x86/fpu: Simplify copy_kernel_to_xregs_booting()
[deliverable/linux.git] / arch / x86 / include / asm / fpu / internal.h
... / ...
CommitLineData
1/*
2 * Copyright (C) 1994 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
8 */
9
10#ifndef _ASM_X86_FPU_INTERNAL_H
11#define _ASM_X86_FPU_INTERNAL_H
12
13#include <linux/compat.h>
14#include <linux/sched.h>
15#include <linux/slab.h>
16
17#include <asm/user.h>
18#include <asm/fpu/api.h>
19#include <asm/fpu/xstate.h>
20
21/*
22 * High level FPU state handling functions:
23 */
24extern void fpu__activate_curr(struct fpu *fpu);
25extern void fpu__activate_fpstate_read(struct fpu *fpu);
26extern void fpu__activate_fpstate_write(struct fpu *fpu);
27extern void fpu__save(struct fpu *fpu);
28extern void fpu__restore(struct fpu *fpu);
29extern int fpu__restore_sig(void __user *buf, int ia32_frame);
30extern void fpu__drop(struct fpu *fpu);
31extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
32extern void fpu__clear(struct fpu *fpu);
33extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
34extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
35
36/*
37 * Boot time FPU initialization functions:
38 */
39extern void fpu__init_cpu(void);
40extern void fpu__init_system_xstate(void);
41extern void fpu__init_cpu_xstate(void);
42extern void fpu__init_system(struct cpuinfo_x86 *c);
43extern void fpu__init_check_bugs(void);
44extern void fpu__resume_cpu(void);
45
46/*
47 * Debugging facility:
48 */
49#ifdef CONFIG_X86_DEBUG_FPU
50# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
51#else
52# define WARN_ON_FPU(x) ({ 0; })
53#endif
54
55/*
56 * FPU related CPU feature flag helper routines:
57 */
58static __always_inline __pure bool use_eager_fpu(void)
59{
60 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
61}
62
63static __always_inline __pure bool use_xsaveopt(void)
64{
65 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
66}
67
68static __always_inline __pure bool use_xsave(void)
69{
70 return static_cpu_has_safe(X86_FEATURE_XSAVE);
71}
72
73static __always_inline __pure bool use_fxsr(void)
74{
75 return static_cpu_has_safe(X86_FEATURE_FXSR);
76}
77
78/*
79 * fpstate handling functions:
80 */
81
82extern union fpregs_state init_fpstate;
83
84extern void fpstate_init(union fpregs_state *state);
85#ifdef CONFIG_MATH_EMULATION
86extern void fpstate_init_soft(struct swregs_state *soft);
87#else
88static inline void fpstate_init_soft(struct swregs_state *soft) {}
89#endif
90static inline void fpstate_init_fxstate(struct fxregs_state *fx)
91{
92 fx->cwd = 0x37f;
93 fx->mxcsr = MXCSR_DEFAULT;
94}
95extern void fpstate_sanitize_xstate(struct fpu *fpu);
96
97#define user_insn(insn, output, input...) \
98({ \
99 int err; \
100 asm volatile(ASM_STAC "\n" \
101 "1:" #insn "\n\t" \
102 "2: " ASM_CLAC "\n" \
103 ".section .fixup,\"ax\"\n" \
104 "3: movl $-1,%[err]\n" \
105 " jmp 2b\n" \
106 ".previous\n" \
107 _ASM_EXTABLE(1b, 3b) \
108 : [err] "=r" (err), output \
109 : "0"(0), input); \
110 err; \
111})
112
113#define check_insn(insn, output, input...) \
114({ \
115 int err; \
116 asm volatile("1:" #insn "\n\t" \
117 "2:\n" \
118 ".section .fixup,\"ax\"\n" \
119 "3: movl $-1,%[err]\n" \
120 " jmp 2b\n" \
121 ".previous\n" \
122 _ASM_EXTABLE(1b, 3b) \
123 : [err] "=r" (err), output \
124 : "0"(0), input); \
125 err; \
126})
127
128static inline int copy_fregs_to_user(struct fregs_state __user *fx)
129{
130 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
131}
132
133static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
134{
135 if (config_enabled(CONFIG_X86_32))
136 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
137 else if (config_enabled(CONFIG_AS_FXSAVEQ))
138 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
139
140 /* See comment in copy_fxregs_to_kernel() below. */
141 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
142}
143
144static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
145{
146 int err;
147
148 if (config_enabled(CONFIG_X86_32)) {
