parisc/irq: Use access helper irq_data_get_affinity_mask()
[deliverable/linux.git] / arch / sparc / kernel / irq_64.c
... / ...
CommitLineData
1/* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8#include <linux/sched.h>
9#include <linux/linkage.h>
10#include <linux/ptrace.h>
11#include <linux/errno.h>
12#include <linux/kernel_stat.h>
13#include <linux/signal.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/init.h>
19#include <linux/delay.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/ftrace.h>
23#include <linux/irq.h>
24#include <linux/kmemleak.h>
25
26#include <asm/ptrace.h>
27#include <asm/processor.h>
28#include <linux/atomic.h>
29#include <asm/irq.h>
30#include <asm/io.h>
31#include <asm/iommu.h>
32#include <asm/upa.h>
33#include <asm/oplib.h>
34#include <asm/prom.h>
35#include <asm/timer.h>
36#include <asm/smp.h>
37#include <asm/starfire.h>
38#include <asm/uaccess.h>
39#include <asm/cache.h>
40#include <asm/cpudata.h>
41#include <asm/auxio.h>
42#include <asm/head.h>
43#include <asm/hypervisor.h>
44#include <asm/cacheflush.h>
45
46#include "entry.h"
47#include "cpumap.h"
48#include "kstack.h"
49
50struct ino_bucket *ivector_table;
51unsigned long ivector_table_pa;
52
53/* On several sun4u processors, it is illegal to mix bypass and
54 * non-bypass accesses. Therefore we access all INO buckets
55 * using bypass accesses only.
56 */
57static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
58{
59 unsigned long ret;
60
61 __asm__ __volatile__("ldxa [%1] %2, %0"
62 : "=&r" (ret)
63 : "r" (bucket_pa +
64 offsetof(struct ino_bucket,
65 __irq_chain_pa)),
66 "i" (ASI_PHYS_USE_EC));
67
68 return ret;
69}
70
71static void bucket_clear_chain_pa(unsigned long bucket_pa)
72{
73 __asm__ __volatile__("stxa %%g0, [%0] %1"
74 : /* no outputs */
75 : "r" (bucket_pa +
76 offsetof(struct ino_bucket,
77 __irq_chain_pa)),
78 "i" (ASI_PHYS_USE_EC));
79}
80
81static unsigned int bucket_get_irq(unsigned long bucket_pa)
82{
83 unsigned int ret;
84
85 __asm__ __volatile__("lduwa [%1] %2, %0"
86 : "=&r" (ret)
87 : "r" (bucket_pa +
88 offsetof(struct ino_bucket,
89 __irq)),
90 "i" (ASI_PHYS_USE_EC));
91
92 return ret;
93}
94
95static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
96{
97 __asm__ __volatile__("stwa %0, [%1] %2"
98 : /* no outputs */
99 : "r" (irq),
100 "r" (bucket_pa +
101 offsetof(struct ino_bucket,
102 __irq)),
103 "i" (ASI_PHYS_USE_EC));
104}
105
106#define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
107
108static unsigned long hvirq_major __initdata;
109static int __init early_hvirq_major(char *p)
110{
111 int rc = kstrtoul(p, 10, &hvirq_major);
112
113 return rc;
114}
115early_param("hvirq", early_hvirq_major);
116
117static int hv_irq_version;
118
119/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
120 * based interfaces, but:
121 *
122 * 1) Several OSs, Solaris and Linux included, use them even when only
123 * negotiating version 1.0 (or failing to negotiate at all). So the
124 * hypervisor has a workaround that provides the VIRQ interfaces even
125 * when only verion 1.0 of the API is in use.
126 *
127 * 2) Second, and more importantly, with major version 2.0 these VIRQ
128 * interfaces only were actually hooked up for LDC interrupts, even
129 * though the Hypervisor specification clearly stated:
130 *
131 * The new interrupt API functions will be available to a guest
132 * when it negotiates version 2.0 in the interrupt API group 0x2. When
133 * a guest negotiates version 2.0, all interrupt sources will only
134 * support using the cookie interface, and any attempt to use the
135 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
136 * ENOTSUPPORTED error being returned.
