2004-02-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22/* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34/* For sparc64-cross-sparc32. */
35#define _SYSCALL32
36#include "bfd.h"
37#include "sysdep.h"
38#include "bfdlink.h"
39#include "libbfd.h"
40#define ARCH_SIZE 0
41#include "elf-bfd.h"
42#include "libiberty.h"
43
44static int elf_sort_sections (const void *, const void *);
45static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46static bfd_boolean prep_headers (bfd *);
47static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50/* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54/* Swap in a Verdef structure. */
55
56void
57_bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60{
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68}
69
70/* Swap out a Verdef structure. */
71
72void
73_bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76{
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84}
85
86/* Swap in a Verdaux structure. */
87
88void
89_bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92{
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95}
96
97/* Swap out a Verdaux structure. */
98
99void
100_bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103{
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106}
107
108/* Swap in a Verneed structure. */
109
110void
111_bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114{
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120}
121
122/* Swap out a Verneed structure. */
123
124void
125_bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128{
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134}
135
136/* Swap in a Vernaux structure. */
137
138void
139_bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142{
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148}
149
150/* Swap out a Vernaux structure. */
151
152void
153_bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156{
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162}
163
164/* Swap in a Versym structure. */
165
166void
167_bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170{
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172}
173
174/* Swap out a Versym structure. */
175
176void
177_bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180{
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182}
183
184/* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187unsigned long
188bfd_elf_hash (const char *namearg)
189{
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207}
208
209/* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213static char *
214elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215{
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229}
230
231bfd_boolean
232bfd_elf_mkobject (bfd *abfd)
233{
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243}
244
245bfd_boolean
246bfd_elf_mkcorefile (bfd *abfd)
247{
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250}
251
252char *
253bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254{
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274}
275
276char *
277bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280{
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%s: invalid string offset %u >= %lu for section `%s'"),
296 bfd_archive_filename (abfd), strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305}
306
307/* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313Elf_Internal_Sym *
314bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321{
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404}
405
406/* Look up a symbol name. */
407const char *
408bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409{
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419}
420
421/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428} Elf_Internal_Group;
429
430/* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433static const char *
434group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435{
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452}
453
454/* Set next_in_group list pointer, and group name for NEWSECT. */
455
456static bfd_boolean
457setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458{
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%s: invalid SHT_GROUP entry"),
539 bfd_archive_filename (abfd)));
540 idx = 0;
541 }
542 dest->shdr = elf_elfsections (abfd)[idx];
543 }
544 }
545 }
546 }
547 }
548
549 if (num_group != (unsigned) -1)
550 {
551 unsigned int i;
552
553 for (i = 0; i < num_group; i++)
554 {
555 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
556 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
557 unsigned int n_elt = shdr->sh_size / 4;
558
559 /* Look through this group's sections to see if current
560 section is a member. */
561 while (--n_elt != 0)
562 if ((++idx)->shdr == hdr)
563 {
564 asection *s = NULL;
565
566 /* We are a member of this group. Go looking through
567 other members to see if any others are linked via
568 next_in_group. */
569 idx = (Elf_Internal_Group *) shdr->contents;
570 n_elt = shdr->sh_size / 4;
571 while (--n_elt != 0)
572 if ((s = (++idx)->shdr->bfd_section) != NULL
573 && elf_next_in_group (s) != NULL)
574 break;
575 if (n_elt != 0)
576 {
577 /* Snarf the group name from other member, and
578 insert current section in circular list. */
579 elf_group_name (newsect) = elf_group_name (s);
580 elf_next_in_group (newsect) = elf_next_in_group (s);
581 elf_next_in_group (s) = newsect;
582 }
583 else
584 {
585 const char *gname;
586
587 gname = group_signature (abfd, shdr);
588 if (gname == NULL)
589 return FALSE;
590 elf_group_name (newsect) = gname;
591
592 /* Start a circular list with one element. */
593 elf_next_in_group (newsect) = newsect;
594 }
595
596 /* If the group section has been created, point to the
597 new member. */
598 if (shdr->bfd_section != NULL)
599 elf_next_in_group (shdr->bfd_section) = newsect;
600
601 i = num_group - 1;
602 break;
603 }
604 }
605 }
606
607 if (elf_group_name (newsect) == NULL)
608 {
609 (*_bfd_error_handler) (_("%s: no group info for section %s"),
610 bfd_archive_filename (abfd), newsect->name);
611 }
612 return TRUE;
613}
614
615bfd_boolean
616bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED, asection *group)
617{
618 asection *first = elf_next_in_group (group);
619 asection *s = first;
620
621 while (s != NULL)
622 {
623 s->output_section = bfd_abs_section_ptr;
624 s = elf_next_in_group (s);
625 /* These lists are circular. */
626 if (s == first)
627 break;
628 }
629 return TRUE;
630}
631
632/* Make a BFD section from an ELF section. We store a pointer to the
633 BFD section in the bfd_section field of the header. */
634
635bfd_boolean
636_bfd_elf_make_section_from_shdr (bfd *abfd,
637 Elf_Internal_Shdr *hdr,
638 const char *name)
639{
640 asection *newsect;
641 flagword flags;
642 const struct elf_backend_data *bed;
643
644 if (hdr->bfd_section != NULL)
645 {
646 BFD_ASSERT (strcmp (name,
647 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
648 return TRUE;
649 }
650
651 newsect = bfd_make_section_anyway (abfd, name);
652 if (newsect == NULL)
653 return FALSE;
654
655 /* Always use the real type/flags. */
656 elf_section_type (newsect) = hdr->sh_type;
657 elf_section_flags (newsect) = hdr->sh_flags;
658
659 newsect->filepos = hdr->sh_offset;
660
661 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
662 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
663 || ! bfd_set_section_alignment (abfd, newsect,
664 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
665 return FALSE;
666
667 flags = SEC_NO_FLAGS;
668 if (hdr->sh_type != SHT_NOBITS)
669 flags |= SEC_HAS_CONTENTS;
670 if (hdr->sh_type == SHT_GROUP)
671 flags |= SEC_GROUP | SEC_EXCLUDE;
672 if ((hdr->sh_flags & SHF_ALLOC) != 0)
673 {
674 flags |= SEC_ALLOC;
675 if (hdr->sh_type != SHT_NOBITS)
676 flags |= SEC_LOAD;
677 }
678 if ((hdr->sh_flags & SHF_WRITE) == 0)
679 flags |= SEC_READONLY;
680 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
681 flags |= SEC_CODE;
682 else if ((flags & SEC_LOAD) != 0)
683 flags |= SEC_DATA;
684 if ((hdr->sh_flags & SHF_MERGE) != 0)
685 {
686 flags |= SEC_MERGE;
687 newsect->entsize = hdr->sh_entsize;
688 if ((hdr->sh_flags & SHF_STRINGS) != 0)
689 flags |= SEC_STRINGS;
690 }
691 if (hdr->sh_flags & SHF_GROUP)
692 if (!setup_group (abfd, hdr, newsect))
693 return FALSE;
694 if ((hdr->sh_flags & SHF_TLS) != 0)
695 flags |= SEC_THREAD_LOCAL;
696
697 /* The debugging sections appear to be recognized only by name, not
698 any sort of flag. */
699 {
700 static const char *debug_sec_names [] =
701 {
702 ".debug",
703 ".gnu.linkonce.wi.",
704 ".line",
705 ".stab"
706 };
707 int i;
708
709 for (i = ARRAY_SIZE (debug_sec_names); i--;)
710 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
711 break;
712
713 if (i >= 0)
714 flags |= SEC_DEBUGGING;
715 }
716
717 /* As a GNU extension, if the name begins with .gnu.linkonce, we
718 only link a single copy of the section. This is used to support
719 g++. g++ will emit each template expansion in its own section.
720 The symbols will be defined as weak, so that multiple definitions
721 are permitted. The GNU linker extension is to actually discard
722 all but one of the sections. */
723 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
724 && elf_next_in_group (newsect) == NULL)
725 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
726
727 bed = get_elf_backend_data (abfd);
728 if (bed->elf_backend_section_flags)
729 if (! bed->elf_backend_section_flags (&flags, hdr))
730 return FALSE;
731
732 if (! bfd_set_section_flags (abfd, newsect, flags))
733 return FALSE;
734
735 if ((flags & SEC_ALLOC) != 0)
736 {
737 Elf_Internal_Phdr *phdr;
738 unsigned int i;
739
740 /* Look through the phdrs to see if we need to adjust the lma.
741 If all the p_paddr fields are zero, we ignore them, since
742 some ELF linkers produce such output. */
743 phdr = elf_tdata (abfd)->phdr;
744 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
745 {
746 if (phdr->p_paddr != 0)
747 break;
748 }
749 if (i < elf_elfheader (abfd)->e_phnum)
750 {
751 phdr = elf_tdata (abfd)->phdr;
752 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
753 {
754 /* This section is part of this segment if its file
755 offset plus size lies within the segment's memory
756 span and, if the section is loaded, the extent of the
757 loaded data lies within the extent of the segment.
758
759 Note - we used to check the p_paddr field as well, and
760 refuse to set the LMA if it was 0. This is wrong
761 though, as a perfectly valid initialised segment can
762 have a p_paddr of zero. Some architectures, eg ARM,
763 place special significance on the address 0 and
764 executables need to be able to have a segment which
765 covers this address. */
766 if (phdr->p_type == PT_LOAD
767 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
768 && (hdr->sh_offset + hdr->sh_size
769 <= phdr->p_offset + phdr->p_memsz)
770 && ((flags & SEC_LOAD) == 0
771 || (hdr->sh_offset + hdr->sh_size
772 <= phdr->p_offset + phdr->p_filesz)))
773 {
774 if ((flags & SEC_LOAD) == 0)
775 newsect->lma = (phdr->p_paddr
776 + hdr->sh_addr - phdr->p_vaddr);
777 else
778 /* We used to use the same adjustment for SEC_LOAD
779 sections, but that doesn't work if the segment
780 is packed with code from multiple VMAs.
781 Instead we calculate the section LMA based on
782 the segment LMA. It is assumed that the
783 segment will contain sections with contiguous
784 LMAs, even if the VMAs are not. */
785 newsect->lma = (phdr->p_paddr
786 + hdr->sh_offset - phdr->p_offset);
787
788 /* With contiguous segments, we can't tell from file
789 offsets whether a section with zero size should
790 be placed at the end of one segment or the
791 beginning of the next. Decide based on vaddr. */
792 if (hdr->sh_addr >= phdr->p_vaddr
793 && (hdr->sh_addr + hdr->sh_size
794 <= phdr->p_vaddr + phdr->p_memsz))
795 break;
796 }
797 }
798 }
799 }
800
801 hdr->bfd_section = newsect;
802 elf_section_data (newsect)->this_hdr = *hdr;
803
804 return TRUE;
805}
806
807/*
808INTERNAL_FUNCTION
809 bfd_elf_find_section
810
811SYNOPSIS
812 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
813
814DESCRIPTION
815 Helper functions for GDB to locate the string tables.
816 Since BFD hides string tables from callers, GDB needs to use an
817 internal hook to find them. Sun's .stabstr, in particular,
818 isn't even pointed to by the .stab section, so ordinary
819 mechanisms wouldn't work to find it, even if we had some.
820*/
821
822struct elf_internal_shdr *
823bfd_elf_find_section (bfd *abfd, char *name)
824{
825 Elf_Internal_Shdr **i_shdrp;
826 char *shstrtab;
827 unsigned int max;
828 unsigned int i;
829
830 i_shdrp = elf_elfsections (abfd);
831 if (i_shdrp != NULL)
832 {
833 shstrtab = bfd_elf_get_str_section (abfd,
834 elf_elfheader (abfd)->e_shstrndx);
835 if (shstrtab != NULL)
836 {
837 max = elf_numsections (abfd);
838 for (i = 1; i < max; i++)
839 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
840 return i_shdrp[i];
841 }
842 }
843 return 0;
844}
845
846const char *const bfd_elf_section_type_names[] = {
847 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
848 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
849 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
850};
851
852/* ELF relocs are against symbols. If we are producing relocatable
853 output, and the reloc is against an external symbol, and nothing
854 has given us any additional addend, the resulting reloc will also
855 be against the same symbol. In such a case, we don't want to
856 change anything about the way the reloc is handled, since it will
857 all be done at final link time. Rather than put special case code
858 into bfd_perform_relocation, all the reloc types use this howto
859 function. It just short circuits the reloc if producing
860 relocatable output against an external symbol. */
861
862bfd_reloc_status_type
863bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
864 arelent *reloc_entry,
865 asymbol *symbol,
866 void *data ATTRIBUTE_UNUSED,
867 asection *input_section,
868 bfd *output_bfd,
869 char **error_message ATTRIBUTE_UNUSED)
870{
871 if (output_bfd != NULL
872 && (symbol->flags & BSF_SECTION_SYM) == 0
873 && (! reloc_entry->howto->partial_inplace
874 || reloc_entry->addend == 0))
875 {
876 reloc_entry->address += input_section->output_offset;
877 return bfd_reloc_ok;
878 }
879
880 return bfd_reloc_continue;
881}
882\f
883/* Make sure sec_info_type is cleared if sec_info is cleared too. */
884
885static void
886merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
887 asection *sec)
888{
889 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
890 sec->sec_info_type = ELF_INFO_TYPE_NONE;
891}
892
893/* Finish SHF_MERGE section merging. */
894
895bfd_boolean
896_bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
897{
898 if (!is_elf_hash_table (info->hash))
899 return FALSE;
900 if (elf_hash_table (info)->merge_info)
901 _bfd_merge_sections (abfd, elf_hash_table (info)->merge_info,
902 merge_sections_remove_hook);
903 return TRUE;
904}
905
906void
907_bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
908{
909 sec->output_section = bfd_abs_section_ptr;
910 sec->output_offset = sec->vma;
911 if (!is_elf_hash_table (info->hash))
912 return;
913
914 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
915}
916\f
917/* Copy the program header and other data from one object module to
918 another. */
919
920bfd_boolean
921_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
922{
923 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
924 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
925 return TRUE;
926
927 BFD_ASSERT (!elf_flags_init (obfd)
928 || (elf_elfheader (obfd)->e_flags
929 == elf_elfheader (ibfd)->e_flags));
930
931 elf_gp (obfd) = elf_gp (ibfd);
932 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
933 elf_flags_init (obfd) = TRUE;
934 return TRUE;
935}
936
937/* Print out the program headers. */
938
939bfd_boolean
940_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
941{
942 FILE *f = farg;
943 Elf_Internal_Phdr *p;
944 asection *s;
945 bfd_byte *dynbuf = NULL;
946
947 p = elf_tdata (abfd)->phdr;
948 if (p != NULL)
949 {
950 unsigned int i, c;
951
952 fprintf (f, _("\nProgram Header:\n"));
953 c = elf_elfheader (abfd)->e_phnum;
954 for (i = 0; i < c; i++, p++)
955 {
956 const char *pt;
957 char buf[20];
958
959 switch (p->p_type)
960 {
961 case PT_NULL: pt = "NULL"; break;
962 case PT_LOAD: pt = "LOAD"; break;
963 case PT_DYNAMIC: pt = "DYNAMIC"; break;
964 case PT_INTERP: pt = "INTERP"; break;
965 case PT_NOTE: pt = "NOTE"; break;
966 case PT_SHLIB: pt = "SHLIB"; break;
967 case PT_PHDR: pt = "PHDR"; break;
968 case PT_TLS: pt = "TLS"; break;
969 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
970 case PT_GNU_STACK: pt = "STACK"; break;
971 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
972 }
973 fprintf (f, "%8s off 0x", pt);
974 bfd_fprintf_vma (abfd, f, p->p_offset);
975 fprintf (f, " vaddr 0x");
976 bfd_fprintf_vma (abfd, f, p->p_vaddr);
977 fprintf (f, " paddr 0x");
978 bfd_fprintf_vma (abfd, f, p->p_paddr);
979 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
980 fprintf (f, " filesz 0x");
981 bfd_fprintf_vma (abfd, f, p->p_filesz);
982 fprintf (f, " memsz 0x");
983 bfd_fprintf_vma (abfd, f, p->p_memsz);
984 fprintf (f, " flags %c%c%c",
985 (p->p_flags & PF_R) != 0 ? 'r' : '-',
986 (p->p_flags & PF_W) != 0 ? 'w' : '-',
987 (p->p_flags & PF_X) != 0 ? 'x' : '-');
988 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
989 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
990 fprintf (f, "\n");
991 }
992 }
993
994 s = bfd_get_section_by_name (abfd, ".dynamic");
995 if (s != NULL)
996 {
997 int elfsec;
998 unsigned long shlink;
999 bfd_byte *extdyn, *extdynend;
1000 size_t extdynsize;
1001 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1002
1003 fprintf (f, _("\nDynamic Section:\n"));
1004
1005 dynbuf = bfd_malloc (s->_raw_size);
1006 if (dynbuf == NULL)
1007 goto error_return;
1008 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1009 goto error_return;
1010
1011 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1012 if (elfsec == -1)
1013 goto error_return;
1014 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1015
1016 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1017 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1018
1019 extdyn = dynbuf;
1020 extdynend = extdyn + s->_raw_size;
1021 for (; extdyn < extdynend; extdyn += extdynsize)
1022 {
1023 Elf_Internal_Dyn dyn;
1024 const char *name;
1025 char ab[20];
1026 bfd_boolean stringp;
1027
1028 (*swap_dyn_in) (abfd, extdyn, &dyn);
1029
1030 if (dyn.d_tag == DT_NULL)
1031 break;
1032
1033 stringp = FALSE;
1034 switch (dyn.d_tag)
1035 {
1036 default:
1037 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1038 name = ab;
1039 break;
1040
1041 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1042 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1043 case DT_PLTGOT: name = "PLTGOT"; break;
1044 case DT_HASH: name = "HASH"; break;
1045 case DT_STRTAB: name = "STRTAB"; break;
1046 case DT_SYMTAB: name = "SYMTAB"; break;
1047 case DT_RELA: name = "RELA"; break;
1048 case DT_RELASZ: name = "RELASZ"; break;
1049 case DT_RELAENT: name = "RELAENT"; break;
1050 case DT_STRSZ: name = "STRSZ"; break;
1051 case DT_SYMENT: name = "SYMENT"; break;
1052 case DT_INIT: name = "INIT"; break;
1053 case DT_FINI: name = "FINI"; break;
1054 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1055 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1056 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1057 case DT_REL: name = "REL"; break;
1058 case DT_RELSZ: name = "RELSZ"; break;
1059 case DT_RELENT: name = "RELENT"; break;
1060 case DT_PLTREL: name = "PLTREL"; break;
1061 case DT_DEBUG: name = "DEBUG"; break;
1062 case DT_TEXTREL: name = "TEXTREL"; break;
1063 case DT_JMPREL: name = "JMPREL"; break;
1064 case DT_BIND_NOW: name = "BIND_NOW"; break;
1065 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1066 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1067 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1068 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1069 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1070 case DT_FLAGS: name = "FLAGS"; break;
1071 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1072 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1073 case DT_CHECKSUM: name = "CHECKSUM"; break;
1074 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1075 case DT_MOVEENT: name = "MOVEENT"; break;
1076 case DT_MOVESZ: name = "MOVESZ"; break;
1077 case DT_FEATURE: name = "FEATURE"; break;
1078 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1079 case DT_SYMINSZ: name = "SYMINSZ"; break;
1080 case DT_SYMINENT: name = "SYMINENT"; break;
1081 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1082 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1083 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1084 case DT_PLTPAD: name = "PLTPAD"; break;
1085 case DT_MOVETAB: name = "MOVETAB"; break;
1086 case DT_SYMINFO: name = "SYMINFO"; break;
1087 case DT_RELACOUNT: name = "RELACOUNT"; break;
1088 case DT_RELCOUNT: name = "RELCOUNT"; break;
1089 case DT_FLAGS_1: name = "FLAGS_1"; break;
1090 case DT_VERSYM: name = "VERSYM"; break;
1091 case DT_VERDEF: name = "VERDEF"; break;
1092 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1093 case DT_VERNEED: name = "VERNEED"; break;
1094 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1095 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1096 case DT_USED: name = "USED"; break;
1097 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1098 }
1099
1100 fprintf (f, " %-11s ", name);
1101 if (! stringp)
1102 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1103 else
1104 {
1105 const char *string;
1106 unsigned int tagv = dyn.d_un.d_val;
1107
1108 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1109 if (string == NULL)
1110 goto error_return;
1111 fprintf (f, "%s", string);
1112 }
1113 fprintf (f, "\n");
1114 }
1115
1116 free (dynbuf);
1117 dynbuf = NULL;
1118 }
1119
1120 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1121 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1122 {
1123 if (! _bfd_elf_slurp_version_tables (abfd))
1124 return FALSE;
1125 }
1126
1127 if (elf_dynverdef (abfd) != 0)
1128 {
1129 Elf_Internal_Verdef *t;
1130
1131 fprintf (f, _("\nVersion definitions:\n"));
1132 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1133 {
1134 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1135 t->vd_flags, t->vd_hash, t->vd_nodename);
1136 if (t->vd_auxptr->vda_nextptr != NULL)
1137 {
1138 Elf_Internal_Verdaux *a;
1139
1140 fprintf (f, "\t");
1141 for (a = t->vd_auxptr->vda_nextptr;
1142 a != NULL;
1143 a = a->vda_nextptr)
1144 fprintf (f, "%s ", a->vda_nodename);
1145 fprintf (f, "\n");
1146 }
1147 }
1148 }
1149
1150 if (elf_dynverref (abfd) != 0)
1151 {
1152 Elf_Internal_Verneed *t;
1153
1154 fprintf (f, _("\nVersion References:\n"));
1155 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1156 {
1157 Elf_Internal_Vernaux *a;
1158
1159 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1160 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1161 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1162 a->vna_flags, a->vna_other, a->vna_nodename);
1163 }
1164 }
1165
1166 return TRUE;
1167
1168 error_return:
1169 if (dynbuf != NULL)
1170 free (dynbuf);
1171 return FALSE;
1172}
1173
1174/* Display ELF-specific fields of a symbol. */
1175
1176void
1177bfd_elf_print_symbol (bfd *abfd,
1178 void *filep,
1179 asymbol *symbol,
1180 bfd_print_symbol_type how)
1181{
1182 FILE *file = filep;
1183 switch (how)
1184 {
1185 case bfd_print_symbol_name:
1186 fprintf (file, "%s", symbol->name);
1187 break;
1188 case bfd_print_symbol_more:
1189 fprintf (file, "elf ");
1190 bfd_fprintf_vma (abfd, file, symbol->value);
1191 fprintf (file, " %lx", (long) symbol->flags);
1192 break;
1193 case bfd_print_symbol_all:
1194 {
1195 const char *section_name;
1196 const char *name = NULL;
1197 const struct elf_backend_data *bed;
1198 unsigned char st_other;
1199 bfd_vma val;
1200
1201 section_name = symbol->section ? symbol->section->name : "(*none*)";
1202
1203 bed = get_elf_backend_data (abfd);
1204 if (bed->elf_backend_print_symbol_all)
1205 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1206
1207 if (name == NULL)
1208 {
1209 name = symbol->name;
1210 bfd_print_symbol_vandf (abfd, file, symbol);
1211 }
1212
1213 fprintf (file, " %s\t", section_name);
1214 /* Print the "other" value for a symbol. For common symbols,
1215 we've already printed the size; now print the alignment.
1216 For other symbols, we have no specified alignment, and
1217 we've printed the address; now print the size. */
1218 if (bfd_is_com_section (symbol->section))
1219 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1220 else
1221 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1222 bfd_fprintf_vma (abfd, file, val);
1223
1224 /* If we have version information, print it. */
1225 if (elf_tdata (abfd)->dynversym_section != 0
1226 && (elf_tdata (abfd)->dynverdef_section != 0
1227 || elf_tdata (abfd)->dynverref_section != 0))
1228 {
1229 unsigned int vernum;
1230 const char *version_string;
1231
1232 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1233
1234 if (vernum == 0)
1235 version_string = "";
1236 else if (vernum == 1)
1237 version_string = "Base";
1238 else if (vernum <= elf_tdata (abfd)->cverdefs)
1239 version_string =
1240 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1241 else
1242 {
1243 Elf_Internal_Verneed *t;
1244
1245 version_string = "";
1246 for (t = elf_tdata (abfd)->verref;
1247 t != NULL;
1248 t = t->vn_nextref)
1249 {
1250 Elf_Internal_Vernaux *a;
1251
1252 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1253 {
1254 if (a->vna_other == vernum)
1255 {
1256 version_string = a->vna_nodename;
1257 break;
1258 }
1259 }
1260 }
1261 }
1262
1263 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1264 fprintf (file, " %-11s", version_string);
1265 else
1266 {
1267 int i;
1268
1269 fprintf (file, " (%s)", version_string);
1270 for (i = 10 - strlen (version_string); i > 0; --i)
1271 putc (' ', file);
1272 }
1273 }
1274
1275 /* If the st_other field is not zero, print it. */
1276 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1277
1278 switch (st_other)
1279 {
1280 case 0: break;
1281 case STV_INTERNAL: fprintf (file, " .internal"); break;
1282 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1283 case STV_PROTECTED: fprintf (file, " .protected"); break;
1284 default:
1285 /* Some other non-defined flags are also present, so print
1286 everything hex. */
1287 fprintf (file, " 0x%02x", (unsigned int) st_other);
1288 }
1289
1290 fprintf (file, " %s", name);
1291 }
1292 break;
1293 }
1294}
1295\f
1296/* Create an entry in an ELF linker hash table. */
1297
1298struct bfd_hash_entry *
1299_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1300 struct bfd_hash_table *table,
1301 const char *string)
1302{
1303 /* Allocate the structure if it has not already been allocated by a
1304 subclass. */
1305 if (entry == NULL)
1306 {
1307 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1308 if (entry == NULL)
1309 return entry;
1310 }
1311
1312 /* Call the allocation method of the superclass. */
1313 entry = _bfd_link_hash_newfunc (entry, table, string);
1314 if (entry != NULL)
1315 {
1316 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1317 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1318
1319 /* Set local fields. */
1320 ret->indx = -1;
1321 ret->dynindx = -1;
1322 ret->dynstr_index = 0;
1323 ret->elf_hash_value = 0;
1324 ret->weakdef = NULL;
1325 ret->verinfo.verdef = NULL;
1326 ret->vtable_entries_size = 0;
1327 ret->vtable_entries_used = NULL;
1328 ret->vtable_parent = NULL;
1329 ret->got = htab->init_refcount;
1330 ret->plt = htab->init_refcount;
1331 ret->size = 0;
1332 ret->type = STT_NOTYPE;
1333 ret->other = 0;
1334 /* Assume that we have been called by a non-ELF symbol reader.
