x86/fpu: Pass 'struct fpu' to fpu__restore()
[deliverable/linux.git] / arch / x86 / kernel / traps.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 */
8
9/*
10 * Handle hardware traps and faults.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/context_tracking.h>
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
21#include <linux/kdebug.h>
22#include <linux/kgdb.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/ptrace.h>
26#include <linux/uprobes.h>
27#include <linux/string.h>
28#include <linux/delay.h>
29#include <linux/errno.h>
30#include <linux/kexec.h>
31#include <linux/sched.h>
32#include <linux/timer.h>
33#include <linux/init.h>
34#include <linux/bug.h>
35#include <linux/nmi.h>
36#include <linux/mm.h>
37#include <linux/smp.h>
38#include <linux/io.h>
39
40#ifdef CONFIG_EISA
41#include <linux/ioport.h>
42#include <linux/eisa.h>
43#endif
44
45#if defined(CONFIG_EDAC)
46#include <linux/edac.h>
47#endif
48
49#include <asm/kmemcheck.h>
50#include <asm/stacktrace.h>
51#include <asm/processor.h>
52#include <asm/debugreg.h>
53#include <linux/atomic.h>
54#include <asm/ftrace.h>
55#include <asm/traps.h>
56#include <asm/desc.h>
57#include <asm/fpu/internal.h>
58#include <asm/mce.h>
59#include <asm/fixmap.h>
60#include <asm/mach_traps.h>
61#include <asm/alternative.h>
62#include <asm/mpx.h>
63
64#ifdef CONFIG_X86_64
65#include <asm/x86_init.h>
66#include <asm/pgalloc.h>
67#include <asm/proto.h>
68
69/* No need to be aligned, but done to keep all IDTs defined the same way. */
70gate_desc debug_idt_table[NR_VECTORS] __page_aligned_bss;
71#else
72#include <asm/processor-flags.h>
73#include <asm/setup.h>
74
75asmlinkage int system_call(void);
76#endif
77
78/* Must be page-aligned because the real IDT is used in a fixmap. */
79gate_desc idt_table[NR_VECTORS] __page_aligned_bss;
80
81DECLARE_BITMAP(used_vectors, NR_VECTORS);
82EXPORT_SYMBOL_GPL(used_vectors);
83
84static inline void conditional_sti(struct pt_regs *regs)
85{
86 if (regs->flags & X86_EFLAGS_IF)
87 local_irq_enable();
88}
89
90static inline void preempt_conditional_sti(struct pt_regs *regs)
91{
92 preempt_count_inc();
93 if (regs->flags & X86_EFLAGS_IF)
94 local_irq_enable();
95}
96
97static inline void conditional_cli(struct pt_regs *regs)
98{
99 if (regs->flags & X86_EFLAGS_IF)
100 local_irq_disable();
101}
102
103static inline void preempt_conditional_cli(struct pt_regs *regs)
104{
105 if (regs->flags & X86_EFLAGS_IF)
106 local_irq_disable();
107 preempt_count_dec();
108}
109
110enum ctx_state ist_enter(struct pt_regs *regs)
111{
112 enum ctx_state prev_state;
113
114 if (user_mode(regs)) {
115 /* Other than that, we're just an exception. */
116 prev_state = exception_enter();
117 } else {
118 /*
119 * We might have interrupted pretty much anything. In
120 * fact, if we're a machine check, we can even interrupt
121 * NMI processing. We don't want in_nmi() to return true,
122 * but we need to notify RCU.
123 */
124 rcu_nmi_enter();
125 prev_state = CONTEXT_KERNEL; /* the value is irrelevant. */
126 }
127
128 /*
129 * We are atomic because we're on the IST stack (or we're on x86_32,
130 * in which case we still shouldn't schedule).
131 *
132 * This must be after exception_enter(), because exception_enter()
133 * won't do anything if in_interrupt() returns true.
134 */
135 preempt_count_add(HARDIRQ_OFFSET);
136
137 /* This code is a bit fragile. Test it. */
138 rcu_lockdep_assert(rcu_is_watching(), "ist_enter didn't work");
139
140 return prev_state;
141}
142
143void ist_exit(struct pt_regs *regs, enum ctx_state prev_state)
144{
145 /* Must be before exception_exit. */
146 preempt_count_sub(HARDIRQ_OFFSET);
147
148 if (user_mode(regs))
149 return exception_exit(prev_state);
150 else
151 rcu_nmi_exit();
152}
153
154/**
155 * ist_begin_non_atomic() - begin a non-atomic section in an IST exception
156 * @regs: regs passed to the IST exception handler
157 *
158 * IST exception handlers normally cannot schedule. As a special
159 * exception, if the exception interrupted userspace code (i.e.
