* dwarf2read.c (signatured_type): Make "per_cu" member first.
[deliverable/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25/*
26SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37/* For sparc64-cross-sparc32. */
38#define _SYSCALL32
39#include "sysdep.h"
40#include "bfd.h"
41#include "bfdlink.h"
42#include "libbfd.h"
43#define ARCH_SIZE 0
44#include "elf-bfd.h"
45#include "libiberty.h"
46#include "safe-ctype.h"
47
48#ifdef CORE_HEADER
49#include CORE_HEADER
50#endif
51
52static int elf_sort_sections (const void *, const void *);
53static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54static bfd_boolean prep_headers (bfd *);
55static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60/* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64/* Swap in a Verdef structure. */
65
66void
67_bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70{
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78}
79
80/* Swap out a Verdef structure. */
81
82void
83_bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86{
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94}
95
96/* Swap in a Verdaux structure. */
97
98void
99_bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102{
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105}
106
107/* Swap out a Verdaux structure. */
108
109void
110_bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113{
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116}
117
118/* Swap in a Verneed structure. */
119
120void
121_bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124{
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130}
131
132/* Swap out a Verneed structure. */
133
134void
135_bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138{
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144}
145
146/* Swap in a Vernaux structure. */
147
148void
149_bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152{
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158}
159
160/* Swap out a Vernaux structure. */
161
162void
163_bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166{
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172}
173
174/* Swap in a Versym structure. */
175
176void
177_bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180{
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182}
183
184/* Swap out a Versym structure. */
185
186void
187_bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190{
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192}
193
194/* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197unsigned long
198bfd_elf_hash (const char *namearg)
199{
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217}
218
219/* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222unsigned long
223bfd_elf_gnu_hash (const char *namearg)
224{
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232}
233
234/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236bfd_boolean
237bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240{
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249}
250
251
252bfd_boolean
253bfd_elf_make_object (bfd *abfd)
254{
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258}
259
260bfd_boolean
261bfd_elf_mkcorefile (bfd *abfd)
262{
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265}
266
267static char *
268bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269{
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309}
310
311char *
312bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315{
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343}
344
345/* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353Elf_Internal_Sym *
354bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361{
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462}
463
464/* Look up a symbol name. */
465const char *
466bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470{
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490}
491
492/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499} Elf_Internal_Group;
500
501/* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504static const char *
505group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506{
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528}
529
530/* Set next_in_group list pointer, and group name for NEWSECT. */
531
532static bfd_boolean
533setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534{
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548#define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712}
713
714bfd_boolean
715_bfd_elf_setup_sections (bfd *abfd)
716{
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803}
804
805bfd_boolean
806bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807{
808 return elf_next_in_group (sec) != NULL;
809}
810
811/* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814bfd_boolean
815_bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819{
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082}
1083
1084const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088};
1089
1090/* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100bfd_reloc_status_type
1101bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108{
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119}
1120\f
1121/* Copy the program header and other data from one object module to
1122 another. */
1123
1124bfd_boolean
1125_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126{
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142}
1143
1144static const char *
1145get_segment_type (unsigned int p_type)
1146{
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164}
1165
1166/* Print out the program headers. */
1167
1168bfd_boolean
1169_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170{
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404}
1405
1406/* Display ELF-specific fields of a symbol. */
1407
1408void
1409bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413{
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526}
1527
1528/* Allocate an ELF string table--force the first byte to be zero. */
1529
1530struct bfd_strtab_hash *
1531_bfd_elf_stringtab_init (void)
1532{
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549}
1550\f
1551/* ELF .o/exec file reading */
1552
1553/* Create a new bfd section from an ELF section header. */
1554
1555bfd_boolean
1556bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557{
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 {
1650 if (hdr->sh_size != 0)
1651 return FALSE;
1652 /* Some assemblers erroneously set sh_info to one with a
1653 zero sh_size. ld sees this as a global symbol count
1654 of (unsigned) -1. Fix it here. */
1655 hdr->sh_info = 0;
1656 return TRUE;
1657 }
1658 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1659 elf_onesymtab (abfd) = shindex;
1660 elf_tdata (abfd)->symtab_hdr = *hdr;
1661 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1662 abfd->flags |= HAS_SYMS;
1663
1664 /* Sometimes a shared object will map in the symbol table. If
1665 SHF_ALLOC is set, and this is a shared object, then we also
1666 treat this section as a BFD section. We can not base the
1667 decision purely on SHF_ALLOC, because that flag is sometimes
1668 set in a relocatable object file, which would confuse the
1669 linker. */
1670 if ((hdr->sh_flags & SHF_ALLOC) != 0
1671 && (abfd->flags & DYNAMIC) != 0
1672 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1673 shindex))
1674 return FALSE;
1675
1676 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1677 can't read symbols without that section loaded as well. It
1678 is most likely specified by the next section header. */
1679 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1680 {
1681 unsigned int i, num_sec;
1682
1683 num_sec = elf_numsections (abfd);
1684 for (i = shindex + 1; i < num_sec; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i == num_sec)
1692 for (i = 1; i < shindex; i++)
1693 {
1694 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1695 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1696 && hdr2->sh_link == shindex)
1697 break;
1698 }
1699 if (i != shindex)
1700 return bfd_section_from_shdr (abfd, i);
1701 }
1702 return TRUE;
1703
1704 case SHT_DYNSYM: /* A dynamic symbol table */
1705 if (elf_dynsymtab (abfd) == shindex)
1706 return TRUE;
1707
1708 if (hdr->sh_entsize != bed->s->sizeof_sym)
1709 return FALSE;
1710 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1711 {
1712 if (hdr->sh_size != 0)
1713 return FALSE;
1714 /* Some linkers erroneously set sh_info to one with a
1715 zero sh_size. ld sees this as a global symbol count
1716 of (unsigned) -1. Fix it here. */
1717 hdr->sh_info = 0;
1718 return TRUE;
1719 }
1720 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1721 elf_dynsymtab (abfd) = shindex;
1722 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1723 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1724 abfd->flags |= HAS_SYMS;
1725
1726 /* Besides being a symbol table, we also treat this as a regular
1727 section, so that objcopy can handle it. */
1728 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1729
1730 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1731 if (elf_symtab_shndx (abfd) == shindex)
1732 return TRUE;
1733
1734 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1735 elf_symtab_shndx (abfd) = shindex;
1736 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1737 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1738 return TRUE;
1739
1740 case SHT_STRTAB: /* A string table */
1741 if (hdr->bfd_section != NULL)
1742 return TRUE;
1743 if (ehdr->e_shstrndx == shindex)
1744 {
1745 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1746 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1747 return TRUE;
1748 }
1749 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1750 {
1751 symtab_strtab:
1752 elf_tdata (abfd)->strtab_hdr = *hdr;
1753 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1754 return TRUE;
1755 }
1756 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1757 {
1758 dynsymtab_strtab:
1759 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1760 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1761 elf_elfsections (abfd)[shindex] = hdr;
1762 /* We also treat this as a regular section, so that objcopy
1763 can handle it. */
1764 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1765 shindex);
1766 }
1767
1768 /* If the string table isn't one of the above, then treat it as a
1769 regular section. We need to scan all the headers to be sure,
1770 just in case this strtab section appeared before the above. */
1771 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1772 {
1773 unsigned int i, num_sec;
1774
1775 num_sec = elf_numsections (abfd);
1776 for (i = 1; i < num_sec; i++)
1777 {
1778 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1779 if (hdr2->sh_link == shindex)
1780 {
1781 /* Prevent endless recursion on broken objects. */
1782 if (i == shindex)
1783 return FALSE;
1784 if (! bfd_section_from_shdr (abfd, i))
1785 return FALSE;
1786 if (elf_onesymtab (abfd) == i)
1787 goto symtab_strtab;
1788 if (elf_dynsymtab (abfd) == i)
1789 goto dynsymtab_strtab;
1790 }
1791 }
1792 }
1793 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1794
1795 case SHT_REL:
1796 case SHT_RELA:
1797 /* *These* do a lot of work -- but build no sections! */
1798 {
1799 asection *target_sect;
1800 Elf_Internal_Shdr *hdr2, **p_hdr;
1801 unsigned int num_sec = elf_numsections (abfd);
1802 struct bfd_elf_section_data *esdt;
1803 bfd_size_type amt;
1804
1805 if (hdr->sh_entsize
1806 != (bfd_size_type) (hdr->sh_type == SHT_REL
1807 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1808 return FALSE;
1809
1810 /* Check for a bogus link to avoid crashing. */
1811 if (hdr->sh_link >= num_sec)
1812 {
1813 ((*_bfd_error_handler)
1814 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1815 abfd, hdr->sh_link, name, shindex));
1816 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1817 shindex);
1818 }
1819
1820 /* For some incomprehensible reason Oracle distributes
1821 libraries for Solaris in which some of the objects have
1822 bogus sh_link fields. It would be nice if we could just
1823 reject them, but, unfortunately, some people need to use
1824 them. We scan through the section headers; if we find only
1825 one suitable symbol table, we clobber the sh_link to point
1826 to it. I hope this doesn't break anything.
1827
1828 Don't do it on executable nor shared library. */
1829 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1830 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1831 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1832 {
1833 unsigned int scan;
1834 int found;
1835
1836 found = 0;
1837 for (scan = 1; scan < num_sec; scan++)
1838 {
1839 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1840 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1841 {
1842 if (found != 0)
1843 {
1844 found = 0;
1845 break;
1846 }
1847 found = scan;
1848 }
1849 }
1850 if (found != 0)
1851 hdr->sh_link = found;
1852 }
1853
1854 /* Get the symbol table. */
1855 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1856 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1857 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1858 return FALSE;
1859
1860 /* If this reloc section does not use the main symbol table we
1861 don't treat it as a reloc section. BFD can't adequately
1862 represent such a section, so at least for now, we don't
1863 try. We just present it as a normal section. We also
1864 can't use it as a reloc section if it points to the null
1865 section, an invalid section, another reloc section, or its
1866 sh_link points to the null section. */
1867 if (hdr->sh_link != elf_onesymtab (abfd)
1868 || hdr->sh_link == SHN_UNDEF
1869 || hdr->sh_info == SHN_UNDEF
1870 || hdr->sh_info >= num_sec
1871 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1872 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1873 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1874 shindex);
1875
1876 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1877 return FALSE;
1878 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1879 if (target_sect == NULL)
1880 return FALSE;
1881
1882 esdt = elf_section_data (target_sect);
1883 if (hdr->sh_type == SHT_RELA)
1884 p_hdr = &esdt->rela.hdr;
1885 else
1886 p_hdr = &esdt->rel.hdr;
1887
1888 BFD_ASSERT (*p_hdr == NULL);
1889 amt = sizeof (*hdr2);
1890 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1891 if (hdr2 == NULL)
1892 return FALSE;
1893 *hdr2 = *hdr;
1894 *p_hdr = hdr2;
1895 elf_elfsections (abfd)[shindex] = hdr2;
1896 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1897 target_sect->flags |= SEC_RELOC;
1898 target_sect->relocation = NULL;
1899 target_sect->rel_filepos = hdr->sh_offset;
1900 /* In the section to which the relocations apply, mark whether
1901 its relocations are of the REL or RELA variety. */
1902 if (hdr->sh_size != 0)
1903 {
1904 if (hdr->sh_type == SHT_RELA)
1905 target_sect->use_rela_p = 1;
1906 }
1907 abfd->flags |= HAS_RELOC;
1908 return TRUE;
1909 }
1910
1911 case SHT_GNU_verdef:
1912 elf_dynverdef (abfd) = shindex;
1913 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1914 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1915
1916 case SHT_GNU_versym:
1917 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1918 return FALSE;
1919 elf_dynversym (abfd) = shindex;
1920 elf_tdata (abfd)->dynversym_hdr = *hdr;
1921 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1922
1923 case SHT_GNU_verneed:
1924 elf_dynverref (abfd) = shindex;
1925 elf_tdata (abfd)->dynverref_hdr = *hdr;
1926 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1927
1928 case SHT_SHLIB:
1929 return TRUE;
1930
1931 case SHT_GROUP:
1932 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1933 return FALSE;
1934 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1935 return FALSE;
1936 if (hdr->contents != NULL)
1937 {
1938 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1939 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1940 asection *s;
1941
1942 if (idx->flags & GRP_COMDAT)
1943 hdr->bfd_section->flags
1944 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1945
1946 /* We try to keep the same section order as it comes in. */
1947 idx += n_elt;
1948 while (--n_elt != 0)
1949 {
1950 --idx;
1951
1952 if (idx->shdr != NULL
1953 && (s = idx->shdr->bfd_section) != NULL
1954 && elf_next_in_group (s) != NULL)
1955 {
1956 elf_next_in_group (hdr->bfd_section) = s;
1957 break;
1958 }
1959 }
1960 }
1961 break;
1962
1963 default:
1964 /* Possibly an attributes section. */
1965 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1966 || hdr->sh_type == bed->obj_attrs_section_type)
1967 {
1968 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1969 return FALSE;
1970 _bfd_elf_parse_attributes (abfd, hdr);
1971 return TRUE;
1972 }
1973
1974 /* Check for any processor-specific section types. */
1975 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1976 return TRUE;
1977
1978 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1979 {
1980 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1981 /* FIXME: How to properly handle allocated section reserved
1982 for applications? */
1983 (*_bfd_error_handler)
1984 (_("%B: don't know how to handle allocated, application "
1985 "specific section `%s' [0x%8x]"),
1986 abfd, name, hdr->sh_type);
1987 else
1988 /* Allow sections reserved for applications. */
1989 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1990 shindex);
1991 }
1992 else if (hdr->sh_type >= SHT_LOPROC
1993 && hdr->sh_type <= SHT_HIPROC)
1994 /* FIXME: We should handle this section. */
1995 (*_bfd_error_handler)
1996 (_("%B: don't know how to handle processor specific section "
1997 "`%s' [0x%8x]"),
1998 abfd, name, hdr->sh_type);
1999 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2000 {
2001 /* Unrecognised OS-specific sections. */
2002 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2003 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2004 required to correctly process the section and the file should
2005 be rejected with an error message. */
2006 (*_bfd_error_handler)
2007 (_("%B: don't know how to handle OS specific section "
2008 "`%s' [0x%8x]"),
2009 abfd, name, hdr->sh_type);
2010 else
2011 /* Otherwise it should be processed. */
2012 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2013 }
2014 else
2015 /* FIXME: We should handle this section. */
2016 (*_bfd_error_handler)
2017 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2018 abfd, name, hdr->sh_type);
2019
2020 return FALSE;
2021 }
2022
2023 return TRUE;
2024}
2025
2026/* Return the local symbol specified by ABFD, R_SYMNDX. */
2027
2028Elf_Internal_Sym *
2029bfd_sym_from_r_symndx (struct sym_cache *cache,
2030 bfd *abfd,
2031 unsigned long r_symndx)
2032{
2033 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2034
2035 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2036 {
2037 Elf_Internal_Shdr *symtab_hdr;
2038 unsigned char esym[sizeof (Elf64_External_Sym)];
2039 Elf_External_Sym_Shndx eshndx;
2040
2041 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2042 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2043 &cache->sym[ent], esym, &eshndx) == NULL)
2044 return NULL;
2045
2046 if (cache->abfd != abfd)
2047 {
2048 memset (cache->indx, -1, sizeof (cache->indx));
2049 cache->abfd = abfd;
2050 }
2051 cache->indx[ent] = r_symndx;
2052 }
2053
2054 return &cache->sym[ent];
2055}
2056
2057/* Given an ELF section number, retrieve the corresponding BFD
2058 section. */
2059
2060asection *
2061bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2062{
2063 if (sec_index >= elf_numsections (abfd))
2064 return NULL;
2065 return elf_elfsections (abfd)[sec_index]->bfd_section;
2066}
2067
2068static const struct bfd_elf_special_section special_sections_b[] =
2069{
2070 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2071 { NULL, 0, 0, 0, 0 }
2072};
2073
2074static const struct bfd_elf_special_section special_sections_c[] =
2075{
2076 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2077 { NULL, 0, 0, 0, 0 }
2078};
2079
2080static const struct bfd_elf_special_section special_sections_d[] =
2081{
2082 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2083 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2084 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2085 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2086 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2087 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2088 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2089 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2090 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2091 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2092 { NULL, 0, 0, 0, 0 }
2093};
2094
2095static const struct bfd_elf_special_section special_sections_f[] =
2096{
2097 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2098 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2099 { NULL, 0, 0, 0, 0 }
2100};
2101
2102static const struct bfd_elf_special_section special_sections_g[] =
2103{
2104 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2105 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2106 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2107 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2108 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2109 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2110 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2111 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2112 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2113 { NULL, 0, 0, 0, 0 }
2114};
2115
2116static const struct bfd_elf_special_section special_sections_h[] =
2117{
2118 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2119 { NULL, 0, 0, 0, 0 }
2120};
2121
2122static const struct bfd_elf_special_section special_sections_i[] =
2123{
2124 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2126 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2127 { NULL, 0, 0, 0, 0 }
2128};
2129
2130static const struct bfd_elf_special_section special_sections_l[] =
2131{
2132 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2133 { NULL, 0, 0, 0, 0 }
2134};
2135
2136static const struct bfd_elf_special_section special_sections_n[] =
2137{
2138 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2139 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2140 { NULL, 0, 0, 0, 0 }
2141};
2142
2143static const struct bfd_elf_special_section special_sections_p[] =
2144{
2145 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2146 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2147 { NULL, 0, 0, 0, 0 }
2148};
2149
2150static const struct bfd_elf_special_section special_sections_r[] =
2151{
2152 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2153 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2154 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2155 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2156 { NULL, 0, 0, 0, 0 }
2157};
2158
2159static const struct bfd_elf_special_section special_sections_s[] =
2160{
2161 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2162 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2163 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2164 /* See struct bfd_elf_special_section declaration for the semantics of
2165 this special case where .prefix_length != strlen (.prefix). */
2166 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2167 { NULL, 0, 0, 0, 0 }
2168};
2169
2170static const struct bfd_elf_special_section special_sections_t[] =
2171{
2172 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2173 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2174 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2175 { NULL, 0, 0, 0, 0 }
2176};
2177
2178static const struct bfd_elf_special_section special_sections_z[] =
2179{
2180 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2181 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2182 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2183 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2184 { NULL, 0, 0, 0, 0 }
2185};
2186
2187static const struct bfd_elf_special_section * const special_sections[] =
2188{
2189 special_sections_b, /* 'b' */
2190 special_sections_c, /* 'c' */
2191 special_sections_d, /* 'd' */
2192 NULL, /* 'e' */
2193 special_sections_f, /* 'f' */
2194 special_sections_g, /* 'g' */
2195 special_sections_h, /* 'h' */
2196 special_sections_i, /* 'i' */
2197 NULL, /* 'j' */
2198 NULL, /* 'k' */
2199 special_sections_l, /* 'l' */
2200 NULL, /* 'm' */
2201 special_sections_n, /* 'n' */
2202 NULL, /* 'o' */
2203 special_sections_p, /* 'p' */
2204 NULL, /* 'q' */
2205 special_sections_r, /* 'r' */
2206 special_sections_s, /* 's' */
2207 special_sections_t, /* 't' */
2208 NULL, /* 'u' */
2209 NULL, /* 'v' */
2210 NULL, /* 'w' */
2211 NULL, /* 'x' */
2212 NULL, /* 'y' */
2213 special_sections_z /* 'z' */
2214};
2215
2216const struct bfd_elf_special_section *
2217_bfd_elf_get_special_section (const char *name,
2218 const struct bfd_elf_special_section *spec,
2219 unsigned int rela)
2220{
2221 int i;
2222 int len;
2223
2224 len = strlen (name);
2225
2226 for (i = 0; spec[i].prefix != NULL; i++)
2227 {
2228 int suffix_len;
2229 int prefix_len = spec[i].prefix_length;
2230
2231 if (len < prefix_len)
2232 continue;
2233 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2234 continue;
2235
2236 suffix_len = spec[i].suffix_length;
2237 if (suffix_len <= 0)
2238 {
2239 if (name[prefix_len] != 0)
2240 {
2241 if (suffix_len == 0)
2242 continue;
2243 if (name[prefix_len] != '.'
2244 && (suffix_len == -2
2245 || (rela && spec[i].type == SHT_REL)))
2246 continue;
2247 }
2248 }
2249 else
2250 {
2251 if (len < prefix_len + suffix_len)
2252 continue;
2253 if (memcmp (name + len - suffix_len,
2254 spec[i].prefix + prefix_len,
2255 suffix_len) != 0)
2256 continue;
2257 }
2258 return &spec[i];
2259 }
2260
2261 return NULL;
2262}
2263
2264const struct bfd_elf_special_section *
2265_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2266{
2267 int i;
2268 const struct bfd_elf_special_section *spec;
2269 const struct elf_backend_data *bed;
2270
2271 /* See if this is one of the special sections. */
2272 if (sec->name == NULL)
2273 return NULL;
2274
2275 bed = get_elf_backend_data (abfd);
2276 spec = bed->special_sections;
2277 if (spec)
2278 {
2279 spec = _bfd_elf_get_special_section (sec->name,
2280 bed->special_sections,
2281 sec->use_rela_p);
2282 if (spec != NULL)
2283 return spec;
2284 }
2285
2286 if (sec->name[0] != '.')
