KVM: Disable vapic support on Intel machines with FlexPriority
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 *
11 * Authors:
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Avi Kivity <avi@qumranet.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 *
18 */
19
20#include "vmx.h"
21#include "mmu.h"
22
23#include <linux/kvm_host.h>
24#include <linux/types.h>
25#include <linux/string.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/module.h>
29#include <linux/swap.h>
30
31#include <asm/page.h>
32#include <asm/cmpxchg.h>
33#include <asm/io.h>
34
35#undef MMU_DEBUG
36
37#undef AUDIT
38
39#ifdef AUDIT
40static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
41#else
42static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
43#endif
44
45#ifdef MMU_DEBUG
46
47#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
48#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
49
50#else
51
52#define pgprintk(x...) do { } while (0)
53#define rmap_printk(x...) do { } while (0)
54
55#endif
56
57#if defined(MMU_DEBUG) || defined(AUDIT)
58static int dbg = 1;
59#endif
60
61#ifndef MMU_DEBUG
62#define ASSERT(x) do { } while (0)
63#else
64#define ASSERT(x) \
65 if (!(x)) { \
66 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
67 __FILE__, __LINE__, #x); \
68 }
69#endif
70
71#define PT64_PT_BITS 9
72#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
73#define PT32_PT_BITS 10
74#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
75
76#define PT_WRITABLE_SHIFT 1
77
78#define PT_PRESENT_MASK (1ULL << 0)
79#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
80#define PT_USER_MASK (1ULL << 2)
81#define PT_PWT_MASK (1ULL << 3)
82#define PT_PCD_MASK (1ULL << 4)
83#define PT_ACCESSED_MASK (1ULL << 5)
84#define PT_DIRTY_MASK (1ULL << 6)
85#define PT_PAGE_SIZE_MASK (1ULL << 7)
86#define PT_PAT_MASK (1ULL << 7)
87#define PT_GLOBAL_MASK (1ULL << 8)
88#define PT64_NX_SHIFT 63
89#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
90
91#define PT_PAT_SHIFT 7
92#define PT_DIR_PAT_SHIFT 12
93#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
94
95#define PT32_DIR_PSE36_SIZE 4
96#define PT32_DIR_PSE36_SHIFT 13
97#define PT32_DIR_PSE36_MASK \
98 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
99
100
101#define PT_FIRST_AVAIL_BITS_SHIFT 9
102#define PT64_SECOND_AVAIL_BITS_SHIFT 52
103
104#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
105
106#define VALID_PAGE(x) ((x) != INVALID_PAGE)
107
108#define PT64_LEVEL_BITS 9
109
110#define PT64_LEVEL_SHIFT(level) \
111 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
112
113#define PT64_LEVEL_MASK(level) \
114 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
115
116#define PT64_INDEX(address, level)\
117 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
118
119
120#define PT32_LEVEL_BITS 10
121
122#define PT32_LEVEL_SHIFT(level) \
123 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
124
125#define PT32_LEVEL_MASK(level) \
126 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
127
128#define PT32_INDEX(address, level)\
129 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
130
131
132#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
133#define PT64_DIR_BASE_ADDR_MASK \
134 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
135
136#define PT32_BASE_ADDR_MASK PAGE_MASK
137#define PT32_DIR_BASE_ADDR_MASK \
138 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
139
140#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
141 | PT64_NX_MASK)
142
143#define PFERR_PRESENT_MASK (1U << 0)
144#define PFERR_WRITE_MASK (1U << 1)
145#define PFERR_USER_MASK (1U << 2)
146#define PFERR_FETCH_MASK (1U << 4)
147
148#define PT64_ROOT_LEVEL 4
149#define PT32_ROOT_LEVEL 2
150#define PT32E_ROOT_LEVEL 3
151
152#define PT_DIRECTORY_LEVEL 2
153#define PT_PAGE_TABLE_LEVEL 1
154
155#define RMAP_EXT 4
156
157#define ACC_EXEC_MASK 1
158#define ACC_WRITE_MASK PT_WRITABLE_MASK
159#define ACC_USER_MASK PT_USER_MASK
160#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
161
162struct kvm_rmap_desc {
163 u64 *shadow_ptes[RMAP_EXT];
164 struct kvm_rmap_desc *more;
165};
166
167static struct kmem_cache *pte_chain_cache;
168static struct kmem_cache *rmap_desc_cache;
169static struct kmem_cache *mmu_page_header_cache;
170
171static u64 __read_mostly shadow_trap_nonpresent_pte;
172static u64 __read_mostly shadow_notrap_nonpresent_pte;
173
174void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
175{
176 shadow_trap_nonpresent_pte = trap_pte;
177 shadow_notrap_nonpresent_pte = notrap_pte;
178}
179EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
180
181static int is_write_protection(struct kvm_vcpu *vcpu)
182{
183 return vcpu->arch.cr0 & X86_CR0_WP;
184}
185
186static int is_cpuid_PSE36(void)
187{
188 return 1;
189}
190
191static int is_nx(struct kvm_vcpu *vcpu)
192{
193 return vcpu->arch.shadow_efer & EFER_NX;
194}
195
196static int is_present_pte(unsigned long pte)
197{
198 return pte & PT_PRESENT_MASK;
199}
200
201static int is_shadow_present_pte(u64 pte)
202{
203 pte &= ~PT_SHADOW_IO_MARK;
204 return pte != shadow_trap_nonpresent_pte
205 && pte != shadow_notrap_nonpresent_pte;
206}
207
208static int is_writeble_pte(unsigned long pte)
209{
210 return pte & PT_WRITABLE_MASK;
211}
212
213static int is_dirty_pte(unsigned long pte)
214{
215 return pte & PT_DIRTY_MASK;
216}
217
218static int is_io_pte(unsigned long pte)
219{
220 return pte & PT_SHADOW_IO_MARK;
221}
222
223static int is_rmap_pte(u64 pte)
224{
225 return pte != shadow_trap_nonpresent_pte
226 && pte != shadow_notrap_nonpresent_pte;
227}
228
229static gfn_t pse36_gfn_delta(u32 gpte)
230{
231 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
232
233 return (gpte & PT32_DIR_PSE36_MASK) << shift;
234}
235
236static void set_shadow_pte(u64 *sptep, u64 spte)
237{
238#ifdef CONFIG_X86_64
239 set_64bit((unsigned long *)sptep, spte);
240#else
241 set_64bit((unsigned long long *)sptep, spte);
242#endif
243}
244
