arm/arm64: KVM: Fix arch timer behavior for disabled interrupts
[deliverable/linux.git] / virt / kvm / arm / vgic.c
CommitLineData
1a89dd91
MZ
1/*
2 * Copyright (C) 2012 ARM Ltd.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
01ac5e34 19#include <linux/cpu.h>
1a89dd91
MZ
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
01ac5e34
MZ
24#include <linux/of.h>
25#include <linux/of_address.h>
26#include <linux/of_irq.h>
6c3d63c9 27#include <linux/rculist.h>
2a2f3e26 28#include <linux/uaccess.h>
01ac5e34 29
1a89dd91 30#include <asm/kvm_emulate.h>
01ac5e34
MZ
31#include <asm/kvm_arm.h>
32#include <asm/kvm_mmu.h>
174178fe 33#include <trace/events/kvm.h>
6777f77f
AP
34#include <asm/kvm.h>
35#include <kvm/iodev.h>
1a89dd91 36
b47ef92a
MZ
37/*
38 * How the whole thing works (courtesy of Christoffer Dall):
39 *
40 * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if
7e362919
CD
41 * something is pending on the CPU interface.
42 * - Interrupts that are pending on the distributor are stored on the
43 * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land
44 * ioctls and guest mmio ops, and other in-kernel peripherals such as the
45 * arch. timers).
b47ef92a
MZ
46 * - Every time the bitmap changes, the irq_pending_on_cpu oracle is
47 * recalculated
48 * - To calculate the oracle, we need info for each cpu from
49 * compute_pending_for_cpu, which considers:
227844f5
CD
50 * - PPI: dist->irq_pending & dist->irq_enable
51 * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target
7e362919 52 * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn
b47ef92a
MZ
53 * registers, stored on each vcpu. We only keep one bit of
54 * information per interrupt, making sure that only one vcpu can
55 * accept the interrupt.
7e362919 56 * - If any of the above state changes, we must recalculate the oracle.
b47ef92a
MZ
57 * - The same is true when injecting an interrupt, except that we only
58 * consider a single interrupt at a time. The irq_spi_cpu array
59 * contains the target CPU for each SPI.
60 *
61 * The handling of level interrupts adds some extra complexity. We
62 * need to track when the interrupt has been EOIed, so we can sample
63 * the 'line' again. This is achieved as such:
64 *
65 * - When a level interrupt is moved onto a vcpu, the corresponding
dbf20f9d 66 * bit in irq_queued is set. As long as this bit is set, the line
b47ef92a
MZ
67 * will be ignored for further interrupts. The interrupt is injected
68 * into the vcpu with the GICH_LR_EOI bit set (generate a
69 * maintenance interrupt on EOI).
70 * - When the interrupt is EOIed, the maintenance interrupt fires,
dbf20f9d 71 * and clears the corresponding bit in irq_queued. This allows the
b47ef92a 72 * interrupt line to be sampled again.
faa1b46c
CD
73 * - Note that level-triggered interrupts can also be set to pending from
74 * writes to GICD_ISPENDRn and lowering the external input line does not
75 * cause the interrupt to become inactive in such a situation.
76 * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become
77 * inactive as long as the external input line is held high.
6c3d63c9
MZ
78 *
79 *
80 * Initialization rules: there are multiple stages to the vgic
81 * initialization, both for the distributor and the CPU interfaces.
82 *
83 * Distributor:
84 *
85 * - kvm_vgic_early_init(): initialization of static data that doesn't
86 * depend on any sizing information or emulation type. No allocation
87 * is allowed there.
88 *
89 * - vgic_init(): allocation and initialization of the generic data
90 * structures that depend on sizing information (number of CPUs,
91 * number of interrupts). Also initializes the vcpu specific data
92 * structures. Can be executed lazily for GICv2.
93 * [to be renamed to kvm_vgic_init??]
94 *
95 * CPU Interface:
96 *
97 * - kvm_vgic_cpu_early_init(): initialization of static data that
98 * doesn't depend on any sizing information or emulation type. No
99 * allocation is allowed there.
b47ef92a
MZ
100 */
101
83215812 102#include "vgic.h"
330690cd 103
a1fcb44e 104static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu);
8d5c6b06 105static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu);
8d5c6b06
MZ
106static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr);
107static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc);
6c3d63c9
MZ
108static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
109 int virt_irq);
01ac5e34 110
8f186d52
MZ
111static const struct vgic_ops *vgic_ops;
112static const struct vgic_params *vgic;
b47ef92a 113
b26e5fda
AP
114static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source)
115{
116 vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source);
117}
118
119static bool queue_sgi(struct kvm_vcpu *vcpu, int irq)
120{
121 return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq);
122}
123
124int kvm_vgic_map_resources(struct kvm *kvm)
125{
126 return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic);
127}
128
9662fb48 129/*
c1bfb577
MZ
130 * struct vgic_bitmap contains a bitmap made of unsigned longs, but
131 * extracts u32s out of them.
9662fb48
VK
132 *
133 * This does not work on 64-bit BE systems, because the bitmap access
134 * will store two consecutive 32-bit words with the higher-addressed
135 * register's bits at the lower index and the lower-addressed register's
136 * bits at the higher index.
137 *
138 * Therefore, swizzle the register index when accessing the 32-bit word
139 * registers to access the right register's value.
140 */
141#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64
142#define REG_OFFSET_SWIZZLE 1
143#else
144#define REG_OFFSET_SWIZZLE 0
145#endif
b47ef92a 146
c1bfb577
MZ
147static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs)
148{
149 int nr_longs;
150
151 nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS);
152
153 b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL);
154 if (!b->private)
155 return -ENOMEM;
156
157 b->shared = b->private + nr_cpus;
158
159 return 0;
160}
161
162static void vgic_free_bitmap(struct vgic_bitmap *b)
163{
164 kfree(b->private);
165 b->private = NULL;
166 b->shared = NULL;
167}
168
2df36a5d
CD
169/*
170 * Call this function to convert a u64 value to an unsigned long * bitmask
171 * in a way that works on both 32-bit and 64-bit LE and BE platforms.
172 *
173 * Warning: Calling this function may modify *val.
174 */
175static unsigned long *u64_to_bitmask(u64 *val)
176{
177#if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32
178 *val = (*val >> 32) | (*val << 32);
179#endif
180 return (unsigned long *)val;
181}
182
83215812 183u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset)
b47ef92a
MZ
184{
185 offset >>= 2;
186 if (!offset)
c1bfb577 187 return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE;
b47ef92a 188 else
c1bfb577 189 return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE);
b47ef92a
MZ
190}
191
192static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x,
193 int cpuid, int irq)
194{
195 if (irq < VGIC_NR_PRIVATE_IRQS)
c1bfb577 196 return test_bit(irq, x->private + cpuid);
b47ef92a 197
c1bfb577 198 return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared);
b47ef92a
MZ
199}
200
83215812
AP
201void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid,
202 int irq, int val)
b47ef92a
MZ
203{
204 unsigned long *reg;
205
206 if (irq < VGIC_NR_PRIVATE_IRQS) {
c1bfb577 207 reg = x->private + cpuid;
b47ef92a 208 } else {
c1bfb577 209 reg = x->shared;
b47ef92a
MZ
210 irq -= VGIC_NR_PRIVATE_IRQS;
211 }
212
213 if (val)
214 set_bit(irq, reg);
215 else
216 clear_bit(irq, reg);
217}
218
219static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid)
220{
c1bfb577 221 return x->private + cpuid;
b47ef92a
MZ
222}
223
83215812 224unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x)
b47ef92a 225{
c1bfb577
MZ
226 return x->shared;
227}
228
229static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs)
230{
231 int size;
232
233 size = nr_cpus * VGIC_NR_PRIVATE_IRQS;
234 size += nr_irqs - VGIC_NR_PRIVATE_IRQS;
235
236 x->private = kzalloc(size, GFP_KERNEL);
237 if (!x->private)
238 return -ENOMEM;
239
240 x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32);
241 return 0;
242}
243
244static void vgic_free_bytemap(struct vgic_bytemap *b)
245{
246 kfree(b->private);
247 b->private = NULL;
248 b->shared = NULL;
b47ef92a
MZ
249}
250
83215812 251u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset)
b47ef92a 252{
c1bfb577
MZ
253 u32 *reg;
254
255 if (offset < VGIC_NR_PRIVATE_IRQS) {
256 reg = x->private;
257 offset += cpuid * VGIC_NR_PRIVATE_IRQS;
258 } else {
259 reg = x->shared;
260 offset -= VGIC_NR_PRIVATE_IRQS;
261 }
262
263 return reg + (offset / sizeof(u32));
b47ef92a
MZ
264}
265
266#define VGIC_CFG_LEVEL 0
267#define VGIC_CFG_EDGE 1
268
269static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq)
270{
271 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
272 int irq_val;
273
274 irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq);
275 return irq_val == VGIC_CFG_EDGE;
276}
277
278static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq)
279{
280 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
281
282 return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq);
283}
284
dbf20f9d 285static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
286{
287 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
288
dbf20f9d 289 return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq);
9d949dce
MZ
290}
291
47a98b15
CD
292static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq)
293{
294 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
295
296 return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq);
297}
298
dbf20f9d 299static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
300{
301 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
302
dbf20f9d 303 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1);
9d949dce
MZ
304}
305
dbf20f9d 306static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq)
9d949dce
MZ
307{
308 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
309
dbf20f9d 310 vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0);
9d949dce
MZ
311}
312
47a98b15
CD
313static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq)
314{
315 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
316
317 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1);
318}
319
320static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq)
321{
322 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
323
324 vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0);
325}
326
faa1b46c
CD
327static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq)
328{
329 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
330
331 return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq);
332}
333
334static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq)
335{
336 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
337
338 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1);
339}
340
341static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq)
342{
343 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
344
345 vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0);
346}
347
348static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq)
349{
350 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
351
352 return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq);
353}
354
355static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq)
356{
357 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
358
359 vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0);
360}
361
9d949dce
MZ
362static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq)
363{
364 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
365
227844f5 366 return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq);
9d949dce
MZ
367}
368
83215812 369void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
370{
371 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
372
227844f5 373 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1);
b47ef92a
MZ
374}
375
83215812 376void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
377{
378 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
379
227844f5 380 vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0);
b47ef92a
MZ
381}
382
383static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq)
384{
385 if (irq < VGIC_NR_PRIVATE_IRQS)
386 set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
387 else
388 set_bit(irq - VGIC_NR_PRIVATE_IRQS,
389 vcpu->arch.vgic_cpu.pending_shared);
390}
391
83215812 392void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq)
b47ef92a
MZ
393{
394 if (irq < VGIC_NR_PRIVATE_IRQS)
395 clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu);
396 else
397 clear_bit(irq - VGIC_NR_PRIVATE_IRQS,
398 vcpu->arch.vgic_cpu.pending_shared);
399}
400
dbf20f9d
CD
401static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq)
402{
7a67b4b7 403 return !vgic_irq_is_queued(vcpu, irq);
dbf20f9d
CD
404}
405
1a89dd91
MZ
406/**
407 * vgic_reg_access - access vgic register
408 * @mmio: pointer to the data describing the mmio access
409 * @reg: pointer to the virtual backing of vgic distributor data
410 * @offset: least significant 2 bits used for word offset
411 * @mode: ACCESS_ mode (see defines above)
412 *
413 * Helper to make vgic register access easier using one of the access
414 * modes defined for vgic register access
415 * (read,raz,write-ignored,setbit,clearbit,write)
416 */
83215812
AP
417void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg,
418 phys_addr_t offset, int mode)
1a89dd91
MZ
419{
420 int word_offset = (offset & 3) * 8;
421 u32 mask = (1UL << (mmio->len * 8)) - 1;
422 u32 regval;
423
424 /*
425 * Any alignment fault should have been delivered to the guest
426 * directly (ARM ARM B3.12.7 "Prioritization of aborts").