2287 return NULL;
2288
2289 i = sec->name[1] - 'b';
2290 if (i < 0 || i > 'z' - 'b')
2291 return NULL;
2292
2293 spec = special_sections[i];
2294
2295 if (spec == NULL)
2296 return NULL;
2297
2298 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2299}
2300
2301bfd_boolean
2302_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2303{
2304 struct bfd_elf_section_data *sdata;
2305 const struct elf_backend_data *bed;
2306 const struct bfd_elf_special_section *ssect;
2307
2308 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2309 if (sdata == NULL)
2310 {
2311 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2312 sizeof (*sdata));
2313 if (sdata == NULL)
2314 return FALSE;
2315 sec->used_by_bfd = sdata;
2316 }
2317
2318 /* Indicate whether or not this section should use RELA relocations. */
2319 bed = get_elf_backend_data (abfd);
2320 sec->use_rela_p = bed->default_use_rela_p;
2321
2322 /* When we read a file, we don't need to set ELF section type and
2323 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2324 anyway. We will set ELF section type and flags for all linker
2325 created sections. If user specifies BFD section flags, we will
2326 set ELF section type and flags based on BFD section flags in
2327 elf_fake_sections. Special handling for .init_array/.fini_array
2328 output sections since they may contain .ctors/.dtors input
2329 sections. We don't want _bfd_elf_init_private_section_data to
2330 copy ELF section type from .ctors/.dtors input sections. */
2331 if (abfd->direction != read_direction
2332 || (sec->flags & SEC_LINKER_CREATED) != 0)
2333 {
2334 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2335 if (ssect != NULL
2336 && (!sec->flags
2337 || (sec->flags & SEC_LINKER_CREATED) != 0
2338 || ssect->type == SHT_INIT_ARRAY
2339 || ssect->type == SHT_FINI_ARRAY))
2340 {
2341 elf_section_type (sec) = ssect->type;
2342 elf_section_flags (sec) = ssect->attr;
2343 }
2344 }
2345
2346 return _bfd_generic_new_section_hook (abfd, sec);
2347}
2348
2349/* Create a new bfd section from an ELF program header.
2350
2351 Since program segments have no names, we generate a synthetic name
2352 of the form segment<NUM>, where NUM is generally the index in the
2353 program header table. For segments that are split (see below) we
2354 generate the names segment<NUM>a and segment<NUM>b.
2355
2356 Note that some program segments may have a file size that is different than
2357 (less than) the memory size. All this means is that at execution the
2358 system must allocate the amount of memory specified by the memory size,
2359 but only initialize it with the first "file size" bytes read from the
2360 file. This would occur for example, with program segments consisting
2361 of combined data+bss.
2362
2363 To handle the above situation, this routine generates TWO bfd sections
2364 for the single program segment. The first has the length specified by
2365 the file size of the segment, and the second has the length specified
2366 by the difference between the two sizes. In effect, the segment is split
2367 into its initialized and uninitialized parts.
2368
2369 */
2370
2371bfd_boolean
2372_bfd_elf_make_section_from_phdr (bfd *abfd,
2373 Elf_Internal_Phdr *hdr,
2374 int hdr_index,
2375 const char *type_name)
2376{
2377 asection *newsect;
2378 char *name;
2379 char namebuf[64];
2380 size_t len;
2381 int split;
2382
2383 split = ((hdr->p_memsz > 0)
2384 && (hdr->p_filesz > 0)
2385 && (hdr->p_memsz > hdr->p_filesz));
2386
2387 if (hdr->p_filesz > 0)
2388 {
2389 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2390 len = strlen (namebuf) + 1;
2391 name = (char *) bfd_alloc (abfd, len);
2392 if (!name)
2393 return FALSE;
2394 memcpy (name, namebuf, len);
2395 newsect = bfd_make_section (abfd, name);
2396 if (newsect == NULL)
2397 return FALSE;
2398 newsect->vma = hdr->p_vaddr;
2399 newsect->lma = hdr->p_paddr;
2400 newsect->size = hdr->p_filesz;
2401 newsect->filepos = hdr->p_offset;
2402 newsect->flags |= SEC_HAS_CONTENTS;
2403 newsect->alignment_power = bfd_log2 (hdr->p_align);
2404 if (hdr->p_type == PT_LOAD)
2405 {
2406 newsect->flags |= SEC_ALLOC;
2407 newsect->flags |= SEC_LOAD;
2408 if (hdr->p_flags & PF_X)
2409 {
2410 /* FIXME: all we known is that it has execute PERMISSION,
2411 may be data. */
2412 newsect->flags |= SEC_CODE;
2413 }
2414 }
2415 if (!(hdr->p_flags & PF_W))
2416 {
2417 newsect->flags |= SEC_READONLY;
2418 }
2419 }
2420
2421 if (hdr->p_memsz > hdr->p_filesz)
2422 {
2423 bfd_vma align;
2424
2425 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2426 len = strlen (namebuf) + 1;
2427 name = (char *) bfd_alloc (abfd, len);
2428 if (!name)
2429 return FALSE;
2430 memcpy (name, namebuf, len);
2431 newsect = bfd_make_section (abfd, name);
2432 if (newsect == NULL)
2433 return FALSE;
2434 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2435 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2436 newsect->size = hdr->p_memsz - hdr->p_filesz;
2437 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2438 align = newsect->vma & -newsect->vma;
2439 if (align == 0 || align > hdr->p_align)
2440 align = hdr->p_align;
2441 newsect->alignment_power = bfd_log2 (align);
2442 if (hdr->p_type == PT_LOAD)
2443 {
2444 /* Hack for gdb. Segments that have not been modified do
2445 not have their contents written to a core file, on the
2446 assumption that a debugger can find the contents in the
2447 executable. We flag this case by setting the fake
2448 section size to zero. Note that "real" bss sections will
2449 always have their contents dumped to the core file. */
2450 if (bfd_get_format (abfd) == bfd_core)
2451 newsect->size = 0;
2452 newsect->flags |= SEC_ALLOC;
2453 if (hdr->p_flags & PF_X)
2454 newsect->flags |= SEC_CODE;
2455 }
2456 if (!(hdr->p_flags & PF_W))
2457 newsect->flags |= SEC_READONLY;
2458 }
2459
2460 return TRUE;
2461}
2462
2463bfd_boolean
2464bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2465{
2466 const struct elf_backend_data *bed;
2467
2468 switch (hdr->p_type)
2469 {
2470 case PT_NULL:
2471 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2472
2473 case PT_LOAD:
2474 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2475
2476 case PT_DYNAMIC:
2477 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2478
2479 case PT_INTERP:
2480 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2481
2482 case PT_NOTE:
2483 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2484 return FALSE;
2485 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2486 return FALSE;
2487 return TRUE;
2488
2489 case PT_SHLIB:
2490 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2491
2492 case PT_PHDR:
2493 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2494
2495 case PT_GNU_EH_FRAME:
2496 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2497 "eh_frame_hdr");
2498
2499 case PT_GNU_STACK:
2500 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2501
2502 case PT_GNU_RELRO:
2503 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2504
2505 default:
2506 /* Check for any processor-specific program segment types. */
2507 bed = get_elf_backend_data (abfd);
2508 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2509 }
2510}
2511
2512/* Return the REL_HDR for SEC, assuming there is only a single one, either
2513 REL or RELA. */
2514
2515Elf_Internal_Shdr *
2516_bfd_elf_single_rel_hdr (asection *sec)
2517{
2518 if (elf_section_data (sec)->rel.hdr)
2519 {
2520 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2521 return elf_section_data (sec)->rel.hdr;
2522 }
2523 else
2524 return elf_section_data (sec)->rela.hdr;
2525}
2526
2527/* Allocate and initialize a section-header for a new reloc section,
2528 containing relocations against ASECT. It is stored in RELDATA. If
2529 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2530 relocations. */
2531
2532bfd_boolean
2533_bfd_elf_init_reloc_shdr (bfd *abfd,
2534 struct bfd_elf_section_reloc_data *reldata,
2535 asection *asect,
2536 bfd_boolean use_rela_p)
2537{
2538 Elf_Internal_Shdr *rel_hdr;
2539 char *name;
2540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2541 bfd_size_type amt;
2542
2543 amt = sizeof (Elf_Internal_Shdr);
2544 BFD_ASSERT (reldata->hdr == NULL);
2545 rel_hdr = bfd_zalloc (abfd, amt);
2546 reldata->hdr = rel_hdr;
2547
2548 amt = sizeof ".rela" + strlen (asect->name);
2549 name = (char *) bfd_alloc (abfd, amt);
2550 if (name == NULL)
2551 return FALSE;
2552 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2553 rel_hdr->sh_name =
2554 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2555 FALSE);
2556 if (rel_hdr->sh_name == (unsigned int) -1)
2557 return FALSE;
2558 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2559 rel_hdr->sh_entsize = (use_rela_p
2560 ? bed->s->sizeof_rela
2561 : bed->s->sizeof_rel);
2562 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2563 rel_hdr->sh_flags = 0;
2564 rel_hdr->sh_addr = 0;
2565 rel_hdr->sh_size = 0;
2566 rel_hdr->sh_offset = 0;
2567
2568 return TRUE;
2569}
2570
2571/* Return the default section type based on the passed in section flags. */
2572
2573int
2574bfd_elf_get_default_section_type (flagword flags)
2575{
2576 if ((flags & SEC_ALLOC) != 0
2577 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2578 return SHT_NOBITS;
2579 return SHT_PROGBITS;
2580}
2581
2582struct fake_section_arg
2583{
2584 struct bfd_link_info *link_info;
2585 bfd_boolean failed;
2586};
2587
2588/* Set up an ELF internal section header for a section. */
2589
2590static void
2591elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2592{
2593 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2595 struct bfd_elf_section_data *esd = elf_section_data (asect);
2596 Elf_Internal_Shdr *this_hdr;
2597 unsigned int sh_type;
2598
2599 if (arg->failed)
2600 {
2601 /* We already failed; just get out of the bfd_map_over_sections
2602 loop. */
2603 return;
2604 }
2605
2606 this_hdr = &esd->this_hdr;
2607
2608 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2609 asect->name, FALSE);
2610 if (this_hdr->sh_name == (unsigned int) -1)
2611 {
2612 arg->failed = TRUE;
2613 return;
2614 }
2615
2616 /* Don't clear sh_flags. Assembler may set additional bits. */
2617
2618 if ((asect->flags & SEC_ALLOC) != 0
2619 || asect->user_set_vma)
2620 this_hdr->sh_addr = asect->vma;
2621 else
2622 this_hdr->sh_addr = 0;
2623
2624 this_hdr->sh_offset = 0;
2625 this_hdr->sh_size = asect->size;
2626 this_hdr->sh_link = 0;
2627 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2628 /* The sh_entsize and sh_info fields may have been set already by
2629 copy_private_section_data. */
2630
2631 this_hdr->bfd_section = asect;
2632 this_hdr->contents = NULL;
2633
2634 /* If the section type is unspecified, we set it based on
2635 asect->flags. */
2636 if ((asect->flags & SEC_GROUP) != 0)
2637 sh_type = SHT_GROUP;
2638 else
2639 sh_type = bfd_elf_get_default_section_type (asect->flags);
2640
2641 if (this_hdr->sh_type == SHT_NULL)
2642 this_hdr->sh_type = sh_type;
2643 else if (this_hdr->sh_type == SHT_NOBITS
2644 && sh_type == SHT_PROGBITS
2645 && (asect->flags & SEC_ALLOC) != 0)
2646 {
2647 /* Warn if we are changing a NOBITS section to PROGBITS, but
2648 allow the link to proceed. This can happen when users link
2649 non-bss input sections to bss output sections, or emit data
2650 to a bss output section via a linker script. */
2651 (*_bfd_error_handler)
2652 (_("warning: section `%A' type changed to PROGBITS"), asect);
2653 this_hdr->sh_type = sh_type;
2654 }
2655
2656 switch (this_hdr->sh_type)
2657 {
2658 default:
2659 break;
2660
2661 case SHT_STRTAB:
2662 case SHT_INIT_ARRAY:
2663 case SHT_FINI_ARRAY:
2664 case SHT_PREINIT_ARRAY:
2665 case SHT_NOTE:
2666 case SHT_NOBITS:
2667 case SHT_PROGBITS:
2668 break;
2669
2670 case SHT_HASH:
2671 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2672 break;
2673
2674 case SHT_DYNSYM:
2675 this_hdr->sh_entsize = bed->s->sizeof_sym;
2676 break;
2677
2678 case SHT_DYNAMIC:
2679 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2680 break;
2681
2682 case SHT_RELA:
2683 if (get_elf_backend_data (abfd)->may_use_rela_p)
2684 this_hdr->sh_entsize = bed->s->sizeof_rela;
2685 break;
2686
2687 case SHT_REL:
2688 if (get_elf_backend_data (abfd)->may_use_rel_p)
2689 this_hdr->sh_entsize = bed->s->sizeof_rel;
2690 break;
2691
2692 case SHT_GNU_versym:
2693 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2694 break;
2695
2696 case SHT_GNU_verdef:
2697 this_hdr->sh_entsize = 0;
2698 /* objcopy or strip will copy over sh_info, but may not set
2699 cverdefs. The linker will set cverdefs, but sh_info will be
2700 zero. */
2701 if (this_hdr->sh_info == 0)
2702 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2703 else
2704 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2705 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2706 break;
2707
2708 case SHT_GNU_verneed:
2709 this_hdr->sh_entsize = 0;
2710 /* objcopy or strip will copy over sh_info, but may not set
2711 cverrefs. The linker will set cverrefs, but sh_info will be
2712 zero. */
2713 if (this_hdr->sh_info == 0)
2714 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2715 else
2716 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2717 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2718 break;
2719
2720 case SHT_GROUP:
2721 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2722 break;
2723
2724 case SHT_GNU_HASH:
2725 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2726 break;
2727 }
2728
2729 if ((asect->flags & SEC_ALLOC) != 0)
2730 this_hdr->sh_flags |= SHF_ALLOC;
2731 if ((asect->flags & SEC_READONLY) == 0)
2732 this_hdr->sh_flags |= SHF_WRITE;
2733 if ((asect->flags & SEC_CODE) != 0)
2734 this_hdr->sh_flags |= SHF_EXECINSTR;
2735 if ((asect->flags & SEC_MERGE) != 0)
2736 {
2737 this_hdr->sh_flags |= SHF_MERGE;
2738 this_hdr->sh_entsize = asect->entsize;
2739 if ((asect->flags & SEC_STRINGS) != 0)
2740 this_hdr->sh_flags |= SHF_STRINGS;
2741 }
2742 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2743 this_hdr->sh_flags |= SHF_GROUP;
2744 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2745 {
2746 this_hdr->sh_flags |= SHF_TLS;
2747 if (asect->size == 0
2748 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2749 {
2750 struct bfd_link_order *o = asect->map_tail.link_order;
2751
2752 this_hdr->sh_size = 0;
2753 if (o != NULL)
2754 {
2755 this_hdr->sh_size = o->offset + o->size;
2756 if (this_hdr->sh_size != 0)
2757 this_hdr->sh_type = SHT_NOBITS;
2758 }
2759 }
2760 }
2761 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2762 this_hdr->sh_flags |= SHF_EXCLUDE;
2763
2764 /* If the section has relocs, set up a section header for the
2765 SHT_REL[A] section. If two relocation sections are required for
2766 this section, it is up to the processor-specific back-end to
2767 create the other. */
2768 if ((asect->flags & SEC_RELOC) != 0)
2769 {
2770 /* When doing a relocatable link, create both REL and RELA sections if
2771 needed. */
2772 if (arg->link_info
2773 /* Do the normal setup if we wouldn't create any sections here. */
2774 && esd->rel.count + esd->rela.count > 0
2775 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2776 {
2777 if (esd->rel.count && esd->rel.hdr == NULL
2778 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2779 {
2780 arg->failed = TRUE;
2781 return;
2782 }
2783 if (esd->rela.count && esd->rela.hdr == NULL
2784 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2785 {
2786 arg->failed = TRUE;
2787 return;
2788 }
2789 }
2790 else if (!_bfd_elf_init_reloc_shdr (abfd,
2791 (asect->use_rela_p
2792 ? &esd->rela : &esd->rel),
2793 asect,
2794 asect->use_rela_p))
2795 arg->failed = TRUE;
2796 }
2797
2798 /* Check for processor-specific section types. */
2799 sh_type = this_hdr->sh_type;
2800 if (bed->elf_backend_fake_sections
2801 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2802 arg->failed = TRUE;
2803
2804 if (sh_type == SHT_NOBITS && asect->size != 0)
2805 {
2806 /* Don't change the header type from NOBITS if we are being
2807 called for objcopy --only-keep-debug. */
2808 this_hdr->sh_type = sh_type;
2809 }
2810}
2811
2812/* Fill in the contents of a SHT_GROUP section. Called from
2813 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2814 when ELF targets use the generic linker, ld. Called for ld -r
2815 from bfd_elf_final_link. */
2816
2817void
2818bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2819{
2820 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2821 asection *elt, *first;
2822 unsigned char *loc;
2823 bfd_boolean gas;
2824
2825 /* Ignore linker created group section. See elfNN_ia64_object_p in
2826 elfxx-ia64.c. */
2827 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2828 || *failedptr)
2829 return;
2830
2831 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2832 {
2833 unsigned long symindx = 0;
2834
2835 /* elf_group_id will have been set up by objcopy and the
2836 generic linker. */
2837 if (elf_group_id (sec) != NULL)
2838 symindx = elf_group_id (sec)->udata.i;
2839
2840 if (symindx == 0)
2841 {
2842 /* If called from the assembler, swap_out_syms will have set up
2843 elf_section_syms. */
2844 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2845 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2846 }
2847 elf_section_data (sec)->this_hdr.sh_info = symindx;
2848 }
2849 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2850 {
2851 /* The ELF backend linker sets sh_info to -2 when the group
2852 signature symbol is global, and thus the index can't be
2853 set until all local symbols are output. */
2854 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2855 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2856 unsigned long symndx = sec_data->this_hdr.sh_info;
2857 unsigned long extsymoff = 0;
2858 struct elf_link_hash_entry *h;
2859
2860 if (!elf_bad_symtab (igroup->owner))
2861 {
2862 Elf_Internal_Shdr *symtab_hdr;
2863
2864 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2865 extsymoff = symtab_hdr->sh_info;
2866 }
2867 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2868 while (h->root.type == bfd_link_hash_indirect
2869 || h->root.type == bfd_link_hash_warning)
2870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2871
2872 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2873 }
2874
2875 /* The contents won't be allocated for "ld -r" or objcopy. */
2876 gas = TRUE;
2877 if (sec->contents == NULL)
2878 {
2879 gas = FALSE;
2880 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2881
2882 /* Arrange for the section to be written out. */
2883 elf_section_data (sec)->this_hdr.contents = sec->contents;
2884 if (sec->contents == NULL)
2885 {
2886 *failedptr = TRUE;
2887 return;
2888 }
2889 }
2890
2891 loc = sec->contents + sec->size;
2892
2893 /* Get the pointer to the first section in the group that gas
2894 squirreled away here. objcopy arranges for this to be set to the
2895 start of the input section group. */
2896 first = elt = elf_next_in_group (sec);
2897
2898 /* First element is a flag word. Rest of section is elf section
2899 indices for all the sections of the group. Write them backwards
2900 just to keep the group in the same order as given in .section
2901 directives, not that it matters. */
2902 while (elt != NULL)
2903 {
2904 asection *s;
2905
2906 s = elt;
2907 if (!gas)
2908 s = s->output_section;
2909 if (s != NULL
2910 && !bfd_is_abs_section (s))
2911 {
2912 unsigned int idx = elf_section_data (s)->this_idx;
2913
2914 loc -= 4;
2915 H_PUT_32 (abfd, idx, loc);
2916 }
2917 elt = elf_next_in_group (elt);
2918 if (elt == first)
2919 break;
2920 }
2921
2922 if ((loc -= 4) != sec->contents)
2923 abort ();
2924
2925 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2926}
2927
2928/* Assign all ELF section numbers. The dummy first section is handled here
2929 too. The link/info pointers for the standard section types are filled
2930 in here too, while we're at it. */
2931
2932static bfd_boolean
2933assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2934{
2935 struct elf_obj_tdata *t = elf_tdata (abfd);
2936 asection *sec;
2937 unsigned int section_number, secn;
2938 Elf_Internal_Shdr **i_shdrp;
2939 struct bfd_elf_section_data *d;
2940 bfd_boolean need_symtab;
2941
2942 section_number = 1;
2943
2944 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2945
2946 /* SHT_GROUP sections are in relocatable files only. */
2947 if (link_info == NULL || link_info->relocatable)
2948 {
2949 /* Put SHT_GROUP sections first. */
2950 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type == SHT_GROUP)
2955 {
2956 if (sec->flags & SEC_LINKER_CREATED)
2957 {
2958 /* Remove the linker created SHT_GROUP sections. */
2959 bfd_section_list_remove (abfd, sec);
2960 abfd->section_count--;
2961 }
2962 else
2963 d->this_idx = section_number++;
2964 }
2965 }
2966 }
2967
2968 for (sec = abfd->sections; sec; sec = sec->next)
2969 {
2970 d = elf_section_data (sec);
2971
2972 if (d->this_hdr.sh_type != SHT_GROUP)
2973 d->this_idx = section_number++;
2974 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2975 if (d->rel.hdr)
2976 {
2977 d->rel.idx = section_number++;
2978 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2979 }
2980 else
2981 d->rel.idx = 0;
2982
2983 if (d->rela.hdr)
2984 {
2985 d->rela.idx = section_number++;
2986 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2987 }
2988 else
2989 d->rela.idx = 0;
2990 }
2991
2992 t->shstrtab_section = section_number++;
2993 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2994 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2995
2996 need_symtab = (bfd_get_symcount (abfd) > 0
2997 || (link_info == NULL
2998 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2999 == HAS_RELOC)));
3000 if (need_symtab)
3001 {
3002 t->symtab_section = section_number++;
3003 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3004 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3005 {
3006 t->symtab_shndx_section = section_number++;
3007 t->symtab_shndx_hdr.sh_name
3008 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3009 ".symtab_shndx", FALSE);
3010 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
3011 return FALSE;
3012 }
3013 t->strtab_section = section_number++;
3014 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3015 }
3016
3017 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3018 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3019
3020 elf_numsections (abfd) = section_number;
3021 elf_elfheader (abfd)->e_shnum = section_number;
3022
3023 /* Set up the list of section header pointers, in agreement with the
3024 indices. */
3025 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3026 sizeof (Elf_Internal_Shdr *));
3027 if (i_shdrp == NULL)
3028 return FALSE;
3029
3030 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3031 sizeof (Elf_Internal_Shdr));
3032 if (i_shdrp[0] == NULL)
3033 {
3034 bfd_release (abfd, i_shdrp);
3035 return FALSE;
3036 }
3037
3038 elf_elfsections (abfd) = i_shdrp;
3039
3040 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3041 if (need_symtab)
3042 {
3043 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3044 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3045 {
3046 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3047 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3048 }
3049 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3050 t->symtab_hdr.sh_link = t->strtab_section;
3051 }
3052
3053 for (sec = abfd->sections; sec; sec = sec->next)
3054 {
3055 asection *s;
3056 const char *name;
3057
3058 d = elf_section_data (sec);
3059
3060 i_shdrp[d->this_idx] = &d->this_hdr;
3061 if (d->rel.idx != 0)
3062 i_shdrp[d->rel.idx] = d->rel.hdr;
3063 if (d->rela.idx != 0)
3064 i_shdrp[d->rela.idx] = d->rela.hdr;
3065
3066 /* Fill in the sh_link and sh_info fields while we're at it. */
3067
3068 /* sh_link of a reloc section is the section index of the symbol
3069 table. sh_info is the section index of the section to which
3070 the relocation entries apply. */
3071 if (d->rel.idx != 0)
3072 {
3073 d->rel.hdr->sh_link = t->symtab_section;
3074 d->rel.hdr->sh_info = d->this_idx;
3075 }
3076 if (d->rela.idx != 0)
3077 {
3078 d->rela.hdr->sh_link = t->symtab_section;
3079 d->rela.hdr->sh_info = d->this_idx;
3080 }
3081
3082 /* We need to set up sh_link for SHF_LINK_ORDER. */
3083 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3084 {
3085 s = elf_linked_to_section (sec);
3086 if (s)
3087 {
3088 /* elf_linked_to_section points to the input section. */
3089 if (link_info != NULL)
3090 {
3091 /* Check discarded linkonce section. */
3092 if (discarded_section (s))
3093 {
3094 asection *kept;
3095 (*_bfd_error_handler)
3096 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3097 abfd, d->this_hdr.bfd_section,
3098 s, s->owner);
3099 /* Point to the kept section if it has the same
3100 size as the discarded one. */
3101 kept = _bfd_elf_check_kept_section (s, link_info);
3102 if (kept == NULL)
3103 {
3104 bfd_set_error (bfd_error_bad_value);
3105 return FALSE;
3106 }
3107 s = kept;
3108 }
3109
3110 s = s->output_section;
3111 BFD_ASSERT (s != NULL);
3112 }
3113 else
3114 {
3115 /* Handle objcopy. */
3116 if (s->output_section == NULL)
3117 {
3118 (*_bfd_error_handler)
3119 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3120 abfd, d->this_hdr.bfd_section, s, s->owner);
3121 bfd_set_error (bfd_error_bad_value);
3122 return FALSE;
3123 }
3124 s = s->output_section;
3125 }
3126 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3127 }
3128 else
3129 {
3130 /* PR 290:
3131 The Intel C compiler generates SHT_IA_64_UNWIND with
3132 SHF_LINK_ORDER. But it doesn't set the sh_link or
3133 sh_info fields. Hence we could get the situation
3134 where s is NULL. */
3135 const struct elf_backend_data *bed
3136 = get_elf_backend_data (abfd);
3137 if (bed->link_order_error_handler)
3138 bed->link_order_error_handler
3139 (_("%B: warning: sh_link not set for section `%A'"),
3140 abfd, sec);
3141 }
3142 }
3143
3144 switch (d->this_hdr.sh_type)
3145 {
3146 case SHT_REL:
3147 case SHT_RELA:
3148 /* A reloc section which we are treating as a normal BFD
3149 section. sh_link is the section index of the symbol
3150 table. sh_info is the section index of the section to
3151 which the relocation entries apply. We assume that an
3152 allocated reloc section uses the dynamic symbol table.
