KVM: arm/arm64: rename struct kvm_mmio_range to vgic_io_range
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
2a2f3e26 27#include <linux/uaccess.h>
01ac5e34
MZ
28
29#include <linux/irqchip/arm-gic.h>
30
1a89dd91 31#include <asm/kvm_emulate.h>
01ac5e34
MZ
32#include <asm/kvm_arm.h>
33#include <asm/kvm_mmu.h>
174178fe 34#include <trace/events/kvm.h>
1a89dd91 35
b47ef92a
MZ
36/*
37 * How the whole thing works (courtesy of Christoffer Dall):
38 *
39 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
40 * something is pending on the CPU interface.
41 * - Interrupts that are pending on the distributor are stored on the
42 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
43 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
44 * arch. timers).
b47ef92a
MZ
45 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
46 * recalculated
47 * - To calculate the oracle, we need info for each cpu from
48 * compute_pending_for_cpu, which considers:
227844f5
CD
49 * - PPI: dist->irq_pending & dist->irq_enable
50 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 51 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
52 * registers, stored on each vcpu. We only keep one bit of
53 * information per interrupt, making sure that only one vcpu can
54 * accept the interrupt.
7e362919 55 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
56 * - The same is true when injecting an interrupt, except that we only
57 * consider a single interrupt at a time. The irq_spi_cpu array
58 * contains the target CPU for each SPI.
59 *
60 * The handling of level interrupts adds some extra complexity. We
61 * need to track when the interrupt has been EOIed, so we can sample
62 * the 'line' again. This is achieved as such:
63 *
64 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 65 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
66 * will be ignored for further interrupts. The interrupt is injected
67 * into the vcpu with the GICH_LR_EOI bit set (generate a
68 * maintenance interrupt on EOI).
69 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 70 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 71 * interrupt line to be sampled again.
faa1b46c
CD
72 * - Note that level-triggered interrupts can also be set to pending from
73 * writes to GICD_ISPENDRn and lowering the external input line does not
74 * cause the interrupt to become inactive in such a situation.
75 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
76 * inactive as long as the external input line is held high.
b47ef92a
MZ
77 */
78
83215812 79#include "vgic.h"
330690cd 80
a1fcb44e 81static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 82static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
8d5c6b06
MZ
83static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
84static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
01ac5e34 85
8f186d52
MZ
86static const struct vgic_ops *vgic_ops;
87static const struct vgic_params *vgic;
b47ef92a 88
b26e5fda
AP
89static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
90{
91 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
92}
93
94static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
95{
96 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
97}
98
99int kvm_vgic_map_resources(struct kvm *kvm)
100{
101 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
102}
103
9662fb48 104/*
c1bfb577
MZ
105 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
106 * extracts u32s out of them.
9662fb48
VK
107 *
108 * This does not work on 64-bit BE systems, because the bitmap access
109 * will store two consecutive 32-bit words with the higher-addressed
110 * register's bits at the lower index and the lower-addressed register's
111 * bits at the higher index.
112 *
113 * Therefore, swizzle the register index when accessing the 32-bit word
114 * registers to access the right register's value.
115 */
116#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
117#define REG_OFFSET_SWIZZLE 1
118#else
119#define REG_OFFSET_SWIZZLE 0
120#endif
b47ef92a 121
c1bfb577
MZ
122static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
123{
124 int nr_longs;
125
126 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
127
128 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
129 if (!b->private)
130 return -ENOMEM;
131
132 b->shared = b->private + nr_cpus;
133
134 return 0;
135}
136
137static void vgic_free_bitmap(struct vgic_bitmap *b)
138{
139 kfree(b->private);
140 b->private = NULL;
141 b->shared = NULL;
142}
143
2df36a5d
CD
144/*
145 * Call this function to convert a u64 value to an unsigned long * bitmask
146 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
147 *
148 * Warning: Calling this function may modify *val.
149 */
150static unsigned long *u64_to_bitmask(u64 *val)
151{
152#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
153 *val = (*val >> 32) | (*val << 32);
154#endif
155 return (unsigned long *)val;
156}
157
83215812 158u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
b47ef92a
MZ
159{
160 offset >>= 2;
161 if (!offset)
c1bfb577 162 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 163 else
c1bfb577 164 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
165}
166
167static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
168 int cpuid, int irq)
169{
170 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 171 return test_bit(irq, x->private + cpuid);
b47ef92a 172
c1bfb577 173 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
174}
175
83215812
AP
176void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
177 int irq, int val)
b47ef92a
MZ
178{
179 unsigned long *reg;
180
181 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 182 reg = x->private + cpuid;
b47ef92a 183 } else {
c1bfb577 184 reg = x->shared;
b47ef92a
MZ
185 irq -= VGIC_NR_PRIVATE_IRQS;
186 }
187
188 if (val)
189 set_bit(irq, reg);
190 else
191 clear_bit(irq, reg);
192}
193
194static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
195{
c1bfb577 196 return x->private + cpuid;
b47ef92a
MZ
197}
198
83215812 199unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
b47ef92a 200{
c1bfb577
MZ
201 return x->shared;
202}
203
204static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
205{
206 int size;
207
208 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
209 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
210
211 x->private = kzalloc(size, GFP_KERNEL);
212 if (!x->private)
213 return -ENOMEM;
214
215 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
216 return 0;
217}
218
219static void vgic_free_bytemap(struct vgic_bytemap *b)
220{
221 kfree(b->private);
222 b->private = NULL;
223 b->shared = NULL;
b47ef92a
MZ
224}
225
83215812 226u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
b47ef92a 227{
c1bfb577
MZ
228 u32 *reg;
229
230 if (offset < VGIC_NR_PRIVATE_IRQS) {
231 reg = x->private;
232 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
233 } else {
234 reg = x->shared;
235 offset -= VGIC_NR_PRIVATE_IRQS;
236 }
237
238 return reg + (offset / sizeof(u32));
b47ef92a
MZ
239}
240
241#define VGIC_CFG_LEVEL 0
242#define VGIC_CFG_EDGE 1
243
244static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
245{
246 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
247 int irq_val;
248
249 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
250 return irq_val == VGIC_CFG_EDGE;
251}
252
253static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
254{
255 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
256
257 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
258}
259
dbf20f9d 260static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
261{
262 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
263
dbf20f9d 264 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
265}
266
47a98b15
CD
267static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
268{
269 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
270
271 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
272}
273
dbf20f9d 274static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
275{
276 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
277
dbf20f9d 278 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
279}
280
dbf20f9d 281static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
282{
283 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
284
dbf20f9d 285 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
286}
287
47a98b15
CD
288static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
289{
290 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
291
292 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
293}
294
295static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
296{
297 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
298
299 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
300}
301
faa1b46c
CD
302static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
303{
304 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
305
306 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
307}
308
309static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
310{
311 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
312
313 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
314}
315
316static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
317{
318 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
319
320 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
321}
322
323static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
324{
325 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
326
327 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
328}
329
330static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
331{
332 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
333
334 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
335}
336
9d949dce
MZ
337static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
338{