1335 This flag is then reset by the code which reads an ELF input
1336 file. This ensures that a symbol created by a non-ELF symbol
1337 reader will have the flag set correctly. */
1338 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1339 }
1340
1341 return entry;
1342}
1343
1344/* Copy data from an indirect symbol to its direct symbol, hiding the
1345 old indirect symbol. Also used for copying flags to a weakdef. */
1346
1347void
1348_bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1349 struct elf_link_hash_entry *dir,
1350 struct elf_link_hash_entry *ind)
1351{
1352 bfd_signed_vma tmp;
1353 bfd_signed_vma lowest_valid = bed->can_refcount;
1354
1355 /* Copy down any references that we may have already seen to the
1356 symbol which just became indirect. */
1357
1358 dir->elf_link_hash_flags
1359 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1360 | ELF_LINK_HASH_REF_REGULAR
1361 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1362 | ELF_LINK_NON_GOT_REF
1363 | ELF_LINK_HASH_NEEDS_PLT
1364 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1365
1366 if (ind->root.type != bfd_link_hash_indirect)
1367 return;
1368
1369 /* Copy over the global and procedure linkage table refcount entries.
1370 These may have been already set up by a check_relocs routine. */
1371 tmp = dir->got.refcount;
1372 if (tmp < lowest_valid)
1373 {
1374 dir->got.refcount = ind->got.refcount;
1375 ind->got.refcount = tmp;
1376 }
1377 else
1378 BFD_ASSERT (ind->got.refcount < lowest_valid);
1379
1380 tmp = dir->plt.refcount;
1381 if (tmp < lowest_valid)
1382 {
1383 dir->plt.refcount = ind->plt.refcount;
1384 ind->plt.refcount = tmp;
1385 }
1386 else
1387 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1388
1389 if (dir->dynindx == -1)
1390 {
1391 dir->dynindx = ind->dynindx;
1392 dir->dynstr_index = ind->dynstr_index;
1393 ind->dynindx = -1;
1394 ind->dynstr_index = 0;
1395 }
1396 else
1397 BFD_ASSERT (ind->dynindx == -1);
1398}
1399
1400void
1401_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1402 struct elf_link_hash_entry *h,
1403 bfd_boolean force_local)
1404{
1405 h->plt = elf_hash_table (info)->init_offset;
1406 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1407 if (force_local)
1408 {
1409 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1410 if (h->dynindx != -1)
1411 {
1412 h->dynindx = -1;
1413 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1414 h->dynstr_index);
1415 }
1416 }
1417}
1418
1419/* Initialize an ELF linker hash table. */
1420
1421bfd_boolean
1422_bfd_elf_link_hash_table_init
1423 (struct elf_link_hash_table *table,
1424 bfd *abfd,
1425 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1426 struct bfd_hash_table *,
1427 const char *))
1428{
1429 bfd_boolean ret;
1430
1431 table->dynamic_sections_created = FALSE;
1432 table->dynobj = NULL;
1433 /* Make sure can_refcount is extended to the width and signedness of
1434 init_refcount before we subtract one from it. */
1435 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1436 table->init_refcount.refcount -= 1;
1437 table->init_offset.offset = -(bfd_vma) 1;
1438 /* The first dynamic symbol is a dummy. */
1439 table->dynsymcount = 1;
1440 table->dynstr = NULL;
1441 table->bucketcount = 0;
1442 table->needed = NULL;
1443 table->hgot = NULL;
1444 table->stab_info = NULL;
1445 table->merge_info = NULL;
1446 memset (&table->eh_info, 0, sizeof (table->eh_info));
1447 table->dynlocal = NULL;
1448 table->runpath = NULL;
1449 table->tls_sec = NULL;
1450 table->tls_size = 0;
1451 table->loaded = NULL;
1452
1453 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1454 table->root.type = bfd_link_elf_hash_table;
1455
1456 return ret;
1457}
1458
1459/* Create an ELF linker hash table. */
1460
1461struct bfd_link_hash_table *
1462_bfd_elf_link_hash_table_create (bfd *abfd)
1463{
1464 struct elf_link_hash_table *ret;
1465 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1466
1467 ret = bfd_malloc (amt);
1468 if (ret == NULL)
1469 return NULL;
1470
1471 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1472 {
1473 free (ret);
1474 return NULL;
1475 }
1476
1477 return &ret->root;
1478}
1479
1480/* This is a hook for the ELF emulation code in the generic linker to
1481 tell the backend linker what file name to use for the DT_NEEDED
1482 entry for a dynamic object. The generic linker passes name as an
1483 empty string to indicate that no DT_NEEDED entry should be made. */
1484
1485void
1486bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1487{
1488 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1489 && bfd_get_format (abfd) == bfd_object)
1490 elf_dt_name (abfd) = name;
1491}
1492
1493void
1494bfd_elf_set_dt_needed_soname (bfd *abfd, const char *name)
1495{
1496 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1497 && bfd_get_format (abfd) == bfd_object)
1498 elf_dt_soname (abfd) = name;
1499}
1500
1501/* Get the list of DT_NEEDED entries for a link. This is a hook for
1502 the linker ELF emulation code. */
1503
1504struct bfd_link_needed_list *
1505bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1506 struct bfd_link_info *info)
1507{
1508 if (! is_elf_hash_table (info->hash))
1509 return NULL;
1510 return elf_hash_table (info)->needed;
1511}
1512
1513/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1514 hook for the linker ELF emulation code. */
1515
1516struct bfd_link_needed_list *
1517bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1518 struct bfd_link_info *info)
1519{
1520 if (! is_elf_hash_table (info->hash))
1521 return NULL;
1522 return elf_hash_table (info)->runpath;
1523}
1524
1525/* Get the name actually used for a dynamic object for a link. This
1526 is the SONAME entry if there is one. Otherwise, it is the string
1527 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1528
1529const char *
1530bfd_elf_get_dt_soname (bfd *abfd)
1531{
1532 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1533 && bfd_get_format (abfd) == bfd_object)
1534 return elf_dt_name (abfd);
1535 return NULL;
1536}
1537
1538/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1539 the ELF linker emulation code. */
1540
1541bfd_boolean
1542bfd_elf_get_bfd_needed_list (bfd *abfd,
1543 struct bfd_link_needed_list **pneeded)
1544{
1545 asection *s;
1546 bfd_byte *dynbuf = NULL;
1547 int elfsec;
1548 unsigned long shlink;
1549 bfd_byte *extdyn, *extdynend;
1550 size_t extdynsize;
1551 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1552
1553 *pneeded = NULL;
1554
1555 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1556 || bfd_get_format (abfd) != bfd_object)
1557 return TRUE;
1558
1559 s = bfd_get_section_by_name (abfd, ".dynamic");
1560 if (s == NULL || s->_raw_size == 0)
1561 return TRUE;
1562
1563 dynbuf = bfd_malloc (s->_raw_size);
1564 if (dynbuf == NULL)
1565 goto error_return;
1566
1567 if (! bfd_get_section_contents (abfd, s, dynbuf, 0, s->_raw_size))
1568 goto error_return;
1569
1570 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1571 if (elfsec == -1)
1572 goto error_return;
1573
1574 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1575
1576 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1577 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1578
1579 extdyn = dynbuf;
1580 extdynend = extdyn + s->_raw_size;
1581 for (; extdyn < extdynend; extdyn += extdynsize)
1582 {
1583 Elf_Internal_Dyn dyn;
1584
1585 (*swap_dyn_in) (abfd, extdyn, &dyn);
1586
1587 if (dyn.d_tag == DT_NULL)
1588 break;
1589
1590 if (dyn.d_tag == DT_NEEDED)
1591 {
1592 const char *string;
1593 struct bfd_link_needed_list *l;
1594 unsigned int tagv = dyn.d_un.d_val;
1595 bfd_size_type amt;
1596
1597 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1598 if (string == NULL)
1599 goto error_return;
1600
1601 amt = sizeof *l;
1602 l = bfd_alloc (abfd, amt);
1603 if (l == NULL)
1604 goto error_return;
1605
1606 l->by = abfd;
1607 l->name = string;
1608 l->next = *pneeded;
1609 *pneeded = l;
1610 }
1611 }
1612
1613 free (dynbuf);
1614
1615 return TRUE;
1616
1617 error_return:
1618 if (dynbuf != NULL)
1619 free (dynbuf);
1620 return FALSE;
1621}
1622\f
1623/* Allocate an ELF string table--force the first byte to be zero. */
1624
1625struct bfd_strtab_hash *
1626_bfd_elf_stringtab_init (void)
1627{
1628 struct bfd_strtab_hash *ret;
1629
1630 ret = _bfd_stringtab_init ();
1631 if (ret != NULL)
1632 {
1633 bfd_size_type loc;
1634
1635 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1636 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1637 if (loc == (bfd_size_type) -1)
1638 {
1639 _bfd_stringtab_free (ret);
1640 ret = NULL;
1641 }
1642 }
1643 return ret;
1644}
1645\f
1646/* ELF .o/exec file reading */
1647
1648/* Create a new bfd section from an ELF section header. */
1649
1650bfd_boolean
1651bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1652{
1653 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1654 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1655 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1656 const char *name;
1657
1658 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1659
1660 switch (hdr->sh_type)
1661 {
1662 case SHT_NULL:
1663 /* Inactive section. Throw it away. */
1664 return TRUE;
1665
1666 case SHT_PROGBITS: /* Normal section with contents. */
1667 case SHT_NOBITS: /* .bss section. */
1668 case SHT_HASH: /* .hash section. */
1669 case SHT_NOTE: /* .note section. */
1670 case SHT_INIT_ARRAY: /* .init_array section. */
1671 case SHT_FINI_ARRAY: /* .fini_array section. */
1672 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1673 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1674
1675 case SHT_DYNAMIC: /* Dynamic linking information. */
1676 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1677 return FALSE;
1678 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1679 {
1680 Elf_Internal_Shdr *dynsymhdr;
1681
1682 /* The shared libraries distributed with hpux11 have a bogus
1683 sh_link field for the ".dynamic" section. Find the
1684 string table for the ".dynsym" section instead. */
1685 if (elf_dynsymtab (abfd) != 0)
1686 {
1687 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1688 hdr->sh_link = dynsymhdr->sh_link;
1689 }
1690 else
1691 {
1692 unsigned int i, num_sec;
1693
1694 num_sec = elf_numsections (abfd);
1695 for (i = 1; i < num_sec; i++)
1696 {
1697 dynsymhdr = elf_elfsections (abfd)[i];
1698 if (dynsymhdr->sh_type == SHT_DYNSYM)
1699 {
1700 hdr->sh_link = dynsymhdr->sh_link;
1701 break;
1702 }
1703 }
1704 }
1705 }
1706 break;
1707
1708 case SHT_SYMTAB: /* A symbol table */
1709 if (elf_onesymtab (abfd) == shindex)
1710 return TRUE;
1711
1712 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1713 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1714 elf_onesymtab (abfd) = shindex;
1715 elf_tdata (abfd)->symtab_hdr = *hdr;
1716 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1717 abfd->flags |= HAS_SYMS;
1718
1719 /* Sometimes a shared object will map in the symbol table. If
1720 SHF_ALLOC is set, and this is a shared object, then we also
1721 treat this section as a BFD section. We can not base the
1722 decision purely on SHF_ALLOC, because that flag is sometimes
1723 set in a relocatable object file, which would confuse the
1724 linker. */
1725 if ((hdr->sh_flags & SHF_ALLOC) != 0
1726 && (abfd->flags & DYNAMIC) != 0
1727 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1728 return FALSE;
1729
1730 return TRUE;
1731
1732 case SHT_DYNSYM: /* A dynamic symbol table */
1733 if (elf_dynsymtab (abfd) == shindex)
1734 return TRUE;
1735
1736 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1737 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1738 elf_dynsymtab (abfd) = shindex;
1739 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1740 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1741 abfd->flags |= HAS_SYMS;
1742
1743 /* Besides being a symbol table, we also treat this as a regular
1744 section, so that objcopy can handle it. */
1745 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1746
1747 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1748 if (elf_symtab_shndx (abfd) == shindex)
1749 return TRUE;
1750
1751 /* Get the associated symbol table. */
1752 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1753 || hdr->sh_link != elf_onesymtab (abfd))
1754 return FALSE;
1755
1756 elf_symtab_shndx (abfd) = shindex;
1757 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1758 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1759 return TRUE;
1760
1761 case SHT_STRTAB: /* A string table */
1762 if (hdr->bfd_section != NULL)
1763 return TRUE;
1764 if (ehdr->e_shstrndx == shindex)
1765 {
1766 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1767 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1768 return TRUE;
1769 }
1770 {
1771 unsigned int i, num_sec;
1772
1773 num_sec = elf_numsections (abfd);
1774 for (i = 1; i < num_sec; i++)
1775 {
1776 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1777 if (hdr2->sh_link == shindex)
1778 {
1779 if (! bfd_section_from_shdr (abfd, i))
1780 return FALSE;
1781 if (elf_onesymtab (abfd) == i)
1782 {
1783 elf_tdata (abfd)->strtab_hdr = *hdr;
1784 elf_elfsections (abfd)[shindex] =
1785 &elf_tdata (abfd)->strtab_hdr;
1786 return TRUE;
1787 }
1788 if (elf_dynsymtab (abfd) == i)
1789 {
1790 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1791 elf_elfsections (abfd)[shindex] = hdr =
1792 &elf_tdata (abfd)->dynstrtab_hdr;
1793 /* We also treat this as a regular section, so
1794 that objcopy can handle it. */
1795 break;
1796 }
1797#if 0 /* Not handling other string tables specially right now. */
1798 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1799 /* We have a strtab for some random other section. */
1800 newsect = (asection *) hdr2->bfd_section;
1801 if (!newsect)
1802 break;
1803 hdr->bfd_section = newsect;
1804 hdr2 = &elf_section_data (newsect)->str_hdr;
1805 *hdr2 = *hdr;
1806 elf_elfsections (abfd)[shindex] = hdr2;
1807#endif
1808 }
1809 }
1810 }
1811
1812 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1813
1814 case SHT_REL:
1815 case SHT_RELA:
1816 /* *These* do a lot of work -- but build no sections! */
1817 {
1818 asection *target_sect;
1819 Elf_Internal_Shdr *hdr2;
1820 unsigned int num_sec = elf_numsections (abfd);
1821
1822 /* Check for a bogus link to avoid crashing. */
1823 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1824 || hdr->sh_link >= num_sec)
1825 {
1826 ((*_bfd_error_handler)
1827 (_("%s: invalid link %lu for reloc section %s (index %u)"),
1828 bfd_archive_filename (abfd), hdr->sh_link, name, shindex));
1829 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1830 }
1831
1832 /* For some incomprehensible reason Oracle distributes
1833 libraries for Solaris in which some of the objects have
1834 bogus sh_link fields. It would be nice if we could just
1835 reject them, but, unfortunately, some people need to use
1836 them. We scan through the section headers; if we find only
1837 one suitable symbol table, we clobber the sh_link to point
1838 to it. I hope this doesn't break anything. */
1839 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1840 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1841 {
1842 unsigned int scan;
1843 int found;
1844
1845 found = 0;
1846 for (scan = 1; scan < num_sec; scan++)
1847 {
1848 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1849 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1850 {
1851 if (found != 0)
1852 {
1853 found = 0;
1854 break;
1855 }
1856 found = scan;
1857 }
1858 }
1859 if (found != 0)
1860 hdr->sh_link = found;
1861 }
1862
1863 /* Get the symbol table. */
1864 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1865 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1866 return FALSE;
1867
1868 /* If this reloc section does not use the main symbol table we
1869 don't treat it as a reloc section. BFD can't adequately
1870 represent such a section, so at least for now, we don't
1871 try. We just present it as a normal section. We also
1872 can't use it as a reloc section if it points to the null
1873 section. */
1874 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1875 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1876
1877 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1878 return FALSE;
1879 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1880 if (target_sect == NULL)
1881 return FALSE;
1882
1883 if ((target_sect->flags & SEC_RELOC) == 0
1884 || target_sect->reloc_count == 0)
1885 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1886 else
1887 {
1888 bfd_size_type amt;
1889 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1890 amt = sizeof (*hdr2);
1891 hdr2 = bfd_alloc (abfd, amt);
1892 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1893 }
1894 *hdr2 = *hdr;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1904 abfd->flags |= HAS_RELOC;
1905 return TRUE;
1906 }
1907 break;
1908
1909 case SHT_GNU_verdef:
1910 elf_dynverdef (abfd) = shindex;
1911 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1912 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1913 break;
1914
1915 case SHT_GNU_versym:
1916 elf_dynversym (abfd) = shindex;
1917 elf_tdata (abfd)->dynversym_hdr = *hdr;
1918 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1919 break;
1920
1921 case SHT_GNU_verneed:
1922 elf_dynverref (abfd) = shindex;
1923 elf_tdata (abfd)->dynverref_hdr = *hdr;
1924 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1925 break;
1926
1927 case SHT_SHLIB:
1928 return TRUE;
1929
1930 case SHT_GROUP:
1931 /* We need a BFD section for objcopy and relocatable linking,
1932 and it's handy to have the signature available as the section
1933 name. */
1934 name = group_signature (abfd, hdr);
1935 if (name == NULL)
1936 return FALSE;
1937 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
1938 return FALSE;
1939 if (hdr->contents != NULL)
1940 {
1941 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1942 unsigned int n_elt = hdr->sh_size / 4;
1943 asection *s;
1944
1945 if (idx->flags & GRP_COMDAT)
1946 hdr->bfd_section->flags
1947 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1948
1949 while (--n_elt != 0)
1950 if ((s = (++idx)->shdr->bfd_section) != NULL
1951 && elf_next_in_group (s) != NULL)
1952 {
1953 elf_next_in_group (hdr->bfd_section) = s;
1954 break;
1955 }
1956 }
1957 break;
1958
1959 default:
1960 /* Check for any processor-specific section types. */
1961 {
1962 if (bed->elf_backend_section_from_shdr)
1963 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
1964 }
1965 break;
1966 }
1967
1968 return TRUE;
1969}
1970
1971/* Return the section for the local symbol specified by ABFD, R_SYMNDX.
1972 Return SEC for sections that have no elf section, and NULL on error. */
1973
1974asection *
1975bfd_section_from_r_symndx (bfd *abfd,
1976 struct sym_sec_cache *cache,
1977 asection *sec,
1978 unsigned long r_symndx)
1979{
1980 Elf_Internal_Shdr *symtab_hdr;
1981 unsigned char esym[sizeof (Elf64_External_Sym)];
1982 Elf_External_Sym_Shndx eshndx;
1983 Elf_Internal_Sym isym;
1984 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
1985
1986 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
1987 return cache->sec[ent];
1988
1989 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1990 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
1991 &isym, esym, &eshndx) == NULL)
1992 return NULL;
1993
1994 if (cache->abfd != abfd)
1995 {
1996 memset (cache->indx, -1, sizeof (cache->indx));
1997 cache->abfd = abfd;
1998 }
1999 cache->indx[ent] = r_symndx;
2000 cache->sec[ent] = sec;
2001 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2002 || isym.st_shndx > SHN_HIRESERVE)
2003 {
2004 asection *s;
2005 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2006 if (s != NULL)
2007 cache->sec[ent] = s;
2008 }
2009 return cache->sec[ent];
2010}
2011
2012/* Given an ELF section number, retrieve the corresponding BFD
2013 section. */
2014
2015asection *
2016bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2017{
2018 if (index >= elf_numsections (abfd))
2019 return NULL;
2020 return elf_elfsections (abfd)[index]->bfd_section;
2021}
2022
2023static struct bfd_elf_special_section const special_sections[] =
2024{
2025 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2026 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2027 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2028 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2029 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2030 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2031 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2032 { ".line", 5, 0, SHT_PROGBITS, 0 },
2033 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2034 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2035 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2036 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2037 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2038 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2039 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2040 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2041 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2042 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2043 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2044 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2045 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2046 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2047 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2048 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2049 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2050 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2051 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2052 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2053 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2054 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2055 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2056 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2057 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2058 { ".note", 5, -1, SHT_NOTE, 0 },
2059 { ".rela", 5, -1, SHT_RELA, 0 },
2060 { ".rel", 4, -1, SHT_REL, 0 },
2061 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2062 { NULL, 0, 0, 0, 0 }
2063};
2064
2065static const struct bfd_elf_special_section *
2066get_special_section (const char *name,
2067 const struct bfd_elf_special_section *special_sections,
2068 unsigned int rela)
2069{
2070 int i;
2071 int len = strlen (name);
2072
2073 for (i = 0; special_sections[i].prefix != NULL; i++)
2074 {
2075 int suffix_len;
2076 int prefix_len = special_sections[i].prefix_length;
2077
2078 if (len < prefix_len)
2079 continue;
2080 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2081 continue;
2082
2083 suffix_len = special_sections[i].suffix_length;
2084 if (suffix_len <= 0)
2085 {
2086 if (name[prefix_len] != 0)
2087 {
2088 if (suffix_len == 0)
2089 continue;
2090 if (name[prefix_len] != '.'
2091 && (suffix_len == -2
2092 || (rela && special_sections[i].type == SHT_REL)))
2093 continue;
2094 }
2095 }
2096 else
2097 {
2098 if (len < prefix_len + suffix_len)
2099 continue;
2100 if (memcmp (name + len - suffix_len,
2101 special_sections[i].prefix + prefix_len,
2102 suffix_len) != 0)
2103 continue;
2104 }
2105 return &special_sections[i];
2106 }
2107
2108 return NULL;
2109}
2110
2111const struct bfd_elf_special_section *
2112_bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2113{
2114 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2115 const struct bfd_elf_special_section *ssect = NULL;
2116
2117 /* See if this is one of the special sections. */
2118 if (name)
2119 {
2120 unsigned int rela = bed->default_use_rela_p;
2121
2122 if (bed->special_sections)
2123 ssect = get_special_section (name, bed->special_sections, rela);
2124
2125 if (! ssect)
2126 ssect = get_special_section (name, special_sections, rela);
2127 }
2128
2129 return ssect;
2130}
2131
2132bfd_boolean
2133_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2134{
2135 struct bfd_elf_section_data *sdata;
2136 const struct bfd_elf_special_section *ssect;
2137
2138 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2139 if (sdata == NULL)
2140 {
2141 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2142 if (sdata == NULL)
2143 return FALSE;
2144 sec->used_by_bfd = sdata;
2145 }
2146
2147 elf_section_type (sec) = SHT_NULL;
2148 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2149 if (ssect != NULL)
2150 {
2151 elf_section_type (sec) = ssect->type;
2152 elf_section_flags (sec) = ssect->attr;
2153 }
2154
2155 /* Indicate whether or not this section should use RELA relocations. */
2156 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2157
2158 return TRUE;
2159}
2160
2161/* Create a new bfd section from an ELF program header.
2162
2163 Since program segments have no names, we generate a synthetic name
2164 of the form segment<NUM>, where NUM is generally the index in the
2165 program header table. For segments that are split (see below) we
2166 generate the names segment<NUM>a and segment<NUM>b.
2167
2168 Note that some program segments may have a file size that is different than
2169 (less than) the memory size. All this means is that at execution the
2170 system must allocate the amount of memory specified by the memory size,
2171 but only initialize it with the first "file size" bytes read from the
2172 file. This would occur for example, with program segments consisting
2173 of combined data+bss.
2174
2175 To handle the above situation, this routine generates TWO bfd sections
2176 for the single program segment. The first has the length specified by
2177 the file size of the segment, and the second has the length specified
2178 by the difference between the two sizes. In effect, the segment is split
2179 into it's initialized and uninitialized parts.
2180
2181 */
2182
2183bfd_boolean
2184_bfd_elf_make_section_from_phdr (bfd *abfd,
2185 Elf_Internal_Phdr *hdr,
2186 int index,
2187 const char *typename)
2188{
2189 asection *newsect;
2190 char *name;
2191 char namebuf[64];
2192 size_t len;
2193 int split;
2194
2195 split = ((hdr->p_memsz > 0)
2196 && (hdr->p_filesz > 0)
2197 && (hdr->p_memsz > hdr->p_filesz));
2198 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2199 len = strlen (namebuf) + 1;
2200 name = bfd_alloc (abfd, len);
2201 if (!name)
2202 return FALSE;
2203 memcpy (name, namebuf, len);
2204 newsect = bfd_make_section (abfd, name);
2205 if (newsect == NULL)
2206 return FALSE;
2207 newsect->vma = hdr->p_vaddr;
2208 newsect->lma = hdr->p_paddr;
2209 newsect->_raw_size = hdr->p_filesz;
2210 newsect->filepos = hdr->p_offset;
2211 newsect->flags |= SEC_HAS_CONTENTS;
2212 newsect->alignment_power = bfd_log2 (hdr->p_align);
2213 if (hdr->p_type == PT_LOAD)
2214 {
2215 newsect->flags |= SEC_ALLOC;
2216 newsect->flags |= SEC_LOAD;
2217 if (hdr->p_flags & PF_X)
2218 {
2219 /* FIXME: all we known is that it has execute PERMISSION,
2220 may be data. */
2221 newsect->flags |= SEC_CODE;
2222 }
2223 }
2224 if (!(hdr->p_flags & PF_W))
2225 {
2226 newsect->flags |= SEC_READONLY;
2227 }
2228
2229 if (split)
2230 {
2231 sprintf (namebuf, "%s%db", typename, index);
2232 len = strlen (namebuf) + 1;
2233 name = bfd_alloc (abfd, len);
2234 if (!name)
2235 return FALSE;
2236 memcpy (name, namebuf, len);
2237 newsect = bfd_make_section (abfd, name);
2238 if (newsect == NULL)
2239 return FALSE;
2240 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2241 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2242 newsect->_raw_size = hdr->p_memsz - hdr->p_filesz;
2243 if (hdr->p_type == PT_LOAD)
2244 {
2245 newsect->flags |= SEC_ALLOC;
2246 if (hdr->p_flags & PF_X)
2247 newsect->flags |= SEC_CODE;
2248 }
2249 if (!(hdr->p_flags & PF_W))
2250 newsect->flags |= SEC_READONLY;
2251 }
2252
2253 return TRUE;
2254}
2255
2256bfd_boolean
2257bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2258{
2259 const struct elf_backend_data *bed;
2260
2261 switch (hdr->p_type)
2262 {
2263 case PT_NULL:
2264 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2265
2266 case PT_LOAD:
2267 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2268
2269 case PT_DYNAMIC:
2270 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2271
2272 case PT_INTERP:
2273 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2274
2275 case PT_NOTE:
2276 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2277 return FALSE;
2278 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2279 return FALSE;
2280 return TRUE;
2281
2282 case PT_SHLIB:
2283 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2284
2285 case PT_PHDR:
2286 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2287
2288 case PT_GNU_EH_FRAME:
2289 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2290 "eh_frame_hdr");
2291
2292 case PT_GNU_STACK:
2293 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2294
2295 default:
2296 /* Check for any processor-specific program segment types.