3153 FIXME: How can we be sure? */
3154 s = bfd_get_section_by_name (abfd, ".dynsym");
3155 if (s != NULL)
3156 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3157
3158 /* We look up the section the relocs apply to by name. */
3159 name = sec->name;
3160 if (d->this_hdr.sh_type == SHT_REL)
3161 name += 4;
3162 else
3163 name += 5;
3164 s = bfd_get_section_by_name (abfd, name);
3165 if (s != NULL)
3166 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3167 break;
3168
3169 case SHT_STRTAB:
3170 /* We assume that a section named .stab*str is a stabs
3171 string section. We look for a section with the same name
3172 but without the trailing ``str'', and set its sh_link
3173 field to point to this section. */
3174 if (CONST_STRNEQ (sec->name, ".stab")
3175 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3176 {
3177 size_t len;
3178 char *alc;
3179
3180 len = strlen (sec->name);
3181 alc = (char *) bfd_malloc (len - 2);
3182 if (alc == NULL)
3183 return FALSE;
3184 memcpy (alc, sec->name, len - 3);
3185 alc[len - 3] = '\0';
3186 s = bfd_get_section_by_name (abfd, alc);
3187 free (alc);
3188 if (s != NULL)
3189 {
3190 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3191
3192 /* This is a .stab section. */
3193 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3194 elf_section_data (s)->this_hdr.sh_entsize
3195 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3196 }
3197 }
3198 break;
3199
3200 case SHT_DYNAMIC:
3201 case SHT_DYNSYM:
3202 case SHT_GNU_verneed:
3203 case SHT_GNU_verdef:
3204 /* sh_link is the section header index of the string table
3205 used for the dynamic entries, or the symbol table, or the
3206 version strings. */
3207 s = bfd_get_section_by_name (abfd, ".dynstr");
3208 if (s != NULL)
3209 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3210 break;
3211
3212 case SHT_GNU_LIBLIST:
3213 /* sh_link is the section header index of the prelink library
3214 list used for the dynamic entries, or the symbol table, or
3215 the version strings. */
3216 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3217 ? ".dynstr" : ".gnu.libstr");
3218 if (s != NULL)
3219 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3220 break;
3221
3222 case SHT_HASH:
3223 case SHT_GNU_HASH:
3224 case SHT_GNU_versym:
3225 /* sh_link is the section header index of the symbol table
3226 this hash table or version table is for. */
3227 s = bfd_get_section_by_name (abfd, ".dynsym");
3228 if (s != NULL)
3229 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3230 break;
3231
3232 case SHT_GROUP:
3233 d->this_hdr.sh_link = t->symtab_section;
3234 }
3235 }
3236
3237 for (secn = 1; secn < section_number; ++secn)
3238 if (i_shdrp[secn] == NULL)
3239 i_shdrp[secn] = i_shdrp[0];
3240 else
3241 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3242 i_shdrp[secn]->sh_name);
3243 return TRUE;
3244}
3245
3246static bfd_boolean
3247sym_is_global (bfd *abfd, asymbol *sym)
3248{
3249 /* If the backend has a special mapping, use it. */
3250 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3251 if (bed->elf_backend_sym_is_global)
3252 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3253
3254 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3255 || bfd_is_und_section (bfd_get_section (sym))
3256 || bfd_is_com_section (bfd_get_section (sym)));
3257}
3258
3259/* Don't output section symbols for sections that are not going to be
3260 output, or that are duplicates. */
3261
3262static bfd_boolean
3263ignore_section_sym (bfd *abfd, asymbol *sym)
3264{
3265 return ((sym->flags & BSF_SECTION_SYM) != 0
3266 && !(sym->section->owner == abfd
3267 || (sym->section->output_section->owner == abfd
3268 && sym->section->output_offset == 0)
3269 || bfd_is_abs_section (sym->section)));
3270}
3271
3272/* Map symbol from it's internal number to the external number, moving
3273 all local symbols to be at the head of the list. */
3274
3275static bfd_boolean
3276elf_map_symbols (bfd *abfd)
3277{
3278 unsigned int symcount = bfd_get_symcount (abfd);
3279 asymbol **syms = bfd_get_outsymbols (abfd);
3280 asymbol **sect_syms;
3281 unsigned int num_locals = 0;
3282 unsigned int num_globals = 0;
3283 unsigned int num_locals2 = 0;
3284 unsigned int num_globals2 = 0;
3285 int max_index = 0;
3286 unsigned int idx;
3287 asection *asect;
3288 asymbol **new_syms;
3289
3290#ifdef DEBUG
3291 fprintf (stderr, "elf_map_symbols\n");
3292 fflush (stderr);
3293#endif
3294
3295 for (asect = abfd->sections; asect; asect = asect->next)
3296 {
3297 if (max_index < asect->index)
3298 max_index = asect->index;
3299 }
3300
3301 max_index++;
3302 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3303 if (sect_syms == NULL)
3304 return FALSE;
3305 elf_section_syms (abfd) = sect_syms;
3306 elf_num_section_syms (abfd) = max_index;
3307
3308 /* Init sect_syms entries for any section symbols we have already
3309 decided to output. */
3310 for (idx = 0; idx < symcount; idx++)
3311 {
3312 asymbol *sym = syms[idx];
3313
3314 if ((sym->flags & BSF_SECTION_SYM) != 0
3315 && sym->value == 0
3316 && !ignore_section_sym (abfd, sym)
3317 && !bfd_is_abs_section (sym->section))
3318 {
3319 asection *sec = sym->section;
3320
3321 if (sec->owner != abfd)
3322 sec = sec->output_section;
3323
3324 sect_syms[sec->index] = syms[idx];
3325 }
3326 }
3327
3328 /* Classify all of the symbols. */
3329 for (idx = 0; idx < symcount; idx++)
3330 {
3331 if (sym_is_global (abfd, syms[idx]))
3332 num_globals++;
3333 else if (!ignore_section_sym (abfd, syms[idx]))
3334 num_locals++;
3335 }
3336
3337 /* We will be adding a section symbol for each normal BFD section. Most
3338 sections will already have a section symbol in outsymbols, but
3339 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3340 at least in that case. */
3341 for (asect = abfd->sections; asect; asect = asect->next)
3342 {
3343 if (sect_syms[asect->index] == NULL)
3344 {
3345 if (!sym_is_global (abfd, asect->symbol))
3346 num_locals++;
3347 else
3348 num_globals++;
3349 }
3350 }
3351
3352 /* Now sort the symbols so the local symbols are first. */
3353 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3354 sizeof (asymbol *));
3355
3356 if (new_syms == NULL)
3357 return FALSE;
3358
3359 for (idx = 0; idx < symcount; idx++)
3360 {
3361 asymbol *sym = syms[idx];
3362 unsigned int i;
3363
3364 if (sym_is_global (abfd, sym))
3365 i = num_locals + num_globals2++;
3366 else if (!ignore_section_sym (abfd, sym))
3367 i = num_locals2++;
3368 else
3369 continue;
3370 new_syms[i] = sym;
3371 sym->udata.i = i + 1;
3372 }
3373 for (asect = abfd->sections; asect; asect = asect->next)
3374 {
3375 if (sect_syms[asect->index] == NULL)
3376 {
3377 asymbol *sym = asect->symbol;
3378 unsigned int i;
3379
3380 sect_syms[asect->index] = sym;
3381 if (!sym_is_global (abfd, sym))
3382 i = num_locals2++;
3383 else
3384 i = num_locals + num_globals2++;
3385 new_syms[i] = sym;
3386 sym->udata.i = i + 1;
3387 }
3388 }
3389
3390 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3391
3392 elf_num_locals (abfd) = num_locals;
3393 elf_num_globals (abfd) = num_globals;
3394 return TRUE;
3395}
3396
3397/* Align to the maximum file alignment that could be required for any
3398 ELF data structure. */
3399
3400static inline file_ptr
3401align_file_position (file_ptr off, int align)
3402{
3403 return (off + align - 1) & ~(align - 1);
3404}
3405
3406/* Assign a file position to a section, optionally aligning to the
3407 required section alignment. */
3408
3409file_ptr
3410_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3411 file_ptr offset,
3412 bfd_boolean align)
3413{
3414 if (align && i_shdrp->sh_addralign > 1)
3415 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3416 i_shdrp->sh_offset = offset;
3417 if (i_shdrp->bfd_section != NULL)
3418 i_shdrp->bfd_section->filepos = offset;
3419 if (i_shdrp->sh_type != SHT_NOBITS)
3420 offset += i_shdrp->sh_size;
3421 return offset;
3422}
3423
3424/* Compute the file positions we are going to put the sections at, and
3425 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3426 is not NULL, this is being called by the ELF backend linker. */
3427
3428bfd_boolean
3429_bfd_elf_compute_section_file_positions (bfd *abfd,
3430 struct bfd_link_info *link_info)
3431{
3432 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3433 struct fake_section_arg fsargs;
3434 bfd_boolean failed;
3435 struct bfd_strtab_hash *strtab = NULL;
3436 Elf_Internal_Shdr *shstrtab_hdr;
3437 bfd_boolean need_symtab;
3438
3439 if (abfd->output_has_begun)
3440 return TRUE;
3441
3442 /* Do any elf backend specific processing first. */
3443 if (bed->elf_backend_begin_write_processing)
3444 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3445
3446 if (! prep_headers (abfd))
3447 return FALSE;
3448
3449 /* Post process the headers if necessary. */
3450 if (bed->elf_backend_post_process_headers)
3451 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3452
3453 fsargs.failed = FALSE;
3454 fsargs.link_info = link_info;
3455 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3456 if (fsargs.failed)
3457 return FALSE;
3458
3459 if (!assign_section_numbers (abfd, link_info))
3460 return FALSE;
3461
3462 /* The backend linker builds symbol table information itself. */
3463 need_symtab = (link_info == NULL
3464 && (bfd_get_symcount (abfd) > 0
3465 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3466 == HAS_RELOC)));
3467 if (need_symtab)
3468 {
3469 /* Non-zero if doing a relocatable link. */
3470 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3471
3472 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3473 return FALSE;
3474 }
3475
3476 failed = FALSE;
3477 if (link_info == NULL)
3478 {
3479 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3480 if (failed)
3481 return FALSE;
3482 }
3483
3484 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3485 /* sh_name was set in prep_headers. */
3486 shstrtab_hdr->sh_type = SHT_STRTAB;
3487 shstrtab_hdr->sh_flags = 0;
3488 shstrtab_hdr->sh_addr = 0;
3489 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3490 shstrtab_hdr->sh_entsize = 0;
3491 shstrtab_hdr->sh_link = 0;
3492 shstrtab_hdr->sh_info = 0;
3493 /* sh_offset is set in assign_file_positions_except_relocs. */
3494 shstrtab_hdr->sh_addralign = 1;
3495
3496 if (!assign_file_positions_except_relocs (abfd, link_info))
3497 return FALSE;
3498
3499 if (need_symtab)
3500 {
3501 file_ptr off;
3502 Elf_Internal_Shdr *hdr;
3503
3504 off = elf_tdata (abfd)->next_file_pos;
3505
3506 hdr = &elf_tdata (abfd)->symtab_hdr;
3507 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3508
3509 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3510 if (hdr->sh_size != 0)
3511 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3512
3513 hdr = &elf_tdata (abfd)->strtab_hdr;
3514 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3515
3516 elf_tdata (abfd)->next_file_pos = off;
3517
3518 /* Now that we know where the .strtab section goes, write it
3519 out. */
3520 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3521 || ! _bfd_stringtab_emit (abfd, strtab))
3522 return FALSE;
3523 _bfd_stringtab_free (strtab);
3524 }
3525
3526 abfd->output_has_begun = TRUE;
3527
3528 return TRUE;
3529}
3530
3531/* Make an initial estimate of the size of the program header. If we
3532 get the number wrong here, we'll redo section placement. */
3533
3534static bfd_size_type
3535get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3536{
3537 size_t segs;
3538 asection *s;
3539 const struct elf_backend_data *bed;
3540
3541 /* Assume we will need exactly two PT_LOAD segments: one for text
3542 and one for data. */
3543 segs = 2;
3544
3545 s = bfd_get_section_by_name (abfd, ".interp");
3546 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3547 {
3548 /* If we have a loadable interpreter section, we need a
3549 PT_INTERP segment. In this case, assume we also need a
3550 PT_PHDR segment, although that may not be true for all
3551 targets. */
3552 segs += 2;
3553 }
3554
3555 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3556 {
3557 /* We need a PT_DYNAMIC segment. */
3558 ++segs;
3559 }
3560
3561 if (info != NULL && info->relro)
3562 {
3563 /* We need a PT_GNU_RELRO segment. */
3564 ++segs;
3565 }
3566
3567 if (elf_tdata (abfd)->eh_frame_hdr)
3568 {
3569 /* We need a PT_GNU_EH_FRAME segment. */
3570 ++segs;
3571 }
3572
3573 if (elf_tdata (abfd)->stack_flags)
3574 {
3575 /* We need a PT_GNU_STACK segment. */
3576 ++segs;
3577 }
3578
3579 for (s = abfd->sections; s != NULL; s = s->next)
3580 {
3581 if ((s->flags & SEC_LOAD) != 0
3582 && CONST_STRNEQ (s->name, ".note"))
3583 {
3584 /* We need a PT_NOTE segment. */
3585 ++segs;
3586 /* Try to create just one PT_NOTE segment
3587 for all adjacent loadable .note* sections.