245static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
246 struct kmem_cache *base_cache, int min)
247{
248 void *obj;
249
250 if (cache->nobjs >= min)
251 return 0;
252 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
253 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
254 if (!obj)
255 return -ENOMEM;
256 cache->objects[cache->nobjs++] = obj;
257 }
258 return 0;
259}
260
261static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
262{
263 while (mc->nobjs)
264 kfree(mc->objects[--mc->nobjs]);
265}
266
267static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
268 int min)
269{
270 struct page *page;
271
272 if (cache->nobjs >= min)
273 return 0;
274 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
275 page = alloc_page(GFP_KERNEL);
276 if (!page)
277 return -ENOMEM;
278 set_page_private(page, 0);
279 cache->objects[cache->nobjs++] = page_address(page);
280 }
281 return 0;
282}
283
284static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
285{
286 while (mc->nobjs)
287 free_page((unsigned long)mc->objects[--mc->nobjs]);
288}
289
290static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
291{
292 int r;
293
294 kvm_mmu_free_some_pages(vcpu);
295 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
296 pte_chain_cache, 4);
297 if (r)
298 goto out;
299 r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
300 rmap_desc_cache, 1);
301 if (r)
302 goto out;
303 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
304 if (r)
305 goto out;
306 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
307 mmu_page_header_cache, 4);
308out:
309 return r;
310}
311
312static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
313{
314 mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
315 mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
316 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
317 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
318}
319
320static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
321 size_t size)
322{
323 void *p;
324
325 BUG_ON(!mc->nobjs);
326 p = mc->objects[--mc->nobjs];
327 memset(p, 0, size);
328 return p;
329}
330
331static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
332{
333 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
334 sizeof(struct kvm_pte_chain));
335}
336
337static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
338{
339 kfree(pc);
340}
341
342static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
343{
344 return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
345 sizeof(struct kvm_rmap_desc));
346}
347
348static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
349{
350 kfree(rd);
351}
352
353/*
354 * Take gfn and return the reverse mapping to it.
355 * Note: gfn must be unaliased before this function get called
356 */
357
358static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
359{
360 struct kvm_memory_slot *slot;
361
362 slot = gfn_to_memslot(kvm, gfn);
363 return &slot->rmap[gfn - slot->base_gfn];
364}
365
366/*
367 * Reverse mapping data structures:
368 *
369 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
370 * that points to page_address(page).
371 *
372 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
373 * containing more mappings.
374 */
375static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
376{
377 struct kvm_mmu_page *sp;
378 struct kvm_rmap_desc *desc;
379 unsigned long *rmapp;
380 int i;
381
382 if (!is_rmap_pte(*spte))
383 return;
384 gfn = unalias_gfn(vcpu->kvm, gfn);
385 sp = page_header(__pa(spte));
386 sp->gfns[spte - sp->spt] = gfn;
387 rmapp = gfn_to_rmap(vcpu->kvm, gfn);
388 if (!*rmapp) {
389 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
390 *rmapp = (unsigned long)spte;
391 } else if (!(*rmapp & 1)) {
392 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
393 desc = mmu_alloc_rmap_desc(vcpu);
394 desc->shadow_ptes[0] = (u64 *)*rmapp;
395 desc->shadow_ptes[1] = spte;
396 *rmapp = (unsigned long)desc | 1;
397 } else {
398 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
399 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
400 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
401 desc = desc->more;
402 if (desc->shadow_ptes[RMAP_EXT-1]) {
403 desc->more = mmu_alloc_rmap_desc(vcpu);
404 desc = desc->more;
405 }
406 for (i = 0; desc->shadow_ptes[i]; ++i)
407 ;
408 desc->shadow_ptes[i] = spte;
409 }
410}
411
412static void rmap_desc_remove_entry(unsigned long *rmapp,
413 struct kvm_rmap_desc *desc,
414 int i,
415 struct kvm_rmap_desc *prev_desc)
416{
417 int j;
418
419 for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
420 ;
421 desc->shadow_ptes[i] = desc->shadow_ptes[j];
422 desc->shadow_ptes[j] = NULL;
423 if (j != 0)
424 return;
425 if (!prev_desc && !desc->more)
426 *rmapp = (unsigned long)desc->shadow_ptes[0];
427 else
428 if (prev_desc)
429 prev_desc->more = desc->more;
430 else
431 *rmapp = (unsigned long)desc->more | 1;
432 mmu_free_rmap_desc(desc);
433}
434
435static void rmap_remove(struct kvm *kvm, u64 *spte)
436{
437 struct kvm_rmap_desc *desc;
438 struct kvm_rmap_desc *prev_desc;
439 struct kvm_mmu_page *sp;
440 struct page *page;
441 unsigned long *rmapp;
442 int i;
443
444 if (!is_rmap_pte(*spte))
445 return;
446 sp = page_header(__pa(spte));
447 page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
448 mark_page_accessed(page);
449 if (is_writeble_pte(*spte))
450 kvm_release_page_dirty(page);
451 else
452 kvm_release_page_clean(page);
453 rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
454 if (!*rmapp) {
455 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
456 BUG();
457 } else if (!(*rmapp & 1)) {
458 rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
459 if ((u64 *)*rmapp != spte) {
460 printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
461 spte, *spte);
462 BUG();
463 }
464 *rmapp = 0;
465 } else {
466 rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
467 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
