arm/arm64: KVM: vgic: Clear queued flags on unqueue
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
1a89dd91 34
b47ef92a
MZ
35/*
36 * How the whole thing works (courtesy of Christoffer Dall):
37 *
38 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
39 * something is pending
227844f5 40 * - VGIC pending interrupts are stored on the vgic.irq_pending vgic
b47ef92a
MZ
41 * bitmap (this bitmap is updated by both user land ioctls and guest
42 * mmio ops, and other in-kernel peripherals such as the
43 * arch. timers) and indicate the 'wire' state.
44 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
45 * recalculated
46 * - To calculate the oracle, we need info for each cpu from
47 * compute_pending_for_cpu, which considers:
227844f5
CD
48 * - PPI: dist->irq_pending & dist->irq_enable
49 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
b47ef92a
MZ
50 * - irq_spi_target is a 'formatted' version of the GICD_ICFGR
51 * registers, stored on each vcpu. We only keep one bit of
52 * information per interrupt, making sure that only one vcpu can
53 * accept the interrupt.
54 * - The same is true when injecting an interrupt, except that we only
55 * consider a single interrupt at a time. The irq_spi_cpu array
56 * contains the target CPU for each SPI.
57 *
58 * The handling of level interrupts adds some extra complexity. We
59 * need to track when the interrupt has been EOIed, so we can sample
60 * the 'line' again. This is achieved as such:
61 *
62 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 63 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
64 * will be ignored for further interrupts. The interrupt is injected
65 * into the vcpu with the GICH_LR_EOI bit set (generate a
66 * maintenance interrupt on EOI).
67 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 68 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a
MZ
69 * interrupt line to be sampled again.
70 */
71
330690cd
CD
72#define VGIC_ADDR_UNDEF (-1)
73#define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF)
74
fa20f5ae
CD
75#define PRODUCT_ID_KVM 0x4b /* ASCII code K */
76#define IMPLEMENTER_ARM 0x43b
77#define GICC_ARCH_VERSION_V2 0x2
78
1a89dd91
MZ
79#define ACCESS_READ_VALUE (1 << 0)
80#define ACCESS_READ_RAZ (0 << 0)
81#define ACCESS_READ_MASK(x) ((x) & (1 << 0))
82#define ACCESS_WRITE_IGNORED (0 << 1)
83#define ACCESS_WRITE_SETBIT (1 << 1)
84#define ACCESS_WRITE_CLEARBIT (2 << 1)
85#define ACCESS_WRITE_VALUE (3 << 1)
86#define ACCESS_WRITE_MASK(x) ((x) & (3 << 1))
87
a1fcb44e 88static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 89static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
b47ef92a 90static void vgic_update_state(struct kvm *kvm);
5863c2ce 91static void vgic_kick_vcpus(struct kvm *kvm);
b47ef92a 92static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg);
8d5c6b06
MZ
93static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
94static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
beee38b9
MZ
95static void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
96static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr);
01ac5e34 97
8f186d52
MZ
98static const struct vgic_ops *vgic_ops;
99static const struct vgic_params *vgic;
b47ef92a 100
9662fb48
VK
101/*
102 * struct vgic_bitmap contains unions that provide two views of
103 * the same data. In one case it is an array of registers of
104 * u32's, and in the other case it is a bitmap of unsigned
105 * longs.
106 *
107 * This does not work on 64-bit BE systems, because the bitmap access
108 * will store two consecutive 32-bit words with the higher-addressed
109 * register's bits at the lower index and the lower-addressed register's
110 * bits at the higher index.
111 *
112 * Therefore, swizzle the register index when accessing the 32-bit word
113 * registers to access the right register's value.
114 */
115#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
116#define REG_OFFSET_SWIZZLE 1
117#else
118#define REG_OFFSET_SWIZZLE 0
119#endif
b47ef92a
MZ
120
121static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x,
122 int cpuid, u32 offset)
123{
124 offset >>= 2;
125 if (!offset)
9662fb48 126 return x->percpu[cpuid].reg + (offset ^ REG_OFFSET_SWIZZLE);
b47ef92a 127 else
9662fb48 128 return x->shared.reg + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
129}
130
131static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
132 int cpuid, int irq)
133{
134 if (irq < VGIC_NR_PRIVATE_IRQS)
135 return test_bit(irq, x->percpu[cpuid].reg_ul);
136
137 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul);
138}
139
140static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
141 int irq, int val)
142{
143 unsigned long *reg;
144
145 if (irq < VGIC_NR_PRIVATE_IRQS) {
146 reg = x->percpu[cpuid].reg_ul;
147 } else {
148 reg = x->shared.reg_ul;
149 irq -= VGIC_NR_PRIVATE_IRQS;
150 }
151
152 if (val)
153 set_bit(irq, reg);
154 else
155 clear_bit(irq, reg);
156}
157
158static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
159{
160 if (unlikely(cpuid >= VGIC_MAX_CPUS))
161 return NULL;
162 return x->percpu[cpuid].reg_ul;
163}
164
165static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
166{
167 return x->shared.reg_ul;
168}
169
170static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
171{
172 offset >>= 2;
173 BUG_ON(offset > (VGIC_NR_IRQS / 4));
8d98915b 174 if (offset < 8)
b47ef92a
MZ
175 return x->percpu[cpuid] + offset;
176 else
177 return x->shared + offset - 8;
178}
179
180#define VGIC_CFG_LEVEL 0
181#define VGIC_CFG_EDGE 1
182
183static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
184{
185 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
186 int irq_val;
187
188 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
189 return irq_val == VGIC_CFG_EDGE;
190}
191
192static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
193{
194 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
195
196 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
197}
198
dbf20f9d 199static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
200{
201 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
202
dbf20f9d 203 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
204}
205
dbf20f9d 206static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
207{
208 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
209
dbf20f9d 210 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
211}
212
dbf20f9d 213static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
214{
215 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
216
dbf20f9d 217 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
218}
219
220static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
221{
222 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
223
227844f5 224 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
225}
226
227844f5 227static void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
228{
229 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
230
227844f5 231 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
232}
233
227844f5 234static void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
235{
236 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
237
227844f5 238 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
239}
240
241static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
242{
243 if (irq < VGIC_NR_PRIVATE_IRQS)
244 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
245 else
246 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
247 vcpu->arch.vgic_cpu.pending_shared);
248}
249
250static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
251{
252 if (irq < VGIC_NR_PRIVATE_IRQS)
253 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
254 else
255 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
256 vcpu->arch.vgic_cpu.pending_shared);
257}
258
dbf20f9d
CD
259static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
260{
261 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
262}
263
1a89dd91
MZ
264static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask)
265{
1c9f0471 266 return le32_to_cpu(*((u32 *)mmio->data)) & mask;
1a89dd91
MZ
267}
268
269static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value)
270{
1c9f0471 271 *((u32 *)mmio->data) = cpu_to_le32(value) & mask;
1a89dd91
MZ
272}
273
274/**
275 * vgic_reg_access - access vgic register
276 * @mmio: pointer to the data describing the mmio access
277 * @reg: pointer to the virtual backing of vgic distributor data
278 * @offset: least significant 2 bits used for word offset
279 * @mode: ACCESS_ mode (see defines above)
280 *
281 * Helper to make vgic register access easier using one of the access
282 * modes defined for vgic register access
283 * (read,raz,write-ignored,setbit,clearbit,write)
284 */
285static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
286 phys_addr_t offset, int mode)
287{
288 int word_offset = (offset & 3) * 8;
289 u32 mask = (1UL << (mmio->len * 8)) - 1;
290 u32 regval;
291
292 /*
293 * Any alignment fault should have been delivered to the guest