3588 gABI requires that within a PT_NOTE segment
3589 (and also inside of each SHT_NOTE section)
3590 each note is padded to a multiple of 4 size,
3591 so we check whether the sections are correctly
3592 aligned. */
3593 if (s->alignment_power == 2)
3594 while (s->next != NULL
3595 && s->next->alignment_power == 2
3596 && (s->next->flags & SEC_LOAD) != 0
3597 && CONST_STRNEQ (s->next->name, ".note"))
3598 s = s->next;
3599 }
3600 }
3601
3602 for (s = abfd->sections; s != NULL; s = s->next)
3603 {
3604 if (s->flags & SEC_THREAD_LOCAL)
3605 {
3606 /* We need a PT_TLS segment. */
3607 ++segs;
3608 break;
3609 }
3610 }
3611
3612 /* Let the backend count up any program headers it might need. */
3613 bed = get_elf_backend_data (abfd);
3614 if (bed->elf_backend_additional_program_headers)
3615 {
3616 int a;
3617
3618 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3619 if (a == -1)
3620 abort ();
3621 segs += a;
3622 }
3623
3624 return segs * bed->s->sizeof_phdr;
3625}
3626
3627/* Find the segment that contains the output_section of section. */
3628
3629Elf_Internal_Phdr *
3630_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3631{
3632 struct elf_segment_map *m;
3633 Elf_Internal_Phdr *p;
3634
3635 for (m = elf_tdata (abfd)->segment_map,
3636 p = elf_tdata (abfd)->phdr;
3637 m != NULL;
3638 m = m->next, p++)
3639 {
3640 int i;
3641
3642 for (i = m->count - 1; i >= 0; i--)
3643 if (m->sections[i] == section)
3644 return p;
3645 }
3646
3647 return NULL;
3648}
3649
3650/* Create a mapping from a set of sections to a program segment. */
3651
3652static struct elf_segment_map *
3653make_mapping (bfd *abfd,
3654 asection **sections,
3655 unsigned int from,
3656 unsigned int to,
3657 bfd_boolean phdr)
3658{
3659 struct elf_segment_map *m;
3660 unsigned int i;
3661 asection **hdrpp;
3662 bfd_size_type amt;
3663
3664 amt = sizeof (struct elf_segment_map);
3665 amt += (to - from - 1) * sizeof (asection *);
3666 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3667 if (m == NULL)
3668 return NULL;
3669 m->next = NULL;
3670 m->p_type = PT_LOAD;
3671 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3672 m->sections[i - from] = *hdrpp;
3673 m->count = to - from;
3674
3675 if (from == 0 && phdr)
3676 {
3677 /* Include the headers in the first PT_LOAD segment. */
3678 m->includes_filehdr = 1;
3679 m->includes_phdrs = 1;
3680 }
3681
3682 return m;
3683}
3684
3685/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3686 on failure. */
3687
3688struct elf_segment_map *
3689_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3690{
3691 struct elf_segment_map *m;
3692
3693 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3694 sizeof (struct elf_segment_map));
3695 if (m == NULL)
3696 return NULL;
3697 m->next = NULL;
3698 m->p_type = PT_DYNAMIC;
3699 m->count = 1;
3700 m->sections[0] = dynsec;
3701
3702 return m;
3703}
3704
3705/* Possibly add or remove segments from the segment map. */
3706
3707static bfd_boolean
3708elf_modify_segment_map (bfd *abfd,
3709 struct bfd_link_info *info,
3710 bfd_boolean remove_empty_load)
3711{
3712 struct elf_segment_map **m;
3713 const struct elf_backend_data *bed;
3714
3715 /* The placement algorithm assumes that non allocated sections are
3716 not in PT_LOAD segments. We ensure this here by removing such
3717 sections from the segment map. We also remove excluded
3718 sections. Finally, any PT_LOAD segment without sections is
3719 removed. */
3720 m = &elf_tdata (abfd)->segment_map;
3721 while (*m)
3722 {
3723 unsigned int i, new_count;
3724
3725 for (new_count = 0, i = 0; i < (*m)->count; i++)
3726 {
3727 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3728 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3729 || (*m)->p_type != PT_LOAD))
3730 {
3731 (*m)->sections[new_count] = (*m)->sections[i];
3732 new_count++;
3733 }
3734 }
3735 (*m)->count = new_count;
3736
3737 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3738 *m = (*m)->next;
3739 else
3740 m = &(*m)->next;
3741 }
3742
3743 bed = get_elf_backend_data (abfd);
3744 if (bed->elf_backend_modify_segment_map != NULL)
3745 {
3746 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3747 return FALSE;
3748 }
3749
3750 return TRUE;
3751}
3752
3753/* Set up a mapping from BFD sections to program segments. */
3754
3755bfd_boolean
3756_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3757{
3758 unsigned int count;
3759 struct elf_segment_map *m;
3760 asection **sections = NULL;
3761 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3762 bfd_boolean no_user_phdrs;
3763
3764 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3765
3766 if (info != NULL)
3767 info->user_phdrs = !no_user_phdrs;
3768
3769 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3770 {
3771 asection *s;
3772 unsigned int i;
3773 struct elf_segment_map *mfirst;
3774 struct elf_segment_map **pm;
3775 asection *last_hdr;
3776 bfd_vma last_size;
3777 unsigned int phdr_index;
3778 bfd_vma maxpagesize;
3779 asection **hdrpp;
3780 bfd_boolean phdr_in_segment = TRUE;
3781 bfd_boolean writable;
3782 int tls_count = 0;
3783 asection *first_tls = NULL;
3784 asection *dynsec, *eh_frame_hdr;
3785 bfd_size_type amt;
3786 bfd_vma addr_mask, wrap_to = 0;
3787
3788 /* Select the allocated sections, and sort them. */
3789
3790 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3791 sizeof (asection *));
3792 if (sections == NULL)
3793 goto error_return;
3794
3795 /* Calculate top address, avoiding undefined behaviour of shift
3796 left operator when shift count is equal to size of type
3797 being shifted. */
3798 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3799 addr_mask = (addr_mask << 1) + 1;
3800
3801 i = 0;
3802 for (s = abfd->sections; s != NULL; s = s->next)
3803 {
3804 if ((s->flags & SEC_ALLOC) != 0)
3805 {
3806 sections[i] = s;
3807 ++i;
3808 /* A wrapping section potentially clashes with header. */
3809 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3810 wrap_to = (s->lma + s->size) & addr_mask;
3811 }
3812 }
3813 BFD_ASSERT (i <= bfd_count_sections (abfd));
3814 count = i;
3815
3816 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3817
3818 /* Build the mapping. */
3819
3820 mfirst = NULL;
3821 pm = &mfirst;
3822
3823 /* If we have a .interp section, then create a PT_PHDR segment for
3824 the program headers and a PT_INTERP segment for the .interp
3825 section. */
3826 s = bfd_get_section_by_name (abfd, ".interp");
3827 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3828 {
3829 amt = sizeof (struct elf_segment_map);
3830 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3831 if (m == NULL)
3832 goto error_return;
3833 m->next = NULL;
3834 m->p_type = PT_PHDR;
3835 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3836 m->p_flags = PF_R | PF_X;
3837 m->p_flags_valid = 1;
3838 m->includes_phdrs = 1;
3839
3840 *pm = m;
3841 pm = &m->next;
3842
3843 amt = sizeof (struct elf_segment_map);
3844 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3845 if (m == NULL)
3846 goto error_return;
3847 m->next = NULL;
3848 m->p_type = PT_INTERP;
3849 m->count = 1;
3850 m->sections[0] = s;
3851
3852 *pm = m;
3853 pm = &m->next;
3854 }
3855
3856 /* Look through the sections. We put sections in the same program
3857 segment when the start of the second section can be placed within
3858 a few bytes of the end of the first section. */
3859 last_hdr = NULL;
3860 last_size = 0;
3861 phdr_index = 0;
3862 maxpagesize = bed->maxpagesize;
3863 writable = FALSE;
3864 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3865 if (dynsec != NULL
3866 && (dynsec->flags & SEC_LOAD) == 0)
3867 dynsec = NULL;
3868
3869 /* Deal with -Ttext or something similar such that the first section
3870 is not adjacent to the program headers. This is an
3871 approximation, since at this point we don't know exactly how many
3872 program headers we will need. */
3873 if (count > 0)
3874 {
3875 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3876
3877 if (phdr_size == (bfd_size_type) -1)
3878 phdr_size = get_program_header_size (abfd, info);
3879 if ((abfd->flags & D_PAGED) == 0
3880 || (sections[0]->lma & addr_mask) < phdr_size
3881 || ((sections[0]->lma & addr_mask) % maxpagesize
3882 < phdr_size % maxpagesize)
3883 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3884 phdr_in_segment = FALSE;
3885 }
3886
3887 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3888 {
3889 asection *hdr;
3890 bfd_boolean new_segment;
3891
3892 hdr = *hdrpp;
3893
3894 /* See if this section and the last one will fit in the same
3895 segment. */
3896
3897 if (last_hdr == NULL)
3898 {
3899 /* If we don't have a segment yet, then we don't need a new
3900 one (we build the last one after this loop). */
3901 new_segment = FALSE;
3902 }
3903 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3904 {
3905 /* If this section has a different relation between the
3906 virtual address and the load address, then we need a new
3907 segment. */
3908 new_segment = TRUE;
3909 }
3910 else if (hdr->lma < last_hdr->lma + last_size
3911 || last_hdr->lma + last_size < last_hdr->lma)
3912 {
3913 /* If this section has a load address that makes it overlap
3914 the previous section, then we need a new segment. */
3915 new_segment = TRUE;
3916 }
3917 /* In the next test we have to be careful when last_hdr->lma is close
3918 to the end of the address space. If the aligned address wraps
3919 around to the start of the address space, then there are no more
3920 pages left in memory and it is OK to assume that the current
3921 section can be included in the current segment. */
3922 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3923 > last_hdr->lma)
3924 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3925 <= hdr->lma))
3926 {
3927 /* If putting this section in this segment would force us to
3928 skip a page in the segment, then we need a new segment. */
3929 new_segment = TRUE;
3930 }
3931 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3932 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3933 {
3934 /* We don't want to put a loadable section after a
3935 nonloadable section in the same segment.
3936 Consider .tbss sections as loadable for this purpose. */
3937 new_segment = TRUE;
3938 }
3939 else if ((abfd->flags & D_PAGED) == 0)
3940 {
3941 /* If the file is not demand paged, which means that we
3942 don't require the sections to be correctly aligned in the
3943 file, then there is no other reason for a new segment. */
3944 new_segment = FALSE;
3945 }
3946 else if (! writable
3947 && (hdr->flags & SEC_READONLY) == 0
3948 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3949 != (hdr->lma & -maxpagesize)))
3950 {
3951 /* We don't want to put a writable section in a read only
3952 segment, unless they are on the same page in memory
3953 anyhow. We already know that the last section does not
3954 bring us past the current section on the page, so the
3955 only case in which the new section is not on the same
3956 page as the previous section is when the previous section
3957 ends precisely on a page boundary. */
3958 new_segment = TRUE;
3959 }
3960 else
3961 {
3962 /* Otherwise, we can use the same segment. */
3963 new_segment = FALSE;
3964 }
3965
3966 /* Allow interested parties a chance to override our decision. */
3967 if (last_hdr != NULL
3968 && info != NULL
3969 && info->callbacks->override_segment_assignment != NULL)
3970 new_segment
3971 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3972 last_hdr,
3973 new_segment);
3974
3975 if (! new_segment)
3976 {
3977 if ((hdr->flags & SEC_READONLY) == 0)
3978 writable = TRUE;
3979 last_hdr = hdr;
3980 /* .tbss sections effectively have zero size. */
3981 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3982 != SEC_THREAD_LOCAL)
3983 last_size = hdr->size;
3984 else
3985 last_size = 0;
3986 continue;
3987 }
3988
3989 /* We need a new program segment. We must create a new program
3990 header holding all the sections from phdr_index until hdr. */
3991
3992 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3993 if (m == NULL)
3994 goto error_return;
3995
3996 *pm = m;
3997 pm = &m->next;
3998
3999 if ((hdr->flags & SEC_READONLY) == 0)
4000 writable = TRUE;
4001 else
4002 writable = FALSE;
4003
4004 last_hdr = hdr;
4005 /* .tbss sections effectively have zero size. */
4006 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4007 last_size = hdr->size;
4008 else
4009 last_size = 0;
4010 phdr_index = i;
4011 phdr_in_segment = FALSE;
4012 }
4013
4014 /* Create a final PT_LOAD program segment, but not if it's just
4015 for .tbss. */
4016 if (last_hdr != NULL
4017 && (i - phdr_index != 1
4018 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4019 != SEC_THREAD_LOCAL)))
4020 {
4021 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4022 if (m == NULL)
4023 goto error_return;
4024
4025 *pm = m;
4026 pm = &m->next;
4027 }
4028
4029 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4030 if (dynsec != NULL)
4031 {
4032 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4033 if (m == NULL)
4034 goto error_return;
4035 *pm = m;
4036 pm = &m->next;
4037 }
4038
4039 /* For each batch of consecutive loadable .note sections,
4040 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4041 because if we link together nonloadable .note sections and
4042 loadable .note sections, we will generate two .note sections
4043 in the output file. FIXME: Using names for section types is
4044 bogus anyhow. */
4045 for (s = abfd->sections; s != NULL; s = s->next)
4046 {
4047 if ((s->flags & SEC_LOAD) != 0
4048 && CONST_STRNEQ (s->name, ".note"))
4049 {
4050 asection *s2;
4051
4052 count = 1;
4053 amt = sizeof (struct elf_segment_map);
4054 if (s->alignment_power == 2)
4055 for (s2 = s; s2->next != NULL; s2 = s2->next)
4056 {
4057 if (s2->next->alignment_power == 2
4058 && (s2->next->flags & SEC_LOAD) != 0
4059 && CONST_STRNEQ (s2->next->name, ".note")
4060 && align_power (s2->lma + s2->size, 2)
4061 == s2->next->lma)
4062 count++;
4063 else
4064 break;
4065 }
4066 amt += (count - 1) * sizeof (asection *);
4067 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4068 if (m == NULL)
4069 goto error_return;
4070 m->next = NULL;
4071 m->p_type = PT_NOTE;
4072 m->count = count;
4073 while (count > 1)
4074 {
4075 m->sections[m->count - count--] = s;
4076 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4077 s = s->next;
4078 }
4079 m->sections[m->count - 1] = s;
4080 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4081 *pm = m;
4082 pm = &m->next;
4083 }
4084 if (s->flags & SEC_THREAD_LOCAL)
4085 {
4086 if (! tls_count)
4087 first_tls = s;
4088 tls_count++;
4089 }
4090 }
4091
4092 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4093 if (tls_count > 0)
4094 {
4095 amt = sizeof (struct elf_segment_map);
4096 amt += (tls_count - 1) * sizeof (asection *);
4097 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4098 if (m == NULL)
4099 goto error_return;
4100 m->next = NULL;
4101 m->p_type = PT_TLS;
4102 m->count = tls_count;
4103 /* Mandated PF_R. */
4104 m->p_flags = PF_R;
4105 m->p_flags_valid = 1;
4106 for (i = 0; i < (unsigned int) tls_count; ++i)
4107 {
4108 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4109 m->sections[i] = first_tls;
4110 first_tls = first_tls->next;
4111 }
4112
4113 *pm = m;
4114 pm = &m->next;
4115 }
4116
4117 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4118 segment. */
4119 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4120 if (eh_frame_hdr != NULL
4121 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4122 {
4123 amt = sizeof (struct elf_segment_map);
4124 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4125 if (m == NULL)
4126 goto error_return;
4127 m->next = NULL;
4128 m->p_type = PT_GNU_EH_FRAME;
4129 m->count = 1;
4130 m->sections[0] = eh_frame_hdr->output_section;
4131
4132 *pm = m;
4133 pm = &m->next;
4134 }
4135
4136 if (elf_tdata (abfd)->stack_flags)
4137 {
4138 amt = sizeof (struct elf_segment_map);
4139 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4140 if (m == NULL)
4141 goto error_return;
4142 m->next = NULL;
4143 m->p_type = PT_GNU_STACK;
4144 m->p_flags = elf_tdata (abfd)->stack_flags;
4145 m->p_flags_valid = 1;
4146
4147 *pm = m;
4148 pm = &m->next;
4149 }
4150
4151 if (info != NULL && info->relro)
4152 {
4153 for (m = mfirst; m != NULL; m = m->next)
4154 {
4155 if (m->p_type == PT_LOAD
4156 && m->count != 0
4157 && m->sections[0]->vma >= info->relro_start
4158 && m->sections[0]->vma < info->relro_end)
4159 {
4160 i = m->count;
4161 while (--i != (unsigned) -1)
4162 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
4163 == (SEC_LOAD | SEC_HAS_CONTENTS))
4164 break;
4165
4166 if (i == (unsigned) -1)
4167 continue;
4168
4169 if (m->sections[i]->vma + m->sections[i]->size
4170 >= info->relro_end)
4171 break;
4172 }
4173 }
4174
4175 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4176 if (m != NULL)
4177 {
4178 amt = sizeof (struct elf_segment_map);
4179 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4180 if (m == NULL)
4181 goto error_return;
4182 m->next = NULL;
4183 m->p_type = PT_GNU_RELRO;
4184 m->p_flags = PF_R;
4185 m->p_flags_valid = 1;
4186
4187 *pm = m;
4188 pm = &m->next;
4189 }
4190 }
4191
4192 free (sections);
4193 elf_tdata (abfd)->segment_map = mfirst;
4194 }
4195
4196 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4197 return FALSE;
4198
4199 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4200 ++count;
4201 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4202
4203 return TRUE;
4204
4205 error_return:
4206 if (sections != NULL)
4207 free (sections);
4208 return FALSE;
4209}
4210
4211/* Sort sections by address. */
4212
4213static int
4214elf_sort_sections (const void *arg1, const void *arg2)
4215{
4216 const asection *sec1 = *(const asection **) arg1;
4217 const asection *sec2 = *(const asection **) arg2;
4218 bfd_size_type size1, size2;
4219
4220 /* Sort by LMA first, since this is the address used to
4221 place the section into a segment. */
4222 if (sec1->lma < sec2->lma)
4223 return -1;
4224 else if (sec1->lma > sec2->lma)
4225 return 1;
4226
4227 /* Then sort by VMA. Normally the LMA and the VMA will be
4228 the same, and this will do nothing. */
4229 if (sec1->vma < sec2->vma)
4230 return -1;
4231 else if (sec1->vma > sec2->vma)
4232 return 1;
4233
4234 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4235
4236#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4237
4238 if (TOEND (sec1))
4239 {
4240 if (TOEND (sec2))
4241 {
4242 /* If the indicies are the same, do not return 0
4243 here, but continue to try the next comparison. */
4244 if (sec1->target_index - sec2->target_index != 0)
4245 return sec1->target_index - sec2->target_index;
4246 }
4247 else
4248 return 1;
4249 }
4250 else if (TOEND (sec2))
4251 return -1;
4252
4253#undef TOEND
4254
4255 /* Sort by size, to put zero sized sections
4256 before others at the same address. */
4257
4258 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4259 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4260
4261 if (size1 < size2)
4262 return -1;
4263 if (size1 > size2)
4264 return 1;
4265
4266 return sec1->target_index - sec2->target_index;
4267}
4268
4269/* Ian Lance Taylor writes:
4270
4271 We shouldn't be using % with a negative signed number. That's just
4272 not good. We have to make sure either that the number is not
4273 negative, or that the number has an unsigned type. When the types
4274 are all the same size they wind up as unsigned. When file_ptr is a
4275 larger signed type, the arithmetic winds up as signed long long,
4276 which is wrong.
4277
4278 What we're trying to say here is something like ``increase OFF by
4279 the least amount that will cause it to be equal to the VMA modulo
4280 the page size.'' */
4281/* In other words, something like:
4282
4283 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4284 off_offset = off % bed->maxpagesize;
4285 if (vma_offset < off_offset)
4286 adjustment = vma_offset + bed->maxpagesize - off_offset;
4287 else
4288 adjustment = vma_offset - off_offset;
4289
4290 which can can be collapsed into the expression below. */
4291
4292static file_ptr
4293vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4294{
4295 return ((vma - off) % maxpagesize);
4296}
4297
4298static void
4299print_segment_map (const struct elf_segment_map *m)
4300{
4301 unsigned int j;
4302 const char *pt = get_segment_type (m->p_type);
4303 char buf[32];
4304
4305 if (pt == NULL)
4306 {
4307 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4308 sprintf (buf, "LOPROC+%7.7x",
4309 (unsigned int) (m->p_type - PT_LOPROC));
4310 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4311 sprintf (buf, "LOOS+%7.7x",
4312 (unsigned int) (m->p_type - PT_LOOS));
4313 else
4314 snprintf (buf, sizeof (buf), "%8.8x",
4315 (unsigned int) m->p_type);
4316 pt = buf;
4317 }
4318 fflush (stdout);
4319 fprintf (stderr, "%s:", pt);
4320 for (j = 0; j < m->count; j++)
4321 fprintf (stderr, " %s", m->sections [j]->name);
4322 putc ('\n',stderr);
4323 fflush (stderr);
4324}
4325
4326static bfd_boolean
4327write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4328{
4329 void *buf;
4330 bfd_boolean ret;
4331
4332 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4333 return FALSE;
4334 buf = bfd_zmalloc (len);
4335 if (buf == NULL)
4336 return FALSE;
4337 ret = bfd_bwrite (buf, len, abfd) == len;
4338 free (buf);
4339 return ret;
4340}
4341
4342/* Assign file positions to the sections based on the mapping from
4343 sections to segments. This function also sets up some fields in
4344 the file header. */
4345
4346static bfd_boolean
4347assign_file_positions_for_load_sections (bfd *abfd,
4348 struct bfd_link_info *link_info)
4349{
4350 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4351 struct elf_segment_map *m;
4352 Elf_Internal_Phdr *phdrs;
4353 Elf_Internal_Phdr *p;
4354 file_ptr off;
4355 bfd_size_type maxpagesize;
4356 unsigned int alloc;
4357 unsigned int i, j;
4358 bfd_vma header_pad = 0;
4359
4360 if (link_info == NULL
4361 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4362 return FALSE;
4363
4364 alloc = 0;
4365 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4366 {
4367 ++alloc;
4368 if (m->header_size)
4369 header_pad = m->header_size;
4370 }
4371
4372 if (alloc)
4373 {
4374 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4375 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4376 }
4377 else
4378 {
4379 /* PR binutils/12467. */
4380 elf_elfheader (abfd)->e_phoff = 0;
4381 elf_elfheader (abfd)->e_phentsize = 0;
4382 }
4383
4384 elf_elfheader (abfd)->e_phnum = alloc;
4385
4386 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4387 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4388 else
4389 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4390 >= alloc * bed->s->sizeof_phdr);
4391
4392 if (alloc == 0)
4393 {
4394 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4395 return TRUE;
4396 }
4397
4398 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4399 see assign_file_positions_except_relocs, so make sure we have
4400 that amount allocated, with trailing space cleared.