137 *
138 * with an emphasis on "all interrupt sources".
139 *
140 * To correct this, major version 3.0 was created which does actually
141 * support VIRQs for all interrupt sources (not just LDC devices). So
142 * if we want to move completely over the cookie based VIRQs we must
143 * negotiate major version 3.0 or later of HV_GRP_INTR.
144 */
145static bool sun4v_cookie_only_virqs(void)
146{
147 if (hv_irq_version >= 3)
148 return true;
149 return false;
150}
151
152static void __init irq_init_hv(void)
153{
154 unsigned long hv_error, major, minor = 0;
155
156 if (tlb_type != hypervisor)
157 return;
158
159 if (hvirq_major)
160 major = hvirq_major;
161 else
162 major = 3;
163
164 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165 if (!hv_error)
166 hv_irq_version = major;
167 else
168 hv_irq_version = 1;
169
170 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171 hv_irq_version,
172 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
173}
174
175/* This function is for the timer interrupt.*/
176int __init arch_probe_nr_irqs(void)
177{
178 return 1;
179}
180
181#define DEFAULT_NUM_IVECS (0xfffU)
182static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183#define NUM_IVECS (nr_ivec)
184
185static unsigned int __init size_nr_ivec(void)
186{
187 if (tlb_type == hypervisor) {
188 switch (sun4v_chip_type) {
189 /* Athena's devhandle|devino is large.*/
190 case SUN4V_CHIP_SPARC64X:
191 nr_ivec = 0xffff;
192 break;
193 }
194 }
195 return nr_ivec;
196}
197
198struct irq_handler_data {
199 union {
200 struct {
201 unsigned int dev_handle;
202 unsigned int dev_ino;
203 };
204 unsigned long sysino;
205 };
206 struct ino_bucket bucket;
207 unsigned long iclr;
208 unsigned long imap;
209};
210
211static inline unsigned int irq_data_to_handle(struct irq_data *data)
212{
213 struct irq_handler_data *ihd = data->handler_data;
214
215 return ihd->dev_handle;
216}
217
218static inline unsigned int irq_data_to_ino(struct irq_data *data)
219{
220 struct irq_handler_data *ihd = data->handler_data;
221
222 return ihd->dev_ino;
223}
224
225static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226{
227 struct irq_handler_data *ihd = data->handler_data;
228
229 return ihd->sysino;
230}
231
232void irq_free(unsigned int irq)
233{
234 void *data = irq_get_handler_data(irq);
235
236 kfree(data);
237 irq_set_handler_data(irq, NULL);
238 irq_free_descs(irq, 1);
239}
240
241unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242{
243 int irq;
244
245 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL);
246 if (irq <= 0)
247 goto out;
248
249 return irq;
250out:
251 return 0;
252}
253
254static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255{
256 unsigned long hv_err, cookie;
257 struct ino_bucket *bucket;
258 unsigned int irq = 0U;
259
260 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261 if (hv_err) {
262 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263 goto out;
264 }
265
266 if (cookie & ((1UL << 63UL))) {
267 cookie = ~cookie;
268 bucket = (struct ino_bucket *) __va(cookie);
269 irq = bucket->__irq;
270 }
271out:
272 return irq;
273}
274
275static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276{
277 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278 struct ino_bucket *bucket;
279 unsigned int irq;
280
281 bucket = &ivector_table[sysino];
282 irq = bucket_get_irq(__pa(bucket));
283
284 return irq;
285}
286
287void ack_bad_irq(unsigned int irq)
288{
289 pr_crit("BAD IRQ ack %d\n", irq);
290}
291
292void irq_install_pre_handler(int irq,
293 void (*func)(unsigned int, void *, void *),
294 void *arg1, void *arg2)
295{