427 */
428
429 if (reg) {
430 regval = *reg;
431 } else {
432 BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED));
433 regval = 0;
434 }
435
436 if (mmio->is_write) {
437 u32 data = mmio_data_read(mmio, mask) << word_offset;
438 switch (ACCESS_WRITE_MASK(mode)) {
439 case ACCESS_WRITE_IGNORED:
440 return;
441
442 case ACCESS_WRITE_SETBIT:
443 regval |= data;
444 break;
445
446 case ACCESS_WRITE_CLEARBIT:
447 regval &= ~data;
448 break;
449
450 case ACCESS_WRITE_VALUE:
451 regval = (regval & ~(mask << word_offset)) | data;
452 break;
453 }
454 *reg = regval;
455 } else {
456 switch (ACCESS_READ_MASK(mode)) {
457 case ACCESS_READ_RAZ:
458 regval = 0;
459 /* fall through */
460
461 case ACCESS_READ_VALUE:
462 mmio_data_write(mmio, mask, regval >> word_offset);
463 }
464 }
465}
466
83215812
AP
467bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio,
468 phys_addr_t offset)
b47ef92a
MZ
469{
470 vgic_reg_access(mmio, NULL, offset,
471 ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED);
472 return false;
473}
474
83215812
AP
475bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio,
476 phys_addr_t offset, int vcpu_id, int access)
b47ef92a 477{
d97f683d
AP
478 u32 *reg;
479 int mode = ACCESS_READ_VALUE | access;
480 struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id);
481
482 reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset);
483 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 484 if (mmio->is_write) {
d97f683d
AP
485 if (access & ACCESS_WRITE_CLEARBIT) {
486 if (offset < 4) /* Force SGI enabled */
487 *reg |= 0xffff;
488 vgic_retire_disabled_irqs(target_vcpu);
489 }
490 vgic_update_state(kvm);
b47ef92a
MZ
491 return true;
492 }
493
494 return false;
495}
496
83215812
AP
497bool vgic_handle_set_pending_reg(struct kvm *kvm,
498 struct kvm_exit_mmio *mmio,
499 phys_addr_t offset, int vcpu_id)
b47ef92a 500{
9da48b55 501 u32 *reg, orig;
faa1b46c 502 u32 level_mask;
d97f683d
AP
503 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT;
504 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 505
d97f683d 506 reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset);
faa1b46c
CD
507 level_mask = (~(*reg));
508
509 /* Mark both level and edge triggered irqs as pending */
d97f683d 510 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 511 orig = *reg;
d97f683d 512 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 513
b47ef92a 514 if (mmio->is_write) {
faa1b46c
CD
515 /* Set the soft-pending flag only for level-triggered irqs */
516 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
517 vcpu_id, offset);
518 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c
CD
519 *reg &= level_mask;
520
9da48b55
CD
521 /* Ignore writes to SGIs */
522 if (offset < 2) {
523 *reg &= ~0xffff;
524 *reg |= orig & 0xffff;
525 }
526
d97f683d 527 vgic_update_state(kvm);
b47ef92a
MZ
528 return true;
529 }
530
531 return false;
532}
533
83215812
AP
534bool vgic_handle_clear_pending_reg(struct kvm *kvm,
535 struct kvm_exit_mmio *mmio,
536 phys_addr_t offset, int vcpu_id)
b47ef92a 537{
faa1b46c 538 u32 *level_active;
9da48b55 539 u32 *reg, orig;
d97f683d
AP
540 int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT;
541 struct vgic_dist *dist = &kvm->arch.vgic;
faa1b46c 542
d97f683d 543 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
9da48b55 544 orig = *reg;
d97f683d 545 vgic_reg_access(mmio, reg, offset, mode);
b47ef92a 546 if (mmio->is_write) {
faa1b46c
CD
547 /* Re-set level triggered level-active interrupts */
548 level_active = vgic_bitmap_get_reg(&dist->irq_level,
d97f683d
AP
549 vcpu_id, offset);
550 reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset);
faa1b46c
CD
551 *reg |= *level_active;
552
9da48b55
CD
553 /* Ignore writes to SGIs */
554 if (offset < 2) {
555 *reg &= ~0xffff;
556 *reg |= orig & 0xffff;
557 }
558
faa1b46c
CD
559 /* Clear soft-pending flags */
560 reg = vgic_bitmap_get_reg(&dist->irq_soft_pend,
d97f683d
AP
561 vcpu_id, offset);
562 vgic_reg_access(mmio, reg, offset, mode);
faa1b46c 563
d97f683d 564 vgic_update_state(kvm);
b47ef92a
MZ
565 return true;
566 }
b47ef92a
MZ
567 return false;
568}
569
47a98b15
CD
570bool vgic_handle_set_active_reg(struct kvm *kvm,
571 struct kvm_exit_mmio *mmio,
572 phys_addr_t offset, int vcpu_id)
573{
574 u32 *reg;
575 struct vgic_dist *dist = &kvm->arch.vgic;
576
577 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
578 vgic_reg_access(mmio, reg, offset,
579 ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT);
580
581 if (mmio->is_write) {
582 vgic_update_state(kvm);
583 return true;
584 }
585
586 return false;
587}
588
589bool vgic_handle_clear_active_reg(struct kvm *kvm,
590 struct kvm_exit_mmio *mmio,
591 phys_addr_t offset, int vcpu_id)
592{
593 u32 *reg;
594 struct vgic_dist *dist = &kvm->arch.vgic;
595
596 reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset);
597 vgic_reg_access(mmio, reg, offset,
598 ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT);
599
600 if (mmio->is_write) {
601 vgic_update_state(kvm);
602 return true;
603 }
604
605 return false;
606}
607
b47ef92a
MZ
608static u32 vgic_cfg_expand(u16 val)
609{
610 u32 res = 0;
611 int i;
612
613 /*
614 * Turn a 16bit value like abcd...mnop into a 32bit word
615 * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is.
616 */
617 for (i = 0; i < 16; i++)
618 res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1);
619
620 return res;
621}
622
623static u16 vgic_cfg_compress(u32 val)
624{
625 u16 res = 0;
626 int i;
627
628 /*
629 * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like
630 * abcd...mnop which is what we really care about.
631 */
632 for (i = 0; i < 16; i++)
633 res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i;
634
635 return res;
636}
637
638/*
639 * The distributor uses 2 bits per IRQ for the CFG register, but the
640 * LSB is always 0. As such, we only keep the upper bit, and use the
641 * two above functions to compress/expand the bits
642 */
83215812
AP
643bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio,
644 phys_addr_t offset)
b47ef92a
MZ
645{
646 u32 val;
6545eae3 647
f2ae85b2 648 if (offset & 4)
b47ef92a
MZ
649 val = *reg >> 16;
650 else
651 val = *reg & 0xffff;
652
653 val = vgic_cfg_expand(val);
654 vgic_reg_access(mmio, &val, offset,
655 ACCESS_READ_VALUE | ACCESS_WRITE_VALUE);
656 if (mmio->is_write) {
f2ae85b2 657 if (offset < 8) {
b47ef92a
MZ
658 *reg = ~0U; /* Force PPIs/SGIs to 1 */
659 return false;
660 }
661
662 val = vgic_cfg_compress(val);
f2ae85b2 663 if (offset & 4) {
b47ef92a
MZ
664 *reg &= 0xffff;
665 *reg |= val << 16;
666 } else {
667 *reg &= 0xffff << 16;
668 *reg |= val;
669 }
670 }
671
672 return false;
673}
674
cbd333a4 675/**
47a98b15 676 * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor
cbd333a4
CD
677 * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs
678 *
47a98b15 679 * Move any IRQs that have already been assigned to LRs back to the
cbd333a4
CD
680 * emulated distributor state so that the complete emulated state can be read
681 * from the main emulation structures without investigating the LRs.
cbd333a4 682 */
83215812 683void vgic_unqueue_irqs(struct kvm_vcpu *vcpu)
cbd333a4 684{
cbd333a4 685 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
8d5c6b06 686 int i;
cbd333a4
CD
687
688 for_each_set_bit(i, vgic_cpu->lr_used, vgic_cpu->nr_lr) {
8d5c6b06 689 struct vgic_lr lr = vgic_get_lr(vcpu, i);
cbd333a4
CD
690
691 /*
692 * There are three options for the state bits:
693 *
694 * 01: pending
695 * 10: active
696 * 11: pending and active
cbd333a4 697 */
47a98b15
CD
698 BUG_ON(!(lr.state & LR_STATE_MASK));
699
700 /* Reestablish SGI source for pending and active IRQs */
701 if (lr.irq < VGIC_NR_SGIS)
702 add_sgi_source(vcpu, lr.irq, lr.source);
703
704 /*
705 * If the LR holds an active (10) or a pending and active (11)
706 * interrupt then move the active state to the
707 * distributor tracking bit.
708 */
709 if (lr.state & LR_STATE_ACTIVE) {
710 vgic_irq_set_active(vcpu, lr.irq);
711 lr.state &= ~LR_STATE_ACTIVE;
712 }
cbd333a4
CD
713
714 /*
715 * Reestablish the pending state on the distributor and the
716 * CPU interface. It may have already been pending, but that
717 * is fine, then we are only setting a few bits that were
718 * already set.