4401 The variable alloc contains the computed need, while elf_tdata
4402 (abfd)->program_header_size contains the size used for the
4403 layout.
4404 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4405 where the layout is forced to according to a larger size in the
4406 last iterations for the testcase ld-elf/header. */
4407 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4408 == 0);
4409 phdrs = (Elf_Internal_Phdr *)
4410 bfd_zalloc2 (abfd,
4411 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4412 sizeof (Elf_Internal_Phdr));
4413 elf_tdata (abfd)->phdr = phdrs;
4414 if (phdrs == NULL)
4415 return FALSE;
4416
4417 maxpagesize = 1;
4418 if ((abfd->flags & D_PAGED) != 0)
4419 maxpagesize = bed->maxpagesize;
4420
4421 off = bed->s->sizeof_ehdr;
4422 off += alloc * bed->s->sizeof_phdr;
4423 if (header_pad < (bfd_vma) off)
4424 header_pad = 0;
4425 else
4426 header_pad -= off;
4427 off += header_pad;
4428
4429 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4430 m != NULL;
4431 m = m->next, p++, j++)
4432 {
4433 asection **secpp;
4434 bfd_vma off_adjust;
4435 bfd_boolean no_contents;
4436
4437 /* If elf_segment_map is not from map_sections_to_segments, the
4438 sections may not be correctly ordered. NOTE: sorting should
4439 not be done to the PT_NOTE section of a corefile, which may
4440 contain several pseudo-sections artificially created by bfd.
4441 Sorting these pseudo-sections breaks things badly. */
4442 if (m->count > 1
4443 && !(elf_elfheader (abfd)->e_type == ET_CORE
4444 && m->p_type == PT_NOTE))
4445 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4446 elf_sort_sections);
4447
4448 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4449 number of sections with contents contributing to both p_filesz
4450 and p_memsz, followed by a number of sections with no contents
4451 that just contribute to p_memsz. In this loop, OFF tracks next
4452 available file offset for PT_LOAD and PT_NOTE segments. */
4453 p->p_type = m->p_type;
4454 p->p_flags = m->p_flags;
4455
4456 if (m->count == 0)
4457 p->p_vaddr = 0;
4458 else
4459 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4460
4461 if (m->p_paddr_valid)
4462 p->p_paddr = m->p_paddr;
4463 else if (m->count == 0)
4464 p->p_paddr = 0;
4465 else
4466 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4467
4468 if (p->p_type == PT_LOAD
4469 && (abfd->flags & D_PAGED) != 0)
4470 {
4471 /* p_align in demand paged PT_LOAD segments effectively stores
4472 the maximum page size. When copying an executable with
4473 objcopy, we set m->p_align from the input file. Use this
4474 value for maxpagesize rather than bed->maxpagesize, which
4475 may be different. Note that we use maxpagesize for PT_TLS
4476 segment alignment later in this function, so we are relying
4477 on at least one PT_LOAD segment appearing before a PT_TLS
4478 segment. */
4479 if (m->p_align_valid)
4480 maxpagesize = m->p_align;
4481
4482 p->p_align = maxpagesize;
4483 }
4484 else if (m->p_align_valid)
4485 p->p_align = m->p_align;
4486 else if (m->count == 0)
4487 p->p_align = 1 << bed->s->log_file_align;
4488 else
4489 p->p_align = 0;
4490
4491 no_contents = FALSE;
4492 off_adjust = 0;
4493 if (p->p_type == PT_LOAD
4494 && m->count > 0)
4495 {
4496 bfd_size_type align;
4497 unsigned int align_power = 0;
4498
4499 if (m->p_align_valid)
4500 align = p->p_align;
4501 else
4502 {
4503 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4504 {
4505 unsigned int secalign;
4506
4507 secalign = bfd_get_section_alignment (abfd, *secpp);
4508 if (secalign > align_power)
4509 align_power = secalign;
4510 }
4511 align = (bfd_size_type) 1 << align_power;
4512 if (align < maxpagesize)
4513 align = maxpagesize;
4514 }
4515
4516 for (i = 0; i < m->count; i++)
4517 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4518 /* If we aren't making room for this section, then
4519 it must be SHT_NOBITS regardless of what we've
4520 set via struct bfd_elf_special_section. */
4521 elf_section_type (m->sections[i]) = SHT_NOBITS;
4522
4523 /* Find out whether this segment contains any loadable
4524 sections. */
4525 no_contents = TRUE;
4526 for (i = 0; i < m->count; i++)
4527 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4528 {
4529 no_contents = FALSE;
4530 break;
4531 }
4532
4533 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4534 off += off_adjust;
4535 if (no_contents)
4536 {
4537 /* We shouldn't need to align the segment on disk since
4538 the segment doesn't need file space, but the gABI
4539 arguably requires the alignment and glibc ld.so
4540 checks it. So to comply with the alignment
4541 requirement but not waste file space, we adjust
4542 p_offset for just this segment. (OFF_ADJUST is
4543 subtracted from OFF later.) This may put p_offset
4544 past the end of file, but that shouldn't matter. */
4545 }
4546 else
4547 off_adjust = 0;
4548 }
4549 /* Make sure the .dynamic section is the first section in the
4550 PT_DYNAMIC segment. */
4551 else if (p->p_type == PT_DYNAMIC
4552 && m->count > 1
4553 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4554 {
4555 _bfd_error_handler
4556 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4557 abfd);
4558 bfd_set_error (bfd_error_bad_value);
4559 return FALSE;
4560 }
4561 /* Set the note section type to SHT_NOTE. */
4562 else if (p->p_type == PT_NOTE)
4563 for (i = 0; i < m->count; i++)
4564 elf_section_type (m->sections[i]) = SHT_NOTE;
4565
4566 p->p_offset = 0;
4567 p->p_filesz = 0;
4568 p->p_memsz = 0;
4569
4570 if (m->includes_filehdr)
4571 {
4572 if (!m->p_flags_valid)
4573 p->p_flags |= PF_R;
4574 p->p_filesz = bed->s->sizeof_ehdr;
4575 p->p_memsz = bed->s->sizeof_ehdr;
4576 if (m->count > 0)
4577 {
4578 BFD_ASSERT (p->p_type == PT_LOAD);
4579
4580 if (p->p_vaddr < (bfd_vma) off)
4581 {
4582 (*_bfd_error_handler)
4583 (_("%B: Not enough room for program headers, try linking with -N"),
4584 abfd);
4585 bfd_set_error (bfd_error_bad_value);
4586 return FALSE;
4587 }
4588
4589 p->p_vaddr -= off;
4590 if (!m->p_paddr_valid)
4591 p->p_paddr -= off;
4592 }
4593 }
4594
4595 if (m->includes_phdrs)
4596 {
4597 if (!m->p_flags_valid)
4598 p->p_flags |= PF_R;
4599
4600 if (!m->includes_filehdr)
4601 {
4602 p->p_offset = bed->s->sizeof_ehdr;
4603
4604 if (m->count > 0)
4605 {
4606 BFD_ASSERT (p->p_type == PT_LOAD);
4607 p->p_vaddr -= off - p->p_offset;
4608 if (!m->p_paddr_valid)
4609 p->p_paddr -= off - p->p_offset;
4610 }
4611 }
4612
4613 p->p_filesz += alloc * bed->s->sizeof_phdr;
4614 p->p_memsz += alloc * bed->s->sizeof_phdr;
4615 if (m->count)
4616 {
4617 p->p_filesz += header_pad;
4618 p->p_memsz += header_pad;
4619 }
4620 }
4621
4622 if (p->p_type == PT_LOAD
4623 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4624 {
4625 if (!m->includes_filehdr && !m->includes_phdrs)
4626 p->p_offset = off;
4627 else
4628 {
4629 file_ptr adjust;
4630
4631 adjust = off - (p->p_offset + p->p_filesz);
4632 if (!no_contents)
4633 p->p_filesz += adjust;
4634 p->p_memsz += adjust;
4635 }
4636 }
4637
4638 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4639 maps. Set filepos for sections in PT_LOAD segments, and in
4640 core files, for sections in PT_NOTE segments.
4641 assign_file_positions_for_non_load_sections will set filepos
4642 for other sections and update p_filesz for other segments. */
4643 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4644 {
4645 asection *sec;
4646 bfd_size_type align;
4647 Elf_Internal_Shdr *this_hdr;
4648
4649 sec = *secpp;
4650 this_hdr = &elf_section_data (sec)->this_hdr;
4651 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4652
4653 if ((p->p_type == PT_LOAD
4654 || p->p_type == PT_TLS)
4655 && (this_hdr->sh_type != SHT_NOBITS
4656 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4657 && ((this_hdr->sh_flags & SHF_TLS) == 0
4658 || p->p_type == PT_TLS))))
4659 {
4660 bfd_vma p_start = p->p_paddr;
4661 bfd_vma p_end = p_start + p->p_memsz;
4662 bfd_vma s_start = sec->lma;
4663 bfd_vma adjust = s_start - p_end;
4664
4665 if (adjust != 0
4666 && (s_start < p_end
4667 || p_end < p_start))
4668 {
4669 (*_bfd_error_handler)
4670 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4671 (unsigned long) s_start, (unsigned long) p_end);
4672 adjust = 0;
4673 sec->lma = p_end;
4674 }
4675 p->p_memsz += adjust;
4676
4677 if (this_hdr->sh_type != SHT_NOBITS)
4678 {
4679 if (p->p_filesz + adjust < p->p_memsz)
4680 {
4681 /* We have a PROGBITS section following NOBITS ones.
4682 Allocate file space for the NOBITS section(s) and
4683 zero it. */
4684 adjust = p->p_memsz - p->p_filesz;
4685 if (!write_zeros (abfd, off, adjust))
4686 return FALSE;
4687 }
4688 off += adjust;
4689 p->p_filesz += adjust;
4690 }
4691 }
4692
4693 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4694 {
4695 /* The section at i == 0 is the one that actually contains
4696 everything. */
4697 if (i == 0)
4698 {
4699 this_hdr->sh_offset = sec->filepos = off;
4700 off += this_hdr->sh_size;
4701 p->p_filesz = this_hdr->sh_size;
4702 p->p_memsz = 0;
4703 p->p_align = 1;
4704 }
4705 else
4706 {
4707 /* The rest are fake sections that shouldn't be written. */
4708 sec->filepos = 0;
4709 sec->size = 0;
4710 sec->flags = 0;
4711 continue;
4712 }
4713 }
4714 else
4715 {
4716 if (p->p_type == PT_LOAD)
4717 {
4718 this_hdr->sh_offset = sec->filepos = off;
4719 if (this_hdr->sh_type != SHT_NOBITS)
4720 off += this_hdr->sh_size;
4721 }
4722 else if (this_hdr->sh_type == SHT_NOBITS
4723 && (this_hdr->sh_flags & SHF_TLS) != 0
4724 && this_hdr->sh_offset == 0)
4725 {
4726 /* This is a .tbss section that didn't get a PT_LOAD.
4727 (See _bfd_elf_map_sections_to_segments "Create a
4728 final PT_LOAD".) Set sh_offset to the value it
4729 would have if we had created a zero p_filesz and
4730 p_memsz PT_LOAD header for the section. This
4731 also makes the PT_TLS header have the same
4732 p_offset value. */
4733 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4734 off, align);
4735 this_hdr->sh_offset = sec->filepos = off + adjust;
4736 }
4737
4738 if (this_hdr->sh_type != SHT_NOBITS)
4739 {
4740 p->p_filesz += this_hdr->sh_size;
4741 /* A load section without SHF_ALLOC is something like
4742 a note section in a PT_NOTE segment. These take
4743 file space but are not loaded into memory. */
4744 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4745 p->p_memsz += this_hdr->sh_size;
4746 }
4747 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4748 {
4749 if (p->p_type == PT_TLS)
4750 p->p_memsz += this_hdr->sh_size;
4751
4752 /* .tbss is special. It doesn't contribute to p_memsz of
4753 normal segments. */
4754 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4755 p->p_memsz += this_hdr->sh_size;
4756 }
4757
4758 if (align > p->p_align
4759 && !m->p_align_valid
4760 && (p->p_type != PT_LOAD
4761 || (abfd->flags & D_PAGED) == 0))
4762 p->p_align = align;
4763 }
4764
4765 if (!m->p_flags_valid)
4766 {
4767 p->p_flags |= PF_R;
4768 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4769 p->p_flags |= PF_X;
4770 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4771 p->p_flags |= PF_W;
4772 }
4773 }
4774 off -= off_adjust;
4775
4776 /* Check that all sections are in a PT_LOAD segment.
4777 Don't check funky gdb generated core files. */
4778 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4779 {
4780 bfd_boolean check_vma = TRUE;
4781
4782 for (i = 1; i < m->count; i++)
4783 if (m->sections[i]->vma == m->sections[i - 1]->vma
4784 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4785 ->this_hdr), p) != 0
4786 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4787 ->this_hdr), p) != 0)
4788 {
4789 /* Looks like we have overlays packed into the segment. */
4790 check_vma = FALSE;
4791 break;
4792 }
4793
4794 for (i = 0; i < m->count; i++)
4795 {
4796 Elf_Internal_Shdr *this_hdr;
4797 asection *sec;
4798
4799 sec = m->sections[i];
4800 this_hdr = &(elf_section_data(sec)->this_hdr);
4801 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4802 && !ELF_TBSS_SPECIAL (this_hdr, p))
4803 {
4804 (*_bfd_error_handler)
4805 (_("%B: section `%A' can't be allocated in segment %d"),
4806 abfd, sec, j);
4807 print_segment_map (m);
4808 }
4809 }
4810 }
4811 }
4812
4813 elf_tdata (abfd)->next_file_pos = off;
4814 return TRUE;
4815}
4816
4817/* Assign file positions for the other sections. */
4818
4819static bfd_boolean
4820assign_file_positions_for_non_load_sections (bfd *abfd,
4821 struct bfd_link_info *link_info)
4822{
4823 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4824 Elf_Internal_Shdr **i_shdrpp;
4825 Elf_Internal_Shdr **hdrpp;
4826 Elf_Internal_Phdr *phdrs;
4827 Elf_Internal_Phdr *p;
4828 struct elf_segment_map *m;
4829 struct elf_segment_map *hdrs_segment;
4830 bfd_vma filehdr_vaddr, filehdr_paddr;
4831 bfd_vma phdrs_vaddr, phdrs_paddr;
4832 file_ptr off;
4833 unsigned int num_sec;
4834 unsigned int i;
4835 unsigned int count;
4836
4837 i_shdrpp = elf_elfsections (abfd);
4838 num_sec = elf_numsections (abfd);
4839 off = elf_tdata (abfd)->next_file_pos;
4840 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4841 {
4842 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4843 Elf_Internal_Shdr *hdr;
4844
4845 hdr = *hdrpp;
4846 if (hdr->bfd_section != NULL
4847 && (hdr->bfd_section->filepos != 0
4848 || (hdr->sh_type == SHT_NOBITS
4849 && hdr->contents == NULL)))
4850 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4851 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4852 {
4853 if (hdr->sh_size != 0)
4854 (*_bfd_error_handler)
4855 (_("%B: warning: allocated section `%s' not in segment"),
4856 abfd,
4857 (hdr->bfd_section == NULL
4858 ? "*unknown*"
4859 : hdr->bfd_section->name));
4860 /* We don't need to page align empty sections. */
4861 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4862 off += vma_page_aligned_bias (hdr->sh_addr, off,
4863 bed->maxpagesize);
4864 else
4865 off += vma_page_aligned_bias (hdr->sh_addr, off,
4866 hdr->sh_addralign);
4867 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4868 FALSE);
4869 }
4870 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4871 && hdr->bfd_section == NULL)
4872 || hdr == i_shdrpp[tdata->symtab_section]
4873 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4874 || hdr == i_shdrpp[tdata->strtab_section])
4875 hdr->sh_offset = -1;
4876 else
4877 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4878 }
4879
4880 /* Now that we have set the section file positions, we can set up
4881 the file positions for the non PT_LOAD segments. */
4882 count = 0;
4883 filehdr_vaddr = 0;
4884 filehdr_paddr = 0;
4885 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4886 phdrs_paddr = 0;
4887 hdrs_segment = NULL;
4888 phdrs = elf_tdata (abfd)->phdr;
4889 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4890 m != NULL;
4891 m = m->next, p++)
4892 {
4893 ++count;
4894 if (p->p_type != PT_LOAD)
4895 continue;
4896
4897 if (m->includes_filehdr)
4898 {
4899 filehdr_vaddr = p->p_vaddr;
4900 filehdr_paddr = p->p_paddr;
4901 }
4902 if (m->includes_phdrs)
4903 {
4904 phdrs_vaddr = p->p_vaddr;
4905 phdrs_paddr = p->p_paddr;
4906 if (m->includes_filehdr)
4907 {
4908 hdrs_segment = m;
4909 phdrs_vaddr += bed->s->sizeof_ehdr;
4910 phdrs_paddr += bed->s->sizeof_ehdr;
4911 }
4912 }
4913 }
4914
4915 if (hdrs_segment != NULL && link_info != NULL)
4916 {
4917 /* There is a segment that contains both the file headers and the
4918 program headers, so provide a symbol __ehdr_start pointing there.
4919 A program can use this to examine itself robustly. */
4920
4921 struct elf_link_hash_entry *hash
4922 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
4923 FALSE, FALSE, TRUE);
4924 /* If the symbol was referenced and not defined, define it. */
4925 if (hash != NULL
4926 && (hash->root.type == bfd_link_hash_new
4927 || hash->root.type == bfd_link_hash_undefined
4928 || hash->root.type == bfd_link_hash_undefweak
4929 || hash->root.type == bfd_link_hash_common))
4930 {
4931 asection *s = NULL;
4932 if (hdrs_segment->count != 0)
4933 /* The segment contains sections, so use the first one. */
4934 s = hdrs_segment->sections[0];
4935 else
4936 /* Use the first (i.e. lowest-addressed) section in any segment. */
4937 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4938 if (m->count != 0)
4939 {
4940 s = m->sections[0];
4941 break;
4942 }
4943
4944 if (s != NULL)
4945 {
4946 hash->root.u.def.value = filehdr_vaddr - s->vma;
4947 hash->root.u.def.section = s;
4948 }
4949 else
4950 {
4951 hash->root.u.def.value = filehdr_vaddr;
4952 hash->root.u.def.section = bfd_abs_section_ptr;
4953 }
4954
4955 hash->root.type = bfd_link_hash_defined;
4956 hash->def_regular = 1;
4957 hash->non_elf = 0;
4958 }
4959 }
4960
4961 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4962 m != NULL;
4963 m = m->next, p++)
4964 {
4965 if (p->p_type == PT_GNU_RELRO)
4966 {
4967 const Elf_Internal_Phdr *lp;
4968
4969 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4970
4971 if (link_info != NULL)
4972 {
4973 /* During linking the range of the RELRO segment is passed
4974 in link_info. */
4975 for (lp = phdrs; lp < phdrs + count; ++lp)
4976 {
4977 if (lp->p_type == PT_LOAD
4978 && lp->p_vaddr >= link_info->relro_start
4979 && lp->p_vaddr < link_info->relro_end
4980 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4981 break;
4982 }
4983
4984 /* PR ld/14207. If the RELRO segment doesn't fit in the
4985 LOAD segment, it should be removed. */
4986 if (lp == (phdrs + count))
4987 abort ();
4988 }
4989 else
4990 {
4991 /* Otherwise we are copying an executable or shared
4992 library, but we need to use the same linker logic. */
4993 for (lp = phdrs; lp < phdrs + count; ++lp)
4994 {
4995 if (lp->p_type == PT_LOAD
4996 && lp->p_paddr == p->p_paddr)
4997 break;
4998 }
4999 }
5000
5001 if (lp < phdrs + count)
5002 {
5003 p->p_vaddr = lp->p_vaddr;
5004 p->p_paddr = lp->p_paddr;
5005 p->p_offset = lp->p_offset;
5006 if (link_info != NULL)
5007 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5008 else if (m->p_size_valid)
5009 p->p_filesz = m->p_size;
5010 else
5011 abort ();
5012 p->p_memsz = p->p_filesz;
5013 /* Preserve the alignment and flags if they are valid. The
5014 gold linker generates RW/4 for the PT_GNU_RELRO section.
5015 It is better for objcopy/strip to honor these attributes
5016 otherwise gdb will choke when using separate debug files.