160 * user_mode(regs) would return true) and the exception was not
161 * a double fault, it can be safe to schedule. ist_begin_non_atomic()
162 * begins a non-atomic section within an ist_enter()/ist_exit() region.
163 * Callers are responsible for enabling interrupts themselves inside
164 * the non-atomic section, and callers must call is_end_non_atomic()
165 * before ist_exit().
166 */
167void ist_begin_non_atomic(struct pt_regs *regs)
168{
169 BUG_ON(!user_mode(regs));
170
171 /*
172 * Sanity check: we need to be on the normal thread stack. This
173 * will catch asm bugs and any attempt to use ist_preempt_enable
174 * from double_fault.
175 */
176 BUG_ON((unsigned long)(current_top_of_stack() -
177 current_stack_pointer()) >= THREAD_SIZE);
178
179 preempt_count_sub(HARDIRQ_OFFSET);
180}
181
182/**
183 * ist_end_non_atomic() - begin a non-atomic section in an IST exception
184 *
185 * Ends a non-atomic section started with ist_begin_non_atomic().
186 */
187void ist_end_non_atomic(void)
188{
189 preempt_count_add(HARDIRQ_OFFSET);
190}
191
192static nokprobe_inline int
193do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str,
194 struct pt_regs *regs, long error_code)
195{
196 if (v8086_mode(regs)) {
197 /*
198 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
199 * On nmi (interrupt 2), do_trap should not be called.
200 */
201 if (trapnr < X86_TRAP_UD) {
202 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
203 error_code, trapnr))
204 return 0;
205 }
206 return -1;
207 }
208
209 if (!user_mode(regs)) {
210 if (!fixup_exception(regs)) {
211 tsk->thread.error_code = error_code;
212 tsk->thread.trap_nr = trapnr;
213 die(str, regs, error_code);
214 }
215 return 0;
216 }
217
218 return -1;
219}
220
221static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr,
222 siginfo_t *info)
223{
224 unsigned long siaddr;
225 int sicode;
226
227 switch (trapnr) {
228 default:
229 return SEND_SIG_PRIV;
230
231 case X86_TRAP_DE:
232 sicode = FPE_INTDIV;
233 siaddr = uprobe_get_trap_addr(regs);
234 break;
235 case X86_TRAP_UD:
236 sicode = ILL_ILLOPN;
237 siaddr = uprobe_get_trap_addr(regs);
238 break;
239 case X86_TRAP_AC:
240 sicode = BUS_ADRALN;
241 siaddr = 0;
242 break;
243 }
244
245 info->si_signo = signr;
246 info->si_errno = 0;
247 info->si_code = sicode;
248 info->si_addr = (void __user *)siaddr;
249 return info;
250}
251
252static void
253do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
254 long error_code, siginfo_t *info)
255{
256 struct task_struct *tsk = current;
257
258
259 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
260 return;
261 /*
262 * We want error_code and trap_nr set for userspace faults and
263 * kernelspace faults which result in die(), but not
264 * kernelspace faults which are fixed up. die() gives the
265 * process no chance to handle the signal and notice the
266 * kernel fault information, so that won't result in polluting
267 * the information about previously queued, but not yet
268 * delivered, faults. See also do_general_protection below.