719 */
47a98b15
CD
720 if (lr.state & LR_STATE_PENDING) {
721 vgic_dist_irq_set_pending(vcpu, lr.irq);
722 lr.state &= ~LR_STATE_PENDING;
723 }
724
8d5c6b06 725 vgic_set_lr(vcpu, i, lr);
cbd333a4
CD
726
727 /*
47a98b15 728 * Mark the LR as free for other use.
cbd333a4 729 */
47a98b15
CD
730 BUG_ON(lr.state & LR_STATE_MASK);
731 vgic_retire_lr(i, lr.irq, vcpu);
732 vgic_irq_clear_queued(vcpu, lr.irq);
cbd333a4
CD
733
734 /* Finally update the VGIC state. */
735 vgic_update_state(vcpu->kvm);
736 }
737}
738
83215812 739const
cf50a1eb 740struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges,
9f199d0a 741 int len, gpa_t offset)
1a89dd91 742{
9f199d0a
AP
743 while (ranges->len) {
744 if (offset >= ranges->base &&
745 (offset + len) <= (ranges->base + ranges->len))
746 return ranges;
747 ranges++;
1a89dd91
MZ
748 }
749
750 return NULL;
751}
752
c3c91836 753static bool vgic_validate_access(const struct vgic_dist *dist,
cf50a1eb 754 const struct vgic_io_range *range,
c3c91836
MZ
755 unsigned long offset)
756{
757 int irq;
758
759 if (!range->bits_per_irq)
760 return true; /* Not an irq-based access */
761
762 irq = offset * 8 / range->bits_per_irq;
763 if (irq >= dist->nr_irqs)
764 return false;
765
766 return true;
767}
768
05bc8aaf
AP
769/*
770 * Call the respective handler function for the given range.
771 * We split up any 64 bit accesses into two consecutive 32 bit
772 * handler calls and merge the result afterwards.
773 * We do this in a little endian fashion regardless of the host's
774 * or guest's endianness, because the GIC is always LE and the rest of
775 * the code (vgic_reg_access) also puts it in a LE fashion already.
776 * At this point we have already identified the handle function, so
777 * range points to that one entry and offset is relative to this.
778 */
779static bool call_range_handler(struct kvm_vcpu *vcpu,
780 struct kvm_exit_mmio *mmio,
781 unsigned long offset,
cf50a1eb 782 const struct vgic_io_range *range)
05bc8aaf 783{
05bc8aaf
AP
784 struct kvm_exit_mmio mmio32;
785 bool ret;
786
787 if (likely(mmio->len <= 4))
788 return range->handle_mmio(vcpu, mmio, offset);
789
790 /*
791 * Any access bigger than 4 bytes (that we currently handle in KVM)
792 * is actually 8 bytes long, caused by a 64-bit access
793 */
794
795 mmio32.len = 4;
796 mmio32.is_write = mmio->is_write;
9fedf146 797 mmio32.private = mmio->private;
05bc8aaf
AP
798
799 mmio32.phys_addr = mmio->phys_addr + 4;
950324ab 800 mmio32.data = &((u32 *)mmio->data)[1];
05bc8aaf 801 ret = range->handle_mmio(vcpu, &mmio32, offset + 4);
05bc8aaf
AP
802
803 mmio32.phys_addr = mmio->phys_addr;
950324ab 804 mmio32.data = &((u32 *)mmio->data)[0];
05bc8aaf 805 ret |= range->handle_mmio(vcpu, &mmio32, offset);
05bc8aaf
AP
806
807 return ret;
808}
809
1a89dd91 810/**
6777f77f
AP
811 * vgic_handle_mmio_access - handle an in-kernel MMIO access
812 * This is called by the read/write KVM IO device wrappers below.
1a89dd91 813 * @vcpu: pointer to the vcpu performing the access
6777f77f
AP
814 * @this: pointer to the KVM IO device in charge
815 * @addr: guest physical address of the access
816 * @len: size of the access
817 * @val: pointer to the data region
818 * @is_write: read or write access
1a89dd91 819 *
96415257 820 * returns true if the MMIO access could be performed
1a89dd91 821 */
6777f77f
AP
822static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu,
823 struct kvm_io_device *this, gpa_t addr,
824 int len, void *val, bool is_write)
1a89dd91 825{
b47ef92a 826 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
6777f77f
AP
827 struct vgic_io_device *iodev = container_of(this,
828 struct vgic_io_device, dev);
829 struct kvm_run *run = vcpu->run;
830 const struct vgic_io_range *range;
831 struct kvm_exit_mmio mmio;
b47ef92a 832 bool updated_state;
6777f77f 833 gpa_t offset;
b47ef92a 834
6777f77f
AP
835 offset = addr - iodev->addr;
836 range = vgic_find_range(iodev->reg_ranges, len, offset);
b47ef92a 837 if (unlikely(!range || !range->handle_mmio)) {
6777f77f
AP
838 pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len);
839 return -ENXIO;
b47ef92a
MZ
840 }
841
6777f77f
AP
842 mmio.phys_addr = addr;
843 mmio.len = len;
844 mmio.is_write = is_write;
950324ab 845 mmio.data = val;
6777f77f
AP
846 mmio.private = iodev->redist_vcpu;
847
848 spin_lock(&dist->lock);
96415257 849 offset -= range->base;
c3c91836 850 if (vgic_validate_access(dist, range, offset)) {
6777f77f 851 updated_state = call_range_handler(vcpu, &mmio, offset, range);
c3c91836 852 } else {
6777f77f
AP
853 if (!is_write)
854 memset(val, 0, len);
c3c91836
MZ
855 updated_state = false;
856 }
6777f77f 857 spin_unlock(&dist->lock);
950324ab
AP
858 run->mmio.is_write = is_write;
859 run->mmio.len = len;
860 run->mmio.phys_addr = addr;
861 memcpy(run->mmio.data, val, len);
862
b47ef92a
MZ
863 kvm_handle_mmio_return(vcpu, run);
864
5863c2ce
MZ
865 if (updated_state)
866 vgic_kick_vcpus(vcpu->kvm);
867
6777f77f
AP
868 return 0;
869}
870
6777f77f
AP
871static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu,
872 struct kvm_io_device *this,
873 gpa_t addr, int len, void *val)
874{
875 return vgic_handle_mmio_access(vcpu, this, addr, len, val, false);
b47ef92a
MZ
876}
877
6777f77f
AP
878static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu,
879 struct kvm_io_device *this,
880 gpa_t addr, int len, const void *val)
881{
882 return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val,
883 true);
884}
885
886struct kvm_io_device_ops vgic_io_ops = {
887 .read = vgic_handle_mmio_read,
888 .write = vgic_handle_mmio_write,
889};
890
96415257 891/**
6777f77f
AP
892 * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus
893 * @kvm: The VM structure pointer
894 * @base: The (guest) base address for the register frame
895 * @len: Length of the register frame window
896 * @ranges: Describing the handler functions for each register
897 * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call
898 * @iodev: Points to memory to be passed on to the handler
96415257 899 *
6777f77f
AP
900 * @iodev stores the parameters of this function to be usable by the handler
901 * respectively the dispatcher function (since the KVM I/O bus framework lacks
902 * an opaque parameter). Initialization is done in this function, but the
903 * reference should be valid and unique for the whole VGIC lifetime.
904 * If the register frame is not mapped for a specific VCPU, pass -1 to
905 * @redist_vcpu_id.
96415257 906 */
6777f77f
AP
907int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len,
908 const struct vgic_io_range *ranges,
909 int redist_vcpu_id,
910 struct vgic_io_device *iodev)
96415257 911{
6777f77f
AP
912 struct kvm_vcpu *vcpu = NULL;
913 int ret;
96415257 914
6777f77f
AP
915 if (redist_vcpu_id >= 0)
916 vcpu = kvm_get_vcpu(kvm, redist_vcpu_id);
917
918 iodev->addr = base;
919 iodev->len = len;
920 iodev->reg_ranges = ranges;
921 iodev->redist_vcpu = vcpu;
922
923 kvm_iodevice_init(&iodev->dev, &vgic_io_ops);
924
925 mutex_lock(&kvm->slots_lock);
926
927 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len,
928 &iodev->dev);
929 mutex_unlock(&kvm->slots_lock);
930
931 /* Mark the iodev as invalid if registration fails. */
932 if (ret)
933 iodev->dev.ops = NULL;
934
935 return ret;
96415257
AP
936}
937
fb65ab63
MZ
938static int vgic_nr_shared_irqs(struct vgic_dist *dist)
939{
940 return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS;
941}
942
47a98b15
CD
943static int compute_active_for_cpu(struct kvm_vcpu *vcpu)
944{
945 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
946 unsigned long *active, *enabled, *act_percpu, *act_shared;
947 unsigned long active_private, active_shared;
948 int nr_shared = vgic_nr_shared_irqs(dist);
949 int vcpu_id;
950
951 vcpu_id = vcpu->vcpu_id;
952 act_percpu = vcpu->arch.vgic_cpu.active_percpu;
953 act_shared = vcpu->arch.vgic_cpu.active_shared;
954
955 active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id);
956 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
957 bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS);
958
959 active = vgic_bitmap_get_shared_map(&dist->irq_active);
960 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
961 bitmap_and(act_shared, active, enabled, nr_shared);
962 bitmap_and(act_shared, act_shared,
963 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
964 nr_shared);
965
966 active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS);
967 active_shared = find_first_bit(act_shared, nr_shared);
968
969 return (active_private < VGIC_NR_PRIVATE_IRQS ||
970 active_shared < nr_shared);
971}
972
b47ef92a
MZ
973static int compute_pending_for_cpu(struct kvm_vcpu *vcpu)
974{
9d949dce
MZ
975 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
976 unsigned long *pending, *enabled, *pend_percpu, *pend_shared;
977 unsigned long pending_private, pending_shared;
fb65ab63 978 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
979 int vcpu_id;
980
981 vcpu_id = vcpu->vcpu_id;
982 pend_percpu = vcpu->arch.vgic_cpu.pending_percpu;
983 pend_shared = vcpu->arch.vgic_cpu.pending_shared;
984
227844f5 985 pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id);
9d949dce
MZ
986 enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id);
987 bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS);
988
227844f5 989 pending = vgic_bitmap_get_shared_map(&dist->irq_pending);
9d949dce 990 enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled);
fb65ab63 991 bitmap_and(pend_shared, pending, enabled, nr_shared);
9d949dce
MZ
992 bitmap_and(pend_shared, pend_shared,
993 vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]),
fb65ab63 994 nr_shared);
9d949dce
MZ
995
996 pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS);
fb65ab63 997 pending_shared = find_first_bit(pend_shared, nr_shared);
9d949dce 998 return (pending_private < VGIC_NR_PRIVATE_IRQS ||
fb65ab63 999 pending_shared < vgic_nr_shared_irqs(dist));
b47ef92a
MZ
1000}
1001
1002/*
1003 * Update the interrupt state and determine which CPUs have pending
47a98b15 1004 * or active interrupts. Must be called with distributor lock held.
