x86, mce: print header/footer only once for multiple MCEs
[deliverable/linux.git] / arch / x86 / kernel / cpu / mcheck / mce.c
... / ...
CommitLineData
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/interrupt.h>
14#include <linux/ratelimit.h>
15#include <linux/kallsyms.h>
16#include <linux/rcupdate.h>
17#include <linux/kobject.h>
18#include <linux/uaccess.h>
19#include <linux/kdebug.h>
20#include <linux/kernel.h>
21#include <linux/percpu.h>
22#include <linux/string.h>
23#include <linux/sysdev.h>
24#include <linux/delay.h>
25#include <linux/ctype.h>
26#include <linux/sched.h>
27#include <linux/sysfs.h>
28#include <linux/types.h>
29#include <linux/init.h>
30#include <linux/kmod.h>
31#include <linux/poll.h>
32#include <linux/nmi.h>
33#include <linux/cpu.h>
34#include <linux/smp.h>
35#include <linux/fs.h>
36
37#include <asm/processor.h>
38#include <asm/hw_irq.h>
39#include <asm/apic.h>
40#include <asm/idle.h>
41#include <asm/ipi.h>
42#include <asm/mce.h>
43#include <asm/msr.h>
44
45#include "mce-internal.h"
46#include "mce.h"
47
48/* Handle unconfigured int18 (should never happen) */
49static void unexpected_machine_check(struct pt_regs *regs, long error_code)
50{
51 printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
52 smp_processor_id());
53}
54
55/* Call the installed machine check handler for this CPU setup. */
56void (*machine_check_vector)(struct pt_regs *, long error_code) =
57 unexpected_machine_check;
58
59int mce_disabled;
60
61#ifdef CONFIG_X86_NEW_MCE
62
63#define MISC_MCELOG_MINOR 227
64
65#define SPINUNIT 100 /* 100ns */
66
67atomic_t mce_entry;
68
69DEFINE_PER_CPU(unsigned, mce_exception_count);
70
71/*
72 * Tolerant levels:
73 * 0: always panic on uncorrected errors, log corrected errors
74 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
75 * 2: SIGBUS or log uncorrected errors (if possible), log corrected errors
76 * 3: never panic or SIGBUS, log all errors (for testing only)
77 */
78static int tolerant = 1;
79static int banks;
80static u64 *bank;
81static unsigned long notify_user;
82static int rip_msr;
83static int mce_bootlog = -1;
84static int monarch_timeout = -1;
85static int mce_panic_timeout;
86
87static char trigger[128];
88static char *trigger_argv[2] = { trigger, NULL };
89
90static unsigned long dont_init_banks;
91
92static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
93static DEFINE_PER_CPU(struct mce, mces_seen);
94static int cpu_missing;
95
96
97/* MCA banks polled by the period polling timer for corrected events */
98DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100};
101
102static inline int skip_bank_init(int i)
103{
104 return i < BITS_PER_LONG && test_bit(i, &dont_init_banks);
105}
106
107/* Do initial initialization of a struct mce */
108void mce_setup(struct mce *m)
109{
110 memset(m, 0, sizeof(struct mce));
111 m->cpu = m->extcpu = smp_processor_id();
112 rdtscll(m->tsc);
113 /* We hope get_seconds stays lockless */
114 m->time = get_seconds();
115 m->cpuvendor = boot_cpu_data.x86_vendor;
116 m->cpuid = cpuid_eax(1);
117#ifdef CONFIG_SMP
118 m->socketid = cpu_data(m->extcpu).phys_proc_id;
119#endif
120 m->apicid = cpu_data(m->extcpu).initial_apicid;
121 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
122}
123
124DEFINE_PER_CPU(struct mce, injectm);
125EXPORT_PER_CPU_SYMBOL_GPL(injectm);
126
127/*
128 * Lockless MCE logging infrastructure.
129 * This avoids deadlocks on printk locks without having to break locks. Also
130 * separate MCEs from kernel messages to avoid bogus bug reports.
131 */
132
133static struct mce_log mcelog = {
134 .signature = MCE_LOG_SIGNATURE,
135 .len = MCE_LOG_LEN,
136 .recordlen = sizeof(struct mce),
137};
138
139void mce_log(struct mce *mce)
140{
141 unsigned next, entry;
142
143 mce->finished = 0;
144 wmb();
145 for (;;) {
146 entry = rcu_dereference(mcelog.next);
147 for (;;) {
148 /*
149 * When the buffer fills up discard new entries.
150 * Assume that the earlier errors are the more
151 * interesting ones:
152 */
153 if (entry >= MCE_LOG_LEN) {
154 set_bit(MCE_OVERFLOW,
155 (unsigned long *)&mcelog.flags);
156 return;
157 }
158 /* Old left over entry. Skip: */
159 if (mcelog.entry[entry].finished) {
160 entry++;
161 continue;
162 }
163 break;
164 }
165 smp_rmb();
166 next = entry + 1;
167 if (cmpxchg(&mcelog.next, entry, next) == entry)
168 break;
169 }
170 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
171 wmb();
172 mcelog.entry[entry].finished = 1;
173 wmb();
174
175 mce->finished = 1;
176 set_bit(0, &notify_user);
177}
178
179static void print_mce(struct mce *m, int *first)
180{
181 if (*first) {
182 printk(KERN_EMERG "\n" KERN_EMERG "HARDWARE ERROR\n");
183 *first = 0;
184 }
185 printk(KERN_EMERG
186 "CPU %d: Machine Check Exception: %16Lx Bank %d: %016Lx\n",
187 m->extcpu, m->mcgstatus, m->bank, m->status);
188 if (m->ip) {
189 printk(KERN_EMERG "RIP%s %02x:<%016Lx> ",
190 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
191 m->cs, m->ip);
192 if (m->cs == __KERNEL_CS)
193 print_symbol("{%s}", m->ip);
194 printk("\n");
195 }
196 printk(KERN_EMERG "TSC %llx ", m->tsc);
197 if (m->addr)
198 printk("ADDR %llx ", m->addr);
199 if (m->misc)
200 printk("MISC %llx ", m->misc);
201 printk("\n");
202 printk(KERN_EMERG "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
203 m->cpuvendor, m->cpuid, m->time, m->socketid,
204 m->apicid);
205}
206
207static void print_mce_tail(void)
208{
209 printk(KERN_EMERG "This is not a software problem!\n"
210 KERN_EMERG "Run through mcelog --ascii to decode and contact your hardware vendor\n");
211}
212
213#define PANIC_TIMEOUT 5 /* 5 seconds */
214
215static atomic_t mce_paniced;
216
217/* Panic in progress. Enable interrupts and wait for final IPI */
218static void wait_for_panic(void)
219{
220 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
221 preempt_disable();
222 local_irq_enable();