149 err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
150 } else {
151 if (config_enabled(CONFIG_AS_FXSAVEQ)) {
152 err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
153 } else {
154 /* See comment in copy_fxregs_to_kernel() below. */
155 err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
156 }
157 }
158 /* Copying from a kernel buffer to FPU registers should never fail: */
159 WARN_ON_FPU(err);
160}
161
162static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
163{
164 if (config_enabled(CONFIG_X86_32))
165 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
166 else if (config_enabled(CONFIG_AS_FXSAVEQ))
167 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
168
169 /* See comment in copy_fxregs_to_kernel() below. */
170 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
171 "m" (*fx));
172}
173
174static inline void copy_kernel_to_fregs(struct fregs_state *fx)
175{
176 int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
177
178 WARN_ON_FPU(err);
179}
180
181static inline int copy_user_to_fregs(struct fregs_state __user *fx)
182{
183 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
184}
185
186static inline void copy_fxregs_to_kernel(struct fpu *fpu)
187{
188 if (config_enabled(CONFIG_X86_32))
189 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
190 else if (config_enabled(CONFIG_AS_FXSAVEQ))
191 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
192 else {
193 /* Using "rex64; fxsave %0" is broken because, if the memory
194 * operand uses any extended registers for addressing, a second
195 * REX prefix will be generated (to the assembler, rex64
196 * followed by semicolon is a separate instruction), and hence
197 * the 64-bitness is lost.
198 *
199 * Using "fxsaveq %0" would be the ideal choice, but is only
200 * supported starting with gas 2.16.
201 *
202 * Using, as a workaround, the properly prefixed form below
203 * isn't accepted by any binutils version so far released,
204 * complaining that the same type of prefix is used twice if
205 * an extended register is needed for addressing (fix submitted
206 * to mainline 2005-11-21).
207 *
208 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
209 *
210 * This, however, we can work around by forcing the compiler to
211 * select an addressing mode that doesn't require extended
212 * registers.
213 */
214 asm volatile( "rex64/fxsave (%[fx])"
215 : "=m" (fpu->state.fxsave)
216 : [fx] "R" (&fpu->state.fxsave));
217 }
218}
219
220/* These macros all use (%edi)/(%rdi) as the single memory argument. */
221#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
222#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
223#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
224#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
225#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
226
227/* xstate instruction fault handler: */
228#define xstate_fault(__err) \
229 \
230 ".section .fixup,\"ax\"\n" \
231 \
232 "3: movl $-2,%[_err]\n" \
233 " jmp 2b\n" \
234 \
235 ".previous\n" \
236 \
237 _ASM_EXTABLE(1b, 3b) \
238 : [_err] "=r" (__err)
239
240/*
241 * This function is called only during boot time when x86 caps are not set
242 * up and alternative can not be used yet.
243 */
244static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
245{
246 u64 mask = -1;
247 u32 lmask = mask;
248 u32 hmask = mask >> 32;
249 int err = 0;
250
251 WARN_ON(system_state != SYSTEM_BOOTING);
252
253 if (boot_cpu_has(X86_FEATURE_XSAVES))
254 asm volatile("1:"XSAVES"\n\t"
255 "2:\n\t"
256 xstate_fault(err)
257 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
258 : "memory");
259 else
260 asm volatile("1:"XSAVE"\n\t"
261 "2:\n\t"
262 xstate_fault(err)
263 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
264 : "memory");
265
266 /* We should never fault when copying to a kernel buffer: */
267 WARN_ON_FPU(err);
268}
269
270/*
271 * This function is called only during boot time when x86 caps are not set
272 * up and alternative can not be used yet.
