KVM: Mask function7 ebx against host capability word9
[deliverable/linux.git] / arch / x86 / kvm / paging_tmpl.h
... / ...
CommitLineData
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21/*
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
24 */
25
26#if PTTYPE == 64
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
35 #ifdef CONFIG_X86_64
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
38 #else
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
41 #endif
42#elif PTTYPE == 32
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
53#else
54 #error Invalid PTTYPE value
55#endif
56
57#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
59
60/*
61 * The guest_walker structure emulates the behavior of the hardware page
62 * table walker.
63 */
64struct guest_walker {
65 int level;
66 gfn_t table_gfn[PT_MAX_FULL_LEVELS];
67 pt_element_t ptes[PT_MAX_FULL_LEVELS];
68 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
69 gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
70 unsigned pt_access;
71 unsigned pte_access;
72 gfn_t gfn;
73 struct x86_exception fault;
74};
75
76static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
77{
78 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
79}
80
81static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
82 pt_element_t __user *ptep_user, unsigned index,
83 pt_element_t orig_pte, pt_element_t new_pte)
84{
85 int npages;
86 pt_element_t ret;
87 pt_element_t *table;
88 struct page *page;
89
90 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
91 /* Check if the user is doing something meaningless. */
92 if (unlikely(npages != 1))
93 return -EFAULT;
94
95 table = kmap_atomic(page, KM_USER0);
96 ret = CMPXCHG(&table[index], orig_pte, new_pte);
97 kunmap_atomic(table, KM_USER0);
98
99 kvm_release_page_dirty(page);
100
101 return (ret != orig_pte);
102}
103
104static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
105{
106 unsigned access;
107
108 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
109#if PTTYPE == 64
110 if (vcpu->arch.mmu.nx)
111 access &= ~(gpte >> PT64_NX_SHIFT);
112#endif
113 return access;
114}
115
116/*
117 * Fetch a guest pte for a guest virtual address
118 */
119static int FNAME(walk_addr_generic)(struct guest_walker *walker,
120 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
121 gva_t addr, u32 access)
122{
123 pt_element_t pte;
124 pt_element_t __user *uninitialized_var(ptep_user);
125 gfn_t table_gfn;
126 unsigned index, pt_access, uninitialized_var(pte_access);
127 gpa_t pte_gpa;
128 bool eperm, present, rsvd_fault;
129 int offset, write_fault, user_fault, fetch_fault;
130
131 write_fault = access & PFERR_WRITE_MASK;
132 user_fault = access & PFERR_USER_MASK;
133 fetch_fault = access & PFERR_FETCH_MASK;
134
135 trace_kvm_mmu_pagetable_walk(addr, write_fault, user_fault,
136 fetch_fault);
137walk:
138 present = true;
139 eperm = rsvd_fault = false;
140 walker->level = mmu->root_level;
141 pte = mmu->get_cr3(vcpu);
142
143#if PTTYPE == 64
144 if (walker->level == PT32E_ROOT_LEVEL) {
145 pte = kvm_pdptr_read_mmu(vcpu, mmu, (addr >> 30) & 3);
146 trace_kvm_mmu_paging_element(pte, walker->level);
147 if (!is_present_gpte(pte)) {
148 present = false;
149 goto error;
150 }
151 --walker->level;
152 }
153#endif
154 ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
155 (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
156
157 pt_access = ACC_ALL;
158
159 for (;;) {
160 gfn_t real_gfn;
161 unsigned long host_addr;
162
163 index = PT_INDEX(addr, walker->level);
164
165 table_gfn = gpte_to_gfn(pte);
166 offset = index * sizeof(pt_element_t);
167 pte_gpa = gfn_to_gpa(table_gfn) + offset;
168 walker->table_gfn[walker->level - 1] = table_gfn;
169 walker->pte_gpa[walker->level - 1] = pte_gpa;
170
171 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