223 while (timeout-- > 0)
224 udelay(1);
225 if (panic_timeout == 0)
226 panic_timeout = mce_panic_timeout;
227 panic("Panicing machine check CPU died");
228}
229
230static void mce_panic(char *msg, struct mce *final, char *exp)
231{
232 int i;
233 int first = 1;
234
235 /*
236 * Make sure only one CPU runs in machine check panic
237 */
238 if (atomic_add_return(1, &mce_paniced) > 1)
239 wait_for_panic();
240 barrier();
241
242 bust_spinlocks(1);
243 console_verbose();
244 /* First print corrected ones that are still unlogged */
245 for (i = 0; i < MCE_LOG_LEN; i++) {
246 struct mce *m = &mcelog.entry[i];
247 if ((m->status & MCI_STATUS_VAL) &&
248 !(m->status & MCI_STATUS_UC))
249 print_mce(m, &first);
250 }
251 /* Now print uncorrected but with the final one last */
252 for (i = 0; i < MCE_LOG_LEN; i++) {
253 struct mce *m = &mcelog.entry[i];
254 if (!(m->status & MCI_STATUS_VAL))
255 continue;
256 if (!final || memcmp(m, final, sizeof(struct mce)))
257 print_mce(m, &first);
258 }
259 if (final)
260 print_mce(final, &first);
261 if (cpu_missing)
262 printk(KERN_EMERG "Some CPUs didn't answer in synchronization\n");
263 print_mce_tail();
264 if (exp)
265 printk(KERN_EMERG "Machine check: %s\n", exp);
266 if (panic_timeout == 0)
267 panic_timeout = mce_panic_timeout;
268 panic(msg);
269}
270
271/* Support code for software error injection */
272
273static int msr_to_offset(u32 msr)
274{
275 unsigned bank = __get_cpu_var(injectm.bank);
276 if (msr == rip_msr)
277 return offsetof(struct mce, ip);
278 if (msr == MSR_IA32_MC0_STATUS + bank*4)
279 return offsetof(struct mce, status);
280 if (msr == MSR_IA32_MC0_ADDR + bank*4)
281 return offsetof(struct mce, addr);
282 if (msr == MSR_IA32_MC0_MISC + bank*4)
283 return offsetof(struct mce, misc);
284 if (msr == MSR_IA32_MCG_STATUS)
285 return offsetof(struct mce, mcgstatus);
286 return -1;
287}
288
289/* MSR access wrappers used for error injection */
290static u64 mce_rdmsrl(u32 msr)
291{
292 u64 v;
293 if (__get_cpu_var(injectm).finished) {
294 int offset = msr_to_offset(msr);
295 if (offset < 0)
296 return 0;
297 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
298 }
299 rdmsrl(msr, v);
300 return v;
301}
302
303static void mce_wrmsrl(u32 msr, u64 v)
304{
305 if (__get_cpu_var(injectm).finished) {
306 int offset = msr_to_offset(msr);
307 if (offset >= 0)
308 *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
309 return;
310 }
311 wrmsrl(msr, v);
312}
313
314int mce_available(struct cpuinfo_x86 *c)
315{
316 if (mce_disabled)
317 return 0;
318 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
319}
320
321/*
322 * Get the address of the instruction at the time of the machine check
323 * error.
324 */
325static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
326{
327
328 if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
329 m->ip = regs->ip;
330 m->cs = regs->cs;
331 } else {
332 m->ip = 0;
333 m->cs = 0;
334 }
335 if (rip_msr)
336 m->ip = mce_rdmsrl(rip_msr);
337}
338
339#ifdef CONFIG_X86_LOCAL_APIC
340/*
341 * Called after interrupts have been reenabled again
342 * when a MCE happened during an interrupts off region
343 * in the kernel.
344 */
345asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
346{
347 ack_APIC_irq();
348 exit_idle();
349 irq_enter();
350 mce_notify_user();
351 irq_exit();
352}
353#endif
354
355static void mce_report_event(struct pt_regs *regs)
356{
357 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
358 mce_notify_user();
359 return;
360 }
361
362#ifdef CONFIG_X86_LOCAL_APIC
363 /*
364 * Without APIC do not notify. The event will be picked
365 * up eventually.
366 */
367 if (!cpu_has_apic)
368 return;
369
370 /*
371 * When interrupts are disabled we cannot use
372 * kernel services safely. Trigger an self interrupt
373 * through the APIC to instead do the notification
374 * after interrupts are reenabled again.
375 */
376 apic->send_IPI_self(MCE_SELF_VECTOR);
377
378 /*
379 * Wait for idle afterwards again so that we don't leave the
380 * APIC in a non idle state because the normal APIC writes
381 * cannot exclude us.
382 */
383 apic_wait_icr_idle();
384#endif
385}
386
387DEFINE_PER_CPU(unsigned, mce_poll_count);
388
389/*
390 * Poll for corrected events or events that happened before reset.
391 * Those are just logged through /dev/mcelog.
392 *
393 * This is executed in standard interrupt context.
394 */
395void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
396{
397 struct mce m;
398 int i;
399
400 __get_cpu_var(mce_poll_count)++;
401
402 mce_setup(&m);
403
404 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
405 for (i = 0; i < banks; i++) {
406 if (!bank[i] || !test_bit(i, *b))
407 continue;
408
409 m.misc = 0;
410 m.addr = 0;
411 m.bank = i;
412 m.tsc = 0;
413
414 barrier();
415 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
416 if (!(m.status & MCI_STATUS_VAL))
417 continue;
418
419 /*
420 * Uncorrected events are handled by the exception handler
421 * when it is enabled. But when the exception is disabled log
422 * everything.
423 *
424 * TBD do the same check for MCI_STATUS_EN here?
425 */
426 if ((m.status & MCI_STATUS_UC) && !(flags & MCP_UC))
427 continue;
428
429 if (m.status & MCI_STATUS_MISCV)
430 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
431 if (m.status & MCI_STATUS_ADDRV)
432 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
433
434 if (!(flags & MCP_TIMESTAMP))
435 m.tsc = 0;
436 /*
437 * Don't get the IP here because it's unlikely to
438 * have anything to do with the actual error location.
439 */
440 if (!(flags & MCP_DONTLOG)) {
441 mce_log(&m);
442 add_taint(TAINT_MACHINE_CHECK);
443 }
444
445 /*
446 * Clear state for this bank.
447 */
448 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
449 }
450
451 /*
452 * Don't clear MCG_STATUS here because it's only defined for
453 * exceptions.