468 prev_desc = NULL;
469 while (desc) {
470 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
471 if (desc->shadow_ptes[i] == spte) {
472 rmap_desc_remove_entry(rmapp,
473 desc, i,
474 prev_desc);
475 return;
476 }
477 prev_desc = desc;
478 desc = desc->more;
479 }
480 BUG();
481 }
482}
483
484static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
485{
486 struct kvm_rmap_desc *desc;
487 struct kvm_rmap_desc *prev_desc;
488 u64 *prev_spte;
489 int i;
490
491 if (!*rmapp)
492 return NULL;
493 else if (!(*rmapp & 1)) {
494 if (!spte)
495 return (u64 *)*rmapp;
496 return NULL;
497 }
498 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
499 prev_desc = NULL;
500 prev_spte = NULL;
501 while (desc) {
502 for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
503 if (prev_spte == spte)
504 return desc->shadow_ptes[i];
505 prev_spte = desc->shadow_ptes[i];
506 }
507 desc = desc->more;
508 }
509 return NULL;
510}
511
512static void rmap_write_protect(struct kvm *kvm, u64 gfn)
513{
514 unsigned long *rmapp;
515 u64 *spte;
516 int write_protected = 0;
517
518 gfn = unalias_gfn(kvm, gfn);
519 rmapp = gfn_to_rmap(kvm, gfn);
520
521 spte = rmap_next(kvm, rmapp, NULL);
522 while (spte) {
523 BUG_ON(!spte);
524 BUG_ON(!(*spte & PT_PRESENT_MASK));
525 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
526 if (is_writeble_pte(*spte)) {
527 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
528 write_protected = 1;
529 }
530 spte = rmap_next(kvm, rmapp, spte);
531 }
532 if (write_protected)
533 kvm_flush_remote_tlbs(kvm);
534}
535
536#ifdef MMU_DEBUG
537static int is_empty_shadow_page(u64 *spt)
538{
539 u64 *pos;
540 u64 *end;
541
542 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
543 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
544 printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
545 pos, *pos);
546 return 0;
547 }
548 return 1;
549}
550#endif
551
552static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
553{
554 ASSERT(is_empty_shadow_page(sp->spt));
555 list_del(&sp->link);
556 __free_page(virt_to_page(sp->spt));
557 __free_page(virt_to_page(sp->gfns));
558 kfree(sp);
559 ++kvm->arch.n_free_mmu_pages;
560}
561
562static unsigned kvm_page_table_hashfn(gfn_t gfn)
563{
564 return gfn;
565}
566
567static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
568 u64 *parent_pte)
569{
570 struct kvm_mmu_page *sp;
571
572 if (!vcpu->kvm->arch.n_free_mmu_pages)
573 return NULL;
574
575 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
576 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
577 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
578 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
579 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
580 ASSERT(is_empty_shadow_page(sp->spt));
581 sp->slot_bitmap = 0;
582 sp->multimapped = 0;
583 sp->parent_pte = parent_pte;
584 --vcpu->kvm->arch.n_free_mmu_pages;
585 return sp;
586}
587
588static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
589 struct kvm_mmu_page *sp, u64 *parent_pte)
590{
591 struct kvm_pte_chain *pte_chain;
592 struct hlist_node *node;
593 int i;
594
595 if (!parent_pte)
596 return;
597 if (!sp->multimapped) {
598 u64 *old = sp->parent_pte;
599
600 if (!old) {
601 sp->parent_pte = parent_pte;
602 return;
603 }
604 sp->multimapped = 1;
605 pte_chain = mmu_alloc_pte_chain(vcpu);
606 INIT_HLIST_HEAD(&sp->parent_ptes);
607 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
608 pte_chain->parent_ptes[0] = old;
609 }
610 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
611 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
612 continue;
613 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
614 if (!pte_chain->parent_ptes[i]) {
615 pte_chain->parent_ptes[i] = parent_pte;
616 return;
617 }
618 }
619 pte_chain = mmu_alloc_pte_chain(vcpu);
620 BUG_ON(!pte_chain);
621 hlist_add_head(&pte_chain->link, &sp->parent_ptes);
622 pte_chain->parent_ptes[0] = parent_pte;
623}
624
625static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
626 u64 *parent_pte)
627{
628 struct kvm_pte_chain *pte_chain;
629 struct hlist_node *node;
630 int i;
631
632 if (!sp->multimapped) {
633 BUG_ON(sp->parent_pte != parent_pte);
634 sp->parent_pte = NULL;
635 return;
636 }
637 hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
638 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
639 if (!pte_chain->parent_ptes[i])
640 break;
641 if (pte_chain->parent_ptes[i] != parent_pte)
642 continue;
643 while (i + 1 < NR_PTE_CHAIN_ENTRIES
644 && pte_chain->parent_ptes[i + 1]) {
645 pte_chain->parent_ptes[i]
646 = pte_chain->parent_ptes[i + 1];
647 ++i;
648 }
649 pte_chain->parent_ptes[i] = NULL;
650 if (i == 0) {
651 hlist_del(&pte_chain->link);
652 mmu_free_pte_chain(pte_chain);
653 if (hlist_empty(&sp->parent_ptes)) {
654 sp->multimapped = 0;
655 sp->parent_pte = NULL;
656 }
657 }
658 return;
659 }
660 BUG();
661}
662
663static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
664{
665 unsigned index;
666 struct hlist_head *bucket;
667 struct kvm_mmu_page *sp;
668 struct hlist_node *node;
669
670 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
671 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
672 bucket = &kvm->arch.mmu_page_hash[index];
673 hlist_for_each_entry(sp, node, bucket, hash_link)
674 if (sp->gfn == gfn && !sp->role.metaphysical) {
675 pgprintk("%s: found role %x\n",
676 __FUNCTION__, sp->role.word);
677 return sp;
678 }
679 return NULL;
680}
681
682static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
683 gfn_t gfn,
684 gva_t gaddr,
685 unsigned level,
686 int metaphysical,
687 unsigned access,
688 u64 *parent_pte,
689 bool *new_page)
690{
691 union kvm_mmu_page_role role;
692 unsigned index;
693 unsigned quadrant;
694 struct hlist_head *bucket;
695 struct kvm_mmu_page *sp;
696 struct hlist_node *node;
697
698 role.word = 0;
699 role.glevels = vcpu->arch.mmu.root_level;
700 role.level = level;
701 role.metaphysical = metaphysical;