339 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
340
227844f5 341 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
342}
343
83215812 344void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
345{
346 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
347
227844f5 348 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
349}
350
83215812 351void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
352{
353 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
354
227844f5 355 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
356}
357
358static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
359{
360 if (irq < VGIC_NR_PRIVATE_IRQS)
361 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
362 else
363 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
364 vcpu->arch.vgic_cpu.pending_shared);
365}
366
83215812 367void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
368{
369 if (irq < VGIC_NR_PRIVATE_IRQS)
370 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
371 else
372 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
373 vcpu->arch.vgic_cpu.pending_shared);
374}
375
dbf20f9d
CD
376static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
377{
378 return vgic_irq_is_edge(vcpu, irq) || !vgic_irq_is_queued(vcpu, irq);
379}
380
1a89dd91
MZ
381/**
382 * vgic_reg_access - access vgic register
383 * @mmio: pointer to the data describing the mmio access
384 * @reg: pointer to the virtual backing of vgic distributor data
385 * @offset: least significant 2 bits used for word offset
386 * @mode: ACCESS_ mode (see defines above)
387 *
388 * Helper to make vgic register access easier using one of the access
389 * modes defined for vgic register access
390 * (read,raz,write-ignored,setbit,clearbit,write)
391 */
83215812
AP
392void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
393 phys_addr_t offset, int mode)
1a89dd91
MZ
394{
395 int word_offset = (offset & 3) * 8;
396 u32 mask = (1UL << (mmio->len * 8)) - 1;
397 u32 regval;
398
399 /*
400 * Any alignment fault should have been delivered to the guest
401 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
402 */
403
404 if (reg) {
405 regval = *reg;
406 } else {
407 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
408 regval = 0;
409 }
410
411 if (mmio->is_write) {
412 u32 data = mmio_data_read(mmio, mask) << word_offset;
413 switch (ACCESS_WRITE_MASK(mode)) {
414 case ACCESS_WRITE_IGNORED:
415 return;
416
417 case ACCESS_WRITE_SETBIT:
418 regval |= data;
419 break;
420
421 case ACCESS_WRITE_CLEARBIT:
422 regval &= ~data;
423 break;
424
425 case ACCESS_WRITE_VALUE:
426 regval = (regval & ~(mask << word_offset)) | data;
427 break;
428 }
429 *reg = regval;
430 } else {
431 switch (ACCESS_READ_MASK(mode)) {
432 case ACCESS_READ_RAZ:
433 regval = 0;
434 /* fall through */
435
436 case ACCESS_READ_VALUE:
437 mmio_data_write(mmio, mask, regval >> word_offset);
438 }
439 }
440}
441
83215812
AP
442bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
443 phys_addr_t offset)
b47ef92a
MZ
444{
445 vgic_reg_access(mmio, NULL, offset,
446 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
447 return false;
448}
449
83215812
AP
450bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
451 phys_addr_t offset, int vcpu_id, int access)
b47ef92a 452{
d97f683d
AP
453 u32 *reg;
454 int mode = ACCESS_READ_VALUE | access;
455 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
456
457 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
458 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 459 if (mmio->is_write) {
d97f683d
AP
460 if (access & ACCESS_WRITE_CLEARBIT) {
461 if (offset < 4) /* Force SGI enabled */
462 *reg |= 0xffff;
463 vgic_retire_disabled_irqs(target_vcpu);
464 }
465 vgic_update_state(kvm);
b47ef92a
MZ
466 return true;
467 }
468
469 return false;
470}
471
83215812
AP
472bool vgic_handle_set_pending_reg(struct kvm *kvm,
473 struct kvm_exit_mmio *mmio,
474 phys_addr_t offset, int vcpu_id)
b47ef92a 475{
9da48b55 476 u32 *reg, orig;
faa1b46c 477 u32 level_mask;
d97f683d
AP
478 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
479 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 480
d97f683d 481 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
faa1b46c
CD
482 level_mask = (~(*reg));
483
484 /* Mark both level and edge triggered irqs as pending */
d97f683d 485 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 486 orig = *reg;
d97f683d 487 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 488
b47ef92a 489 if (mmio->is_write) {
faa1b46c
CD
490 /* Set the soft-pending flag only for level-triggered irqs */
491 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
492 vcpu_id, offset);
493 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c
CD
494 *reg &= level_mask;
495
9da48b55
CD
496 /* Ignore writes to SGIs */
497 if (offset < 2) {
498 *reg &= ~0xffff;
499 *reg |= orig & 0xffff;
500 }
501
d97f683d 502 vgic_update_state(kvm);
b47ef92a
MZ
503 return true;
504 }
505
506 return false;
507}
508
83215812
AP
509bool vgic_handle_clear_pending_reg(struct kvm *kvm,
510 struct kvm_exit_mmio *mmio,
511 phys_addr_t offset, int vcpu_id)
b47ef92a 512{
faa1b46c 513 u32 *level_active;
9da48b55 514 u32 *reg, orig;
d97f683d
AP
515 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
516 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 517
d97f683d 518 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 519 orig = *reg;
d97f683d 520 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 521 if (mmio->is_write) {
faa1b46c
CD
522 /* Re-set level triggered level-active interrupts */
523 level_active = vgic_bitmap_get_reg(&dist->irq_level,
d97f683d
AP
524 vcpu_id, offset);
525 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
faa1b46c
CD
526 *reg |= *level_active;
527
9da48b55
CD
528 /* Ignore writes to SGIs */
529 if (offset < 2) {
530 *reg &= ~0xffff;
531 *reg |= orig & 0xffff;
532 }
533
faa1b46c
CD
534 /* Clear soft-pending flags */
535 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
536 vcpu_id, offset);
537 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 538
d97f683d 539 vgic_update_state(kvm);
b47ef92a
MZ
540 return true;
541 }
b47ef92a
MZ
542 return false;
543}
544
47a98b15
CD
545bool vgic_handle_set_active_reg(struct kvm *kvm,
546 struct kvm_exit_mmio *mmio,
547 phys_addr_t offset, int vcpu_id)
548{
549 u32 *reg;
550 struct vgic_dist *dist = &kvm->arch.vgic;
551
552 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
553 vgic_reg_access(mmio, reg, offset,
554 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
555
556 if (mmio->is_write) {
557 vgic_update_state(kvm);
558 return true;
559 }
560
561 return false;
562}
563
564bool vgic_handle_clear_active_reg(struct kvm *kvm,
565 struct kvm_exit_mmio *mmio,
566 phys_addr_t offset, int vcpu_id)
567{
568 u32 *reg;
569 struct vgic_dist *dist = &kvm->arch.vgic;
570
571 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
572 vgic_reg_access(mmio, reg, offset,
573 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
574
575 if (mmio->is_write) {
576 vgic_update_state(kvm);
577 return true;
578 }
579
580 return false;
581}
582
b47ef92a
MZ
583static u32 vgic_cfg_expand(u16 val)
584{
585 u32 res = 0;
586 int i;
587
588 /*
589 * Turn a 16bit value like abcd...mnop into a 32bit word
590 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
591 */
592 for (i = 0; i < 16; i++)
593 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
594
595 return res;
596}
597
598static u16 vgic_cfg_compress(u32 val)
599{
600 u16 res = 0;
601 int i;
602
603 /*
604 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
605 * abcd...mnop which is what we really care about.
606 */
607 for (i = 0; i < 16; i++)
608 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
609
610 return res;
611}
612
613/*
614 * The distributor uses 2 bits per IRQ for the CFG register, but the
615 * LSB is always 0. As such, we only keep the upper bit, and use the
616 * two above functions to compress/expand the bits
617 */
83215812
AP
618bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
619 phys_addr_t offset)
b47ef92a
MZ
620{
621 u32 val;
6545eae3 622
f2ae85b2 623 if (offset & 4)
b47ef92a
MZ
624 val = *reg >> 16;
625 else
626 val = *reg & 0xffff;
627
628 val = vgic_cfg_expand(val);
629 vgic_reg_access(mmio, &val, offset,
630 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
631 if (mmio->is_write) {
f2ae85b2 632 if (offset < 8) {
b47ef92a
MZ
633 *reg = ~0U; /* Force PPIs/SGIs to 1 */
634 return false;
635 }
636
637 val = vgic_cfg_compress(val);
f2ae85b2 638 if (offset & 4) {
b47ef92a
MZ
639 *reg &= 0xffff;
640 *reg |= val << 16;
641 } else {
642 *reg &= 0xffff << 16;
643 *reg |= val;
644 }
645 }
646
647 return false;
648}
649
cbd333a4 650/**
47a98b15 651 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
cbd333a4
CD
652 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
653 *
47a98b15 654 * Move any IRQs that have already been assigned to LRs back to the
cbd333a4
CD
655 * emulated distributor state so that the complete emulated state can be read
656 * from the main emulation structures without investigating the LRs.
cbd333a4 657 */
83215812 658void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
cbd333a4 659{
cbd333a4 660 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 661 int i;
cbd333a4
CD
662
663 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 664 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
665
666 /*
667 * There are three options for the state bits:
668 *
669 * 01: pending
670 * 10: active
671 * 11: pending and active
cbd333a4 672 */
47a98b15
CD
673 BUG_ON(!(lr.state & LR_STATE_MASK));
674
675 /* Reestablish SGI source for pending and active IRQs */
676 if (lr.irq < VGIC_NR_SGIS)
677 add_sgi_source(vcpu, lr.irq, lr.source);
678
679 /*
680 * If the LR holds an active (10) or a pending and active (11)
681 * interrupt then move the active state to the
682 * distributor tracking bit.