454 */
455
456 sync_core();
457}
458EXPORT_SYMBOL_GPL(machine_check_poll);
459
460/*
461 * Do a quick check if any of the events requires a panic.
462 * This decides if we keep the events around or clear them.
463 */
464static int mce_no_way_out(struct mce *m, char **msg)
465{
466 int i;
467
468 for (i = 0; i < banks; i++) {
469 m->status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
470 if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
471 return 1;
472 }
473 return 0;
474}
475
476/*
477 * Variable to establish order between CPUs while scanning.
478 * Each CPU spins initially until executing is equal its number.
479 */
480static atomic_t mce_executing;
481
482/*
483 * Defines order of CPUs on entry. First CPU becomes Monarch.
484 */
485static atomic_t mce_callin;
486
487/*
488 * Check if a timeout waiting for other CPUs happened.
489 */
490static int mce_timed_out(u64 *t)
491{
492 /*
493 * The others already did panic for some reason.
494 * Bail out like in a timeout.
495 * rmb() to tell the compiler that system_state
496 * might have been modified by someone else.
497 */
498 rmb();
499 if (atomic_read(&mce_paniced))
500 wait_for_panic();
501 if (!monarch_timeout)
502 goto out;
503 if ((s64)*t < SPINUNIT) {
504 /* CHECKME: Make panic default for 1 too? */
505 if (tolerant < 1)
506 mce_panic("Timeout synchronizing machine check over CPUs",
507 NULL, NULL);
508 cpu_missing = 1;
509 return 1;
510 }
511 *t -= SPINUNIT;
512out:
513 touch_nmi_watchdog();
514 return 0;
515}
516
517/*
518 * The Monarch's reign. The Monarch is the CPU who entered
519 * the machine check handler first. It waits for the others to
520 * raise the exception too and then grades them. When any
521 * error is fatal panic. Only then let the others continue.
522 *
523 * The other CPUs entering the MCE handler will be controlled by the
524 * Monarch. They are called Subjects.
525 *
526 * This way we prevent any potential data corruption in a unrecoverable case
527 * and also makes sure always all CPU's errors are examined.
528 *
529 * Also this detects the case of an machine check event coming from outer
530 * space (not detected by any CPUs) In this case some external agent wants
531 * us to shut down, so panic too.
532 *
533 * The other CPUs might still decide to panic if the handler happens
534 * in a unrecoverable place, but in this case the system is in a semi-stable
535 * state and won't corrupt anything by itself. It's ok to let the others
536 * continue for a bit first.
537 *
538 * All the spin loops have timeouts; when a timeout happens a CPU
539 * typically elects itself to be Monarch.
540 */
541static void mce_reign(void)
542{
543 int cpu;
544 struct mce *m = NULL;
545 int global_worst = 0;
546 char *msg = NULL;
547 char *nmsg = NULL;
548
549 /*
550 * This CPU is the Monarch and the other CPUs have run
551 * through their handlers.
552 * Grade the severity of the errors of all the CPUs.
553 */
554 for_each_possible_cpu(cpu) {
555 int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
556 &nmsg);
557 if (severity > global_worst) {
558 msg = nmsg;
559 global_worst = severity;
560 m = &per_cpu(mces_seen, cpu);
561 }
562 }
563
564 /*
565 * Cannot recover? Panic here then.
566 * This dumps all the mces in the log buffer and stops the
567 * other CPUs.
568 */
569 if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
570 mce_panic("Fatal Machine check", m, msg);
571
572 /*
573 * For UC somewhere we let the CPU who detects it handle it.
574 * Also must let continue the others, otherwise the handling
575 * CPU could deadlock on a lock.
576 */
577
578 /*
579 * No machine check event found. Must be some external
580 * source or one CPU is hung. Panic.
581 */
582 if (!m && tolerant < 3)
583 mce_panic("Machine check from unknown source", NULL, NULL);
584
585 /*
586 * Now clear all the mces_seen so that they don't reappear on
587 * the next mce.
588 */
589 for_each_possible_cpu(cpu)
590 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
591}
592
593static atomic_t global_nwo;
594
595/*
596 * Start of Monarch synchronization. This waits until all CPUs have
597 * entered the exception handler and then determines if any of them
598 * saw a fatal event that requires panic. Then it executes them
599 * in the entry order.
600 * TBD double check parallel CPU hotunplug
601 */
602static int mce_start(int no_way_out, int *order)
603{
604 int nwo;
605 int cpus = num_online_cpus();
606 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
607
608 if (!timeout) {
609 *order = -1;
610 return no_way_out;
611 }
612
613 atomic_add(no_way_out, &global_nwo);
614
615 /*
616 * Wait for everyone.
617 */
618 while (atomic_read(&mce_callin) != cpus) {
619 if (mce_timed_out(&timeout)) {
620 atomic_set(&global_nwo, 0);
621 *order = -1;
622 return no_way_out;
623 }
624 ndelay(SPINUNIT);
625 }
626
627 /*
628 * Cache the global no_way_out state.
629 */
630 nwo = atomic_read(&global_nwo);
631
632 /*
633 * Monarch starts executing now, the others wait.
634 */
635 if (*order == 1) {
636 atomic_set(&mce_executing, 1);
637 return nwo;
638 }
639
640 /*
641 * Now start the scanning loop one by one
642 * in the original callin order.
643 * This way when there are any shared banks it will
644 * be only seen by one CPU before cleared, avoiding duplicates.
645 */
646 while (atomic_read(&mce_executing) < *order) {
647 if (mce_timed_out(&timeout)) {
648 atomic_set(&global_nwo, 0);
649 *order = -1;
650 return no_way_out;
651 }
652 ndelay(SPINUNIT);
653 }
654 return nwo;
655}
656
657/*
658 * Synchronize between CPUs after main scanning loop.
659 * This invokes the bulk of the Monarch processing.
660 */
661static int mce_end(int order)
662{
663 int ret = -1;
664 u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
665
666 if (!timeout)
667 goto reset;
668 if (order < 0)
669 goto reset;
670
671 /*
672 * Allow others to run.
673 */
674 atomic_inc(&mce_executing);
675
676 if (order == 1) {
677 /* CHECKME: Can this race with a parallel hotplug? */
678 int cpus = num_online_cpus();
679
680 /*
681 * Monarch: Wait for everyone to go through their scanning
682 * loops.
683 */
684 while (atomic_read(&mce_executing) <= cpus) {
685 if (mce_timed_out(&timeout))
686 goto reset;
687 ndelay(SPINUNIT);
688 }
689
690 mce_reign();
691 barrier();
692 ret = 0;
693 } else {
694 /*
695 * Subject: Wait for Monarch to finish.