702 role.access = access;
703 if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
704 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
705 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
706 role.quadrant = quadrant;
707 }
708 pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
709 gfn, role.word);
710 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
711 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
712 hlist_for_each_entry(sp, node, bucket, hash_link)
713 if (sp->gfn == gfn && sp->role.word == role.word) {
714 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
715 pgprintk("%s: found\n", __FUNCTION__);
716 return sp;
717 }
718 ++vcpu->kvm->stat.mmu_cache_miss;
719 sp = kvm_mmu_alloc_page(vcpu, parent_pte);
720 if (!sp)
721 return sp;
722 pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
723 sp->gfn = gfn;
724 sp->role = role;
725 hlist_add_head(&sp->hash_link, bucket);
726 vcpu->arch.mmu.prefetch_page(vcpu, sp);
727 if (!metaphysical)
728 rmap_write_protect(vcpu->kvm, gfn);
729 if (new_page)
730 *new_page = 1;
731 return sp;
732}
733
734static void kvm_mmu_page_unlink_children(struct kvm *kvm,
735 struct kvm_mmu_page *sp)
736{
737 unsigned i;
738 u64 *pt;
739 u64 ent;
740
741 pt = sp->spt;
742
743 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
744 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
745 if (is_shadow_present_pte(pt[i]))
746 rmap_remove(kvm, &pt[i]);
747 pt[i] = shadow_trap_nonpresent_pte;
748 }
749 kvm_flush_remote_tlbs(kvm);
750 return;
751 }
752
753 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
754 ent = pt[i];
755
756 pt[i] = shadow_trap_nonpresent_pte;
757 if (!is_shadow_present_pte(ent))
758 continue;
759 ent &= PT64_BASE_ADDR_MASK;
760 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
761 }
762 kvm_flush_remote_tlbs(kvm);
763}
764
765static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
766{
767 mmu_page_remove_parent_pte(sp, parent_pte);
768}
769
770static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
771{
772 int i;
773
774 for (i = 0; i < KVM_MAX_VCPUS; ++i)
775 if (kvm->vcpus[i])
776 kvm->vcpus[i]->arch.last_pte_updated = NULL;
777}
778
779static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780{
781 u64 *parent_pte;
782
783 ++kvm->stat.mmu_shadow_zapped;
784 while (sp->multimapped || sp->parent_pte) {
785 if (!sp->multimapped)
786 parent_pte = sp->parent_pte;
787 else {
788 struct kvm_pte_chain *chain;
789
790 chain = container_of(sp->parent_ptes.first,
791 struct kvm_pte_chain, link);
792 parent_pte = chain->parent_ptes[0];
793 }
794 BUG_ON(!parent_pte);
795 kvm_mmu_put_page(sp, parent_pte);
796 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
797 }
798 kvm_mmu_page_unlink_children(kvm, sp);
799 if (!sp->root_count) {
800 hlist_del(&sp->hash_link);
801 kvm_mmu_free_page(kvm, sp);
802 } else
803 list_move(&sp->link, &kvm->arch.active_mmu_pages);
804 kvm_mmu_reset_last_pte_updated(kvm);
805}
806
807/*
808 * Changing the number of mmu pages allocated to the vm
809 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
810 */
811void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
812{
813 /*
814 * If we set the number of mmu pages to be smaller be than the
815 * number of actived pages , we must to free some mmu pages before we
816 * change the value
817 */
818
819 if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
820 kvm_nr_mmu_pages) {
821 int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
822 - kvm->arch.n_free_mmu_pages;
823
824 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
825 struct kvm_mmu_page *page;
826
827 page = container_of(kvm->arch.active_mmu_pages.prev,
828 struct kvm_mmu_page, link);
829 kvm_mmu_zap_page(kvm, page);
830 n_used_mmu_pages--;
831 }
832 kvm->arch.n_free_mmu_pages = 0;
833 }
834 else
835 kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
836 - kvm->arch.n_alloc_mmu_pages;
837
838 kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
839}
840
841static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
842{
843 unsigned index;
844 struct hlist_head *bucket;
845 struct kvm_mmu_page *sp;
846 struct hlist_node *node, *n;
847 int r;
848
849 pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
850 r = 0;
851 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
852 bucket = &kvm->arch.mmu_page_hash[index];
853 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
854 if (sp->gfn == gfn && !sp->role.metaphysical) {
855 pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
856 sp->role.word);
857 kvm_mmu_zap_page(kvm, sp);
858 r = 1;
859 }
860 return r;
861}
862
863static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
864{
865 struct kvm_mmu_page *sp;
866
867 while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
868 pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
869 kvm_mmu_zap_page(kvm, sp);
870 }
871}
872
873static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
874{
875 int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
876 struct kvm_mmu_page *sp = page_header(__pa(pte));
877
878 __set_bit(slot, &sp->slot_bitmap);
879}
880
881struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
882{
883 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
884
885 if (gpa == UNMAPPED_GVA)
886 return NULL;
887 return gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
888}
889
890static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
891 unsigned pt_access, unsigned pte_access,
892 int user_fault, int write_fault, int dirty,
893 int *ptwrite, gfn_t gfn)
894{
895 u64 spte;
896 int was_rmapped = is_rmap_pte(*shadow_pte);
897 struct page *page;
898
899 pgprintk("%s: spte %llx access %x write_fault %d"
900 " user_fault %d gfn %lx\n",
901 __FUNCTION__, *shadow_pte, pt_access,
902 write_fault, user_fault, gfn);
903
904 /*
905 * We don't set the accessed bit, since we sometimes want to see
906 * whether the guest actually used the pte (in order to detect
907 * demand paging).