683 */
684 if (lr.state & LR_STATE_ACTIVE) {
685 vgic_irq_set_active(vcpu, lr.irq);
686 lr.state &= ~LR_STATE_ACTIVE;
687 }
cbd333a4
CD
688
689 /*
690 * Reestablish the pending state on the distributor and the
691 * CPU interface. It may have already been pending, but that
692 * is fine, then we are only setting a few bits that were
693 * already set.
694 */
47a98b15
CD
695 if (lr.state & LR_STATE_PENDING) {
696 vgic_dist_irq_set_pending(vcpu, lr.irq);
697 lr.state &= ~LR_STATE_PENDING;
698 }
699
8d5c6b06 700 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
701
702 /*
47a98b15 703 * Mark the LR as free for other use.
cbd333a4 704 */
47a98b15
CD
705 BUG_ON(lr.state & LR_STATE_MASK);
706 vgic_retire_lr(i, lr.irq, vcpu);
707 vgic_irq_clear_queued(vcpu, lr.irq);
cbd333a4
CD
708
709 /* Finally update the VGIC state. */
710 vgic_update_state(vcpu->kvm);
711 }
712}
713
83215812 714const
cf50a1eb
AP
715struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
716 struct kvm_exit_mmio *mmio,
717 phys_addr_t offset)
1a89dd91 718{
cf50a1eb 719 const struct vgic_io_range *r = ranges;
1a89dd91
MZ
720
721 while (r->len) {
1006e8cb
CD
722 if (offset >= r->base &&
723 (offset + mmio->len) <= (r->base + r->len))
1a89dd91
MZ
724 return r;
725 r++;
726 }
727
728 return NULL;
729}
730
c3c91836 731static bool vgic_validate_access(const struct vgic_dist *dist,
cf50a1eb 732 const struct vgic_io_range *range,
c3c91836
MZ
733 unsigned long offset)
734{
735 int irq;
736
737 if (!range->bits_per_irq)
738 return true; /* Not an irq-based access */
739
740 irq = offset * 8 / range->bits_per_irq;
741 if (irq >= dist->nr_irqs)
742 return false;
743
744 return true;
745}
746
05bc8aaf
AP
747/*
748 * Call the respective handler function for the given range.
749 * We split up any 64 bit accesses into two consecutive 32 bit
750 * handler calls and merge the result afterwards.
751 * We do this in a little endian fashion regardless of the host's
752 * or guest's endianness, because the GIC is always LE and the rest of
753 * the code (vgic_reg_access) also puts it in a LE fashion already.
754 * At this point we have already identified the handle function, so
755 * range points to that one entry and offset is relative to this.
756 */
757static bool call_range_handler(struct kvm_vcpu *vcpu,
758 struct kvm_exit_mmio *mmio,
759 unsigned long offset,
cf50a1eb 760 const struct vgic_io_range *range)
05bc8aaf
AP
761{
762 u32 *data32 = (void *)mmio->data;
763 struct kvm_exit_mmio mmio32;
764 bool ret;
765
766 if (likely(mmio->len <= 4))
767 return range->handle_mmio(vcpu, mmio, offset);
768
769 /*
770 * Any access bigger than 4 bytes (that we currently handle in KVM)
771 * is actually 8 bytes long, caused by a 64-bit access
772 */
773
774 mmio32.len = 4;
775 mmio32.is_write = mmio->is_write;
9fedf146 776 mmio32.private = mmio->private;
05bc8aaf
AP
777
778 mmio32.phys_addr = mmio->phys_addr + 4;
779 if (mmio->is_write)
780 *(u32 *)mmio32.data = data32[1];
781 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
782 if (!mmio->is_write)
783 data32[1] = *(u32 *)mmio32.data;
784
785 mmio32.phys_addr = mmio->phys_addr;
786 if (mmio->is_write)
787 *(u32 *)mmio32.data = data32[0];
788 ret |= range->handle_mmio(vcpu, &mmio32, offset);
789 if (!mmio->is_write)
790 data32[0] = *(u32 *)mmio32.data;
791
792 return ret;
793}
794
1a89dd91 795/**
96415257 796 * vgic_handle_mmio_range - handle an in-kernel MMIO access
1a89dd91
MZ
797 * @vcpu: pointer to the vcpu performing the access
798 * @run: pointer to the kvm_run structure
799 * @mmio: pointer to the data describing the access
96415257
AP
800 * @ranges: array of MMIO ranges in a given region
801 * @mmio_base: base address of that region
1a89dd91 802 *
96415257 803 * returns true if the MMIO access could be performed
1a89dd91 804 */
83215812 805bool vgic_handle_mmio_range(struct kvm_vcpu *vcpu, struct kvm_run *run,
96415257 806 struct kvm_exit_mmio *mmio,
cf50a1eb 807 const struct vgic_io_range *ranges,
96415257 808 unsigned long mmio_base)
1a89dd91 809{
cf50a1eb 810 const struct vgic_io_range *range;
b47ef92a 811 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
b47ef92a
MZ
812 bool updated_state;
813 unsigned long offset;
814
96415257 815 offset = mmio->phys_addr - mmio_base;
83215812 816 range = vgic_find_range(ranges, mmio, offset);
b47ef92a
MZ
817 if (unlikely(!range || !range->handle_mmio)) {
818 pr_warn("Unhandled access %d %08llx %d\n",
819 mmio->is_write, mmio->phys_addr, mmio->len);
820 return false;
821 }
822
823 spin_lock(&vcpu->kvm->arch.vgic.lock);
96415257 824 offset -= range->base;
c3c91836 825 if (vgic_validate_access(dist, range, offset)) {
05bc8aaf 826 updated_state = call_range_handler(vcpu, mmio, offset, range);
c3c91836 827 } else {
05bc8aaf
AP
828 if (!mmio->is_write)
829 memset(mmio->data, 0, mmio->len);
c3c91836
MZ
830 updated_state = false;
831 }
b47ef92a
MZ
832 spin_unlock(&vcpu->kvm->arch.vgic.lock);
833 kvm_prepare_mmio(run, mmio);
834 kvm_handle_mmio_return(vcpu, run);
835
5863c2ce
MZ
836 if (updated_state)
837 vgic_kick_vcpus(vcpu->kvm);
838
b47ef92a
MZ
839 return true;
840}
841
96415257
AP
842/**
843 * vgic_handle_mmio - handle an in-kernel MMIO access for the GIC emulation
844 * @vcpu: pointer to the vcpu performing the access
845 * @run: pointer to the kvm_run structure
846 * @mmio: pointer to the data describing the access
847 *
848 * returns true if the MMIO access has been performed in kernel space,
849 * and false if it needs to be emulated in user space.
b26e5fda 850 * Calls the actual handling routine for the selected VGIC model.