b47ef92a 1005 */
83215812 1006void vgic_update_state(struct kvm *kvm)
b47ef92a
MZ
1007{
1008 struct vgic_dist *dist = &kvm->arch.vgic;
1009 struct kvm_vcpu *vcpu;
1010 int c;
1011
1012 if (!dist->enabled) {
c1bfb577 1013 set_bit(0, dist->irq_pending_on_cpu);
b47ef92a
MZ
1014 return;
1015 }
1016
1017 kvm_for_each_vcpu(c, vcpu, kvm) {
47a98b15 1018 if (compute_pending_for_cpu(vcpu))
c1bfb577 1019 set_bit(c, dist->irq_pending_on_cpu);
47a98b15
CD
1020
1021 if (compute_active_for_cpu(vcpu))
1022 set_bit(c, dist->irq_active_on_cpu);
1023 else
1024 clear_bit(c, dist->irq_active_on_cpu);
b47ef92a 1025 }
1a89dd91 1026}
330690cd 1027
8d5c6b06
MZ
1028static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr)
1029{
8f186d52 1030 return vgic_ops->get_lr(vcpu, lr);
8d5c6b06
MZ
1031}
1032
1033static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr,
1034 struct vgic_lr vlr)
1035{
8f186d52 1036 vgic_ops->set_lr(vcpu, lr, vlr);
8d5c6b06
MZ
1037}
1038
69bb2c9f
MZ
1039static void vgic_sync_lr_elrsr(struct kvm_vcpu *vcpu, int lr,
1040 struct vgic_lr vlr)
1041{
8f186d52 1042 vgic_ops->sync_lr_elrsr(vcpu, lr, vlr);
69bb2c9f
MZ
1043}
1044
1045static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu)
1046{
8f186d52 1047 return vgic_ops->get_elrsr(vcpu);
69bb2c9f
MZ
1048}
1049
8d6a0313
MZ
1050static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu)
1051{
8f186d52 1052 return vgic_ops->get_eisr(vcpu);
8d6a0313
MZ
1053}
1054
ae705930
CD
1055static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu)
1056{
1057 vgic_ops->clear_eisr(vcpu);
1058}
1059
495dd859
MZ
1060static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu)
1061{
8f186d52 1062 return vgic_ops->get_interrupt_status(vcpu);
495dd859
MZ
1063}
1064
909d9b50
MZ
1065static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu)
1066{
8f186d52 1067 vgic_ops->enable_underflow(vcpu);
909d9b50
MZ
1068}
1069
1070static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu)
1071{
8f186d52 1072 vgic_ops->disable_underflow(vcpu);
909d9b50
MZ
1073}
1074
83215812 1075void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1076{
8f186d52 1077 vgic_ops->get_vmcr(vcpu, vmcr);
beee38b9
MZ
1078}
1079
83215812 1080void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
beee38b9 1081{
8f186d52 1082 vgic_ops->set_vmcr(vcpu, vmcr);
beee38b9
MZ
1083}
1084
da8dafd1
MZ
1085static inline void vgic_enable(struct kvm_vcpu *vcpu)
1086{
8f186d52 1087 vgic_ops->enable(vcpu);
da8dafd1
MZ
1088}
1089
8d5c6b06
MZ
1090static void vgic_retire_lr(int lr_nr, int irq, struct kvm_vcpu *vcpu)
1091{
1092 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1093 struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr);
1094
cff9211e
CD
1095 /*
1096 * We must transfer the pending state back to the distributor before
1097 * retiring the LR, otherwise we may loose edge-triggered interrupts.
1098 */
1099 if (vlr.state & LR_STATE_PENDING) {
1100 vgic_dist_irq_set_pending(vcpu, irq);
1101 vlr.hwirq = 0;
1102 }
1103
8d5c6b06
MZ
1104 vlr.state = 0;
1105 vgic_set_lr(vcpu, lr_nr, vlr);
1106 clear_bit(lr_nr, vgic_cpu->lr_used);
1107 vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY;
ae705930 1108 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
8d5c6b06 1109}
a1fcb44e
MZ
1110
1111/*
1112 * An interrupt may have been disabled after being made pending on the
1113 * CPU interface (the classic case is a timer running while we're
1114 * rebooting the guest - the interrupt would kick as soon as the CPU
1115 * interface gets enabled, with deadly consequences).
1116 *
1117 * The solution is to examine already active LRs, and check the
1118 * interrupt is still enabled. If not, just retire it.
1119 */
1120static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu)
1121{
1122 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1123 int lr;
1124
8f186d52 1125 for_each_set_bit(lr, vgic_cpu->lr_used, vgic->nr_lr) {
8d5c6b06 1126 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
a1fcb44e 1127
8d5c6b06
MZ
1128 if (!vgic_irq_is_enabled(vcpu, vlr.irq)) {
1129 vgic_retire_lr(lr, vlr.irq, vcpu);
dbf20f9d
CD
1130 if (vgic_irq_is_queued(vcpu, vlr.irq))
1131 vgic_irq_clear_queued(vcpu, vlr.irq);
a1fcb44e
MZ
1132 }
1133 }
1134}
1135
71760950
AB
1136static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq,
1137 int lr_nr, struct vgic_lr vlr)
1138{
47a98b15
CD
1139 if (vgic_irq_is_active(vcpu, irq)) {
1140 vlr.state |= LR_STATE_ACTIVE;
1141 kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state);
1142 vgic_irq_clear_active(vcpu, irq);
1143 vgic_update_state(vcpu->kvm);
437f9963
PF
1144 } else {
1145 WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq));
71760950
AB
1146 vlr.state |= LR_STATE_PENDING;
1147 kvm_debug("Set pending: 0x%x\n", vlr.state);
1148 }
1149
1150 if (!vgic_irq_is_edge(vcpu, irq))
1151 vlr.state |= LR_EOI_INT;
1152
08fd6461
MZ
1153 if (vlr.irq >= VGIC_NR_SGIS) {
1154 struct irq_phys_map *map;
1155 map = vgic_irq_map_search(vcpu, irq);
1156
08fd6461 1157 if (map) {
08fd6461
MZ
1158 vlr.hwirq = map->phys_irq;
1159 vlr.state |= LR_HW;
1160 vlr.state &= ~LR_EOI_INT;
1161
08fd6461
MZ
1162 /*
1163 * Make sure we're not going to sample this
1164 * again, as a HW-backed interrupt cannot be
1165 * in the PENDING_ACTIVE stage.
1166 */
1167 vgic_irq_set_queued(vcpu, irq);
1168 }
1169 }
1170
71760950 1171 vgic_set_lr(vcpu, lr_nr, vlr);
bf0fb67c 1172 vgic_sync_lr_elrsr(vcpu, lr_nr, vlr);
71760950
AB
1173}
1174
9d949dce
MZ
1175/*
1176 * Queue an interrupt to a CPU virtual interface. Return true on success,
1177 * or false if it wasn't possible to queue it.
1d916229 1178 * sgi_source must be zero for any non-SGI interrupts.
9d949dce 1179 */
83215812 1180bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq)
9d949dce
MZ
1181{
1182 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
5fb66da6 1183 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
8d5c6b06 1184 struct vgic_lr vlr;
9d949dce
MZ
1185 int lr;
1186
1187 /* Sanitize the input... */
1188 BUG_ON(sgi_source_id & ~7);
1189 BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS);
5fb66da6 1190 BUG_ON(irq >= dist->nr_irqs);
9d949dce
MZ
1191
1192 kvm_debug("Queue IRQ%d\n", irq);
1193
1194 lr = vgic_cpu->vgic_irq_lr_map[irq];
1195
1196 /* Do we have an active interrupt for the same CPUID? */
8d5c6b06
MZ
1197 if (lr != LR_EMPTY) {
1198 vlr = vgic_get_lr(vcpu, lr);
1199 if (vlr.source == sgi_source_id) {
1200 kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq);
1201 BUG_ON(!test_bit(lr, vgic_cpu->lr_used));
71760950 1202 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
8d5c6b06
MZ
1203 return true;
1204 }
9d949dce
MZ
1205 }
1206
1207 /* Try to use another LR for this interrupt */
1208 lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used,
8f186d52
MZ
1209 vgic->nr_lr);
1210 if (lr >= vgic->nr_lr)
9d949dce
MZ
1211 return false;
1212
1213 kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id);
9d949dce
MZ
1214 vgic_cpu->vgic_irq_lr_map[irq] = lr;
1215 set_bit(lr, vgic_cpu->lr_used);
1216
8d5c6b06
MZ
1217 vlr.irq = irq;
1218 vlr.source = sgi_source_id;
71760950
AB
1219 vlr.state = 0;
1220 vgic_queue_irq_to_lr(vcpu, irq, lr, vlr);
9d949dce
MZ
1221
1222 return true;
1223}
1224
9d949dce
MZ
1225static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq)
1226{
dbf20f9d 1227 if (!vgic_can_sample_irq(vcpu, irq))
9d949dce
MZ
1228 return true; /* level interrupt, already queued */
1229
1230 if (vgic_queue_irq(vcpu, 0, irq)) {
1231 if (vgic_irq_is_edge(vcpu, irq)) {
227844f5 1232 vgic_dist_irq_clear_pending(vcpu, irq);
9d949dce
MZ
1233 vgic_cpu_irq_clear(vcpu, irq);
1234 } else {
dbf20f9d 1235 vgic_irq_set_queued(vcpu, irq);
9d949dce
MZ
1236 }
1237
1238 return true;
1239 }
1240
1241 return false;
1242}
1243
1244/*
1245 * Fill the list registers with pending interrupts before running the
1246 * guest.
1247 */
1248static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1249{
1250 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1251 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
47a98b15 1252 unsigned long *pa_percpu, *pa_shared;
cff9211e 1253 int i, vcpu_id;
9d949dce 1254 int overflow = 0;
47a98b15 1255 int nr_shared = vgic_nr_shared_irqs(dist);
9d949dce
MZ
1256
1257 vcpu_id = vcpu->vcpu_id;
1258
47a98b15
CD
1259 pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu;
1260 pa_shared = vcpu->arch.vgic_cpu.pend_act_shared;
1261
1262 bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu,
1263 VGIC_NR_PRIVATE_IRQS);
1264 bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared,
1265 nr_shared);
9d949dce
MZ
1266 /*
1267 * We may not have any pending interrupt, or the interrupts
1268 * may have been serviced from another vcpu. In all cases,
1269 * move along.
1270 */
47a98b15 1271 if (!kvm_vgic_vcpu_pending_irq(vcpu) && !kvm_vgic_vcpu_active_irq(vcpu))
9d949dce 1272 goto epilog;
9d949dce
MZ
1273
1274 /* SGIs */
47a98b15 1275 for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) {
b26e5fda 1276 if (!queue_sgi(vcpu, i))
9d949dce
MZ
1277 overflow = 1;
1278 }
1279
1280 /* PPIs */
47a98b15 1281 for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) {
9d949dce
MZ
1282 if (!vgic_queue_hwirq(vcpu, i))
1283 overflow = 1;
1284 }
1285
1286 /* SPIs */
47a98b15 1287 for_each_set_bit(i, pa_shared, nr_shared) {
9d949dce
MZ
1288 if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS))
1289 overflow = 1;
1290 }
1291
47a98b15
CD
1292
1293
1294
9d949dce
MZ
1295epilog:
1296 if (overflow) {
909d9b50 1297 vgic_enable_underflow(vcpu);
9d949dce 1298 } else {
909d9b50 1299 vgic_disable_underflow(vcpu);
9d949dce
MZ
1300 /*
1301 * We're about to run this VCPU, and we've consumed
1302 * everything the distributor had in store for
1303 * us. Claim we don't have anything pending. We'll
1304 * adjust that if needed while exiting.