696 */
697 while (atomic_read(&mce_executing) != 0) {
698 if (mce_timed_out(&timeout))
699 goto reset;
700 ndelay(SPINUNIT);
701 }
702
703 /*
704 * Don't reset anything. That's done by the Monarch.
705 */
706 return 0;
707 }
708
709 /*
710 * Reset all global state.
711 */
712reset:
713 atomic_set(&global_nwo, 0);
714 atomic_set(&mce_callin, 0);
715 barrier();
716
717 /*
718 * Let others run again.
719 */
720 atomic_set(&mce_executing, 0);
721 return ret;
722}
723
724static void mce_clear_state(unsigned long *toclear)
725{
726 int i;
727
728 for (i = 0; i < banks; i++) {
729 if (test_bit(i, toclear))
730 mce_wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
731 }
732}
733
734/*
735 * The actual machine check handler. This only handles real
736 * exceptions when something got corrupted coming in through int 18.
737 *
738 * This is executed in NMI context not subject to normal locking rules. This
739 * implies that most kernel services cannot be safely used. Don't even
740 * think about putting a printk in there!
741 *
742 * On Intel systems this is entered on all CPUs in parallel through
743 * MCE broadcast. However some CPUs might be broken beyond repair,
744 * so be always careful when synchronizing with others.
745 */
746void do_machine_check(struct pt_regs *regs, long error_code)
747{
748 struct mce m, *final;
749 int i;
750 int worst = 0;
751 int severity;
752 /*
753 * Establish sequential order between the CPUs entering the machine
754 * check handler.
755 */
756 int order;
757
758 /*
759 * If no_way_out gets set, there is no safe way to recover from this
760 * MCE. If tolerant is cranked up, we'll try anyway.
761 */
762 int no_way_out = 0;
763 /*
764 * If kill_it gets set, there might be a way to recover from this
765 * error.
766 */
767 int kill_it = 0;
768 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
769 char *msg = "Unknown";
770
771 atomic_inc(&mce_entry);
772
773 __get_cpu_var(mce_exception_count)++;
774
775 if (notify_die(DIE_NMI, "machine check", regs, error_code,
776 18, SIGKILL) == NOTIFY_STOP)
777 goto out;
778 if (!banks)
779 goto out;
780
781 order = atomic_add_return(1, &mce_callin);
782 mce_setup(&m);
783
784 m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
785 no_way_out = mce_no_way_out(&m, &msg);
786
787 final = &__get_cpu_var(mces_seen);
788 *final = m;
789
790 barrier();
791
792 /*
793 * Go through all the banks in exclusion of the other CPUs.
794 * This way we don't report duplicated events on shared banks
795 * because the first one to see it will clear it.
796 */
797 no_way_out = mce_start(no_way_out, &order);
798 for (i = 0; i < banks; i++) {
799 __clear_bit(i, toclear);
800 if (!bank[i])
801 continue;
802
803 m.misc = 0;
804 m.addr = 0;
805 m.bank = i;
806
807 m.status = mce_rdmsrl(MSR_IA32_MC0_STATUS + i*4);
808 if ((m.status & MCI_STATUS_VAL) == 0)
809 continue;
810
811 /*
812 * Non uncorrected errors are handled by machine_check_poll
813 * Leave them alone, unless this panics.
814 */
815 if ((m.status & MCI_STATUS_UC) == 0 && !no_way_out)
816 continue;
817
818 /*
819 * Set taint even when machine check was not enabled.
820 */
821 add_taint(TAINT_MACHINE_CHECK);
822
823 __set_bit(i, toclear);
824
825 if (m.status & MCI_STATUS_EN) {
826 /*
827 * If this error was uncorrectable and there was
828 * an overflow, we're in trouble. If no overflow,
829 * we might get away with just killing a task.
830 */
831 if (m.status & MCI_STATUS_UC)
832 kill_it = 1;
833 } else {
834 /*
835 * Machine check event was not enabled. Clear, but
836 * ignore.
837 */
838 continue;
839 }
840
841 if (m.status & MCI_STATUS_MISCV)
842 m.misc = mce_rdmsrl(MSR_IA32_MC0_MISC + i*4);
843 if (m.status & MCI_STATUS_ADDRV)
844 m.addr = mce_rdmsrl(MSR_IA32_MC0_ADDR + i*4);
845
846 mce_get_rip(&m, regs);
847 mce_log(&m);
848
849 severity = mce_severity(&m, tolerant, NULL);
850 if (severity > worst) {
851 *final = m;
852 worst = severity;
853 }
854 }
855
856 if (!no_way_out)
857 mce_clear_state(toclear);
858
859 /*
860 * Do most of the synchronization with other CPUs.
861 * When there's any problem use only local no_way_out state.
862 */
863 if (mce_end(order) < 0)
864 no_way_out = worst >= MCE_PANIC_SEVERITY;
865
866 /*
867 * If we have decided that we just CAN'T continue, and the user
868 * has not set tolerant to an insane level, give up and die.
869 *
870 * This is mainly used in the case when the system doesn't
871 * support MCE broadcasting or it has been disabled.
872 */
873 if (no_way_out && tolerant < 3)
874 mce_panic("Fatal machine check on current CPU", final, msg);
875
876 /*
877 * If the error seems to be unrecoverable, something should be
878 * done. Try to kill as little as possible. If we can kill just
879 * one task, do that. If the user has set the tolerance very
880 * high, don't try to do anything at all.
881 */
882 if (kill_it && tolerant < 3) {
883 int user_space = 0;
884
885 /*
886 * If the EIPV bit is set, it means the saved IP is the
887 * instruction which caused the MCE.
888 */
889 if (m.mcgstatus & MCG_STATUS_EIPV)
890 user_space = final->ip && (final->cs & 3);
891
892 /*
893 * If we know that the error was in user space, send a
894 * SIGBUS. Otherwise, panic if tolerance is low.
895 *
896 * force_sig() takes an awful lot of locks and has a slight
897 * risk of deadlocking.
898 */
899 if (user_space) {
900 force_sig(SIGBUS, current);
901 } else if (panic_on_oops || tolerant < 2) {
902 mce_panic("Uncorrected machine check", final, msg);
903 }
904 }
905
906 /* notify userspace ASAP */
907 set_thread_flag(TIF_MCE_NOTIFY);
908
909 if (worst > 0)
910 mce_report_event(regs);
911 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
912out:
913 atomic_dec(&mce_entry);
914 sync_core();
915}
916EXPORT_SYMBOL_GPL(do_machine_check);
917
918#ifdef CONFIG_X86_MCE_INTEL
919/***
920 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
921 * @cpu: The CPU on which the event occurred.