172 PFERR_USER_MASK|PFERR_WRITE_MASK);
173 if (unlikely(real_gfn == UNMAPPED_GVA)) {
174 present = false;
175 break;
176 }
177 real_gfn = gpa_to_gfn(real_gfn);
178
179 host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
180 if (unlikely(kvm_is_error_hva(host_addr))) {
181 present = false;
182 break;
183 }
184
185 ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
186 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) {
187 present = false;
188 break;
189 }
190
191 trace_kvm_mmu_paging_element(pte, walker->level);
192
193 if (unlikely(!is_present_gpte(pte))) {
194 present = false;
195 break;
196 }
197
198 if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
199 walker->level))) {
200 rsvd_fault = true;
201 break;
202 }
203
204 if (unlikely(write_fault && !is_writable_pte(pte)
205 && (user_fault || is_write_protection(vcpu))))
206 eperm = true;
207
208 if (unlikely(user_fault && !(pte & PT_USER_MASK)))
209 eperm = true;
210
211#if PTTYPE == 64
212 if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
213 eperm = true;
214#endif
215
216 if (!eperm && !rsvd_fault
217 && unlikely(!(pte & PT_ACCESSED_MASK))) {
218 int ret;
219 trace_kvm_mmu_set_accessed_bit(table_gfn, index,
220 sizeof(pte));
221 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
222 pte, pte|PT_ACCESSED_MASK);
223 if (unlikely(ret < 0)) {
224 present = false;
225 break;
226 } else if (ret)
227 goto walk;
228
229 mark_page_dirty(vcpu->kvm, table_gfn);
230 pte |= PT_ACCESSED_MASK;
231 }
232
233 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
234
235 walker->ptes[walker->level - 1] = pte;
236
237 if ((walker->level == PT_PAGE_TABLE_LEVEL) ||
238 ((walker->level == PT_DIRECTORY_LEVEL) &&
239 is_large_pte(pte) &&
240 (PTTYPE == 64 || is_pse(vcpu))) ||
241 ((walker->level == PT_PDPE_LEVEL) &&
242 is_large_pte(pte) &&
243 mmu->root_level == PT64_ROOT_LEVEL)) {
244 int lvl = walker->level;
245 gpa_t real_gpa;
246 gfn_t gfn;
247 u32 ac;
248
249 gfn = gpte_to_gfn_lvl(pte, lvl);
250 gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
251
252 if (PTTYPE == 32 &&
253 walker->level == PT_DIRECTORY_LEVEL &&
254 is_cpuid_PSE36())
255 gfn += pse36_gfn_delta(pte);
256
257 ac = write_fault | fetch_fault | user_fault;
258
259 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
260 ac);
261 if (real_gpa == UNMAPPED_GVA)
262 return 0;
263
264 walker->gfn = real_gpa >> PAGE_SHIFT;
265
266 break;
267 }
268
269 pt_access = pte_access;
270 --walker->level;
271 }
272
273 if (unlikely(!present || eperm || rsvd_fault))
274 goto error;
275
276 if (write_fault && unlikely(!is_dirty_gpte(pte))) {
277 int ret;
278
279 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
280 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
281 pte, pte|PT_DIRTY_MASK);
282 if (unlikely(ret < 0)) {
283 present = false;
284 goto error;
285 } else if (ret)
286 goto walk;
287
288 mark_page_dirty(vcpu->kvm, table_gfn);
289 pte |= PT_DIRTY_MASK;
290 walker->ptes[walker->level - 1] = pte;
291 }
292
293 walker->pt_access = pt_access;
294 walker->pte_access = pte_access;
295 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
296 __func__, (u64)pte, pte_access, pt_access);
297 return 1;
298
299error:
300 walker->fault.vector = PF_VECTOR;
301 walker->fault.error_code_valid = true;
302 walker->fault.error_code = 0;
303 if (present)
304 walker->fault.error_code |= PFERR_PRESENT_MASK;
305
306 walker->fault.error_code |= write_fault | user_fault;
307
308 if (fetch_fault && mmu->nx)
309 walker->fault.error_code |= PFERR_FETCH_MASK;
310 if (rsvd_fault)
311 walker->fault.error_code |= PFERR_RSVD_MASK;
312
313 walker->fault.address = addr;
314 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
315
316 trace_kvm_mmu_walker_error(walker->fault.error_code);
317 return 0;
318}
319
320static int FNAME(walk_addr)(struct guest_walker *walker,