1305 */
c1bfb577 1306 clear_bit(vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1307 }
1308}
1309
1310static bool vgic_process_maintenance(struct kvm_vcpu *vcpu)
1311{
495dd859 1312 u32 status = vgic_get_interrupt_status(vcpu);
649cf739 1313 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
9d949dce 1314 bool level_pending = false;
174178fe 1315 struct kvm *kvm = vcpu->kvm;
9d949dce 1316
495dd859 1317 kvm_debug("STATUS = %08x\n", status);
9d949dce 1318
495dd859 1319 if (status & INT_STATUS_EOI) {
9d949dce
MZ
1320 /*
1321 * Some level interrupts have been EOIed. Clear their
1322 * active bit.
1323 */
8d6a0313 1324 u64 eisr = vgic_get_eisr(vcpu);
2df36a5d 1325 unsigned long *eisr_ptr = u64_to_bitmask(&eisr);
8d5c6b06 1326 int lr;
9d949dce 1327
8f186d52 1328 for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) {
8d5c6b06 1329 struct vgic_lr vlr = vgic_get_lr(vcpu, lr);
faa1b46c 1330 WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq));
9d949dce 1331
649cf739 1332 spin_lock(&dist->lock);
dbf20f9d 1333 vgic_irq_clear_queued(vcpu, vlr.irq);
8d5c6b06
MZ
1334 WARN_ON(vlr.state & LR_STATE_MASK);
1335 vlr.state = 0;
1336 vgic_set_lr(vcpu, lr, vlr);
9d949dce 1337
faa1b46c
CD
1338 /*
1339 * If the IRQ was EOIed it was also ACKed and we we
1340 * therefore assume we can clear the soft pending
1341 * state (should it had been set) for this interrupt.
1342 *
1343 * Note: if the IRQ soft pending state was set after
1344 * the IRQ was acked, it actually shouldn't be
1345 * cleared, but we have no way of knowing that unless
1346 * we start trapping ACKs when the soft-pending state
1347 * is set.
1348 */
1349 vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq);
1350
174178fe
EA
1351 /*
1352 * kvm_notify_acked_irq calls kvm_set_irq()
1353 * to reset the IRQ level. Need to release the
1354 * lock for kvm_set_irq to grab it.
1355 */
1356 spin_unlock(&dist->lock);
1357
1358 kvm_notify_acked_irq(kvm, 0,
1359 vlr.irq - VGIC_NR_PRIVATE_IRQS);
1360 spin_lock(&dist->lock);
1361
9d949dce 1362 /* Any additional pending interrupt? */
faa1b46c 1363 if (vgic_dist_irq_get_level(vcpu, vlr.irq)) {
8d5c6b06 1364 vgic_cpu_irq_set(vcpu, vlr.irq);
9d949dce
MZ
1365 level_pending = true;
1366 } else {
faa1b46c 1367 vgic_dist_irq_clear_pending(vcpu, vlr.irq);
8d5c6b06 1368 vgic_cpu_irq_clear(vcpu, vlr.irq);
9d949dce 1369 }
75da01e1 1370
649cf739
EA
1371 spin_unlock(&dist->lock);
1372
75da01e1
MZ
1373 /*
1374 * Despite being EOIed, the LR may not have
1375 * been marked as empty.
1376 */
69bb2c9f 1377 vgic_sync_lr_elrsr(vcpu, lr, vlr);
9d949dce
MZ
1378 }
1379 }
1380
495dd859 1381 if (status & INT_STATUS_UNDERFLOW)
909d9b50 1382 vgic_disable_underflow(vcpu);
9d949dce 1383
ae705930
CD
1384 /*
1385 * In the next iterations of the vcpu loop, if we sync the vgic state
1386 * after flushing it, but before entering the guest (this happens for
1387 * pending signals and vmid rollovers), then make sure we don't pick
1388 * up any old maintenance interrupts here.
1389 */
1390 vgic_clear_eisr(vcpu);
1391
9d949dce
MZ
1392 return level_pending;
1393}
1394
08fd6461
MZ
1395/*
1396 * Save the physical active state, and reset it to inactive.
1397 *
1398 * Return 1 if HW interrupt went from active to inactive, and 0 otherwise.
1399 */
1400static int vgic_sync_hwirq(struct kvm_vcpu *vcpu, struct vgic_lr vlr)
1401{
1402 struct irq_phys_map *map;
1403 int ret;
1404
1405 if (!(vlr.state & LR_HW))
1406 return 0;
1407
1408 map = vgic_irq_map_search(vcpu, vlr.irq);
1409 BUG_ON(!map || !map->active);
1410
1411 ret = irq_get_irqchip_state(map->irq,
1412 IRQCHIP_STATE_ACTIVE,
1413 &map->active);
1414
1415 WARN_ON(ret);
1416
cff9211e 1417 if (map->active)
08fd6461 1418 return 0;
08fd6461
MZ
1419
1420 return 1;
1421}
1422
649cf739 1423/* Sync back the VGIC state after a guest run */
9d949dce
MZ
1424static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1425{
1426 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1427 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
69bb2c9f
MZ
1428 u64 elrsr;
1429 unsigned long *elrsr_ptr;
9d949dce
MZ
1430 int lr, pending;
1431 bool level_pending;
1432
1433 level_pending = vgic_process_maintenance(vcpu);
69bb2c9f 1434 elrsr = vgic_get_elrsr(vcpu);
2df36a5d 1435 elrsr_ptr = u64_to_bitmask(&elrsr);
9d949dce 1436
08fd6461
MZ
1437 /* Deal with HW interrupts, and clear mappings for empty LRs */
1438 for (lr = 0; lr < vgic->nr_lr; lr++) {
8d5c6b06 1439 struct vgic_lr vlr;
9d949dce 1440
08fd6461 1441 if (!test_bit(lr, vgic_cpu->lr_used))
9d949dce
MZ
1442 continue;
1443
8d5c6b06 1444 vlr = vgic_get_lr(vcpu, lr);
08fd6461
MZ
1445 if (vgic_sync_hwirq(vcpu, vlr)) {
1446 /*
1447 * So this is a HW interrupt that the guest
1448 * EOI-ed. Clean the LR state and allow the
1449 * interrupt to be sampled again.
1450 */
1451 vlr.state = 0;
1452 vlr.hwirq = 0;
1453 vgic_set_lr(vcpu, lr, vlr);
1454 vgic_irq_clear_queued(vcpu, vlr.irq);
1455 set_bit(lr, elrsr_ptr);
1456 }
1457
1458 if (!test_bit(lr, elrsr_ptr))
1459 continue;
1460
1461 clear_bit(lr, vgic_cpu->lr_used);
9d949dce 1462
5fb66da6 1463 BUG_ON(vlr.irq >= dist->nr_irqs);
8d5c6b06 1464 vgic_cpu->vgic_irq_lr_map[vlr.irq] = LR_EMPTY;
9d949dce
MZ
1465 }
1466
1467 /* Check if we still have something up our sleeve... */
8f186d52
MZ
1468 pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr);
1469 if (level_pending || pending < vgic->nr_lr)
c1bfb577 1470 set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1471}
1472
1473void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
1474{
1475 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1476
1477 if (!irqchip_in_kernel(vcpu->kvm))
1478 return;
1479
1480 spin_lock(&dist->lock);
1481 __kvm_vgic_flush_hwstate(vcpu);
1482 spin_unlock(&dist->lock);
1483}
1484
1485void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
1486{
1487 if (!irqchip_in_kernel(vcpu->kvm))
1488 return;
1489
1490 __kvm_vgic_sync_hwstate(vcpu);
1491}
1492
1493int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
1494{
1495 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1496
1497 if (!irqchip_in_kernel(vcpu->kvm))
1498 return 0;
1499
c1bfb577 1500 return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu);
9d949dce
MZ
1501}
1502
47a98b15
CD
1503int kvm_vgic_vcpu_active_irq(struct kvm_vcpu *vcpu)
1504{
1505 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1506
1507 if (!irqchip_in_kernel(vcpu->kvm))
1508 return 0;
1509
1510 return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu);
1511}
1512
1513
83215812 1514void vgic_kick_vcpus(struct kvm *kvm)
5863c2ce
MZ
1515{
1516 struct kvm_vcpu *vcpu;
1517 int c;
1518
1519 /*
1520 * We've injected an interrupt, time to find out who deserves
1521 * a good kick...
1522 */
1523 kvm_for_each_vcpu(c, vcpu, kvm) {
1524 if (kvm_vgic_vcpu_pending_irq(vcpu))
1525 kvm_vcpu_kick(vcpu);
1526 }
1527}
1528
1529static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level)
1530{
227844f5 1531 int edge_triggered = vgic_irq_is_edge(vcpu, irq);
5863c2ce
MZ
1532
1533 /*
1534 * Only inject an interrupt if:
1535 * - edge triggered and we have a rising edge
1536 * - level triggered and we change level
1537 */
faa1b46c
CD
1538 if (edge_triggered) {
1539 int state = vgic_dist_irq_is_pending(vcpu, irq);
5863c2ce 1540 return level > state;
faa1b46c
CD
1541 } else {
1542 int state = vgic_dist_irq_get_level(vcpu, irq);
5863c2ce 1543 return level != state;
faa1b46c 1544 }
5863c2ce
MZ
1545}
1546
016ed39c 1547static int vgic_update_irq_pending(struct kvm *kvm, int cpuid,
773299a5
MZ
1548 struct irq_phys_map *map,
1549 unsigned int irq_num, bool level)
5863c2ce
MZ
1550{
1551 struct vgic_dist *dist = &kvm->arch.vgic;
1552 struct kvm_vcpu *vcpu;
227844f5 1553 int edge_triggered, level_triggered;
5863c2ce 1554 int enabled;
a0675c25 1555 bool ret = true, can_inject = true;
5863c2ce 1556
773299a5
MZ
1557 if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020))
1558 return -EINVAL;
1559
5863c2ce
MZ
1560 spin_lock(&dist->lock);
1561
1562 vcpu = kvm_get_vcpu(kvm, cpuid);
227844f5
CD
1563 edge_triggered = vgic_irq_is_edge(vcpu, irq_num);
1564 level_triggered = !edge_triggered;
5863c2ce
MZ
1565
1566 if (!vgic_validate_injection(vcpu, irq_num, level)) {
1567 ret = false;
1568 goto out;
1569 }
1570
1571 if (irq_num >= VGIC_NR_PRIVATE_IRQS) {
1572 cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS];
a0675c25
AP
1573 if (cpuid == VCPU_NOT_ALLOCATED) {
1574 /* Pretend we use CPU0, and prevent injection */
1575 cpuid = 0;
1576 can_inject = false;
1577 }
5863c2ce
MZ
1578 vcpu = kvm_get_vcpu(kvm, cpuid);
1579 }
1580
1581 kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid);
1582
faa1b46c
CD
1583 if (level) {
1584 if (level_triggered)
1585 vgic_dist_irq_set_level(vcpu, irq_num);
227844f5 1586 vgic_dist_irq_set_pending(vcpu, irq_num);
faa1b46c
CD
1587 } else {
1588 if (level_triggered) {
1589 vgic_dist_irq_clear_level(vcpu, irq_num);
437f9963 1590 if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) {
faa1b46c 1591 vgic_dist_irq_clear_pending(vcpu, irq_num);
437f9963
PF
1592 vgic_cpu_irq_clear(vcpu, irq_num);
1593 if (!compute_pending_for_cpu(vcpu))
1594 clear_bit(cpuid, dist->irq_pending_on_cpu);
1595 }
faa1b46c 1596 }
7d39f9e3 1597
1598 ret = false;
1599 goto out;
faa1b46c 1600 }
5863c2ce
MZ
1601
1602 enabled = vgic_irq_is_enabled(vcpu, irq_num);
1603
a0675c25 1604 if (!enabled || !can_inject) {
5863c2ce
MZ
1605 ret = false;
1606 goto out;
1607 }
1608
dbf20f9d 1609 if (!vgic_can_sample_irq(vcpu, irq_num)) {
5863c2ce
MZ
1610 /*
1611 * Level interrupt in progress, will be picked up
1612 * when EOId.