96415257
AP
851 */
852bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run,
853 struct kvm_exit_mmio *mmio)
854{
855 if (!irqchip_in_kernel(vcpu->kvm))
856 return false;
857
b26e5fda
AP
858 /*
859 * This will currently call either vgic_v2_handle_mmio() or
860 * vgic_v3_handle_mmio(), which in turn will call
861 * vgic_handle_mmio_range() defined above.
862 */
863 return vcpu->kvm->arch.vgic.vm_ops.handle_mmio(vcpu, run, mmio);
96415257
AP
864}
865
fb65ab63
MZ
866static int vgic_nr_shared_irqs(struct vgic_dist *dist)
867{
868 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
869}
870
47a98b15
CD
871static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
872{
873 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
874 unsigned long *active, *enabled, *act_percpu, *act_shared;
875 unsigned long active_private, active_shared;
876 int nr_shared = vgic_nr_shared_irqs(dist);
877 int vcpu_id;
878
879 vcpu_id = vcpu->vcpu_id;
880 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
881 act_shared = vcpu->arch.vgic_cpu.active_shared;
882
883 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
884 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
885 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
886
887 active = vgic_bitmap_get_shared_map(&dist->irq_active);
888 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
889 bitmap_and(act_shared, active, enabled, nr_shared);
890 bitmap_and(act_shared, act_shared,
891 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
892 nr_shared);
893
894 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
895 active_shared = find_first_bit(act_shared, nr_shared);
896
897 return (active_private < VGIC_NR_PRIVATE_IRQS ||
898 active_shared < nr_shared);
899}
900
b47ef92a
MZ
901static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
902{
9d949dce
MZ
903 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
904 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
905 unsigned long pending_private, pending_shared;
fb65ab63 906 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
907 int vcpu_id;
908
909 vcpu_id = vcpu->vcpu_id;
910 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
911 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
912
227844f5 913 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
914 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
915 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
916
227844f5 917 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce 918 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
fb65ab63 919 bitmap_and(pend_shared, pending, enabled, nr_shared);
9d949dce
MZ
920 bitmap_and(pend_shared, pend_shared,
921 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
fb65ab63 922 nr_shared);
9d949dce
MZ
923
924 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
fb65ab63 925 pending_shared = find_first_bit(pend_shared, nr_shared);
9d949dce 926 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
fb65ab63 927 pending_shared < vgic_nr_shared_irqs(dist));
b47ef92a
MZ
928}
929
930/*
931 * Update the interrupt state and determine which CPUs have pending
47a98b15 932 * or active interrupts. Must be called with distributor lock held.
b47ef92a 933 */
83215812 934void vgic_update_state(struct kvm *kvm)
b47ef92a
MZ
935{
936 struct vgic_dist *dist = &kvm->arch.vgic;
937 struct kvm_vcpu *vcpu;
938 int c;
939
940 if (!dist->enabled) {
c1bfb577 941 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
942 return;
943 }
944
945 kvm_for_each_vcpu(c, vcpu, kvm) {
47a98b15 946 if (compute_pending_for_cpu(vcpu))
c1bfb577 947 set_bit(c, dist->irq_pending_on_cpu);
47a98b15
CD
948
949 if (compute_active_for_cpu(vcpu))
950 set_bit(c, dist->irq_active_on_cpu);
951 else
952 clear_bit(c, dist->irq_active_on_cpu);
b47ef92a 953 }
1a89dd91 954}
330690cd 955
8d5c6b06
MZ
956static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
957{
8f186d52 958 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
959}
960
961static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
962 struct vgic_lr vlr)
963{
8f186d52 964 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
965}
966
69bb2c9f
MZ
967static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
968 struct vgic_lr vlr)
969{
8f186d52 970 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
971}
972
973static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
974{
8f186d52 975 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
976}
977
8d6a0313
MZ
978static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
979{
8f186d52 980 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
981}
982
495dd859
MZ
983static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
984{
8f186d52 985 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
986}
987
909d9b50
MZ
988static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
989{
8f186d52 990 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
991}
992
993static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
994{
8f186d52 995 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
996}
997
83215812 998void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 999{
8f186d52 1000 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1001}
1002
83215812 1003void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1004{
8f186d52 1005 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1006}
1007
da8dafd1
MZ
1008static inline void vgic_enable(struct kvm_vcpu *vcpu)
1009{
8f186d52 1010 vgic_ops->enable(vcpu);
da8dafd1
MZ
1011}
1012
8d5c6b06
MZ
1013static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1014{
1015 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1016 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1017
1018 vlr.state = 0;
1019 vgic_set_lr(vcpu, lr_nr, vlr);
1020 clear_bit(lr_nr, vgic_cpu->lr_used);
1021 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
1022}
a1fcb44e
MZ
1023
1024/*
1025 * An interrupt may have been disabled after being made pending on the
1026 * CPU interface (the classic case is a timer running while we're
1027 * rebooting the guest - the interrupt would kick as soon as the CPU
1028 * interface gets enabled, with deadly consequences).
1029 *
1030 * The solution is to examine already active LRs, and check the
1031 * interrupt is still enabled. If not, just retire it.
1032 */
1033static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1034{
1035 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1036 int lr;
1037
8f186d52 1038 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1039 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1040
8d5c6b06
MZ
1041 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1042 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1043 if (vgic_irq_is_queued(vcpu, vlr.irq))
1044 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1045 }
1046 }
1047}
1048
71760950
AB
1049static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1050 int lr_nr, struct vgic_lr vlr)
1051{
47a98b15
CD
1052 if (vgic_irq_is_active(vcpu, irq)) {
1053 vlr.state |= LR_STATE_ACTIVE;
1054 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1055 vgic_irq_clear_active(vcpu, irq);
1056 vgic_update_state(vcpu->kvm);
1057 } else if (vgic_dist_irq_is_pending(vcpu, irq)) {
71760950
AB
1058 vlr.state |= LR_STATE_PENDING;
1059 kvm_debug("Set pending: 0x%x\n", vlr.state);
1060 }
1061
1062 if (!vgic_irq_is_edge(vcpu, irq))
1063 vlr.state |= LR_EOI_INT;
1064
1065 vgic_set_lr(vcpu, lr_nr, vlr);
1066}
1067
9d949dce
MZ
1068/*
1069 * Queue an interrupt to a CPU virtual interface. Return true on success,
1070 * or false if it wasn't possible to queue it.
1d916229 1071 * sgi_source must be zero for any non-SGI interrupts.
9d949dce 1072 */
83215812 1073bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
9d949dce
MZ
1074{
1075 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5fb66da6 1076 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
8d5c6b06 1077 struct vgic_lr vlr;
9d949dce
MZ
1078 int lr;
1079
1080 /* Sanitize the input... */
1081 BUG_ON(sgi_source_id & ~7);
1082 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
5fb66da6 1083 BUG_ON(irq >= dist->nr_irqs);
9d949dce
MZ
1084
1085 kvm_debug("Queue IRQ%d\n", irq);
1086
1087 lr = vgic_cpu->vgic_irq_lr_map[irq];
1088
1089 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1090 if (lr != LR_EMPTY) {
1091 vlr = vgic_get_lr(vcpu, lr);
1092 if (vlr.source == sgi_source_id) {
1093 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1094 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
71760950 1095 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
8d5c6b06
MZ
1096 return true;
1097 }
9d949dce
MZ
1098 }
1099
1100 /* Try to use another LR for this interrupt */
1101 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1102 vgic->nr_lr);
1103 if (lr >= vgic->nr_lr)
9d949dce
MZ
1104 return false;
1105
1106 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1107 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1108 set_bit(lr, vgic_cpu->lr_used);
1109
8d5c6b06
MZ
1110 vlr.irq = irq;
1111 vlr.source = sgi_source_id;
71760950
AB
1112 vlr.state = 0;
1113 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
9d949dce
MZ
1114
1115 return true;
1116}
1117
9d949dce
MZ
1118static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1119{
dbf20f9d 1120 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1121 return true; /* level interrupt, already queued */
1122
1123 if (vgic_queue_irq(vcpu, 0, irq)) {
1124 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1125 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1126 vgic_cpu_irq_clear(vcpu, irq);
1127 } else {
dbf20f9d 1128 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1129 }
1130
1131 return true;
1132 }
1133
1134 return false;
1135}
1136
1137/*
1138 * Fill the list registers with pending interrupts before running the
1139 * guest.