321 struct kvm_vcpu *vcpu, gva_t addr, u32 access)
322{
323 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
324 access);
325}
326
327static int FNAME(walk_addr_nested)(struct guest_walker *walker,
328 struct kvm_vcpu *vcpu, gva_t addr,
329 u32 access)
330{
331 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
332 addr, access);
333}
334
335static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
336 struct kvm_mmu_page *sp, u64 *spte,
337 pt_element_t gpte)
338{
339 u64 nonpresent = shadow_trap_nonpresent_pte;
340
341 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
342 goto no_present;
343
344 if (!is_present_gpte(gpte)) {
345 if (!sp->unsync)
346 nonpresent = shadow_notrap_nonpresent_pte;
347 goto no_present;
348 }
349
350 if (!(gpte & PT_ACCESSED_MASK))
351 goto no_present;
352
353 return false;
354
355no_present:
356 drop_spte(vcpu->kvm, spte, nonpresent);
357 return true;
358}
359
360static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
361 u64 *spte, const void *pte)
362{
363 pt_element_t gpte;
364 unsigned pte_access;
365 pfn_t pfn;
366
367 gpte = *(const pt_element_t *)pte;
368 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
369 return;
370
371 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
372 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
373 pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
374 if (is_error_pfn(pfn)) {
375 kvm_release_pfn_clean(pfn);
376 return;
377 }
378
379 /*
380 * we call mmu_set_spte() with host_writable = true because that
381 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
382 */
383 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
384 is_dirty_gpte(gpte), NULL, PT_PAGE_TABLE_LEVEL,
385 gpte_to_gfn(gpte), pfn, true, true);
386}
387
388static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
389 struct guest_walker *gw, int level)
390{
391 pt_element_t curr_pte;
392 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
393 u64 mask;
394 int r, index;
395
396 if (level == PT_PAGE_TABLE_LEVEL) {
397 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
398 base_gpa = pte_gpa & ~mask;
399 index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
400
401 r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
402 gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
403 curr_pte = gw->prefetch_ptes[index];
404 } else
405 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
406 &curr_pte, sizeof(curr_pte));
407
408 return r || curr_pte != gw->ptes[level - 1];
409}
410
411static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
412 u64 *sptep)
413{
414 struct kvm_mmu_page *sp;
415 pt_element_t *gptep = gw->prefetch_ptes;
416 u64 *spte;
417 int i;
418
419 sp = page_header(__pa(sptep));
420
421 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
422 return;
423
424 if (sp->role.direct)
425 return __direct_pte_prefetch(vcpu, sp, sptep);
426
427 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
428 spte = sp->spt + i;
429
430 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
431 pt_element_t gpte;
432 unsigned pte_access;
433 gfn_t gfn;
434 pfn_t pfn;
435 bool dirty;
436
437 if (spte == sptep)
438 continue;
439
440 if (*spte != shadow_trap_nonpresent_pte)
441 continue;
442
443 gpte = gptep[i];
444
445 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
446 continue;
447
448 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
449 gfn = gpte_to_gfn(gpte);
450 dirty = is_dirty_gpte(gpte);
451 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
452 (pte_access & ACC_WRITE_MASK) && dirty);
453 if (is_error_pfn(pfn)) {
454 kvm_release_pfn_clean(pfn);
455 break;
456 }
457
458 mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
459 dirty, NULL, PT_PAGE_TABLE_LEVEL, gfn,
460 pfn, true, true);
461 }
462}
463
464/*
465 * Fetch a shadow pte for a specific level in the paging hierarchy.