294 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
295 */
296
297 if (reg) {
298 regval = *reg;
299 } else {
300 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
301 regval = 0;
302 }
303
304 if (mmio->is_write) {
305 u32 data = mmio_data_read(mmio, mask) << word_offset;
306 switch (ACCESS_WRITE_MASK(mode)) {
307 case ACCESS_WRITE_IGNORED:
308 return;
309
310 case ACCESS_WRITE_SETBIT:
311 regval |= data;
312 break;
313
314 case ACCESS_WRITE_CLEARBIT:
315 regval &= ~data;
316 break;
317
318 case ACCESS_WRITE_VALUE:
319 regval = (regval & ~(mask << word_offset)) | data;
320 break;
321 }
322 *reg = regval;
323 } else {
324 switch (ACCESS_READ_MASK(mode)) {
325 case ACCESS_READ_RAZ:
326 regval = 0;
327 /* fall through */
328
329 case ACCESS_READ_VALUE:
330 mmio_data_write(mmio, mask, regval >> word_offset);
331 }
332 }
333}
334
b47ef92a
MZ
335static bool handle_mmio_misc(struct kvm_vcpu *vcpu,
336 struct kvm_exit_mmio *mmio, phys_addr_t offset)
337{
338 u32 reg;
339 u32 word_offset = offset & 3;
340
341 switch (offset & ~3) {
fa20f5ae 342 case 0: /* GICD_CTLR */
b47ef92a
MZ
343 reg = vcpu->kvm->arch.vgic.enabled;
344 vgic_reg_access(mmio, &reg, word_offset,
345 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
346 if (mmio->is_write) {
347 vcpu->kvm->arch.vgic.enabled = reg & 1;
348 vgic_update_state(vcpu->kvm);
349 return true;
350 }
351 break;
352
fa20f5ae 353 case 4: /* GICD_TYPER */
b47ef92a
MZ
354 reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
355 reg |= (VGIC_NR_IRQS >> 5) - 1;
356 vgic_reg_access(mmio, &reg, word_offset,
357 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
358 break;
359
fa20f5ae
CD
360 case 8: /* GICD_IIDR */
361 reg = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
b47ef92a
MZ
362 vgic_reg_access(mmio, &reg, word_offset,
363 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
364 break;
365 }
366
367 return false;
368}
369
370static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu,
371 struct kvm_exit_mmio *mmio, phys_addr_t offset)
372{
373 vgic_reg_access(mmio, NULL, offset,
374 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
375 return false;
376}
377
378static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu,
379 struct kvm_exit_mmio *mmio,
380 phys_addr_t offset)
381{
382 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
383 vcpu->vcpu_id, offset);
384 vgic_reg_access(mmio, reg, offset,
385 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
386 if (mmio->is_write) {
387 vgic_update_state(vcpu->kvm);
388 return true;
389 }
390
391 return false;
392}
393
394static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu,
395 struct kvm_exit_mmio *mmio,
396 phys_addr_t offset)
397{
398 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled,
399 vcpu->vcpu_id, offset);
400 vgic_reg_access(mmio, reg, offset,
401 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
402 if (mmio->is_write) {
403 if (offset < 4) /* Force SGI enabled */
404 *reg |= 0xffff;
a1fcb44e 405 vgic_retire_disabled_irqs(vcpu);
b47ef92a
MZ
406 vgic_update_state(vcpu->kvm);
407 return true;
408 }
409
410 return false;
411}
412
413static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu,
414 struct kvm_exit_mmio *mmio,
415 phys_addr_t offset)
416{
227844f5 417 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_pending,
b47ef92a
MZ
418 vcpu->vcpu_id, offset);
419 vgic_reg_access(mmio, reg, offset,
420 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
421 if (mmio->is_write) {
422 vgic_update_state(vcpu->kvm);
423 return true;
424 }
425
426 return false;
427}
428
429static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu,
430 struct kvm_exit_mmio *mmio,
431 phys_addr_t offset)
432{
227844f5 433 u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_pending,
b47ef92a
MZ
434 vcpu->vcpu_id, offset);
435 vgic_reg_access(mmio, reg, offset,
436 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
437 if (mmio->is_write) {
438 vgic_update_state(vcpu->kvm);
439 return true;
440 }
441
442 return false;
443}
444
445static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu,
446 struct kvm_exit_mmio *mmio,
447 phys_addr_t offset)
448{
449 u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority,
450 vcpu->vcpu_id, offset);
451 vgic_reg_access(mmio, reg, offset,
452 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
453 return false;
454}
455
456#define GICD_ITARGETSR_SIZE 32
457#define GICD_CPUTARGETS_BITS 8
458#define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS)
459static u32 vgic_get_target_reg(struct kvm *kvm, int irq)
460{
461 struct vgic_dist *dist = &kvm->arch.vgic;
986af8e0 462 int i;
b47ef92a
MZ
463 u32 val = 0;
464
465 irq -= VGIC_NR_PRIVATE_IRQS;
466
986af8e0
MZ
467 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++)
468 val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8);
b47ef92a
MZ
469
470 return val;
471}
472
473static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq)
474{
475 struct vgic_dist *dist = &kvm->arch.vgic;
476 struct kvm_vcpu *vcpu;
477 int i, c;
478 unsigned long *bmap;
479 u32 target;
480
481 irq -= VGIC_NR_PRIVATE_IRQS;
482
483 /*
484 * Pick the LSB in each byte. This ensures we target exactly
485 * one vcpu per IRQ. If the byte is null, assume we target
486 * CPU0.
487 */
488 for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) {
489 int shift = i * GICD_CPUTARGETS_BITS;
490 target = ffs((val >> shift) & 0xffU);
491 target = target ? (target - 1) : 0;
492 dist->irq_spi_cpu[irq + i] = target;
493 kvm_for_each_vcpu(c, vcpu, kvm) {
494 bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]);
495 if (c == target)
496 set_bit(irq + i, bmap);
497 else
498 clear_bit(irq + i, bmap);
499 }
500 }
501}
502
503static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu,
504 struct kvm_exit_mmio *mmio,
505 phys_addr_t offset)
506{
507 u32 reg;
508
509 /* We treat the banked interrupts targets as read-only */
510 if (offset < 32) {
511 u32 roreg = 1 << vcpu->vcpu_id;
512 roreg |= roreg << 8;
513 roreg |= roreg << 16;
514
515 vgic_reg_access(mmio, &roreg, offset,
516 ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED);
517 return false;
518 }
519
520 reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U);
521 vgic_reg_access(mmio, &reg, offset,
522 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
523 if (mmio->is_write) {
524 vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U);
525 vgic_update_state(vcpu->kvm);
526 return true;
527 }
528
529 return false;
530}
531
532static u32 vgic_cfg_expand(u16 val)
533{
534 u32 res = 0;
535 int i;
536
537 /*
538 * Turn a 16bit value like abcd...mnop into a 32bit word
539 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
540 */
541 for (i = 0; i < 16; i++)
542 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
543
544 return res;
545}
546
547static u16 vgic_cfg_compress(u32 val)
548{
549 u16 res = 0;
550 int i;
551
552 /*
553 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
554 * abcd...mnop which is what we really care about.
555 */
556 for (i = 0; i < 16; i++)
557 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
558
559 return res;
560}
561
562/*
563 * The distributor uses 2 bits per IRQ for the CFG register, but the
564 * LSB is always 0. As such, we only keep the upper bit, and use the
565 * two above functions to compress/expand the bits
566 */
567static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu,
568 struct kvm_exit_mmio *mmio, phys_addr_t offset)
569{
570 u32 val;
6545eae3
MZ
571 u32 *reg;
572
6545eae3 573 reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg,
f2ae85b2 574 vcpu->vcpu_id, offset >> 1);
6545eae3 575
f2ae85b2 576 if (offset & 4)
b47ef92a
MZ
577 val = *reg >> 16;
578 else
579 val = *reg & 0xffff;
580
581 val = vgic_cfg_expand(val);
582 vgic_reg_access(mmio, &val, offset,
583 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
584 if (mmio->is_write) {
f2ae85b2 585 if (offset < 8) {
b47ef92a
MZ
586 *reg = ~0U; /* Force PPIs/SGIs to 1 */
587 return false;
588 }
589
590 val = vgic_cfg_compress(val);
f2ae85b2 591 if (offset & 4) {
b47ef92a
MZ
592 *reg &= 0xffff;
593 *reg |= val << 16;
594 } else {
595 *reg &= 0xffff << 16;
596 *reg |= val;
597 }
598 }
599
600 return false;
601}
602
603static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu,
604 struct kvm_exit_mmio *mmio, phys_addr_t offset)
605{
606 u32 reg;
607 vgic_reg_access(mmio, &reg, offset,
608 ACCESS_READ_RAZ | ACCESS_WRITE_VALUE);
609 if (mmio->is_write) {
610 vgic_dispatch_sgi(vcpu, reg);
611 vgic_update_state(vcpu->kvm);
612 return true;
613 }
614
615 return false;
616}
617
cbd333a4
CD
618/**
619 * vgic_unqueue_irqs - move pending IRQs from LRs to the distributor
620 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
621 *
622 * Move any pending IRQs that have already been assigned to LRs back to the
623 * emulated distributor state so that the complete emulated state can be read
624 * from the main emulation structures without investigating the LRs.