273 */
274static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
275{
276 u64 mask = -1;
277 u32 lmask = mask;
278 u32 hmask = mask >> 32;
279 int err = 0;
280
281 WARN_ON(system_state != SYSTEM_BOOTING);
282
283 if (boot_cpu_has(X86_FEATURE_XSAVES))
284 asm volatile("1:"XRSTORS"\n\t"
285 "2:\n\t"
286 xstate_fault(err)
287 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
288 : "memory");
289 else
290 asm volatile("1:"XRSTOR"\n\t"
291 "2:\n\t"
292 xstate_fault(err)
293 : "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
294 : "memory");
295
296 /* We should never fault when copying from a kernel buffer: */
297 WARN_ON_FPU(err);
298}
299
300/*
301 * Save processor xstate to xsave area.
302 */
303static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
304{
305 u64 mask = -1;
306 u32 lmask = mask;
307 u32 hmask = mask >> 32;
308 int err = 0;
309
310 WARN_ON(!alternatives_patched);
311
312 /*
313 * If xsaves is enabled, xsaves replaces xsaveopt because
314 * it supports compact format and supervisor states in addition to
315 * modified optimization in xsaveopt.
316 *
317 * Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
318 * because xsaveopt supports modified optimization which is not
319 * supported by xsave.
320 *
321 * If none of xsaves and xsaveopt is enabled, use xsave.
322 */
323 alternative_input_2(
324 "1:"XSAVE,
325 XSAVEOPT,
326 X86_FEATURE_XSAVEOPT,
327 XSAVES,
328 X86_FEATURE_XSAVES,
329 [xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
330 "memory");
331 asm volatile("2:\n\t"
332 xstate_fault(err)
333 : "0" (err)
334 : "memory");
335
336 /* We should never fault when copying to a kernel buffer: */
337 WARN_ON_FPU(err);
338}
339
340/*
341 * Restore processor xstate from xsave area.
342 */
343static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
344{
345 u32 lmask = mask;
346 u32 hmask = mask >> 32;
347 int err = 0;
348
349 /*
350 * Use xrstors to restore context if it is enabled. xrstors supports
351 * compacted format of xsave area which is not supported by xrstor.
352 */
353 alternative_input(
354 "1: " XRSTOR,
355 XRSTORS,
356 X86_FEATURE_XSAVES,
357 "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
358 : "memory");
359
360 asm volatile("2:\n"
361 xstate_fault(err)
362 : "0" (err)
363 : "memory");
364
365 /* We should never fault when copying from a kernel buffer: */
366 WARN_ON_FPU(err);
367}
368
369/*
370 * Save xstate to user space xsave area.
371 *
372 * We don't use modified optimization because xrstor/xrstors might track
373 * a different application.
374 *
375 * We don't use compacted format xsave area for
376 * backward compatibility for old applications which don't understand
377 * compacted format of xsave area.
378 */
379static inline int copy_xregs_to_user(struct xregs_state __user *buf)
380{
381 int err;
382
383 /*
384 * Clear the xsave header first, so that reserved fields are
385 * initialized to zero.
386 */
387 err = __clear_user(&buf->header, sizeof(buf->header));
388 if (unlikely(err))
389 return -EFAULT;
390
391 __asm__ __volatile__(ASM_STAC "\n"
392 "1:"XSAVE"\n"
393 "2: " ASM_CLAC "\n"
394 xstate_fault(err)
395 : "D" (buf), "a" (-1), "d" (-1), "0" (err)
396 : "memory");
397 return err;
398}
399
400/*
401 * Restore xstate from user space xsave area.