5017 */
5018 if (!m->p_align_valid)
5019 p->p_align = 1;
5020 if (!m->p_flags_valid)
5021 p->p_flags = (lp->p_flags & ~PF_W);
5022 }
5023 else
5024 {
5025 memset (p, 0, sizeof *p);
5026 p->p_type = PT_NULL;
5027 }
5028 }
5029 else if (m->count != 0)
5030 {
5031 if (p->p_type != PT_LOAD
5032 && (p->p_type != PT_NOTE
5033 || bfd_get_format (abfd) != bfd_core))
5034 {
5035 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
5036
5037 p->p_filesz = 0;
5038 p->p_offset = m->sections[0]->filepos;
5039 for (i = m->count; i-- != 0;)
5040 {
5041 asection *sect = m->sections[i];
5042 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5043 if (hdr->sh_type != SHT_NOBITS)
5044 {
5045 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5046 + hdr->sh_size);
5047 break;
5048 }
5049 }
5050 }
5051 }
5052 else if (m->includes_filehdr)
5053 {
5054 p->p_vaddr = filehdr_vaddr;
5055 if (! m->p_paddr_valid)
5056 p->p_paddr = filehdr_paddr;
5057 }
5058 else if (m->includes_phdrs)
5059 {
5060 p->p_vaddr = phdrs_vaddr;
5061 if (! m->p_paddr_valid)
5062 p->p_paddr = phdrs_paddr;
5063 }
5064 }
5065
5066 elf_tdata (abfd)->next_file_pos = off;
5067
5068 return TRUE;
5069}
5070
5071/* Work out the file positions of all the sections. This is called by
5072 _bfd_elf_compute_section_file_positions. All the section sizes and
5073 VMAs must be known before this is called.
5074
5075 Reloc sections come in two flavours: Those processed specially as
5076 "side-channel" data attached to a section to which they apply, and
5077 those that bfd doesn't process as relocations. The latter sort are
5078 stored in a normal bfd section by bfd_section_from_shdr. We don't
5079 consider the former sort here, unless they form part of the loadable
5080 image. Reloc sections not assigned here will be handled later by
5081 assign_file_positions_for_relocs.
5082
5083 We also don't set the positions of the .symtab and .strtab here. */
5084
5085static bfd_boolean
5086assign_file_positions_except_relocs (bfd *abfd,
5087 struct bfd_link_info *link_info)
5088{
5089 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5090 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5091 file_ptr off;
5092 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5093
5094 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5095 && bfd_get_format (abfd) != bfd_core)
5096 {
5097 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5098 unsigned int num_sec = elf_numsections (abfd);
5099 Elf_Internal_Shdr **hdrpp;
5100 unsigned int i;
5101
5102 /* Start after the ELF header. */
5103 off = i_ehdrp->e_ehsize;
5104
5105 /* We are not creating an executable, which means that we are
5106 not creating a program header, and that the actual order of
5107 the sections in the file is unimportant. */
5108 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5109 {
5110 Elf_Internal_Shdr *hdr;
5111
5112 hdr = *hdrpp;
5113 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5114 && hdr->bfd_section == NULL)
5115 || i == tdata->symtab_section
5116 || i == tdata->symtab_shndx_section
5117 || i == tdata->strtab_section)
5118 {
5119 hdr->sh_offset = -1;
5120 }
5121 else
5122 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5123 }
5124 }
5125 else
5126 {
5127 unsigned int alloc;
5128
5129 /* Assign file positions for the loaded sections based on the
5130 assignment of sections to segments. */
5131 if (!assign_file_positions_for_load_sections (abfd, link_info))
5132 return FALSE;
5133
5134 /* And for non-load sections. */
5135 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5136 return FALSE;
5137
5138 if (bed->elf_backend_modify_program_headers != NULL)
5139 {
5140 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5141 return FALSE;
5142 }
5143
5144 /* Write out the program headers. */
5145 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5146 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5147 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5148 return FALSE;
5149
5150 off = tdata->next_file_pos;
5151 }
5152
5153 /* Place the section headers. */
5154 off = align_file_position (off, 1 << bed->s->log_file_align);
5155 i_ehdrp->e_shoff = off;
5156 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5157
5158 tdata->next_file_pos = off;
5159
5160 return TRUE;
5161}
5162
5163static bfd_boolean
5164prep_headers (bfd *abfd)
5165{
5166 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5167 struct elf_strtab_hash *shstrtab;
5168 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5169
5170 i_ehdrp = elf_elfheader (abfd);
5171
5172 shstrtab = _bfd_elf_strtab_init ();
5173 if (shstrtab == NULL)
5174 return FALSE;
5175
5176 elf_shstrtab (abfd) = shstrtab;
5177
5178 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5179 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5180 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5181 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5182
5183 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5184 i_ehdrp->e_ident[EI_DATA] =
5185 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5186 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5187
5188 if ((abfd->flags & DYNAMIC) != 0)
5189 i_ehdrp->e_type = ET_DYN;
5190 else if ((abfd->flags & EXEC_P) != 0)
5191 i_ehdrp->e_type = ET_EXEC;
5192 else if (bfd_get_format (abfd) == bfd_core)
5193 i_ehdrp->e_type = ET_CORE;
5194 else
5195 i_ehdrp->e_type = ET_REL;
5196
5197 switch (bfd_get_arch (abfd))
5198 {
5199 case bfd_arch_unknown:
5200 i_ehdrp->e_machine = EM_NONE;
5201 break;
5202
5203 /* There used to be a long list of cases here, each one setting
5204 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5205 in the corresponding bfd definition. To avoid duplication,
5206 the switch was removed. Machines that need special handling
5207 can generally do it in elf_backend_final_write_processing(),
5208 unless they need the information earlier than the final write.
5209 Such need can generally be supplied by replacing the tests for
5210 e_machine with the conditions used to determine it. */
5211 default:
5212 i_ehdrp->e_machine = bed->elf_machine_code;
5213 }
5214
5215 i_ehdrp->e_version = bed->s->ev_current;
5216 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5217
5218 /* No program header, for now. */
5219 i_ehdrp->e_phoff = 0;
5220 i_ehdrp->e_phentsize = 0;
5221 i_ehdrp->e_phnum = 0;
5222
5223 /* Each bfd section is section header entry. */
5224 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5225 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5226
5227 /* If we're building an executable, we'll need a program header table. */
5228 if (abfd->flags & EXEC_P)
5229 /* It all happens later. */
5230 ;
5231 else
5232 {
5233 i_ehdrp->e_phentsize = 0;
5234 i_ehdrp->e_phoff = 0;
5235 }
5236
5237 elf_tdata (abfd)->symtab_hdr.sh_name =
5238 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5239 elf_tdata (abfd)->strtab_hdr.sh_name =
5240 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5241 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5242 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5243 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5244 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5245 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5246 return FALSE;
5247
5248 return TRUE;
5249}
5250
5251/* Assign file positions for all the reloc sections which are not part
5252 of the loadable file image. */
5253
5254void
5255_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5256{
5257 file_ptr off;
5258 unsigned int i, num_sec;
5259 Elf_Internal_Shdr **shdrpp;
5260
5261 off = elf_tdata (abfd)->next_file_pos;
5262
5263 num_sec = elf_numsections (abfd);
5264 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5265 {
5266 Elf_Internal_Shdr *shdrp;
5267
5268 shdrp = *shdrpp;
5269 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5270 && shdrp->sh_offset == -1)
5271 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5272 }
5273
5274 elf_tdata (abfd)->next_file_pos = off;
5275}
5276
5277bfd_boolean
5278_bfd_elf_write_object_contents (bfd *abfd)
5279{
5280 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5281 Elf_Internal_Shdr **i_shdrp;
5282 bfd_boolean failed;
5283 unsigned int count, num_sec;
5284
5285 if (! abfd->output_has_begun
5286 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5287 return FALSE;
5288
5289 i_shdrp = elf_elfsections (abfd);
5290
5291 failed = FALSE;
5292 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5293 if (failed)
5294 return FALSE;
5295
5296 _bfd_elf_assign_file_positions_for_relocs (abfd);
5297
5298 /* After writing the headers, we need to write the sections too... */
5299 num_sec = elf_numsections (abfd);
5300 for (count = 1; count < num_sec; count++)
5301 {
5302 if (bed->elf_backend_section_processing)
5303 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5304 if (i_shdrp[count]->contents)
5305 {
5306 bfd_size_type amt = i_shdrp[count]->sh_size;
5307
5308 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5309 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5310 return FALSE;
5311 }
5312 }
5313
5314 /* Write out the section header names. */
5315 if (elf_shstrtab (abfd) != NULL
5316 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5317 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5318 return FALSE;
5319
5320 if (bed->elf_backend_final_write_processing)
5321 (*bed->elf_backend_final_write_processing) (abfd,
5322 elf_tdata (abfd)->linker);
5323
5324 if (!bed->s->write_shdrs_and_ehdr (abfd))
5325 return FALSE;
5326
5327 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5328 if (elf_tdata (abfd)->after_write_object_contents)
5329 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5330
5331 return TRUE;
5332}
5333
5334bfd_boolean
5335_bfd_elf_write_corefile_contents (bfd *abfd)
5336{
5337 /* Hopefully this can be done just like an object file. */
5338 return _bfd_elf_write_object_contents (abfd);
5339}
5340
5341/* Given a section, search the header to find them. */
5342
5343unsigned int
5344_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5345{
5346 const struct elf_backend_data *bed;
5347 unsigned int sec_index;
5348
5349 if (elf_section_data (asect) != NULL
5350 && elf_section_data (asect)->this_idx != 0)
5351 return elf_section_data (asect)->this_idx;
5352
5353 if (bfd_is_abs_section (asect))
5354 sec_index = SHN_ABS;
5355 else if (bfd_is_com_section (asect))
5356 sec_index = SHN_COMMON;
5357 else if (bfd_is_und_section (asect))
5358 sec_index = SHN_UNDEF;
5359 else
5360 sec_index = SHN_BAD;
5361
5362 bed = get_elf_backend_data (abfd);
5363 if (bed->elf_backend_section_from_bfd_section)
5364 {
5365 int retval = sec_index;
5366
5367 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5368 return retval;
5369 }
5370
5371 if (sec_index == SHN_BAD)
5372 bfd_set_error (bfd_error_nonrepresentable_section);
5373
5374 return sec_index;
5375}
5376
5377/* Given a BFD symbol, return the index in the ELF symbol table, or -1
5378 on error. */
5379
5380int
5381_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5382{
5383 asymbol *asym_ptr = *asym_ptr_ptr;
5384 int idx;
5385 flagword flags = asym_ptr->flags;
5386
5387 /* When gas creates relocations against local labels, it creates its
5388 own symbol for the section, but does put the symbol into the
5389 symbol chain, so udata is 0. When the linker is generating
5390 relocatable output, this section symbol may be for one of the
5391 input sections rather than the output section. */
5392 if (asym_ptr->udata.i == 0
5393 && (flags & BSF_SECTION_SYM)
5394 && asym_ptr->section)
5395 {
5396 asection *sec;
5397 int indx;
5398
5399 sec = asym_ptr->section;
5400 if (sec->owner != abfd && sec->output_section != NULL)
5401 sec = sec->output_section;
5402 if (sec->owner == abfd
5403 && (indx = sec->index) < elf_num_section_syms (abfd)
5404 && elf_section_syms (abfd)[indx] != NULL)
5405 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5406 }
5407
5408 idx = asym_ptr->udata.i;
5409
5410 if (idx == 0)
5411 {
5412 /* This case can occur when using --strip-symbol on a symbol
5413 which is used in a relocation entry. */
5414 (*_bfd_error_handler)
5415 (_("%B: symbol `%s' required but not present"),
5416 abfd, bfd_asymbol_name (asym_ptr));
5417 bfd_set_error (bfd_error_no_symbols);
5418 return -1;
5419 }
5420
5421#if DEBUG & 4
5422 {
5423 fprintf (stderr,
5424 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5425 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5426 fflush (stderr);
5427 }
5428#endif
5429
5430 return idx;
5431}
5432
5433/* Rewrite program header information. */
5434
5435static bfd_boolean
5436rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5437{
5438 Elf_Internal_Ehdr *iehdr;
5439 struct elf_segment_map *map;
5440 struct elf_segment_map *map_first;
5441 struct elf_segment_map **pointer_to_map;
5442 Elf_Internal_Phdr *segment;
5443 asection *section;
5444 unsigned int i;
5445 unsigned int num_segments;
5446 bfd_boolean phdr_included = FALSE;
5447 bfd_boolean p_paddr_valid;
5448 bfd_vma maxpagesize;
5449 struct elf_segment_map *phdr_adjust_seg = NULL;
5450 unsigned int phdr_adjust_num = 0;
5451 const struct elf_backend_data *bed;
5452
5453 bed = get_elf_backend_data (ibfd);
5454 iehdr = elf_elfheader (ibfd);
5455
5456 map_first = NULL;
5457 pointer_to_map = &map_first;
5458
5459 num_segments = elf_elfheader (ibfd)->e_phnum;
5460 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5461
5462 /* Returns the end address of the segment + 1. */
5463#define SEGMENT_END(segment, start) \
5464 (start + (segment->p_memsz > segment->p_filesz \
5465 ? segment->p_memsz : segment->p_filesz))
5466
5467#define SECTION_SIZE(section, segment) \
5468 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5469 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5470 ? section->size : 0)
5471
5472 /* Returns TRUE if the given section is contained within
5473 the given segment. VMA addresses are compared. */
5474#define IS_CONTAINED_BY_VMA(section, segment) \
5475 (section->vma >= segment->p_vaddr \
5476 && (section->vma + SECTION_SIZE (section, segment) \
5477 <= (SEGMENT_END (segment, segment->p_vaddr))))
5478
5479 /* Returns TRUE if the given section is contained within
5480 the given segment. LMA addresses are compared. */
5481#define IS_CONTAINED_BY_LMA(section, segment, base) \
5482 (section->lma >= base \
5483 && (section->lma + SECTION_SIZE (section, segment) \
5484 <= SEGMENT_END (segment, base)))
5485
5486 /* Handle PT_NOTE segment. */
5487#define IS_NOTE(p, s) \
5488 (p->p_type == PT_NOTE \
5489 && elf_section_type (s) == SHT_NOTE \
5490 && (bfd_vma) s->filepos >= p->p_offset \
5491 && ((bfd_vma) s->filepos + s->size \
5492 <= p->p_offset + p->p_filesz))
5493
5494 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5495 etc. */
5496#define IS_COREFILE_NOTE(p, s) \
5497 (IS_NOTE (p, s) \
5498 && bfd_get_format (ibfd) == bfd_core \
5499 && s->vma == 0 \
5500 && s->lma == 0)
5501
5502 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5503 linker, which generates a PT_INTERP section with p_vaddr and
5504 p_memsz set to 0. */
5505#define IS_SOLARIS_PT_INTERP(p, s) \
5506 (p->p_vaddr == 0 \
5507 && p->p_paddr == 0 \
5508 && p->p_memsz == 0 \
5509 && p->p_filesz > 0 \
5510 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5511 && s->size > 0 \
5512 && (bfd_vma) s->filepos >= p->p_offset \
5513 && ((bfd_vma) s->filepos + s->size \
5514 <= p->p_offset + p->p_filesz))
5515
5516 /* Decide if the given section should be included in the given segment.
5517 A section will be included if:
5518 1. It is within the address space of the segment -- we use the LMA
5519 if that is set for the segment and the VMA otherwise,
5520 2. It is an allocated section or a NOTE section in a PT_NOTE
5521 segment.
5522 3. There is an output section associated with it,
5523 4. The section has not already been allocated to a previous segment.
5524 5. PT_GNU_STACK segments do not include any sections.
5525 6. PT_TLS segment includes only SHF_TLS sections.
5526 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5527 8. PT_DYNAMIC should not contain empty sections at the beginning
5528 (with the possible exception of .dynamic). */
5529#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5530 ((((segment->p_paddr \
5531 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5532 : IS_CONTAINED_BY_VMA (section, segment)) \
5533 && (section->flags & SEC_ALLOC) != 0) \
5534 || IS_NOTE (segment, section)) \
5535 && segment->p_type != PT_GNU_STACK \
5536 && (segment->p_type != PT_TLS \
5537 || (section->flags & SEC_THREAD_LOCAL)) \
5538 && (segment->p_type == PT_LOAD \
5539 || segment->p_type == PT_TLS \
5540 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5541 && (segment->p_type != PT_DYNAMIC \
5542 || SECTION_SIZE (section, segment) > 0 \
5543 || (segment->p_paddr \
5544 ? segment->p_paddr != section->lma \
5545 : segment->p_vaddr != section->vma) \
5546 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5547 == 0)) \
5548 && !section->segment_mark)
5549
5550/* If the output section of a section in the input segment is NULL,
5551 it is removed from the corresponding output segment. */
5552#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5553 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5554 && section->output_section != NULL)
5555
5556 /* Returns TRUE iff seg1 starts after the end of seg2. */
5557#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5558 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5559
5560 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5561 their VMA address ranges and their LMA address ranges overlap.
5562 It is possible to have overlapping VMA ranges without overlapping LMA
5563 ranges. RedBoot images for example can have both .data and .bss mapped
5564 to the same VMA range, but with the .data section mapped to a different
5565 LMA. */
5566#define SEGMENT_OVERLAPS(seg1, seg2) \
5567 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5568 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5569 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5570 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5571
5572 /* Initialise the segment mark field. */
5573 for (section = ibfd->sections; section != NULL; section = section->next)
5574 section->segment_mark = FALSE;
5575
5576 /* The Solaris linker creates program headers in which all the
5577 p_paddr fields are zero. When we try to objcopy or strip such a
5578 file, we get confused. Check for this case, and if we find it
5579 don't set the p_paddr_valid fields. */
5580 p_paddr_valid = FALSE;
5581 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5582 i < num_segments;
5583 i++, segment++)
5584 if (segment->p_paddr != 0)
5585 {
5586 p_paddr_valid = TRUE;
5587 break;
5588 }
5589
5590 /* Scan through the segments specified in the program header
5591 of the input BFD. For this first scan we look for overlaps
5592 in the loadable segments. These can be created by weird
5593 parameters to objcopy. Also, fix some solaris weirdness. */
5594 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5595 i < num_segments;
5596 i++, segment++)
5597 {
5598 unsigned int j;
5599 Elf_Internal_Phdr *segment2;
5600
5601 if (segment->p_type == PT_INTERP)
5602 for (section = ibfd->sections; section; section = section->next)
5603 if (IS_SOLARIS_PT_INTERP (segment, section))
5604 {
5605 /* Mininal change so that the normal section to segment
5606 assignment code will work. */
5607 segment->p_vaddr = section->vma;
5608 break;
5609 }
5610
5611 if (segment->p_type != PT_LOAD)
5612 {
5613 /* Remove PT_GNU_RELRO segment. */
5614 if (segment->p_type == PT_GNU_RELRO)
5615 segment->p_type = PT_NULL;
5616 continue;
5617 }
5618
5619 /* Determine if this segment overlaps any previous segments. */
5620 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5621 {
5622 bfd_signed_vma extra_length;
5623
5624 if (segment2->p_type != PT_LOAD
5625 || !SEGMENT_OVERLAPS (segment, segment2))
5626 continue;
5627
5628 /* Merge the two segments together. */
5629 if (segment2->p_vaddr < segment->p_vaddr)
5630 {
5631 /* Extend SEGMENT2 to include SEGMENT and then delete
5632 SEGMENT. */
5633 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5634 - SEGMENT_END (segment2, segment2->p_vaddr));
5635
5636 if (extra_length > 0)
5637 {
5638 segment2->p_memsz += extra_length;
5639 segment2->p_filesz += extra_length;
5640 }
5641
5642 segment->p_type = PT_NULL;
5643
5644 /* Since we have deleted P we must restart the outer loop. */
5645 i = 0;
5646 segment = elf_tdata (ibfd)->phdr;
5647 break;
5648 }
5649 else
5650 {
5651 /* Extend SEGMENT to include SEGMENT2 and then delete
5652 SEGMENT2. */
5653 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5654 - SEGMENT_END (segment, segment->p_vaddr));
5655
5656 if (extra_length > 0)
5657 {
5658 segment->p_memsz += extra_length;
5659 segment->p_filesz += extra_length;
5660 }
5661
5662 segment2->p_type = PT_NULL;
5663 }
5664 }
5665 }
5666
5667 /* The second scan attempts to assign sections to segments. */
5668 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5669 i < num_segments;
5670 i++, segment++)
5671 {
5672 unsigned int section_count;
5673 asection **sections;
5674 asection *output_section;
5675 unsigned int isec;
5676 bfd_vma matching_lma;
5677 bfd_vma suggested_lma;
5678 unsigned int j;
5679 bfd_size_type amt;
5680 asection *first_section;
5681 bfd_boolean first_matching_lma;
5682 bfd_boolean first_suggested_lma;
5683
5684 if (segment->p_type == PT_NULL)
5685 continue;
5686
5687 first_section = NULL;
5688 /* Compute how many sections might be placed into this segment. */
5689 for (section = ibfd->sections, section_count = 0;
5690 section != NULL;
5691 section = section->next)
5692 {
5693 /* Find the first section in the input segment, which may be
5694 removed from the corresponding output segment. */
5695 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5696 {
5697 if (first_section == NULL)
5698 first_section = section;
5699 if (section->output_section != NULL)
5700 ++section_count;
5701 }
5702 }
5703
5704 /* Allocate a segment map big enough to contain
5705 all of the sections we have selected. */
5706 amt = sizeof (struct elf_segment_map);
5707 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5708 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5709 if (map == NULL)
5710 return FALSE;
5711
5712 /* Initialise the fields of the segment map. Default to
5713 using the physical address of the segment in the input BFD. */
5714 map->next = NULL;
5715 map->p_type = segment->p_type;
5716 map->p_flags = segment->p_flags;
5717 map->p_flags_valid = 1;
5718
5719 /* If the first section in the input segment is removed, there is
5720 no need to preserve segment physical address in the corresponding
5721 output segment. */
5722 if (!first_section || first_section->output_section != NULL)
5723 {
5724 map->p_paddr = segment->p_paddr;
5725 map->p_paddr_valid = p_paddr_valid;
5726 }
5727
5728 /* Determine if this segment contains the ELF file header
5729 and if it contains the program headers themselves. */
5730 map->includes_filehdr = (segment->p_offset == 0
5731 && segment->p_filesz >= iehdr->e_ehsize);
5732 map->includes_phdrs = 0;
5733
5734 if (!phdr_included || segment->p_type != PT_LOAD)
5735 {
5736 map->includes_phdrs =
5737 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5738 && (segment->p_offset + segment->p_filesz
5739 >= ((bfd_vma) iehdr->e_phoff
5740 + iehdr->e_phnum * iehdr->e_phentsize)));
5741
5742 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5743 phdr_included = TRUE;
5744 }
5745
5746 if (section_count == 0)
5747 {
5748 /* Special segments, such as the PT_PHDR segment, may contain
5749 no sections, but ordinary, loadable segments should contain
5750 something. They are allowed by the ELF spec however, so only
5751 a warning is produced. */
5752 if (segment->p_type == PT_LOAD)
5753 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5754 " detected, is this intentional ?\n"),
5755 ibfd);
5756
5757 map->count = 0;
5758 *pointer_to_map = map;
5759 pointer_to_map = &map->next;
5760
5761 continue;
5762 }
5763
5764 /* Now scan the sections in the input BFD again and attempt
5765 to add their corresponding output sections to the segment map.