269 */
270 tsk->thread.error_code = error_code;
271 tsk->thread.trap_nr = trapnr;
272
273#ifdef CONFIG_X86_64
274 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
275 printk_ratelimit()) {
276 pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx",
277 tsk->comm, tsk->pid, str,
278 regs->ip, regs->sp, error_code);
279 print_vma_addr(" in ", regs->ip);
280 pr_cont("\n");
281 }
282#endif
283
284 force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk);
285}
286NOKPROBE_SYMBOL(do_trap);
287
288static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
289 unsigned long trapnr, int signr)
290{
291 enum ctx_state prev_state = exception_enter();
292 siginfo_t info;
293
294 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
295 NOTIFY_STOP) {
296 conditional_sti(regs);
297 do_trap(trapnr, signr, str, regs, error_code,
298 fill_trap_info(regs, signr, trapnr, &info));
299 }
300
301 exception_exit(prev_state);
302}
303
304#define DO_ERROR(trapnr, signr, str, name) \
305dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \
306{ \
307 do_error_trap(regs, error_code, str, trapnr, signr); \
308}
309
310DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error)
311DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow)
312DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op)
313DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun)
314DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS)
315DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present)
316DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment)
317DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check)
318
319#ifdef CONFIG_X86_64
320/* Runs on IST stack */
321dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code)
322{
323 static const char str[] = "double fault";
324 struct task_struct *tsk = current;
325
326#ifdef CONFIG_X86_ESPFIX64
327 extern unsigned char native_irq_return_iret[];
328
329 /*
330 * If IRET takes a non-IST fault on the espfix64 stack, then we
331 * end up promoting it to a doublefault. In that case, modify
332 * the stack to make it look like we just entered the #GP
333 * handler from user space, similar to bad_iret.
334 *
335 * No need for ist_enter here because we don't use RCU.
336 */
337 if (((long)regs->sp >> PGDIR_SHIFT) == ESPFIX_PGD_ENTRY &&
338 regs->cs == __KERNEL_CS &&
339 regs->ip == (unsigned long)native_irq_return_iret)
340 {
341 struct pt_regs *normal_regs = task_pt_regs(current);
342
343 /* Fake a #GP(0) from userspace. */
344 memmove(&normal_regs->ip, (void *)regs->sp, 5*8);
345 normal_regs->orig_ax = 0; /* Missing (lost) #GP error code */
346 regs->ip = (unsigned long)general_protection;
347 regs->sp = (unsigned long)&normal_regs->orig_ax;
348
349 return;
350 }
351#endif
352
353 ist_enter(regs); /* Discard prev_state because we won't return. */
354 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
355
356 tsk->thread.error_code = error_code;
357 tsk->thread.trap_nr = X86_TRAP_DF;
358
359#ifdef CONFIG_DOUBLEFAULT
360 df_debug(regs, error_code);
361#endif
362 /*
363 * This is always a kernel trap and never fixable (and thus must
364 * never return).
365 */
366 for (;;)
367 die(str, regs, error_code);
368}
369#endif
370
371dotraplinkage void do_bounds(struct pt_regs *regs, long error_code)
372{
373 struct task_struct *tsk = current;
374 struct xregs_state *xsave_buf;
375 enum ctx_state prev_state;
376 struct bndcsr *bndcsr;
377 siginfo_t *info;
378
379 prev_state = exception_enter();
380 if (notify_die(DIE_TRAP, "bounds", regs, error_code,
381 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
382 goto exit;
383 conditional_sti(regs);
384
385 if (!user_mode(regs))
386 die("bounds", regs, error_code);
387
388 if (!cpu_feature_enabled(X86_FEATURE_MPX)) {
389 /* The exception is not from Intel MPX */
390 goto exit_trap;
391 }
392
393 /*
394 * We need to look at BNDSTATUS to resolve this exception.
395 * It is not directly accessible, though, so we need to
396 * do an xsave and then pull it out of the xsave buffer.
397 */
398 copy_fpregs_to_fpstate(&tsk->thread.fpu);
399 xsave_buf = &(tsk->thread.fpu.state.xsave);
400 bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
401 if (!bndcsr)
402 goto exit_trap;
403
404 /*
405 * The error code field of the BNDSTATUS register communicates status
406 * information of a bound range exception #BR or operation involving
407 * bound directory.
408 */
409 switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) {
410 case 2: /* Bound directory has invalid entry. */
411 if (mpx_handle_bd_fault(xsave_buf))
412 goto exit_trap;
413 break; /* Success, it was handled */
414 case 1: /* Bound violation. */
415 info = mpx_generate_siginfo(regs, xsave_buf);
416 if (IS_ERR(info)) {
417 /*
418 * We failed to decode the MPX instruction. Act as if
419 * the exception was not caused by MPX.
420 */
421 goto exit_trap;
422 }
423 /*
424 * Success, we decoded the instruction and retrieved
425 * an 'info' containing the address being accessed
426 * which caused the exception. This information
427 * allows and application to possibly handle the
428 * #BR exception itself.