296 pr_warn("IRQ pre handler NOT supported.\n");
297}
298
299/*
300 * /proc/interrupts printing:
301 */
302int arch_show_interrupts(struct seq_file *p, int prec)
303{
304 int j;
305
306 seq_printf(p, "NMI: ");
307 for_each_online_cpu(j)
308 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
309 seq_printf(p, " Non-maskable interrupts\n");
310 return 0;
311}
312
313static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314{
315 unsigned int tid;
316
317 if (this_is_starfire) {
318 tid = starfire_translate(imap, cpuid);
319 tid <<= IMAP_TID_SHIFT;
320 tid &= IMAP_TID_UPA;
321 } else {
322 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323 unsigned long ver;
324
325 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
326 if ((ver >> 32UL) == __JALAPENO_ID ||
327 (ver >> 32UL) == __SERRANO_ID) {
328 tid = cpuid << IMAP_TID_SHIFT;
329 tid &= IMAP_TID_JBUS;
330 } else {
331 unsigned int a = cpuid & 0x1f;
332 unsigned int n = (cpuid >> 5) & 0x1f;
333
334 tid = ((a << IMAP_AID_SHIFT) |
335 (n << IMAP_NID_SHIFT));
336 tid &= (IMAP_AID_SAFARI |
337 IMAP_NID_SAFARI);
338 }
339 } else {
340 tid = cpuid << IMAP_TID_SHIFT;
341 tid &= IMAP_TID_UPA;
342 }
343 }
344
345 return tid;
346}
347
348#ifdef CONFIG_SMP
349static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350{
351 cpumask_t mask;
352 int cpuid;
353
354 cpumask_copy(&mask, affinity);
355 if (cpumask_equal(&mask, cpu_online_mask)) {
356 cpuid = map_to_cpu(irq);
357 } else {
358 cpumask_t tmp;
359
360 cpumask_and(&tmp, cpu_online_mask, &mask);
361 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
362 }
363
364 return cpuid;
365}
366#else
367#define irq_choose_cpu(irq, affinity) \
368 real_hard_smp_processor_id()
369#endif
370
371static void sun4u_irq_enable(struct irq_data *data)
372{
373 struct irq_handler_data *handler_data = data->handler_data;
374
375 if (likely(handler_data)) {
376 unsigned long cpuid, imap, val;
377 unsigned int tid;
378
379 cpuid = irq_choose_cpu(data->irq, data->affinity);
380 imap = handler_data->imap;
381
382 tid = sun4u_compute_tid(imap, cpuid);
383
384 val = upa_readq(imap);
385 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
386 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
387 val |= tid | IMAP_VALID;
388 upa_writeq(val, imap);
389 upa_writeq(ICLR_IDLE, handler_data->iclr);
390 }
391}
392
393static int sun4u_set_affinity(struct irq_data *data,
394 const struct cpumask *mask, bool force)
395{
396 struct irq_handler_data *handler_data = data->handler_data;
397
398 if (likely(handler_data)) {
399 unsigned long cpuid, imap, val;
400 unsigned int tid;
401
402 cpuid = irq_choose_cpu(data->irq, mask);
403 imap = handler_data->imap;
404
405 tid = sun4u_compute_tid(imap, cpuid);
406
407 val = upa_readq(imap);
408 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
409 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
410 val |= tid | IMAP_VALID;
411 upa_writeq(val, imap);
412 upa_writeq(ICLR_IDLE, handler_data->iclr);
413 }
414
415 return 0;
416}
417
418/* Don't do anything. The desc->status check for IRQ_DISABLED in
419 * handler_irq() will skip the handler call and that will leave the
420 * interrupt in the sent state. The next ->enable() call will hit the
421 * ICLR register to reset the state machine.
422 *
423 * This scheme is necessary, instead of clearing the Valid bit in the
424 * IMAP register, to handle the case of IMAP registers being shared by
425 * multiple INOs (and thus ICLR registers). Since we use a different
426 * virtual IRQ for each shared IMAP instance, the generic code thinks
427 * there is only one user so it prematurely calls ->disable() on
428 * free_irq().