1140 */
1141static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1142{
1143 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1144 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
47a98b15 1145 unsigned long *pa_percpu, *pa_shared;
9d949dce
MZ
1146 int i, vcpu_id;
1147 int overflow = 0;
47a98b15 1148 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
1149
1150 vcpu_id = vcpu->vcpu_id;
1151
47a98b15
CD
1152 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1153 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1154
1155 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1156 VGIC_NR_PRIVATE_IRQS);
1157 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1158 nr_shared);
9d949dce
MZ
1159 /*
1160 * We may not have any pending interrupt, or the interrupts
1161 * may have been serviced from another vcpu. In all cases,
1162 * move along.
1163 */
47a98b15 1164 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
9d949dce 1165 goto epilog;
9d949dce
MZ
1166
1167 /* SGIs */
47a98b15 1168 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
b26e5fda 1169 if (!queue_sgi(vcpu, i))
9d949dce
MZ
1170 overflow = 1;
1171 }
1172
1173 /* PPIs */
47a98b15 1174 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
9d949dce
MZ
1175 if (!vgic_queue_hwirq(vcpu, i))
1176 overflow = 1;
1177 }
1178
1179 /* SPIs */
47a98b15 1180 for_each_set_bit(i, pa_shared, nr_shared) {
9d949dce
MZ
1181 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1182 overflow = 1;
1183 }
1184
47a98b15
CD
1185
1186
1187
9d949dce
MZ
1188epilog:
1189 if (overflow) {
909d9b50 1190 vgic_enable_underflow(vcpu);
9d949dce 1191 } else {
909d9b50 1192 vgic_disable_underflow(vcpu);
9d949dce
MZ
1193 /*
1194 * We're about to run this VCPU, and we've consumed
1195 * everything the distributor had in store for
1196 * us. Claim we don't have anything pending. We'll
1197 * adjust that if needed while exiting.
1198 */
c1bfb577 1199 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1200 }
1201}
1202
1203static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1204{
495dd859 1205 u32 status = vgic_get_interrupt_status(vcpu);
649cf739 1206 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
9d949dce 1207 bool level_pending = false;
174178fe 1208 struct kvm *kvm = vcpu->kvm;
9d949dce 1209
495dd859 1210 kvm_debug("STATUS = %08x\n", status);
9d949dce 1211
495dd859 1212 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1213 /*
1214 * Some level interrupts have been EOIed. Clear their
1215 * active bit.
1216 */
8d6a0313 1217 u64 eisr = vgic_get_eisr(vcpu);
2df36a5d 1218 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
8d5c6b06 1219 int lr;
9d949dce 1220
8f186d52 1221 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1222 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1223 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1224
649cf739 1225 spin_lock(&dist->lock);
dbf20f9d 1226 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1227 WARN_ON(vlr.state & LR_STATE_MASK);
1228 vlr.state = 0;
1229 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1230
faa1b46c
CD
1231 /*
1232 * If the IRQ was EOIed it was also ACKed and we we
1233 * therefore assume we can clear the soft pending
1234 * state (should it had been set) for this interrupt.
1235 *
1236 * Note: if the IRQ soft pending state was set after
1237 * the IRQ was acked, it actually shouldn't be
1238 * cleared, but we have no way of knowing that unless
1239 * we start trapping ACKs when the soft-pending state
1240 * is set.
1241 */
1242 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1243
174178fe
EA
1244 /*
1245 * kvm_notify_acked_irq calls kvm_set_irq()
1246 * to reset the IRQ level. Need to release the
1247 * lock for kvm_set_irq to grab it.
1248 */
1249 spin_unlock(&dist->lock);
1250
1251 kvm_notify_acked_irq(kvm, 0,
1252 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1253 spin_lock(&dist->lock);
1254
9d949dce 1255 /* Any additional pending interrupt? */
faa1b46c 1256 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1257 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1258 level_pending = true;
1259 } else {
faa1b46c 1260 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1261 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1262 }
75da01e1 1263
649cf739
EA
1264 spin_unlock(&dist->lock);
1265
75da01e1
MZ
1266 /*
1267 * Despite being EOIed, the LR may not have
1268 * been marked as empty.
1269 */
69bb2c9f 1270 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1271 }
1272 }
1273
495dd859 1274 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1275 vgic_disable_underflow(vcpu);
9d949dce
MZ
1276
1277 return level_pending;
1278}
1279
649cf739 1280/* Sync back the VGIC state after a guest run */
9d949dce
MZ
1281static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1282{
1283 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1284 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1285 u64 elrsr;
1286 unsigned long *elrsr_ptr;
9d949dce
MZ
1287 int lr, pending;
1288 bool level_pending;
1289
1290 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f 1291 elrsr = vgic_get_elrsr(vcpu);
2df36a5d 1292 elrsr_ptr = u64_to_bitmask(&elrsr);
9d949dce
MZ
1293
1294 /* Clear mappings for empty LRs */
8f186d52 1295 for_each_set_bit(lr, elrsr_ptr, vgic->nr_lr) {
8d5c6b06 1296 struct vgic_lr vlr;
9d949dce
MZ
1297
1298 if (!test_and_clear_bit(lr, vgic_cpu->lr_used))
1299 continue;
1300
8d5c6b06 1301 vlr = vgic_get_lr(vcpu, lr);
9d949dce 1302
5fb66da6 1303 BUG_ON(vlr.irq >= dist->nr_irqs);
8d5c6b06 1304 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1305 }
1306
1307 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1308 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1309 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1310 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1311}
1312
1313void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1314{
1315 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1316
1317 if (!irqchip_in_kernel(vcpu->kvm))
1318 return;
1319
1320 spin_lock(&dist->lock);
1321 __kvm_vgic_flush_hwstate(vcpu);
1322 spin_unlock(&dist->lock);
1323}
1324
1325void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1326{
1327 if (!irqchip_in_kernel(vcpu->kvm))
1328 return;
1329
1330 __kvm_vgic_sync_hwstate(vcpu);
1331}
1332
1333int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1334{
1335 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1336
1337 if (!irqchip_in_kernel(vcpu->kvm))
1338 return 0;
1339
c1bfb577 1340 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1341}
1342
47a98b15
CD
1343int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1344{
1345 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1346
1347 if (!irqchip_in_kernel(vcpu->kvm))
1348 return 0;
1349
1350 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1351}
1352
1353
83215812 1354void vgic_kick_vcpus(struct kvm *kvm)
5863c2ce
MZ
1355{
1356 struct kvm_vcpu *vcpu;
1357 int c;
1358
1359 /*
1360 * We've injected an interrupt, time to find out who deserves
1361 * a good kick...