625 *
626 * Note that IRQs in the active state in the LRs get their pending state moved
627 * to the distributor but the active state stays in the LRs, because we don't
628 * track the active state on the distributor side.
629 */
630static void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
631{
632 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
633 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
634 int vcpu_id = vcpu->vcpu_id;
8d5c6b06 635 int i;
cbd333a4
CD
636
637 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 638 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
639
640 /*
641 * There are three options for the state bits:
642 *
643 * 01: pending
644 * 10: active
645 * 11: pending and active
646 *
647 * If the LR holds only an active interrupt (not pending) then
648 * just leave it alone.
649 */
8d5c6b06 650 if ((lr.state & LR_STATE_MASK) == LR_STATE_ACTIVE)
cbd333a4
CD
651 continue;
652
653 /*
654 * Reestablish the pending state on the distributor and the
655 * CPU interface. It may have already been pending, but that
656 * is fine, then we are only setting a few bits that were
657 * already set.
658 */
227844f5 659 vgic_dist_irq_set_pending(vcpu, lr.irq);
8d5c6b06
MZ
660 if (lr.irq < VGIC_NR_SGIS)
661 dist->irq_sgi_sources[vcpu_id][lr.irq] |= 1 << lr.source;
662 lr.state &= ~LR_STATE_PENDING;
663 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
664
665 /*
666 * If there's no state left on the LR (it could still be
667 * active), then the LR does not hold any useful info and can
668 * be marked as free for other use.
669 */
cced50c9 670 if (!(lr.state & LR_STATE_MASK)) {
8d5c6b06 671 vgic_retire_lr(i, lr.irq, vcpu);
cced50c9
CD
672 vgic_irq_clear_queued(vcpu, lr.irq);
673 }
cbd333a4
CD
674
675 /* Finally update the VGIC state. */
676 vgic_update_state(vcpu->kvm);
677 }
678}
679
90a5355e
CD
680/* Handle reads of GICD_CPENDSGIRn and GICD_SPENDSGIRn */
681static bool read_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
682 struct kvm_exit_mmio *mmio,
683 phys_addr_t offset)
c07a0191 684{
90a5355e
CD
685 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
686 int sgi;
687 int min_sgi = (offset & ~0x3) * 4;
688 int max_sgi = min_sgi + 3;
689 int vcpu_id = vcpu->vcpu_id;
690 u32 reg = 0;
691
692 /* Copy source SGIs from distributor side */
693 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
694 int shift = 8 * (sgi - min_sgi);
695 reg |= (u32)dist->irq_sgi_sources[vcpu_id][sgi] << shift;
696 }
697
698 mmio_data_write(mmio, ~0, reg);
c07a0191
CD
699 return false;
700}
701
90a5355e
CD
702static bool write_set_clear_sgi_pend_reg(struct kvm_vcpu *vcpu,
703 struct kvm_exit_mmio *mmio,
704 phys_addr_t offset, bool set)
705{
706 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
707 int sgi;
708 int min_sgi = (offset & ~0x3) * 4;
709 int max_sgi = min_sgi + 3;
710 int vcpu_id = vcpu->vcpu_id;
711 u32 reg;
712 bool updated = false;
713
714 reg = mmio_data_read(mmio, ~0);
715
716 /* Clear pending SGIs on the distributor */
717 for (sgi = min_sgi; sgi <= max_sgi; sgi++) {
718 u8 mask = reg >> (8 * (sgi - min_sgi));
719 if (set) {
720 if ((dist->irq_sgi_sources[vcpu_id][sgi] & mask) != mask)
721 updated = true;
722 dist->irq_sgi_sources[vcpu_id][sgi] |= mask;
723 } else {
724 if (dist->irq_sgi_sources[vcpu_id][sgi] & mask)
725 updated = true;
726 dist->irq_sgi_sources[vcpu_id][sgi] &= ~mask;
727 }
728 }
729
730 if (updated)
731 vgic_update_state(vcpu->kvm);
732
733 return updated;
734}
735
c07a0191
CD
736static bool handle_mmio_sgi_set(struct kvm_vcpu *vcpu,
737 struct kvm_exit_mmio *mmio,
738 phys_addr_t offset)
739{
90a5355e
CD
740 if (!mmio->is_write)
741 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
742 else
743 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, true);
744}
745
746static bool handle_mmio_sgi_clear(struct kvm_vcpu *vcpu,
747 struct kvm_exit_mmio *mmio,
748 phys_addr_t offset)
749{
750 if (!mmio->is_write)
751 return read_set_clear_sgi_pend_reg(vcpu, mmio, offset);
752 else
753 return write_set_clear_sgi_pend_reg(vcpu, mmio, offset, false);
c07a0191
CD
754}
755
1a89dd91
MZ
756/*
757 * I would have liked to use the kvm_bus_io_*() API instead, but it
758 * cannot cope with banked registers (only the VM pointer is passed
759 * around, and we need the vcpu). One of these days, someone please
760 * fix it!
761 */
762struct mmio_range {
763 phys_addr_t base;
764 unsigned long len;
765 bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
766 phys_addr_t offset);
767};
768
1006e8cb 769static const struct mmio_range vgic_dist_ranges[] = {
b47ef92a
MZ
770 {
771 .base = GIC_DIST_CTRL,
772 .len = 12,
773 .handle_mmio = handle_mmio_misc,
774 },
775 {
776 .base = GIC_DIST_IGROUP,
777 .len = VGIC_NR_IRQS / 8,
778 .handle_mmio = handle_mmio_raz_wi,
779 },
780 {
781 .base = GIC_DIST_ENABLE_SET,
782 .len = VGIC_NR_IRQS / 8,
783 .handle_mmio = handle_mmio_set_enable_reg,
784 },
785 {
786 .base = GIC_DIST_ENABLE_CLEAR,
787 .len = VGIC_NR_IRQS / 8,
788 .handle_mmio = handle_mmio_clear_enable_reg,
789 },
790 {
791 .base = GIC_DIST_PENDING_SET,
792 .len = VGIC_NR_IRQS / 8,
793 .handle_mmio = handle_mmio_set_pending_reg,
794 },
795 {
796 .base = GIC_DIST_PENDING_CLEAR,
797 .len = VGIC_NR_IRQS / 8,
798 .handle_mmio = handle_mmio_clear_pending_reg,
799 },
800 {
801 .base = GIC_DIST_ACTIVE_SET,
802 .len = VGIC_NR_IRQS / 8,
803 .handle_mmio = handle_mmio_raz_wi,
804 },
805 {
806 .base = GIC_DIST_ACTIVE_CLEAR,
807 .len = VGIC_NR_IRQS / 8,
808 .handle_mmio = handle_mmio_raz_wi,
809 },
810 {
811 .base = GIC_DIST_PRI,
812 .len = VGIC_NR_IRQS,
813 .handle_mmio = handle_mmio_priority_reg,
814 },
815 {
816 .base = GIC_DIST_TARGET,
817 .len = VGIC_NR_IRQS,
818 .handle_mmio = handle_mmio_target_reg,
819 },
820 {
821 .base = GIC_DIST_CONFIG,
822 .len = VGIC_NR_IRQS / 4,
823 .handle_mmio = handle_mmio_cfg_reg,
824 },
825 {
826 .base = GIC_DIST_SOFTINT,
827 .len = 4,
828 .handle_mmio = handle_mmio_sgi_reg,
829 },
c07a0191
CD
830 {
831 .base = GIC_DIST_SGI_PENDING_CLEAR,
832 .len = VGIC_NR_SGIS,
833 .handle_mmio = handle_mmio_sgi_clear,
834 },
835 {
836 .base = GIC_DIST_SGI_PENDING_SET,
837 .len = VGIC_NR_SGIS,
838 .handle_mmio = handle_mmio_sgi_set,
839 },
1a89dd91
MZ
840 {}
841};
842
843static const
844struct mmio_range *find_matching_range(const struct mmio_range *ranges,
845 struct kvm_exit_mmio *mmio,
1006e8cb 846 phys_addr_t offset)
1a89dd91
MZ
847{
848 const struct mmio_range *r = ranges;
1a89dd91
MZ
849
850 while (r->len) {
1006e8cb
CD
851 if (offset >= r->base &&
852 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
853 return r;
854 r++;
855 }
856
857 return NULL;
858}
859
860/**
861 * vgic_handle_mmio - handle an in-kernel MMIO access
862 * @vcpu: pointer to the vcpu performing the access
863 * @run: pointer to the kvm_run structure
864 * @mmio: pointer to the data describing the access
865 *
866 * returns true if the MMIO access has been performed in kernel space,
867 * and false if it needs to be emulated in user space.