5766 The problem here is how to handle an output section which has
5767 been moved (ie had its LMA changed). There are four possibilities:
5768
5769 1. None of the sections have been moved.
5770 In this case we can continue to use the segment LMA from the
5771 input BFD.
5772
5773 2. All of the sections have been moved by the same amount.
5774 In this case we can change the segment's LMA to match the LMA
5775 of the first section.
5776
5777 3. Some of the sections have been moved, others have not.
5778 In this case those sections which have not been moved can be
5779 placed in the current segment which will have to have its size,
5780 and possibly its LMA changed, and a new segment or segments will
5781 have to be created to contain the other sections.
5782
5783 4. The sections have been moved, but not by the same amount.
5784 In this case we can change the segment's LMA to match the LMA
5785 of the first section and we will have to create a new segment
5786 or segments to contain the other sections.
5787
5788 In order to save time, we allocate an array to hold the section
5789 pointers that we are interested in. As these sections get assigned
5790 to a segment, they are removed from this array. */
5791
5792 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5793 if (sections == NULL)
5794 return FALSE;
5795
5796 /* Step One: Scan for segment vs section LMA conflicts.
5797 Also add the sections to the section array allocated above.
5798 Also add the sections to the current segment. In the common
5799 case, where the sections have not been moved, this means that
5800 we have completely filled the segment, and there is nothing
5801 more to do. */
5802 isec = 0;
5803 matching_lma = 0;
5804 suggested_lma = 0;
5805 first_matching_lma = TRUE;
5806 first_suggested_lma = TRUE;
5807
5808 for (section = ibfd->sections;
5809 section != NULL;
5810 section = section->next)
5811 if (section == first_section)
5812 break;
5813
5814 for (j = 0; section != NULL; section = section->next)
5815 {
5816 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5817 {
5818 output_section = section->output_section;
5819
5820 sections[j++] = section;
5821
5822 /* The Solaris native linker always sets p_paddr to 0.
5823 We try to catch that case here, and set it to the
5824 correct value. Note - some backends require that
5825 p_paddr be left as zero. */
5826 if (!p_paddr_valid
5827 && segment->p_vaddr != 0
5828 && !bed->want_p_paddr_set_to_zero
5829 && isec == 0
5830 && output_section->lma != 0
5831 && output_section->vma == (segment->p_vaddr
5832 + (map->includes_filehdr
5833 ? iehdr->e_ehsize
5834 : 0)
5835 + (map->includes_phdrs
5836 ? (iehdr->e_phnum
5837 * iehdr->e_phentsize)
5838 : 0)))
5839 map->p_paddr = segment->p_vaddr;
5840
5841 /* Match up the physical address of the segment with the
5842 LMA address of the output section. */
5843 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5844 || IS_COREFILE_NOTE (segment, section)
5845 || (bed->want_p_paddr_set_to_zero
5846 && IS_CONTAINED_BY_VMA (output_section, segment)))
5847 {
5848 if (first_matching_lma || output_section->lma < matching_lma)
5849 {
5850 matching_lma = output_section->lma;
5851 first_matching_lma = FALSE;
5852 }
5853
5854 /* We assume that if the section fits within the segment
5855 then it does not overlap any other section within that
5856 segment. */
5857 map->sections[isec++] = output_section;
5858 }
5859 else if (first_suggested_lma)
5860 {
5861 suggested_lma = output_section->lma;
5862 first_suggested_lma = FALSE;
5863 }
5864
5865 if (j == section_count)
5866 break;
5867 }
5868 }
5869
5870 BFD_ASSERT (j == section_count);
5871
5872 /* Step Two: Adjust the physical address of the current segment,
5873 if necessary. */
5874 if (isec == section_count)
5875 {
5876 /* All of the sections fitted within the segment as currently
5877 specified. This is the default case. Add the segment to
5878 the list of built segments and carry on to process the next
5879 program header in the input BFD. */
5880 map->count = section_count;
5881 *pointer_to_map = map;
5882 pointer_to_map = &map->next;
5883
5884 if (p_paddr_valid
5885 && !bed->want_p_paddr_set_to_zero
5886 && matching_lma != map->p_paddr
5887 && !map->includes_filehdr
5888 && !map->includes_phdrs)
5889 /* There is some padding before the first section in the
5890 segment. So, we must account for that in the output
5891 segment's vma. */
5892 map->p_vaddr_offset = matching_lma - map->p_paddr;
5893
5894 free (sections);
5895 continue;
5896 }
5897 else
5898 {
5899 if (!first_matching_lma)
5900 {
5901 /* At least one section fits inside the current segment.
5902 Keep it, but modify its physical address to match the
5903 LMA of the first section that fitted. */
5904 map->p_paddr = matching_lma;
5905 }
5906 else
5907 {
5908 /* None of the sections fitted inside the current segment.
5909 Change the current segment's physical address to match
5910 the LMA of the first section. */
5911 map->p_paddr = suggested_lma;
5912 }
5913
5914 /* Offset the segment physical address from the lma
5915 to allow for space taken up by elf headers. */
5916 if (map->includes_filehdr)
5917 {
5918 if (map->p_paddr >= iehdr->e_ehsize)
5919 map->p_paddr -= iehdr->e_ehsize;
5920 else
5921 {
5922 map->includes_filehdr = FALSE;
5923 map->includes_phdrs = FALSE;
5924 }
5925 }
5926
5927 if (map->includes_phdrs)
5928 {
5929 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5930 {
5931 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5932
5933 /* iehdr->e_phnum is just an estimate of the number
5934 of program headers that we will need. Make a note
5935 here of the number we used and the segment we chose
5936 to hold these headers, so that we can adjust the
5937 offset when we know the correct value. */
5938 phdr_adjust_num = iehdr->e_phnum;
5939 phdr_adjust_seg = map;
5940 }
5941 else
5942 map->includes_phdrs = FALSE;
5943 }
5944 }
5945
5946 /* Step Three: Loop over the sections again, this time assigning
5947 those that fit to the current segment and removing them from the
5948 sections array; but making sure not to leave large gaps. Once all
5949 possible sections have been assigned to the current segment it is
5950 added to the list of built segments and if sections still remain
5951 to be assigned, a new segment is constructed before repeating
5952 the loop. */
5953 isec = 0;
5954 do
5955 {
5956 map->count = 0;
5957 suggested_lma = 0;
5958 first_suggested_lma = TRUE;
5959
5960 /* Fill the current segment with sections that fit. */
5961 for (j = 0; j < section_count; j++)
5962 {
5963 section = sections[j];
5964
5965 if (section == NULL)
5966 continue;
5967
5968 output_section = section->output_section;
5969
5970 BFD_ASSERT (output_section != NULL);
5971
5972 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5973 || IS_COREFILE_NOTE (segment, section))
5974 {
5975 if (map->count == 0)
5976 {
5977 /* If the first section in a segment does not start at
5978 the beginning of the segment, then something is
5979 wrong. */
5980 if (output_section->lma
5981 != (map->p_paddr
5982 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5983 + (map->includes_phdrs
5984 ? iehdr->e_phnum * iehdr->e_phentsize
5985 : 0)))
5986 abort ();
5987 }
5988 else
5989 {
5990 asection *prev_sec;
5991
5992 prev_sec = map->sections[map->count - 1];
5993
5994 /* If the gap between the end of the previous section
5995 and the start of this section is more than
5996 maxpagesize then we need to start a new segment. */
5997 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5998 maxpagesize)
5999 < BFD_ALIGN (output_section->lma, maxpagesize))
6000 || (prev_sec->lma + prev_sec->size
6001 > output_section->lma))
6002 {
6003 if (first_suggested_lma)
6004 {
6005 suggested_lma = output_section->lma;
6006 first_suggested_lma = FALSE;
6007 }
6008
6009 continue;
6010 }
6011 }
6012
6013 map->sections[map->count++] = output_section;
6014 ++isec;
6015 sections[j] = NULL;
6016 section->segment_mark = TRUE;
6017 }
6018 else if (first_suggested_lma)
6019 {
6020 suggested_lma = output_section->lma;
6021 first_suggested_lma = FALSE;
6022 }
6023 }
6024
6025 BFD_ASSERT (map->count > 0);
6026
6027 /* Add the current segment to the list of built segments. */
6028 *pointer_to_map = map;
6029 pointer_to_map = &map->next;
6030
6031 if (isec < section_count)
6032 {
6033 /* We still have not allocated all of the sections to
6034 segments. Create a new segment here, initialise it
6035 and carry on looping. */
6036 amt = sizeof (struct elf_segment_map);
6037 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6038 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
6039 if (map == NULL)
6040 {
6041 free (sections);
6042 return FALSE;
6043 }
6044
6045 /* Initialise the fields of the segment map. Set the physical
6046 physical address to the LMA of the first section that has
6047 not yet been assigned. */
6048 map->next = NULL;
6049 map->p_type = segment->p_type;
6050 map->p_flags = segment->p_flags;
6051 map->p_flags_valid = 1;
6052 map->p_paddr = suggested_lma;
6053 map->p_paddr_valid = p_paddr_valid;
6054 map->includes_filehdr = 0;
6055 map->includes_phdrs = 0;
6056 }
6057 }
6058 while (isec < section_count);
6059
6060 free (sections);
6061 }
6062
6063 elf_tdata (obfd)->segment_map = map_first;
6064
6065 /* If we had to estimate the number of program headers that were
6066 going to be needed, then check our estimate now and adjust
6067 the offset if necessary. */
6068 if (phdr_adjust_seg != NULL)
6069 {
6070 unsigned int count;
6071
6072 for (count = 0, map = map_first; map != NULL; map = map->next)
6073 count++;
6074
6075 if (count > phdr_adjust_num)
6076 phdr_adjust_seg->p_paddr
6077 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
6078 }
6079
6080#undef SEGMENT_END
6081#undef SECTION_SIZE
6082#undef IS_CONTAINED_BY_VMA
6083#undef IS_CONTAINED_BY_LMA
6084#undef IS_NOTE
6085#undef IS_COREFILE_NOTE
6086#undef IS_SOLARIS_PT_INTERP
6087#undef IS_SECTION_IN_INPUT_SEGMENT
6088#undef INCLUDE_SECTION_IN_SEGMENT
6089#undef SEGMENT_AFTER_SEGMENT
6090#undef SEGMENT_OVERLAPS
6091 return TRUE;
6092}
6093
6094/* Copy ELF program header information. */
6095
6096static bfd_boolean
6097copy_elf_program_header (bfd *ibfd, bfd *obfd)
6098{
6099 Elf_Internal_Ehdr *iehdr;
6100 struct elf_segment_map *map;
6101 struct elf_segment_map *map_first;
6102 struct elf_segment_map **pointer_to_map;
6103 Elf_Internal_Phdr *segment;
6104 unsigned int i;
6105 unsigned int num_segments;
6106 bfd_boolean phdr_included = FALSE;
6107 bfd_boolean p_paddr_valid;
6108
6109 iehdr = elf_elfheader (ibfd);
6110
6111 map_first = NULL;
6112 pointer_to_map = &map_first;
6113
6114 /* If all the segment p_paddr fields are zero, don't set
6115 map->p_paddr_valid. */
6116 p_paddr_valid = FALSE;
6117 num_segments = elf_elfheader (ibfd)->e_phnum;
6118 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6119 i < num_segments;
6120 i++, segment++)
6121 if (segment->p_paddr != 0)
6122 {
6123 p_paddr_valid = TRUE;
6124 break;
6125 }
6126
6127 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6128 i < num_segments;
6129 i++, segment++)
6130 {
6131 asection *section;
6132 unsigned int section_count;
6133 bfd_size_type amt;
6134 Elf_Internal_Shdr *this_hdr;
6135 asection *first_section = NULL;
6136 asection *lowest_section;
6137
6138 /* Compute how many sections are in this segment. */
6139 for (section = ibfd->sections, section_count = 0;
6140 section != NULL;
6141 section = section->next)
6142 {
6143 this_hdr = &(elf_section_data(section)->this_hdr);
6144 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6145 {
6146 if (first_section == NULL)
6147 first_section = section;
6148 section_count++;
6149 }
6150 }
6151
6152 /* Allocate a segment map big enough to contain
6153 all of the sections we have selected. */
6154 amt = sizeof (struct elf_segment_map);
6155 if (section_count != 0)
6156 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6157 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6158 if (map == NULL)
6159 return FALSE;
6160
6161 /* Initialize the fields of the output segment map with the
6162 input segment. */
6163 map->next = NULL;
6164 map->p_type = segment->p_type;
6165 map->p_flags = segment->p_flags;
6166 map->p_flags_valid = 1;
6167 map->p_paddr = segment->p_paddr;
6168 map->p_paddr_valid = p_paddr_valid;
6169 map->p_align = segment->p_align;
6170 map->p_align_valid = 1;
6171 map->p_vaddr_offset = 0;
6172
6173 if (map->p_type == PT_GNU_RELRO)
6174 {
6175 /* The PT_GNU_RELRO segment may contain the first a few
6176 bytes in the .got.plt section even if the whole .got.plt
6177 section isn't in the PT_GNU_RELRO segment. We won't
6178 change the size of the PT_GNU_RELRO segment. */
6179 map->p_size = segment->p_memsz;
6180 map->p_size_valid = 1;
6181 }
6182
6183 /* Determine if this segment contains the ELF file header
6184 and if it contains the program headers themselves. */
6185 map->includes_filehdr = (segment->p_offset == 0
6186 && segment->p_filesz >= iehdr->e_ehsize);
6187
6188 map->includes_phdrs = 0;
6189 if (! phdr_included || segment->p_type != PT_LOAD)
6190 {
6191 map->includes_phdrs =
6192 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6193 && (segment->p_offset + segment->p_filesz
6194 >= ((bfd_vma) iehdr->e_phoff
6195 + iehdr->e_phnum * iehdr->e_phentsize)));
6196
6197 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6198 phdr_included = TRUE;
6199 }
6200
6201 lowest_section = first_section;
6202 if (section_count != 0)
6203 {
6204 unsigned int isec = 0;
6205
6206 for (section = first_section;
6207 section != NULL;
6208 section = section->next)
6209 {
6210 this_hdr = &(elf_section_data(section)->this_hdr);
6211 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6212 {
6213 map->sections[isec++] = section->output_section;
6214 if (section->lma < lowest_section->lma)
6215 lowest_section = section;
6216 if ((section->flags & SEC_ALLOC) != 0)
6217 {
6218 bfd_vma seg_off;
6219
6220 /* Section lmas are set up from PT_LOAD header
6221 p_paddr in _bfd_elf_make_section_from_shdr.
6222 If this header has a p_paddr that disagrees
6223 with the section lma, flag the p_paddr as
6224 invalid. */
6225 if ((section->flags & SEC_LOAD) != 0)
6226 seg_off = this_hdr->sh_offset - segment->p_offset;
6227 else
6228 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6229 if (section->lma - segment->p_paddr != seg_off)
6230 map->p_paddr_valid = FALSE;
6231 }
6232 if (isec == section_count)
6233 break;
6234 }
6235 }
6236 }
6237
6238 if (map->includes_filehdr && lowest_section != NULL)
6239 /* We need to keep the space used by the headers fixed. */
6240 map->header_size = lowest_section->vma - segment->p_vaddr;
6241
6242 if (!map->includes_phdrs
6243 && !map->includes_filehdr
6244 && map->p_paddr_valid)
6245 /* There is some other padding before the first section. */
6246 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6247 - segment->p_paddr);
6248
6249 map->count = section_count;
6250 *pointer_to_map = map;
6251 pointer_to_map = &map->next;
6252 }
6253
6254 elf_tdata (obfd)->segment_map = map_first;
6255 return TRUE;
6256}
6257
6258/* Copy private BFD data. This copies or rewrites ELF program header
6259 information. */
6260
6261static bfd_boolean
6262copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6263{
6264 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6265 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6266 return TRUE;
6267
6268 if (elf_tdata (ibfd)->phdr == NULL)
6269 return TRUE;
6270
6271 if (ibfd->xvec == obfd->xvec)
6272 {
6273 /* Check to see if any sections in the input BFD
6274 covered by ELF program header have changed. */
6275 Elf_Internal_Phdr *segment;
6276 asection *section, *osec;
6277 unsigned int i, num_segments;
6278 Elf_Internal_Shdr *this_hdr;
6279 const struct elf_backend_data *bed;
6280
6281 bed = get_elf_backend_data (ibfd);
6282
6283 /* Regenerate the segment map if p_paddr is set to 0. */
6284 if (bed->want_p_paddr_set_to_zero)
6285 goto rewrite;
6286
6287 /* Initialize the segment mark field. */
6288 for (section = obfd->sections; section != NULL;
6289 section = section->next)
6290 section->segment_mark = FALSE;
6291
6292 num_segments = elf_elfheader (ibfd)->e_phnum;
6293 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6294 i < num_segments;
6295 i++, segment++)
6296 {
6297 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6298 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6299 which severly confuses things, so always regenerate the segment
6300 map in this case. */
6301 if (segment->p_paddr == 0
6302 && segment->p_memsz == 0
6303 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6304 goto rewrite;
6305
6306 for (section = ibfd->sections;
6307 section != NULL; section = section->next)
6308 {
6309 /* We mark the output section so that we know it comes
6310 from the input BFD. */
6311 osec = section->output_section;
6312 if (osec)
6313 osec->segment_mark = TRUE;
6314
6315 /* Check if this section is covered by the segment. */
6316 this_hdr = &(elf_section_data(section)->this_hdr);
6317 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6318 {
6319 /* FIXME: Check if its output section is changed or
6320 removed. What else do we need to check? */
6321 if (osec == NULL
6322 || section->flags != osec->flags
6323 || section->lma != osec->lma
6324 || section->vma != osec->vma
6325 || section->size != osec->size
6326 || section->rawsize != osec->rawsize
6327 || section->alignment_power != osec->alignment_power)
6328 goto rewrite;
6329 }
6330 }
6331 }
6332
6333 /* Check to see if any output section do not come from the
6334 input BFD. */
6335 for (section = obfd->sections; section != NULL;
6336 section = section->next)
6337 {
6338 if (section->segment_mark == FALSE)
6339 goto rewrite;
6340 else
6341 section->segment_mark = FALSE;
6342 }
6343
6344 return copy_elf_program_header (ibfd, obfd);
6345 }
6346
6347rewrite:
6348 return rewrite_elf_program_header (ibfd, obfd);
6349}
6350
6351/* Initialize private output section information from input section. */
6352
6353bfd_boolean
6354_bfd_elf_init_private_section_data (bfd *ibfd,
6355 asection *isec,
6356 bfd *obfd,
6357 asection *osec,
6358 struct bfd_link_info *link_info)
6359
6360{
6361 Elf_Internal_Shdr *ihdr, *ohdr;
6362 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6363
6364 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6365 || obfd->xvec->flavour != bfd_target_elf_flavour)
6366 return TRUE;
6367
6368 BFD_ASSERT (elf_section_data (osec) != NULL);
6369
6370 /* For objcopy and relocatable link, don't copy the output ELF
6371 section type from input if the output BFD section flags have been
6372 set to something different. For a final link allow some flags
6373 that the linker clears to differ. */
6374 if (elf_section_type (osec) == SHT_NULL
6375 && (osec->flags == isec->flags
6376 || (final_link
6377 && ((osec->flags ^ isec->flags)
6378 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6379 elf_section_type (osec) = elf_section_type (isec);
6380
6381 /* FIXME: Is this correct for all OS/PROC specific flags? */
6382 elf_section_flags (osec) |= (elf_section_flags (isec)
6383 & (SHF_MASKOS | SHF_MASKPROC));
6384
6385 /* Set things up for objcopy and relocatable link. The output
6386 SHT_GROUP section will have its elf_next_in_group pointing back
6387 to the input group members. Ignore linker created group section.