466 */
467static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
468 struct guest_walker *gw,
469 int user_fault, int write_fault, int hlevel,
470 int *ptwrite, pfn_t pfn, bool map_writable,
471 bool prefault)
472{
473 unsigned access = gw->pt_access;
474 struct kvm_mmu_page *sp = NULL;
475 bool dirty = is_dirty_gpte(gw->ptes[gw->level - 1]);
476 int top_level;
477 unsigned direct_access;
478 struct kvm_shadow_walk_iterator it;
479
480 if (!is_present_gpte(gw->ptes[gw->level - 1]))
481 return NULL;
482
483 direct_access = gw->pt_access & gw->pte_access;
484 if (!dirty)
485 direct_access &= ~ACC_WRITE_MASK;
486
487 top_level = vcpu->arch.mmu.root_level;
488 if (top_level == PT32E_ROOT_LEVEL)
489 top_level = PT32_ROOT_LEVEL;
490 /*
491 * Verify that the top-level gpte is still there. Since the page
492 * is a root page, it is either write protected (and cannot be
493 * changed from now on) or it is invalid (in which case, we don't
494 * really care if it changes underneath us after this point).
495 */
496 if (FNAME(gpte_changed)(vcpu, gw, top_level))
497 goto out_gpte_changed;
498
499 for (shadow_walk_init(&it, vcpu, addr);
500 shadow_walk_okay(&it) && it.level > gw->level;
501 shadow_walk_next(&it)) {
502 gfn_t table_gfn;
503
504 drop_large_spte(vcpu, it.sptep);
505
506 sp = NULL;
507 if (!is_shadow_present_pte(*it.sptep)) {
508 table_gfn = gw->table_gfn[it.level - 2];
509 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
510 false, access, it.sptep);
511 }
512
513 /*
514 * Verify that the gpte in the page we've just write
515 * protected is still there.
516 */
517 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
518 goto out_gpte_changed;
519
520 if (sp)
521 link_shadow_page(it.sptep, sp);
522 }
523
524 for (;
525 shadow_walk_okay(&it) && it.level > hlevel;
526 shadow_walk_next(&it)) {
527 gfn_t direct_gfn;
528
529 validate_direct_spte(vcpu, it.sptep, direct_access);
530
531 drop_large_spte(vcpu, it.sptep);
532
533 if (is_shadow_present_pte(*it.sptep))
534 continue;
535
536 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
537
538 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
539 true, direct_access, it.sptep);
540 link_shadow_page(it.sptep, sp);
541 }
542
543 mmu_set_spte(vcpu, it.sptep, access, gw->pte_access & access,
544 user_fault, write_fault, dirty, ptwrite, it.level,
545 gw->gfn, pfn, prefault, map_writable);
546 FNAME(pte_prefetch)(vcpu, gw, it.sptep);
547
548 return it.sptep;
549
550out_gpte_changed:
551 if (sp)
552 kvm_mmu_put_page(sp, it.sptep);
553 kvm_release_pfn_clean(pfn);
554 return NULL;
555}
556
557/*
558 * Page fault handler. There are several causes for a page fault:
559 * - there is no shadow pte for the guest pte
560 * - write access through a shadow pte marked read only so that we can set
561 * the dirty bit
562 * - write access to a shadow pte marked read only so we can update the page
563 * dirty bitmap, when userspace requests it
564 * - mmio access; in this case we will never install a present shadow pte
565 * - normal guest page fault due to the guest pte marked not present, not
566 * writable, or not executable
567 *
568 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
569 * a negative value on error.
570 */
571static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
572 bool prefault)
573{
574 int write_fault = error_code & PFERR_WRITE_MASK;
575 int user_fault = error_code & PFERR_USER_MASK;
576 struct guest_walker walker;
577 u64 *sptep;
578 int write_pt = 0;
579 int r;
580 pfn_t pfn;
581 int level = PT_PAGE_TABLE_LEVEL;
582 int force_pt_level;
583 unsigned long mmu_seq;
584 bool map_writable;
585
586 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
587
588 r = mmu_topup_memory_caches(vcpu);
589 if (r)
590 return r;
591
592 /*
593 * Look up the guest pte for the faulting address.