868 */
869bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
870 struct kvm_exit_mmio *mmio)
871{
b47ef92a
MZ
872 const struct mmio_range *range;
873 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
874 unsigned long base = dist->vgic_dist_base;
875 bool updated_state;
876 unsigned long offset;
877
878 if (!irqchip_in_kernel(vcpu->kvm) ||
879 mmio->phys_addr < base ||
880 (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE))
881 return false;
882
883 /* We don't support ldrd / strd or ldm / stm to the emulated vgic */
884 if (mmio->len > 4) {
885 kvm_inject_dabt(vcpu, mmio->phys_addr);
886 return true;
887 }
888
1006e8cb
CD
889 offset = mmio->phys_addr - base;
890 range = find_matching_range(vgic_dist_ranges, mmio, offset);
b47ef92a
MZ
891 if (unlikely(!range || !range->handle_mmio)) {
892 pr_warn("Unhandled access %d %08llx %d\n",
893 mmio->is_write, mmio->phys_addr, mmio->len);
894 return false;
895 }
896
897 spin_lock(&vcpu->kvm->arch.vgic.lock);
898 offset = mmio->phys_addr - range->base - base;
899 updated_state = range->handle_mmio(vcpu, mmio, offset);
900 spin_unlock(&vcpu->kvm->arch.vgic.lock);
901 kvm_prepare_mmio(run, mmio);
902 kvm_handle_mmio_return(vcpu, run);
903
5863c2ce
MZ
904 if (updated_state)
905 vgic_kick_vcpus(vcpu->kvm);
906
b47ef92a
MZ
907 return true;
908}
909
910static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg)
911{
912 struct kvm *kvm = vcpu->kvm;
913 struct vgic_dist *dist = &kvm->arch.vgic;
914 int nrcpus = atomic_read(&kvm->online_vcpus);
915 u8 target_cpus;
916 int sgi, mode, c, vcpu_id;
917
918 vcpu_id = vcpu->vcpu_id;
919
920 sgi = reg & 0xf;
921 target_cpus = (reg >> 16) & 0xff;
922 mode = (reg >> 24) & 3;
923
924 switch (mode) {
925 case 0:
926 if (!target_cpus)
927 return;
91021a6c 928 break;
b47ef92a
MZ
929
930 case 1:
931 target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff;
932 break;
933
934 case 2:
935 target_cpus = 1 << vcpu_id;
936 break;
937 }
938
939 kvm_for_each_vcpu(c, vcpu, kvm) {
940 if (target_cpus & 1) {
941 /* Flag the SGI as pending */
227844f5 942 vgic_dist_irq_set_pending(vcpu, sgi);
b47ef92a
MZ
943 dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id;
944 kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c);
945 }
946
947 target_cpus >>= 1;
948 }
949}
950
951static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
952{
9d949dce
MZ
953 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
954 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
955 unsigned long pending_private, pending_shared;
956 int vcpu_id;
957
958 vcpu_id = vcpu->vcpu_id;
959 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
960 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
961
227844f5 962 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
963 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
964 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
965
227844f5 966 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce
MZ
967 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
968 bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS);
969 bitmap_and(pend_shared, pend_shared,
970 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
971 VGIC_NR_SHARED_IRQS);
972
973 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
974 pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS);
975 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
976 pending_shared < VGIC_NR_SHARED_IRQS);
b47ef92a
MZ
977}
978
979/*
980 * Update the interrupt state and determine which CPUs have pending
981 * interrupts. Must be called with distributor lock held.
982 */
983static void vgic_update_state(struct kvm *kvm)
984{
985 struct vgic_dist *dist = &kvm->arch.vgic;
986 struct kvm_vcpu *vcpu;
987 int c;
988
989 if (!dist->enabled) {
990 set_bit(0, &dist->irq_pending_on_cpu);
991 return;
992 }
993
994 kvm_for_each_vcpu(c, vcpu, kvm) {
995 if (compute_pending_for_cpu(vcpu)) {
996 pr_debug("CPU%d has pending interrupts\n", c);
997 set_bit(c, &dist->irq_pending_on_cpu);
998 }
999 }
1a89dd91 1000}
330690cd 1001
8d5c6b06
MZ
1002static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1003{
8f186d52 1004 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
1005}
1006
1007static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1008 struct vgic_lr vlr)
1009{
8f186d52 1010 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
1011}
1012
69bb2c9f
MZ
1013static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1014 struct vgic_lr vlr)
1015{
8f186d52 1016 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
1017}
1018
1019static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1020{
8f186d52 1021 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
1022}
1023
8d6a0313
MZ
1024static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1025{
8f186d52 1026 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
1027}
1028
495dd859
MZ
1029static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1030{
8f186d52 1031 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
1032}
1033
909d9b50
MZ
1034static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1035{
8f186d52 1036 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
1037}
1038
1039static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1040{
8f186d52 1041 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
1042}
1043
beee38b9
MZ
1044static inline void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1045{
8f186d52 1046 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1047}
1048
1049static void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
1050{
8f186d52 1051 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1052}
1053
da8dafd1
MZ
1054static inline void vgic_enable(struct kvm_vcpu *vcpu)
1055{
8f186d52 1056 vgic_ops->enable(vcpu);
da8dafd1
MZ
1057}
1058
8d5c6b06
MZ
1059static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1060{
1061 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1062 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1063
1064 vlr.state = 0;
1065 vgic_set_lr(vcpu, lr_nr, vlr);
1066 clear_bit(lr_nr, vgic_cpu->lr_used);
1067 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1068}
a1fcb44e
MZ
1069
1070/*
1071 * An interrupt may have been disabled after being made pending on the
1072 * CPU interface (the classic case is a timer running while we're
1073 * rebooting the guest - the interrupt would kick as soon as the CPU
1074 * interface gets enabled, with deadly consequences).
1075 *
1076 * The solution is to examine already active LRs, and check the
1077 * interrupt is still enabled. If not, just retire it.
1078 */
1079static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1080{
1081 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1082 int lr;
1083
8f186d52 1084 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1085 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1086
8d5c6b06
MZ
1087 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1088 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1089 if (vgic_irq_is_queued(vcpu, vlr.irq))
1090 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1091 }
1092 }
1093}
1094
9d949dce
MZ
1095/*
1096 * Queue an interrupt to a CPU virtual interface. Return true on success,
1097 * or false if it wasn't possible to queue it.