908 */
909 spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
910 if (!dirty)
911 pte_access &= ~ACC_WRITE_MASK;
912 if (!(pte_access & ACC_EXEC_MASK))
913 spte |= PT64_NX_MASK;
914
915 page = gfn_to_page(vcpu->kvm, gfn);
916
917 spte |= PT_PRESENT_MASK;
918 if (pte_access & ACC_USER_MASK)
919 spte |= PT_USER_MASK;
920
921 if (is_error_page(page)) {
922 set_shadow_pte(shadow_pte,
923 shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
924 kvm_release_page_clean(page);
925 return;
926 }
927
928 spte |= page_to_phys(page);
929
930 if ((pte_access & ACC_WRITE_MASK)
931 || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
932 struct kvm_mmu_page *shadow;
933
934 spte |= PT_WRITABLE_MASK;
935 if (user_fault) {
936 mmu_unshadow(vcpu->kvm, gfn);
937 goto unshadowed;
938 }
939
940 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
941 if (shadow) {
942 pgprintk("%s: found shadow page for %lx, marking ro\n",
943 __FUNCTION__, gfn);
944 pte_access &= ~ACC_WRITE_MASK;
945 if (is_writeble_pte(spte)) {
946 spte &= ~PT_WRITABLE_MASK;
947 kvm_x86_ops->tlb_flush(vcpu);
948 }
949 if (write_fault)
950 *ptwrite = 1;
951 }
952 }
953
954unshadowed:
955
956 if (pte_access & ACC_WRITE_MASK)
957 mark_page_dirty(vcpu->kvm, gfn);
958
959 pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
960 set_shadow_pte(shadow_pte, spte);
961 page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
962 if (!was_rmapped) {
963 rmap_add(vcpu, shadow_pte, gfn);
964 if (!is_rmap_pte(*shadow_pte))
965 kvm_release_page_clean(page);
966 }
967 else
968 kvm_release_page_clean(page);
969 if (!ptwrite || !*ptwrite)
970 vcpu->arch.last_pte_updated = shadow_pte;
971}
972
973static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
974{
975}
976
977static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
978{
979 int level = PT32E_ROOT_LEVEL;
980 hpa_t table_addr = vcpu->arch.mmu.root_hpa;
981 int pt_write = 0;
982
983 for (; ; level--) {
984 u32 index = PT64_INDEX(v, level);
985 u64 *table;
986
987 ASSERT(VALID_PAGE(table_addr));
988 table = __va(table_addr);
989
990 if (level == 1) {
991 mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
992 0, write, 1, &pt_write, gfn);
993 return pt_write || is_io_pte(table[index]);
994 }
995
996 if (table[index] == shadow_trap_nonpresent_pte) {
997 struct kvm_mmu_page *new_table;
998 gfn_t pseudo_gfn;
999
1000 pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
1001 >> PAGE_SHIFT;
1002 new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
1003 v, level - 1,
1004 1, ACC_ALL, &table[index],
1005 NULL);
1006 if (!new_table) {
1007 pgprintk("nonpaging_map: ENOMEM\n");
1008 return -ENOMEM;
1009 }
1010
1011 table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
1012 | PT_WRITABLE_MASK | PT_USER_MASK;
1013 }
1014 table_addr = table[index] & PT64_BASE_ADDR_MASK;
1015 }
1016}
1017
1018static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
1019 struct kvm_mmu_page *sp)
1020{
1021 int i;
1022
1023 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1024 sp->spt[i] = shadow_trap_nonpresent_pte;
1025}
1026
1027static void mmu_free_roots(struct kvm_vcpu *vcpu)
1028{
1029 int i;
1030 struct kvm_mmu_page *sp;
1031
1032 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1033 return;
1034#ifdef CONFIG_X86_64
1035 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1036 hpa_t root = vcpu->arch.mmu.root_hpa;
1037
1038 sp = page_header(root);
1039 --sp->root_count;
1040 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1041 return;
1042 }
1043#endif
1044 for (i = 0; i < 4; ++i) {
1045 hpa_t root = vcpu->arch.mmu.pae_root[i];
1046
1047 if (root) {
1048 root &= PT64_BASE_ADDR_MASK;
1049 sp = page_header(root);
1050 --sp->root_count;
1051 }
1052 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1053 }
1054 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1055}
1056
1057static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
1058{
1059 int i;
1060 gfn_t root_gfn;
1061 struct kvm_mmu_page *sp;
1062
1063 root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
1064
1065#ifdef CONFIG_X86_64
1066 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
1067 hpa_t root = vcpu->arch.mmu.root_hpa;
1068
1069 ASSERT(!VALID_PAGE(root));
1070 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
1071 PT64_ROOT_LEVEL, 0, ACC_ALL, NULL, NULL);
1072 root = __pa(sp->spt);
1073 ++sp->root_count;
1074 vcpu->arch.mmu.root_hpa = root;
1075 return;
1076 }
1077#endif
1078 for (i = 0; i < 4; ++i) {
1079 hpa_t root = vcpu->arch.mmu.pae_root[i];
1080
1081 ASSERT(!VALID_PAGE(root));
1082 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
1083 if (!is_present_pte(vcpu->arch.pdptrs[i])) {
1084 vcpu->arch.mmu.pae_root[i] = 0;
1085 continue;
1086 }
1087 root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
1088 } else if (vcpu->arch.mmu.root_level == 0)
1089 root_gfn = 0;
1090 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
1091 PT32_ROOT_LEVEL, !is_paging(vcpu),
1092 ACC_ALL, NULL, NULL);
1093 root = __pa(sp->spt);
1094 ++sp->root_count;
1095 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
1096 }
1097 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
1098}
1099
1100static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
1101{
1102 return vaddr;
1103}
1104
1105static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1106 u32 error_code)
1107{
1108 gfn_t gfn;
1109 int r;
1110
1111 pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
1112 r = mmu_topup_memory_caches(vcpu);
1113 if (r)
1114 return r;
1115
1116 ASSERT(vcpu);
1117 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
1118
1119 gfn = gva >> PAGE_SHIFT;
1120
1121 return nonpaging_map(vcpu, gva & PAGE_MASK,
1122 error_code & PFERR_WRITE_MASK, gfn);
1123}
1124
1125static void nonpaging_free(struct kvm_vcpu *vcpu)
1126{
1127 mmu_free_roots(vcpu);
1128}
1129
1130static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1131{
1132 struct kvm_mmu *context = &vcpu->arch.mmu;
1133
1134 context->new_cr3 = nonpaging_new_cr3;
1135 context->page_fault = nonpaging_page_fault;
1136 context->gva_to_gpa = nonpaging_gva_to_gpa;
1137 context->free = nonpaging_free;
1138 context->prefetch_page = nonpaging_prefetch_page;
1139 context->root_level = 0;
1140 context->shadow_root_level = PT32E_ROOT_LEVEL;
1141 context->root_hpa = INVALID_PAGE;
1142 return 0;
1143}
1144
1145void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1146{
1147 ++vcpu->stat.tlb_flush;
1148 kvm_x86_ops->tlb_flush(vcpu);
1149}
1150