922 * @status: Event status information
923 *
924 * This function should be called by the thermal interrupt after the
925 * event has been processed and the decision was made to log the event
926 * further.
927 *
928 * The status parameter will be saved to the 'status' field of 'struct mce'
929 * and historically has been the register value of the
930 * MSR_IA32_THERMAL_STATUS (Intel) msr.
931 */
932void mce_log_therm_throt_event(__u64 status)
933{
934 struct mce m;
935
936 mce_setup(&m);
937 m.bank = MCE_THERMAL_BANK;
938 m.status = status;
939 mce_log(&m);
940}
941#endif /* CONFIG_X86_MCE_INTEL */
942
943/*
944 * Periodic polling timer for "silent" machine check errors. If the
945 * poller finds an MCE, poll 2x faster. When the poller finds no more
946 * errors, poll 2x slower (up to check_interval seconds).
947 */
948static int check_interval = 5 * 60; /* 5 minutes */
949
950static DEFINE_PER_CPU(int, next_interval); /* in jiffies */
951static DEFINE_PER_CPU(struct timer_list, mce_timer);
952
953static void mcheck_timer(unsigned long data)
954{
955 struct timer_list *t = &per_cpu(mce_timer, data);
956 int *n;
957
958 WARN_ON(smp_processor_id() != data);
959
960 if (mce_available(&current_cpu_data)) {
961 machine_check_poll(MCP_TIMESTAMP,
962 &__get_cpu_var(mce_poll_banks));
963 }
964
965 /*
966 * Alert userspace if needed. If we logged an MCE, reduce the
967 * polling interval, otherwise increase the polling interval.
968 */
969 n = &__get_cpu_var(next_interval);
970 if (mce_notify_user())
971 *n = max(*n/2, HZ/100);
972 else
973 *n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
974
975 t->expires = jiffies + *n;
976 add_timer(t);
977}
978
979static void mce_do_trigger(struct work_struct *work)
980{
981 call_usermodehelper(trigger, trigger_argv, NULL, UMH_NO_WAIT);
982}
983
984static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
985
986/*
987 * Notify the user(s) about new machine check events.
988 * Can be called from interrupt context, but not from machine check/NMI
989 * context.
990 */
991int mce_notify_user(void)
992{
993 /* Not more than two messages every minute */
994 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
995
996 clear_thread_flag(TIF_MCE_NOTIFY);
997
998 if (test_and_clear_bit(0, &notify_user)) {
999 wake_up_interruptible(&mce_wait);
1000
1001 /*
1002 * There is no risk of missing notifications because
1003 * work_pending is always cleared before the function is
1004 * executed.
1005 */
1006 if (trigger[0] && !work_pending(&mce_trigger_work))
1007 schedule_work(&mce_trigger_work);
1008
1009 if (__ratelimit(&ratelimit))
1010 printk(KERN_INFO "Machine check events logged\n");
1011
1012 return 1;
1013 }
1014 return 0;
1015}
1016EXPORT_SYMBOL_GPL(mce_notify_user);
1017
1018/*
1019 * Initialize Machine Checks for a CPU.
1020 */
1021static int mce_cap_init(void)
1022{
1023 unsigned b;
1024 u64 cap;
1025
1026 rdmsrl(MSR_IA32_MCG_CAP, cap);
1027
1028 b = cap & MCG_BANKCNT_MASK;
1029 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1030
1031 if (b > MAX_NR_BANKS) {
1032 printk(KERN_WARNING
1033 "MCE: Using only %u machine check banks out of %u\n",
1034 MAX_NR_BANKS, b);
1035 b = MAX_NR_BANKS;
1036 }
1037
1038 /* Don't support asymmetric configurations today */
1039 WARN_ON(banks != 0 && b != banks);
1040 banks = b;
1041 if (!bank) {
1042 bank = kmalloc(banks * sizeof(u64), GFP_KERNEL);
1043 if (!bank)
1044 return -ENOMEM;
1045 memset(bank, 0xff, banks * sizeof(u64));
1046 }
1047
1048 /* Use accurate RIP reporting if available. */
1049 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1050 rip_msr = MSR_IA32_MCG_EIP;
1051
1052 return 0;
1053}
1054
1055static void mce_init(void)
1056{
1057 mce_banks_t all_banks;
1058 u64 cap;
1059 int i;
1060
1061 /*
1062 * Log the machine checks left over from the previous reset.
1063 */
1064 bitmap_fill(all_banks, MAX_NR_BANKS);
1065 machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1066
1067 set_in_cr4(X86_CR4_MCE);
1068
1069 rdmsrl(MSR_IA32_MCG_CAP, cap);
1070 if (cap & MCG_CTL_P)
1071 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1072
1073 for (i = 0; i < banks; i++) {
1074 if (skip_bank_init(i))
1075 continue;
1076 wrmsrl(MSR_IA32_MC0_CTL+4*i, bank[i]);
1077 wrmsrl(MSR_IA32_MC0_STATUS+4*i, 0);
1078 }
1079}
1080
1081/* Add per CPU specific workarounds here */
1082static void mce_cpu_quirks(struct cpuinfo_x86 *c)
1083{
1084 /* This should be disabled by the BIOS, but isn't always */
1085 if (c->x86_vendor == X86_VENDOR_AMD) {
1086 if (c->x86 == 15 && banks > 4) {
1087 /*
1088 * disable GART TBL walk error reporting, which
1089 * trips off incorrectly with the IOMMU & 3ware
1090 * & Cerberus:
1091 */
1092 clear_bit(10, (unsigned long *)&bank[4]);
1093 }
1094 if (c->x86 <= 17 && mce_bootlog < 0) {
1095 /*
1096 * Lots of broken BIOS around that don't clear them
1097 * by default and leave crap in there. Don't log:
1098 */
1099 mce_bootlog = 0;
1100 }
1101 /*
1102 * Various K7s with broken bank 0 around. Always disable
1103 * by default.
1104 */
1105 if (c->x86 == 6)
1106 bank[0] = 0;
1107 }
1108
1109 if (c->x86_vendor == X86_VENDOR_INTEL) {
1110 /*
1111 * SDM documents that on family 6 bank 0 should not be written
1112 * because it aliases to another special BIOS controlled
1113 * register.
1114 * But it's not aliased anymore on model 0x1a+
1115 * Don't ignore bank 0 completely because there could be a
1116 * valid event later, merely don't write CTL0.
1117 */
1118
1119 if (c->x86 == 6 && c->x86_model < 0x1A)
1120 __set_bit(0, &dont_init_banks);
1121
1122 /*
1123 * All newer Intel systems support MCE broadcasting. Enable
1124 * synchronization with a one second timeout.