1098 */
1099static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
1100{
1101 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 1102 struct vgic_lr vlr;
9d949dce
MZ
1103 int lr;
1104
1105 /* Sanitize the input... */
1106 BUG_ON(sgi_source_id & ~7);
1107 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
1108 BUG_ON(irq >= VGIC_NR_IRQS);
1109
1110 kvm_debug("Queue IRQ%d\n", irq);
1111
1112 lr = vgic_cpu->vgic_irq_lr_map[irq];
1113
1114 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1115 if (lr != LR_EMPTY) {
1116 vlr = vgic_get_lr(vcpu, lr);
1117 if (vlr.source == sgi_source_id) {
1118 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1119 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
1120 vlr.state |= LR_STATE_PENDING;
1121 vgic_set_lr(vcpu, lr, vlr);
1122 return true;
1123 }
9d949dce
MZ
1124 }
1125
1126 /* Try to use another LR for this interrupt */
1127 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1128 vgic->nr_lr);
1129 if (lr >= vgic->nr_lr)
9d949dce
MZ
1130 return false;
1131
1132 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1133 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1134 set_bit(lr, vgic_cpu->lr_used);
1135
8d5c6b06
MZ
1136 vlr.irq = irq;
1137 vlr.source = sgi_source_id;
1138 vlr.state = LR_STATE_PENDING;
9d949dce 1139 if (!vgic_irq_is_edge(vcpu, irq))
8d5c6b06
MZ
1140 vlr.state |= LR_EOI_INT;
1141
1142 vgic_set_lr(vcpu, lr, vlr);
9d949dce
MZ
1143
1144 return true;
1145}
1146
1147static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq)
1148{
1149 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1150 unsigned long sources;
1151 int vcpu_id = vcpu->vcpu_id;
1152 int c;
1153
1154 sources = dist->irq_sgi_sources[vcpu_id][irq];
1155
1156 for_each_set_bit(c, &sources, VGIC_MAX_CPUS) {
1157 if (vgic_queue_irq(vcpu, c, irq))
1158 clear_bit(c, &sources);
1159 }
1160
1161 dist->irq_sgi_sources[vcpu_id][irq] = sources;
1162
1163 /*
1164 * If the sources bitmap has been cleared it means that we
1165 * could queue all the SGIs onto link registers (see the
1166 * clear_bit above), and therefore we are done with them in
1167 * our emulated gic and can get rid of them.
1168 */
1169 if (!sources) {
227844f5 1170 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1171 vgic_cpu_irq_clear(vcpu, irq);
1172 return true;
1173 }
1174
1175 return false;
1176}
1177
1178static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1179{
dbf20f9d 1180 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1181 return true; /* level interrupt, already queued */
1182
1183 if (vgic_queue_irq(vcpu, 0, irq)) {
1184 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1185 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1186 vgic_cpu_irq_clear(vcpu, irq);
1187 } else {
dbf20f9d 1188 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1189 }
1190
1191 return true;
1192 }
1193
1194 return false;
1195}
1196
1197/*
1198 * Fill the list registers with pending interrupts before running the
1199 * guest.
1200 */
1201static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1202{
1203 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1204 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1205 int i, vcpu_id;
1206 int overflow = 0;
1207
1208 vcpu_id = vcpu->vcpu_id;
1209
1210 /*
1211 * We may not have any pending interrupt, or the interrupts
1212 * may have been serviced from another vcpu. In all cases,
1213 * move along.
1214 */
1215 if (!kvm_vgic_vcpu_pending_irq(vcpu)) {
1216 pr_debug("CPU%d has no pending interrupt\n", vcpu_id);
1217 goto epilog;
1218 }
1219
1220 /* SGIs */
1221 for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) {
1222 if (!vgic_queue_sgi(vcpu, i))
1223 overflow = 1;
1224 }
1225
1226 /* PPIs */
1227 for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) {
1228 if (!vgic_queue_hwirq(vcpu, i))
1229 overflow = 1;
1230 }
1231
1232 /* SPIs */
1233 for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) {
1234 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1235 overflow = 1;
1236 }
1237
1238epilog:
1239 if (overflow) {
909d9b50 1240 vgic_enable_underflow(vcpu);
9d949dce 1241 } else {
909d9b50 1242 vgic_disable_underflow(vcpu);
9d949dce
MZ
1243 /*
1244 * We're about to run this VCPU, and we've consumed
1245 * everything the distributor had in store for
1246 * us. Claim we don't have anything pending. We'll
1247 * adjust that if needed while exiting.
1248 */
1249 clear_bit(vcpu_id, &dist->irq_pending_on_cpu);
1250 }
1251}
1252
1253static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1254{
495dd859 1255 u32 status = vgic_get_interrupt_status(vcpu);
9d949dce
MZ
1256 bool level_pending = false;
1257
495dd859 1258 kvm_debug("STATUS = %08x\n", status);
9d949dce 1259
495dd859 1260 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1261 /*
1262 * Some level interrupts have been EOIed. Clear their
1263 * active bit.
1264 */
8d6a0313
MZ
1265 u64 eisr = vgic_get_eisr(vcpu);
1266 unsigned long *eisr_ptr = (unsigned long *)&eisr;
8d5c6b06 1267 int lr;
9d949dce 1268
8f186d52 1269 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1270 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
9d949dce 1271
dbf20f9d 1272 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1273 WARN_ON(vlr.state & LR_STATE_MASK);
1274 vlr.state = 0;
1275 vgic_set_lr(vcpu, lr, vlr);
9d949dce
MZ
1276
1277 /* Any additional pending interrupt? */
8d5c6b06
MZ
1278 if (vgic_dist_irq_is_pending(vcpu, vlr.irq)) {
1279 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1280 level_pending = true;
1281 } else {
8d5c6b06 1282 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1283 }
75da01e1
MZ
1284
1285 /*
1286 * Despite being EOIed, the LR may not have
1287 * been marked as empty.
1288 */
69bb2c9f 1289 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1290 }
1291 }
1292
495dd859 1293 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1294 vgic_disable_underflow(vcpu);
9d949dce
MZ
1295
1296 return level_pending;
1297}
1298
1299/*
33c83cb3
MZ
1300 * Sync back the VGIC state after a guest run. The distributor lock is
1301 * needed so we don't get preempted in the middle of the state processing.
9d949dce
MZ
1302 */
1303static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1304{
1305 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1306 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1307 u64 elrsr;
1308 unsigned long *elrsr_ptr;
9d949dce
MZ
1309 int lr, pending;
1310 bool level_pending;
1311
1312 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f
MZ
1313 elrsr = vgic_get_elrsr(vcpu);
1314 elrsr_ptr = (unsigned long *)&elrsr;
9d949dce
MZ
1315
1316 /* Clear mappings for empty LRs */
8f186d52 1317 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
8d5c6b06 1318 struct vgic_lr vlr;
9d949dce
MZ
1319
1320 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1321 continue;
1322
8d5c6b06 1323 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1324
8d5c6b06
MZ
1325 BUG_ON(vlr.irq >= VGIC_NR_IRQS);
1326 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1327 }
1328
1329 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1330 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1331 if (level_pending || pending < vgic->nr_lr)
9d949dce
MZ
1332 set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1333}
1334
1335void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1336{
1337 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1338
1339 if (!irqchip_in_kernel(vcpu->kvm))
1340 return;
1341
1342 spin_lock(&dist->lock);
1343 __kvm_vgic_flush_hwstate(vcpu);
1344 spin_unlock(&dist->lock);
1345}
1346
1347void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1348{
33c83cb3
MZ
1349 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1350
9d949dce
MZ
1351 if (!irqchip_in_kernel(vcpu->kvm))
1352 return;
1353
33c83cb3 1354 spin_lock(&dist->lock);
9d949dce 1355 __kvm_vgic_sync_hwstate(vcpu);
33c83cb3 1356 spin_unlock(&dist->lock);
9d949dce
MZ
1357}
1358
1359int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1360{
1361 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1362
1363 if (!irqchip_in_kernel(vcpu->kvm))
1364 return 0;
1365
1366 return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu);
1367}
1368
5863c2ce
MZ
1369static void vgic_kick_vcpus(struct kvm *kvm)
1370{
1371 struct kvm_vcpu *vcpu;
1372 int c;
1373
1374 /*
1375 * We've injected an interrupt, time to find out who deserves
1376 * a good kick...