429 *
430 * We have to provide an explicit ->disable() method instead of using
431 * NULL to get the default. The reason is that if the generic code
432 * sees that, it also hooks up a default ->shutdown method which
433 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
434 */
435static void sun4u_irq_disable(struct irq_data *data)
436{
437}
438
439static void sun4u_irq_eoi(struct irq_data *data)
440{
441 struct irq_handler_data *handler_data = data->handler_data;
442
443 if (likely(handler_data))
444 upa_writeq(ICLR_IDLE, handler_data->iclr);
445}
446
447static void sun4v_irq_enable(struct irq_data *data)
448{
449 unsigned long cpuid = irq_choose_cpu(data->irq, data->affinity);
450 unsigned int ino = irq_data_to_sysino(data);
451 int err;
452
453 err = sun4v_intr_settarget(ino, cpuid);
454 if (err != HV_EOK)
455 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
456 "err(%d)\n", ino, cpuid, err);
457 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
458 if (err != HV_EOK)
459 printk(KERN_ERR "sun4v_intr_setstate(%x): "
460 "err(%d)\n", ino, err);
461 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
462 if (err != HV_EOK)
463 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
464 ino, err);
465}
466
467static int sun4v_set_affinity(struct irq_data *data,
468 const struct cpumask *mask, bool force)
469{
470 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
471 unsigned int ino = irq_data_to_sysino(data);
472 int err;
473
474 err = sun4v_intr_settarget(ino, cpuid);
475 if (err != HV_EOK)
476 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
477 "err(%d)\n", ino, cpuid, err);
478
479 return 0;
480}
481
482static void sun4v_irq_disable(struct irq_data *data)
483{
484 unsigned int ino = irq_data_to_sysino(data);
485 int err;
486
487 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
488 if (err != HV_EOK)
489 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
490 "err(%d)\n", ino, err);
491}
492
493static void sun4v_irq_eoi(struct irq_data *data)
494{
495 unsigned int ino = irq_data_to_sysino(data);
496 int err;
497
498 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
499 if (err != HV_EOK)
500 printk(KERN_ERR "sun4v_intr_setstate(%x): "
501 "err(%d)\n", ino, err);
502}
503
504static void sun4v_virq_enable(struct irq_data *data)
505{
506 unsigned long dev_handle = irq_data_to_handle(data);
507 unsigned long dev_ino = irq_data_to_ino(data);
508 unsigned long cpuid;
509 int err;
510
511 cpuid = irq_choose_cpu(data->irq, data->affinity);
512
513 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
514 if (err != HV_EOK)
515 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
516 "err(%d)\n",
517 dev_handle, dev_ino, cpuid, err);
518 err = sun4v_vintr_set_state(dev_handle, dev_ino,
519 HV_INTR_STATE_IDLE);
520 if (err != HV_EOK)
521 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
522 "HV_INTR_STATE_IDLE): err(%d)\n",
523 dev_handle, dev_ino, err);
524 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
525 HV_INTR_ENABLED);
526 if (err != HV_EOK)
527 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
528 "HV_INTR_ENABLED): err(%d)\n",
529 dev_handle, dev_ino, err);
530}
531
532static int sun4v_virt_set_affinity(struct irq_data *data,
533 const struct cpumask *mask, bool force)
534{
535 unsigned long dev_handle = irq_data_to_handle(data);
536 unsigned long dev_ino = irq_data_to_ino(data);
537 unsigned long cpuid;
538 int err;
539
540 cpuid = irq_choose_cpu(data->irq, mask);
541
542 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
543 if (err != HV_EOK)
544 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
545 "err(%d)\n",
546 dev_handle, dev_ino, cpuid, err);