429 */
430 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info);
431 kfree(info);
432 break;
433 case 0: /* No exception caused by Intel MPX operations. */
434 goto exit_trap;
435 default:
436 die("bounds", regs, error_code);
437 }
438
439exit:
440 exception_exit(prev_state);
441 return;
442exit_trap:
443 /*
444 * This path out is for all the cases where we could not
445 * handle the exception in some way (like allocating a
446 * table or telling userspace about it. We will also end
447 * up here if the kernel has MPX turned off at compile
448 * time..
449 */
450 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL);
451 exception_exit(prev_state);
452}
453
454dotraplinkage void
455do_general_protection(struct pt_regs *regs, long error_code)
456{
457 struct task_struct *tsk;
458 enum ctx_state prev_state;
459
460 prev_state = exception_enter();
461 conditional_sti(regs);
462
463 if (v8086_mode(regs)) {
464 local_irq_enable();
465 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
466 goto exit;
467 }
468
469 tsk = current;
470 if (!user_mode(regs)) {
471 if (fixup_exception(regs))
472 goto exit;
473
474 tsk->thread.error_code = error_code;
475 tsk->thread.trap_nr = X86_TRAP_GP;
476 if (notify_die(DIE_GPF, "general protection fault", regs, error_code,
477 X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP)
478 die("general protection fault", regs, error_code);
479 goto exit;
480 }
481
482 tsk->thread.error_code = error_code;
483 tsk->thread.trap_nr = X86_TRAP_GP;
484
485 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
486 printk_ratelimit()) {
487 pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx",
488 tsk->comm, task_pid_nr(tsk),
489 regs->ip, regs->sp, error_code);
490 print_vma_addr(" in ", regs->ip);
491 pr_cont("\n");
492 }
493
494 force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk);
495exit:
496 exception_exit(prev_state);
497}
498NOKPROBE_SYMBOL(do_general_protection);
499
500/* May run on IST stack. */
501dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
502{
503 enum ctx_state prev_state;
504
505#ifdef CONFIG_DYNAMIC_FTRACE
506 /*
507 * ftrace must be first, everything else may cause a recursive crash.
508 * See note by declaration of modifying_ftrace_code in ftrace.c
509 */
510 if (unlikely(atomic_read(&modifying_ftrace_code)) &&
511 ftrace_int3_handler(regs))
512 return;
513#endif
514 if (poke_int3_handler(regs))
515 return;
516
517 prev_state = ist_enter(regs);
518#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
519 if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
520 SIGTRAP) == NOTIFY_STOP)
521 goto exit;
522#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
523
524#ifdef CONFIG_KPROBES
525 if (kprobe_int3_handler(regs))
526 goto exit;
527#endif
528
529 if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
530 SIGTRAP) == NOTIFY_STOP)
531 goto exit;
532
533 /*
534 * Let others (NMI) know that the debug stack is in use
535 * as we may switch to the interrupt stack.
536 */
537 debug_stack_usage_inc();
538 preempt_conditional_sti(regs);
539 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL);
540 preempt_conditional_cli(regs);
541 debug_stack_usage_dec();
542exit:
543 ist_exit(regs, prev_state);
544}
545NOKPROBE_SYMBOL(do_int3);
546
547#ifdef CONFIG_X86_64
548/*
549 * Help handler running on IST stack to switch off the IST stack if the
550 * interrupted code was in user mode. The actual stack switch is done in
551 * entry_64.S
552 */
553asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs)
554{
555 struct pt_regs *regs = task_pt_regs(current);
556 *regs = *eregs;
557 return regs;
558}
559NOKPROBE_SYMBOL(sync_regs);
560
561struct bad_iret_stack {
562 void *error_entry_ret;
563 struct pt_regs regs;
564};
565
566asmlinkage __visible notrace
567struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
568{
569 /*
570 * This is called from entry_64.S early in handling a fault
571 * caused by a bad iret to user mode. To handle the fault
572 * correctly, we want move our stack frame to task_pt_regs
573 * and we want to pretend that the exception came from the
574 * iret target.