1377 */
1378 kvm_for_each_vcpu(c, vcpu, kvm) {
1379 if (kvm_vgic_vcpu_pending_irq(vcpu))
1380 kvm_vcpu_kick(vcpu);
1381 }
1382}
1383
1384static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1385{
227844f5 1386 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1387 int state = vgic_dist_irq_is_pending(vcpu, irq);
1388
1389 /*
1390 * Only inject an interrupt if:
1391 * - edge triggered and we have a rising edge
1392 * - level triggered and we change level
1393 */
227844f5 1394 if (edge_triggered)
5863c2ce
MZ
1395 return level > state;
1396 else
1397 return level != state;
1398}
1399
227844f5 1400static bool vgic_update_irq_pending(struct kvm *kvm, int cpuid,
5863c2ce
MZ
1401 unsigned int irq_num, bool level)
1402{
1403 struct vgic_dist *dist = &kvm->arch.vgic;
1404 struct kvm_vcpu *vcpu;
227844f5 1405 int edge_triggered, level_triggered;
5863c2ce
MZ
1406 int enabled;
1407 bool ret = true;
1408
1409 spin_lock(&dist->lock);
1410
1411 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1412 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1413 level_triggered = !edge_triggered;
5863c2ce
MZ
1414
1415 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1416 ret = false;
1417 goto out;
1418 }
1419
1420 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1421 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
1422 vcpu = kvm_get_vcpu(kvm, cpuid);
1423 }
1424
1425 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1426
1427 if (level)
227844f5 1428 vgic_dist_irq_set_pending(vcpu, irq_num);
5863c2ce 1429 else
227844f5 1430 vgic_dist_irq_clear_pending(vcpu, irq_num);
5863c2ce
MZ
1431
1432 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1433
1434 if (!enabled) {
1435 ret = false;
1436 goto out;
1437 }
1438
dbf20f9d 1439 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1440 /*
1441 * Level interrupt in progress, will be picked up
1442 * when EOId.
1443 */
1444 ret = false;
1445 goto out;
1446 }
1447
1448 if (level) {
1449 vgic_cpu_irq_set(vcpu, irq_num);
1450 set_bit(cpuid, &dist->irq_pending_on_cpu);
1451 }
1452
1453out:
1454 spin_unlock(&dist->lock);
1455
1456 return ret;
1457}
1458
1459/**
1460 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1461 * @kvm: The VM structure pointer
1462 * @cpuid: The CPU for PPIs
1463 * @irq_num: The IRQ number that is assigned to the device
1464 * @level: Edge-triggered: true: to trigger the interrupt
1465 * false: to ignore the call
1466 * Level-sensitive true: activates an interrupt
1467 * false: deactivates an interrupt
1468 *
1469 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1470 * level-sensitive interrupts. You can think of the level parameter as 1
1471 * being HIGH and 0 being LOW and all devices being active-HIGH.
1472 */
1473int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1474 bool level)
1475{
227844f5 1476 if (vgic_update_irq_pending(kvm, cpuid, irq_num, level))
5863c2ce
MZ
1477 vgic_kick_vcpus(kvm);
1478
1479 return 0;
1480}
1481
01ac5e34
MZ
1482static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1483{
1484 /*
1485 * We cannot rely on the vgic maintenance interrupt to be
1486 * delivered synchronously. This means we can only use it to
1487 * exit the VM, and we perform the handling of EOIed
1488 * interrupts on the exit path (see vgic_process_maintenance).
1489 */
1490 return IRQ_HANDLED;
1491}
1492
e1ba0207
CD
1493/**
1494 * kvm_vgic_vcpu_init - Initialize per-vcpu VGIC state
1495 * @vcpu: pointer to the vcpu struct
1496 *
1497 * Initialize the vgic_cpu struct and vgic_dist struct fields pertaining to
1498 * this vcpu and enable the VGIC for this VCPU
1499 */
01ac5e34
MZ
1500int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu)
1501{
1502 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1503 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1504 int i;
1505
01ac5e34
MZ
1506 if (vcpu->vcpu_id >= VGIC_MAX_CPUS)
1507 return -EBUSY;
1508
1509 for (i = 0; i < VGIC_NR_IRQS; i++) {
1510 if (i < VGIC_NR_PPIS)
1511 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1512 vcpu->vcpu_id, i, 1);
1513 if (i < VGIC_NR_PRIVATE_IRQS)
1514 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1515 vcpu->vcpu_id, i, VGIC_CFG_EDGE);
1516
1517 vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY;
1518 }
1519
1520 /*
ca85f623
MZ
1521 * Store the number of LRs per vcpu, so we don't have to go
1522 * all the way to the distributor structure to find out. Only
1523 * assembly code should use this one.
01ac5e34 1524 */
8f186d52 1525 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1526
da8dafd1 1527 vgic_enable(vcpu);
01ac5e34
MZ
1528
1529 return 0;
1530}
1531
e1ba0207
CD
1532/**
1533 * kvm_vgic_init - Initialize global VGIC state before running any VCPUs
1534 * @kvm: pointer to the kvm struct
1535 *
1536 * Map the virtual CPU interface into the VM before running any VCPUs. We
1537 * can't do this at creation time, because user space must first set the
1538 * virtual CPU interface address in the guest physical address space. Also
1539 * initialize the ITARGETSRn regs to 0 on the emulated distributor.
1540 */
01ac5e34
MZ
1541int kvm_vgic_init(struct kvm *kvm)
1542{
1543 int ret = 0, i;
1544
e1ba0207
CD
1545 if (!irqchip_in_kernel(kvm))
1546 return 0;
1547
01ac5e34
MZ
1548 mutex_lock(&kvm->lock);
1549
1550 if (vgic_initialized(kvm))
1551 goto out;
1552
1553 if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) ||
1554 IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) {
1555 kvm_err("Need to set vgic cpu and dist addresses first\n");
1556 ret = -ENXIO;
1557 goto out;
1558 }
1559
1560 ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base,
8f186d52 1561 vgic->vcpu_base, KVM_VGIC_V2_CPU_SIZE);
01ac5e34
MZ
1562 if (ret) {
1563 kvm_err("Unable to remap VGIC CPU to VCPU\n");
1564 goto out;
1565 }
1566
1567 for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4)
1568 vgic_set_target_reg(kvm, 0, i);
1569
1570 kvm->arch.vgic.ready = true;
1571out:
1572 mutex_unlock(&kvm->lock);
1573 return ret;
1574}
1575
1576int kvm_vgic_create(struct kvm *kvm)
1577{
7330672b
CD
1578 int i, vcpu_lock_idx = -1, ret = 0;
1579 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1580
1581 mutex_lock(&kvm->lock);
1582
7330672b 1583 if (kvm->arch.vgic.vctrl_base) {
01ac5e34
MZ
1584 ret = -EEXIST;
1585 goto out;
1586 }
1587
7330672b
CD
1588 /*
1589 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1590 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1591 * that no other VCPUs are run while we create the vgic.