547
548 return 0;
549}
550
551static void sun4v_virq_disable(struct irq_data *data)
552{
553 unsigned long dev_handle = irq_data_to_handle(data);
554 unsigned long dev_ino = irq_data_to_ino(data);
555 int err;
556
557
558 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
559 HV_INTR_DISABLED);
560 if (err != HV_EOK)
561 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
562 "HV_INTR_DISABLED): err(%d)\n",
563 dev_handle, dev_ino, err);
564}
565
566static void sun4v_virq_eoi(struct irq_data *data)
567{
568 unsigned long dev_handle = irq_data_to_handle(data);
569 unsigned long dev_ino = irq_data_to_ino(data);
570 int err;
571
572 err = sun4v_vintr_set_state(dev_handle, dev_ino,
573 HV_INTR_STATE_IDLE);
574 if (err != HV_EOK)
575 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
576 "HV_INTR_STATE_IDLE): err(%d)\n",
577 dev_handle, dev_ino, err);
578}
579
580static struct irq_chip sun4u_irq = {
581 .name = "sun4u",
582 .irq_enable = sun4u_irq_enable,
583 .irq_disable = sun4u_irq_disable,
584 .irq_eoi = sun4u_irq_eoi,
585 .irq_set_affinity = sun4u_set_affinity,
586 .flags = IRQCHIP_EOI_IF_HANDLED,
587};
588
589static struct irq_chip sun4v_irq = {
590 .name = "sun4v",
591 .irq_enable = sun4v_irq_enable,
592 .irq_disable = sun4v_irq_disable,
593 .irq_eoi = sun4v_irq_eoi,
594 .irq_set_affinity = sun4v_set_affinity,
595 .flags = IRQCHIP_EOI_IF_HANDLED,
596};
597
598static struct irq_chip sun4v_virq = {
599 .name = "vsun4v",
600 .irq_enable = sun4v_virq_enable,
601 .irq_disable = sun4v_virq_disable,
602 .irq_eoi = sun4v_virq_eoi,
603 .irq_set_affinity = sun4v_virt_set_affinity,
604 .flags = IRQCHIP_EOI_IF_HANDLED,
605};
606
607unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
608{
609 struct irq_handler_data *handler_data;
610 struct ino_bucket *bucket;
611 unsigned int irq;
612 int ino;
613
614 BUG_ON(tlb_type == hypervisor);
615
616 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
617 bucket = &ivector_table[ino];
618 irq = bucket_get_irq(__pa(bucket));
619 if (!irq) {
620 irq = irq_alloc(0, ino);
621 bucket_set_irq(__pa(bucket), irq);
622 irq_set_chip_and_handler_name(irq, &sun4u_irq,
623 handle_fasteoi_irq, "IVEC");
624 }
625
626 handler_data = irq_get_handler_data(irq);
627 if (unlikely(handler_data))
628 goto out;
629
630 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
631 if (unlikely(!handler_data)) {
632 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
633 prom_halt();
634 }
635 irq_set_handler_data(irq, handler_data);
636
637 handler_data->imap = imap;
638 handler_data->iclr = iclr;
639
640out:
641 return irq;
642}
643
644static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
645 void (*handler_data_init)(struct irq_handler_data *data,
646 u32 devhandle, unsigned int devino),
647 struct irq_chip *chip)
648{
649 struct irq_handler_data *data;
650 unsigned int irq;
651
652 irq = irq_alloc(devhandle, devino);
653 if (!irq)
654 goto out;
655
656 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
657 if (unlikely(!data)) {
658 pr_err("IRQ handler data allocation failed.\n");
659 irq_free(irq);
660 irq = 0;
661 goto out;
662 }
663
664 irq_set_handler_data(irq, data);
665 handler_data_init(data, devhandle, devino);
666 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
667 data->imap = ~0UL;
668 data->iclr = ~0UL;
669out:
670 return irq;
671}
672
673static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
674 unsigned int devino)
675{
676 struct irq_handler_data *ihd = irq_get_handler_data(irq);
677 unsigned long hv_error, cookie;
678
679 /* handler_irq needs to find the irq. cookie is seen signed in
680 * sun4v_dev_mondo and treated as a non ivector_table delivery.