1613 */
1614 ret = false;
1615 goto out;
1616 }
1617
1618 if (level) {
1619 vgic_cpu_irq_set(vcpu, irq_num);
c1bfb577 1620 set_bit(cpuid, dist->irq_pending_on_cpu);
5863c2ce
MZ
1621 }
1622
1623out:
1624 spin_unlock(&dist->lock);
1625
773299a5
MZ
1626 if (ret) {
1627 /* kick the specified vcpu */
1628 kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid));
1629 }
1630
1631 return 0;
1632}
1633
1634static int vgic_lazy_init(struct kvm *kvm)
1635{
1636 int ret = 0;
1637
1638 if (unlikely(!vgic_initialized(kvm))) {
1639 /*
1640 * We only provide the automatic initialization of the VGIC
1641 * for the legacy case of a GICv2. Any other type must
1642 * be explicitly initialized once setup with the respective
1643 * KVM device call.
1644 */
1645 if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2)
1646 return -EBUSY;
1647
1648 mutex_lock(&kvm->lock);
1649 ret = vgic_init(kvm);
1650 mutex_unlock(&kvm->lock);
1651 }
1652
1653 return ret;
5863c2ce
MZ
1654}
1655
1656/**
1657 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
1658 * @kvm: The VM structure pointer
1659 * @cpuid: The CPU for PPIs
773299a5
MZ
1660 * @irq_num: The IRQ number that is assigned to the device. This IRQ
1661 * must not be mapped to a HW interrupt.
5863c2ce
MZ
1662 * @level: Edge-triggered: true: to trigger the interrupt
1663 * false: to ignore the call
773299a5
MZ
1664 * Level-sensitive true: raise the input signal
1665 * false: lower the input signal
5863c2ce
MZ
1666 *
1667 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1668 * level-sensitive interrupts. You can think of the level parameter as 1
1669 * being HIGH and 0 being LOW and all devices being active-HIGH.
1670 */
1671int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num,
1672 bool level)
1673{
773299a5
MZ
1674 struct irq_phys_map *map;
1675 int ret;
ca7d9c82 1676
773299a5
MZ
1677 ret = vgic_lazy_init(kvm);
1678 if (ret)
1679 return ret;
5863c2ce 1680
773299a5
MZ
1681 map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num);
1682 if (map)
fd1d0ddf
AP
1683 return -EINVAL;
1684
773299a5
MZ
1685 return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level);
1686}
ca7d9c82 1687
773299a5
MZ
1688/**
1689 * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic
1690 * @kvm: The VM structure pointer
1691 * @cpuid: The CPU for PPIs
1692 * @map: Pointer to a irq_phys_map structure describing the mapping
1693 * @level: Edge-triggered: true: to trigger the interrupt
1694 * false: to ignore the call
1695 * Level-sensitive true: raise the input signal
1696 * false: lower the input signal
1697 *
1698 * The GIC is not concerned with devices being active-LOW or active-HIGH for
1699 * level-sensitive interrupts. You can think of the level parameter as 1
1700 * being HIGH and 0 being LOW and all devices being active-HIGH.
1701 */
1702int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid,
1703 struct irq_phys_map *map, bool level)
1704{
1705 int ret;
1706
1707 ret = vgic_lazy_init(kvm);
1708 if (ret)
1709 return ret;
1710
1711 return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level);
5863c2ce
MZ
1712}
1713
01ac5e34
MZ
1714static irqreturn_t vgic_maintenance_handler(int irq, void *data)
1715{
1716 /*
1717 * We cannot rely on the vgic maintenance interrupt to be
1718 * delivered synchronously. This means we can only use it to
1719 * exit the VM, and we perform the handling of EOIed
1720 * interrupts on the exit path (see vgic_process_maintenance).
1721 */
1722 return IRQ_HANDLED;
1723}
1724
6c3d63c9
MZ
1725static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu,
1726 int virt_irq)
1727{
1728 if (virt_irq < VGIC_NR_PRIVATE_IRQS)
1729 return &vcpu->arch.vgic_cpu.irq_phys_map_list;
1730 else
1731 return &vcpu->kvm->arch.vgic.irq_phys_map_list;
1732}
1733
1734/**
1735 * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ
1736 * @vcpu: The VCPU pointer
1737 * @virt_irq: The virtual irq number
1738 * @irq: The Linux IRQ number
1739 *
1740 * Establish a mapping between a guest visible irq (@virt_irq) and a
1741 * Linux irq (@irq). On injection, @virt_irq will be associated with
1742 * the physical interrupt represented by @irq. This mapping can be
1743 * established multiple times as long as the parameters are the same.
1744 *
1745 * Returns a valid pointer on success, and an error pointer otherwise
1746 */
1747struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu,
1748 int virt_irq, int irq)
1749{
1750 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1751 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1752 struct irq_phys_map *map;
1753 struct irq_phys_map_entry *entry;
1754 struct irq_desc *desc;
1755 struct irq_data *data;
1756 int phys_irq;
1757
1758 desc = irq_to_desc(irq);
1759 if (!desc) {
1760 kvm_err("%s: no interrupt descriptor\n", __func__);
1761 return ERR_PTR(-EINVAL);
1762 }
1763
1764 data = irq_desc_get_irq_data(desc);
1765 while (data->parent_data)
1766 data = data->parent_data;
1767
1768 phys_irq = data->hwirq;
1769
1770 /* Create a new mapping */
1771 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1772 if (!entry)
1773 return ERR_PTR(-ENOMEM);
1774
1775 spin_lock(&dist->irq_phys_map_lock);
1776
1777 /* Try to match an existing mapping */
1778 map = vgic_irq_map_search(vcpu, virt_irq);
1779 if (map) {
1780 /* Make sure this mapping matches */
1781 if (map->phys_irq != phys_irq ||
1782 map->irq != irq)
1783 map = ERR_PTR(-EINVAL);
1784
1785 /* Found an existing, valid mapping */
1786 goto out;
1787 }
1788
1789 map = &entry->map;
1790 map->virt_irq = virt_irq;
1791 map->phys_irq = phys_irq;
1792 map->irq = irq;
1793
1794 list_add_tail_rcu(&entry->entry, root);
1795
1796out:
1797 spin_unlock(&dist->irq_phys_map_lock);
1798 /* If we've found a hit in the existing list, free the useless
1799 * entry */
1800 if (IS_ERR(map) || map != &entry->map)
1801 kfree(entry);
1802 return map;
1803}
1804
1805static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu,
1806 int virt_irq)
1807{
1808 struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq);
1809 struct irq_phys_map_entry *entry;
1810 struct irq_phys_map *map;
1811
1812 rcu_read_lock();
1813
1814 list_for_each_entry_rcu(entry, root, entry) {
1815 map = &entry->map;
1816 if (map->virt_irq == virt_irq) {
1817 rcu_read_unlock();
1818 return map;
1819 }
1820 }
1821
1822 rcu_read_unlock();
1823
1824 return NULL;
1825}
1826
1827static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu)
1828{
1829 struct irq_phys_map_entry *entry;
1830
1831 entry = container_of(rcu, struct irq_phys_map_entry, rcu);
1832 kfree(entry);
1833}
1834
6e84e0e0
MZ
1835/**
1836 * kvm_vgic_get_phys_irq_active - Return the active state of a mapped IRQ
1837 *
1838 * Return the logical active state of a mapped interrupt. This doesn't
1839 * necessarily reflects the current HW state.
1840 */
1841bool kvm_vgic_get_phys_irq_active(struct irq_phys_map *map)
1842{
1843 BUG_ON(!map);
1844 return map->active;
1845}
1846
1847/**
1848 * kvm_vgic_set_phys_irq_active - Set the active state of a mapped IRQ
1849 *
1850 * Set the logical active state of a mapped interrupt. This doesn't
1851 * immediately affects the HW state.
1852 */
1853void kvm_vgic_set_phys_irq_active(struct irq_phys_map *map, bool active)
1854{
1855 BUG_ON(!map);
1856 map->active = active;
1857}
1858
6c3d63c9
MZ
1859/**
1860 * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping
1861 * @vcpu: The VCPU pointer
1862 * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq
1863 *
1864 * Remove an existing mapping between virtual and physical interrupts.
1865 */
1866int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map)
1867{
1868 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
1869 struct irq_phys_map_entry *entry;
1870 struct list_head *root;
1871
1872 if (!map)
1873 return -EINVAL;
1874
1875 root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq);
1876
1877 spin_lock(&dist->irq_phys_map_lock);
1878
1879 list_for_each_entry(entry, root, entry) {
1880 if (&entry->map == map) {
1881 list_del_rcu(&entry->entry);
1882 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1883 break;
1884 }
1885 }
1886
1887 spin_unlock(&dist->irq_phys_map_lock);
1888
1889 return 0;
1890}
1891
1892static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root)
1893{
1894 struct vgic_dist *dist = &kvm->arch.vgic;
1895 struct irq_phys_map_entry *entry;
1896
1897 spin_lock(&dist->irq_phys_map_lock);
1898
1899 list_for_each_entry(entry, root, entry) {
1900 list_del_rcu(&entry->entry);
1901 call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu);
1902 }
1903
1904 spin_unlock(&dist->irq_phys_map_lock);
1905}
1906
c1bfb577
MZ
1907void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu)
1908{
1909 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1910
1911 kfree(vgic_cpu->pending_shared);
47a98b15
CD
1912 kfree(vgic_cpu->active_shared);
1913 kfree(vgic_cpu->pend_act_shared);
c1bfb577 1914 kfree(vgic_cpu->vgic_irq_lr_map);
6c3d63c9 1915 vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list);
c1bfb577 1916 vgic_cpu->pending_shared = NULL;
47a98b15
CD
1917 vgic_cpu->active_shared = NULL;
1918 vgic_cpu->pend_act_shared = NULL;
c1bfb577
MZ
1919 vgic_cpu->vgic_irq_lr_map = NULL;
1920}
1921
1922static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs)
1923{
1924 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1925
1926 int sz = (nr_irqs - VGIC_NR_PRIVATE_IRQS) / 8;
1927 vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL);
47a98b15
CD
1928 vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL);
1929 vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL);
6d3cfbe2 1930 vgic_cpu->vgic_irq_lr_map = kmalloc(nr_irqs, GFP_KERNEL);
c1bfb577 1931
47a98b15
CD
1932 if (!vgic_cpu->pending_shared
1933 || !vgic_cpu->active_shared
1934 || !vgic_cpu->pend_act_shared
1935 || !vgic_cpu->vgic_irq_lr_map) {
c1bfb577
MZ
1936 kvm_vgic_vcpu_destroy(vcpu);
1937 return -ENOMEM;
1938 }
1939
6d3cfbe2 1940 memset(vgic_cpu->vgic_irq_lr_map, LR_EMPTY, nr_irqs);
01ac5e34
MZ
1941
1942 /*
ca85f623
MZ
1943 * Store the number of LRs per vcpu, so we don't have to go
1944 * all the way to the distributor structure to find out. Only
1945 * assembly code should use this one.