1125 */
1126 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1127 monarch_timeout < 0)
1128 monarch_timeout = USEC_PER_SEC;
1129 }
1130 if (monarch_timeout < 0)
1131 monarch_timeout = 0;
1132 if (mce_bootlog != 0)
1133 mce_panic_timeout = 30;
1134}
1135
1136static void __cpuinit mce_ancient_init(struct cpuinfo_x86 *c)
1137{
1138 if (c->x86 != 5)
1139 return;
1140 switch (c->x86_vendor) {
1141 case X86_VENDOR_INTEL:
1142 if (mce_p5_enabled())
1143 intel_p5_mcheck_init(c);
1144 break;
1145 case X86_VENDOR_CENTAUR:
1146 winchip_mcheck_init(c);
1147 break;
1148 }
1149}
1150
1151static void mce_cpu_features(struct cpuinfo_x86 *c)
1152{
1153 switch (c->x86_vendor) {
1154 case X86_VENDOR_INTEL:
1155 mce_intel_feature_init(c);
1156 break;
1157 case X86_VENDOR_AMD:
1158 mce_amd_feature_init(c);
1159 break;
1160 default:
1161 break;
1162 }
1163}
1164
1165static void mce_init_timer(void)
1166{
1167 struct timer_list *t = &__get_cpu_var(mce_timer);
1168 int *n = &__get_cpu_var(next_interval);
1169
1170 *n = check_interval * HZ;
1171 if (!*n)
1172 return;
1173 setup_timer(t, mcheck_timer, smp_processor_id());
1174 t->expires = round_jiffies(jiffies + *n);
1175 add_timer(t);
1176}
1177
1178/*
1179 * Called for each booted CPU to set up machine checks.
1180 * Must be called with preempt off:
1181 */
1182void __cpuinit mcheck_init(struct cpuinfo_x86 *c)
1183{
1184 if (mce_disabled)
1185 return;
1186
1187 mce_ancient_init(c);
1188
1189 if (!mce_available(c))
1190 return;
1191
1192 if (mce_cap_init() < 0) {
1193 mce_disabled = 1;
1194 return;
1195 }
1196 mce_cpu_quirks(c);
1197
1198 machine_check_vector = do_machine_check;
1199
1200 mce_init();
1201 mce_cpu_features(c);
1202 mce_init_timer();
1203}
1204
1205/*
1206 * Character device to read and clear the MCE log.
1207 */
1208
1209static DEFINE_SPINLOCK(mce_state_lock);
1210static int open_count; /* #times opened */
1211static int open_exclu; /* already open exclusive? */
1212
1213static int mce_open(struct inode *inode, struct file *file)
1214{
1215 spin_lock(&mce_state_lock);
1216
1217 if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1218 spin_unlock(&mce_state_lock);
1219
1220 return -EBUSY;
1221 }
1222
1223 if (file->f_flags & O_EXCL)
1224 open_exclu = 1;
1225 open_count++;
1226
1227 spin_unlock(&mce_state_lock);
1228
1229 return nonseekable_open(inode, file);
1230}
1231
1232static int mce_release(struct inode *inode, struct file *file)
1233{
1234 spin_lock(&mce_state_lock);
1235
1236 open_count--;
1237 open_exclu = 0;
1238
1239 spin_unlock(&mce_state_lock);
1240
1241 return 0;
1242}
1243
1244static void collect_tscs(void *data)
1245{
1246 unsigned long *cpu_tsc = (unsigned long *)data;
1247
1248 rdtscll(cpu_tsc[smp_processor_id()]);
1249}
1250
1251static DEFINE_MUTEX(mce_read_mutex);
1252
1253static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1254 loff_t *off)
1255{
1256 char __user *buf = ubuf;
1257 unsigned long *cpu_tsc;
1258 unsigned prev, next;
1259 int i, err;
1260
1261 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1262 if (!cpu_tsc)
1263 return -ENOMEM;
1264
1265 mutex_lock(&mce_read_mutex);
1266 next = rcu_dereference(mcelog.next);
1267
1268 /* Only supports full reads right now */
1269 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce)) {
1270 mutex_unlock(&mce_read_mutex);
1271 kfree(cpu_tsc);
1272
1273 return -EINVAL;
1274 }
1275
1276 err = 0;
1277 prev = 0;
1278 do {
1279 for (i = prev; i < next; i++) {
1280 unsigned long start = jiffies;
1281
1282 while (!mcelog.entry[i].finished) {
1283 if (time_after_eq(jiffies, start + 2)) {
1284 memset(mcelog.entry + i, 0,
1285 sizeof(struct mce));
1286 goto timeout;
1287 }
1288 cpu_relax();
1289 }
1290 smp_rmb();
1291 err |= copy_to_user(buf, mcelog.entry + i,
1292 sizeof(struct mce));
1293 buf += sizeof(struct mce);
1294timeout:
1295 ;
1296 }
1297
1298 memset(mcelog.entry + prev, 0,
1299 (next - prev) * sizeof(struct mce));
1300 prev = next;
1301 next = cmpxchg(&mcelog.next, prev, 0);
1302 } while (next != prev);
1303
1304 synchronize_sched();
1305
1306 /*
1307 * Collect entries that were still getting written before the
1308 * synchronize.
1309 */
1310 on_each_cpu(collect_tscs, cpu_tsc, 1);
1311
1312 for (i = next; i < MCE_LOG_LEN; i++) {
1313 if (mcelog.entry[i].finished &&
1314 mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1315 err |= copy_to_user(buf, mcelog.entry+i,
1316 sizeof(struct mce));
1317 smp_rmb();
1318 buf += sizeof(struct mce);
1319 memset(&mcelog.entry[i], 0, sizeof(struct mce));
1320 }
1321 }
1322 mutex_unlock(&mce_read_mutex);
1323 kfree(cpu_tsc);
1324
1325 return err ? -EFAULT : buf - ubuf;
1326}
1327
1328static unsigned int mce_poll(struct file *file, poll_table *wait)
1329{
1330 poll_wait(file, &mce_wait, wait);
1331 if (rcu_dereference(mcelog.next))
1332 return POLLIN | POLLRDNORM;
1333 return 0;
1334}
1335
1336static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1337{
1338 int __user *p = (int __user *)arg;
1339
1340 if (!capable(CAP_SYS_ADMIN))
1341 return -EPERM;
1342
1343 switch (cmd) {
1344 case MCE_GET_RECORD_LEN:
1345 return put_user(sizeof(struct mce), p);
1346 case MCE_GET_LOG_LEN:
1347 return put_user(MCE_LOG_LEN, p);
1348 case MCE_GETCLEAR_FLAGS: {
1349 unsigned flags;
1350
1351 do {
1352 flags = mcelog.flags;
1353 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1354
1355 return put_user(flags, p);
1356 }
1357 default:
1358 return -ENOTTY;
1359 }
1360}
1361
1362/* Modified in mce-inject.c, so not static or const */
1363struct file_operations mce_chrdev_ops = {
1364 .open = mce_open,
1365 .release = mce_release,
1366 .read = mce_read,
1367 .poll = mce_poll,
1368 .unlocked_ioctl = mce_ioctl,
1369};
1370EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1371
1372static struct miscdevice mce_log_device = {
1373 MISC_MCELOG_MINOR,
1374 "mcelog",
1375 &mce_chrdev_ops,
1376};
1377
1378/*
1379 * mce=off disables machine check
1380 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1381 * monarchtimeout is how long to wait for other CPUs on machine
1382 * check, or 0 to not wait
1383 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1384 * mce=nobootlog Don't log MCEs from before booting.