575 */
576 struct bad_iret_stack *new_stack =
577 container_of(task_pt_regs(current),
578 struct bad_iret_stack, regs);
579
580 /* Copy the IRET target to the new stack. */
581 memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8);
582
583 /* Copy the remainder of the stack from the current stack. */
584 memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip));
585
586 BUG_ON(!user_mode(&new_stack->regs));
587 return new_stack;
588}
589NOKPROBE_SYMBOL(fixup_bad_iret);
590#endif
591
592/*
593 * Our handling of the processor debug registers is non-trivial.
594 * We do not clear them on entry and exit from the kernel. Therefore
595 * it is possible to get a watchpoint trap here from inside the kernel.
596 * However, the code in ./ptrace.c has ensured that the user can
597 * only set watchpoints on userspace addresses. Therefore the in-kernel
598 * watchpoint trap can only occur in code which is reading/writing
599 * from user space. Such code must not hold kernel locks (since it
600 * can equally take a page fault), therefore it is safe to call
601 * force_sig_info even though that claims and releases locks.
602 *
603 * Code in ./signal.c ensures that the debug control register
604 * is restored before we deliver any signal, and therefore that
605 * user code runs with the correct debug control register even though
606 * we clear it here.
607 *
608 * Being careful here means that we don't have to be as careful in a
609 * lot of more complicated places (task switching can be a bit lazy
610 * about restoring all the debug state, and ptrace doesn't have to
611 * find every occurrence of the TF bit that could be saved away even
612 * by user code)
613 *
614 * May run on IST stack.
615 */
616dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
617{
618 struct task_struct *tsk = current;
619 enum ctx_state prev_state;
620 int user_icebp = 0;
621 unsigned long dr6;
622 int si_code;
623
624 prev_state = ist_enter(regs);
625
626 get_debugreg(dr6, 6);
627
628 /* Filter out all the reserved bits which are preset to 1 */
629 dr6 &= ~DR6_RESERVED;
630
631 /*
632 * If dr6 has no reason to give us about the origin of this trap,
633 * then it's very likely the result of an icebp/int01 trap.
634 * User wants a sigtrap for that.
635 */
636 if (!dr6 && user_mode(regs))
637 user_icebp = 1;
638
639 /* Catch kmemcheck conditions first of all! */
640 if ((dr6 & DR_STEP) && kmemcheck_trap(regs))
641 goto exit;
642
643 /* DR6 may or may not be cleared by the CPU */
644 set_debugreg(0, 6);
645
646 /*
647 * The processor cleared BTF, so don't mark that we need it set.
648 */
649 clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP);
650
651 /* Store the virtualized DR6 value */
652 tsk->thread.debugreg6 = dr6;
653
654#ifdef CONFIG_KPROBES
655 if (kprobe_debug_handler(regs))
656 goto exit;
657#endif
658
659 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code,
660 SIGTRAP) == NOTIFY_STOP)
661 goto exit;
662
663 /*
664 * Let others (NMI) know that the debug stack is in use
665 * as we may switch to the interrupt stack.
666 */
667 debug_stack_usage_inc();
668
669 /* It's safe to allow irq's after DR6 has been saved */
670 preempt_conditional_sti(regs);
671
672 if (v8086_mode(regs)) {
673 handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code,
674 X86_TRAP_DB);
675 preempt_conditional_cli(regs);
676 debug_stack_usage_dec();
677 goto exit;
678 }
679
680 /*
681 * Single-stepping through system calls: ignore any exceptions in
682 * kernel space, but re-enable TF when returning to user mode.
683 *
684 * We already checked v86 mode above, so we can check for kernel mode
685 * by just checking the CPL of CS.
686 */
687 if ((dr6 & DR_STEP) && !user_mode(regs)) {
688 tsk->thread.debugreg6 &= ~DR_STEP;
689 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
690 regs->flags &= ~X86_EFLAGS_TF;
691 }
692 si_code = get_si_code(tsk->thread.debugreg6);
693 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
694 send_sigtrap(tsk, regs, error_code, si_code);
695 preempt_conditional_cli(regs);
696 debug_stack_usage_dec();
697
698exit:
699 ist_exit(regs, prev_state);
700}
701NOKPROBE_SYMBOL(do_debug);
702
703/*
704 * Note that we play around with the 'TS' bit in an attempt to get
705 * the correct behaviour even in the presence of the asynchronous
706 * IRQ13 behaviour
707 */
708static void math_error(struct pt_regs *regs, int error_code, int trapnr)
709{
710 struct task_struct *task = current;
711 struct fpu *fpu = &task->thread.fpu;
712 siginfo_t info;
713 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
714 "simd exception";
715
716 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP)
717 return;
718 conditional_sti(regs);
719
720 if (!user_mode(regs)) {
721 if (!fixup_exception(regs)) {
722 task->thread.error_code = error_code;
723 task->thread.trap_nr = trapnr;
724 die(str, regs, error_code);
725 }
726 return;
727 }
728
729 /*
730 * Save the info for the exception handler and clear the error.
