570 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1571 ret = false;
1572 goto out;
1573 }
1574
1575 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1576 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1577 vcpu = kvm_get_vcpu(kvm, cpuid);
1578 }
1579
1580 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1581
faa1b46c
CD
1582 if (level) {
1583 if (level_triggered)
1584 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1585 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1586 } else {
1587 if (level_triggered) {
1588 vgic_dist_irq_clear_level(vcpu, irq_num);
1589 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1590 vgic_dist_irq_clear_pending(vcpu, irq_num);
1591 } else {
1592 vgic_dist_irq_clear_pending(vcpu, irq_num);
1593 }
1594 }
5863c2ce
MZ
1595
1596 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1597
1598 if (!enabled) {
1599 ret = false;
1600 goto out;
1601 }
1602
dbf20f9d 1603 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1604 /*
1605 * Level interrupt in progress, will be picked up
1606 * when EOId.
1607 */
1608 ret = false;
1609 goto out;
1610 }
1611
1612 if (level) {
1613 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1614 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1615 }
1616
1617out:
1618 spin_unlock(&dist->lock);
1619
1620 return ret;
1621}
1622
1623/**
1624 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1625 * @kvm: The VM structure pointer
1626 * @cpuid: The CPU for PPIs
1627 * @irq_num: The IRQ number that is assigned to the device
1628 * @level: Edge-triggered: true: to trigger the interrupt
1629 * false: to ignore the call
1630 * Level-sensitive true: activates an interrupt
1631 * false: deactivates an interrupt
1632 *
1633 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1634 * level-sensitive interrupts. You can think of the level parameter as 1
1635 * being HIGH and 0 being LOW and all devices being active-HIGH.
1636 */
1637int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1638 bool level)
1639{
71afaba4
MZ
1640 if (likely(vgic_initialized(kvm)) &&
1641 vgic_update_irq_pending(kvm, cpuid, irq_num, level))
5863c2ce
MZ
1642 vgic_kick_vcpus(kvm);
1643
1644 return 0;
1645}
1646
01ac5e34
MZ
1647static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1648{
1649 /*
1650 * We cannot rely on the vgic maintenance interrupt to be
1651 * delivered synchronously. This means we can only use it to
1652 * exit the VM, and we perform the handling of EOIed
1653 * interrupts on the exit path (see vgic_process_maintenance).
1654 */
1655 return IRQ_HANDLED;
1656}
1657
c1bfb577
MZ
1658void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1659{
1660 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1661
1662 kfree(vgic_cpu->pending_shared);
1663 kfree(vgic_cpu->vgic_irq_lr_map);
1664 vgic_cpu->pending_shared = NULL;
1665 vgic_cpu->vgic_irq_lr_map = NULL;
1666}
1667
1668static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1669{
1670 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1671
1672 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1673 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
1674 vgic_cpu->vgic_irq_lr_map = kzalloc(nr_irqs, GFP_KERNEL);
1675
1676 if (!vgic_cpu->pending_shared || !vgic_cpu->vgic_irq_lr_map) {
1677 kvm_vgic_vcpu_destroy(vcpu);
1678 return -ENOMEM;
1679 }
1680
1681 return 0;
1682}
1683
e1ba0207
CD
1684/**
1685 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1686 * @vcpu: pointer to the vcpu struct
1687 *
1688 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1689 * this vcpu and enable the VGIC for this VCPU
1690 */
01ac5e34
MZ
1691int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1692{
1693 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1694 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1695 int i;
1696
01ac5e34
MZ
1697 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1698 return -EBUSY;
1699
1700 for (i = 0; i < VGIC_NR_IRQS; i++) {
1701 if (i < VGIC_NR_PPIS)
1702 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1703 vcpu->vcpu_id, i, 1);
1704 if (i < VGIC_NR_PRIVATE_IRQS)
1705 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1706 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1707
1708 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1709 }
1710
1711 /*
ca85f623
MZ
1712 * Store the number of LRs per vcpu, so we don't have to go
1713 * all the way to the distributor structure to find out. Only
1714 * assembly code should use this one.