681 */
682 ihd->bucket.__irq = irq;
683 cookie = ~__pa(&ihd->bucket);
684
685 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
686 if (hv_error)
687 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
688
689 return hv_error;
690}
691
692static void cookie_handler_data(struct irq_handler_data *data,
693 u32 devhandle, unsigned int devino)
694{
695 data->dev_handle = devhandle;
696 data->dev_ino = devino;
697}
698
699static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
700 struct irq_chip *chip)
701{
702 unsigned long hv_error;
703 unsigned int irq;
704
705 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
706
707 hv_error = cookie_assign(irq, devhandle, devino);
708 if (hv_error) {
709 irq_free(irq);
710 irq = 0;
711 }
712
713 return irq;
714}
715
716static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
717{
718 unsigned int irq;
719
720 irq = cookie_exists(devhandle, devino);
721 if (irq)
722 goto out;
723
724 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
725
726out:
727 return irq;
728}
729
730static void sysino_set_bucket(unsigned int irq)
731{
732 struct irq_handler_data *ihd = irq_get_handler_data(irq);
733 struct ino_bucket *bucket;
734 unsigned long sysino;
735
736 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
737 BUG_ON(sysino >= nr_ivec);
738 bucket = &ivector_table[sysino];
739 bucket_set_irq(__pa(bucket), irq);
740}
741
742static void sysino_handler_data(struct irq_handler_data *data,
743 u32 devhandle, unsigned int devino)
744{
745 unsigned long sysino;
746
747 sysino = sun4v_devino_to_sysino(devhandle, devino);
748 data->sysino = sysino;
749}
750
751static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
752 struct irq_chip *chip)
753{
754 unsigned int irq;
755
756 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
757 if (!irq)
758 goto out;
759
760 sysino_set_bucket(irq);
761out:
762 return irq;
763}
764
765static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
766{
767 int irq;
768
769 irq = sysino_exists(devhandle, devino);
770 if (irq)
771 goto out;
772
773 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
774out:
775 return irq;
776}
777
778unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
779{
780 unsigned int irq;
781
782 if (sun4v_cookie_only_virqs())
783 irq = sun4v_build_cookie(devhandle, devino);
784 else
785 irq = sun4v_build_sysino(devhandle, devino);
786
787 return irq;
788}
789
790unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
791{
792 int irq;
793
794 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
795 if (!irq)
796 goto out;
797
798 /* This is borrowed from the original function.
799 */
800 irq_set_status_flags(irq, IRQ_NOAUTOEN);
801
802out:
803 return irq;
804}
805
806void *hardirq_stack[NR_CPUS];
807void *softirq_stack[NR_CPUS];
808
809void __irq_entry handler_irq(int pil, struct pt_regs *regs)
810{
811 unsigned long pstate, bucket_pa;
812 struct pt_regs *old_regs;
813 void *orig_sp;
814
815 clear_softint(1 << pil);
816
817 old_regs = set_irq_regs(regs);
818 irq_enter();
819
820 /* Grab an atomic snapshot of the pending IVECs. */
821 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
822 "wrpr %0, %3, %%pstate\n\t"
823 "ldx [%2], %1\n\t"
824 "stx %%g0, [%2]\n\t"
825 "wrpr %0, 0x0, %%pstate\n\t"
826 : "=&r" (pstate), "=&r" (bucket_pa)
827 : "r" (irq_work_pa(smp_processor_id())),
828 "i" (PSTATE_IE)
829 : "memory");
830
831 orig_sp = set_hardirq_stack();
832
833 while (bucket_pa) {
834 unsigned long next_pa;
835 unsigned int irq;
836