402 */
403static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
404{
405 struct xregs_state *xstate = ((__force struct xregs_state *)buf);
406 u32 lmask = mask;
407 u32 hmask = mask >> 32;
408 int err = 0;
409
410 __asm__ __volatile__(ASM_STAC "\n"
411 "1:"XRSTOR"\n"
412 "2: " ASM_CLAC "\n"
413 xstate_fault(err)
414 : "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
415 : "memory"); /* memory required? */
416 return err;
417}
418
419/*
420 * These must be called with preempt disabled. Returns
421 * 'true' if the FPU state is still intact and we can
422 * keep registers active.
423 *
424 * The legacy FNSAVE instruction cleared all FPU state
425 * unconditionally, so registers are essentially destroyed.
426 * Modern FPU state can be kept in registers, if there are
427 * no pending FP exceptions.
428 */
429static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
430{
431 if (likely(use_xsave())) {
432 copy_xregs_to_kernel(&fpu->state.xsave);
433 return 1;
434 }
435
436 if (likely(use_fxsr())) {
437 copy_fxregs_to_kernel(fpu);
438 return 1;
439 }
440
441 /*
442 * Legacy FPU register saving, FNSAVE always clears FPU registers,
443 * so we have to mark them inactive:
444 */
445 asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
446
447 return 0;
448}
449
450static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
451{
452 if (use_xsave()) {
453 copy_kernel_to_xregs(&fpstate->xsave, -1);
454 } else {
455 if (use_fxsr())
456 copy_kernel_to_fxregs(&fpstate->fxsave);
457 else
458 copy_kernel_to_fregs(&fpstate->fsave);
459 }
460}
461
462static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
463{
464 /*
465 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
466 * pending. Clear the x87 state here by setting it to fixed values.
467 * "m" is a random variable that should be in L1.
468 */
469 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
470 asm volatile(
471 "fnclex\n\t"
472 "emms\n\t"
473 "fildl %P[addr]" /* set F?P to defined value */
474 : : [addr] "m" (fpstate));
475 }
476
477 __copy_kernel_to_fpregs(fpstate);
478}
479
480extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
481
482/*
483 * FPU context switch related helper methods:
484 */
485
486DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
487
488/*
489 * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
490 * on this CPU.
491 *
492 * This will disable any lazy FPU state restore of the current FPU state,
493 * but if the current thread owns the FPU, it will still be saved by.
494 */
495static inline void __cpu_disable_lazy_restore(unsigned int cpu)
496{
497 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
498}
499
500static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
501{
502 return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
503}
504
505
506/*
507 * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
508 * idiom, which is then paired with the sw-flag (fpregs_active) later on:
509 */
510
511static inline void __fpregs_activate_hw(void)
512{
513 if (!use_eager_fpu())
514 clts();
515}
516
517static inline void __fpregs_deactivate_hw(void)
518{
519 if (!use_eager_fpu())
520 stts();
521}
522
523/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
524static inline void __fpregs_deactivate(struct fpu *fpu)
525{
526 WARN_ON_FPU(!fpu->fpregs_active);
527
528 fpu->fpregs_active = 0;
529 this_cpu_write(fpu_fpregs_owner_ctx, NULL);
530}
531
532/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
533static inline void __fpregs_activate(struct fpu *fpu)
534{
535 WARN_ON_FPU(fpu->fpregs_active);
536
537 fpu->fpregs_active = 1;
538 this_cpu_write(fpu_fpregs_owner_ctx, fpu);
539}
540
541/*
542 * The question "does this thread have fpu access?"
543 * is slightly racy, since preemption could come in
544 * and revoke it immediately after the test.
545 *
546 * However, even in that very unlikely scenario,
547 * we can just assume we have FPU access - typically
548 * to save the FP state - we'll just take a #NM
549 * fault and get the FPU access back.
550 */
551static inline int fpregs_active(void)
552{
553 return current->thread.fpu.fpregs_active;
554}
555
556/*
557 * Encapsulate the CR0.TS handling together with the
558 * software flag.