01ac5e34 1715 */
8f186d52 1716 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1717
da8dafd1 1718 vgic_enable(vcpu);
01ac5e34
MZ
1719
1720 return 0;
1721}
1722
c1bfb577
MZ
1723void kvm_vgic_destroy(struct kvm *kvm)
1724{
1725 struct vgic_dist *dist = &kvm->arch.vgic;
1726 struct kvm_vcpu *vcpu;
1727 int i;
1728
1729 kvm_for_each_vcpu(i, vcpu, kvm)
1730 kvm_vgic_vcpu_destroy(vcpu);
1731
1732 vgic_free_bitmap(&dist->irq_enabled);
1733 vgic_free_bitmap(&dist->irq_level);
1734 vgic_free_bitmap(&dist->irq_pending);
1735 vgic_free_bitmap(&dist->irq_soft_pend);
1736 vgic_free_bitmap(&dist->irq_queued);
1737 vgic_free_bitmap(&dist->irq_cfg);
1738 vgic_free_bytemap(&dist->irq_priority);
1739 if (dist->irq_spi_target) {
1740 for (i = 0; i < dist->nr_cpus; i++)
1741 vgic_free_bitmap(&dist->irq_spi_target[i]);
1742 }
1743 kfree(dist->irq_sgi_sources);
1744 kfree(dist->irq_spi_cpu);
1745 kfree(dist->irq_spi_target);
1746 kfree(dist->irq_pending_on_cpu);
1747 dist->irq_sgi_sources = NULL;
1748 dist->irq_spi_cpu = NULL;
1749 dist->irq_spi_target = NULL;
1750 dist->irq_pending_on_cpu = NULL;
1751}
1752
1753/*
1754 * Allocate and initialize the various data structures. Must be called
1755 * with kvm->lock held!
1756 */
1757static int vgic_init_maps(struct kvm *kvm)
1758{
1759 struct vgic_dist *dist = &kvm->arch.vgic;
1760 struct kvm_vcpu *vcpu;
1761 int nr_cpus, nr_irqs;
1762 int ret, i;
1763
1764 nr_cpus = dist->nr_cpus = VGIC_MAX_CPUS;
1765 nr_irqs = dist->nr_irqs = VGIC_NR_IRQS;
1766
1767 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1768 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1769 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1770 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1771 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
1772 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1773 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1774
1775 if (ret)
1776 goto out;
1777
1778 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1779 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1780 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1781 GFP_KERNEL);
1782 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1783 GFP_KERNEL);
1784 if (!dist->irq_sgi_sources ||
1785 !dist->irq_spi_cpu ||
1786 !dist->irq_spi_target ||
1787 !dist->irq_pending_on_cpu) {
1788 ret = -ENOMEM;
1789 goto out;
1790 }
1791
1792 for (i = 0; i < nr_cpus; i++)
1793 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1794 nr_cpus, nr_irqs);
1795
1796 if (ret)
1797 goto out;
1798
1799 kvm_for_each_vcpu(i, vcpu, kvm) {
1800 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1801 if (ret) {
1802 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1803 break;
1804 }
1805 }
1806
1807out:
1808 if (ret)
1809 kvm_vgic_destroy(kvm);
1810
1811 return ret;
1812}
1813
e1ba0207
CD
1814/**
1815 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1816 * @kvm: pointer to the kvm struct
1817 *
1818 * Map the virtual CPU interface into the VM before running any VCPUs. We
1819 * can't do this at creation time, because user space must first set the
1820 * virtual CPU interface address in the guest physical address space. Also
1821 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1822 */
01ac5e34
MZ
1823int kvm_vgic_init(struct kvm *kvm)
1824{
1825 int ret = 0, i;
1826
e1ba0207
CD
1827 if (!irqchip_in_kernel(kvm))
1828 return 0;
1829
01ac5e34
MZ
1830 mutex_lock(&kvm->lock);
1831
1832 if (vgic_initialized(kvm))
1833 goto out;
1834
1835 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1836 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1837 kvm_err("Need to set vgic cpu and dist addresses first\n");
1838 ret = -ENXIO;
1839 goto out;
1840 }
1841
1842 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
8f186d52 1843 vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
01ac5e34
MZ
1844 if (ret) {
1845 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1846 goto out;
1847 }
1848
1849 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1850 vgic_set_target_reg(kvm, 0, i);
1851
1852 kvm->arch.vgic.ready = true;
1853out:
1854 mutex_unlock(&kvm->lock);
1855 return ret;
1856}
1857
1858int kvm_vgic_create(struct kvm *kvm)
1859{
7330672b
CD
1860 int i, vcpu_lock_idx = -1, ret = 0;
1861 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1862
1863 mutex_lock(&kvm->lock);
1864
7330672b 1865 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1866 ret = -EEXIST;
1867 goto out;
1868 }
1869
7330672b
CD
1870 /*
1871 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1872 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1873 * that no other VCPUs are run while we create the vgic.