2297 If no handler for them, default to making "segment" sections. */
2298 bed = get_elf_backend_data (abfd);
2299 if (bed->elf_backend_section_from_phdr)
2300 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2301 else
2302 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2303 }
2304}
2305
2306/* Initialize REL_HDR, the section-header for new section, containing
2307 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2308 relocations; otherwise, we use REL relocations. */
2309
2310bfd_boolean
2311_bfd_elf_init_reloc_shdr (bfd *abfd,
2312 Elf_Internal_Shdr *rel_hdr,
2313 asection *asect,
2314 bfd_boolean use_rela_p)
2315{
2316 char *name;
2317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2318 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2319
2320 name = bfd_alloc (abfd, amt);
2321 if (name == NULL)
2322 return FALSE;
2323 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2324 rel_hdr->sh_name =
2325 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2326 FALSE);
2327 if (rel_hdr->sh_name == (unsigned int) -1)
2328 return FALSE;
2329 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2330 rel_hdr->sh_entsize = (use_rela_p
2331 ? bed->s->sizeof_rela
2332 : bed->s->sizeof_rel);
2333 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2334 rel_hdr->sh_flags = 0;
2335 rel_hdr->sh_addr = 0;
2336 rel_hdr->sh_size = 0;
2337 rel_hdr->sh_offset = 0;
2338
2339 return TRUE;
2340}
2341
2342/* Set up an ELF internal section header for a section. */
2343
2344static void
2345elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2346{
2347 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2348 bfd_boolean *failedptr = failedptrarg;
2349 Elf_Internal_Shdr *this_hdr;
2350
2351 if (*failedptr)
2352 {
2353 /* We already failed; just get out of the bfd_map_over_sections
2354 loop. */
2355 return;
2356 }
2357
2358 this_hdr = &elf_section_data (asect)->this_hdr;
2359
2360 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2361 asect->name, FALSE);
2362 if (this_hdr->sh_name == (unsigned int) -1)
2363 {
2364 *failedptr = TRUE;
2365 return;
2366 }
2367
2368 this_hdr->sh_flags = 0;
2369
2370 if ((asect->flags & SEC_ALLOC) != 0
2371 || asect->user_set_vma)
2372 this_hdr->sh_addr = asect->vma;
2373 else
2374 this_hdr->sh_addr = 0;
2375
2376 this_hdr->sh_offset = 0;
2377 this_hdr->sh_size = asect->_raw_size;
2378 this_hdr->sh_link = 0;
2379 this_hdr->sh_addralign = 1 << asect->alignment_power;
2380 /* The sh_entsize and sh_info fields may have been set already by
2381 copy_private_section_data. */
2382
2383 this_hdr->bfd_section = asect;
2384 this_hdr->contents = NULL;
2385
2386 /* If the section type is unspecified, we set it based on
2387 asect->flags. */
2388 if (this_hdr->sh_type == SHT_NULL)
2389 {
2390 if ((asect->flags & SEC_ALLOC) != 0
2391 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2392 || (asect->flags & SEC_NEVER_LOAD) != 0))
2393 this_hdr->sh_type = SHT_NOBITS;
2394 else
2395 this_hdr->sh_type = SHT_PROGBITS;
2396 }
2397
2398 switch (this_hdr->sh_type)
2399 {
2400 default:
2401 break;
2402
2403 case SHT_STRTAB:
2404 case SHT_INIT_ARRAY:
2405 case SHT_FINI_ARRAY:
2406 case SHT_PREINIT_ARRAY:
2407 case SHT_NOTE:
2408 case SHT_NOBITS:
2409 case SHT_PROGBITS:
2410 break;
2411
2412 case SHT_HASH:
2413 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2414 break;
2415
2416 case SHT_DYNSYM:
2417 this_hdr->sh_entsize = bed->s->sizeof_sym;
2418 break;
2419
2420 case SHT_DYNAMIC:
2421 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2422 break;
2423
2424 case SHT_RELA:
2425 if (get_elf_backend_data (abfd)->may_use_rela_p)
2426 this_hdr->sh_entsize = bed->s->sizeof_rela;
2427 break;
2428
2429 case SHT_REL:
2430 if (get_elf_backend_data (abfd)->may_use_rel_p)
2431 this_hdr->sh_entsize = bed->s->sizeof_rel;
2432 break;
2433
2434 case SHT_GNU_versym:
2435 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2436 break;
2437
2438 case SHT_GNU_verdef:
2439 this_hdr->sh_entsize = 0;
2440 /* objcopy or strip will copy over sh_info, but may not set
2441 cverdefs. The linker will set cverdefs, but sh_info will be
2442 zero. */
2443 if (this_hdr->sh_info == 0)
2444 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2445 else
2446 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2447 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2448 break;
2449
2450 case SHT_GNU_verneed:
2451 this_hdr->sh_entsize = 0;
2452 /* objcopy or strip will copy over sh_info, but may not set
2453 cverrefs. The linker will set cverrefs, but sh_info will be
2454 zero. */
2455 if (this_hdr->sh_info == 0)
2456 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2457 else
2458 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2459 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2460 break;
2461
2462 case SHT_GROUP:
2463 this_hdr->sh_entsize = 4;
2464 break;
2465 }
2466
2467 if ((asect->flags & SEC_ALLOC) != 0)
2468 this_hdr->sh_flags |= SHF_ALLOC;
2469 if ((asect->flags & SEC_READONLY) == 0)
2470 this_hdr->sh_flags |= SHF_WRITE;
2471 if ((asect->flags & SEC_CODE) != 0)
2472 this_hdr->sh_flags |= SHF_EXECINSTR;
2473 if ((asect->flags & SEC_MERGE) != 0)
2474 {
2475 this_hdr->sh_flags |= SHF_MERGE;
2476 this_hdr->sh_entsize = asect->entsize;
2477 if ((asect->flags & SEC_STRINGS) != 0)
2478 this_hdr->sh_flags |= SHF_STRINGS;
2479 }
2480 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2481 this_hdr->sh_flags |= SHF_GROUP;
2482 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2483 {
2484 this_hdr->sh_flags |= SHF_TLS;
2485 if (asect->_raw_size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2486 {
2487 struct bfd_link_order *o;
2488
2489 this_hdr->sh_size = 0;
2490 for (o = asect->link_order_head; o != NULL; o = o->next)
2491 if (this_hdr->sh_size < o->offset + o->size)
2492 this_hdr->sh_size = o->offset + o->size;
2493 if (this_hdr->sh_size)
2494 this_hdr->sh_type = SHT_NOBITS;
2495 }
2496 }
2497
2498 /* Check for processor-specific section types. */
2499 if (bed->elf_backend_fake_sections
2500 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2501 *failedptr = TRUE;
2502
2503 /* If the section has relocs, set up a section header for the
2504 SHT_REL[A] section. If two relocation sections are required for
2505 this section, it is up to the processor-specific back-end to
2506 create the other. */
2507 if ((asect->flags & SEC_RELOC) != 0
2508 && !_bfd_elf_init_reloc_shdr (abfd,
2509 &elf_section_data (asect)->rel_hdr,
2510 asect,
2511 asect->use_rela_p))
2512 *failedptr = TRUE;
2513}
2514
2515/* Fill in the contents of a SHT_GROUP section. */
2516
2517void
2518bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2519{
2520 bfd_boolean *failedptr = failedptrarg;
2521 unsigned long symindx;
2522 asection *elt, *first;
2523 unsigned char *loc;
2524 struct bfd_link_order *l;
2525 bfd_boolean gas;
2526
2527 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2528 || *failedptr)
2529 return;
2530
2531 symindx = 0;
2532 if (elf_group_id (sec) != NULL)
2533 symindx = elf_group_id (sec)->udata.i;
2534
2535 if (symindx == 0)
2536 {
2537 /* If called from the assembler, swap_out_syms will have set up
2538 elf_section_syms; If called for "ld -r", use target_index. */
2539 if (elf_section_syms (abfd) != NULL)
2540 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2541 else
2542 symindx = sec->target_index;
2543 }
2544 elf_section_data (sec)->this_hdr.sh_info = symindx;
2545
2546 /* The contents won't be allocated for "ld -r" or objcopy. */
2547 gas = TRUE;
2548 if (sec->contents == NULL)
2549 {
2550 gas = FALSE;
2551 sec->contents = bfd_alloc (abfd, sec->_raw_size);
2552
2553 /* Arrange for the section to be written out. */
2554 elf_section_data (sec)->this_hdr.contents = sec->contents;
2555 if (sec->contents == NULL)
2556 {
2557 *failedptr = TRUE;
2558 return;
2559 }
2560 }
2561
2562 loc = sec->contents + sec->_raw_size;
2563
2564 /* Get the pointer to the first section in the group that gas
2565 squirreled away here. objcopy arranges for this to be set to the
2566 start of the input section group. */
2567 first = elt = elf_next_in_group (sec);
2568
2569 /* First element is a flag word. Rest of section is elf section
2570 indices for all the sections of the group. Write them backwards
2571 just to keep the group in the same order as given in .section
2572 directives, not that it matters. */
2573 while (elt != NULL)
2574 {
2575 asection *s;
2576 unsigned int idx;
2577
2578 loc -= 4;
2579 s = elt;
2580 if (!gas)
2581 s = s->output_section;
2582 idx = 0;
2583 if (s != NULL)
2584 idx = elf_section_data (s)->this_idx;
2585 H_PUT_32 (abfd, idx, loc);
2586 elt = elf_next_in_group (elt);
2587 if (elt == first)
2588 break;
2589 }
2590
2591 /* If this is a relocatable link, then the above did nothing because
2592 SEC is the output section. Look through the input sections
2593 instead. */
2594 for (l = sec->link_order_head; l != NULL; l = l->next)
2595 if (l->type == bfd_indirect_link_order
2596 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2597 do
2598 {
2599 loc -= 4;
2600 H_PUT_32 (abfd,
2601 elf_section_data (elt->output_section)->this_idx, loc);
2602 elt = elf_next_in_group (elt);
2603 /* During a relocatable link, the lists are circular. */
2604 }
2605 while (elt != elf_next_in_group (l->u.indirect.section));
2606
2607 /* With ld -r, merging SHT_GROUP sections results in wasted space
2608 due to allowing for the flag word on each input. We may well
2609 duplicate entries too. */
2610 while ((loc -= 4) > sec->contents)
2611 H_PUT_32 (abfd, 0, loc);
2612
2613 if (loc != sec->contents)
2614 abort ();
2615
2616 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2617}
2618
2619/* Assign all ELF section numbers. The dummy first section is handled here
2620 too. The link/info pointers for the standard section types are filled
2621 in here too, while we're at it. */
2622
2623static bfd_boolean
2624assign_section_numbers (bfd *abfd)
2625{
2626 struct elf_obj_tdata *t = elf_tdata (abfd);
2627 asection *sec;
2628 unsigned int section_number, secn;
2629 Elf_Internal_Shdr **i_shdrp;
2630 bfd_size_type amt;
2631
2632 section_number = 1;
2633
2634 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2635
2636 for (sec = abfd->sections; sec; sec = sec->next)
2637 {
2638 struct bfd_elf_section_data *d = elf_section_data (sec);
2639
2640 if (section_number == SHN_LORESERVE)
2641 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2642 d->this_idx = section_number++;
2643 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2644 if ((sec->flags & SEC_RELOC) == 0)
2645 d->rel_idx = 0;
2646 else
2647 {
2648 if (section_number == SHN_LORESERVE)
2649 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2650 d->rel_idx = section_number++;
2651 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2652 }
2653
2654 if (d->rel_hdr2)
2655 {
2656 if (section_number == SHN_LORESERVE)
2657 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2658 d->rel_idx2 = section_number++;
2659 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2660 }
2661 else
2662 d->rel_idx2 = 0;
2663 }
2664
2665 if (section_number == SHN_LORESERVE)
2666 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2667 t->shstrtab_section = section_number++;
2668 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2669 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2670
2671 if (bfd_get_symcount (abfd) > 0)
2672 {
2673 if (section_number == SHN_LORESERVE)
2674 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2675 t->symtab_section = section_number++;
2676 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2677 if (section_number > SHN_LORESERVE - 2)
2678 {
2679 if (section_number == SHN_LORESERVE)
2680 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2681 t->symtab_shndx_section = section_number++;
2682 t->symtab_shndx_hdr.sh_name
2683 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2684 ".symtab_shndx", FALSE);
2685 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2686 return FALSE;
2687 }
2688 if (section_number == SHN_LORESERVE)
2689 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2690 t->strtab_section = section_number++;
2691 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2692 }
2693
2694 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2695 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2696
2697 elf_numsections (abfd) = section_number;
2698 elf_elfheader (abfd)->e_shnum = section_number;
2699 if (section_number > SHN_LORESERVE)
2700 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2701
2702 /* Set up the list of section header pointers, in agreement with the
2703 indices. */
2704 amt = section_number * sizeof (Elf_Internal_Shdr *);
2705 i_shdrp = bfd_zalloc (abfd, amt);
2706 if (i_shdrp == NULL)
2707 return FALSE;
2708
2709 amt = sizeof (Elf_Internal_Shdr);
2710 i_shdrp[0] = bfd_zalloc (abfd, amt);
2711 if (i_shdrp[0] == NULL)
2712 {
2713 bfd_release (abfd, i_shdrp);
2714 return FALSE;
2715 }
2716
2717 elf_elfsections (abfd) = i_shdrp;
2718
2719 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2720 if (bfd_get_symcount (abfd) > 0)
2721 {
2722 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2723 if (elf_numsections (abfd) > SHN_LORESERVE)
2724 {
2725 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2726 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2727 }
2728 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2729 t->symtab_hdr.sh_link = t->strtab_section;
2730 }
2731 for (sec = abfd->sections; sec; sec = sec->next)
2732 {
2733 struct bfd_elf_section_data *d = elf_section_data (sec);
2734 asection *s;
2735 const char *name;
2736
2737 i_shdrp[d->this_idx] = &d->this_hdr;
2738 if (d->rel_idx != 0)
2739 i_shdrp[d->rel_idx] = &d->rel_hdr;
2740 if (d->rel_idx2 != 0)
2741 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2742
2743 /* Fill in the sh_link and sh_info fields while we're at it. */
2744
2745 /* sh_link of a reloc section is the section index of the symbol
2746 table. sh_info is the section index of the section to which
2747 the relocation entries apply. */
2748 if (d->rel_idx != 0)
2749 {
2750 d->rel_hdr.sh_link = t->symtab_section;
2751 d->rel_hdr.sh_info = d->this_idx;
2752 }
2753 if (d->rel_idx2 != 0)
2754 {
2755 d->rel_hdr2->sh_link = t->symtab_section;
2756 d->rel_hdr2->sh_info = d->this_idx;
2757 }
2758
2759 switch (d->this_hdr.sh_type)
2760 {
2761 case SHT_REL:
2762 case SHT_RELA:
2763 /* A reloc section which we are treating as a normal BFD
2764 section. sh_link is the section index of the symbol
2765 table. sh_info is the section index of the section to
2766 which the relocation entries apply. We assume that an
2767 allocated reloc section uses the dynamic symbol table.
2768 FIXME: How can we be sure? */
2769 s = bfd_get_section_by_name (abfd, ".dynsym");
2770 if (s != NULL)
2771 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2772
2773 /* We look up the section the relocs apply to by name. */
2774 name = sec->name;
2775 if (d->this_hdr.sh_type == SHT_REL)
2776 name += 4;
2777 else
2778 name += 5;
2779 s = bfd_get_section_by_name (abfd, name);
2780 if (s != NULL)
2781 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2782 break;
2783
2784 case SHT_STRTAB:
2785 /* We assume that a section named .stab*str is a stabs
2786 string section. We look for a section with the same name
2787 but without the trailing ``str'', and set its sh_link
2788 field to point to this section. */
2789 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2790 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2791 {
2792 size_t len;
2793 char *alc;
2794
2795 len = strlen (sec->name);
2796 alc = bfd_malloc (len - 2);
2797 if (alc == NULL)
2798 return FALSE;
2799 memcpy (alc, sec->name, len - 3);
2800 alc[len - 3] = '\0';
2801 s = bfd_get_section_by_name (abfd, alc);
2802 free (alc);
2803 if (s != NULL)
2804 {
2805 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2806
2807 /* This is a .stab section. */
2808 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2809 elf_section_data (s)->this_hdr.sh_entsize
2810 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2811 }
2812 }
2813 break;
2814
2815 case SHT_DYNAMIC:
2816 case SHT_DYNSYM:
2817 case SHT_GNU_verneed:
2818 case SHT_GNU_verdef:
2819 /* sh_link is the section header index of the string table
2820 used for the dynamic entries, or the symbol table, or the
2821 version strings. */
2822 s = bfd_get_section_by_name (abfd, ".dynstr");
2823 if (s != NULL)
2824 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2825 break;
2826
2827 case SHT_HASH:
2828 case SHT_GNU_versym:
2829 /* sh_link is the section header index of the symbol table
2830 this hash table or version table is for. */
2831 s = bfd_get_section_by_name (abfd, ".dynsym");
2832 if (s != NULL)
2833 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2834 break;
2835
2836 case SHT_GROUP:
2837 d->this_hdr.sh_link = t->symtab_section;
2838 }
2839 }
2840
2841 for (secn = 1; secn < section_number; ++secn)
2842 if (i_shdrp[secn] == NULL)
2843 i_shdrp[secn] = i_shdrp[0];
2844 else
2845 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
2846 i_shdrp[secn]->sh_name);
2847 return TRUE;
2848}
2849
2850/* Map symbol from it's internal number to the external number, moving
2851 all local symbols to be at the head of the list. */
2852
2853static int
2854sym_is_global (bfd *abfd, asymbol *sym)
2855{
2856 /* If the backend has a special mapping, use it. */
2857 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2858 if (bed->elf_backend_sym_is_global)
2859 return (*bed->elf_backend_sym_is_global) (abfd, sym);
2860
2861 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2862 || bfd_is_und_section (bfd_get_section (sym))
2863 || bfd_is_com_section (bfd_get_section (sym)));
2864}
2865
2866static bfd_boolean
2867elf_map_symbols (bfd *abfd)
2868{
2869 unsigned int symcount = bfd_get_symcount (abfd);
2870 asymbol **syms = bfd_get_outsymbols (abfd);
2871 asymbol **sect_syms;
2872 unsigned int num_locals = 0;
2873 unsigned int num_globals = 0;
2874 unsigned int num_locals2 = 0;
2875 unsigned int num_globals2 = 0;
2876 int max_index = 0;
2877 unsigned int idx;
2878 asection *asect;
2879 asymbol **new_syms;
2880 bfd_size_type amt;
2881
2882#ifdef DEBUG
2883 fprintf (stderr, "elf_map_symbols\n");
2884 fflush (stderr);
2885#endif
2886
2887 for (asect = abfd->sections; asect; asect = asect->next)
2888 {
2889 if (max_index < asect->index)
2890 max_index = asect->index;
2891 }
2892
2893 max_index++;
2894 amt = max_index * sizeof (asymbol *);
2895 sect_syms = bfd_zalloc (abfd, amt);
2896 if (sect_syms == NULL)
2897 return FALSE;
2898 elf_section_syms (abfd) = sect_syms;
2899 elf_num_section_syms (abfd) = max_index;
2900
2901 /* Init sect_syms entries for any section symbols we have already
2902 decided to output. */
2903 for (idx = 0; idx < symcount; idx++)
2904 {
2905 asymbol *sym = syms[idx];
2906
2907 if ((sym->flags & BSF_SECTION_SYM) != 0
2908 && sym->value == 0)
2909 {
2910 asection *sec;
2911
2912 sec = sym->section;
2913
2914 if (sec->owner != NULL)
2915 {
2916 if (sec->owner != abfd)
2917 {
2918 if (sec->output_offset != 0)
2919 continue;
2920
2921 sec = sec->output_section;
2922
2923 /* Empty sections in the input files may have had a
2924 section symbol created for them. (See the comment
2925 near the end of _bfd_generic_link_output_symbols in
2926 linker.c). If the linker script discards such
2927 sections then we will reach this point. Since we know
2928 that we cannot avoid this case, we detect it and skip
2929 the abort and the assignment to the sect_syms array.