559 *
560 * These generally need preemption protection to work,
561 * do try to avoid using these on their own.
562 */
563static inline void fpregs_activate(struct fpu *fpu)
564{
565 __fpregs_activate_hw();
566 __fpregs_activate(fpu);
567}
568
569static inline void fpregs_deactivate(struct fpu *fpu)
570{
571 __fpregs_deactivate(fpu);
572 __fpregs_deactivate_hw();
573}
574
575/*
576 * FPU state switching for scheduling.
577 *
578 * This is a two-stage process:
579 *
580 * - switch_fpu_prepare() saves the old state and
581 * sets the new state of the CR0.TS bit. This is
582 * done within the context of the old process.
583 *
584 * - switch_fpu_finish() restores the new state as
585 * necessary.
586 */
587typedef struct { int preload; } fpu_switch_t;
588
589static inline fpu_switch_t
590switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
591{
592 fpu_switch_t fpu;
593
594 /*
595 * If the task has used the math, pre-load the FPU on xsave processors
596 * or if the past 5 consecutive context-switches used math.
597 */
598 fpu.preload = new_fpu->fpstate_active &&
599 (use_eager_fpu() || new_fpu->counter > 5);
600
601 if (old_fpu->fpregs_active) {
602 if (!copy_fpregs_to_fpstate(old_fpu))
603 old_fpu->last_cpu = -1;
604 else
605 old_fpu->last_cpu = cpu;
606
607 /* But leave fpu_fpregs_owner_ctx! */
608 old_fpu->fpregs_active = 0;
609
610 /* Don't change CR0.TS if we just switch! */
611 if (fpu.preload) {
612 new_fpu->counter++;
613 __fpregs_activate(new_fpu);
614 prefetch(&new_fpu->state);
615 } else {
616 __fpregs_deactivate_hw();
617 }
618 } else {
619 old_fpu->counter = 0;
620 old_fpu->last_cpu = -1;
621 if (fpu.preload) {
622 new_fpu->counter++;
623 if (fpu_want_lazy_restore(new_fpu, cpu))
624 fpu.preload = 0;
625 else
626 prefetch(&new_fpu->state);
627 fpregs_activate(new_fpu);
628 }
629 }
630 return fpu;
631}
632
633/*
634 * Misc helper functions:
635 */
636
637/*
638 * By the time this gets called, we've already cleared CR0.TS and
639 * given the process the FPU if we are going to preload the FPU
640 * state - all we need to do is to conditionally restore the register
641 * state itself.
642 */
643static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
644{
645 if (fpu_switch.preload)
646 copy_kernel_to_fpregs(&new_fpu->state);
647}
648
649/*
650 * Needs to be preemption-safe.
651 *
652 * NOTE! user_fpu_begin() must be used only immediately before restoring
653 * the save state. It does not do any saving/restoring on its own. In
654 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
655 * the task can lose the FPU right after preempt_enable().
656 */
657static inline void user_fpu_begin(void)
658{
659 struct fpu *fpu = &current->thread.fpu;
660
661 preempt_disable();
662 if (!fpregs_active())
663 fpregs_activate(fpu);
664 preempt_enable();
665}
666
667/*
668 * MXCSR and XCR definitions:
669 */
670
671extern unsigned int mxcsr_feature_mask;
672
673#define XCR_XFEATURE_ENABLED_MASK 0x00000000
674
675static inline u64 xgetbv(u32 index)
676{
677 u32 eax, edx;
678
679 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
680 : "=a" (eax), "=d" (edx)
681 : "c" (index));
682 return eax + ((u64)edx << 32);
683}
684
685static inline void xsetbv(u32 index, u64 value)
686{
687 u32 eax = value;
688 u32 edx = value >> 32;
689
690 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
691 : : "a" (eax), "d" (edx), "c" (index));
692}
693
694#endif /* _ASM_X86_FPU_INTERNAL_H */
This page took 0.02768 seconds and 5 git commands to generate.