1362 */
1363 kvm_for_each_vcpu(c, vcpu, kvm) {
1364 if (kvm_vgic_vcpu_pending_irq(vcpu))
1365 kvm_vcpu_kick(vcpu);
1366 }
1367}
1368
1369static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1370{
227844f5 1371 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1372
1373 /*
1374 * Only inject an interrupt if:
1375 * - edge triggered and we have a rising edge
1376 * - level triggered and we change level
1377 */
faa1b46c
CD
1378 if (edge_triggered) {
1379 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1380 return level > state;
faa1b46c
CD
1381 } else {
1382 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1383 return level != state;
faa1b46c 1384 }
5863c2ce
MZ
1385}
1386
016ed39c 1387static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
5863c2ce
MZ
1388 unsigned int irq_num, bool level)
1389{
1390 struct vgic_dist *dist = &kvm->arch.vgic;
1391 struct kvm_vcpu *vcpu;
227844f5 1392 int edge_triggered, level_triggered;
5863c2ce 1393 int enabled;
a0675c25 1394 bool ret = true, can_inject = true;
5863c2ce
MZ
1395
1396 spin_lock(&dist->lock);
1397
1398 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1399 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1400 level_triggered = !edge_triggered;
5863c2ce
MZ
1401
1402 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1403 ret = false;
1404 goto out;
1405 }
1406
1407 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1408 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
a0675c25
AP
1409 if (cpuid == VCPU_NOT_ALLOCATED) {
1410 /* Pretend we use CPU0, and prevent injection */
1411 cpuid = 0;
1412 can_inject = false;
1413 }
5863c2ce
MZ
1414 vcpu = kvm_get_vcpu(kvm, cpuid);
1415 }
1416
1417 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1418
faa1b46c
CD
1419 if (level) {
1420 if (level_triggered)
1421 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1422 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1423 } else {
1424 if (level_triggered) {
1425 vgic_dist_irq_clear_level(vcpu, irq_num);
1426 if (!vgic_dist_irq_soft_pend(vcpu, irq_num))
1427 vgic_dist_irq_clear_pending(vcpu, irq_num);
faa1b46c 1428 }
7d39f9e3 1429
1430 ret = false;
1431 goto out;
faa1b46c 1432 }
5863c2ce
MZ
1433
1434 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1435
a0675c25 1436 if (!enabled || !can_inject) {
5863c2ce
MZ
1437 ret = false;
1438 goto out;
1439 }
1440
dbf20f9d 1441 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1442 /*
1443 * Level interrupt in progress, will be picked up
1444 * when EOId.
1445 */
1446 ret = false;
1447 goto out;
1448 }
1449
1450 if (level) {
1451 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1452 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1453 }
1454
1455out:
1456 spin_unlock(&dist->lock);
1457
016ed39c 1458 return ret ? cpuid : -EINVAL;
5863c2ce
MZ
1459}
1460
1461/**
1462 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1463 * @kvm: The VM structure pointer
1464 * @cpuid: The CPU for PPIs
1465 * @irq_num: The IRQ number that is assigned to the device
1466 * @level: Edge-triggered: true: to trigger the interrupt
1467 * false: to ignore the call
1468 * Level-sensitive true: activates an interrupt
1469 * false: deactivates an interrupt
1470 *
1471 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1472 * level-sensitive interrupts. You can think of the level parameter as 1
1473 * being HIGH and 0 being LOW and all devices being active-HIGH.
1474 */
1475int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1476 bool level)
1477{
ca7d9c82 1478 int ret = 0;
016ed39c 1479 int vcpu_id;
5863c2ce 1480
ca7d9c82 1481 if (unlikely(!vgic_initialized(kvm))) {
59892136
AP
1482 /*
1483 * We only provide the automatic initialization of the VGIC
1484 * for the legacy case of a GICv2. Any other type must
1485 * be explicitly initialized once setup with the respective
1486 * KVM device call.
1487 */
1488 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) {
1489 ret = -EBUSY;
1490 goto out;
1491 }
ca7d9c82
CD
1492 mutex_lock(&kvm->lock);
1493 ret = vgic_init(kvm);
1494 mutex_unlock(&kvm->lock);
1495
1496 if (ret)
1497 goto out;
016ed39c 1498 }
5863c2ce 1499
ca7d9c82
CD
1500 vcpu_id = vgic_update_irq_pending(kvm, cpuid, irq_num, level);
1501 if (vcpu_id >= 0) {
1502 /* kick the specified vcpu */
1503 kvm_vcpu_kick(kvm_get_vcpu(kvm, vcpu_id));
1504 }
1505
1506out:
1507 return ret;
5863c2ce
MZ
1508}
1509
01ac5e34
MZ
1510static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1511{
1512 /*
1513 * We cannot rely on the vgic maintenance interrupt to be
1514 * delivered synchronously. This means we can only use it to
1515 * exit the VM, and we perform the handling of EOIed
1516 * interrupts on the exit path (see vgic_process_maintenance).
1517 */
1518 return IRQ_HANDLED;
1519}
1520
c1bfb577
MZ
1521void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1522{
1523 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1524
1525 kfree(vgic_cpu->pending_shared);
47a98b15
CD
1526 kfree(vgic_cpu->active_shared);
1527 kfree(vgic_cpu->pend_act_shared);
c1bfb577
MZ
1528 kfree(vgic_cpu->vgic_irq_lr_map);
1529 vgic_cpu->pending_shared = NULL;
47a98b15
CD
1530 vgic_cpu->active_shared = NULL;
1531 vgic_cpu->pend_act_shared = NULL;
c1bfb577
MZ
1532 vgic_cpu->vgic_irq_lr_map = NULL;
1533}
1534
1535static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1536{
1537 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1538
1539 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1540 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
47a98b15
CD
1541 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1542 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
6d3cfbe2 1543 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
c1bfb577 1544
47a98b15
CD
1545 if (!vgic_cpu->pending_shared
1546 || !vgic_cpu->active_shared
1547 || !vgic_cpu->pend_act_shared
1548 || !vgic_cpu->vgic_irq_lr_map) {
c1bfb577
MZ
1549 kvm_vgic_vcpu_destroy(vcpu);
1550 return -ENOMEM;
1551 }
1552
6d3cfbe2 1553 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
01ac5e34
MZ
1554
1555 /*
ca85f623
MZ
1556 * Store the number of LRs per vcpu, so we don't have to go
1557 * all the way to the distributor structure to find out. Only
1558 * assembly code should use this one.
01ac5e34 1559 */
8f186d52 1560 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1561
6d3cfbe2 1562 return 0;
01ac5e34
MZ
1563}
1564
3caa2d8c
AP
1565/**
1566 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1567 *
1568 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1569 * can use.
1570 */
1571int kvm_vgic_get_max_vcpus(void)
1572{
1573 return vgic->max_gic_vcpus;
1574}
1575
c1bfb577
MZ
1576void kvm_vgic_destroy(struct kvm *kvm)
1577{
1578 struct vgic_dist *dist = &kvm->arch.vgic;
1579 struct kvm_vcpu *vcpu;
1580 int i;
1581
1582 kvm_for_each_vcpu(i, vcpu, kvm)
1583 kvm_vgic_vcpu_destroy(vcpu);
1584
1585 vgic_free_bitmap(&dist->irq_enabled);
1586 vgic_free_bitmap(&dist->irq_level);
1587 vgic_free_bitmap(&dist->irq_pending);
1588 vgic_free_bitmap(&dist->irq_soft_pend);
1589 vgic_free_bitmap(&dist->irq_queued);
1590 vgic_free_bitmap(&dist->irq_cfg);
1591 vgic_free_bytemap(&dist->irq_priority);
1592 if (dist->irq_spi_target) {
1593 for (i = 0; i < dist->nr_cpus; i++)
1594 vgic_free_bitmap(&dist->irq_spi_target[i]);
1595 }
1596 kfree(dist->irq_sgi_sources);
1597 kfree(dist->irq_spi_cpu);
a0675c25 1598 kfree(dist->irq_spi_mpidr);
c1bfb577
MZ
1599 kfree(dist->irq_spi_target);
1600 kfree(dist->irq_pending_on_cpu);
47a98b15 1601 kfree(dist->irq_active_on_cpu);
c1bfb577
MZ
1602 dist->irq_sgi_sources = NULL;
1603 dist->irq_spi_cpu = NULL;
1604 dist->irq_spi_target = NULL;
1605 dist->irq_pending_on_cpu = NULL;
47a98b15 1606 dist->irq_active_on_cpu = NULL;
1f57be28 1607 dist->nr_cpus = 0;
c1bfb577
MZ
1608}
1609
1610/*
1611 * Allocate and initialize the various data structures. Must be called
1612 * with kvm->lock held!