1874 */
1875 kvm_for_each_vcpu(i, vcpu, kvm) {
1876 if (!mutex_trylock(&vcpu->mutex))
1877 goto out_unlock;
1878 vcpu_lock_idx = i;
1879 }
1880
1881 kvm_for_each_vcpu(i, vcpu, kvm) {
1882 if (vcpu->arch.has_run_once) {
1883 ret = -EBUSY;
1884 goto out_unlock;
1885 }
1886 }
1887
01ac5e34 1888 spin_lock_init(&kvm->arch.vgic.lock);
f982cf4e 1889 kvm->arch.vgic.in_kernel = true;
8f186d52 1890 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
1891 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1892 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1893
c1bfb577
MZ
1894 ret = vgic_init_maps(kvm);
1895 if (ret)
1896 kvm_err("Unable to allocate maps\n");
1897
7330672b
CD
1898out_unlock:
1899 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1900 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1901 mutex_unlock(&vcpu->mutex);
1902 }
1903
01ac5e34
MZ
1904out:
1905 mutex_unlock(&kvm->lock);
1906 return ret;
1907}
1908
1fa451bc 1909static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
1910{
1911 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1912 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1913
1914 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1915 return 0;
1916 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1917 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1918 return -EBUSY;
1919 return 0;
1920}
1921
1922static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1923 phys_addr_t addr, phys_addr_t size)
1924{
1925 int ret;
1926
ce01e4e8
CD
1927 if (addr & ~KVM_PHYS_MASK)
1928 return -E2BIG;
1929
1930 if (addr & (SZ_4K - 1))
1931 return -EINVAL;
1932
330690cd
CD
1933 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1934 return -EEXIST;
1935 if (addr + size < addr)
1936 return -EINVAL;
1937
30c21170 1938 *ioaddr = addr;
330690cd
CD
1939 ret = vgic_ioaddr_overlap(kvm);
1940 if (ret)
30c21170
HW
1941 *ioaddr = VGIC_ADDR_UNDEF;
1942
330690cd
CD
1943 return ret;
1944}
1945
ce01e4e8
CD
1946/**
1947 * kvm_vgic_addr - set or get vgic VM base addresses
1948 * @kvm: pointer to the vm struct
1949 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1950 * @addr: pointer to address value
1951 * @write: if true set the address in the VM address space, if false read the
1952 * address
1953 *
1954 * Set or get the vgic base addresses for the distributor and the virtual CPU
1955 * interface in the VM physical address space. These addresses are properties
1956 * of the emulated core/SoC and therefore user space initially knows this
1957 * information.