01ac5e34 1946 */
8f186d52 1947 vgic_cpu->nr_lr = vgic->nr_lr;
01ac5e34 1948
6d3cfbe2 1949 return 0;
01ac5e34
MZ
1950}
1951
6c3d63c9
MZ
1952/**
1953 * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage
1954 *
1955 * No memory allocation should be performed here, only static init.
1956 */
1957void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu)
1958{
1959 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
1960 INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list);
1961}
1962
3caa2d8c
AP
1963/**
1964 * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW
1965 *
1966 * The host's GIC naturally limits the maximum amount of VCPUs a guest
1967 * can use.
1968 */
1969int kvm_vgic_get_max_vcpus(void)
1970{
1971 return vgic->max_gic_vcpus;
1972}
1973
c1bfb577
MZ
1974void kvm_vgic_destroy(struct kvm *kvm)
1975{
1976 struct vgic_dist *dist = &kvm->arch.vgic;
1977 struct kvm_vcpu *vcpu;
1978 int i;
1979
1980 kvm_for_each_vcpu(i, vcpu, kvm)
1981 kvm_vgic_vcpu_destroy(vcpu);
1982
1983 vgic_free_bitmap(&dist->irq_enabled);
1984 vgic_free_bitmap(&dist->irq_level);
1985 vgic_free_bitmap(&dist->irq_pending);
1986 vgic_free_bitmap(&dist->irq_soft_pend);
1987 vgic_free_bitmap(&dist->irq_queued);
1988 vgic_free_bitmap(&dist->irq_cfg);
1989 vgic_free_bytemap(&dist->irq_priority);
1990 if (dist->irq_spi_target) {
1991 for (i = 0; i < dist->nr_cpus; i++)
1992 vgic_free_bitmap(&dist->irq_spi_target[i]);
1993 }
1994 kfree(dist->irq_sgi_sources);
1995 kfree(dist->irq_spi_cpu);
a0675c25 1996 kfree(dist->irq_spi_mpidr);
c1bfb577
MZ
1997 kfree(dist->irq_spi_target);
1998 kfree(dist->irq_pending_on_cpu);
47a98b15 1999 kfree(dist->irq_active_on_cpu);
6c3d63c9 2000 vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list);
c1bfb577
MZ
2001 dist->irq_sgi_sources = NULL;
2002 dist->irq_spi_cpu = NULL;
2003 dist->irq_spi_target = NULL;
2004 dist->irq_pending_on_cpu = NULL;
47a98b15 2005 dist->irq_active_on_cpu = NULL;
1f57be28 2006 dist->nr_cpus = 0;
c1bfb577
MZ
2007}
2008
2009/*
2010 * Allocate and initialize the various data structures. Must be called
2011 * with kvm->lock held!
2012 */
83215812 2013int vgic_init(struct kvm *kvm)
c1bfb577
MZ
2014{
2015 struct vgic_dist *dist = &kvm->arch.vgic;
2016 struct kvm_vcpu *vcpu;
2017 int nr_cpus, nr_irqs;
6d3cfbe2 2018 int ret, i, vcpu_id;
c1bfb577 2019
1f57be28 2020 if (vgic_initialized(kvm))
4956f2bc
MZ
2021 return 0;
2022
2023 nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus);
2024 if (!nr_cpus) /* No vcpus? Can't be good... */
66b030e4 2025 return -ENODEV;
5fb66da6 2026
4956f2bc
MZ
2027 /*
2028 * If nobody configured the number of interrupts, use the
2029 * legacy one.
2030 */
5fb66da6
MZ
2031 if (!dist->nr_irqs)
2032 dist->nr_irqs = VGIC_NR_IRQS_LEGACY;
2033
2034 nr_irqs = dist->nr_irqs;
c1bfb577
MZ
2035
2036 ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs);
2037 ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs);
2038 ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs);
2039 ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs);
2040 ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs);
47a98b15 2041 ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs);
c1bfb577
MZ
2042 ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs);
2043 ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs);
2044
2045 if (ret)
2046 goto out;
2047
2048 dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL);
2049 dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL);
2050 dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus,
2051 GFP_KERNEL);
2052 dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2053 GFP_KERNEL);
47a98b15
CD
2054 dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long),
2055 GFP_KERNEL);
c1bfb577
MZ
2056 if (!dist->irq_sgi_sources ||
2057 !dist->irq_spi_cpu ||
2058 !dist->irq_spi_target ||
47a98b15
CD
2059 !dist->irq_pending_on_cpu ||
2060 !dist->irq_active_on_cpu) {
c1bfb577
MZ
2061 ret = -ENOMEM;
2062 goto out;
2063 }
2064
2065 for (i = 0; i < nr_cpus; i++)
2066 ret |= vgic_init_bitmap(&dist->irq_spi_target[i],
2067 nr_cpus, nr_irqs);
2068
2069 if (ret)
2070 goto out;
2071
b26e5fda
AP
2072 ret = kvm->arch.vgic.vm_ops.init_model(kvm);
2073 if (ret)
2074 goto out;
6d3cfbe2
PM
2075
2076 kvm_for_each_vcpu(vcpu_id, vcpu, kvm) {
c1bfb577
MZ
2077 ret = vgic_vcpu_init_maps(vcpu, nr_irqs);
2078 if (ret) {
2079 kvm_err("VGIC: Failed to allocate vcpu memory\n");
2080 break;
2081 }
c1bfb577 2082
6d3cfbe2
PM
2083 for (i = 0; i < dist->nr_irqs; i++) {
2084 if (i < VGIC_NR_PPIS)
2085 vgic_bitmap_set_irq_val(&dist->irq_enabled,
2086 vcpu->vcpu_id, i, 1);
2087 if (i < VGIC_NR_PRIVATE_IRQS)
2088 vgic_bitmap_set_irq_val(&dist->irq_cfg,
2089 vcpu->vcpu_id, i,
2090 VGIC_CFG_EDGE);
2091 }
2092
2093 vgic_enable(vcpu);
2094 }
4956f2bc 2095
c1bfb577
MZ
2096out:
2097 if (ret)
2098 kvm_vgic_destroy(kvm);
2099
2100 return ret;
2101}
2102
b26e5fda
AP
2103static int init_vgic_model(struct kvm *kvm, int type)
2104{
2105 switch (type) {
2106 case KVM_DEV_TYPE_ARM_VGIC_V2:
2107 vgic_v2_init_emulation(kvm);
2108 break;
b5d84ff6
AP
2109#ifdef CONFIG_ARM_GIC_V3
2110 case KVM_DEV_TYPE_ARM_VGIC_V3:
2111 vgic_v3_init_emulation(kvm);
2112 break;
2113#endif
b26e5fda
AP
2114 default:
2115 return -ENODEV;
2116 }
2117
3caa2d8c
AP
2118 if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus)
2119 return -E2BIG;
2120
b26e5fda
AP
2121 return 0;
2122}
2123
6c3d63c9
MZ
2124/**
2125 * kvm_vgic_early_init - Earliest possible vgic initialization stage
2126 *
2127 * No memory allocation should be performed here, only static init.
2128 */
2129void kvm_vgic_early_init(struct kvm *kvm)
2130{
2131 spin_lock_init(&kvm->arch.vgic.lock);
2132 spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock);
2133 INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list);
2134}
2135
59892136 2136int kvm_vgic_create(struct kvm *kvm, u32 type)
01ac5e34 2137{
6b50f540 2138 int i, vcpu_lock_idx = -1, ret;
7330672b 2139 struct kvm_vcpu *vcpu;
01ac5e34
MZ
2140
2141 mutex_lock(&kvm->lock);
2142
4ce7ebdf 2143 if (irqchip_in_kernel(kvm)) {
01ac5e34
MZ
2144 ret = -EEXIST;
2145 goto out;
2146 }
2147
b5d84ff6
AP
2148 /*
2149 * This function is also called by the KVM_CREATE_IRQCHIP handler,
2150 * which had no chance yet to check the availability of the GICv2
2151 * emulation. So check this here again. KVM_CREATE_DEVICE does
2152 * the proper checks already.
2153 */
b52104e5
WY
2154 if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) {
2155 ret = -ENODEV;
2156 goto out;
2157 }
b5d84ff6 2158
7330672b
CD
2159 /*
2160 * Any time a vcpu is run, vcpu_load is called which tries to grab the
2161 * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure
2162 * that no other VCPUs are run while we create the vgic.