2930 To reproduce this particular case try running the
2931 linker testsuite test ld-scripts/weak.exp for an ELF
2932 port that uses the generic linker. */
2933 if (sec->owner == NULL)
2934 continue;
2935
2936 BFD_ASSERT (sec->owner == abfd);
2937 }
2938 sect_syms[sec->index] = syms[idx];
2939 }
2940 }
2941 }
2942
2943 /* Classify all of the symbols. */
2944 for (idx = 0; idx < symcount; idx++)
2945 {
2946 if (!sym_is_global (abfd, syms[idx]))
2947 num_locals++;
2948 else
2949 num_globals++;
2950 }
2951
2952 /* We will be adding a section symbol for each BFD section. Most normal
2953 sections will already have a section symbol in outsymbols, but
2954 eg. SHT_GROUP sections will not, and we need the section symbol mapped
2955 at least in that case. */
2956 for (asect = abfd->sections; asect; asect = asect->next)
2957 {
2958 if (sect_syms[asect->index] == NULL)
2959 {
2960 if (!sym_is_global (abfd, asect->symbol))
2961 num_locals++;
2962 else
2963 num_globals++;
2964 }
2965 }
2966
2967 /* Now sort the symbols so the local symbols are first. */
2968 amt = (num_locals + num_globals) * sizeof (asymbol *);
2969 new_syms = bfd_alloc (abfd, amt);
2970
2971 if (new_syms == NULL)
2972 return FALSE;
2973
2974 for (idx = 0; idx < symcount; idx++)
2975 {
2976 asymbol *sym = syms[idx];
2977 unsigned int i;
2978
2979 if (!sym_is_global (abfd, sym))
2980 i = num_locals2++;
2981 else
2982 i = num_locals + num_globals2++;
2983 new_syms[i] = sym;
2984 sym->udata.i = i + 1;
2985 }
2986 for (asect = abfd->sections; asect; asect = asect->next)
2987 {
2988 if (sect_syms[asect->index] == NULL)
2989 {
2990 asymbol *sym = asect->symbol;
2991 unsigned int i;
2992
2993 sect_syms[asect->index] = sym;
2994 if (!sym_is_global (abfd, sym))
2995 i = num_locals2++;
2996 else
2997 i = num_locals + num_globals2++;
2998 new_syms[i] = sym;
2999 sym->udata.i = i + 1;
3000 }
3001 }
3002
3003 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3004
3005 elf_num_locals (abfd) = num_locals;
3006 elf_num_globals (abfd) = num_globals;
3007 return TRUE;
3008}
3009
3010/* Align to the maximum file alignment that could be required for any
3011 ELF data structure. */
3012
3013static inline file_ptr
3014align_file_position (file_ptr off, int align)
3015{
3016 return (off + align - 1) & ~(align - 1);
3017}
3018
3019/* Assign a file position to a section, optionally aligning to the
3020 required section alignment. */
3021
3022file_ptr
3023_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3024 file_ptr offset,
3025 bfd_boolean align)
3026{
3027 if (align)
3028 {
3029 unsigned int al;
3030
3031 al = i_shdrp->sh_addralign;
3032 if (al > 1)
3033 offset = BFD_ALIGN (offset, al);
3034 }
3035 i_shdrp->sh_offset = offset;
3036 if (i_shdrp->bfd_section != NULL)
3037 i_shdrp->bfd_section->filepos = offset;
3038 if (i_shdrp->sh_type != SHT_NOBITS)
3039 offset += i_shdrp->sh_size;
3040 return offset;
3041}
3042
3043/* Compute the file positions we are going to put the sections at, and
3044 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3045 is not NULL, this is being called by the ELF backend linker. */
3046
3047bfd_boolean
3048_bfd_elf_compute_section_file_positions (bfd *abfd,
3049 struct bfd_link_info *link_info)
3050{
3051 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3052 bfd_boolean failed;
3053 struct bfd_strtab_hash *strtab;
3054 Elf_Internal_Shdr *shstrtab_hdr;
3055
3056 if (abfd->output_has_begun)
3057 return TRUE;
3058
3059 /* Do any elf backend specific processing first. */
3060 if (bed->elf_backend_begin_write_processing)
3061 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3062
3063 if (! prep_headers (abfd))
3064 return FALSE;
3065
3066 /* Post process the headers if necessary. */
3067 if (bed->elf_backend_post_process_headers)
3068 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3069
3070 failed = FALSE;
3071 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3072 if (failed)
3073 return FALSE;
3074
3075 if (!assign_section_numbers (abfd))
3076 return FALSE;
3077
3078 /* The backend linker builds symbol table information itself. */
3079 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3080 {
3081 /* Non-zero if doing a relocatable link. */
3082 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3083
3084 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3085 return FALSE;
3086 }
3087
3088 if (link_info == NULL)
3089 {
3090 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3091 if (failed)
3092 return FALSE;
3093 }
3094
3095 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3096 /* sh_name was set in prep_headers. */
3097 shstrtab_hdr->sh_type = SHT_STRTAB;
3098 shstrtab_hdr->sh_flags = 0;
3099 shstrtab_hdr->sh_addr = 0;
3100 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3101 shstrtab_hdr->sh_entsize = 0;
3102 shstrtab_hdr->sh_link = 0;
3103 shstrtab_hdr->sh_info = 0;
3104 /* sh_offset is set in assign_file_positions_except_relocs. */
3105 shstrtab_hdr->sh_addralign = 1;
3106
3107 if (!assign_file_positions_except_relocs (abfd, link_info))
3108 return FALSE;
3109
3110 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3111 {
3112 file_ptr off;
3113 Elf_Internal_Shdr *hdr;
3114
3115 off = elf_tdata (abfd)->next_file_pos;
3116
3117 hdr = &elf_tdata (abfd)->symtab_hdr;
3118 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3119
3120 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3121 if (hdr->sh_size != 0)
3122 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3123
3124 hdr = &elf_tdata (abfd)->strtab_hdr;
3125 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3126
3127 elf_tdata (abfd)->next_file_pos = off;
3128
3129 /* Now that we know where the .strtab section goes, write it
3130 out. */
3131 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3132 || ! _bfd_stringtab_emit (abfd, strtab))
3133 return FALSE;
3134 _bfd_stringtab_free (strtab);
3135 }
3136
3137 abfd->output_has_begun = TRUE;
3138
3139 return TRUE;
3140}
3141
3142/* Create a mapping from a set of sections to a program segment. */
3143
3144static struct elf_segment_map *
3145make_mapping (bfd *abfd,
3146 asection **sections,
3147 unsigned int from,
3148 unsigned int to,
3149 bfd_boolean phdr)
3150{
3151 struct elf_segment_map *m;
3152 unsigned int i;
3153 asection **hdrpp;
3154 bfd_size_type amt;
3155
3156 amt = sizeof (struct elf_segment_map);
3157 amt += (to - from - 1) * sizeof (asection *);
3158 m = bfd_zalloc (abfd, amt);
3159 if (m == NULL)
3160 return NULL;
3161 m->next = NULL;
3162 m->p_type = PT_LOAD;
3163 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3164 m->sections[i - from] = *hdrpp;
3165 m->count = to - from;
3166
3167 if (from == 0 && phdr)
3168 {
3169 /* Include the headers in the first PT_LOAD segment. */
3170 m->includes_filehdr = 1;
3171 m->includes_phdrs = 1;
3172 }
3173
3174 return m;
3175}
3176
3177/* Set up a mapping from BFD sections to program segments. */
3178
3179static bfd_boolean
3180map_sections_to_segments (bfd *abfd)
3181{
3182 asection **sections = NULL;
3183 asection *s;
3184 unsigned int i;
3185 unsigned int count;
3186 struct elf_segment_map *mfirst;
3187 struct elf_segment_map **pm;
3188 struct elf_segment_map *m;
3189 asection *last_hdr;
3190 unsigned int phdr_index;
3191 bfd_vma maxpagesize;
3192 asection **hdrpp;
3193 bfd_boolean phdr_in_segment = TRUE;
3194 bfd_boolean writable;
3195 int tls_count = 0;
3196 asection *first_tls = NULL;
3197 asection *dynsec, *eh_frame_hdr;
3198 bfd_size_type amt;
3199
3200 if (elf_tdata (abfd)->segment_map != NULL)
3201 return TRUE;
3202
3203 if (bfd_count_sections (abfd) == 0)
3204 return TRUE;
3205
3206 /* Select the allocated sections, and sort them. */
3207
3208 amt = bfd_count_sections (abfd) * sizeof (asection *);
3209 sections = bfd_malloc (amt);
3210 if (sections == NULL)
3211 goto error_return;
3212
3213 i = 0;
3214 for (s = abfd->sections; s != NULL; s = s->next)
3215 {
3216 if ((s->flags & SEC_ALLOC) != 0)
3217 {
3218 sections[i] = s;
3219 ++i;
3220 }
3221 }
3222 BFD_ASSERT (i <= bfd_count_sections (abfd));
3223 count = i;
3224
3225 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3226
3227 /* Build the mapping. */
3228
3229 mfirst = NULL;
3230 pm = &mfirst;
3231
3232 /* If we have a .interp section, then create a PT_PHDR segment for
3233 the program headers and a PT_INTERP segment for the .interp
3234 section. */
3235 s = bfd_get_section_by_name (abfd, ".interp");
3236 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3237 {
3238 amt = sizeof (struct elf_segment_map);
3239 m = bfd_zalloc (abfd, amt);
3240 if (m == NULL)
3241 goto error_return;
3242 m->next = NULL;
3243 m->p_type = PT_PHDR;
3244 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3245 m->p_flags = PF_R | PF_X;
3246 m->p_flags_valid = 1;
3247 m->includes_phdrs = 1;
3248
3249 *pm = m;
3250 pm = &m->next;
3251
3252 amt = sizeof (struct elf_segment_map);
3253 m = bfd_zalloc (abfd, amt);
3254 if (m == NULL)
3255 goto error_return;
3256 m->next = NULL;
3257 m->p_type = PT_INTERP;
3258 m->count = 1;
3259 m->sections[0] = s;
3260
3261 *pm = m;
3262 pm = &m->next;
3263 }
3264
3265 /* Look through the sections. We put sections in the same program
3266 segment when the start of the second section can be placed within
3267 a few bytes of the end of the first section. */
3268 last_hdr = NULL;
3269 phdr_index = 0;
3270 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3271 writable = FALSE;
3272 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3273 if (dynsec != NULL
3274 && (dynsec->flags & SEC_LOAD) == 0)
3275 dynsec = NULL;
3276
3277 /* Deal with -Ttext or something similar such that the first section
3278 is not adjacent to the program headers. This is an
3279 approximation, since at this point we don't know exactly how many
3280 program headers we will need. */
3281 if (count > 0)
3282 {
3283 bfd_size_type phdr_size;
3284
3285 phdr_size = elf_tdata (abfd)->program_header_size;
3286 if (phdr_size == 0)
3287 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3288 if ((abfd->flags & D_PAGED) == 0
3289 || sections[0]->lma < phdr_size
3290 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3291 phdr_in_segment = FALSE;
3292 }
3293
3294 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3295 {
3296 asection *hdr;
3297 bfd_boolean new_segment;
3298
3299 hdr = *hdrpp;
3300
3301 /* See if this section and the last one will fit in the same
3302 segment. */
3303
3304 if (last_hdr == NULL)
3305 {
3306 /* If we don't have a segment yet, then we don't need a new
3307 one (we build the last one after this loop). */
3308 new_segment = FALSE;
3309 }
3310 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3311 {
3312 /* If this section has a different relation between the
3313 virtual address and the load address, then we need a new
3314 segment. */
3315 new_segment = TRUE;
3316 }
3317 else if (BFD_ALIGN (last_hdr->lma + last_hdr->_raw_size, maxpagesize)
3318 < BFD_ALIGN (hdr->lma, maxpagesize))
3319 {
3320 /* If putting this section in this segment would force us to
3321 skip a page in the segment, then we need a new segment. */
3322 new_segment = TRUE;
3323 }
3324 else if ((last_hdr->flags & SEC_LOAD) == 0
3325 && (hdr->flags & SEC_LOAD) != 0)
3326 {
3327 /* We don't want to put a loadable section after a
3328 nonloadable section in the same segment. */
3329 new_segment = TRUE;
3330 }
3331 else if ((abfd->flags & D_PAGED) == 0)
3332 {
3333 /* If the file is not demand paged, which means that we
3334 don't require the sections to be correctly aligned in the
3335 file, then there is no other reason for a new segment. */
3336 new_segment = FALSE;
3337 }
3338 else if (! writable
3339 && (hdr->flags & SEC_READONLY) == 0
3340 && (((last_hdr->lma + last_hdr->_raw_size - 1)
3341 & ~(maxpagesize - 1))
3342 != (hdr->lma & ~(maxpagesize - 1))))
3343 {
3344 /* We don't want to put a writable section in a read only
3345 segment, unless they are on the same page in memory
3346 anyhow. We already know that the last section does not
3347 bring us past the current section on the page, so the
3348 only case in which the new section is not on the same
3349 page as the previous section is when the previous section
3350 ends precisely on a page boundary. */
3351 new_segment = TRUE;
3352 }
3353 else
3354 {
3355 /* Otherwise, we can use the same segment. */
3356 new_segment = FALSE;
3357 }
3358
3359 if (! new_segment)
3360 {
3361 if ((hdr->flags & SEC_READONLY) == 0)
3362 writable = TRUE;
3363 last_hdr = hdr;
3364 continue;
3365 }
3366
3367 /* We need a new program segment. We must create a new program
3368 header holding all the sections from phdr_index until hdr. */
3369
3370 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3371 if (m == NULL)
3372 goto error_return;
3373
3374 *pm = m;
3375 pm = &m->next;
3376
3377 if ((hdr->flags & SEC_READONLY) == 0)
3378 writable = TRUE;
3379 else
3380 writable = FALSE;
3381
3382 last_hdr = hdr;
3383 phdr_index = i;
3384 phdr_in_segment = FALSE;
3385 }
3386
3387 /* Create a final PT_LOAD program segment. */
3388 if (last_hdr != NULL)
3389 {
3390 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3391 if (m == NULL)
3392 goto error_return;
3393
3394 *pm = m;
3395 pm = &m->next;
3396 }
3397
3398 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3399 if (dynsec != NULL)
3400 {
3401 amt = sizeof (struct elf_segment_map);
3402 m = bfd_zalloc (abfd, amt);
3403 if (m == NULL)
3404 goto error_return;
3405 m->next = NULL;
3406 m->p_type = PT_DYNAMIC;
3407 m->count = 1;
3408 m->sections[0] = dynsec;
3409
3410 *pm = m;
3411 pm = &m->next;
3412 }
3413
3414 /* For each loadable .note section, add a PT_NOTE segment. We don't
3415 use bfd_get_section_by_name, because if we link together
3416 nonloadable .note sections and loadable .note sections, we will
3417 generate two .note sections in the output file. FIXME: Using
3418 names for section types is bogus anyhow. */
3419 for (s = abfd->sections; s != NULL; s = s->next)
3420 {
3421 if ((s->flags & SEC_LOAD) != 0
3422 && strncmp (s->name, ".note", 5) == 0)
3423 {
3424 amt = sizeof (struct elf_segment_map);
3425 m = bfd_zalloc (abfd, amt);
3426 if (m == NULL)
3427 goto error_return;
3428 m->next = NULL;
3429 m->p_type = PT_NOTE;
3430 m->count = 1;
3431 m->sections[0] = s;
3432
3433 *pm = m;
3434 pm = &m->next;
3435 }
3436 if (s->flags & SEC_THREAD_LOCAL)
3437 {
3438 if (! tls_count)
3439 first_tls = s;
3440 tls_count++;
3441 }
3442 }
3443
3444 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3445 if (tls_count > 0)
3446 {
3447 int i;
3448
3449 amt = sizeof (struct elf_segment_map);
3450 amt += (tls_count - 1) * sizeof (asection *);
3451 m = bfd_zalloc (abfd, amt);
3452 if (m == NULL)
3453 goto error_return;
3454 m->next = NULL;
3455 m->p_type = PT_TLS;
3456 m->count = tls_count;
3457 /* Mandated PF_R. */
3458 m->p_flags = PF_R;
3459 m->p_flags_valid = 1;
3460 for (i = 0; i < tls_count; ++i)
3461 {
3462 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3463 m->sections[i] = first_tls;
3464 first_tls = first_tls->next;
3465 }
3466
3467 *pm = m;
3468 pm = &m->next;
3469 }
3470
3471 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3472 segment. */
3473 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3474 if (eh_frame_hdr != NULL
3475 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3476 {
3477 amt = sizeof (struct elf_segment_map);
3478 m = bfd_zalloc (abfd, amt);
3479 if (m == NULL)
3480 goto error_return;
3481 m->next = NULL;
3482 m->p_type = PT_GNU_EH_FRAME;
3483 m->count = 1;
3484 m->sections[0] = eh_frame_hdr->output_section;
3485
3486 *pm = m;
3487 pm = &m->next;
3488 }
3489
3490 if (elf_tdata (abfd)->stack_flags)
3491 {
3492 amt = sizeof (struct elf_segment_map);
3493 m = bfd_zalloc (abfd, amt);
3494 if (m == NULL)
3495 goto error_return;
3496 m->next = NULL;
3497 m->p_type = PT_GNU_STACK;
3498 m->p_flags = elf_tdata (abfd)->stack_flags;
3499 m->p_flags_valid = 1;
3500
3501 *pm = m;
3502 pm = &m->next;
3503 }
3504
3505 free (sections);
3506 sections = NULL;
3507
3508 elf_tdata (abfd)->segment_map = mfirst;
3509 return TRUE;
3510
3511 error_return:
3512 if (sections != NULL)
3513 free (sections);
3514 return FALSE;
3515}
3516
3517/* Sort sections by address. */
3518
3519static int
3520elf_sort_sections (const void *arg1, const void *arg2)
3521{
3522 const asection *sec1 = *(const asection **) arg1;
3523 const asection *sec2 = *(const asection **) arg2;
3524 bfd_size_type size1, size2;
3525
3526 /* Sort by LMA first, since this is the address used to
3527 place the section into a segment. */
3528 if (sec1->lma < sec2->lma)
3529 return -1;
3530 else if (sec1->lma > sec2->lma)
3531 return 1;
3532
3533 /* Then sort by VMA. Normally the LMA and the VMA will be
3534 the same, and this will do nothing. */
3535 if (sec1->vma < sec2->vma)
3536 return -1;
3537 else if (sec1->vma > sec2->vma)
3538 return 1;
3539
3540 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3541
3542#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3543
3544 if (TOEND (sec1))
3545 {
3546 if (TOEND (sec2))
3547 {
3548 /* If the indicies are the same, do not return 0
3549 here, but continue to try the next comparison. */
3550 if (sec1->target_index - sec2->target_index != 0)
3551 return sec1->target_index - sec2->target_index;
3552 }
3553 else
3554 return 1;
3555 }
3556 else if (TOEND (sec2))
3557 return -1;
3558
3559#undef TOEND
3560
3561 /* Sort by size, to put zero sized sections
3562 before others at the same address. */
3563
3564 size1 = (sec1->flags & SEC_LOAD) ? sec1->_raw_size : 0;
3565 size2 = (sec2->flags & SEC_LOAD) ? sec2->_raw_size : 0;
3566
3567 if (size1 < size2)
3568 return -1;
3569 if (size1 > size2)
3570 return 1;
3571
3572 return sec1->target_index - sec2->target_index;
3573}
3574
3575/* Ian Lance Taylor writes:
3576
3577 We shouldn't be using % with a negative signed number. That's just
3578 not good. We have to make sure either that the number is not
3579 negative, or that the number has an unsigned type. When the types
3580 are all the same size they wind up as unsigned. When file_ptr is a
3581 larger signed type, the arithmetic winds up as signed long long,
3582 which is wrong.
3583
3584 What we're trying to say here is something like ``increase OFF by
3585 the least amount that will cause it to be equal to the VMA modulo
3586 the page size.'' */
3587/* In other words, something like:
3588
3589 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3590 off_offset = off % bed->maxpagesize;
3591 if (vma_offset < off_offset)
3592 adjustment = vma_offset + bed->maxpagesize - off_offset;
3593 else
3594 adjustment = vma_offset - off_offset;
3595
3596 which can can be collapsed into the expression below. */
3597
3598static file_ptr
3599vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3600{
3601 return ((vma - off) % maxpagesize);
3602}
3603
3604/* Assign file positions to the sections based on the mapping from
3605 sections to segments. This function also sets up some fields in
3606 the file header, and writes out the program headers. */
3607
3608static bfd_boolean
3609assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3610{
3611 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3612 unsigned int count;
3613 struct elf_segment_map *m;
3614 unsigned int alloc;
3615 Elf_Internal_Phdr *phdrs;
3616 file_ptr off, voff;
3617 bfd_vma filehdr_vaddr, filehdr_paddr;
3618 bfd_vma phdrs_vaddr, phdrs_paddr;
3619 Elf_Internal_Phdr *p;
3620 bfd_size_type amt;
3621
3622 if (elf_tdata (abfd)->segment_map == NULL)
3623 {
3624 if (! map_sections_to_segments (abfd))
3625 return FALSE;
3626 }
3627 else
3628 {
3629 /* The placement algorithm assumes that non allocated sections are
3630 not in PT_LOAD segments. We ensure this here by removing such
3631 sections from the segment map. */
3632 for (m = elf_tdata (abfd)->segment_map;
3633 m != NULL;
3634 m = m->next)
3635 {
3636 unsigned int new_count;
3637 unsigned int i;
3638
3639 if (m->p_type != PT_LOAD)
3640 continue;
3641
3642 new_count = 0;
3643 for (i = 0; i < m->count; i ++)
3644 {
3645 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3646 {
3647 if (i != new_count)
3648 m->sections[new_count] = m->sections[i];
3649
3650 new_count ++;
3651 }
3652 }
3653
3654 if (new_count != m->count)
3655 m->count = new_count;
3656 }
3657 }
3658
3659 if (bed->elf_backend_modify_segment_map)
3660 {
3661 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3662 return FALSE;
3663 }
3664
3665 count = 0;
3666 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3667 ++count;
3668
3669 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3670 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3671 elf_elfheader (abfd)->e_phnum = count;
3672
3673 if (count == 0)
3674 return TRUE;
3675
3676 /* If we already counted the number of program segments, make sure
3677 that we allocated enough space. This happens when SIZEOF_HEADERS
3678 is used in a linker script. */
3679 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3680 if (alloc != 0 && count > alloc)
3681 {
3682 ((*_bfd_error_handler)
3683 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3684 bfd_get_filename (abfd), alloc, count));
3685 bfd_set_error (bfd_error_bad_value);
3686 return FALSE;
3687 }
3688
3689 if (alloc == 0)
3690 alloc = count;
3691
3692 amt = alloc * sizeof (Elf_Internal_Phdr);
3693 phdrs = bfd_alloc (abfd, amt);
3694 if (phdrs == NULL)
3695 return FALSE;
3696
3697 off = bed->s->sizeof_ehdr;
3698 off += alloc * bed->s->sizeof_phdr;
3699
3700 filehdr_vaddr = 0;
3701 filehdr_paddr = 0;
3702 phdrs_vaddr = 0;
3703 phdrs_paddr = 0;
3704
3705 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3706 m != NULL;
3707 m = m->next, p++)
3708 {
3709 unsigned int i;
3710 asection **secpp;
3711
3712 /* If elf_segment_map is not from map_sections_to_segments, the
3713 sections may not be correctly ordered. NOTE: sorting should
3714 not be done to the PT_NOTE section of a corefile, which may
3715 contain several pseudo-sections artificially created by bfd.
3716 Sorting these pseudo-sections breaks things badly. */
3717 if (m->count > 1
3718 && !(elf_elfheader (abfd)->e_type == ET_CORE
3719 && m->p_type == PT_NOTE))
3720 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3721 elf_sort_sections);
3722
3723 p->p_type = m->p_type;
3724 p->p_flags = m->p_flags;
3725
3726 if (p->p_type == PT_LOAD
3727 && m->count > 0
3728 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3729 {
3730 if ((abfd->flags & D_PAGED) != 0)
3731 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3732 bed->maxpagesize);
3733 else
3734 {
3735 bfd_size_type align;
3736
3737 align = 0;
3738 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3739 {
3740 bfd_size_type secalign;
3741
3742 secalign = bfd_get_section_alignment (abfd, *secpp);
3743 if (secalign > align)
3744 align = secalign;
3745 }
3746
3747 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3748 1 << align);
3749 }
3750 }
3751
3752 if (m->count == 0)
3753 p->p_vaddr = 0;
3754 else
3755 p->p_vaddr = m->sections[0]->vma;
3756
3757 if (m->p_paddr_valid)
3758 p->p_paddr = m->p_paddr;
3759 else if (m->count == 0)
3760 p->p_paddr = 0;
3761 else
3762 p->p_paddr = m->sections[0]->lma;
3763
3764 if (p->p_type == PT_LOAD
3765 && (abfd->flags & D_PAGED) != 0)
3766 p->p_align = bed->maxpagesize;
3767 else if (m->count == 0)
3768 p->p_align = 1 << bed->s->log_file_align;
3769 else
3770 p->p_align = 0;
3771
3772 p->p_offset = 0;
3773 p->p_filesz = 0;
3774 p->p_memsz = 0;
3775
3776 if (m->includes_filehdr)
3777 {
3778 if (! m->p_flags_valid)
3779 p->p_flags |= PF_R;
3780 p->p_offset = 0;
3781 p->p_filesz = bed->s->sizeof_ehdr;
3782 p->p_memsz = bed->s->sizeof_ehdr;
3783 if (m->count > 0)
3784 {
3785 BFD_ASSERT (p->p_type == PT_LOAD);
3786
3787 if (p->p_vaddr < (bfd_vma) off)
3788 {
3789 (*_bfd_error_handler)
3790 (_("%s: Not enough room for program headers, try linking with -N"),
3791 bfd_get_filename (abfd));
3792 bfd_set_error (bfd_error_bad_value);
3793 return FALSE;
3794 }
3795
3796 p->p_vaddr -= off;
3797 if (! m->p_paddr_valid)
3798 p->p_paddr -= off;
3799 }
3800 if (p->p_type == PT_LOAD)
3801 {
3802 filehdr_vaddr = p->p_vaddr;
3803 filehdr_paddr = p->p_paddr;
3804 }
3805 }
3806
3807 if (m->includes_phdrs)
3808 {
3809 if (! m->p_flags_valid)
3810 p->p_flags |= PF_R;
3811
3812 if (m->includes_filehdr)
3813 {
3814 if (p->p_type == PT_LOAD)
3815 {
3816 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
3817 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
3818 }
3819 }
3820 else
3821 {
3822 p->p_offset = bed->s->sizeof_ehdr;
3823
3824 if (m->count > 0)
3825 {
3826 BFD_ASSERT (p->p_type == PT_LOAD);
3827 p->p_vaddr -= off - p->p_offset;
3828 if (! m->p_paddr_valid)
3829 p->p_paddr -= off - p->p_offset;
3830 }
3831
3832 if (p->p_type == PT_LOAD)
3833 {
3834 phdrs_vaddr = p->p_vaddr;
3835 phdrs_paddr = p->p_paddr;
3836 }
3837 else
3838 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
3839 }
3840
3841 p->p_filesz += alloc * bed->s->sizeof_phdr;
3842 p->p_memsz += alloc * bed->s->sizeof_phdr;
3843 }
3844
3845 if (p->p_type == PT_LOAD
3846 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
3847 {
3848 if (! m->includes_filehdr && ! m->includes_phdrs)
3849 p->p_offset = off;
3850 else
3851 {
3852 file_ptr adjust;
3853
3854 adjust = off - (p->p_offset + p->p_filesz);
3855 p->p_filesz += adjust;
3856 p->p_memsz += adjust;
3857 }
3858 }
3859
3860 voff = off;
3861
3862 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3863 {
3864 asection *sec;
3865 flagword flags;
3866 bfd_size_type align;
3867
3868 sec = *secpp;
3869 flags = sec->flags;
3870 align = 1 << bfd_get_section_alignment (abfd, sec);
3871
3872 /* The section may have artificial alignment forced by a
3873 link script. Notice this case by the gap between the
3874 cumulative phdr lma and the section's lma. */
3875 if (p->p_paddr + p->p_memsz < sec->lma)
3876 {
3877 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
3878
3879 p->p_memsz += adjust;
3880 if (p->p_type == PT_LOAD
3881 || (p->p_type == PT_NOTE
3882 && bfd_get_format (abfd) == bfd_core))
3883 {
3884 off += adjust;
3885 voff += adjust;
3886 }
3887 if ((flags & SEC_LOAD) != 0
3888 || (flags & SEC_THREAD_LOCAL) != 0)
3889 p->p_filesz += adjust;
3890 }
3891
3892 if (p->p_type == PT_LOAD)
3893 {
3894 bfd_signed_vma adjust;
3895
3896 if ((flags & SEC_LOAD) != 0)
3897 {
3898 adjust = sec->lma - (p->p_paddr + p->p_memsz);
3899 if (adjust < 0)
3900 adjust = 0;
3901 }
3902 else if ((flags & SEC_ALLOC) != 0)
3903 {
3904 /* The section VMA must equal the file position
3905 modulo the page size. FIXME: I'm not sure if
3906 this adjustment is really necessary. We used to
3907 not have the SEC_LOAD case just above, and then
3908 this was necessary, but now I'm not sure. */
3909 if ((abfd->flags & D_PAGED) != 0)
3910 adjust = vma_page_aligned_bias (sec->vma, voff,
3911 bed->maxpagesize);
3912 else
3913 adjust = vma_page_aligned_bias (sec->vma, voff,
3914 align);
3915 }
3916 else
3917 adjust = 0;
3918
3919 if (adjust != 0)
3920 {
3921 if (i == 0)
3922 {
3923 (* _bfd_error_handler) (_("\
3924Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
3925 bfd_section_name (abfd, sec),
3926 sec->lma,
3927 p->p_paddr);
3928 return FALSE;
3929 }
3930 p->p_memsz += adjust;
3931 off += adjust;
3932 voff += adjust;
3933 if ((flags & SEC_LOAD) != 0)
3934 p->p_filesz += adjust;
3935 }
3936
3937 sec->filepos = off;
3938
3939 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
3940 used in a linker script we may have a section with
3941 SEC_LOAD clear but which is supposed to have
3942 contents. */
3943 if ((flags & SEC_LOAD) != 0
3944 || (flags & SEC_HAS_CONTENTS) != 0)
3945 off += sec->_raw_size;
3946
3947 if ((flags & SEC_ALLOC) != 0
3948 && ((flags & SEC_LOAD) != 0
3949 || (flags & SEC_THREAD_LOCAL) == 0))
3950 voff += sec->_raw_size;
3951 }
3952
3953 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
3954 {
3955 /* The actual "note" segment has i == 0.