594 */
595 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
596
597 /*
598 * The page is not mapped by the guest. Let the guest handle it.
599 */
600 if (!r) {
601 pgprintk("%s: guest page fault\n", __func__);
602 if (!prefault) {
603 inject_page_fault(vcpu, &walker.fault);
604 /* reset fork detector */
605 vcpu->arch.last_pt_write_count = 0;
606 }
607 return 0;
608 }
609
610 if (walker.level >= PT_DIRECTORY_LEVEL)
611 force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
612 else
613 force_pt_level = 1;
614 if (!force_pt_level) {
615 level = min(walker.level, mapping_level(vcpu, walker.gfn));
616 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
617 }
618
619 mmu_seq = vcpu->kvm->mmu_notifier_seq;
620 smp_rmb();
621
622 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
623 &map_writable))
624 return 0;
625
626 /* mmio */
627 if (is_error_pfn(pfn))
628 return kvm_handle_bad_page(vcpu->kvm, walker.gfn, pfn);
629
630 spin_lock(&vcpu->kvm->mmu_lock);
631 if (mmu_notifier_retry(vcpu, mmu_seq))
632 goto out_unlock;
633
634 trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
635 kvm_mmu_free_some_pages(vcpu);
636 if (!force_pt_level)
637 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
638 sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
639 level, &write_pt, pfn, map_writable, prefault);
640 (void)sptep;
641 pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
642 sptep, *sptep, write_pt);
643
644 if (!write_pt)
645 vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
646
647 ++vcpu->stat.pf_fixed;
648 trace_kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
649 spin_unlock(&vcpu->kvm->mmu_lock);
650
651 return write_pt;
652
653out_unlock:
654 spin_unlock(&vcpu->kvm->mmu_lock);
655 kvm_release_pfn_clean(pfn);
656 return 0;
657}
658
659static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
660{
661 struct kvm_shadow_walk_iterator iterator;
662 struct kvm_mmu_page *sp;
663 gpa_t pte_gpa = -1;
664 int level;
665 u64 *sptep;
666 int need_flush = 0;
667
668 spin_lock(&vcpu->kvm->mmu_lock);
669
670 for_each_shadow_entry(vcpu, gva, iterator) {
671 level = iterator.level;
672 sptep = iterator.sptep;
673
674 sp = page_header(__pa(sptep));
675 if (is_last_spte(*sptep, level)) {
676 int offset, shift;
677
678 if (!sp->unsync)
679 break;
680
681 shift = PAGE_SHIFT -
682 (PT_LEVEL_BITS - PT64_LEVEL_BITS) * level;
683 offset = sp->role.quadrant << shift;
684
685 pte_gpa = (sp->gfn << PAGE_SHIFT) + offset;
686 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
687
688 if (is_shadow_present_pte(*sptep)) {
689 if (is_large_pte(*sptep))
690 --vcpu->kvm->stat.lpages;
691 drop_spte(vcpu->kvm, sptep,
692 shadow_trap_nonpresent_pte);
693 need_flush = 1;
694 } else
695 __set_spte(sptep, shadow_trap_nonpresent_pte);
696 break;
697 }
698
699 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
700 break;
701 }
702
703 if (need_flush)
704 kvm_flush_remote_tlbs(vcpu->kvm);
705
706 atomic_inc(&vcpu->kvm->arch.invlpg_counter);
707
708 spin_unlock(&vcpu->kvm->mmu_lock);
709
710 if (pte_gpa == -1)
711 return;
712
713 if (mmu_topup_memory_caches(vcpu))
714 return;
715 kvm_mmu_pte_write(vcpu, pte_gpa, NULL, sizeof(pt_element_t), 0);
716}
717
718static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
719 struct x86_exception *exception)
720{
721 struct guest_walker walker;
722 gpa_t gpa = UNMAPPED_GVA;
723 int r;
724
725 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
726
727 if (r) {
728 gpa = gfn_to_gpa(walker.gfn);
729 gpa |= vaddr & ~PAGE_MASK;
730 } else if (exception)
731 *exception = walker.fault;
732
733 return gpa;
734}
735
736static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