1958 */
1959int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1960{
1961 int r = 0;
1962 struct vgic_dist *vgic = &kvm->arch.vgic;
1963
330690cd
CD
1964 mutex_lock(&kvm->lock);
1965 switch (type) {
1966 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
1967 if (write) {
1968 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1969 *addr, KVM_VGIC_V2_DIST_SIZE);
1970 } else {
1971 *addr = vgic->vgic_dist_base;
1972 }
330690cd
CD
1973 break;
1974 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
1975 if (write) {
1976 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1977 *addr, KVM_VGIC_V2_CPU_SIZE);
1978 } else {
1979 *addr = vgic->vgic_cpu_base;
1980 }
330690cd
CD
1981 break;
1982 default:
1983 r = -ENODEV;
1984 }
1985
1986 mutex_unlock(&kvm->lock);
1987 return r;
1988}
7330672b 1989
c07a0191
CD
1990static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1991 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1992{
fa20f5ae 1993 bool updated = false;
beee38b9
MZ
1994 struct vgic_vmcr vmcr;
1995 u32 *vmcr_field;
1996 u32 reg;
1997
1998 vgic_get_vmcr(vcpu, &vmcr);
fa20f5ae
CD
1999
2000 switch (offset & ~0x3) {
2001 case GIC_CPU_CTRL:
beee38b9 2002 vmcr_field = &vmcr.ctlr;
fa20f5ae
CD
2003 break;
2004 case GIC_CPU_PRIMASK:
beee38b9 2005 vmcr_field = &vmcr.pmr;
fa20f5ae
CD
2006 break;
2007 case GIC_CPU_BINPOINT:
beee38b9 2008 vmcr_field = &vmcr.bpr;
fa20f5ae
CD
2009 break;
2010 case GIC_CPU_ALIAS_BINPOINT:
beee38b9 2011 vmcr_field = &vmcr.abpr;
fa20f5ae 2012 break;
beee38b9
MZ
2013 default:
2014 BUG();
fa20f5ae
CD
2015 }
2016
2017 if (!mmio->is_write) {
beee38b9 2018 reg = *vmcr_field;
fa20f5ae
CD
2019 mmio_data_write(mmio, ~0, reg);
2020 } else {
2021 reg = mmio_data_read(mmio, ~0);
beee38b9
MZ
2022 if (reg != *vmcr_field) {
2023 *vmcr_field = reg;
2024 vgic_set_vmcr(vcpu, &vmcr);
fa20f5ae 2025 updated = true;
beee38b9 2026 }
fa20f5ae
CD
2027 }
2028 return updated;
2029}
2030
2031static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
2032 struct kvm_exit_mmio *mmio, phys_addr_t offset)
2033{
2034 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
c07a0191
CD
2035}
2036
fa20f5ae
CD
2037static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
2038 struct kvm_exit_mmio *mmio,
2039 phys_addr_t offset)
2040{
2041 u32 reg;
2042
2043 if (mmio->is_write)
2044 return false;
2045
2046 /* GICC_IIDR */
2047 reg = (PRODUCT_ID_KVM << 20) |
2048 (GICC_ARCH_VERSION_V2 << 16) |
2049 (IMPLEMENTER_ARM << 0);
2050 mmio_data_write(mmio, ~0, reg);
2051 return false;
2052}
2053
2054/*
2055 * CPU Interface Register accesses - these are not accessed by the VM, but by
2056 * user space for saving and restoring VGIC state.
2057 */
c07a0191
CD
2058static const struct mmio_range vgic_cpu_ranges[] = {
2059 {
2060 .base = GIC_CPU_CTRL,
2061 .len = 12,
2062 .handle_mmio = handle_cpu_mmio_misc,
2063 },
2064 {
2065 .base = GIC_CPU_ALIAS_BINPOINT,
2066 .len = 4,
fa20f5ae 2067 .handle_mmio = handle_mmio_abpr,
c07a0191
CD
2068 },
2069 {
2070 .base = GIC_CPU_ACTIVEPRIO,
2071 .len = 16,
fa20f5ae 2072 .handle_mmio = handle_mmio_raz_wi,
c07a0191
CD
2073 },
2074 {
2075 .base = GIC_CPU_IDENT,
2076 .len = 4,
fa20f5ae 2077 .handle_mmio = handle_cpu_mmio_ident,
c07a0191
CD
2078 },
2079};
2080
2081static int vgic_attr_regs_access(struct kvm_device *dev,
2082 struct kvm_device_attr *attr,
2083 u32 *reg, bool is_write)
2084{
2085 const struct mmio_range *r = NULL, *ranges;
2086 phys_addr_t offset;
2087 int ret, cpuid, c;
2088 struct kvm_vcpu *vcpu, *tmp_vcpu;
2089 struct vgic_dist *vgic;
2090 struct kvm_exit_mmio mmio;
2091
2092 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2093 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
2094 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
2095
2096 mutex_lock(&dev->kvm->lock);