3956 This is the one that actually contains everything. */
3957 if (i == 0)
3958 {
3959 sec->filepos = off;
3960 p->p_filesz = sec->_raw_size;
3961 off += sec->_raw_size;
3962 voff = off;
3963 }
3964 else
3965 {
3966 /* Fake sections -- don't need to be written. */
3967 sec->filepos = 0;
3968 sec->_raw_size = 0;
3969 flags = sec->flags = 0;
3970 }
3971 p->p_memsz = 0;
3972 p->p_align = 1;
3973 }
3974 else
3975 {
3976 if ((sec->flags & SEC_LOAD) != 0
3977 || (sec->flags & SEC_THREAD_LOCAL) == 0
3978 || p->p_type == PT_TLS)
3979 p->p_memsz += sec->_raw_size;
3980
3981 if ((flags & SEC_LOAD) != 0)
3982 p->p_filesz += sec->_raw_size;
3983
3984 if (p->p_type == PT_TLS
3985 && sec->_raw_size == 0
3986 && (sec->flags & SEC_HAS_CONTENTS) == 0)
3987 {
3988 struct bfd_link_order *o;
3989 bfd_vma tbss_size = 0;
3990
3991 for (o = sec->link_order_head; o != NULL; o = o->next)
3992 if (tbss_size < o->offset + o->size)
3993 tbss_size = o->offset + o->size;
3994
3995 p->p_memsz += tbss_size;
3996 }
3997
3998 if (align > p->p_align
3999 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4000 p->p_align = align;
4001 }
4002
4003 if (! m->p_flags_valid)
4004 {
4005 p->p_flags |= PF_R;
4006 if ((flags & SEC_CODE) != 0)
4007 p->p_flags |= PF_X;
4008 if ((flags & SEC_READONLY) == 0)
4009 p->p_flags |= PF_W;
4010 }
4011 }
4012 }
4013
4014 /* Now that we have set the section file positions, we can set up
4015 the file positions for the non PT_LOAD segments. */
4016 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4017 m != NULL;
4018 m = m->next, p++)
4019 {
4020 if (p->p_type != PT_LOAD && m->count > 0)
4021 {
4022 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4023 p->p_offset = m->sections[0]->filepos;
4024 }
4025 if (m->count == 0)
4026 {
4027 if (m->includes_filehdr)
4028 {
4029 p->p_vaddr = filehdr_vaddr;
4030 if (! m->p_paddr_valid)
4031 p->p_paddr = filehdr_paddr;
4032 }
4033 else if (m->includes_phdrs)
4034 {
4035 p->p_vaddr = phdrs_vaddr;
4036 if (! m->p_paddr_valid)
4037 p->p_paddr = phdrs_paddr;
4038 }
4039 }
4040 }
4041
4042 /* Clear out any program headers we allocated but did not use. */
4043 for (; count < alloc; count++, p++)
4044 {
4045 memset (p, 0, sizeof *p);
4046 p->p_type = PT_NULL;
4047 }
4048
4049 elf_tdata (abfd)->phdr = phdrs;
4050
4051 elf_tdata (abfd)->next_file_pos = off;
4052
4053 /* Write out the program headers. */
4054 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4055 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4056 return FALSE;
4057
4058 return TRUE;
4059}
4060
4061/* Get the size of the program header.
4062
4063 If this is called by the linker before any of the section VMA's are set, it
4064 can't calculate the correct value for a strange memory layout. This only
4065 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4066 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4067 data segment (exclusive of .interp and .dynamic).
4068
4069 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4070 will be two segments. */
4071
4072static bfd_size_type
4073get_program_header_size (bfd *abfd)
4074{
4075 size_t segs;
4076 asection *s;
4077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4078
4079 /* We can't return a different result each time we're called. */
4080 if (elf_tdata (abfd)->program_header_size != 0)
4081 return elf_tdata (abfd)->program_header_size;
4082
4083 if (elf_tdata (abfd)->segment_map != NULL)
4084 {
4085 struct elf_segment_map *m;
4086
4087 segs = 0;
4088 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4089 ++segs;
4090 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4091 return elf_tdata (abfd)->program_header_size;
4092 }
4093
4094 /* Assume we will need exactly two PT_LOAD segments: one for text
4095 and one for data. */
4096 segs = 2;
4097
4098 s = bfd_get_section_by_name (abfd, ".interp");
4099 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4100 {
4101 /* If we have a loadable interpreter section, we need a
4102 PT_INTERP segment. In this case, assume we also need a
4103 PT_PHDR segment, although that may not be true for all
4104 targets. */
4105 segs += 2;
4106 }
4107
4108 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4109 {
4110 /* We need a PT_DYNAMIC segment. */
4111 ++segs;
4112 }
4113
4114 if (elf_tdata (abfd)->eh_frame_hdr)
4115 {
4116 /* We need a PT_GNU_EH_FRAME segment. */
4117 ++segs;
4118 }
4119
4120 if (elf_tdata (abfd)->stack_flags)
4121 {
4122 /* We need a PT_GNU_STACK segment. */
4123 ++segs;
4124 }
4125
4126 for (s = abfd->sections; s != NULL; s = s->next)
4127 {
4128 if ((s->flags & SEC_LOAD) != 0
4129 && strncmp (s->name, ".note", 5) == 0)
4130 {
4131 /* We need a PT_NOTE segment. */
4132 ++segs;
4133 }
4134 }
4135
4136 for (s = abfd->sections; s != NULL; s = s->next)
4137 {
4138 if (s->flags & SEC_THREAD_LOCAL)
4139 {
4140 /* We need a PT_TLS segment. */
4141 ++segs;
4142 break;
4143 }
4144 }
4145
4146 /* Let the backend count up any program headers it might need. */
4147 if (bed->elf_backend_additional_program_headers)
4148 {
4149 int a;
4150
4151 a = (*bed->elf_backend_additional_program_headers) (abfd);
4152 if (a == -1)
4153 abort ();
4154 segs += a;
4155 }
4156
4157 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4158 return elf_tdata (abfd)->program_header_size;
4159}
4160
4161/* Work out the file positions of all the sections. This is called by
4162 _bfd_elf_compute_section_file_positions. All the section sizes and
4163 VMAs must be known before this is called.
4164
4165 We do not consider reloc sections at this point, unless they form
4166 part of the loadable image. Reloc sections are assigned file
4167 positions in assign_file_positions_for_relocs, which is called by
4168 write_object_contents and final_link.
4169
4170 We also don't set the positions of the .symtab and .strtab here. */
4171
4172static bfd_boolean
4173assign_file_positions_except_relocs (bfd *abfd,
4174 struct bfd_link_info *link_info)
4175{
4176 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4177 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4178 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4179 unsigned int num_sec = elf_numsections (abfd);
4180 file_ptr off;
4181 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4182
4183 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4184 && bfd_get_format (abfd) != bfd_core)
4185 {
4186 Elf_Internal_Shdr **hdrpp;
4187 unsigned int i;
4188
4189 /* Start after the ELF header. */
4190 off = i_ehdrp->e_ehsize;
4191
4192 /* We are not creating an executable, which means that we are
4193 not creating a program header, and that the actual order of
4194 the sections in the file is unimportant. */
4195 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4196 {
4197 Elf_Internal_Shdr *hdr;
4198
4199 hdr = *hdrpp;
4200 if (hdr->sh_type == SHT_REL
4201 || hdr->sh_type == SHT_RELA
4202 || i == tdata->symtab_section
4203 || i == tdata->symtab_shndx_section
4204 || i == tdata->strtab_section)
4205 {
4206 hdr->sh_offset = -1;
4207 }
4208 else
4209 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4210
4211 if (i == SHN_LORESERVE - 1)
4212 {
4213 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4214 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4215 }
4216 }
4217 }
4218 else
4219 {
4220 unsigned int i;
4221 Elf_Internal_Shdr **hdrpp;
4222
4223 /* Assign file positions for the loaded sections based on the
4224 assignment of sections to segments. */
4225 if (! assign_file_positions_for_segments (abfd, link_info))
4226 return FALSE;
4227
4228 /* Assign file positions for the other sections. */
4229
4230 off = elf_tdata (abfd)->next_file_pos;
4231 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4232 {
4233 Elf_Internal_Shdr *hdr;
4234
4235 hdr = *hdrpp;
4236 if (hdr->bfd_section != NULL
4237 && hdr->bfd_section->filepos != 0)
4238 hdr->sh_offset = hdr->bfd_section->filepos;
4239 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4240 {
4241 ((*_bfd_error_handler)
4242 (_("%s: warning: allocated section `%s' not in segment"),
4243 bfd_get_filename (abfd),
4244 (hdr->bfd_section == NULL
4245 ? "*unknown*"
4246 : hdr->bfd_section->name)));
4247 if ((abfd->flags & D_PAGED) != 0)
4248 off += vma_page_aligned_bias (hdr->sh_addr, off,
4249 bed->maxpagesize);
4250 else
4251 off += vma_page_aligned_bias (hdr->sh_addr, off,
4252 hdr->sh_addralign);
4253 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4254 FALSE);
4255 }
4256 else if (hdr->sh_type == SHT_REL
4257 || hdr->sh_type == SHT_RELA
4258 || hdr == i_shdrpp[tdata->symtab_section]
4259 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4260 || hdr == i_shdrpp[tdata->strtab_section])
4261 hdr->sh_offset = -1;
4262 else
4263 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4264
4265 if (i == SHN_LORESERVE - 1)
4266 {
4267 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4268 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4269 }
4270 }
4271 }
4272
4273 /* Place the section headers. */
4274 off = align_file_position (off, 1 << bed->s->log_file_align);
4275 i_ehdrp->e_shoff = off;
4276 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4277
4278 elf_tdata (abfd)->next_file_pos = off;
4279
4280 return TRUE;
4281}
4282
4283static bfd_boolean
4284prep_headers (bfd *abfd)
4285{
4286 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4287 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4288 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4289 struct elf_strtab_hash *shstrtab;
4290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4291
4292 i_ehdrp = elf_elfheader (abfd);
4293 i_shdrp = elf_elfsections (abfd);
4294
4295 shstrtab = _bfd_elf_strtab_init ();
4296 if (shstrtab == NULL)
4297 return FALSE;
4298
4299 elf_shstrtab (abfd) = shstrtab;
4300
4301 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4302 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4303 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4304 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4305
4306 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4307 i_ehdrp->e_ident[EI_DATA] =
4308 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4309 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4310
4311 if ((abfd->flags & DYNAMIC) != 0)
4312 i_ehdrp->e_type = ET_DYN;
4313 else if ((abfd->flags & EXEC_P) != 0)
4314 i_ehdrp->e_type = ET_EXEC;
4315 else if (bfd_get_format (abfd) == bfd_core)
4316 i_ehdrp->e_type = ET_CORE;
4317 else
4318 i_ehdrp->e_type = ET_REL;
4319
4320 switch (bfd_get_arch (abfd))
4321 {
4322 case bfd_arch_unknown:
4323 i_ehdrp->e_machine = EM_NONE;
4324 break;
4325
4326 /* There used to be a long list of cases here, each one setting
4327 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4328 in the corresponding bfd definition. To avoid duplication,
4329 the switch was removed. Machines that need special handling
4330 can generally do it in elf_backend_final_write_processing(),
4331 unless they need the information earlier than the final write.
4332 Such need can generally be supplied by replacing the tests for
4333 e_machine with the conditions used to determine it. */
4334 default:
4335 i_ehdrp->e_machine = bed->elf_machine_code;
4336 }
4337
4338 i_ehdrp->e_version = bed->s->ev_current;
4339 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4340
4341 /* No program header, for now. */
4342 i_ehdrp->e_phoff = 0;
4343 i_ehdrp->e_phentsize = 0;
4344 i_ehdrp->e_phnum = 0;
4345
4346 /* Each bfd section is section header entry. */
4347 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4348 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4349
4350 /* If we're building an executable, we'll need a program header table. */
4351 if (abfd->flags & EXEC_P)
4352 {
4353 /* It all happens later. */
4354#if 0
4355 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4356
4357 /* elf_build_phdrs() returns a (NULL-terminated) array of
4358 Elf_Internal_Phdrs. */
4359 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4360 i_ehdrp->e_phoff = outbase;
4361 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4362#endif
4363 }
4364 else
4365 {
4366 i_ehdrp->e_phentsize = 0;
4367 i_phdrp = 0;
4368 i_ehdrp->e_phoff = 0;
4369 }
4370
4371 elf_tdata (abfd)->symtab_hdr.sh_name =
4372 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4373 elf_tdata (abfd)->strtab_hdr.sh_name =
4374 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4375 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4376 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4377 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4378 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4379 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4380 return FALSE;
4381
4382 return TRUE;
4383}
4384
4385/* Assign file positions for all the reloc sections which are not part
4386 of the loadable file image. */
4387
4388void
4389_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4390{
4391 file_ptr off;
4392 unsigned int i, num_sec;
4393 Elf_Internal_Shdr **shdrpp;
4394
4395 off = elf_tdata (abfd)->next_file_pos;
4396
4397 num_sec = elf_numsections (abfd);
4398 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4399 {
4400 Elf_Internal_Shdr *shdrp;
4401
4402 shdrp = *shdrpp;
4403 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4404 && shdrp->sh_offset == -1)
4405 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4406 }
4407
4408 elf_tdata (abfd)->next_file_pos = off;
4409}
4410
4411bfd_boolean
4412_bfd_elf_write_object_contents (bfd *abfd)
4413{
4414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4415 Elf_Internal_Ehdr *i_ehdrp;
4416 Elf_Internal_Shdr **i_shdrp;
4417 bfd_boolean failed;
4418 unsigned int count, num_sec;
4419
4420 if (! abfd->output_has_begun
4421 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4422 return FALSE;
4423
4424 i_shdrp = elf_elfsections (abfd);
4425 i_ehdrp = elf_elfheader (abfd);
4426
4427 failed = FALSE;
4428 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4429 if (failed)
4430 return FALSE;
4431
4432 _bfd_elf_assign_file_positions_for_relocs (abfd);
4433
4434 /* After writing the headers, we need to write the sections too... */
4435 num_sec = elf_numsections (abfd);
4436 for (count = 1; count < num_sec; count++)
4437 {
4438 if (bed->elf_backend_section_processing)
4439 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4440 if (i_shdrp[count]->contents)
4441 {
4442 bfd_size_type amt = i_shdrp[count]->sh_size;
4443
4444 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4445 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4446 return FALSE;
4447 }
4448 if (count == SHN_LORESERVE - 1)
4449 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4450 }
4451
4452 /* Write out the section header names. */
4453 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4454 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4455 return FALSE;
4456
4457 if (bed->elf_backend_final_write_processing)
4458 (*bed->elf_backend_final_write_processing) (abfd,
4459 elf_tdata (abfd)->linker);
4460
4461 return bed->s->write_shdrs_and_ehdr (abfd);
4462}
4463
4464bfd_boolean
4465_bfd_elf_write_corefile_contents (bfd *abfd)
4466{
4467 /* Hopefully this can be done just like an object file. */
4468 return _bfd_elf_write_object_contents (abfd);
4469}
4470
4471/* Given a section, search the header to find them. */
4472
4473int
4474_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4475{
4476 const struct elf_backend_data *bed;
4477 int index;
4478
4479 if (elf_section_data (asect) != NULL
4480 && elf_section_data (asect)->this_idx != 0)
4481 return elf_section_data (asect)->this_idx;
4482
4483 if (bfd_is_abs_section (asect))
4484 index = SHN_ABS;
4485 else if (bfd_is_com_section (asect))
4486 index = SHN_COMMON;
4487 else if (bfd_is_und_section (asect))
4488 index = SHN_UNDEF;
4489 else
4490 {
4491 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4492 int maxindex = elf_numsections (abfd);
4493
4494 for (index = 1; index < maxindex; index++)
4495 {
4496 Elf_Internal_Shdr *hdr = i_shdrp[index];
4497
4498 if (hdr != NULL && hdr->bfd_section == asect)
4499 return index;
4500 }
4501 index = -1;
4502 }
4503
4504 bed = get_elf_backend_data (abfd);
4505 if (bed->elf_backend_section_from_bfd_section)
4506 {
4507 int retval = index;
4508
4509 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4510 return retval;
4511 }
4512
4513 if (index == -1)
4514 bfd_set_error (bfd_error_nonrepresentable_section);
4515
4516 return index;
4517}
4518
4519/* Given a BFD symbol, return the index in the ELF symbol table, or -1
4520 on error. */
4521
4522int
4523_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4524{
4525 asymbol *asym_ptr = *asym_ptr_ptr;
4526 int idx;
4527 flagword flags = asym_ptr->flags;
4528
4529 /* When gas creates relocations against local labels, it creates its
4530 own symbol for the section, but does put the symbol into the
4531 symbol chain, so udata is 0. When the linker is generating
4532 relocatable output, this section symbol may be for one of the
4533 input sections rather than the output section. */
4534 if (asym_ptr->udata.i == 0
4535 && (flags & BSF_SECTION_SYM)
4536 && asym_ptr->section)
4537 {
4538 int indx;
4539
4540 if (asym_ptr->section->output_section != NULL)
4541 indx = asym_ptr->section->output_section->index;
4542 else
4543 indx = asym_ptr->section->index;
4544 if (indx < elf_num_section_syms (abfd)
4545 && elf_section_syms (abfd)[indx] != NULL)
4546 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4547 }
4548
4549 idx = asym_ptr->udata.i;
4550
4551 if (idx == 0)
4552 {
4553 /* This case can occur when using --strip-symbol on a symbol
4554 which is used in a relocation entry. */
4555 (*_bfd_error_handler)
4556 (_("%s: symbol `%s' required but not present"),
4557 bfd_archive_filename (abfd), bfd_asymbol_name (asym_ptr));
4558 bfd_set_error (bfd_error_no_symbols);
4559 return -1;
4560 }
4561
4562#if DEBUG & 4
4563 {
4564 fprintf (stderr,
4565 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4566 (long) asym_ptr, asym_ptr->name, idx, flags,
4567 elf_symbol_flags (flags));
4568 fflush (stderr);
4569 }
4570#endif
4571
4572 return idx;
4573}
4574
4575/* Copy private BFD data. This copies any program header information. */
4576
4577static bfd_boolean
4578copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4579{
4580 Elf_Internal_Ehdr *iehdr;
4581 struct elf_segment_map *map;
4582 struct elf_segment_map *map_first;
4583 struct elf_segment_map **pointer_to_map;
4584 Elf_Internal_Phdr *segment;
4585 asection *section;
4586 unsigned int i;
4587 unsigned int num_segments;
4588 bfd_boolean phdr_included = FALSE;
4589 bfd_vma maxpagesize;
4590 struct elf_segment_map *phdr_adjust_seg = NULL;
4591 unsigned int phdr_adjust_num = 0;
4592 const struct elf_backend_data *bed;
4593
4594 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4595 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4596 return TRUE;
4597
4598 if (elf_tdata (ibfd)->phdr == NULL)
4599 return TRUE;
4600
4601 bed = get_elf_backend_data (ibfd);
4602 iehdr = elf_elfheader (ibfd);
4603
4604 map_first = NULL;
4605 pointer_to_map = &map_first;
4606
4607 num_segments = elf_elfheader (ibfd)->e_phnum;
4608 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4609
4610 /* Returns the end address of the segment + 1. */
4611#define SEGMENT_END(segment, start) \
4612 (start + (segment->p_memsz > segment->p_filesz \
4613 ? segment->p_memsz : segment->p_filesz))
4614
4615#define SECTION_SIZE(section, segment) \
4616 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4617 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4618 ? section->_raw_size : 0)
4619
4620 /* Returns TRUE if the given section is contained within
4621 the given segment. VMA addresses are compared. */
4622#define IS_CONTAINED_BY_VMA(section, segment) \
4623 (section->vma >= segment->p_vaddr \
4624 && (section->vma + SECTION_SIZE (section, segment) \
4625 <= (SEGMENT_END (segment, segment->p_vaddr))))
4626
4627 /* Returns TRUE if the given section is contained within
4628 the given segment. LMA addresses are compared. */
4629#define IS_CONTAINED_BY_LMA(section, segment, base) \
4630 (section->lma >= base \
4631 && (section->lma + SECTION_SIZE (section, segment) \
4632 <= SEGMENT_END (segment, base)))
4633
4634 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4635#define IS_COREFILE_NOTE(p, s) \
4636 (p->p_type == PT_NOTE \
4637 && bfd_get_format (ibfd) == bfd_core \
4638 && s->vma == 0 && s->lma == 0 \
4639 && (bfd_vma) s->filepos >= p->p_offset \
4640 && ((bfd_vma) s->filepos + s->_raw_size \
4641 <= p->p_offset + p->p_filesz))
4642
4643 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4644 linker, which generates a PT_INTERP section with p_vaddr and
4645 p_memsz set to 0. */
4646#define IS_SOLARIS_PT_INTERP(p, s) \
4647 (p->p_vaddr == 0 \
4648 && p->p_paddr == 0 \
4649 && p->p_memsz == 0 \
4650 && p->p_filesz > 0 \
4651 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4652 && s->_raw_size > 0 \
4653 && (bfd_vma) s->filepos >= p->p_offset \
4654 && ((bfd_vma) s->filepos + s->_raw_size \
4655 <= p->p_offset + p->p_filesz))
4656
4657 /* Decide if the given section should be included in the given segment.
4658 A section will be included if:
4659 1. It is within the address space of the segment -- we use the LMA
4660 if that is set for the segment and the VMA otherwise,
4661 2. It is an allocated segment,
4662 3. There is an output section associated with it,
4663 4. The section has not already been allocated to a previous segment.
4664 5. PT_GNU_STACK segments do not include any sections.
4665 6. PT_TLS segment includes only SHF_TLS sections.
4666 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4667#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4668 ((((segment->p_paddr \
4669 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4670 : IS_CONTAINED_BY_VMA (section, segment)) \
4671 && (section->flags & SEC_ALLOC) != 0) \
4672 || IS_COREFILE_NOTE (segment, section)) \
4673 && section->output_section != NULL \
4674 && segment->p_type != PT_GNU_STACK \
4675 && (segment->p_type != PT_TLS \
4676 || (section->flags & SEC_THREAD_LOCAL)) \
4677 && (segment->p_type == PT_LOAD \
4678 || segment->p_type == PT_TLS \
4679 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4680 && ! section->segment_mark)
4681
4682 /* Returns TRUE iff seg1 starts after the end of seg2. */
4683#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4684 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4685
4686 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4687 their VMA address ranges and their LMA address ranges overlap.
4688 It is possible to have overlapping VMA ranges without overlapping LMA
4689 ranges. RedBoot images for example can have both .data and .bss mapped
4690 to the same VMA range, but with the .data section mapped to a different
4691 LMA. */
4692#define SEGMENT_OVERLAPS(seg1, seg2) \
4693 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4694 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4695 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4696 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4697
4698 /* Initialise the segment mark field. */
4699 for (section = ibfd->sections; section != NULL; section = section->next)
4700 section->segment_mark = FALSE;
4701
4702 /* Scan through the segments specified in the program header
4703 of the input BFD. For this first scan we look for overlaps
4704 in the loadable segments. These can be created by weird
4705 parameters to objcopy. Also, fix some solaris weirdness. */
4706 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4707 i < num_segments;
4708 i++, segment++)
4709 {
4710 unsigned int j;
4711 Elf_Internal_Phdr *segment2;
4712
4713 if (segment->p_type == PT_INTERP)
4714 for (section = ibfd->sections; section; section = section->next)
4715 if (IS_SOLARIS_PT_INTERP (segment, section))
4716 {
4717 /* Mininal change so that the normal section to segment
4718 assignment code will work. */
4719 segment->p_vaddr = section->vma;
4720 break;
4721 }
4722
4723 if (segment->p_type != PT_LOAD)
4724 continue;
4725
4726 /* Determine if this segment overlaps any previous segments. */
4727 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4728 {
4729 bfd_signed_vma extra_length;
4730
4731 if (segment2->p_type != PT_LOAD
4732 || ! SEGMENT_OVERLAPS (segment, segment2))
4733 continue;
4734
4735 /* Merge the two segments together. */
4736 if (segment2->p_vaddr < segment->p_vaddr)
4737 {
4738 /* Extend SEGMENT2 to include SEGMENT and then delete
4739 SEGMENT. */
4740 extra_length =
4741 SEGMENT_END (segment, segment->p_vaddr)
4742 - SEGMENT_END (segment2, segment2->p_vaddr);
4743
4744 if (extra_length > 0)
4745 {
4746 segment2->p_memsz += extra_length;
4747 segment2->p_filesz += extra_length;
4748 }
4749
4750 segment->p_type = PT_NULL;
4751
4752 /* Since we have deleted P we must restart the outer loop. */
4753 i = 0;
4754 segment = elf_tdata (ibfd)->phdr;
4755 break;
4756 }
4757 else
4758 {
4759 /* Extend SEGMENT to include SEGMENT2 and then delete
4760 SEGMENT2. */
4761 extra_length =
4762 SEGMENT_END (segment2, segment2->p_vaddr)
4763 - SEGMENT_END (segment, segment->p_vaddr);
4764
4765 if (extra_length > 0)
4766 {
4767 segment->p_memsz += extra_length;
4768 segment->p_filesz += extra_length;
4769 }
4770
4771 segment2->p_type = PT_NULL;
4772 }
4773 }
4774 }
4775
4776 /* The second scan attempts to assign sections to segments. */
4777 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4778 i < num_segments;
4779 i ++, segment ++)
4780 {
4781 unsigned int section_count;
4782 asection ** sections;
4783 asection * output_section;
4784 unsigned int isec;
4785 bfd_vma matching_lma;
4786 bfd_vma suggested_lma;
4787 unsigned int j;
4788 bfd_size_type amt;
4789
4790 if (segment->p_type == PT_NULL)
4791 continue;
4792
4793 /* Compute how many sections might be placed into this segment. */
4794 for (section = ibfd->sections, section_count = 0;
4795 section != NULL;
4796 section = section->next)
4797 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4798 ++section_count;
4799
4800 /* Allocate a segment map big enough to contain
4801 all of the sections we have selected. */
4802 amt = sizeof (struct elf_segment_map);
4803 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
4804 map = bfd_alloc (obfd, amt);
4805 if (map == NULL)
4806 return FALSE;
4807
4808 /* Initialise the fields of the segment map. Default to
4809 using the physical address of the segment in the input BFD. */
4810 map->next = NULL;
4811 map->p_type = segment->p_type;
4812 map->p_flags = segment->p_flags;
4813 map->p_flags_valid = 1;
4814 map->p_paddr = segment->p_paddr;
4815 map->p_paddr_valid = 1;
4816
4817 /* Determine if this segment contains the ELF file header
4818 and if it contains the program headers themselves. */
4819 map->includes_filehdr = (segment->p_offset == 0
4820 && segment->p_filesz >= iehdr->e_ehsize);
4821
4822 map->includes_phdrs = 0;
4823
4824 if (! phdr_included || segment->p_type != PT_LOAD)
4825 {
4826 map->includes_phdrs =
4827 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
4828 && (segment->p_offset + segment->p_filesz
4829 >= ((bfd_vma) iehdr->e_phoff
4830 + iehdr->e_phnum * iehdr->e_phentsize)));
4831
4832 if (segment->p_type == PT_LOAD && map->includes_phdrs)
4833 phdr_included = TRUE;
4834 }
4835
4836 if (section_count == 0)
4837 {
4838 /* Special segments, such as the PT_PHDR segment, may contain
4839 no sections, but ordinary, loadable segments should contain
4840 something. They are allowed by the ELF spec however, so only
4841 a warning is produced. */
4842 if (segment->p_type == PT_LOAD)
4843 (*_bfd_error_handler)
4844 (_("%s: warning: Empty loadable segment detected, is this intentional ?\n"),
4845 bfd_archive_filename (ibfd));
4846
4847 map->count = 0;
4848 *pointer_to_map = map;
4849 pointer_to_map = &map->next;
4850
4851 continue;
4852 }
4853
4854 /* Now scan the sections in the input BFD again and attempt
4855 to add their corresponding output sections to the segment map.