1151static void paging_new_cr3(struct kvm_vcpu *vcpu)
1152{
1153 pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1154 mmu_free_roots(vcpu);
1155}
1156
1157static void inject_page_fault(struct kvm_vcpu *vcpu,
1158 u64 addr,
1159 u32 err_code)
1160{
1161 kvm_inject_page_fault(vcpu, addr, err_code);
1162}
1163
1164static void paging_free(struct kvm_vcpu *vcpu)
1165{
1166 nonpaging_free(vcpu);
1167}
1168
1169#define PTTYPE 64
1170#include "paging_tmpl.h"
1171#undef PTTYPE
1172
1173#define PTTYPE 32
1174#include "paging_tmpl.h"
1175#undef PTTYPE
1176
1177static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1178{
1179 struct kvm_mmu *context = &vcpu->arch.mmu;
1180
1181 ASSERT(is_pae(vcpu));
1182 context->new_cr3 = paging_new_cr3;
1183 context->page_fault = paging64_page_fault;
1184 context->gva_to_gpa = paging64_gva_to_gpa;
1185 context->prefetch_page = paging64_prefetch_page;
1186 context->free = paging_free;
1187 context->root_level = level;
1188 context->shadow_root_level = level;
1189 context->root_hpa = INVALID_PAGE;
1190 return 0;
1191}
1192
1193static int paging64_init_context(struct kvm_vcpu *vcpu)
1194{
1195 return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1196}
1197
1198static int paging32_init_context(struct kvm_vcpu *vcpu)
1199{
1200 struct kvm_mmu *context = &vcpu->arch.mmu;
1201
1202 context->new_cr3 = paging_new_cr3;
1203 context->page_fault = paging32_page_fault;
1204 context->gva_to_gpa = paging32_gva_to_gpa;
1205 context->free = paging_free;
1206 context->prefetch_page = paging32_prefetch_page;
1207 context->root_level = PT32_ROOT_LEVEL;
1208 context->shadow_root_level = PT32E_ROOT_LEVEL;
1209 context->root_hpa = INVALID_PAGE;
1210 return 0;
1211}
1212
1213static int paging32E_init_context(struct kvm_vcpu *vcpu)
1214{
1215 return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1216}
1217
1218static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1219{
1220 ASSERT(vcpu);
1221 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1222
1223 if (!is_paging(vcpu))
1224 return nonpaging_init_context(vcpu);
1225 else if (is_long_mode(vcpu))
1226 return paging64_init_context(vcpu);
1227 else if (is_pae(vcpu))
1228 return paging32E_init_context(vcpu);
1229 else
1230 return paging32_init_context(vcpu);
1231}
1232
1233static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1234{
1235 ASSERT(vcpu);
1236 if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
1237 vcpu->arch.mmu.free(vcpu);
1238 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
1239 }
1240}
1241
1242int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1243{
1244 destroy_kvm_mmu(vcpu);
1245 return init_kvm_mmu(vcpu);
1246}
1247EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1248
1249int kvm_mmu_load(struct kvm_vcpu *vcpu)
1250{
1251 int r;
1252
1253 mutex_lock(&vcpu->kvm->lock);
1254 r = mmu_topup_memory_caches(vcpu);
1255 if (r)
1256 goto out;
1257 mmu_alloc_roots(vcpu);
1258 kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
1259 kvm_mmu_flush_tlb(vcpu);
1260out:
1261 mutex_unlock(&vcpu->kvm->lock);
1262 return r;
1263}
1264EXPORT_SYMBOL_GPL(kvm_mmu_load);
1265
1266void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1267{
1268 mmu_free_roots(vcpu);
1269}
1270
1271static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1272 struct kvm_mmu_page *sp,
1273 u64 *spte)
1274{
1275 u64 pte;
1276 struct kvm_mmu_page *child;
1277
1278 pte = *spte;
1279 if (is_shadow_present_pte(pte)) {
1280 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
1281 rmap_remove(vcpu->kvm, spte);
1282 else {
1283 child = page_header(pte & PT64_BASE_ADDR_MASK);
1284 mmu_page_remove_parent_pte(child, spte);
1285 }
1286 }
1287 set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1288}
1289
1290static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1291 struct kvm_mmu_page *sp,
1292 u64 *spte,
1293 const void *new, int bytes,
1294 int offset_in_pte)
1295{
1296 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
1297 ++vcpu->kvm->stat.mmu_pde_zapped;
1298 return;
1299 }
1300
1301 ++vcpu->kvm->stat.mmu_pte_updated;
1302 if (sp->role.glevels == PT32_ROOT_LEVEL)
1303 paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1304 else
1305 paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
1306}
1307
1308static bool need_remote_flush(u64 old, u64 new)
1309{
1310 if (!is_shadow_present_pte(old))
1311 return false;
1312 if (!is_shadow_present_pte(new))
1313 return true;
1314 if ((old ^ new) & PT64_BASE_ADDR_MASK)
1315 return true;
1316 old ^= PT64_NX_MASK;
1317 new ^= PT64_NX_MASK;
1318 return (old & ~new & PT64_PERM_MASK) != 0;
1319}
1320
1321static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
1322{
1323 if (need_remote_flush(old, new))
1324 kvm_flush_remote_tlbs(vcpu->kvm);
1325 else
1326 kvm_mmu_flush_tlb(vcpu);
1327}
1328
1329static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1330{
1331 u64 *spte = vcpu->arch.last_pte_updated;
1332
1333 return !!(spte && (*spte & PT_ACCESSED_MASK));
1334}
1335
1336void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1337 const u8 *new, int bytes)
1338{
1339 gfn_t gfn = gpa >> PAGE_SHIFT;
1340 struct kvm_mmu_page *sp;
1341 struct hlist_node *node, *n;
1342 struct hlist_head *bucket;
1343 unsigned index;
1344 u64 entry;
1345 u64 *spte;
1346 unsigned offset = offset_in_page(gpa);
1347 unsigned pte_size;
1348 unsigned page_offset;
1349 unsigned misaligned;
1350 unsigned quadrant;
1351 int level;
1352 int flooded = 0;
1353 int npte;
1354
1355 pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1356 ++vcpu->kvm->stat.mmu_pte_write;
1357 kvm_mmu_audit(vcpu, "pre pte write");
1358 if (gfn == vcpu->arch.last_pt_write_gfn
1359 && !last_updated_pte_accessed(vcpu)) {
1360 ++vcpu->arch.last_pt_write_count;
1361 if (vcpu->arch.last_pt_write_count >= 3)
1362 flooded = 1;
1363 } else {
1364 vcpu->arch.last_pt_write_gfn = gfn;
1365 vcpu->arch.last_pt_write_count = 1;
1366 vcpu->arch.last_pte_updated = NULL;
1367 }
1368 index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1369 bucket = &vcpu->kvm->arch.mmu_page_hash[index];
1370 hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
1371 if (sp->gfn != gfn || sp->role.metaphysical)
1372 continue;
1373 pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1374 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1375 misaligned |= bytes < 4;
1376 if (misaligned || flooded) {
1377 /*
1378 * Misaligned accesses are too much trouble to fix
1379 * up; also, they usually indicate a page is not used
1380 * as a page table.