1592 */
1593 kvm_for_each_vcpu(i, vcpu, kvm) {
1594 if (!mutex_trylock(&vcpu->mutex))
1595 goto out_unlock;
1596 vcpu_lock_idx = i;
1597 }
1598
1599 kvm_for_each_vcpu(i, vcpu, kvm) {
1600 if (vcpu->arch.has_run_once) {
1601 ret = -EBUSY;
1602 goto out_unlock;
1603 }
1604 }
1605
01ac5e34 1606 spin_lock_init(&kvm->arch.vgic.lock);
f982cf4e 1607 kvm->arch.vgic.in_kernel = true;
8f186d52 1608 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
1609 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1610 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
1611
7330672b
CD
1612out_unlock:
1613 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1614 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1615 mutex_unlock(&vcpu->mutex);
1616 }
1617
01ac5e34
MZ
1618out:
1619 mutex_unlock(&kvm->lock);
1620 return ret;
1621}
1622
1fa451bc 1623static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
1624{
1625 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1626 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1627
1628 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1629 return 0;
1630 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1631 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1632 return -EBUSY;
1633 return 0;
1634}
1635
1636static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1637 phys_addr_t addr, phys_addr_t size)
1638{
1639 int ret;
1640
ce01e4e8
CD
1641 if (addr & ~KVM_PHYS_MASK)
1642 return -E2BIG;
1643
1644 if (addr & (SZ_4K - 1))
1645 return -EINVAL;
1646
330690cd
CD
1647 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1648 return -EEXIST;
1649 if (addr + size < addr)
1650 return -EINVAL;
1651
30c21170 1652 *ioaddr = addr;
330690cd
CD
1653 ret = vgic_ioaddr_overlap(kvm);
1654 if (ret)
30c21170
HW
1655 *ioaddr = VGIC_ADDR_UNDEF;
1656
330690cd
CD
1657 return ret;
1658}
1659
ce01e4e8
CD
1660/**
1661 * kvm_vgic_addr - set or get vgic VM base addresses
1662 * @kvm: pointer to the vm struct
1663 * @type: the VGIC addr type, one of KVM_VGIC_V2_ADDR_TYPE_XXX
1664 * @addr: pointer to address value
1665 * @write: if true set the address in the VM address space, if false read the
1666 * address
1667 *
1668 * Set or get the vgic base addresses for the distributor and the virtual CPU
1669 * interface in the VM physical address space. These addresses are properties
1670 * of the emulated core/SoC and therefore user space initially knows this
1671 * information.
1672 */
1673int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1674{
1675 int r = 0;
1676 struct vgic_dist *vgic = &kvm->arch.vgic;
1677
330690cd
CD
1678 mutex_lock(&kvm->lock);
1679 switch (type) {
1680 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ce01e4e8
CD
1681 if (write) {
1682 r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base,
1683 *addr, KVM_VGIC_V2_DIST_SIZE);
1684 } else {
1685 *addr = vgic->vgic_dist_base;
1686 }
330690cd
CD
1687 break;
1688 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ce01e4e8
CD
1689 if (write) {
1690 r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base,
1691 *addr, KVM_VGIC_V2_CPU_SIZE);
1692 } else {
1693 *addr = vgic->vgic_cpu_base;
1694 }
330690cd
CD
1695 break;
1696 default:
1697 r = -ENODEV;
1698 }
1699
1700 mutex_unlock(&kvm->lock);
1701 return r;
1702}
7330672b 1703
c07a0191
CD
1704static bool handle_cpu_mmio_misc(struct kvm_vcpu *vcpu,
1705 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1706{
fa20f5ae 1707 bool updated = false;
beee38b9
MZ
1708 struct vgic_vmcr vmcr;
1709 u32 *vmcr_field;
1710 u32 reg;
1711
1712 vgic_get_vmcr(vcpu, &vmcr);
fa20f5ae
CD
1713
1714 switch (offset & ~0x3) {
1715 case GIC_CPU_CTRL:
beee38b9 1716 vmcr_field = &vmcr.ctlr;
fa20f5ae
CD
1717 break;
1718 case GIC_CPU_PRIMASK:
beee38b9 1719 vmcr_field = &vmcr.pmr;
fa20f5ae
CD
1720 break;
1721 case GIC_CPU_BINPOINT:
beee38b9 1722 vmcr_field = &vmcr.bpr;
fa20f5ae
CD
1723 break;
1724 case GIC_CPU_ALIAS_BINPOINT:
beee38b9 1725 vmcr_field = &vmcr.abpr;
fa20f5ae 1726 break;
beee38b9
MZ
1727 default:
1728 BUG();
fa20f5ae
CD
1729 }
1730
1731 if (!mmio->is_write) {
beee38b9 1732 reg = *vmcr_field;
fa20f5ae
CD
1733 mmio_data_write(mmio, ~0, reg);
1734 } else {
1735 reg = mmio_data_read(mmio, ~0);
beee38b9
MZ
1736 if (reg != *vmcr_field) {
1737 *vmcr_field = reg;
1738 vgic_set_vmcr(vcpu, &vmcr);
fa20f5ae 1739 updated = true;
beee38b9 1740 }
fa20f5ae
CD
1741 }
1742 return updated;
1743}
1744
1745static bool handle_mmio_abpr(struct kvm_vcpu *vcpu,
1746 struct kvm_exit_mmio *mmio, phys_addr_t offset)
1747{
1748 return handle_cpu_mmio_misc(vcpu, mmio, GIC_CPU_ALIAS_BINPOINT);
c07a0191
CD
1749}
1750
fa20f5ae
CD
1751static bool handle_cpu_mmio_ident(struct kvm_vcpu *vcpu,
1752 struct kvm_exit_mmio *mmio,
1753 phys_addr_t offset)
1754{
1755 u32 reg;
1756
1757 if (mmio->is_write)
1758 return false;
1759
1760 /* GICC_IIDR */
1761 reg = (PRODUCT_ID_KVM << 20) |
1762 (GICC_ARCH_VERSION_V2 << 16) |
1763 (IMPLEMENTER_ARM << 0);
1764 mmio_data_write(mmio, ~0, reg);
1765 return false;
1766}
1767
1768/*
1769 * CPU Interface Register accesses - these are not accessed by the VM, but by
1770 * user space for saving and restoring VGIC state.
1771 */
c07a0191
CD
1772static const struct mmio_range vgic_cpu_ranges[] = {
1773 {
1774 .base = GIC_CPU_CTRL,
1775 .len = 12,
1776 .handle_mmio = handle_cpu_mmio_misc,
1777 },
1778 {
1779 .base = GIC_CPU_ALIAS_BINPOINT,
1780 .len = 4,
fa20f5ae 1781 .handle_mmio = handle_mmio_abpr,
c07a0191
CD
1782 },
1783 {
1784 .base = GIC_CPU_ACTIVEPRIO,
1785 .len = 16,
fa20f5ae 1786 .handle_mmio = handle_mmio_raz_wi,
c07a0191
CD
1787 },
1788 {
1789 .base = GIC_CPU_IDENT,
1790 .len = 4,
fa20f5ae 1791 .handle_mmio = handle_cpu_mmio_ident,
c07a0191
CD
1792 },
1793};
1794
1795static int vgic_attr_regs_access(struct kvm_device *dev,
1796 struct kvm_device_attr *attr,
1797 u32 *reg, bool is_write)
1798{
1799 const struct mmio_range *r = NULL, *ranges;
1800 phys_addr_t offset;
1801 int ret, cpuid, c;
1802 struct kvm_vcpu *vcpu, *tmp_vcpu;
1803 struct vgic_dist *vgic;
1804 struct kvm_exit_mmio mmio;
1805
1806 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1807 cpuid = (attr->attr & KVM_DEV_ARM_VGIC_CPUID_MASK) >>
1808 KVM_DEV_ARM_VGIC_CPUID_SHIFT;
1809
1810 mutex_lock(&dev->kvm->lock);
1811
1812 if (cpuid >= atomic_read(&dev->kvm->online_vcpus)) {
1813 ret = -EINVAL;
1814 goto out;
1815 }
1816
1817 vcpu = kvm_get_vcpu(dev->kvm, cpuid);
1818 vgic = &dev->kvm->arch.vgic;
1819
1820 mmio.len = 4;
1821 mmio.is_write = is_write;
1822 if (is_write)
1823 mmio_data_write(&mmio, ~0, *reg);
1824 switch (attr->group) {
1825 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1826 mmio.phys_addr = vgic->vgic_dist_base + offset;
1827 ranges = vgic_dist_ranges;
1828 break;
1829 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1830 mmio.phys_addr = vgic->vgic_cpu_base + offset;
1831 ranges = vgic_cpu_ranges;
1832 break;
1833 default:
1834 BUG();
1835 }
1836 r = find_matching_range(ranges, &mmio, offset);
1837
1838 if (unlikely(!r || !r->handle_mmio)) {
1839 ret = -ENXIO;
1840 goto out;
1841 }
1842
1843
1844 spin_lock(&vgic->lock);
1845
1846 /*
1847 * Ensure that no other VCPU is running by checking the vcpu->cpu
1848 * field. If no other VPCUs are running we can safely access the VGIC
1849 * state, because even if another VPU is run after this point, that
1850 * VCPU will not touch the vgic state, because it will block on
1851 * getting the vgic->lock in kvm_vgic_sync_hwstate().