4856 The problem here is how to handle an output section which has
4857 been moved (ie had its LMA changed). There are four possibilities:
4858
4859 1. None of the sections have been moved.
4860 In this case we can continue to use the segment LMA from the
4861 input BFD.
4862
4863 2. All of the sections have been moved by the same amount.
4864 In this case we can change the segment's LMA to match the LMA
4865 of the first section.
4866
4867 3. Some of the sections have been moved, others have not.
4868 In this case those sections which have not been moved can be
4869 placed in the current segment which will have to have its size,
4870 and possibly its LMA changed, and a new segment or segments will
4871 have to be created to contain the other sections.
4872
4873 4. The sections have been moved, but not by the same amount.
4874 In this case we can change the segment's LMA to match the LMA
4875 of the first section and we will have to create a new segment
4876 or segments to contain the other sections.
4877
4878 In order to save time, we allocate an array to hold the section
4879 pointers that we are interested in. As these sections get assigned
4880 to a segment, they are removed from this array. */
4881
4882 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
4883 to work around this long long bug. */
4884 amt = section_count * sizeof (asection *);
4885 sections = bfd_malloc (amt);
4886 if (sections == NULL)
4887 return FALSE;
4888
4889 /* Step One: Scan for segment vs section LMA conflicts.
4890 Also add the sections to the section array allocated above.
4891 Also add the sections to the current segment. In the common
4892 case, where the sections have not been moved, this means that
4893 we have completely filled the segment, and there is nothing
4894 more to do. */
4895 isec = 0;
4896 matching_lma = 0;
4897 suggested_lma = 0;
4898
4899 for (j = 0, section = ibfd->sections;
4900 section != NULL;
4901 section = section->next)
4902 {
4903 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
4904 {
4905 output_section = section->output_section;
4906
4907 sections[j ++] = section;
4908
4909 /* The Solaris native linker always sets p_paddr to 0.
4910 We try to catch that case here, and set it to the
4911 correct value. Note - some backends require that
4912 p_paddr be left as zero. */
4913 if (segment->p_paddr == 0
4914 && segment->p_vaddr != 0
4915 && (! bed->want_p_paddr_set_to_zero)
4916 && isec == 0
4917 && output_section->lma != 0
4918 && (output_section->vma == (segment->p_vaddr
4919 + (map->includes_filehdr
4920 ? iehdr->e_ehsize
4921 : 0)
4922 + (map->includes_phdrs
4923 ? (iehdr->e_phnum
4924 * iehdr->e_phentsize)
4925 : 0))))
4926 map->p_paddr = segment->p_vaddr;
4927
4928 /* Match up the physical address of the segment with the
4929 LMA address of the output section. */
4930 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
4931 || IS_COREFILE_NOTE (segment, section)
4932 || (bed->want_p_paddr_set_to_zero &&
4933 IS_CONTAINED_BY_VMA (output_section, segment))
4934 )
4935 {
4936 if (matching_lma == 0)
4937 matching_lma = output_section->lma;
4938
4939 /* We assume that if the section fits within the segment
4940 then it does not overlap any other section within that
4941 segment. */
4942 map->sections[isec ++] = output_section;
4943 }
4944 else if (suggested_lma == 0)
4945 suggested_lma = output_section->lma;
4946 }
4947 }
4948
4949 BFD_ASSERT (j == section_count);
4950
4951 /* Step Two: Adjust the physical address of the current segment,
4952 if necessary. */
4953 if (isec == section_count)
4954 {
4955 /* All of the sections fitted within the segment as currently
4956 specified. This is the default case. Add the segment to
4957 the list of built segments and carry on to process the next
4958 program header in the input BFD. */
4959 map->count = section_count;
4960 *pointer_to_map = map;
4961 pointer_to_map = &map->next;
4962
4963 free (sections);
4964 continue;
4965 }
4966 else
4967 {
4968 if (matching_lma != 0)
4969 {
4970 /* At least one section fits inside the current segment.
4971 Keep it, but modify its physical address to match the
4972 LMA of the first section that fitted. */
4973 map->p_paddr = matching_lma;
4974 }
4975 else
4976 {
4977 /* None of the sections fitted inside the current segment.
4978 Change the current segment's physical address to match
4979 the LMA of the first section. */
4980 map->p_paddr = suggested_lma;
4981 }
4982
4983 /* Offset the segment physical address from the lma
4984 to allow for space taken up by elf headers. */
4985 if (map->includes_filehdr)
4986 map->p_paddr -= iehdr->e_ehsize;
4987
4988 if (map->includes_phdrs)
4989 {
4990 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
4991
4992 /* iehdr->e_phnum is just an estimate of the number
4993 of program headers that we will need. Make a note
4994 here of the number we used and the segment we chose
4995 to hold these headers, so that we can adjust the
4996 offset when we know the correct value. */
4997 phdr_adjust_num = iehdr->e_phnum;
4998 phdr_adjust_seg = map;
4999 }
5000 }
5001
5002 /* Step Three: Loop over the sections again, this time assigning
5003 those that fit to the current segment and removing them from the
5004 sections array; but making sure not to leave large gaps. Once all
5005 possible sections have been assigned to the current segment it is
5006 added to the list of built segments and if sections still remain
5007 to be assigned, a new segment is constructed before repeating
5008 the loop. */
5009 isec = 0;
5010 do
5011 {
5012 map->count = 0;
5013 suggested_lma = 0;
5014
5015 /* Fill the current segment with sections that fit. */
5016 for (j = 0; j < section_count; j++)
5017 {
5018 section = sections[j];
5019
5020 if (section == NULL)
5021 continue;
5022
5023 output_section = section->output_section;
5024
5025 BFD_ASSERT (output_section != NULL);
5026
5027 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5028 || IS_COREFILE_NOTE (segment, section))
5029 {
5030 if (map->count == 0)
5031 {
5032 /* If the first section in a segment does not start at
5033 the beginning of the segment, then something is
5034 wrong. */
5035 if (output_section->lma !=
5036 (map->p_paddr
5037 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5038 + (map->includes_phdrs
5039 ? iehdr->e_phnum * iehdr->e_phentsize
5040 : 0)))
5041 abort ();
5042 }
5043 else
5044 {
5045 asection * prev_sec;
5046
5047 prev_sec = map->sections[map->count - 1];
5048
5049 /* If the gap between the end of the previous section
5050 and the start of this section is more than
5051 maxpagesize then we need to start a new segment. */
5052 if ((BFD_ALIGN (prev_sec->lma + prev_sec->_raw_size,
5053 maxpagesize)
5054 < BFD_ALIGN (output_section->lma, maxpagesize))
5055 || ((prev_sec->lma + prev_sec->_raw_size)
5056 > output_section->lma))
5057 {
5058 if (suggested_lma == 0)
5059 suggested_lma = output_section->lma;
5060
5061 continue;
5062 }
5063 }
5064
5065 map->sections[map->count++] = output_section;
5066 ++isec;
5067 sections[j] = NULL;
5068 section->segment_mark = TRUE;
5069 }
5070 else if (suggested_lma == 0)
5071 suggested_lma = output_section->lma;
5072 }
5073
5074 BFD_ASSERT (map->count > 0);
5075
5076 /* Add the current segment to the list of built segments. */
5077 *pointer_to_map = map;
5078 pointer_to_map = &map->next;
5079
5080 if (isec < section_count)
5081 {
5082 /* We still have not allocated all of the sections to
5083 segments. Create a new segment here, initialise it
5084 and carry on looping. */
5085 amt = sizeof (struct elf_segment_map);
5086 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5087 map = bfd_alloc (obfd, amt);
5088 if (map == NULL)
5089 {
5090 free (sections);
5091 return FALSE;
5092 }
5093
5094 /* Initialise the fields of the segment map. Set the physical
5095 physical address to the LMA of the first section that has
5096 not yet been assigned. */
5097 map->next = NULL;
5098 map->p_type = segment->p_type;
5099 map->p_flags = segment->p_flags;
5100 map->p_flags_valid = 1;
5101 map->p_paddr = suggested_lma;
5102 map->p_paddr_valid = 1;
5103 map->includes_filehdr = 0;
5104 map->includes_phdrs = 0;
5105 }
5106 }
5107 while (isec < section_count);
5108
5109 free (sections);
5110 }
5111
5112 /* The Solaris linker creates program headers in which all the
5113 p_paddr fields are zero. When we try to objcopy or strip such a
5114 file, we get confused. Check for this case, and if we find it
5115 reset the p_paddr_valid fields. */
5116 for (map = map_first; map != NULL; map = map->next)
5117 if (map->p_paddr != 0)
5118 break;
5119 if (map == NULL)
5120 for (map = map_first; map != NULL; map = map->next)
5121 map->p_paddr_valid = 0;
5122
5123 elf_tdata (obfd)->segment_map = map_first;
5124
5125 /* If we had to estimate the number of program headers that were
5126 going to be needed, then check our estimate now and adjust
5127 the offset if necessary. */
5128 if (phdr_adjust_seg != NULL)
5129 {
5130 unsigned int count;
5131
5132 for (count = 0, map = map_first; map != NULL; map = map->next)
5133 count++;
5134
5135 if (count > phdr_adjust_num)
5136 phdr_adjust_seg->p_paddr
5137 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5138 }
5139
5140#if 0
5141 /* Final Step: Sort the segments into ascending order of physical
5142 address. */
5143 if (map_first != NULL)
5144 {
5145 struct elf_segment_map *prev;
5146
5147 prev = map_first;
5148 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5149 {
5150 /* Yes I know - its a bubble sort.... */
5151 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5152 {
5153 /* Swap map and map->next. */
5154 prev->next = map->next;
5155 map->next = map->next->next;
5156 prev->next->next = map;
5157
5158 /* Restart loop. */
5159 map = map_first;
5160 }
5161 }
5162 }
5163#endif
5164
5165#undef SEGMENT_END
5166#undef SECTION_SIZE
5167#undef IS_CONTAINED_BY_VMA
5168#undef IS_CONTAINED_BY_LMA
5169#undef IS_COREFILE_NOTE
5170#undef IS_SOLARIS_PT_INTERP
5171#undef INCLUDE_SECTION_IN_SEGMENT
5172#undef SEGMENT_AFTER_SEGMENT
5173#undef SEGMENT_OVERLAPS
5174 return TRUE;
5175}
5176
5177/* Copy private section information. This copies over the entsize
5178 field, and sometimes the info field. */
5179
5180bfd_boolean
5181_bfd_elf_copy_private_section_data (bfd *ibfd,
5182 asection *isec,
5183 bfd *obfd,
5184 asection *osec)
5185{
5186 Elf_Internal_Shdr *ihdr, *ohdr;
5187
5188 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5189 || obfd->xvec->flavour != bfd_target_elf_flavour)
5190 return TRUE;
5191
5192 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5193 {
5194 asection *s;
5195
5196 /* Only set up the segments if there are no more SEC_ALLOC
5197 sections. FIXME: This won't do the right thing if objcopy is
5198 used to remove the last SEC_ALLOC section, since objcopy
5199 won't call this routine in that case. */
5200 for (s = isec->next; s != NULL; s = s->next)
5201 if ((s->flags & SEC_ALLOC) != 0)
5202 break;
5203 if (s == NULL)
5204 {
5205 if (! copy_private_bfd_data (ibfd, obfd))
5206 return FALSE;
5207 }
5208 }
5209
5210 ihdr = &elf_section_data (isec)->this_hdr;
5211 ohdr = &elf_section_data (osec)->this_hdr;
5212
5213 ohdr->sh_entsize = ihdr->sh_entsize;
5214
5215 if (ihdr->sh_type == SHT_SYMTAB
5216 || ihdr->sh_type == SHT_DYNSYM
5217 || ihdr->sh_type == SHT_GNU_verneed
5218 || ihdr->sh_type == SHT_GNU_verdef)
5219 ohdr->sh_info = ihdr->sh_info;
5220
5221 /* Set things up for objcopy. The output SHT_GROUP section will
5222 have its elf_next_in_group pointing back to the input group
5223 members. */
5224 elf_next_in_group (osec) = elf_next_in_group (isec);
5225 elf_group_name (osec) = elf_group_name (isec);
5226
5227 osec->use_rela_p = isec->use_rela_p;
5228
5229 return TRUE;
5230}
5231
5232/* Copy private symbol information. If this symbol is in a section
5233 which we did not map into a BFD section, try to map the section
5234 index correctly. We use special macro definitions for the mapped
5235 section indices; these definitions are interpreted by the
5236 swap_out_syms function. */
5237
5238#define MAP_ONESYMTAB (SHN_HIOS + 1)
5239#define MAP_DYNSYMTAB (SHN_HIOS + 2)
5240#define MAP_STRTAB (SHN_HIOS + 3)
5241#define MAP_SHSTRTAB (SHN_HIOS + 4)
5242#define MAP_SYM_SHNDX (SHN_HIOS + 5)
5243
5244bfd_boolean
5245_bfd_elf_copy_private_symbol_data (bfd *ibfd,
5246 asymbol *isymarg,
5247 bfd *obfd,
5248 asymbol *osymarg)
5249{
5250 elf_symbol_type *isym, *osym;
5251
5252 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5253 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5254 return TRUE;
5255
5256 isym = elf_symbol_from (ibfd, isymarg);
5257 osym = elf_symbol_from (obfd, osymarg);
5258
5259 if (isym != NULL
5260 && osym != NULL
5261 && bfd_is_abs_section (isym->symbol.section))
5262 {
5263 unsigned int shndx;
5264
5265 shndx = isym->internal_elf_sym.st_shndx;
5266 if (shndx == elf_onesymtab (ibfd))
5267 shndx = MAP_ONESYMTAB;
5268 else if (shndx == elf_dynsymtab (ibfd))
5269 shndx = MAP_DYNSYMTAB;
5270 else if (shndx == elf_tdata (ibfd)->strtab_section)
5271 shndx = MAP_STRTAB;
5272 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5273 shndx = MAP_SHSTRTAB;
5274 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5275 shndx = MAP_SYM_SHNDX;
5276 osym->internal_elf_sym.st_shndx = shndx;
5277 }
5278
5279 return TRUE;
5280}
5281
5282/* Swap out the symbols. */
5283
5284static bfd_boolean
5285swap_out_syms (bfd *abfd,
5286 struct bfd_strtab_hash **sttp,
5287 int relocatable_p)
5288{
5289 const struct elf_backend_data *bed;
5290 int symcount;
5291 asymbol **syms;
5292 struct bfd_strtab_hash *stt;
5293 Elf_Internal_Shdr *symtab_hdr;
5294 Elf_Internal_Shdr *symtab_shndx_hdr;
5295 Elf_Internal_Shdr *symstrtab_hdr;
5296 char *outbound_syms;
5297 char *outbound_shndx;
5298 int idx;
5299 bfd_size_type amt;
5300 bfd_boolean name_local_sections;
5301
5302 if (!elf_map_symbols (abfd))
5303 return FALSE;
5304
5305 /* Dump out the symtabs. */
5306 stt = _bfd_elf_stringtab_init ();
5307 if (stt == NULL)
5308 return FALSE;
5309
5310 bed = get_elf_backend_data (abfd);
5311 symcount = bfd_get_symcount (abfd);
5312 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5313 symtab_hdr->sh_type = SHT_SYMTAB;
5314 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5315 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5316 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5317 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5318
5319 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5320 symstrtab_hdr->sh_type = SHT_STRTAB;
5321
5322 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5323 outbound_syms = bfd_alloc (abfd, amt);
5324 if (outbound_syms == NULL)
5325 {
5326 _bfd_stringtab_free (stt);
5327 return FALSE;
5328 }
5329 symtab_hdr->contents = outbound_syms;
5330
5331 outbound_shndx = NULL;
5332 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5333 if (symtab_shndx_hdr->sh_name != 0)
5334 {
5335 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5336 outbound_shndx = bfd_zalloc (abfd, amt);
5337 if (outbound_shndx == NULL)
5338 {
5339 _bfd_stringtab_free (stt);
5340 return FALSE;
5341 }
5342
5343 symtab_shndx_hdr->contents = outbound_shndx;
5344 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5345 symtab_shndx_hdr->sh_size = amt;
5346 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5347 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5348 }
5349
5350 /* Now generate the data (for "contents"). */
5351 {
5352 /* Fill in zeroth symbol and swap it out. */
5353 Elf_Internal_Sym sym;
5354 sym.st_name = 0;
5355 sym.st_value = 0;
5356 sym.st_size = 0;
5357 sym.st_info = 0;
5358 sym.st_other = 0;
5359 sym.st_shndx = SHN_UNDEF;
5360 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5361 outbound_syms += bed->s->sizeof_sym;
5362 if (outbound_shndx != NULL)
5363 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5364 }
5365
5366 name_local_sections
5367 = (bed->elf_backend_name_local_section_symbols
5368 && bed->elf_backend_name_local_section_symbols (abfd));
5369
5370 syms = bfd_get_outsymbols (abfd);
5371 for (idx = 0; idx < symcount; idx++)
5372 {
5373 Elf_Internal_Sym sym;
5374 bfd_vma value = syms[idx]->value;
5375 elf_symbol_type *type_ptr;
5376 flagword flags = syms[idx]->flags;
5377 int type;
5378
5379 if (!name_local_sections
5380 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5381 {
5382 /* Local section symbols have no name. */
5383 sym.st_name = 0;
5384 }
5385 else
5386 {
5387 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5388 syms[idx]->name,
5389 TRUE, FALSE);
5390 if (sym.st_name == (unsigned long) -1)
5391 {
5392 _bfd_stringtab_free (stt);
5393 return FALSE;
5394 }
5395 }
5396
5397 type_ptr = elf_symbol_from (abfd, syms[idx]);
5398
5399 if ((flags & BSF_SECTION_SYM) == 0
5400 && bfd_is_com_section (syms[idx]->section))
5401 {
5402 /* ELF common symbols put the alignment into the `value' field,
5403 and the size into the `size' field. This is backwards from
5404 how BFD handles it, so reverse it here. */
5405 sym.st_size = value;
5406 if (type_ptr == NULL
5407 || type_ptr->internal_elf_sym.st_value == 0)
5408 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5409 else
5410 sym.st_value = type_ptr->internal_elf_sym.st_value;
5411 sym.st_shndx = _bfd_elf_section_from_bfd_section
5412 (abfd, syms[idx]->section);
5413 }
5414 else
5415 {
5416 asection *sec = syms[idx]->section;
5417 int shndx;
5418
5419 if (sec->output_section)
5420 {
5421 value += sec->output_offset;
5422 sec = sec->output_section;
5423 }
5424
5425 /* Don't add in the section vma for relocatable output. */
5426 if (! relocatable_p)
5427 value += sec->vma;
5428 sym.st_value = value;
5429 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5430
5431 if (bfd_is_abs_section (sec)
5432 && type_ptr != NULL
5433 && type_ptr->internal_elf_sym.st_shndx != 0)
5434 {
5435 /* This symbol is in a real ELF section which we did
5436 not create as a BFD section. Undo the mapping done
5437 by copy_private_symbol_data. */
5438 shndx = type_ptr->internal_elf_sym.st_shndx;
5439 switch (shndx)
5440 {
5441 case MAP_ONESYMTAB:
5442 shndx = elf_onesymtab (abfd);
5443 break;
5444 case MAP_DYNSYMTAB:
5445 shndx = elf_dynsymtab (abfd);
5446 break;
5447 case MAP_STRTAB:
5448 shndx = elf_tdata (abfd)->strtab_section;
5449 break;
5450 case MAP_SHSTRTAB:
5451 shndx = elf_tdata (abfd)->shstrtab_section;
5452 break;
5453 case MAP_SYM_SHNDX:
5454 shndx = elf_tdata (abfd)->symtab_shndx_section;
5455 break;
5456 default:
5457 break;
5458 }
5459 }
5460 else
5461 {
5462 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5463
5464 if (shndx == -1)
5465 {
5466 asection *sec2;
5467
5468 /* Writing this would be a hell of a lot easier if
5469 we had some decent documentation on bfd, and
5470 knew what to expect of the library, and what to
5471 demand of applications. For example, it
5472 appears that `objcopy' might not set the
5473 section of a symbol to be a section that is
5474 actually in the output file. */
5475 sec2 = bfd_get_section_by_name (abfd, sec->name);
5476 if (sec2 == NULL)
5477 {
5478 _bfd_error_handler (_("\
5479Unable to find equivalent output section for symbol '%s' from section '%s'"),
5480 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5481 sec->name);
5482 bfd_set_error (bfd_error_invalid_operation);
5483 _bfd_stringtab_free (stt);
5484 return FALSE;
5485 }
5486
5487 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5488 BFD_ASSERT (shndx != -1);
5489 }
5490 }
5491
5492 sym.st_shndx = shndx;
5493 }
5494
5495 if ((flags & BSF_THREAD_LOCAL) != 0)
5496 type = STT_TLS;
5497 else if ((flags & BSF_FUNCTION) != 0)
5498 type = STT_FUNC;
5499 else if ((flags & BSF_OBJECT) != 0)
5500 type = STT_OBJECT;
5501 else
5502 type = STT_NOTYPE;
5503
5504 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5505 type = STT_TLS;
5506
5507 /* Processor-specific types. */
5508 if (type_ptr != NULL
5509 && bed->elf_backend_get_symbol_type)
5510 type = ((*bed->elf_backend_get_symbol_type)
5511 (&type_ptr->internal_elf_sym, type));
5512
5513 if (flags & BSF_SECTION_SYM)
5514 {
5515 if (flags & BSF_GLOBAL)
5516 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5517 else
5518 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5519 }
5520 else if (bfd_is_com_section (syms[idx]->section))
5521 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5522 else if (bfd_is_und_section (syms[idx]->section))
5523 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5524 ? STB_WEAK
5525 : STB_GLOBAL),
5526 type);
5527 else if (flags & BSF_FILE)
5528 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5529 else
5530 {
5531 int bind = STB_LOCAL;
5532
5533 if (flags & BSF_LOCAL)
5534 bind = STB_LOCAL;
5535 else if (flags & BSF_WEAK)
5536 bind = STB_WEAK;
5537 else if (flags & BSF_GLOBAL)
5538 bind = STB_GLOBAL;
5539
5540 sym.st_info = ELF_ST_INFO (bind, type);
5541 }
5542
5543 if (type_ptr != NULL)
5544 sym.st_other = type_ptr->internal_elf_sym.st_other;
5545 else
5546 sym.st_other = 0;
5547
5548 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5549 outbound_syms += bed->s->sizeof_sym;
5550 if (outbound_shndx != NULL)
5551 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5552 }
5553
5554 *sttp = stt;
5555 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5556 symstrtab_hdr->sh_type = SHT_STRTAB;
5557
5558 symstrtab_hdr->sh_flags = 0;
5559 symstrtab_hdr->sh_addr = 0;
5560 symstrtab_hdr->sh_entsize = 0;
5561 symstrtab_hdr->sh_link = 0;
5562 symstrtab_hdr->sh_info = 0;
5563 symstrtab_hdr->sh_addralign = 1;
5564
5565 return TRUE;
5566}
5567
5568/* Return the number of bytes required to hold the symtab vector.