1381 *
1382 * If we're seeing too many writes to a page,
1383 * it may no longer be a page table, or we may be
1384 * forking, in which case it is better to unmap the
1385 * page.
1386 */
1387 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1388 gpa, bytes, sp->role.word);
1389 kvm_mmu_zap_page(vcpu->kvm, sp);
1390 ++vcpu->kvm->stat.mmu_flooded;
1391 continue;
1392 }
1393 page_offset = offset;
1394 level = sp->role.level;
1395 npte = 1;
1396 if (sp->role.glevels == PT32_ROOT_LEVEL) {
1397 page_offset <<= 1; /* 32->64 */
1398 /*
1399 * A 32-bit pde maps 4MB while the shadow pdes map
1400 * only 2MB. So we need to double the offset again
1401 * and zap two pdes instead of one.
1402 */
1403 if (level == PT32_ROOT_LEVEL) {
1404 page_offset &= ~7; /* kill rounding error */
1405 page_offset <<= 1;
1406 npte = 2;
1407 }
1408 quadrant = page_offset >> PAGE_SHIFT;
1409 page_offset &= ~PAGE_MASK;
1410 if (quadrant != sp->role.quadrant)
1411 continue;
1412 }
1413 spte = &sp->spt[page_offset / sizeof(*spte)];
1414 while (npte--) {
1415 entry = *spte;
1416 mmu_pte_write_zap_pte(vcpu, sp, spte);
1417 mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
1418 page_offset & (pte_size - 1));
1419 mmu_pte_write_flush_tlb(vcpu, entry, *spte);
1420 ++spte;
1421 }
1422 }
1423 kvm_mmu_audit(vcpu, "post pte write");
1424}
1425
1426int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1427{
1428 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
1429
1430 return kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1431}
1432
1433void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1434{
1435 while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
1436 struct kvm_mmu_page *sp;
1437
1438 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
1439 struct kvm_mmu_page, link);
1440 kvm_mmu_zap_page(vcpu->kvm, sp);
1441 ++vcpu->kvm->stat.mmu_recycled;
1442 }
1443}
1444
1445int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
1446{
1447 int r;
1448 enum emulation_result er;
1449
1450 mutex_lock(&vcpu->kvm->lock);
1451 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
1452 if (r < 0)
1453 goto out;
1454
1455 if (!r) {
1456 r = 1;
1457 goto out;
1458 }
1459
1460 r = mmu_topup_memory_caches(vcpu);
1461 if (r)
1462 goto out;
1463
1464 er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
1465 mutex_unlock(&vcpu->kvm->lock);
1466
1467 switch (er) {
1468 case EMULATE_DONE:
1469 return 1;
1470 case EMULATE_DO_MMIO:
1471 ++vcpu->stat.mmio_exits;
1472 return 0;
1473 case EMULATE_FAIL:
1474 kvm_report_emulation_failure(vcpu, "pagetable");
1475 return 1;
1476 default:
1477 BUG();
1478 }
1479out:
1480 mutex_unlock(&vcpu->kvm->lock);
1481 return r;
1482}
1483EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
1484
1485static void free_mmu_pages(struct kvm_vcpu *vcpu)
1486{
1487 struct kvm_mmu_page *sp;
1488
1489 while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
1490 sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
1491 struct kvm_mmu_page, link);
1492 kvm_mmu_zap_page(vcpu->kvm, sp);
1493 }
1494 free_page((unsigned long)vcpu->arch.mmu.pae_root);
1495}
1496
1497static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1498{
1499 struct page *page;
1500 int i;
1501
1502 ASSERT(vcpu);
1503
1504 if (vcpu->kvm->arch.n_requested_mmu_pages)
1505 vcpu->kvm->arch.n_free_mmu_pages =
1506 vcpu->kvm->arch.n_requested_mmu_pages;
1507 else
1508 vcpu->kvm->arch.n_free_mmu_pages =
1509 vcpu->kvm->arch.n_alloc_mmu_pages;
1510 /*
1511 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1512 * Therefore we need to allocate shadow page tables in the first
1513 * 4GB of memory, which happens to fit the DMA32 zone.
1514 */
1515 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1516 if (!page)
1517 goto error_1;
1518 vcpu->arch.mmu.pae_root = page_address(page);
1519 for (i = 0; i < 4; ++i)
1520 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
1521
1522 return 0;
1523
1524error_1:
1525 free_mmu_pages(vcpu);
1526 return -ENOMEM;
1527}
1528
1529int kvm_mmu_create(struct kvm_vcpu *vcpu)
1530{
1531 ASSERT(vcpu);
1532 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1533
1534 return alloc_mmu_pages(vcpu);
1535}
1536
1537int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1538{
1539 ASSERT(vcpu);
1540 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
1541
1542 return init_kvm_mmu(vcpu);
1543}
1544
1545void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1546{
1547 ASSERT(vcpu);
1548
1549 destroy_kvm_mmu(vcpu);
1550 free_mmu_pages(vcpu);
1551 mmu_free_memory_caches(vcpu);
1552}
1553
1554void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1555{
1556 struct kvm_mmu_page *sp;
1557
1558 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
1559 int i;
1560 u64 *pt;
1561
1562 if (!test_bit(slot, &sp->slot_bitmap))
1563 continue;
1564
1565 pt = sp->spt;
1566 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1567 /* avoid RMW */
1568 if (pt[i] & PT_WRITABLE_MASK)
1569 pt[i] &= ~PT_WRITABLE_MASK;
1570 }
1571}
1572
1573void kvm_mmu_zap_all(struct kvm *kvm)
1574{
1575 struct kvm_mmu_page *sp, *node;
1576
1577 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
1578 kvm_mmu_zap_page(kvm, sp);
1579
1580 kvm_flush_remote_tlbs(kvm);
1581}
1582
1583void kvm_mmu_module_exit(void)
1584{
1585 if (pte_chain_cache)
1586 kmem_cache_destroy(pte_chain_cache);
1587 if (rmap_desc_cache)
1588 kmem_cache_destroy(rmap_desc_cache);
1589 if (mmu_page_header_cache)
1590 kmem_cache_destroy(mmu_page_header_cache);
1591}
1592
1593int kvm_mmu_module_init(void)
1594{
1595 pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1596 sizeof(struct kvm_pte_chain),
1597 0, 0, NULL);
1598 if (!pte_chain_cache)
1599 goto nomem;
1600 rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1601 sizeof(struct kvm_rmap_desc),
1602 0, 0, NULL);
1603 if (!rmap_desc_cache)
1604 goto nomem;
1605
1606 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1607 sizeof(struct kvm_mmu_page),
1608 0, 0, NULL);
1609 if (!mmu_page_header_cache)
1610 goto nomem;
1611
1612 return 0;
1613
1614nomem:
1615 kvm_mmu_module_exit();
1616 return -ENOMEM;
1617}
1618
1619/*
1620 * Caculate mmu pages needed for kvm.