731 */
732 fpu__save(fpu);
733
734 task->thread.trap_nr = trapnr;
735 task->thread.error_code = error_code;
736 info.si_signo = SIGFPE;
737 info.si_errno = 0;
738 info.si_addr = (void __user *)uprobe_get_trap_addr(regs);
739
740 info.si_code = fpu__exception_code(fpu, trapnr);
741
742 /* Retry when we get spurious exceptions: */
743 if (!info.si_code)
744 return;
745
746 force_sig_info(SIGFPE, &info, task);
747}
748
749dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code)
750{
751 enum ctx_state prev_state;
752
753 prev_state = exception_enter();
754 math_error(regs, error_code, X86_TRAP_MF);
755 exception_exit(prev_state);
756}
757
758dotraplinkage void
759do_simd_coprocessor_error(struct pt_regs *regs, long error_code)
760{
761 enum ctx_state prev_state;
762
763 prev_state = exception_enter();
764 math_error(regs, error_code, X86_TRAP_XF);
765 exception_exit(prev_state);
766}
767
768dotraplinkage void
769do_spurious_interrupt_bug(struct pt_regs *regs, long error_code)
770{
771 conditional_sti(regs);
772#if 0
773 /* No need to warn about this any longer. */
774 pr_info("Ignoring P6 Local APIC Spurious Interrupt Bug...\n");
775#endif
776}
777
778asmlinkage __visible void __attribute__((weak)) smp_thermal_interrupt(void)
779{
780}
781
782asmlinkage __visible void __attribute__((weak)) smp_threshold_interrupt(void)
783{
784}
785
786dotraplinkage void
787do_device_not_available(struct pt_regs *regs, long error_code)
788{
789 enum ctx_state prev_state;
790
791 prev_state = exception_enter();
792 BUG_ON(use_eager_fpu());
793
794#ifdef CONFIG_MATH_EMULATION
795 if (read_cr0() & X86_CR0_EM) {
796 struct math_emu_info info = { };
797
798 conditional_sti(regs);
799
800 info.regs = regs;
801 math_emulate(&info);
802 exception_exit(prev_state);
803 return;
804 }
805#endif
806 fpu__restore(&current->thread.fpu); /* interrupts still off */
807#ifdef CONFIG_X86_32
808 conditional_sti(regs);
809#endif
810 exception_exit(prev_state);
811}
812NOKPROBE_SYMBOL(do_device_not_available);
813
814#ifdef CONFIG_X86_32
815dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code)
816{
817 siginfo_t info;
818 enum ctx_state prev_state;
819
820 prev_state = exception_enter();
821 local_irq_enable();
822
823 info.si_signo = SIGILL;
824 info.si_errno = 0;
825 info.si_code = ILL_BADSTK;
826 info.si_addr = NULL;
827 if (notify_die(DIE_TRAP, "iret exception", regs, error_code,
828 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
829 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code,
830 &info);
831 }
832 exception_exit(prev_state);
833}
834#endif
835
836/* Set of traps needed for early debugging. */
837void __init early_trap_init(void)
838{
839 /*
840 * Don't use IST to set DEBUG_STACK as it doesn't work until TSS
841 * is ready in cpu_init() <-- trap_init(). Before trap_init(),
842 * CPU runs at ring 0 so it is impossible to hit an invalid
843 * stack. Using the original stack works well enough at this
844 * early stage. DEBUG_STACK will be equipped after cpu_init() in
845 * trap_init().
846 *
847 * We don't need to set trace_idt_table like set_intr_gate(),
848 * since we don't have trace_debug and it will be reset to
849 * 'debug' in trap_init() by set_intr_gate_ist().