2097
2098 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
2099 ret = -EINVAL;
2100 goto out;
2101 }
2102
2103 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
2104 vgic = &dev->kvm->arch.vgic;
2105
2106 mmio.len = 4;
2107 mmio.is_write = is_write;
2108 if (is_write)
2109 mmio_data_write(&mmio, ~0, *reg);
2110 switch (attr->group) {
2111 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2112 mmio.phys_addr = vgic->vgic_dist_base + offset;
2113 ranges = vgic_dist_ranges;
2114 break;
2115 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2116 mmio.phys_addr = vgic->vgic_cpu_base + offset;
2117 ranges = vgic_cpu_ranges;
2118 break;
2119 default:
2120 BUG();
2121 }
2122 r = find_matching_range(ranges, &mmio, offset);
2123
2124 if (unlikely(!r || !r->handle_mmio)) {
2125 ret = -ENXIO;
2126 goto out;
2127 }
2128
2129
2130 spin_lock(&vgic->lock);
2131
2132 /*
2133 * Ensure that no other VCPU is running by checking the vcpu->cpu
2134 * field. If no other VPCUs are running we can safely access the VGIC
2135 * state, because even if another VPU is run after this point, that
2136 * VCPU will not touch the vgic state, because it will block on
2137 * getting the vgic->lock in kvm_vgic_sync_hwstate().
2138 */
2139 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
2140 if (unlikely(tmp_vcpu->cpu != -1)) {
2141 ret = -EBUSY;
2142 goto out_vgic_unlock;
2143 }
2144 }
2145
cbd333a4
CD
2146 /*
2147 * Move all pending IRQs from the LRs on all VCPUs so the pending
2148 * state can be properly represented in the register state accessible
2149 * through this API.
2150 */
2151 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
2152 vgic_unqueue_irqs(tmp_vcpu);
2153
c07a0191
CD
2154 offset -= r->base;
2155 r->handle_mmio(vcpu, &mmio, offset);
2156
2157 if (!is_write)
2158 *reg = mmio_data_read(&mmio, ~0);
2159
2160 ret = 0;
2161out_vgic_unlock:
2162 spin_unlock(&vgic->lock);
2163out:
2164 mutex_unlock(&dev->kvm->lock);
2165 return ret;
2166}
2167
7330672b
CD
2168static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2169{
ce01e4e8
CD
2170 int r;
2171
2172 switch (attr->group) {
2173 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2174 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2175 u64 addr;
2176 unsigned long type = (unsigned long)attr->attr;
2177
2178 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2179 return -EFAULT;
2180
2181 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2182 return (r == -ENODEV) ? -ENXIO : r;
2183 }
c07a0191
CD
2184
2185 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2186 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2187 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2188 u32 reg;
2189
2190 if (get_user(reg, uaddr))
2191 return -EFAULT;
2192
2193 return vgic_attr_regs_access(dev, attr, &reg, true);
2194 }
2195
ce01e4e8
CD
2196 }
2197
7330672b
CD
2198 return -ENXIO;
2199}
2200
2201static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2202{
ce01e4e8
CD
2203 int r = -ENXIO;
2204
2205 switch (attr->group) {
2206 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2207 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2208 u64 addr;
2209 unsigned long type = (unsigned long)attr->attr;
2210
2211 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2212 if (r)
2213 return (r == -ENODEV) ? -ENXIO : r;
2214
2215 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2216 return -EFAULT;
c07a0191
CD
2217 break;
2218 }
2219
2220 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2221 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
2222 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2223 u32 reg = 0;
2224
2225 r = vgic_attr_regs_access(dev, attr, &reg, false);
2226 if (r)
2227 return r;
2228 r = put_user(reg, uaddr);
2229 break;
ce01e4e8 2230 }