737 u32 access,
738 struct x86_exception *exception)
739{
740 struct guest_walker walker;
741 gpa_t gpa = UNMAPPED_GVA;
742 int r;
743
744 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
745
746 if (r) {
747 gpa = gfn_to_gpa(walker.gfn);
748 gpa |= vaddr & ~PAGE_MASK;
749 } else if (exception)
750 *exception = walker.fault;
751
752 return gpa;
753}
754
755static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
756 struct kvm_mmu_page *sp)
757{
758 int i, j, offset, r;
759 pt_element_t pt[256 / sizeof(pt_element_t)];
760 gpa_t pte_gpa;
761
762 if (sp->role.direct
763 || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
764 nonpaging_prefetch_page(vcpu, sp);
765 return;
766 }
767
768 pte_gpa = gfn_to_gpa(sp->gfn);
769 if (PTTYPE == 32) {
770 offset = sp->role.quadrant << PT64_LEVEL_BITS;
771 pte_gpa += offset * sizeof(pt_element_t);
772 }
773
774 for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
775 r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
776 pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
777 for (j = 0; j < ARRAY_SIZE(pt); ++j)
778 if (r || is_present_gpte(pt[j]))
779 sp->spt[i+j] = shadow_trap_nonpresent_pte;
780 else
781 sp->spt[i+j] = shadow_notrap_nonpresent_pte;
782 }
783}
784
785/*
786 * Using the cached information from sp->gfns is safe because:
787 * - The spte has a reference to the struct page, so the pfn for a given gfn
788 * can't change unless all sptes pointing to it are nuked first.
789 *
790 * Note:
791 * We should flush all tlbs if spte is dropped even though guest is
792 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
793 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
794 * used by guest then tlbs are not flushed, so guest is allowed to access the
795 * freed pages.
796 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
797 */
798static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
799{
800 int i, offset, nr_present;
801 bool host_writable;
802 gpa_t first_pte_gpa;
803
804 offset = nr_present = 0;
805
806 /* direct kvm_mmu_page can not be unsync. */
807 BUG_ON(sp->role.direct);
808
809 if (PTTYPE == 32)
810 offset = sp->role.quadrant << PT64_LEVEL_BITS;
811
812 first_pte_gpa = gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
813
814 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
815 unsigned pte_access;
816 pt_element_t gpte;
817 gpa_t pte_gpa;
818 gfn_t gfn;
819
820 if (!is_shadow_present_pte(sp->spt[i]))
821 continue;
822
823 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
824
825 if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
826 sizeof(pt_element_t)))
827 return -EINVAL;
828
829 gfn = gpte_to_gfn(gpte);
830
831 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
832 vcpu->kvm->tlbs_dirty++;
833 continue;
834 }
835
836 if (gfn != sp->gfns[i]) {
837 drop_spte(vcpu->kvm, &sp->spt[i],
838 shadow_trap_nonpresent_pte);
839 vcpu->kvm->tlbs_dirty++;
840 continue;
841 }
842
843 nr_present++;
844 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
845 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
846
847 set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
848 is_dirty_gpte(gpte), PT_PAGE_TABLE_LEVEL, gfn,
849 spte_to_pfn(sp->spt[i]), true, false,
850 host_writable);
851 }
852
853 return !nr_present;
854}
855
856#undef pt_element_t
857#undef guest_walker
858#undef FNAME
859#undef PT_BASE_ADDR_MASK
860#undef PT_INDEX
861#undef PT_LVL_ADDR_MASK
862#undef PT_LVL_OFFSET_MASK
863#undef PT_LEVEL_BITS
864#undef PT_MAX_FULL_LEVELS
865#undef gpte_to_gfn
866#undef gpte_to_gfn_lvl
867#undef CMPXCHG
This page took 0.036183 seconds and 5 git commands to generate.