1385 */
1386static int __init mcheck_enable(char *str)
1387{
1388 if (*str == 0)
1389 enable_p5_mce();
1390 if (*str == '=')
1391 str++;
1392 if (!strcmp(str, "off"))
1393 mce_disabled = 1;
1394 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1395 mce_bootlog = (str[0] == 'b');
1396 else if (isdigit(str[0])) {
1397 get_option(&str, &tolerant);
1398 if (*str == ',') {
1399 ++str;
1400 get_option(&str, &monarch_timeout);
1401 }
1402 } else {
1403 printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1404 str);
1405 return 0;
1406 }
1407 return 1;
1408}
1409__setup("mce", mcheck_enable);
1410
1411/*
1412 * Sysfs support
1413 */
1414
1415/*
1416 * Disable machine checks on suspend and shutdown. We can't really handle
1417 * them later.
1418 */
1419static int mce_disable(void)
1420{
1421 int i;
1422
1423 for (i = 0; i < banks; i++) {
1424 if (!skip_bank_init(i))
1425 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1426 }
1427 return 0;
1428}
1429
1430static int mce_suspend(struct sys_device *dev, pm_message_t state)
1431{
1432 return mce_disable();
1433}
1434
1435static int mce_shutdown(struct sys_device *dev)
1436{
1437 return mce_disable();
1438}
1439
1440/*
1441 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1442 * Only one CPU is active at this time, the others get re-added later using
1443 * CPU hotplug:
1444 */
1445static int mce_resume(struct sys_device *dev)
1446{
1447 mce_init();
1448 mce_cpu_features(&current_cpu_data);
1449
1450 return 0;
1451}
1452
1453static void mce_cpu_restart(void *data)
1454{
1455 del_timer_sync(&__get_cpu_var(mce_timer));
1456 if (mce_available(&current_cpu_data))
1457 mce_init();
1458 mce_init_timer();
1459}
1460
1461/* Reinit MCEs after user configuration changes */
1462static void mce_restart(void)
1463{
1464 on_each_cpu(mce_cpu_restart, NULL, 1);
1465}
1466
1467static struct sysdev_class mce_sysclass = {
1468 .suspend = mce_suspend,
1469 .shutdown = mce_shutdown,
1470 .resume = mce_resume,
1471 .name = "machinecheck",
1472};
1473
1474DEFINE_PER_CPU(struct sys_device, mce_dev);
1475
1476__cpuinitdata
1477void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1478
1479static struct sysdev_attribute *bank_attrs;
1480
1481static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1482 char *buf)
1483{
1484 u64 b = bank[attr - bank_attrs];
1485
1486 return sprintf(buf, "%llx\n", b);
1487}
1488
1489static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1490 const char *buf, size_t size)
1491{
1492 u64 new;
1493
1494 if (strict_strtoull(buf, 0, &new) < 0)
1495 return -EINVAL;
1496
1497 bank[attr - bank_attrs] = new;
1498 mce_restart();
1499
1500 return size;
1501}
1502
1503static ssize_t
1504show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1505{
1506 strcpy(buf, trigger);
1507 strcat(buf, "\n");
1508 return strlen(trigger) + 1;
1509}
1510
1511static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1512 const char *buf, size_t siz)
1513{
1514 char *p;
1515 int len;
1516
1517 strncpy(trigger, buf, sizeof(trigger));
1518 trigger[sizeof(trigger)-1] = 0;
1519 len = strlen(trigger);
1520 p = strchr(trigger, '\n');
1521
1522 if (*p)
1523 *p = 0;
1524
1525 return len;
1526}
1527
1528static ssize_t store_int_with_restart(struct sys_device *s,
1529 struct sysdev_attribute *attr,
1530 const char *buf, size_t size)
1531{
1532 ssize_t ret = sysdev_store_int(s, attr, buf, size);
1533 mce_restart();
1534 return ret;
1535}
1536
1537static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1538static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1539static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1540
1541static struct sysdev_ext_attribute attr_check_interval = {
1542 _SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1543 store_int_with_restart),
1544 &check_interval
1545};
1546
1547static struct sysdev_attribute *mce_attrs[] = {
1548 &attr_tolerant.attr, &attr_check_interval.attr, &attr_trigger,
1549 &attr_monarch_timeout.attr,
1550 NULL
1551};
1552
1553static cpumask_var_t mce_dev_initialized;
1554
1555/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1556static __cpuinit int mce_create_device(unsigned int cpu)
1557{
1558 int err;
1559 int i;
1560
1561 if (!mce_available(&boot_cpu_data))
1562 return -EIO;
1563
1564 memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1565 per_cpu(mce_dev, cpu).id = cpu;
1566 per_cpu(mce_dev, cpu).cls = &mce_sysclass;
1567
1568 err = sysdev_register(&per_cpu(mce_dev, cpu));
1569 if (err)
1570 return err;
1571
1572 for (i = 0; mce_attrs[i]; i++) {
1573 err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1574 if (err)
1575 goto error;
1576 }
1577 for (i = 0; i < banks; i++) {
1578 err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1579 &bank_attrs[i]);
1580 if (err)
1581 goto error2;
1582 }
1583 cpumask_set_cpu(cpu, mce_dev_initialized);
1584
1585 return 0;
1586error2:
1587 while (--i >= 0)
1588 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1589error:
1590 while (--i >= 0)
1591 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1592
1593 sysdev_unregister(&per_cpu(mce_dev, cpu));