c07a0191 2231
ce01e4e8
CD
2232 }
2233
2234 return r;
7330672b
CD
2235}
2236
c07a0191
CD
2237static int vgic_has_attr_regs(const struct mmio_range *ranges,
2238 phys_addr_t offset)
2239{
2240 struct kvm_exit_mmio dev_attr_mmio;
2241
2242 dev_attr_mmio.len = 4;
2243 if (find_matching_range(ranges, &dev_attr_mmio, offset))
2244 return 0;
2245 else
2246 return -ENXIO;
2247}
2248
7330672b
CD
2249static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2250{
c07a0191
CD
2251 phys_addr_t offset;
2252
ce01e4e8
CD
2253 switch (attr->group) {
2254 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2255 switch (attr->attr) {
2256 case KVM_VGIC_V2_ADDR_TYPE_DIST:
2257 case KVM_VGIC_V2_ADDR_TYPE_CPU:
2258 return 0;
2259 }
2260 break;
c07a0191
CD
2261 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
2262 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2263 return vgic_has_attr_regs(vgic_dist_ranges, offset);
2264 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
2265 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
2266 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 2267 }
7330672b
CD
2268 return -ENXIO;
2269}
2270
2271static void vgic_destroy(struct kvm_device *dev)
2272{
2273 kfree(dev);
2274}
2275
2276static int vgic_create(struct kvm_device *dev, u32 type)
2277{
2278 return kvm_vgic_create(dev->kvm);
2279}
2280
c06a841b 2281static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
7330672b
CD
2282 .name = "kvm-arm-vgic",
2283 .create = vgic_create,
2284 .destroy = vgic_destroy,
2285 .set_attr = vgic_set_attr,
2286 .get_attr = vgic_get_attr,
2287 .has_attr = vgic_has_attr,
2288};
c06a841b
WD
2289
2290static void vgic_init_maintenance_interrupt(void *info)
2291{
2292 enable_percpu_irq(vgic->maint_irq, 0);
2293}
2294
2295static int vgic_cpu_notify(struct notifier_block *self,
2296 unsigned long action, void *cpu)
2297{
2298 switch (action) {
2299 case CPU_STARTING:
2300 case CPU_STARTING_FROZEN:
2301 vgic_init_maintenance_interrupt(NULL);
2302 break;
2303 case CPU_DYING:
2304 case CPU_DYING_FROZEN:
2305 disable_percpu_irq(vgic->maint_irq);
2306 break;
2307 }
2308
2309 return NOTIFY_OK;
2310}
2311
2312static struct notifier_block vgic_cpu_nb = {
2313 .notifier_call = vgic_cpu_notify,
2314};
2315
2316static const struct of_device_id vgic_ids[] = {
2317 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2318 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2319 {},
2320};
2321
2322int kvm_vgic_hyp_init(void)
2323{
2324 const struct of_device_id *matched_id;
a875dafc
CD
2325 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2326 const struct vgic_params **);
c06a841b
WD
2327 struct device_node *vgic_node;
2328 int ret;
2329
2330 vgic_node = of_find_matching_node_and_match(NULL,
2331 vgic_ids, &matched_id);
2332 if (!vgic_node) {
2333 kvm_err("error: no compatible GIC node found\n");
2334 return -ENODEV;
2335 }
2336
2337 vgic_probe = matched_id->data;
2338 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2339 if (ret)
2340 return ret;
2341
2342 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2343 "vgic", kvm_get_running_vcpus());
2344 if (ret) {
2345 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2346 return ret;
2347 }
2348
2349 ret = __register_cpu_notifier(&vgic_cpu_nb);
2350 if (ret) {
2351 kvm_err("Cannot register vgic CPU notifier\n");
2352 goto out_free_irq;
2353 }
2354
2355 /* Callback into for arch code for setup */
2356 vgic_arch_setup(vgic);
2357
2358 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2359
2360 return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2361 KVM_DEV_TYPE_ARM_VGIC_V2);
2362
2363out_free_irq:
2364 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2365 return ret;
2366}
This page took 0.206772 seconds and 5 git commands to generate.