1613 */
83215812 1614int vgic_init(struct kvm *kvm)
c1bfb577
MZ
1615{
1616 struct vgic_dist *dist = &kvm->arch.vgic;
1617 struct kvm_vcpu *vcpu;
1618 int nr_cpus, nr_irqs;
6d3cfbe2 1619 int ret, i, vcpu_id;
c1bfb577 1620
1f57be28 1621 if (vgic_initialized(kvm))
4956f2bc
MZ
1622 return 0;
1623
1624 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
1625 if (!nr_cpus) /* No vcpus? Can't be good... */
66b030e4 1626 return -ENODEV;
5fb66da6 1627
4956f2bc
MZ
1628 /*
1629 * If nobody configured the number of interrupts, use the
1630 * legacy one.
1631 */
5fb66da6
MZ
1632 if (!dist->nr_irqs)
1633 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
1634
1635 nr_irqs = dist->nr_irqs;
c1bfb577
MZ
1636
1637 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
1638 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
1639 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
1640 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
1641 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
47a98b15 1642 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
c1bfb577
MZ
1643 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
1644 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
1645
1646 if (ret)
1647 goto out;
1648
1649 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
1650 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
1651 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
1652 GFP_KERNEL);
1653 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1654 GFP_KERNEL);
47a98b15
CD
1655 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
1656 GFP_KERNEL);
c1bfb577
MZ
1657 if (!dist->irq_sgi_sources ||
1658 !dist->irq_spi_cpu ||
1659 !dist->irq_spi_target ||
47a98b15
CD
1660 !dist->irq_pending_on_cpu ||
1661 !dist->irq_active_on_cpu) {
c1bfb577
MZ
1662 ret = -ENOMEM;
1663 goto out;
1664 }
1665
1666 for (i = 0; i < nr_cpus; i++)
1667 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
1668 nr_cpus, nr_irqs);
1669
1670 if (ret)
1671 goto out;
1672
b26e5fda
AP
1673 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
1674 if (ret)
1675 goto out;
6d3cfbe2
PM
1676
1677 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
c1bfb577
MZ
1678 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
1679 if (ret) {
1680 kvm_err("VGIC: Failed to allocate vcpu memory\n");
1681 break;
1682 }
c1bfb577 1683
6d3cfbe2
PM
1684 for (i = 0; i < dist->nr_irqs; i++) {
1685 if (i < VGIC_NR_PPIS)
1686 vgic_bitmap_set_irq_val(&dist->irq_enabled,
1687 vcpu->vcpu_id, i, 1);
1688 if (i < VGIC_NR_PRIVATE_IRQS)
1689 vgic_bitmap_set_irq_val(&dist->irq_cfg,
1690 vcpu->vcpu_id, i,
1691 VGIC_CFG_EDGE);
1692 }
1693
1694 vgic_enable(vcpu);
1695 }
4956f2bc 1696
c1bfb577
MZ
1697out:
1698 if (ret)
1699 kvm_vgic_destroy(kvm);
1700
1701 return ret;
1702}
1703
b26e5fda
AP
1704static int init_vgic_model(struct kvm *kvm, int type)
1705{
1706 switch (type) {
1707 case KVM_DEV_TYPE_ARM_VGIC_V2:
1708 vgic_v2_init_emulation(kvm);
1709 break;
b5d84ff6
AP
1710#ifdef CONFIG_ARM_GIC_V3
1711 case KVM_DEV_TYPE_ARM_VGIC_V3:
1712 vgic_v3_init_emulation(kvm);
1713 break;
1714#endif
b26e5fda
AP
1715 default:
1716 return -ENODEV;
1717 }
1718
3caa2d8c
AP
1719 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
1720 return -E2BIG;
1721
b26e5fda
AP
1722 return 0;
1723}
1724
59892136 1725int kvm_vgic_create(struct kvm *kvm, u32 type)
01ac5e34 1726{
6b50f540 1727 int i, vcpu_lock_idx = -1, ret;
7330672b 1728 struct kvm_vcpu *vcpu;
01ac5e34
MZ
1729
1730 mutex_lock(&kvm->lock);
1731
4ce7ebdf 1732 if (irqchip_in_kernel(kvm)) {
01ac5e34
MZ
1733 ret = -EEXIST;
1734 goto out;
1735 }
1736
b5d84ff6
AP
1737 /*
1738 * This function is also called by the KVM_CREATE_IRQCHIP handler,
1739 * which had no chance yet to check the availability of the GICv2
1740 * emulation. So check this here again. KVM_CREATE_DEVICE does
1741 * the proper checks already.
1742 */
1743 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2)
1744 return -ENODEV;
1745
7330672b
CD
1746 /*
1747 * Any time a vcpu is run, vcpu_load is called which tries to grab the
1748 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
1749 * that no other VCPUs are run while we create the vgic.
1750 */
6b50f540 1751 ret = -EBUSY;
7330672b
CD
1752 kvm_for_each_vcpu(i, vcpu, kvm) {
1753 if (!mutex_trylock(&vcpu->mutex))
1754 goto out_unlock;
1755 vcpu_lock_idx = i;
1756 }
1757
1758 kvm_for_each_vcpu(i, vcpu, kvm) {
6b50f540 1759 if (vcpu->arch.has_run_once)
7330672b 1760 goto out_unlock;
7330672b 1761 }
6b50f540 1762 ret = 0;
7330672b 1763
b26e5fda
AP
1764 ret = init_vgic_model(kvm, type);
1765 if (ret)
1766 goto out_unlock;
1767
01ac5e34 1768 spin_lock_init(&kvm->arch.vgic.lock);
f982cf4e 1769 kvm->arch.vgic.in_kernel = true;
59892136 1770 kvm->arch.vgic.vgic_model = type;
8f186d52 1771 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
1772 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
1773 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
a0675c25 1774 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
01ac5e34 1775
7330672b
CD
1776out_unlock:
1777 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1778 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1779 mutex_unlock(&vcpu->mutex);
1780 }
1781
01ac5e34
MZ
1782out:
1783 mutex_unlock(&kvm->lock);
1784 return ret;
1785}
1786
1fa451bc 1787static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
1788{
1789 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
1790 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
1791
1792 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
1793 return 0;
1794 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
1795 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
1796 return -EBUSY;
1797 return 0;
1798}
1799
1800static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
1801 phys_addr_t addr, phys_addr_t size)
1802{
1803 int ret;
1804
ce01e4e8
CD
1805 if (addr & ~KVM_PHYS_MASK)
1806 return -E2BIG;
1807
1808 if (addr & (SZ_4K - 1))
1809 return -EINVAL;
1810
330690cd
CD
1811 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
1812 return -EEXIST;
1813 if (addr + size < addr)
1814 return -EINVAL;
1815
30c21170 1816 *ioaddr = addr;
330690cd
CD
1817 ret = vgic_ioaddr_overlap(kvm);
1818 if (ret)
30c21170
HW
1819 *ioaddr = VGIC_ADDR_UNDEF;
1820
330690cd
CD
1821 return ret;
1822}
1823
ce01e4e8
CD
1824/**
1825 * kvm_vgic_addr - set or get vgic VM base addresses
1826 * @kvm: pointer to the vm struct
ac3d3735 1827 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
ce01e4e8
CD
1828 * @addr: pointer to address value
1829 * @write: if true set the address in the VM address space, if false read the
1830 * address
1831 *
1832 * Set or get the vgic base addresses for the distributor and the virtual CPU
1833 * interface in the VM physical address space. These addresses are properties
1834 * of the emulated core/SoC and therefore user space initially knows this
1835 * information.