1594
1595 return err;
1596}
1597
1598static __cpuinit void mce_remove_device(unsigned int cpu)
1599{
1600 int i;
1601
1602 if (!cpumask_test_cpu(cpu, mce_dev_initialized))
1603 return;
1604
1605 for (i = 0; mce_attrs[i]; i++)
1606 sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1607
1608 for (i = 0; i < banks; i++)
1609 sysdev_remove_file(&per_cpu(mce_dev, cpu), &bank_attrs[i]);
1610
1611 sysdev_unregister(&per_cpu(mce_dev, cpu));
1612 cpumask_clear_cpu(cpu, mce_dev_initialized);
1613}
1614
1615/* Make sure there are no machine checks on offlined CPUs. */
1616static void mce_disable_cpu(void *h)
1617{
1618 unsigned long action = *(unsigned long *)h;
1619 int i;
1620
1621 if (!mce_available(&current_cpu_data))
1622 return;
1623 if (!(action & CPU_TASKS_FROZEN))
1624 cmci_clear();
1625 for (i = 0; i < banks; i++) {
1626 if (!skip_bank_init(i))
1627 wrmsrl(MSR_IA32_MC0_CTL + i*4, 0);
1628 }
1629}
1630
1631static void mce_reenable_cpu(void *h)
1632{
1633 unsigned long action = *(unsigned long *)h;
1634 int i;
1635
1636 if (!mce_available(&current_cpu_data))
1637 return;
1638
1639 if (!(action & CPU_TASKS_FROZEN))
1640 cmci_reenable();
1641 for (i = 0; i < banks; i++) {
1642 if (!skip_bank_init(i))
1643 wrmsrl(MSR_IA32_MC0_CTL + i*4, bank[i]);
1644 }
1645}
1646
1647/* Get notified when a cpu comes on/off. Be hotplug friendly. */
1648static int __cpuinit
1649mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
1650{
1651 unsigned int cpu = (unsigned long)hcpu;
1652 struct timer_list *t = &per_cpu(mce_timer, cpu);
1653
1654 switch (action) {
1655 case CPU_ONLINE:
1656 case CPU_ONLINE_FROZEN:
1657 mce_create_device(cpu);
1658 if (threshold_cpu_callback)
1659 threshold_cpu_callback(action, cpu);
1660 break;
1661 case CPU_DEAD:
1662 case CPU_DEAD_FROZEN:
1663 if (threshold_cpu_callback)
1664 threshold_cpu_callback(action, cpu);
1665 mce_remove_device(cpu);
1666 break;
1667 case CPU_DOWN_PREPARE:
1668 case CPU_DOWN_PREPARE_FROZEN:
1669 del_timer_sync(t);
1670 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
1671 break;
1672 case CPU_DOWN_FAILED:
1673 case CPU_DOWN_FAILED_FROZEN:
1674 t->expires = round_jiffies(jiffies +
1675 __get_cpu_var(next_interval));
1676 add_timer_on(t, cpu);
1677 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
1678 break;
1679 case CPU_POST_DEAD:
1680 /* intentionally ignoring frozen here */
1681 cmci_rediscover(cpu);
1682 break;
1683 }
1684 return NOTIFY_OK;
1685}
1686
1687static struct notifier_block mce_cpu_notifier __cpuinitdata = {
1688 .notifier_call = mce_cpu_callback,
1689};
1690
1691static __init int mce_init_banks(void)
1692{
1693 int i;
1694
1695 bank_attrs = kzalloc(sizeof(struct sysdev_attribute) * banks,
1696 GFP_KERNEL);
1697 if (!bank_attrs)
1698 return -ENOMEM;
1699
1700 for (i = 0; i < banks; i++) {
1701 struct sysdev_attribute *a = &bank_attrs[i];
1702
1703 a->attr.name = kasprintf(GFP_KERNEL, "bank%d", i);
1704 if (!a->attr.name)
1705 goto nomem;
1706
1707 a->attr.mode = 0644;
1708 a->show = show_bank;
1709 a->store = set_bank;
1710 }
1711 return 0;
1712
1713nomem:
1714 while (--i >= 0)
1715 kfree(bank_attrs[i].attr.name);
1716 kfree(bank_attrs);
1717 bank_attrs = NULL;
1718
1719 return -ENOMEM;
1720}
1721
1722static __init int mce_init_device(void)
1723{
1724 int err;
1725 int i = 0;
1726
1727 if (!mce_available(&boot_cpu_data))
1728 return -EIO;
1729
1730 alloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
1731
1732 err = mce_init_banks();
1733 if (err)
1734 return err;
1735
1736 err = sysdev_class_register(&mce_sysclass);
1737 if (err)
1738 return err;
1739
1740 for_each_online_cpu(i) {
1741 err = mce_create_device(i);
1742 if (err)
1743 return err;
1744 }
1745
1746 register_hotcpu_notifier(&mce_cpu_notifier);
1747 misc_register(&mce_log_device);
1748
1749 return err;
1750}
1751
1752device_initcall(mce_init_device);
1753
1754#else /* CONFIG_X86_OLD_MCE: */
1755
1756int nr_mce_banks;
1757EXPORT_SYMBOL_GPL(nr_mce_banks); /* non-fatal.o */
1758
1759/* This has to be run for each processor */
1760void mcheck_init(struct cpuinfo_x86 *c)
1761{
1762 if (mce_disabled == 1)
1763 return;
1764
1765 switch (c->x86_vendor) {
1766 case X86_VENDOR_AMD:
1767 amd_mcheck_init(c);
1768 break;
1769
1770 case X86_VENDOR_INTEL:
1771 if (c->x86 == 5)
1772 intel_p5_mcheck_init(c);
1773 if (c->x86 == 6)
1774 intel_p6_mcheck_init(c);
1775 if (c->x86 == 15)
1776 intel_p4_mcheck_init(c);
1777 break;
1778
1779 case X86_VENDOR_CENTAUR:
1780 if (c->x86 == 5)
1781 winchip_mcheck_init(c);
1782 break;
1783
1784 default:
1785 break;
1786 }
1787 printk(KERN_INFO "mce: CPU supports %d MCE banks\n", nr_mce_banks);
1788}
1789
1790static int __init mcheck_enable(char *str)
1791{
1792 mce_disabled = -1;
1793 return 1;
1794}
1795
1796__setup("mce", mcheck_enable);
1797
1798#endif /* CONFIG_X86_OLD_MCE */
1799
1800/*
1801 * Old style boot options parsing. Only for compatibility.
1802 */
1803static int __init mcheck_disable(char *str)
1804{
1805 mce_disabled = 1;
1806 return 1;
1807}
1808__setup("nomce", mcheck_disable);
This page took 0.03764 seconds and 5 git commands to generate.