1621 */
1622unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
1623{
1624 int i;
1625 unsigned int nr_mmu_pages;
1626 unsigned int nr_pages = 0;
1627
1628 for (i = 0; i < kvm->nmemslots; i++)
1629 nr_pages += kvm->memslots[i].npages;
1630
1631 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
1632 nr_mmu_pages = max(nr_mmu_pages,
1633 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
1634
1635 return nr_mmu_pages;
1636}
1637
1638#ifdef AUDIT
1639
1640static const char *audit_msg;
1641
1642static gva_t canonicalize(gva_t gva)
1643{
1644#ifdef CONFIG_X86_64
1645 gva = (long long)(gva << 16) >> 16;
1646#endif
1647 return gva;
1648}
1649
1650static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1651 gva_t va, int level)
1652{
1653 u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1654 int i;
1655 gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1656
1657 for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1658 u64 ent = pt[i];
1659
1660 if (ent == shadow_trap_nonpresent_pte)
1661 continue;
1662
1663 va = canonicalize(va);
1664 if (level > 1) {
1665 if (ent == shadow_notrap_nonpresent_pte)
1666 printk(KERN_ERR "audit: (%s) nontrapping pte"
1667 " in nonleaf level: levels %d gva %lx"
1668 " level %d pte %llx\n", audit_msg,
1669 vcpu->arch.mmu.root_level, va, level, ent);
1670
1671 audit_mappings_page(vcpu, ent, va, level - 1);
1672 } else {
1673 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
1674 struct page *page = gpa_to_page(vcpu, gpa);
1675 hpa_t hpa = page_to_phys(page);
1676
1677 if (is_shadow_present_pte(ent)
1678 && (ent & PT64_BASE_ADDR_MASK) != hpa)
1679 printk(KERN_ERR "xx audit error: (%s) levels %d"
1680 " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1681 audit_msg, vcpu->arch.mmu.root_level,
1682 va, gpa, hpa, ent,
1683 is_shadow_present_pte(ent));
1684 else if (ent == shadow_notrap_nonpresent_pte
1685 && !is_error_hpa(hpa))
1686 printk(KERN_ERR "audit: (%s) notrap shadow,"
1687 " valid guest gva %lx\n", audit_msg, va);
1688 kvm_release_page_clean(page);
1689
1690 }
1691 }
1692}
1693
1694static void audit_mappings(struct kvm_vcpu *vcpu)
1695{
1696 unsigned i;
1697
1698 if (vcpu->arch.mmu.root_level == 4)
1699 audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
1700 else
1701 for (i = 0; i < 4; ++i)
1702 if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
1703 audit_mappings_page(vcpu,
1704 vcpu->arch.mmu.pae_root[i],
1705 i << 30,
1706 2);
1707}
1708
1709static int count_rmaps(struct kvm_vcpu *vcpu)
1710{
1711 int nmaps = 0;
1712 int i, j, k;
1713
1714 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1715 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1716 struct kvm_rmap_desc *d;
1717
1718 for (j = 0; j < m->npages; ++j) {
1719 unsigned long *rmapp = &m->rmap[j];
1720
1721 if (!*rmapp)
1722 continue;
1723 if (!(*rmapp & 1)) {
1724 ++nmaps;
1725 continue;
1726 }
1727 d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1728 while (d) {
1729 for (k = 0; k < RMAP_EXT; ++k)
1730 if (d->shadow_ptes[k])
1731 ++nmaps;
1732 else
1733 break;
1734 d = d->more;
1735 }
1736 }
1737 }
1738 return nmaps;
1739}
1740
1741static int count_writable_mappings(struct kvm_vcpu *vcpu)
1742{
1743 int nmaps = 0;
1744 struct kvm_mmu_page *sp;
1745 int i;
1746
1747 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1748 u64 *pt = sp->spt;
1749
1750 if (sp->role.level != PT_PAGE_TABLE_LEVEL)
1751 continue;
1752
1753 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1754 u64 ent = pt[i];
1755
1756 if (!(ent & PT_PRESENT_MASK))
1757 continue;
1758 if (!(ent & PT_WRITABLE_MASK))
1759 continue;
1760 ++nmaps;
1761 }
1762 }
1763 return nmaps;
1764}
1765
1766static void audit_rmap(struct kvm_vcpu *vcpu)
1767{
1768 int n_rmap = count_rmaps(vcpu);
1769 int n_actual = count_writable_mappings(vcpu);
1770
1771 if (n_rmap != n_actual)
1772 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1773 __FUNCTION__, audit_msg, n_rmap, n_actual);
1774}
1775
1776static void audit_write_protection(struct kvm_vcpu *vcpu)
1777{
1778 struct kvm_mmu_page *sp;
1779 struct kvm_memory_slot *slot;
1780 unsigned long *rmapp;
1781 gfn_t gfn;
1782
1783 list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
1784 if (sp->role.metaphysical)
1785 continue;
1786
1787 slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
1788 gfn = unalias_gfn(vcpu->kvm, sp->gfn);
1789 rmapp = &slot->rmap[gfn - slot->base_gfn];
1790 if (*rmapp)
1791 printk(KERN_ERR "%s: (%s) shadow page has writable"
1792 " mappings: gfn %lx role %x\n",
1793 __FUNCTION__, audit_msg, sp->gfn,
1794 sp->role.word);
1795 }
1796}
1797
1798static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1799{
1800 int olddbg = dbg;
1801
1802 dbg = 0;
1803 audit_msg = msg;
1804 audit_rmap(vcpu);
1805 audit_write_protection(vcpu);
1806 audit_mappings(vcpu);
1807 dbg = olddbg;
1808}
1809
1810#endif
This page took 0.031956 seconds and 5 git commands to generate.