1836 */
1837int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
1838{
1839 int r = 0;
1840 struct vgic_dist *vgic = &kvm->arch.vgic;
ac3d3735
AP
1841 int type_needed;
1842 phys_addr_t *addr_ptr, block_size;
4fa96afd 1843 phys_addr_t alignment;
330690cd 1844
330690cd
CD
1845 mutex_lock(&kvm->lock);
1846 switch (type) {
1847 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ac3d3735
AP
1848 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1849 addr_ptr = &vgic->vgic_dist_base;
1850 block_size = KVM_VGIC_V2_DIST_SIZE;
4fa96afd 1851 alignment = SZ_4K;
330690cd
CD
1852 break;
1853 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ac3d3735
AP
1854 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
1855 addr_ptr = &vgic->vgic_cpu_base;
1856 block_size = KVM_VGIC_V2_CPU_SIZE;
4fa96afd 1857 alignment = SZ_4K;
330690cd 1858 break;
ac3d3735
AP
1859#ifdef CONFIG_ARM_GIC_V3
1860 case KVM_VGIC_V3_ADDR_TYPE_DIST:
1861 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1862 addr_ptr = &vgic->vgic_dist_base;
1863 block_size = KVM_VGIC_V3_DIST_SIZE;
4fa96afd 1864 alignment = SZ_64K;
ac3d3735
AP
1865 break;
1866 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
1867 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
1868 addr_ptr = &vgic->vgic_redist_base;
1869 block_size = KVM_VGIC_V3_REDIST_SIZE;
4fa96afd 1870 alignment = SZ_64K;
ac3d3735
AP
1871 break;
1872#endif
330690cd
CD
1873 default:
1874 r = -ENODEV;
ac3d3735
AP
1875 goto out;
1876 }
1877
1878 if (vgic->vgic_model != type_needed) {
1879 r = -ENODEV;
1880 goto out;
330690cd
CD
1881 }
1882
4fa96afd
AP
1883 if (write) {
1884 if (!IS_ALIGNED(*addr, alignment))
1885 r = -EINVAL;
1886 else
1887 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
1888 block_size);
1889 } else {
ac3d3735 1890 *addr = *addr_ptr;
4fa96afd 1891 }
ac3d3735
AP
1892
1893out:
330690cd
CD
1894 mutex_unlock(&kvm->lock);
1895 return r;
1896}
7330672b 1897
83215812 1898int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 1899{
ce01e4e8
CD
1900 int r;
1901
1902 switch (attr->group) {
1903 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1904 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1905 u64 addr;
1906 unsigned long type = (unsigned long)attr->attr;
1907
1908 if (copy_from_user(&addr, uaddr, sizeof(addr)))
1909 return -EFAULT;
1910
1911 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
1912 return (r == -ENODEV) ? -ENXIO : r;
1913 }
a98f26f1
MZ
1914 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1915 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1916 u32 val;
1917 int ret = 0;
1918
1919 if (get_user(val, uaddr))
1920 return -EFAULT;
1921
1922 /*
1923 * We require:
1924 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
1925 * - at most 1024 interrupts
1926 * - a multiple of 32 interrupts
1927 */
1928 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
1929 val > VGIC_MAX_IRQS ||
1930 (val & 31))
1931 return -EINVAL;
1932
1933 mutex_lock(&dev->kvm->lock);
1934
c52edf5f 1935 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
a98f26f1
MZ
1936 ret = -EBUSY;
1937 else
1938 dev->kvm->arch.vgic.nr_irqs = val;
1939
1940 mutex_unlock(&dev->kvm->lock);
1941
1942 return ret;
1943 }
065c0034
EA
1944 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
1945 switch (attr->attr) {
1946 case KVM_DEV_ARM_VGIC_CTRL_INIT:
1947 r = vgic_init(dev->kvm);
1948 return r;
1949 }
1950 break;
1951 }
ce01e4e8
CD
1952 }
1953
7330672b
CD
1954 return -ENXIO;
1955}
1956
83215812 1957int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 1958{
ce01e4e8
CD
1959 int r = -ENXIO;
1960
1961 switch (attr->group) {
1962 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
1963 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
1964 u64 addr;
1965 unsigned long type = (unsigned long)attr->attr;
1966
1967 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
1968 if (r)
1969 return (r == -ENODEV) ? -ENXIO : r;
1970
1971 if (copy_to_user(uaddr, &addr, sizeof(addr)))
1972 return -EFAULT;
c07a0191
CD
1973 break;
1974 }
b60da146
AP
1975 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
1976 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
1977
1978 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
1979 break;
1980 }
1981
1982 }
1983
1984 return r;
1985}
1986
cf50a1eb 1987int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
c07a0191
CD
1988{
1989 struct kvm_exit_mmio dev_attr_mmio;
1990
1991 dev_attr_mmio.len = 4;
83215812 1992 if (vgic_find_range(ranges, &dev_attr_mmio, offset))
c07a0191
CD
1993 return 0;
1994 else
1995 return -ENXIO;
1996}
1997
c06a841b
WD
1998static void vgic_init_maintenance_interrupt(void *info)
1999{
2000 enable_percpu_irq(vgic->maint_irq, 0);
2001}
2002
2003static int vgic_cpu_notify(struct notifier_block *self,
2004 unsigned long action, void *cpu)
2005{
2006 switch (action) {
2007 case CPU_STARTING:
2008 case CPU_STARTING_FROZEN:
2009 vgic_init_maintenance_interrupt(NULL);
2010 break;
2011 case CPU_DYING:
2012 case CPU_DYING_FROZEN:
2013 disable_percpu_irq(vgic->maint_irq);
2014 break;
2015 }
2016
2017 return NOTIFY_OK;
2018}
2019
2020static struct notifier_block vgic_cpu_nb = {
2021 .notifier_call = vgic_cpu_notify,
2022};
2023
2024static const struct of_device_id vgic_ids[] = {
0f372475
MR
2025 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2026 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2027 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2028 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
c06a841b
WD
2029 {},
2030};
2031
2032int kvm_vgic_hyp_init(void)
2033{
2034 const struct of_device_id *matched_id;
a875dafc
CD
2035 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2036 const struct vgic_params **);
c06a841b
WD
2037 struct device_node *vgic_node;
2038 int ret;
2039
2040 vgic_node = of_find_matching_node_and_match(NULL,
2041 vgic_ids, &matched_id);
2042 if (!vgic_node) {
2043 kvm_err("error: no compatible GIC node found\n");
2044 return -ENODEV;
2045 }
2046
2047 vgic_probe = matched_id->data;
2048 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2049 if (ret)
2050 return ret;
2051
2052 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2053 "vgic", kvm_get_running_vcpus());
2054 if (ret) {
2055 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2056 return ret;
2057 }
2058
2059 ret = __register_cpu_notifier(&vgic_cpu_nb);
2060 if (ret) {
2061 kvm_err("Cannot register vgic CPU notifier\n");
2062 goto out_free_irq;
2063 }
2064
2065 /* Callback into for arch code for setup */
2066 vgic_arch_setup(vgic);
2067
2068 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2069
ea2f83a7 2070 return 0;
c06a841b
WD
2071
2072out_free_irq:
2073 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2074 return ret;
2075}
174178fe
EA
2076
2077int kvm_irq_map_gsi(struct kvm *kvm,
2078 struct kvm_kernel_irq_routing_entry *entries,
2079 int gsi)
2080{
2081 return gsi;
2082}
2083
2084int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2085{
2086 return pin;
2087}
2088
2089int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2090 u32 irq, int level, bool line_status)
2091{
2092 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2093
2094 trace_kvm_set_irq(irq, level, irq_source_id);
2095
2096 BUG_ON(!vgic_initialized(kvm));
2097
2098 if (spi > kvm->arch.vgic.nr_irqs)
2099 return -EINVAL;
2100 return kvm_vgic_inject_irq(kvm, 0, spi, level);
2101
2102}
2103
2104/* MSI not implemented yet */
2105int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2106 struct kvm *kvm, int irq_source_id,
2107 int level, bool line_status)
2108{
2109 return 0;
2110}
This page took 0.302201 seconds and 5 git commands to generate.