2163 */
6b50f540 2164 ret = -EBUSY;
7330672b
CD
2165 kvm_for_each_vcpu(i, vcpu, kvm) {
2166 if (!mutex_trylock(&vcpu->mutex))
2167 goto out_unlock;
2168 vcpu_lock_idx = i;
2169 }
2170
2171 kvm_for_each_vcpu(i, vcpu, kvm) {
6b50f540 2172 if (vcpu->arch.has_run_once)
7330672b 2173 goto out_unlock;
7330672b 2174 }
6b50f540 2175 ret = 0;
7330672b 2176
b26e5fda
AP
2177 ret = init_vgic_model(kvm, type);
2178 if (ret)
2179 goto out_unlock;
2180
f982cf4e 2181 kvm->arch.vgic.in_kernel = true;
59892136 2182 kvm->arch.vgic.vgic_model = type;
8f186d52 2183 kvm->arch.vgic.vctrl_base = vgic->vctrl_base;
01ac5e34
MZ
2184 kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF;
2185 kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF;
a0675c25 2186 kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF;
01ac5e34 2187
7330672b
CD
2188out_unlock:
2189 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
2190 vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
2191 mutex_unlock(&vcpu->mutex);
2192 }
2193
01ac5e34
MZ
2194out:
2195 mutex_unlock(&kvm->lock);
2196 return ret;
2197}
2198
1fa451bc 2199static int vgic_ioaddr_overlap(struct kvm *kvm)
330690cd
CD
2200{
2201 phys_addr_t dist = kvm->arch.vgic.vgic_dist_base;
2202 phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base;
2203
2204 if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu))
2205 return 0;
2206 if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) ||
2207 (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist))
2208 return -EBUSY;
2209 return 0;
2210}
2211
2212static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr,
2213 phys_addr_t addr, phys_addr_t size)
2214{
2215 int ret;
2216
ce01e4e8
CD
2217 if (addr & ~KVM_PHYS_MASK)
2218 return -E2BIG;
2219
2220 if (addr & (SZ_4K - 1))
2221 return -EINVAL;
2222
330690cd
CD
2223 if (!IS_VGIC_ADDR_UNDEF(*ioaddr))
2224 return -EEXIST;
2225 if (addr + size < addr)
2226 return -EINVAL;
2227
30c21170 2228 *ioaddr = addr;
330690cd
CD
2229 ret = vgic_ioaddr_overlap(kvm);
2230 if (ret)
30c21170
HW
2231 *ioaddr = VGIC_ADDR_UNDEF;
2232
330690cd
CD
2233 return ret;
2234}
2235
ce01e4e8
CD
2236/**
2237 * kvm_vgic_addr - set or get vgic VM base addresses
2238 * @kvm: pointer to the vm struct
ac3d3735 2239 * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX
ce01e4e8
CD
2240 * @addr: pointer to address value
2241 * @write: if true set the address in the VM address space, if false read the
2242 * address
2243 *
2244 * Set or get the vgic base addresses for the distributor and the virtual CPU
2245 * interface in the VM physical address space. These addresses are properties
2246 * of the emulated core/SoC and therefore user space initially knows this
2247 * information.
2248 */
2249int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write)
330690cd
CD
2250{
2251 int r = 0;
2252 struct vgic_dist *vgic = &kvm->arch.vgic;
ac3d3735
AP
2253 int type_needed;
2254 phys_addr_t *addr_ptr, block_size;
4fa96afd 2255 phys_addr_t alignment;
330690cd 2256
330690cd
CD
2257 mutex_lock(&kvm->lock);
2258 switch (type) {
2259 case KVM_VGIC_V2_ADDR_TYPE_DIST:
ac3d3735
AP
2260 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2261 addr_ptr = &vgic->vgic_dist_base;
2262 block_size = KVM_VGIC_V2_DIST_SIZE;
4fa96afd 2263 alignment = SZ_4K;
330690cd
CD
2264 break;
2265 case KVM_VGIC_V2_ADDR_TYPE_CPU:
ac3d3735
AP
2266 type_needed = KVM_DEV_TYPE_ARM_VGIC_V2;
2267 addr_ptr = &vgic->vgic_cpu_base;
2268 block_size = KVM_VGIC_V2_CPU_SIZE;
4fa96afd 2269 alignment = SZ_4K;
330690cd 2270 break;
ac3d3735
AP
2271#ifdef CONFIG_ARM_GIC_V3
2272 case KVM_VGIC_V3_ADDR_TYPE_DIST:
2273 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2274 addr_ptr = &vgic->vgic_dist_base;
2275 block_size = KVM_VGIC_V3_DIST_SIZE;
4fa96afd 2276 alignment = SZ_64K;
ac3d3735
AP
2277 break;
2278 case KVM_VGIC_V3_ADDR_TYPE_REDIST:
2279 type_needed = KVM_DEV_TYPE_ARM_VGIC_V3;
2280 addr_ptr = &vgic->vgic_redist_base;
2281 block_size = KVM_VGIC_V3_REDIST_SIZE;
4fa96afd 2282 alignment = SZ_64K;
ac3d3735
AP
2283 break;
2284#endif
330690cd
CD
2285 default:
2286 r = -ENODEV;
ac3d3735
AP
2287 goto out;
2288 }
2289
2290 if (vgic->vgic_model != type_needed) {
2291 r = -ENODEV;
2292 goto out;
330690cd
CD
2293 }
2294
4fa96afd
AP
2295 if (write) {
2296 if (!IS_ALIGNED(*addr, alignment))
2297 r = -EINVAL;
2298 else
2299 r = vgic_ioaddr_assign(kvm, addr_ptr, *addr,
2300 block_size);
2301 } else {
ac3d3735 2302 *addr = *addr_ptr;
4fa96afd 2303 }
ac3d3735
AP
2304
2305out:
330690cd
CD
2306 mutex_unlock(&kvm->lock);
2307 return r;
2308}
7330672b 2309
83215812 2310int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 2311{
ce01e4e8
CD
2312 int r;
2313
2314 switch (attr->group) {
2315 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2316 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2317 u64 addr;
2318 unsigned long type = (unsigned long)attr->attr;
2319
2320 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2321 return -EFAULT;
2322
2323 r = kvm_vgic_addr(dev->kvm, type, &addr, true);
2324 return (r == -ENODEV) ? -ENXIO : r;
2325 }
a98f26f1
MZ
2326 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2327 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2328 u32 val;
2329 int ret = 0;
2330
2331 if (get_user(val, uaddr))
2332 return -EFAULT;
2333
2334 /*
2335 * We require:
2336 * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs
2337 * - at most 1024 interrupts
2338 * - a multiple of 32 interrupts
2339 */
2340 if (val < (VGIC_NR_PRIVATE_IRQS + 32) ||
2341 val > VGIC_MAX_IRQS ||
2342 (val & 31))
2343 return -EINVAL;
2344
2345 mutex_lock(&dev->kvm->lock);
2346
c52edf5f 2347 if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs)
a98f26f1
MZ
2348 ret = -EBUSY;
2349 else
2350 dev->kvm->arch.vgic.nr_irqs = val;
2351
2352 mutex_unlock(&dev->kvm->lock);
2353
2354 return ret;
2355 }
065c0034
EA
2356 case KVM_DEV_ARM_VGIC_GRP_CTRL: {
2357 switch (attr->attr) {
2358 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2359 r = vgic_init(dev->kvm);
2360 return r;
2361 }
2362 break;
2363 }
ce01e4e8
CD
2364 }
2365
7330672b
CD
2366 return -ENXIO;
2367}
2368
83215812 2369int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
7330672b 2370{
ce01e4e8
CD
2371 int r = -ENXIO;
2372
2373 switch (attr->group) {
2374 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2375 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2376 u64 addr;
2377 unsigned long type = (unsigned long)attr->attr;
2378
2379 r = kvm_vgic_addr(dev->kvm, type, &addr, false);
2380 if (r)
2381 return (r == -ENODEV) ? -ENXIO : r;
2382
2383 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2384 return -EFAULT;
c07a0191
CD
2385 break;
2386 }
b60da146
AP
2387 case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: {
2388 u32 __user *uaddr = (u32 __user *)(long)attr->addr;
2389
2390 r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr);
2391 break;
2392 }
2393
2394 }
2395
2396 return r;
2397}
2398
cf50a1eb 2399int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset)
c07a0191 2400{
9f199d0a 2401 if (vgic_find_range(ranges, 4, offset))
c07a0191
CD
2402 return 0;
2403 else
2404 return -ENXIO;
2405}
2406
c06a841b
WD
2407static void vgic_init_maintenance_interrupt(void *info)
2408{
2409 enable_percpu_irq(vgic->maint_irq, 0);
2410}
2411
2412static int vgic_cpu_notify(struct notifier_block *self,
2413 unsigned long action, void *cpu)
2414{
2415 switch (action) {
2416 case CPU_STARTING:
2417 case CPU_STARTING_FROZEN:
2418 vgic_init_maintenance_interrupt(NULL);
2419 break;
2420 case CPU_DYING:
2421 case CPU_DYING_FROZEN:
2422 disable_percpu_irq(vgic->maint_irq);
2423 break;
2424 }
2425
2426 return NOTIFY_OK;
2427}
2428
2429static struct notifier_block vgic_cpu_nb = {
2430 .notifier_call = vgic_cpu_notify,
2431};
2432
2433static const struct of_device_id vgic_ids[] = {
0f372475
MR
2434 { .compatible = "arm,cortex-a15-gic", .data = vgic_v2_probe, },
2435 { .compatible = "arm,cortex-a7-gic", .data = vgic_v2_probe, },
2436 { .compatible = "arm,gic-400", .data = vgic_v2_probe, },
2437 { .compatible = "arm,gic-v3", .data = vgic_v3_probe, },
c06a841b
WD
2438 {},
2439};
2440
2441int kvm_vgic_hyp_init(void)
2442{
2443 const struct of_device_id *matched_id;
a875dafc
CD
2444 const int (*vgic_probe)(struct device_node *,const struct vgic_ops **,
2445 const struct vgic_params **);
c06a841b
WD
2446 struct device_node *vgic_node;
2447 int ret;
2448
2449 vgic_node = of_find_matching_node_and_match(NULL,
2450 vgic_ids, &matched_id);
2451 if (!vgic_node) {
2452 kvm_err("error: no compatible GIC node found\n");
2453 return -ENODEV;
2454 }
2455
2456 vgic_probe = matched_id->data;
2457 ret = vgic_probe(vgic_node, &vgic_ops, &vgic);
2458 if (ret)
2459 return ret;
2460
2461 ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler,
2462 "vgic", kvm_get_running_vcpus());
2463 if (ret) {
2464 kvm_err("Cannot register interrupt %d\n", vgic->maint_irq);
2465 return ret;
2466 }
2467
2468 ret = __register_cpu_notifier(&vgic_cpu_nb);
2469 if (ret) {
2470 kvm_err("Cannot register vgic CPU notifier\n");
2471 goto out_free_irq;
2472 }
2473
c06a841b
WD
2474 on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1);
2475
ea2f83a7 2476 return 0;
c06a841b
WD
2477
2478out_free_irq:
2479 free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus());
2480 return ret;
2481}
174178fe
EA
2482
2483int kvm_irq_map_gsi(struct kvm *kvm,
2484 struct kvm_kernel_irq_routing_entry *entries,
2485 int gsi)
2486{
0b3289eb 2487 return 0;
174178fe
EA
2488}
2489
2490int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin)
2491{
2492 return pin;
2493}
2494
2495int kvm_set_irq(struct kvm *kvm, int irq_source_id,
2496 u32 irq, int level, bool line_status)
2497{
2498 unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS;
2499
2500 trace_kvm_set_irq(irq, level, irq_source_id);
2501
2502 BUG_ON(!vgic_initialized(kvm));
2503
174178fe 2504 return kvm_vgic_inject_irq(kvm, 0, spi, level);
174178fe
EA
2505}
2506
2507/* MSI not implemented yet */
2508int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e,
2509 struct kvm *kvm, int irq_source_id,
2510 int level, bool line_status)
2511{
2512 return 0;
2513}
This page took 0.244151 seconds and 5 git commands to generate.