5569
5570 Note that we base it on the count plus 1, since we will null terminate
5571 the vector allocated based on this size. However, the ELF symbol table
5572 always has a dummy entry as symbol #0, so it ends up even. */
5573
5574long
5575_bfd_elf_get_symtab_upper_bound (bfd *abfd)
5576{
5577 long symcount;
5578 long symtab_size;
5579 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5580
5581 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5582 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5583 if (symcount > 0)
5584 symtab_size -= sizeof (asymbol *);
5585
5586 return symtab_size;
5587}
5588
5589long
5590_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5591{
5592 long symcount;
5593 long symtab_size;
5594 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5595
5596 if (elf_dynsymtab (abfd) == 0)
5597 {
5598 bfd_set_error (bfd_error_invalid_operation);
5599 return -1;
5600 }
5601
5602 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5603 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5604 if (symcount > 0)
5605 symtab_size -= sizeof (asymbol *);
5606
5607 return symtab_size;
5608}
5609
5610long
5611_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5612 sec_ptr asect)
5613{
5614 return (asect->reloc_count + 1) * sizeof (arelent *);
5615}
5616
5617/* Canonicalize the relocs. */
5618
5619long
5620_bfd_elf_canonicalize_reloc (bfd *abfd,
5621 sec_ptr section,
5622 arelent **relptr,
5623 asymbol **symbols)
5624{
5625 arelent *tblptr;
5626 unsigned int i;
5627 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5628
5629 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5630 return -1;
5631
5632 tblptr = section->relocation;
5633 for (i = 0; i < section->reloc_count; i++)
5634 *relptr++ = tblptr++;
5635
5636 *relptr = NULL;
5637
5638 return section->reloc_count;
5639}
5640
5641long
5642_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5643{
5644 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5645 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5646
5647 if (symcount >= 0)
5648 bfd_get_symcount (abfd) = symcount;
5649 return symcount;
5650}
5651
5652long
5653_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5654 asymbol **allocation)
5655{
5656 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5657 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5658
5659 if (symcount >= 0)
5660 bfd_get_dynamic_symcount (abfd) = symcount;
5661 return symcount;
5662}
5663
5664/* Return the size required for the dynamic reloc entries. Any
5665 section that was actually installed in the BFD, and has type
5666 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5667 considered to be a dynamic reloc section. */
5668
5669long
5670_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5671{
5672 long ret;
5673 asection *s;
5674
5675 if (elf_dynsymtab (abfd) == 0)
5676 {
5677 bfd_set_error (bfd_error_invalid_operation);
5678 return -1;
5679 }
5680
5681 ret = sizeof (arelent *);
5682 for (s = abfd->sections; s != NULL; s = s->next)
5683 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5684 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5685 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5686 ret += ((s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize)
5687 * sizeof (arelent *));
5688
5689 return ret;
5690}
5691
5692/* Canonicalize the dynamic relocation entries. Note that we return
5693 the dynamic relocations as a single block, although they are
5694 actually associated with particular sections; the interface, which
5695 was designed for SunOS style shared libraries, expects that there
5696 is only one set of dynamic relocs. Any section that was actually
5697 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5698 the dynamic symbol table, is considered to be a dynamic reloc
5699 section. */
5700
5701long
5702_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5703 arelent **storage,
5704 asymbol **syms)
5705{
5706 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5707 asection *s;
5708 long ret;
5709
5710 if (elf_dynsymtab (abfd) == 0)
5711 {
5712 bfd_set_error (bfd_error_invalid_operation);
5713 return -1;
5714 }
5715
5716 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5717 ret = 0;
5718 for (s = abfd->sections; s != NULL; s = s->next)
5719 {
5720 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5721 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5722 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5723 {
5724 arelent *p;
5725 long count, i;
5726
5727 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5728 return -1;
5729 count = s->_raw_size / elf_section_data (s)->this_hdr.sh_entsize;
5730 p = s->relocation;
5731 for (i = 0; i < count; i++)
5732 *storage++ = p++;
5733 ret += count;
5734 }
5735 }
5736
5737 *storage = NULL;
5738
5739 return ret;
5740}
5741\f
5742/* Read in the version information. */
5743
5744bfd_boolean
5745_bfd_elf_slurp_version_tables (bfd *abfd)
5746{
5747 bfd_byte *contents = NULL;
5748 bfd_size_type amt;
5749
5750 if (elf_dynverdef (abfd) != 0)
5751 {
5752 Elf_Internal_Shdr *hdr;
5753 Elf_External_Verdef *everdef;
5754 Elf_Internal_Verdef *iverdef;
5755 Elf_Internal_Verdef *iverdefarr;
5756 Elf_Internal_Verdef iverdefmem;
5757 unsigned int i;
5758 unsigned int maxidx;
5759
5760 hdr = &elf_tdata (abfd)->dynverdef_hdr;
5761
5762 contents = bfd_malloc (hdr->sh_size);
5763 if (contents == NULL)
5764 goto error_return;
5765 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5766 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5767 goto error_return;
5768
5769 /* We know the number of entries in the section but not the maximum
5770 index. Therefore we have to run through all entries and find
5771 the maximum. */
5772 everdef = (Elf_External_Verdef *) contents;
5773 maxidx = 0;
5774 for (i = 0; i < hdr->sh_info; ++i)
5775 {
5776 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5777
5778 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
5779 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
5780
5781 everdef = ((Elf_External_Verdef *)
5782 ((bfd_byte *) everdef + iverdefmem.vd_next));
5783 }
5784
5785 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
5786 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
5787 if (elf_tdata (abfd)->verdef == NULL)
5788 goto error_return;
5789
5790 elf_tdata (abfd)->cverdefs = maxidx;
5791
5792 everdef = (Elf_External_Verdef *) contents;
5793 iverdefarr = elf_tdata (abfd)->verdef;
5794 for (i = 0; i < hdr->sh_info; i++)
5795 {
5796 Elf_External_Verdaux *everdaux;
5797 Elf_Internal_Verdaux *iverdaux;
5798 unsigned int j;
5799
5800 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
5801
5802 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
5803 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
5804
5805 iverdef->vd_bfd = abfd;
5806
5807 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
5808 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
5809 if (iverdef->vd_auxptr == NULL)
5810 goto error_return;
5811
5812 everdaux = ((Elf_External_Verdaux *)
5813 ((bfd_byte *) everdef + iverdef->vd_aux));
5814 iverdaux = iverdef->vd_auxptr;
5815 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
5816 {
5817 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
5818
5819 iverdaux->vda_nodename =
5820 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5821 iverdaux->vda_name);
5822 if (iverdaux->vda_nodename == NULL)
5823 goto error_return;
5824
5825 if (j + 1 < iverdef->vd_cnt)
5826 iverdaux->vda_nextptr = iverdaux + 1;
5827 else
5828 iverdaux->vda_nextptr = NULL;
5829
5830 everdaux = ((Elf_External_Verdaux *)
5831 ((bfd_byte *) everdaux + iverdaux->vda_next));
5832 }
5833
5834 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
5835
5836 if (i + 1 < hdr->sh_info)
5837 iverdef->vd_nextdef = iverdef + 1;
5838 else
5839 iverdef->vd_nextdef = NULL;
5840
5841 everdef = ((Elf_External_Verdef *)
5842 ((bfd_byte *) everdef + iverdef->vd_next));
5843 }
5844
5845 free (contents);
5846 contents = NULL;
5847 }
5848
5849 if (elf_dynverref (abfd) != 0)
5850 {
5851 Elf_Internal_Shdr *hdr;
5852 Elf_External_Verneed *everneed;
5853 Elf_Internal_Verneed *iverneed;
5854 unsigned int i;
5855
5856 hdr = &elf_tdata (abfd)->dynverref_hdr;
5857
5858 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
5859 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
5860 if (elf_tdata (abfd)->verref == NULL)
5861 goto error_return;
5862
5863 elf_tdata (abfd)->cverrefs = hdr->sh_info;
5864
5865 contents = bfd_malloc (hdr->sh_size);
5866 if (contents == NULL)
5867 goto error_return;
5868 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
5869 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
5870 goto error_return;
5871
5872 everneed = (Elf_External_Verneed *) contents;
5873 iverneed = elf_tdata (abfd)->verref;
5874 for (i = 0; i < hdr->sh_info; i++, iverneed++)
5875 {
5876 Elf_External_Vernaux *evernaux;
5877 Elf_Internal_Vernaux *ivernaux;
5878 unsigned int j;
5879
5880 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
5881
5882 iverneed->vn_bfd = abfd;
5883
5884 iverneed->vn_filename =
5885 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5886 iverneed->vn_file);
5887 if (iverneed->vn_filename == NULL)
5888 goto error_return;
5889
5890 amt = iverneed->vn_cnt;
5891 amt *= sizeof (Elf_Internal_Vernaux);
5892 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
5893
5894 evernaux = ((Elf_External_Vernaux *)
5895 ((bfd_byte *) everneed + iverneed->vn_aux));
5896 ivernaux = iverneed->vn_auxptr;
5897 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
5898 {
5899 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
5900
5901 ivernaux->vna_nodename =
5902 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
5903 ivernaux->vna_name);
5904 if (ivernaux->vna_nodename == NULL)
5905 goto error_return;
5906
5907 if (j + 1 < iverneed->vn_cnt)
5908 ivernaux->vna_nextptr = ivernaux + 1;
5909 else
5910 ivernaux->vna_nextptr = NULL;
5911
5912 evernaux = ((Elf_External_Vernaux *)
5913 ((bfd_byte *) evernaux + ivernaux->vna_next));
5914 }
5915
5916 if (i + 1 < hdr->sh_info)
5917 iverneed->vn_nextref = iverneed + 1;
5918 else
5919 iverneed->vn_nextref = NULL;
5920
5921 everneed = ((Elf_External_Verneed *)
5922 ((bfd_byte *) everneed + iverneed->vn_next));
5923 }
5924
5925 free (contents);
5926 contents = NULL;
5927 }
5928
5929 return TRUE;
5930
5931 error_return:
5932 if (contents != NULL)
5933 free (contents);
5934 return FALSE;
5935}
5936\f
5937asymbol *
5938_bfd_elf_make_empty_symbol (bfd *abfd)
5939{
5940 elf_symbol_type *newsym;
5941 bfd_size_type amt = sizeof (elf_symbol_type);
5942
5943 newsym = bfd_zalloc (abfd, amt);
5944 if (!newsym)
5945 return NULL;
5946 else
5947 {
5948 newsym->symbol.the_bfd = abfd;
5949 return &newsym->symbol;
5950 }
5951}
5952
5953void
5954_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
5955 asymbol *symbol,
5956 symbol_info *ret)
5957{
5958 bfd_symbol_info (symbol, ret);
5959}
5960
5961/* Return whether a symbol name implies a local symbol. Most targets
5962 use this function for the is_local_label_name entry point, but some
5963 override it. */
5964
5965bfd_boolean
5966_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
5967 const char *name)
5968{
5969 /* Normal local symbols start with ``.L''. */
5970 if (name[0] == '.' && name[1] == 'L')
5971 return TRUE;
5972
5973 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
5974 DWARF debugging symbols starting with ``..''. */
5975 if (name[0] == '.' && name[1] == '.')
5976 return TRUE;
5977
5978 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
5979 emitting DWARF debugging output. I suspect this is actually a
5980 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
5981 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
5982 underscore to be emitted on some ELF targets). For ease of use,
5983 we treat such symbols as local. */
5984 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
5985 return TRUE;
5986
5987 return FALSE;
5988}
5989
5990alent *
5991_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
5992 asymbol *symbol ATTRIBUTE_UNUSED)
5993{
5994 abort ();
5995 return NULL;
5996}
5997
5998bfd_boolean
5999_bfd_elf_set_arch_mach (bfd *abfd,
6000 enum bfd_architecture arch,
6001 unsigned long machine)
6002{
6003 /* If this isn't the right architecture for this backend, and this
6004 isn't the generic backend, fail. */
6005 if (arch != get_elf_backend_data (abfd)->arch
6006 && arch != bfd_arch_unknown
6007 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6008 return FALSE;
6009
6010 return bfd_default_set_arch_mach (abfd, arch, machine);
6011}
6012
6013/* Find the function to a particular section and offset,
6014 for error reporting. */
6015
6016static bfd_boolean
6017elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6018 asection *section,
6019 asymbol **symbols,
6020 bfd_vma offset,
6021 const char **filename_ptr,
6022 const char **functionname_ptr)
6023{
6024 const char *filename;
6025 asymbol *func;
6026 bfd_vma low_func;
6027 asymbol **p;
6028
6029 filename = NULL;
6030 func = NULL;
6031 low_func = 0;
6032
6033 for (p = symbols; *p != NULL; p++)
6034 {
6035 elf_symbol_type *q;
6036
6037 q = (elf_symbol_type *) *p;
6038
6039 if (bfd_get_section (&q->symbol) != section)
6040 continue;
6041
6042 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6043 {
6044 default:
6045 break;
6046 case STT_FILE:
6047 filename = bfd_asymbol_name (&q->symbol);
6048 break;
6049 case STT_NOTYPE:
6050 case STT_FUNC:
6051 if (q->symbol.section == section
6052 && q->symbol.value >= low_func
6053 && q->symbol.value <= offset)
6054 {
6055 func = (asymbol *) q;
6056 low_func = q->symbol.value;
6057 }
6058 break;
6059 }
6060 }
6061
6062 if (func == NULL)
6063 return FALSE;
6064
6065 if (filename_ptr)
6066 *filename_ptr = filename;
6067 if (functionname_ptr)
6068 *functionname_ptr = bfd_asymbol_name (func);
6069
6070 return TRUE;
6071}
6072
6073/* Find the nearest line to a particular section and offset,
6074 for error reporting. */
6075
6076bfd_boolean
6077_bfd_elf_find_nearest_line (bfd *abfd,
6078 asection *section,
6079 asymbol **symbols,
6080 bfd_vma offset,
6081 const char **filename_ptr,
6082 const char **functionname_ptr,
6083 unsigned int *line_ptr)
6084{
6085 bfd_boolean found;
6086
6087 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6088 filename_ptr, functionname_ptr,
6089 line_ptr))
6090 {
6091 if (!*functionname_ptr)
6092 elf_find_function (abfd, section, symbols, offset,
6093 *filename_ptr ? NULL : filename_ptr,
6094 functionname_ptr);
6095
6096 return TRUE;
6097 }
6098
6099 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6100 filename_ptr, functionname_ptr,
6101 line_ptr, 0,
6102 &elf_tdata (abfd)->dwarf2_find_line_info))
6103 {
6104 if (!*functionname_ptr)
6105 elf_find_function (abfd, section, symbols, offset,
6106 *filename_ptr ? NULL : filename_ptr,
6107 functionname_ptr);
6108
6109 return TRUE;
6110 }
6111
6112 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6113 &found, filename_ptr,
6114 functionname_ptr, line_ptr,
6115 &elf_tdata (abfd)->line_info))
6116 return FALSE;
6117 if (found && (*functionname_ptr || *line_ptr))
6118 return TRUE;
6119
6120 if (symbols == NULL)
6121 return FALSE;
6122
6123 if (! elf_find_function (abfd, section, symbols, offset,
6124 filename_ptr, functionname_ptr))
6125 return FALSE;
6126
6127 *line_ptr = 0;
6128 return TRUE;
6129}
6130
6131int
6132_bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6133{
6134 int ret;
6135
6136 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6137 if (! reloc)
6138 ret += get_program_header_size (abfd);
6139 return ret;
6140}
6141
6142bfd_boolean
6143_bfd_elf_set_section_contents (bfd *abfd,
6144 sec_ptr section,
6145 const void *location,
6146 file_ptr offset,
6147 bfd_size_type count)
6148{
6149 Elf_Internal_Shdr *hdr;
6150 bfd_signed_vma pos;
6151
6152 if (! abfd->output_has_begun
6153 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6154 return FALSE;
6155
6156 hdr = &elf_section_data (section)->this_hdr;
6157 pos = hdr->sh_offset + offset;
6158 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6159 || bfd_bwrite (location, count, abfd) != count)
6160 return FALSE;
6161
6162 return TRUE;
6163}
6164
6165void
6166_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6167 arelent *cache_ptr ATTRIBUTE_UNUSED,
6168 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6169{
6170 abort ();
6171}
6172
6173/* Try to convert a non-ELF reloc into an ELF one. */
6174
6175bfd_boolean
6176_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6177{
6178 /* Check whether we really have an ELF howto. */
6179
6180 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6181 {
6182 bfd_reloc_code_real_type code;
6183 reloc_howto_type *howto;
6184
6185 /* Alien reloc: Try to determine its type to replace it with an
6186 equivalent ELF reloc. */
6187
6188 if (areloc->howto->pc_relative)
6189 {
6190 switch (areloc->howto->bitsize)
6191 {
6192 case 8:
6193 code = BFD_RELOC_8_PCREL;
6194 break;
6195 case 12:
6196 code = BFD_RELOC_12_PCREL;
6197 break;
6198 case 16:
6199 code = BFD_RELOC_16_PCREL;
6200 break;
6201 case 24:
6202 code = BFD_RELOC_24_PCREL;
6203 break;
6204 case 32:
6205 code = BFD_RELOC_32_PCREL;
6206 break;
6207 case 64:
6208 code = BFD_RELOC_64_PCREL;
6209 break;
6210 default:
6211 goto fail;
6212 }
6213
6214 howto = bfd_reloc_type_lookup (abfd, code);
6215
6216 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6217 {
6218 if (howto->pcrel_offset)
6219 areloc->addend += areloc->address;
6220 else
6221 areloc->addend -= areloc->address; /* addend is unsigned!! */
6222 }
6223 }
6224 else
6225 {
6226 switch (areloc->howto->bitsize)
6227 {
6228 case 8:
6229 code = BFD_RELOC_8;
6230 break;
6231 case 14:
6232 code = BFD_RELOC_14;
6233 break;
6234 case 16:
6235 code = BFD_RELOC_16;
6236 break;
6237 case 26:
6238 code = BFD_RELOC_26;
6239 break;
6240 case 32:
6241 code = BFD_RELOC_32;
6242 break;
6243 case 64:
6244 code = BFD_RELOC_64;
6245 break;
6246 default:
6247 goto fail;
6248 }
6249
6250 howto = bfd_reloc_type_lookup (abfd, code);
6251 }
6252
6253 if (howto)
6254 areloc->howto = howto;
6255 else
6256 goto fail;
6257 }
6258
6259 return TRUE;
6260
6261 fail:
6262 (*_bfd_error_handler)
6263 (_("%s: unsupported relocation type %s"),
6264 bfd_archive_filename (abfd), areloc->howto->name);
6265 bfd_set_error (bfd_error_bad_value);
6266 return FALSE;
6267}
6268
6269bfd_boolean
6270_bfd_elf_close_and_cleanup (bfd *abfd)
6271{
6272 if (bfd_get_format (abfd) == bfd_object)
6273 {
6274 if (elf_shstrtab (abfd) != NULL)
6275 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6276 }
6277
6278 return _bfd_generic_close_and_cleanup (abfd);
6279}
6280
6281/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6282 in the relocation's offset. Thus we cannot allow any sort of sanity
6283 range-checking to interfere. There is nothing else to do in processing
6284 this reloc. */
6285
6286bfd_reloc_status_type
6287_bfd_elf_rel_vtable_reloc_fn
6288 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6289 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6290 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6291 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6292{
6293 return bfd_reloc_ok;
6294}
6295\f
6296/* Elf core file support. Much of this only works on native
6297 toolchains, since we rely on knowing the
6298 machine-dependent procfs structure in order to pick
6299 out details about the corefile. */
6300
6301#ifdef HAVE_SYS_PROCFS_H
6302# include <sys/procfs.h>
6303#endif
6304
6305/* FIXME: this is kinda wrong, but it's what gdb wants. */
6306
6307static int
6308elfcore_make_pid (bfd *abfd)
6309{
6310 return ((elf_tdata (abfd)->core_lwpid << 16)
6311 + (elf_tdata (abfd)->core_pid));
6312}
6313
6314/* If there isn't a section called NAME, make one, using
6315 data from SECT. Note, this function will generate a
6316 reference to NAME, so you shouldn't deallocate or
6317 overwrite it. */
6318
6319static bfd_boolean
6320elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6321{
6322 asection *sect2;
6323
6324 if (bfd_get_section_by_name (abfd, name) != NULL)
6325 return TRUE;
6326
6327 sect2 = bfd_make_section (abfd, name);
6328 if (sect2 == NULL)
6329 return FALSE;
6330
6331 sect2->_raw_size = sect->_raw_size;
6332 sect2->filepos = sect->filepos;
6333 sect2->flags = sect->flags;
6334 sect2->alignment_power = sect->alignment_power;
6335 return TRUE;
6336}
6337
6338/* Create a pseudosection containing SIZE bytes at FILEPOS. This
6339 actually creates up to two pseudosections:
6340 - For the single-threaded case, a section named NAME, unless
6341 such a section already exists.
6342 - For the multi-threaded case, a section named "NAME/PID", where
6343 PID is elfcore_make_pid (abfd).
6344 Both pseudosections have identical contents. */
6345bfd_boolean
6346_bfd_elfcore_make_pseudosection (bfd *abfd,
6347 char *name,
6348 size_t size,
6349 ufile_ptr filepos)
6350{
6351 char buf[100];
6352 char *threaded_name;
6353 size_t len;
6354 asection *sect;
6355
6356 /* Build the section name. */
6357
6358 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6359 len = strlen (buf) + 1;
6360 threaded_name = bfd_alloc (abfd, len);
6361 if (threaded_name == NULL)
6362 return FALSE;
6363 memcpy (threaded_name, buf, len);
6364
6365 sect = bfd_make_section_anyway (abfd, threaded_name);
6366 if (sect == NULL)
6367 return FALSE;
6368 sect->_raw_size = size;
6369 sect->filepos = filepos;
6370 sect->flags = SEC_HAS_CONTENTS;
6371 sect->alignment_power = 2;
6372
6373 return elfcore_maybe_make_sect (abfd, name, sect);
6374}
6375
6376/* prstatus_t exists on:
6377 solaris 2.5+
6378 linux 2.[01] + glibc
6379 unixware 4.2
6380*/
6381
6382#if defined (HAVE_PRSTATUS_T)
6383
6384static bfd_boolean
6385elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6386{
6387 size_t raw_size;
6388 int offset;
6389
6390 if (note->descsz == sizeof (prstatus_t))
6391 {
6392 prstatus_t prstat;
6393
6394 raw_size = sizeof (prstat.pr_reg);
6395 offset = offsetof (prstatus_t, pr_reg);
6396 memcpy (&prstat, note->descdata, sizeof (prstat));
6397
6398 /* Do not overwrite the core signal if it
6399 has already been set by another thread. */
6400 if (elf_tdata (abfd)->core_signal == 0)
6401 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6402 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6403
6404 /* pr_who exists on:
6405 solaris 2.5+
6406 unixware 4.2
6407 pr_who doesn't exist on:
6408 linux 2.[01]
6409 */
6410#if defined (HAVE_PRSTATUS_T_PR_WHO)
6411 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6412#endif
6413 }
6414#if defined (HAVE_PRSTATUS32_T)
6415 else if (note->descsz == sizeof (prstatus32_t))
6416 {
6417 /* 64-bit host, 32-bit corefile */
6418 prstatus32_t prstat;
6419
6420 raw_size = sizeof (prstat.pr_reg);
6421 offset = offsetof (prstatus32_t, pr_reg);
6422 memcpy (&prstat, note->descdata, sizeof (prstat));
6423
6424 /* Do not overwrite the core signal if it
6425 has already been set by another thread. */
6426 if (elf_tdata (abfd)->core_signal == 0)
6427 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6428 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6429
6430 /* pr_who exists on:
6431 solaris 2.5+
6432 unixware 4.2
6433 pr_who doesn't exist on:
6434 linux 2.[01]
6435 */
6436#if defined (HAVE_PRSTATUS32_T_PR_WHO)
6437 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6438#endif
6439 }
6440#endif /* HAVE_PRSTATUS32_T */
6441 else
6442 {
6443 /* Fail - we don't know how to handle any other
6444 note size (ie. data object type). */
6445 return TRUE;
6446 }
6447
6448 /* Make a ".reg/999" section and a ".reg" section. */
6449 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6450 raw_size, note->descpos + offset);
6451}
6452#endif /* defined (HAVE_PRSTATUS_T) */
6453
6454/* Create a pseudosection containing the exact contents of NOTE. */
6455static bfd_boolean
6456elfcore_make_note_pseudosection (bfd *abfd,
6457 char *name,
6458 Elf_Internal_Note *note)
6459{
6460 return _bfd_elfcore_make_pseudosection (abfd, name,
6461 note->descsz, note->descpos);
6462}
6463
6464/* There isn't a consistent prfpregset_t across platforms,
6465 but it doesn't matter, because we don't have to pick this
6466 data structure apart. */
6467
6468static bfd_boolean
6469elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6470{
6471 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6472}
6473
6474/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6475 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6476 literally. */
6477
6478static bfd_boolean
6479elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6480{
6481 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6482}
6483
6484#if defined (HAVE_PRPSINFO_T)
6485typedef prpsinfo_t elfcore_psinfo_t;
6486#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6487typedef prpsinfo32_t elfcore_psinfo32_t;
6488#endif
6489#endif
6490
6491#if defined (HAVE_PSINFO_T)
6492typedef psinfo_t elfcore_psinfo_t;
6493#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6494typedef psinfo32_t elfcore_psinfo32_t;
6495#endif
6496#endif
6497
6498/* return a malloc'ed copy of a string at START which is at
6499 most MAX bytes long, possibly without a terminating '\0'.