850 */
851 set_intr_gate_notrace(X86_TRAP_DB, debug);
852 /* int3 can be called from all */
853 set_system_intr_gate(X86_TRAP_BP, &int3);
854#ifdef CONFIG_X86_32
855 set_intr_gate(X86_TRAP_PF, page_fault);
856#endif
857 load_idt(&idt_descr);
858}
859
860void __init early_trap_pf_init(void)
861{
862#ifdef CONFIG_X86_64
863 set_intr_gate(X86_TRAP_PF, page_fault);
864#endif
865}
866
867void __init trap_init(void)
868{
869 int i;
870
871#ifdef CONFIG_EISA
872 void __iomem *p = early_ioremap(0x0FFFD9, 4);
873
874 if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24))
875 EISA_bus = 1;
876 early_iounmap(p, 4);
877#endif
878
879 set_intr_gate(X86_TRAP_DE, divide_error);
880 set_intr_gate_ist(X86_TRAP_NMI, &nmi, NMI_STACK);
881 /* int4 can be called from all */
882 set_system_intr_gate(X86_TRAP_OF, &overflow);
883 set_intr_gate(X86_TRAP_BR, bounds);
884 set_intr_gate(X86_TRAP_UD, invalid_op);
885 set_intr_gate(X86_TRAP_NM, device_not_available);
886#ifdef CONFIG_X86_32
887 set_task_gate(X86_TRAP_DF, GDT_ENTRY_DOUBLEFAULT_TSS);
888#else
889 set_intr_gate_ist(X86_TRAP_DF, &double_fault, DOUBLEFAULT_STACK);
890#endif
891 set_intr_gate(X86_TRAP_OLD_MF, coprocessor_segment_overrun);
892 set_intr_gate(X86_TRAP_TS, invalid_TSS);
893 set_intr_gate(X86_TRAP_NP, segment_not_present);
894 set_intr_gate(X86_TRAP_SS, stack_segment);
895 set_intr_gate(X86_TRAP_GP, general_protection);
896 set_intr_gate(X86_TRAP_SPURIOUS, spurious_interrupt_bug);
897 set_intr_gate(X86_TRAP_MF, coprocessor_error);
898 set_intr_gate(X86_TRAP_AC, alignment_check);
899#ifdef CONFIG_X86_MCE
900 set_intr_gate_ist(X86_TRAP_MC, &machine_check, MCE_STACK);
901#endif
902 set_intr_gate(X86_TRAP_XF, simd_coprocessor_error);
903
904 /* Reserve all the builtin and the syscall vector: */
905 for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++)
906 set_bit(i, used_vectors);
907
908#ifdef CONFIG_IA32_EMULATION
909 set_system_intr_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
910 set_bit(IA32_SYSCALL_VECTOR, used_vectors);
911#endif
912
913#ifdef CONFIG_X86_32
914 set_system_trap_gate(SYSCALL_VECTOR, &system_call);
915 set_bit(SYSCALL_VECTOR, used_vectors);
916#endif
917
918 /*
919 * Set the IDT descriptor to a fixed read-only location, so that the
920 * "sidt" instruction will not leak the location of the kernel, and
921 * to defend the IDT against arbitrary memory write vulnerabilities.
922 * It will be reloaded in cpu_init() */
923 __set_fixmap(FIX_RO_IDT, __pa_symbol(idt_table), PAGE_KERNEL_RO);
924 idt_descr.address = fix_to_virt(FIX_RO_IDT);
925
926 /*
927 * Should be a barrier for any external CPU state:
928 */
929 cpu_init();
930
931 /*
932 * X86_TRAP_DB and X86_TRAP_BP have been set
933 * in early_trap_init(). However, ITS works only after
934 * cpu_init() loads TSS. See comments in early_trap_init().
935 */
936 set_intr_gate_ist(X86_TRAP_DB, &debug, DEBUG_STACK);
937 /* int3 can be called from all */
938 set_system_intr_gate_ist(X86_TRAP_BP, &int3, DEBUG_STACK);
939
940 x86_init.irqs.trap_init();
941
942#ifdef CONFIG_X86_64
943 memcpy(&debug_idt_table, &idt_table, IDT_ENTRIES * 16);
944 set_nmi_gate(X86_TRAP_DB, &debug);
945 set_nmi_gate(X86_TRAP_BP, &int3);
946#endif
947}
This page took 0.026411 seconds and 5 git commands to generate.