837 next_pa = bucket_get_chain_pa(bucket_pa);
838 irq = bucket_get_irq(bucket_pa);
839 bucket_clear_chain_pa(bucket_pa);
840
841 generic_handle_irq(irq);
842
843 bucket_pa = next_pa;
844 }
845
846 restore_hardirq_stack(orig_sp);
847
848 irq_exit();
849 set_irq_regs(old_regs);
850}
851
852void do_softirq_own_stack(void)
853{
854 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
855
856 sp += THREAD_SIZE - 192 - STACK_BIAS;
857
858 __asm__ __volatile__("mov %%sp, %0\n\t"
859 "mov %1, %%sp"
860 : "=&r" (orig_sp)
861 : "r" (sp));
862 __do_softirq();
863 __asm__ __volatile__("mov %0, %%sp"
864 : : "r" (orig_sp));
865}
866
867#ifdef CONFIG_HOTPLUG_CPU
868void fixup_irqs(void)
869{
870 unsigned int irq;
871
872 for (irq = 0; irq < NR_IRQS; irq++) {
873 struct irq_desc *desc = irq_to_desc(irq);
874 struct irq_data *data;
875 unsigned long flags;
876
877 if (!desc)
878 continue;
879 data = irq_desc_get_irq_data(desc);
880 raw_spin_lock_irqsave(&desc->lock, flags);
881 if (desc->action && !irqd_is_per_cpu(data)) {
882 if (data->chip->irq_set_affinity)
883 data->chip->irq_set_affinity(data,
884 data->affinity,
885 false);
886 }
887 raw_spin_unlock_irqrestore(&desc->lock, flags);
888 }
889
890 tick_ops->disable_irq();
891}
892#endif
893
894struct sun5_timer {
895 u64 count0;
896 u64 limit0;
897 u64 count1;
898 u64 limit1;
899};
900
901static struct sun5_timer *prom_timers;
902static u64 prom_limit0, prom_limit1;
903
904static void map_prom_timers(void)
905{
906 struct device_node *dp;
907 const unsigned int *addr;
908
909 /* PROM timer node hangs out in the top level of device siblings... */
910 dp = of_find_node_by_path("/");
911 dp = dp->child;
912 while (dp) {
913 if (!strcmp(dp->name, "counter-timer"))
914 break;
915 dp = dp->sibling;
916 }
917
918 /* Assume if node is not present, PROM uses different tick mechanism
919 * which we should not care about.
920 */
921 if (!dp) {
922 prom_timers = (struct sun5_timer *) 0;
923 return;
924 }
925
926 /* If PROM is really using this, it must be mapped by him. */
927 addr = of_get_property(dp, "address", NULL);
928 if (!addr) {
929 prom_printf("PROM does not have timer mapped, trying to continue.\n");
930 prom_timers = (struct sun5_timer *) 0;
931 return;
932 }
933 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
934}
935
936static void kill_prom_timer(void)
937{
938 if (!prom_timers)
939 return;
940
941 /* Save them away for later. */
942 prom_limit0 = prom_timers->limit0;
943 prom_limit1 = prom_timers->limit1;
944
945 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
946 * We turn both off here just to be paranoid.
947 */
948 prom_timers->limit0 = 0;
949 prom_timers->limit1 = 0;
950
951 /* Wheee, eat the interrupt packet too... */
952 __asm__ __volatile__(
953" mov 0x40, %%g2\n"
954" ldxa [%%g0] %0, %%g1\n"
955" ldxa [%%g2] %1, %%g1\n"
956" stxa %%g0, [%%g0] %0\n"
957" membar #Sync\n"
958 : /* no outputs */
959 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
960 : "g1", "g2");
961}
962
963void notrace init_irqwork_curcpu(void)
964{
965 int cpu = hard_smp_processor_id();
966
967 trap_block[cpu].irq_worklist_pa = 0UL;
968}
969
970/* Please be very careful with register_one_mondo() and
971 * sun4v_register_mondo_queues().
972 *
973 * On SMP this gets invoked from the CPU trampoline before
974 * the cpu has fully taken over the trap table from OBP,
975 * and it's kernel stack + %g6 thread register state is
976 * not fully cooked yet.
977 *
978 * Therefore you cannot make any OBP calls, not even prom_printf,
979 * from these two routines.