6500 the copy will always have a terminating '\0'. */
6501
6502char *
6503_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6504{
6505 char *dups;
6506 char *end = memchr (start, '\0', max);
6507 size_t len;
6508
6509 if (end == NULL)
6510 len = max;
6511 else
6512 len = end - start;
6513
6514 dups = bfd_alloc (abfd, len + 1);
6515 if (dups == NULL)
6516 return NULL;
6517
6518 memcpy (dups, start, len);
6519 dups[len] = '\0';
6520
6521 return dups;
6522}
6523
6524#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6525static bfd_boolean
6526elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6527{
6528 if (note->descsz == sizeof (elfcore_psinfo_t))
6529 {
6530 elfcore_psinfo_t psinfo;
6531
6532 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6533
6534 elf_tdata (abfd)->core_program
6535 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6536 sizeof (psinfo.pr_fname));
6537
6538 elf_tdata (abfd)->core_command
6539 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6540 sizeof (psinfo.pr_psargs));
6541 }
6542#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6543 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6544 {
6545 /* 64-bit host, 32-bit corefile */
6546 elfcore_psinfo32_t psinfo;
6547
6548 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6549
6550 elf_tdata (abfd)->core_program
6551 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6552 sizeof (psinfo.pr_fname));
6553
6554 elf_tdata (abfd)->core_command
6555 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6556 sizeof (psinfo.pr_psargs));
6557 }
6558#endif
6559
6560 else
6561 {
6562 /* Fail - we don't know how to handle any other
6563 note size (ie. data object type). */
6564 return TRUE;
6565 }
6566
6567 /* Note that for some reason, a spurious space is tacked
6568 onto the end of the args in some (at least one anyway)
6569 implementations, so strip it off if it exists. */
6570
6571 {
6572 char *command = elf_tdata (abfd)->core_command;
6573 int n = strlen (command);
6574
6575 if (0 < n && command[n - 1] == ' ')
6576 command[n - 1] = '\0';
6577 }
6578
6579 return TRUE;
6580}
6581#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6582
6583#if defined (HAVE_PSTATUS_T)
6584static bfd_boolean
6585elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6586{
6587 if (note->descsz == sizeof (pstatus_t)
6588#if defined (HAVE_PXSTATUS_T)
6589 || note->descsz == sizeof (pxstatus_t)
6590#endif
6591 )
6592 {
6593 pstatus_t pstat;
6594
6595 memcpy (&pstat, note->descdata, sizeof (pstat));
6596
6597 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6598 }
6599#if defined (HAVE_PSTATUS32_T)
6600 else if (note->descsz == sizeof (pstatus32_t))
6601 {
6602 /* 64-bit host, 32-bit corefile */
6603 pstatus32_t pstat;
6604
6605 memcpy (&pstat, note->descdata, sizeof (pstat));
6606
6607 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6608 }
6609#endif
6610 /* Could grab some more details from the "representative"
6611 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6612 NT_LWPSTATUS note, presumably. */
6613
6614 return TRUE;
6615}
6616#endif /* defined (HAVE_PSTATUS_T) */
6617
6618#if defined (HAVE_LWPSTATUS_T)
6619static bfd_boolean
6620elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6621{
6622 lwpstatus_t lwpstat;
6623 char buf[100];
6624 char *name;
6625 size_t len;
6626 asection *sect;
6627
6628 if (note->descsz != sizeof (lwpstat)
6629#if defined (HAVE_LWPXSTATUS_T)
6630 && note->descsz != sizeof (lwpxstatus_t)
6631#endif
6632 )
6633 return TRUE;
6634
6635 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6636
6637 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6638 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6639
6640 /* Make a ".reg/999" section. */
6641
6642 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6643 len = strlen (buf) + 1;
6644 name = bfd_alloc (abfd, len);
6645 if (name == NULL)
6646 return FALSE;
6647 memcpy (name, buf, len);
6648
6649 sect = bfd_make_section_anyway (abfd, name);
6650 if (sect == NULL)
6651 return FALSE;
6652
6653#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6654 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6655 sect->filepos = note->descpos
6656 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6657#endif
6658
6659#if defined (HAVE_LWPSTATUS_T_PR_REG)
6660 sect->_raw_size = sizeof (lwpstat.pr_reg);
6661 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6662#endif
6663
6664 sect->flags = SEC_HAS_CONTENTS;
6665 sect->alignment_power = 2;
6666
6667 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6668 return FALSE;
6669
6670 /* Make a ".reg2/999" section */
6671
6672 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6673 len = strlen (buf) + 1;
6674 name = bfd_alloc (abfd, len);
6675 if (name == NULL)
6676 return FALSE;
6677 memcpy (name, buf, len);
6678
6679 sect = bfd_make_section_anyway (abfd, name);
6680 if (sect == NULL)
6681 return FALSE;
6682
6683#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6684 sect->_raw_size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6685 sect->filepos = note->descpos
6686 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6687#endif
6688
6689#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6690 sect->_raw_size = sizeof (lwpstat.pr_fpreg);
6691 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6692#endif
6693
6694 sect->flags = SEC_HAS_CONTENTS;
6695 sect->alignment_power = 2;
6696
6697 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6698}
6699#endif /* defined (HAVE_LWPSTATUS_T) */
6700
6701#if defined (HAVE_WIN32_PSTATUS_T)
6702static bfd_boolean
6703elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6704{
6705 char buf[30];
6706 char *name;
6707 size_t len;
6708 asection *sect;
6709 win32_pstatus_t pstatus;
6710
6711 if (note->descsz < sizeof (pstatus))
6712 return TRUE;
6713
6714 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6715
6716 switch (pstatus.data_type)
6717 {
6718 case NOTE_INFO_PROCESS:
6719 /* FIXME: need to add ->core_command. */
6720 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6721 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6722 break;
6723
6724 case NOTE_INFO_THREAD:
6725 /* Make a ".reg/999" section. */
6726 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6727
6728 len = strlen (buf) + 1;
6729 name = bfd_alloc (abfd, len);
6730 if (name == NULL)
6731 return FALSE;
6732
6733 memcpy (name, buf, len);
6734
6735 sect = bfd_make_section_anyway (abfd, name);
6736 if (sect == NULL)
6737 return FALSE;
6738
6739 sect->_raw_size = sizeof (pstatus.data.thread_info.thread_context);
6740 sect->filepos = (note->descpos
6741 + offsetof (struct win32_pstatus,
6742 data.thread_info.thread_context));
6743 sect->flags = SEC_HAS_CONTENTS;
6744 sect->alignment_power = 2;
6745
6746 if (pstatus.data.thread_info.is_active_thread)
6747 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
6748 return FALSE;
6749 break;
6750
6751 case NOTE_INFO_MODULE:
6752 /* Make a ".module/xxxxxxxx" section. */
6753 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
6754
6755 len = strlen (buf) + 1;
6756 name = bfd_alloc (abfd, len);
6757 if (name == NULL)
6758 return FALSE;
6759
6760 memcpy (name, buf, len);
6761
6762 sect = bfd_make_section_anyway (abfd, name);
6763
6764 if (sect == NULL)
6765 return FALSE;
6766
6767 sect->_raw_size = note->descsz;
6768 sect->filepos = note->descpos;
6769 sect->flags = SEC_HAS_CONTENTS;
6770 sect->alignment_power = 2;
6771 break;
6772
6773 default:
6774 return TRUE;
6775 }
6776
6777 return TRUE;
6778}
6779#endif /* HAVE_WIN32_PSTATUS_T */
6780
6781static bfd_boolean
6782elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
6783{
6784 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6785
6786 switch (note->type)
6787 {
6788 default:
6789 return TRUE;
6790
6791 case NT_PRSTATUS:
6792 if (bed->elf_backend_grok_prstatus)
6793 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
6794 return TRUE;
6795#if defined (HAVE_PRSTATUS_T)
6796 return elfcore_grok_prstatus (abfd, note);
6797#else
6798 return TRUE;
6799#endif
6800
6801#if defined (HAVE_PSTATUS_T)
6802 case NT_PSTATUS:
6803 return elfcore_grok_pstatus (abfd, note);
6804#endif
6805
6806#if defined (HAVE_LWPSTATUS_T)
6807 case NT_LWPSTATUS:
6808 return elfcore_grok_lwpstatus (abfd, note);
6809#endif
6810
6811 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
6812 return elfcore_grok_prfpreg (abfd, note);
6813
6814#if defined (HAVE_WIN32_PSTATUS_T)
6815 case NT_WIN32PSTATUS:
6816 return elfcore_grok_win32pstatus (abfd, note);
6817#endif
6818
6819 case NT_PRXFPREG: /* Linux SSE extension */
6820 if (note->namesz == 6
6821 && strcmp (note->namedata, "LINUX") == 0)
6822 return elfcore_grok_prxfpreg (abfd, note);
6823 else
6824 return TRUE;
6825
6826 case NT_PRPSINFO:
6827 case NT_PSINFO:
6828 if (bed->elf_backend_grok_psinfo)
6829 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
6830 return TRUE;
6831#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6832 return elfcore_grok_psinfo (abfd, note);
6833#else
6834 return TRUE;
6835#endif
6836
6837 case NT_AUXV:
6838 {
6839 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
6840
6841 if (sect == NULL)
6842 return FALSE;
6843 sect->_raw_size = note->descsz;
6844 sect->filepos = note->descpos;
6845 sect->flags = SEC_HAS_CONTENTS;
6846 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
6847
6848 return TRUE;
6849 }
6850 }
6851}
6852
6853static bfd_boolean
6854elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
6855{
6856 char *cp;
6857
6858 cp = strchr (note->namedata, '@');
6859 if (cp != NULL)
6860 {
6861 *lwpidp = atoi(cp + 1);
6862 return TRUE;
6863 }
6864 return FALSE;
6865}
6866
6867static bfd_boolean
6868elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
6869{
6870
6871 /* Signal number at offset 0x08. */
6872 elf_tdata (abfd)->core_signal
6873 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
6874
6875 /* Process ID at offset 0x50. */
6876 elf_tdata (abfd)->core_pid
6877 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
6878
6879 /* Command name at 0x7c (max 32 bytes, including nul). */
6880 elf_tdata (abfd)->core_command
6881 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
6882
6883 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
6884 note);
6885}
6886
6887static bfd_boolean
6888elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
6889{
6890 int lwp;
6891
6892 if (elfcore_netbsd_get_lwpid (note, &lwp))
6893 elf_tdata (abfd)->core_lwpid = lwp;
6894
6895 if (note->type == NT_NETBSDCORE_PROCINFO)
6896 {
6897 /* NetBSD-specific core "procinfo". Note that we expect to
6898 find this note before any of the others, which is fine,
6899 since the kernel writes this note out first when it
6900 creates a core file. */
6901
6902 return elfcore_grok_netbsd_procinfo (abfd, note);
6903 }
6904
6905 /* As of Jan 2002 there are no other machine-independent notes
6906 defined for NetBSD core files. If the note type is less
6907 than the start of the machine-dependent note types, we don't
6908 understand it. */
6909
6910 if (note->type < NT_NETBSDCORE_FIRSTMACH)
6911 return TRUE;
6912
6913
6914 switch (bfd_get_arch (abfd))
6915 {
6916 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
6917 PT_GETFPREGS == mach+2. */
6918
6919 case bfd_arch_alpha:
6920 case bfd_arch_sparc:
6921 switch (note->type)
6922 {
6923 case NT_NETBSDCORE_FIRSTMACH+0:
6924 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6925
6926 case NT_NETBSDCORE_FIRSTMACH+2:
6927 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6928
6929 default:
6930 return TRUE;
6931 }
6932
6933 /* On all other arch's, PT_GETREGS == mach+1 and
6934 PT_GETFPREGS == mach+3. */
6935
6936 default:
6937 switch (note->type)
6938 {
6939 case NT_NETBSDCORE_FIRSTMACH+1:
6940 return elfcore_make_note_pseudosection (abfd, ".reg", note);
6941
6942 case NT_NETBSDCORE_FIRSTMACH+3:
6943 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6944
6945 default:
6946 return TRUE;
6947 }
6948 }
6949 /* NOTREACHED */
6950}
6951
6952static bfd_boolean
6953elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
6954{
6955 void *ddata = note->descdata;
6956 char buf[100];
6957 char *name;
6958 asection *sect;
6959 short sig;
6960 unsigned flags;
6961
6962 /* nto_procfs_status 'pid' field is at offset 0. */
6963 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
6964
6965 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
6966 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
6967
6968 /* nto_procfs_status 'flags' field is at offset 8. */
6969 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
6970
6971 /* nto_procfs_status 'what' field is at offset 14. */
6972 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
6973 {
6974 elf_tdata (abfd)->core_signal = sig;
6975 elf_tdata (abfd)->core_lwpid = *tid;
6976 }
6977
6978 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
6979 do not come from signals so we make sure we set the current
6980 thread just in case. */
6981 if (flags & 0x00000080)
6982 elf_tdata (abfd)->core_lwpid = *tid;
6983
6984 /* Make a ".qnx_core_status/%d" section. */
6985 sprintf (buf, ".qnx_core_status/%d", *tid);
6986
6987 name = bfd_alloc (abfd, strlen (buf) + 1);
6988 if (name == NULL)
6989 return FALSE;
6990 strcpy (name, buf);
6991
6992 sect = bfd_make_section_anyway (abfd, name);
6993 if (sect == NULL)
6994 return FALSE;
6995
6996 sect->_raw_size = note->descsz;
6997 sect->filepos = note->descpos;
6998 sect->flags = SEC_HAS_CONTENTS;
6999 sect->alignment_power = 2;
7000
7001 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7002}
7003
7004static bfd_boolean
7005elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7006{
7007 char buf[100];
7008 char *name;
7009 asection *sect;
7010
7011 /* Make a ".reg/%d" section. */
7012 sprintf (buf, ".reg/%d", tid);
7013
7014 name = bfd_alloc (abfd, strlen (buf) + 1);
7015 if (name == NULL)
7016 return FALSE;
7017 strcpy (name, buf);
7018
7019 sect = bfd_make_section_anyway (abfd, name);
7020 if (sect == NULL)
7021 return FALSE;
7022
7023 sect->_raw_size = note->descsz;
7024 sect->filepos = note->descpos;
7025 sect->flags = SEC_HAS_CONTENTS;
7026 sect->alignment_power = 2;
7027
7028 /* This is the current thread. */
7029 if (elf_tdata (abfd)->core_lwpid == tid)
7030 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7031
7032 return TRUE;
7033}
7034
7035#define BFD_QNT_CORE_INFO 7
7036#define BFD_QNT_CORE_STATUS 8
7037#define BFD_QNT_CORE_GREG 9
7038#define BFD_QNT_CORE_FPREG 10
7039
7040static bfd_boolean
7041elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7042{
7043 /* Every GREG section has a STATUS section before it. Store the
7044 tid from the previous call to pass down to the next gregs
7045 function. */
7046 static pid_t tid = 1;
7047
7048 switch (note->type)
7049 {
7050 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7051 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7052 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7053 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7054 default: return TRUE;
7055 }
7056}
7057
7058/* Function: elfcore_write_note
7059
7060 Inputs:
7061 buffer to hold note
7062 name of note
7063 type of note
7064 data for note
7065 size of data for note
7066
7067 Return:
7068 End of buffer containing note. */
7069
7070char *
7071elfcore_write_note (bfd *abfd,
7072 char *buf,
7073 int *bufsiz,
7074 const char *name,
7075 int type,
7076 const void *input,
7077 int size)
7078{
7079 Elf_External_Note *xnp;
7080 size_t namesz;
7081 size_t pad;
7082 size_t newspace;
7083 char *p, *dest;
7084
7085 namesz = 0;
7086 pad = 0;
7087 if (name != NULL)
7088 {
7089 const struct elf_backend_data *bed;
7090
7091 namesz = strlen (name) + 1;
7092 bed = get_elf_backend_data (abfd);
7093 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7094 }
7095
7096 newspace = 12 + namesz + pad + size;
7097
7098 p = realloc (buf, *bufsiz + newspace);
7099 dest = p + *bufsiz;
7100 *bufsiz += newspace;
7101 xnp = (Elf_External_Note *) dest;
7102 H_PUT_32 (abfd, namesz, xnp->namesz);
7103 H_PUT_32 (abfd, size, xnp->descsz);
7104 H_PUT_32 (abfd, type, xnp->type);
7105 dest = xnp->name;
7106 if (name != NULL)
7107 {
7108 memcpy (dest, name, namesz);
7109 dest += namesz;
7110 while (pad != 0)
7111 {
7112 *dest++ = '\0';
7113 --pad;
7114 }
7115 }
7116 memcpy (dest, input, size);
7117 return p;
7118}
7119
7120#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7121char *
7122elfcore_write_prpsinfo (bfd *abfd,
7123 char *buf,
7124 int *bufsiz,
7125 const char *fname,
7126 const char *psargs)
7127{
7128 int note_type;
7129 char *note_name = "CORE";
7130
7131#if defined (HAVE_PSINFO_T)
7132 psinfo_t data;
7133 note_type = NT_PSINFO;
7134#else
7135 prpsinfo_t data;
7136 note_type = NT_PRPSINFO;
7137#endif
7138
7139 memset (&data, 0, sizeof (data));
7140 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7141 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7142 return elfcore_write_note (abfd, buf, bufsiz,
7143 note_name, note_type, &data, sizeof (data));
7144}
7145#endif /* PSINFO_T or PRPSINFO_T */
7146
7147#if defined (HAVE_PRSTATUS_T)
7148char *
7149elfcore_write_prstatus (bfd *abfd,
7150 char *buf,
7151 int *bufsiz,
7152 long pid,
7153 int cursig,
7154 const void *gregs)
7155{
7156 prstatus_t prstat;
7157 char *note_name = "CORE";
7158
7159 memset (&prstat, 0, sizeof (prstat));
7160 prstat.pr_pid = pid;
7161 prstat.pr_cursig = cursig;
7162 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7163 return elfcore_write_note (abfd, buf, bufsiz,
7164 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7165}
7166#endif /* HAVE_PRSTATUS_T */
7167
7168#if defined (HAVE_LWPSTATUS_T)
7169char *
7170elfcore_write_lwpstatus (bfd *abfd,
7171 char *buf,
7172 int *bufsiz,
7173 long pid,
7174 int cursig,
7175 const void *gregs)
7176{
7177 lwpstatus_t lwpstat;
7178 char *note_name = "CORE";
7179
7180 memset (&lwpstat, 0, sizeof (lwpstat));
7181 lwpstat.pr_lwpid = pid >> 16;
7182 lwpstat.pr_cursig = cursig;
7183#if defined (HAVE_LWPSTATUS_T_PR_REG)
7184 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7185#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7186#if !defined(gregs)
7187 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7188 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7189#else
7190 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7191 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7192#endif
7193#endif
7194 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7195 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7196}
7197#endif /* HAVE_LWPSTATUS_T */
7198
7199#if defined (HAVE_PSTATUS_T)
7200char *
7201elfcore_write_pstatus (bfd *abfd,
7202 char *buf,
7203 int *bufsiz,
7204 long pid,
7205 int cursig,
7206 const void *gregs)
7207{
7208 pstatus_t pstat;
7209 char *note_name = "CORE";
7210
7211 memset (&pstat, 0, sizeof (pstat));
7212 pstat.pr_pid = pid & 0xffff;
7213 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7214 NT_PSTATUS, &pstat, sizeof (pstat));
7215 return buf;
7216}
7217#endif /* HAVE_PSTATUS_T */
7218
7219char *
7220elfcore_write_prfpreg (bfd *abfd,
7221 char *buf,
7222 int *bufsiz,
7223 const void *fpregs,
7224 int size)
7225{
7226 char *note_name = "CORE";
7227 return elfcore_write_note (abfd, buf, bufsiz,
7228 note_name, NT_FPREGSET, fpregs, size);
7229}
7230
7231char *
7232elfcore_write_prxfpreg (bfd *abfd,
7233 char *buf,
7234 int *bufsiz,
7235 const void *xfpregs,
7236 int size)
7237{
7238 char *note_name = "LINUX";
7239 return elfcore_write_note (abfd, buf, bufsiz,
7240 note_name, NT_PRXFPREG, xfpregs, size);
7241}
7242
7243static bfd_boolean
7244elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7245{
7246 char *buf;
7247 char *p;
7248
7249 if (size <= 0)
7250 return TRUE;
7251
7252 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7253 return FALSE;
7254
7255 buf = bfd_malloc (size);
7256 if (buf == NULL)
7257 return FALSE;
7258
7259 if (bfd_bread (buf, size, abfd) != size)
7260 {
7261 error:
7262 free (buf);
7263 return FALSE;
7264 }
7265
7266 p = buf;
7267 while (p < buf + size)
7268 {
7269 /* FIXME: bad alignment assumption. */
7270 Elf_External_Note *xnp = (Elf_External_Note *) p;
7271 Elf_Internal_Note in;
7272
7273 in.type = H_GET_32 (abfd, xnp->type);
7274
7275 in.namesz = H_GET_32 (abfd, xnp->namesz);
7276 in.namedata = xnp->name;
7277
7278 in.descsz = H_GET_32 (abfd, xnp->descsz);
7279 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7280 in.descpos = offset + (in.descdata - buf);
7281
7282 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7283 {
7284 if (! elfcore_grok_netbsd_note (abfd, &in))
7285 goto error;
7286 }
7287 else if (strncmp (in.namedata, "QNX", 3) == 0)
7288 {
7289 if (! elfcore_grok_nto_note (abfd, &in))
7290 goto error;
7291 }
7292 else
7293 {
7294 if (! elfcore_grok_note (abfd, &in))
7295 goto error;
7296 }
7297
7298 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7299 }
7300
7301 free (buf);
7302 return TRUE;
7303}
7304\f
7305/* Providing external access to the ELF program header table. */
7306
7307/* Return an upper bound on the number of bytes required to store a
7308 copy of ABFD's program header table entries. Return -1 if an error
7309 occurs; bfd_get_error will return an appropriate code. */
7310
7311long
7312bfd_get_elf_phdr_upper_bound (bfd *abfd)
7313{
7314 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7315 {
7316 bfd_set_error (bfd_error_wrong_format);
7317 return -1;
7318 }
7319
7320 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7321}
7322
7323/* Copy ABFD's program header table entries to *PHDRS. The entries
7324 will be stored as an array of Elf_Internal_Phdr structures, as
7325 defined in include/elf/internal.h. To find out how large the
7326 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7327
7328 Return the number of program header table entries read, or -1 if an
7329 error occurs; bfd_get_error will return an appropriate code. */
7330
7331int
7332bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7333{
7334 int num_phdrs;
7335
7336 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7337 {
7338 bfd_set_error (bfd_error_wrong_format);
7339 return -1;
7340 }
7341
7342 num_phdrs = elf_elfheader (abfd)->e_phnum;
7343 memcpy (phdrs, elf_tdata (abfd)->phdr,
7344 num_phdrs * sizeof (Elf_Internal_Phdr));
7345
7346 return num_phdrs;
7347}
7348
7349void
7350_bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7351{
7352#ifdef BFD64
7353 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7354
7355 i_ehdrp = elf_elfheader (abfd);
7356 if (i_ehdrp == NULL)
7357 sprintf_vma (buf, value);
7358 else
7359 {
7360 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7361 {
7362#if BFD_HOST_64BIT_LONG
7363 sprintf (buf, "%016lx", value);
7364#else
7365 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7366 _bfd_int64_low (value));
7367#endif
7368 }
7369 else
7370 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7371 }
7372#else
7373 sprintf_vma (buf, value);
7374#endif
7375}
7376
7377void
7378_bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7379{
7380#ifdef BFD64
7381 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7382
7383 i_ehdrp = elf_elfheader (abfd);
7384 if (i_ehdrp == NULL)
7385 fprintf_vma ((FILE *) stream, value);
7386 else
7387 {
7388 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7389 {
7390#if BFD_HOST_64BIT_LONG
7391 fprintf ((FILE *) stream, "%016lx", value);
7392#else
7393 fprintf ((FILE *) stream, "%08lx%08lx",
7394 _bfd_int64_high (value), _bfd_int64_low (value));
7395#endif
7396 }
7397 else
7398 fprintf ((FILE *) stream, "%08lx",
7399 (unsigned long) (value & 0xffffffff));
7400 }
7401#else
7402 fprintf_vma ((FILE *) stream, value);
7403#endif
7404}
7405
7406enum elf_reloc_type_class
7407_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7408{
7409 return reloc_class_normal;
7410}
7411
7412/* For RELA architectures, return the relocation value for a
7413 relocation against a local symbol. */
7414
7415bfd_vma
7416_bfd_elf_rela_local_sym (bfd *abfd,
7417 Elf_Internal_Sym *sym,
7418 asection **psec,
7419 Elf_Internal_Rela *rel)
7420{
7421 asection *sec = *psec;
7422 bfd_vma relocation;
7423
7424 relocation = (sec->output_section->vma
7425 + sec->output_offset
7426 + sym->st_value);
7427 if ((sec->flags & SEC_MERGE)
7428 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7429 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7430 {
7431 rel->r_addend =
7432 _bfd_merged_section_offset (abfd, psec,
7433 elf_section_data (sec)->sec_info,
7434 sym->st_value + rel->r_addend,
7435 0);
7436 sec = *psec;
7437 rel->r_addend -= relocation;
7438 rel->r_addend += sec->output_section->vma + sec->output_offset;
7439 }
7440 return relocation;
7441}
7442
7443bfd_vma
7444_bfd_elf_rel_local_sym (bfd *abfd,
7445 Elf_Internal_Sym *sym,
7446 asection **psec,
7447 bfd_vma addend)
7448{
7449 asection *sec = *psec;
7450
7451 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7452 return sym->st_value + addend;
7453
7454 return _bfd_merged_section_offset (abfd, psec,
7455 elf_section_data (sec)->sec_info,
7456 sym->st_value + addend, 0);
7457}
7458
7459bfd_vma
7460_bfd_elf_section_offset (bfd *abfd,
7461 struct bfd_link_info *info,
7462 asection *sec,
7463 bfd_vma offset)
7464{
7465 struct bfd_elf_section_data *sec_data;
7466
7467 sec_data = elf_section_data (sec);
7468 switch (sec->sec_info_type)
7469 {
7470 case ELF_INFO_TYPE_STABS:
7471 return _bfd_stab_section_offset (abfd,
7472 &elf_hash_table (info)->merge_info,
7473 sec, &sec_data->sec_info, offset);
7474 case ELF_INFO_TYPE_EH_FRAME:
7475 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7476 default:
7477 return offset;
7478 }
7479}
7480\f
7481/* Create a new BFD as if by bfd_openr. Rather than opening a file,
7482 reconstruct an ELF file by reading the segments out of remote memory
7483 based on the ELF file header at EHDR_VMA and the ELF program headers it
7484 points to. If not null, *LOADBASEP is filled in with the difference
7485 between the VMAs from which the segments were read, and the VMAs the
7486 file headers (and hence BFD's idea of each section's VMA) put them at.
7487
7488 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7489 remote memory at target address VMA into the local buffer at MYADDR; it
7490 should return zero on success or an `errno' code on failure. TEMPL must
7491 be a BFD for an ELF target with the word size and byte order found in
7492 the remote memory. */
7493
7494bfd *
7495bfd_elf_bfd_from_remote_memory
7496 (bfd *templ,
7497 bfd_vma ehdr_vma,
7498 bfd_vma *loadbasep,
7499 int (*target_read_memory) (bfd_vma, char *, int))
7500{
7501 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7502 (templ, ehdr_vma, loadbasep, target_read_memory);
7503}
This page took 0.047098 seconds and 4 git commands to generate.