1852 */
1853 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm) {
1854 if (unlikely(tmp_vcpu->cpu != -1)) {
1855 ret = -EBUSY;
1856 goto out_vgic_unlock;
1857 }
1858 }
1859
cbd333a4
CD
1860 /*
1861 * Move all pending IRQs from the LRs on all VCPUs so the pending
1862 * state can be properly represented in the register state accessible
1863 * through this API.
1864 */
1865 kvm_for_each_vcpu(c, tmp_vcpu, dev->kvm)
1866 vgic_unqueue_irqs(tmp_vcpu);
1867
c07a0191
CD
1868 offset -= r->base;
1869 r->handle_mmio(vcpu, &mmio, offset);
1870
1871 if (!is_write)
1872 *reg = mmio_data_read(&mmio, ~0);
1873
1874 ret = 0;
1875out_vgic_unlock:
1876 spin_unlock(&vgic->lock);
1877out:
1878 mutex_unlock(&dev->kvm->lock);
1879 return ret;
1880}
1881
7330672b
CD
1882static int vgic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1883{
ce01e4e8
CD
1884 int r;
1885
1886 switch (attr->group) {
1887 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1888 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1889 u64 addr;
1890 unsigned long type = (unsigned long)attr->attr;
1891
1892 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1893 return -EFAULT;
1894
1895 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1896 return (r == -ENODEV) ? -ENXIO : r;
1897 }
c07a0191
CD
1898
1899 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1900 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1901 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1902 u32 reg;
1903
1904 if (get_user(reg, uaddr))
1905 return -EFAULT;
1906
1907 return vgic_attr_regs_access(dev, attr, &reg, true);
1908 }
1909
ce01e4e8
CD
1910 }
1911
7330672b
CD
1912 return -ENXIO;
1913}
1914
1915static int vgic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1916{
ce01e4e8
CD
1917 int r = -ENXIO;
1918
1919 switch (attr->group) {
1920 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1921 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1922 u64 addr;
1923 unsigned long type = (unsigned long)attr->attr;
1924
1925 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1926 if (r)
1927 return (r == -ENODEV) ? -ENXIO : r;
1928
1929 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1930 return -EFAULT;
c07a0191
CD
1931 break;
1932 }
1933
1934 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1935 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS: {
1936 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1937 u32 reg = 0;
1938
1939 r = vgic_attr_regs_access(dev, attr, &reg, false);
1940 if (r)
1941 return r;
1942 r = put_user(reg, uaddr);
1943 break;
ce01e4e8 1944 }
c07a0191 1945
ce01e4e8
CD
1946 }
1947
1948 return r;
7330672b
CD
1949}
1950
c07a0191
CD
1951static int vgic_has_attr_regs(const struct mmio_range *ranges,
1952 phys_addr_t offset)
1953{
1954 struct kvm_exit_mmio dev_attr_mmio;
1955
1956 dev_attr_mmio.len = 4;
1957 if (find_matching_range(ranges, &dev_attr_mmio, offset))
1958 return 0;
1959 else
1960 return -ENXIO;
1961}
1962
7330672b
CD
1963static int vgic_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1964{
c07a0191
CD
1965 phys_addr_t offset;
1966
ce01e4e8
CD
1967 switch (attr->group) {
1968 case KVM_DEV_ARM_VGIC_GRP_ADDR:
1969 switch (attr->attr) {
1970 case KVM_VGIC_V2_ADDR_TYPE_DIST:
1971 case KVM_VGIC_V2_ADDR_TYPE_CPU:
1972 return 0;
1973 }
1974 break;
c07a0191
CD
1975 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
1976 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1977 return vgic_has_attr_regs(vgic_dist_ranges, offset);
1978 case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
1979 offset = attr->attr & KVM_DEV_ARM_VGIC_OFFSET_MASK;
1980 return vgic_has_attr_regs(vgic_cpu_ranges, offset);
ce01e4e8 1981 }
7330672b
CD
1982 return -ENXIO;
1983}
1984
1985static void vgic_destroy(struct kvm_device *dev)
1986{
1987 kfree(dev);
1988}
1989
1990static int vgic_create(struct kvm_device *dev, u32 type)
1991{
1992 return kvm_vgic_create(dev->kvm);
1993}
1994
c06a841b 1995static struct kvm_device_ops kvm_arm_vgic_v2_ops = {
7330672b
CD
1996 .name = "kvm-arm-vgic",
1997 .create = vgic_create,
1998 .destroy = vgic_destroy,
1999 .set_attr = vgic_set_attr,
2000 .get_attr = vgic_get_attr,
2001 .has_attr = vgic_has_attr,
2002};
c06a841b
WD
2003
2004static void vgic_init_maintenance_interrupt(void *info)
2005{
2006 enable_percpu_irq(vgic->maint_irq, 0);
2007}
2008
2009static int vgic_cpu_notify(struct notifier_block *self,
2010 unsigned long action, void *cpu)
2011{
2012 switch (action) {
2013 case CPU_STARTING:
2014 case CPU_STARTING_FROZEN:
2015 vgic_init_maintenance_interrupt(NULL);
2016 break;
2017 case CPU_DYING:
2018 case CPU_DYING_FROZEN:
2019 disable_percpu_irq(vgic->maint_irq);
2020 break;
2021 }
2022
2023 return NOTIFY_OK;
2024}
2025
2026static struct notifier_block vgic_cpu_nb = {
2027 .notifier_call = vgic_cpu_notify,
2028};
2029
2030static const struct of_device_id vgic_ids[] = {
2031 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2032 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
2033 {},
2034};
2035
2036int kvm_vgic_hyp_init(void)
2037{
2038 const struct of_device_id *matched_id;
a875dafc
CD
2039 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2040 const struct vgic_params **);
c06a841b
WD
2041 struct device_node *vgic_node;
2042 int ret;
2043
2044 vgic_node = of_find_matching_node_and_match(NULL,
2045 vgic_ids, &matched_id);
2046 if (!vgic_node) {
2047 kvm_err("error: no compatible GIC node found\n");
2048 return -ENODEV;
2049 }
2050
2051 vgic_probe = matched_id->data;
2052 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2053 if (ret)
2054 return ret;
2055
2056 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2057 "vgic", kvm_get_running_vcpus());
2058 if (ret) {
2059 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2060 return ret;
2061 }
2062
2063 ret = __register_cpu_notifier(&vgic_cpu_nb);
2064 if (ret) {
2065 kvm_err("Cannot register vgic CPU notifier\n");
2066 goto out_free_irq;
2067 }
2068
2069 /* Callback into for arch code for setup */
2070 vgic_arch_setup(vgic);
2071
2072 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2073
2074 return kvm_register_device_ops(&kvm_arm_vgic_v2_ops,
2075 KVM_DEV_TYPE_ARM_VGIC_V2);
2076
2077out_free_irq:
2078 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2079 return ret;
2080}
This page took 0.202525 seconds and 5 git commands to generate.