980 */
981static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
982 unsigned long qmask)
983{
984 unsigned long num_entries = (qmask + 1) / 64;
985 unsigned long status;
986
987 status = sun4v_cpu_qconf(type, paddr, num_entries);
988 if (status != HV_EOK) {
989 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
990 "err %lu\n", type, paddr, num_entries, status);
991 prom_halt();
992 }
993}
994
995void notrace sun4v_register_mondo_queues(int this_cpu)
996{
997 struct trap_per_cpu *tb = &trap_block[this_cpu];
998
999 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1000 tb->cpu_mondo_qmask);
1001 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1002 tb->dev_mondo_qmask);
1003 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1004 tb->resum_qmask);
1005 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1006 tb->nonresum_qmask);
1007}
1008
1009/* Each queue region must be a power of 2 multiple of 64 bytes in
1010 * size. The base real address must be aligned to the size of the
1011 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1012 */
1013static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1014{
1015 unsigned long size = PAGE_ALIGN(qmask + 1);
1016 unsigned long order = get_order(size);
1017 unsigned long p;
1018
1019 p = __get_free_pages(GFP_KERNEL, order);
1020 if (!p) {
1021 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1022 prom_halt();
1023 }
1024
1025 *pa_ptr = __pa(p);
1026}
1027
1028static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1029{
1030#ifdef CONFIG_SMP
1031 unsigned long page;
1032
1033 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1034
1035 page = get_zeroed_page(GFP_KERNEL);
1036 if (!page) {
1037 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1038 prom_halt();
1039 }
1040
1041 tb->cpu_mondo_block_pa = __pa(page);
1042 tb->cpu_list_pa = __pa(page + 64);
1043#endif
1044}
1045
1046/* Allocate mondo and error queues for all possible cpus. */
1047static void __init sun4v_init_mondo_queues(void)
1048{
1049 int cpu;
1050
1051 for_each_possible_cpu(cpu) {
1052 struct trap_per_cpu *tb = &trap_block[cpu];
1053
1054 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1055 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1056 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1057 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1058 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1059 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1060 tb->nonresum_qmask);
1061 }
1062}
1063
1064static void __init init_send_mondo_info(void)
1065{
1066 int cpu;
1067
1068 for_each_possible_cpu(cpu) {
1069 struct trap_per_cpu *tb = &trap_block[cpu];
1070
1071 init_cpu_send_mondo_info(tb);
1072 }
1073}
1074
1075static struct irqaction timer_irq_action = {
1076 .name = "timer",
1077};
1078
1079static void __init irq_ivector_init(void)
1080{
1081 unsigned long size, order;
1082 unsigned int ivecs;
1083
1084 /* If we are doing cookie only VIRQs then we do not need the ivector
1085 * table to process interrupts.
1086 */
1087 if (sun4v_cookie_only_virqs())
1088 return;
1089
1090 ivecs = size_nr_ivec();
1091 size = sizeof(struct ino_bucket) * ivecs;
1092 order = get_order(size);
1093 ivector_table = (struct ino_bucket *)
1094 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1095 if (!ivector_table) {
1096 prom_printf("Fatal error, cannot allocate ivector_table\n");
1097 prom_halt();
1098 }
1099 __flush_dcache_range((unsigned long) ivector_table,
1100 ((unsigned long) ivector_table) + size);
1101
1102 ivector_table_pa = __pa(ivector_table);
1103}
1104
1105/* Only invoked on boot processor.*/
1106void __init init_IRQ(void)
1107{
1108 irq_init_hv();
1109 irq_ivector_init();
1110 map_prom_timers();
1111 kill_prom_timer();
1112
1113 if (tlb_type == hypervisor)
1114 sun4v_init_mondo_queues();
1115
1116 init_send_mondo_info();
1117
1118 if (tlb_type == hypervisor) {
1119 /* Load up the boot cpu's entries. */
1120 sun4v_register_mondo_queues(hard_smp_processor_id());
1121 }
1122
1123 /* We need to clear any IRQ's pending in the soft interrupt
1124 * registers, a spurious one could be left around from the
1125 * PROM timer which we just disabled.
1126 */
1127 clear_softint(get_softint());
1128
1129 /* Now that ivector table is initialized, it is safe
1130 * to receive IRQ vector traps. We will normally take
1131 * one or two right now, in case some device PROM used
1132 * to boot us wants to speak to us. We just ignore them.
1133 */
1134 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1135 "or %%g1, %0, %%g1\n\t"
1136 "wrpr %%g1, 0x0, %%pstate"
1137 : /* No outputs */
1138 : "i" (PSTATE_IE)
1139 : "g1");
1140
1141 irq_to_desc(0)->action = &timer_irq_action;
1142}
This page took 0.027757 seconds and 5 git commands to generate.