6388 See elfNN_ia64_object_p in elfxx-ia64.c. */
6389 if (!final_link)
6390 {
6391 if (elf_sec_group (isec) == NULL
6392 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6393 {
6394 if (elf_section_flags (isec) & SHF_GROUP)
6395 elf_section_flags (osec) |= SHF_GROUP;
6396 elf_next_in_group (osec) = elf_next_in_group (isec);
6397 elf_section_data (osec)->group = elf_section_data (isec)->group;
6398 }
6399 }
6400
6401 ihdr = &elf_section_data (isec)->this_hdr;
6402
6403 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6404 don't use the output section of the linked-to section since it
6405 may be NULL at this point. */
6406 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6407 {
6408 ohdr = &elf_section_data (osec)->this_hdr;
6409 ohdr->sh_flags |= SHF_LINK_ORDER;
6410 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6411 }
6412
6413 osec->use_rela_p = isec->use_rela_p;
6414
6415 return TRUE;
6416}
6417
6418/* Copy private section information. This copies over the entsize
6419 field, and sometimes the info field. */
6420
6421bfd_boolean
6422_bfd_elf_copy_private_section_data (bfd *ibfd,
6423 asection *isec,
6424 bfd *obfd,
6425 asection *osec)
6426{
6427 Elf_Internal_Shdr *ihdr, *ohdr;
6428
6429 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6430 || obfd->xvec->flavour != bfd_target_elf_flavour)
6431 return TRUE;
6432
6433 ihdr = &elf_section_data (isec)->this_hdr;
6434 ohdr = &elf_section_data (osec)->this_hdr;
6435
6436 ohdr->sh_entsize = ihdr->sh_entsize;
6437
6438 if (ihdr->sh_type == SHT_SYMTAB
6439 || ihdr->sh_type == SHT_DYNSYM
6440 || ihdr->sh_type == SHT_GNU_verneed
6441 || ihdr->sh_type == SHT_GNU_verdef)
6442 ohdr->sh_info = ihdr->sh_info;
6443
6444 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6445 NULL);
6446}
6447
6448/* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6449 necessary if we are removing either the SHT_GROUP section or any of
6450 the group member sections. DISCARDED is the value that a section's
6451 output_section has if the section will be discarded, NULL when this
6452 function is called from objcopy, bfd_abs_section_ptr when called
6453 from the linker. */
6454
6455bfd_boolean
6456_bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6457{
6458 asection *isec;
6459
6460 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6461 if (elf_section_type (isec) == SHT_GROUP)
6462 {
6463 asection *first = elf_next_in_group (isec);
6464 asection *s = first;
6465 bfd_size_type removed = 0;
6466
6467 while (s != NULL)
6468 {
6469 /* If this member section is being output but the
6470 SHT_GROUP section is not, then clear the group info
6471 set up by _bfd_elf_copy_private_section_data. */
6472 if (s->output_section != discarded
6473 && isec->output_section == discarded)
6474 {
6475 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6476 elf_group_name (s->output_section) = NULL;
6477 }
6478 /* Conversely, if the member section is not being output
6479 but the SHT_GROUP section is, then adjust its size. */
6480 else if (s->output_section == discarded
6481 && isec->output_section != discarded)
6482 removed += 4;
6483 s = elf_next_in_group (s);
6484 if (s == first)
6485 break;
6486 }
6487 if (removed != 0)
6488 {
6489 if (discarded != NULL)
6490 {
6491 /* If we've been called for ld -r, then we need to
6492 adjust the input section size. This function may
6493 be called multiple times, so save the original
6494 size. */
6495 if (isec->rawsize == 0)
6496 isec->rawsize = isec->size;
6497 isec->size = isec->rawsize - removed;
6498 }
6499 else
6500 {
6501 /* Adjust the output section size when called from
6502 objcopy. */
6503 isec->output_section->size -= removed;
6504 }
6505 }
6506 }
6507
6508 return TRUE;
6509}
6510
6511/* Copy private header information. */
6512
6513bfd_boolean
6514_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6515{
6516 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6517 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6518 return TRUE;
6519
6520 /* Copy over private BFD data if it has not already been copied.
6521 This must be done here, rather than in the copy_private_bfd_data
6522 entry point, because the latter is called after the section
6523 contents have been set, which means that the program headers have
6524 already been worked out. */
6525 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6526 {
6527 if (! copy_private_bfd_data (ibfd, obfd))
6528 return FALSE;
6529 }
6530
6531 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6532}
6533
6534/* Copy private symbol information. If this symbol is in a section
6535 which we did not map into a BFD section, try to map the section
6536 index correctly. We use special macro definitions for the mapped
6537 section indices; these definitions are interpreted by the
6538 swap_out_syms function. */
6539
6540#define MAP_ONESYMTAB (SHN_HIOS + 1)
6541#define MAP_DYNSYMTAB (SHN_HIOS + 2)
6542#define MAP_STRTAB (SHN_HIOS + 3)
6543#define MAP_SHSTRTAB (SHN_HIOS + 4)
6544#define MAP_SYM_SHNDX (SHN_HIOS + 5)
6545
6546bfd_boolean
6547_bfd_elf_copy_private_symbol_data (bfd *ibfd,
6548 asymbol *isymarg,
6549 bfd *obfd,
6550 asymbol *osymarg)
6551{
6552 elf_symbol_type *isym, *osym;
6553
6554 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6555 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6556 return TRUE;
6557
6558 isym = elf_symbol_from (ibfd, isymarg);
6559 osym = elf_symbol_from (obfd, osymarg);
6560
6561 if (isym != NULL
6562 && isym->internal_elf_sym.st_shndx != 0
6563 && osym != NULL
6564 && bfd_is_abs_section (isym->symbol.section))
6565 {
6566 unsigned int shndx;
6567
6568 shndx = isym->internal_elf_sym.st_shndx;
6569 if (shndx == elf_onesymtab (ibfd))
6570 shndx = MAP_ONESYMTAB;
6571 else if (shndx == elf_dynsymtab (ibfd))
6572 shndx = MAP_DYNSYMTAB;
6573 else if (shndx == elf_tdata (ibfd)->strtab_section)
6574 shndx = MAP_STRTAB;
6575 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6576 shndx = MAP_SHSTRTAB;
6577 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6578 shndx = MAP_SYM_SHNDX;
6579 osym->internal_elf_sym.st_shndx = shndx;
6580 }
6581
6582 return TRUE;
6583}
6584
6585/* Swap out the symbols. */
6586
6587static bfd_boolean
6588swap_out_syms (bfd *abfd,
6589 struct bfd_strtab_hash **sttp,
6590 int relocatable_p)
6591{
6592 const struct elf_backend_data *bed;
6593 int symcount;
6594 asymbol **syms;
6595 struct bfd_strtab_hash *stt;
6596 Elf_Internal_Shdr *symtab_hdr;
6597 Elf_Internal_Shdr *symtab_shndx_hdr;
6598 Elf_Internal_Shdr *symstrtab_hdr;
6599 bfd_byte *outbound_syms;
6600 bfd_byte *outbound_shndx;
6601 int idx;
6602 bfd_size_type amt;
6603 bfd_boolean name_local_sections;
6604
6605 if (!elf_map_symbols (abfd))
6606 return FALSE;
6607
6608 /* Dump out the symtabs. */
6609 stt = _bfd_elf_stringtab_init ();
6610 if (stt == NULL)
6611 return FALSE;
6612
6613 bed = get_elf_backend_data (abfd);
6614 symcount = bfd_get_symcount (abfd);
6615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6616 symtab_hdr->sh_type = SHT_SYMTAB;
6617 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6618 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6619 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6620 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6621
6622 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6623 symstrtab_hdr->sh_type = SHT_STRTAB;
6624
6625 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6626 bed->s->sizeof_sym);
6627 if (outbound_syms == NULL)
6628 {
6629 _bfd_stringtab_free (stt);
6630 return FALSE;
6631 }
6632 symtab_hdr->contents = outbound_syms;
6633
6634 outbound_shndx = NULL;
6635 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6636 if (symtab_shndx_hdr->sh_name != 0)
6637 {
6638 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6639 outbound_shndx = (bfd_byte *)
6640 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6641 if (outbound_shndx == NULL)
6642 {
6643 _bfd_stringtab_free (stt);
6644 return FALSE;
6645 }
6646
6647 symtab_shndx_hdr->contents = outbound_shndx;
6648 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6649 symtab_shndx_hdr->sh_size = amt;
6650 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6651 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6652 }
6653
6654 /* Now generate the data (for "contents"). */
6655 {
6656 /* Fill in zeroth symbol and swap it out. */
6657 Elf_Internal_Sym sym;
6658 sym.st_name = 0;
6659 sym.st_value = 0;
6660 sym.st_size = 0;
6661 sym.st_info = 0;
6662 sym.st_other = 0;
6663 sym.st_shndx = SHN_UNDEF;
6664 sym.st_target_internal = 0;
6665 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6666 outbound_syms += bed->s->sizeof_sym;
6667 if (outbound_shndx != NULL)
6668 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6669 }
6670
6671 name_local_sections
6672 = (bed->elf_backend_name_local_section_symbols
6673 && bed->elf_backend_name_local_section_symbols (abfd));
6674
6675 syms = bfd_get_outsymbols (abfd);
6676 for (idx = 0; idx < symcount; idx++)
6677 {
6678 Elf_Internal_Sym sym;
6679 bfd_vma value = syms[idx]->value;
6680 elf_symbol_type *type_ptr;
6681 flagword flags = syms[idx]->flags;
6682 int type;
6683
6684 if (!name_local_sections
6685 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6686 {
6687 /* Local section symbols have no name. */
6688 sym.st_name = 0;
6689 }
6690 else
6691 {
6692 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6693 syms[idx]->name,
6694 TRUE, FALSE);
6695 if (sym.st_name == (unsigned long) -1)
6696 {
6697 _bfd_stringtab_free (stt);
6698 return FALSE;
6699 }
6700 }
6701
6702 type_ptr = elf_symbol_from (abfd, syms[idx]);
6703
6704 if ((flags & BSF_SECTION_SYM) == 0
6705 && bfd_is_com_section (syms[idx]->section))
6706 {
6707 /* ELF common symbols put the alignment into the `value' field,
6708 and the size into the `size' field. This is backwards from
6709 how BFD handles it, so reverse it here. */
6710 sym.st_size = value;
6711 if (type_ptr == NULL
6712 || type_ptr->internal_elf_sym.st_value == 0)
6713 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6714 else
6715 sym.st_value = type_ptr->internal_elf_sym.st_value;
6716 sym.st_shndx = _bfd_elf_section_from_bfd_section
6717 (abfd, syms[idx]->section);
6718 }
6719 else
6720 {
6721 asection *sec = syms[idx]->section;
6722 unsigned int shndx;
6723
6724 if (sec->output_section)
6725 {
6726 value += sec->output_offset;
6727 sec = sec->output_section;
6728 }
6729
6730 /* Don't add in the section vma for relocatable output. */
6731 if (! relocatable_p)
6732 value += sec->vma;
6733 sym.st_value = value;
6734 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6735
6736 if (bfd_is_abs_section (sec)
6737 && type_ptr != NULL
6738 && type_ptr->internal_elf_sym.st_shndx != 0)
6739 {
6740 /* This symbol is in a real ELF section which we did
6741 not create as a BFD section. Undo the mapping done
6742 by copy_private_symbol_data. */
6743 shndx = type_ptr->internal_elf_sym.st_shndx;
6744 switch (shndx)
6745 {
6746 case MAP_ONESYMTAB:
6747 shndx = elf_onesymtab (abfd);
6748 break;
6749 case MAP_DYNSYMTAB:
6750 shndx = elf_dynsymtab (abfd);
6751 break;
6752 case MAP_STRTAB:
6753 shndx = elf_tdata (abfd)->strtab_section;
6754 break;
6755 case MAP_SHSTRTAB:
6756 shndx = elf_tdata (abfd)->shstrtab_section;
6757 break;
6758 case MAP_SYM_SHNDX:
6759 shndx = elf_tdata (abfd)->symtab_shndx_section;
6760 break;
6761 default:
6762 break;
6763 }
6764 }
6765 else
6766 {
6767 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6768
6769 if (shndx == SHN_BAD)
6770 {
6771 asection *sec2;
6772
6773 /* Writing this would be a hell of a lot easier if
6774 we had some decent documentation on bfd, and
6775 knew what to expect of the library, and what to
6776 demand of applications. For example, it
6777 appears that `objcopy' might not set the
6778 section of a symbol to be a section that is
6779 actually in the output file. */
6780 sec2 = bfd_get_section_by_name (abfd, sec->name);
6781 if (sec2 == NULL)
6782 {
6783 _bfd_error_handler (_("\
6784Unable to find equivalent output section for symbol '%s' from section '%s'"),
6785 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6786 sec->name);
6787 bfd_set_error (bfd_error_invalid_operation);
6788 _bfd_stringtab_free (stt);
6789 return FALSE;
6790 }
6791
6792 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6793 BFD_ASSERT (shndx != SHN_BAD);
6794 }
6795 }
6796
6797 sym.st_shndx = shndx;
6798 }
6799
6800 if ((flags & BSF_THREAD_LOCAL) != 0)
6801 type = STT_TLS;
6802 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6803 type = STT_GNU_IFUNC;
6804 else if ((flags & BSF_FUNCTION) != 0)
6805 type = STT_FUNC;
6806 else if ((flags & BSF_OBJECT) != 0)
6807 type = STT_OBJECT;
6808 else if ((flags & BSF_RELC) != 0)
6809 type = STT_RELC;
6810 else if ((flags & BSF_SRELC) != 0)
6811 type = STT_SRELC;
6812 else
6813 type = STT_NOTYPE;
6814
6815 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6816 type = STT_TLS;
6817
6818 /* Processor-specific types. */
6819 if (type_ptr != NULL
6820 && bed->elf_backend_get_symbol_type)
6821 type = ((*bed->elf_backend_get_symbol_type)
6822 (&type_ptr->internal_elf_sym, type));
6823
6824 if (flags & BSF_SECTION_SYM)
6825 {
6826 if (flags & BSF_GLOBAL)
6827 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6828 else
6829 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6830 }
6831 else if (bfd_is_com_section (syms[idx]->section))
6832 {
6833#ifdef USE_STT_COMMON
6834 if (type == STT_OBJECT)
6835 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6836 else
6837#endif
6838 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6839 }
6840 else if (bfd_is_und_section (syms[idx]->section))
6841 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6842 ? STB_WEAK
6843 : STB_GLOBAL),
6844 type);
6845 else if (flags & BSF_FILE)
6846 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6847 else
6848 {
6849 int bind = STB_LOCAL;
6850
6851 if (flags & BSF_LOCAL)
6852 bind = STB_LOCAL;
6853 else if (flags & BSF_GNU_UNIQUE)
6854 bind = STB_GNU_UNIQUE;
6855 else if (flags & BSF_WEAK)
6856 bind = STB_WEAK;
6857 else if (flags & BSF_GLOBAL)
6858 bind = STB_GLOBAL;
6859
6860 sym.st_info = ELF_ST_INFO (bind, type);
6861 }
6862
6863 if (type_ptr != NULL)
6864 {
6865 sym.st_other = type_ptr->internal_elf_sym.st_other;
6866 sym.st_target_internal
6867 = type_ptr->internal_elf_sym.st_target_internal;
6868 }
6869 else
6870 {
6871 sym.st_other = 0;
6872 sym.st_target_internal = 0;
6873 }
6874
6875 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6876 outbound_syms += bed->s->sizeof_sym;
6877 if (outbound_shndx != NULL)
6878 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6879 }
6880
6881 *sttp = stt;
6882 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6883 symstrtab_hdr->sh_type = SHT_STRTAB;
6884
6885 symstrtab_hdr->sh_flags = 0;
6886 symstrtab_hdr->sh_addr = 0;
6887 symstrtab_hdr->sh_entsize = 0;
6888 symstrtab_hdr->sh_link = 0;
6889 symstrtab_hdr->sh_info = 0;
6890 symstrtab_hdr->sh_addralign = 1;
6891
6892 return TRUE;
6893}
6894
6895/* Return the number of bytes required to hold the symtab vector.
6896
6897 Note that we base it on the count plus 1, since we will null terminate
6898 the vector allocated based on this size. However, the ELF symbol table
6899 always has a dummy entry as symbol #0, so it ends up even. */
6900
6901long
6902_bfd_elf_get_symtab_upper_bound (bfd *abfd)
6903{
6904 long symcount;
6905 long symtab_size;
6906 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6907
6908 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6909 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6910 if (symcount > 0)
6911 symtab_size -= sizeof (asymbol *);
6912
6913 return symtab_size;
6914}
6915
6916long
6917_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6918{
6919 long symcount;
6920 long symtab_size;
6921 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6922
6923 if (elf_dynsymtab (abfd) == 0)
6924 {
6925 bfd_set_error (bfd_error_invalid_operation);
6926 return -1;
6927 }
6928
6929 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6930 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6931 if (symcount > 0)
6932 symtab_size -= sizeof (asymbol *);
6933
6934 return symtab_size;
6935}
6936
6937long
6938_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6939 sec_ptr asect)
6940{
6941 return (asect->reloc_count + 1) * sizeof (arelent *);
6942}
6943
6944/* Canonicalize the relocs. */
6945
6946long
6947_bfd_elf_canonicalize_reloc (bfd *abfd,
6948 sec_ptr section,
6949 arelent **relptr,
6950 asymbol **symbols)
6951{
6952 arelent *tblptr;
6953 unsigned int i;
6954 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6955
6956 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6957 return -1;
6958
6959 tblptr = section->relocation;
6960 for (i = 0; i < section->reloc_count; i++)
6961 *relptr++ = tblptr++;
6962
6963 *relptr = NULL;
6964
6965 return section->reloc_count;
6966}
6967
6968long
6969_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6970{
6971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6972 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6973
6974 if (symcount >= 0)
6975 bfd_get_symcount (abfd) = symcount;
6976 return symcount;
6977}
6978
6979long
6980_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6981 asymbol **allocation)
6982{
6983 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6984 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6985
6986 if (symcount >= 0)
6987 bfd_get_dynamic_symcount (abfd) = symcount;
6988 return symcount;
6989}
6990
6991/* Return the size required for the dynamic reloc entries. Any loadable
6992 section that was actually installed in the BFD, and has type SHT_REL
6993 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6994 dynamic reloc section. */
6995
6996long
6997_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6998{
6999 long ret;
7000 asection *s;
7001
7002 if (elf_dynsymtab (abfd) == 0)
7003 {
7004 bfd_set_error (bfd_error_invalid_operation);
7005 return -1;
7006 }
7007
7008 ret = sizeof (arelent *);
7009 for (s = abfd->sections; s != NULL; s = s->next)
7010 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7011 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7012 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7013 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
7014 * sizeof (arelent *));
7015
7016 return ret;
7017}
7018
7019/* Canonicalize the dynamic relocation entries. Note that we return the
7020 dynamic relocations as a single block, although they are actually
7021 associated with particular sections; the interface, which was
7022 designed for SunOS style shared libraries, expects that there is only
7023 one set of dynamic relocs. Any loadable section that was actually
7024 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
7025 dynamic symbol table, is considered to be a dynamic reloc section. */
7026
7027long
7028_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
7029 arelent **storage,
7030 asymbol **syms)
7031{
7032 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7033 asection *s;
7034 long ret;
7035
7036 if (elf_dynsymtab (abfd) == 0)
7037 {
7038 bfd_set_error (bfd_error_invalid_operation);
7039 return -1;
7040 }
7041
7042 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7043 ret = 0;
7044 for (s = abfd->sections; s != NULL; s = s->next)
7045 {
7046 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
7047 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
7048 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
7049 {
7050 arelent *p;
7051 long count, i;
7052
7053 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
7054 return -1;
7055 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
7056 p = s->relocation;
7057 for (i = 0; i < count; i++)
7058 *storage++ = p++;
7059 ret += count;
7060 }
7061 }
7062
7063 *storage = NULL;
7064
7065 return ret;
7066}
7067\f
7068/* Read in the version information. */
7069
7070bfd_boolean
7071_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
7072{
7073 bfd_byte *contents = NULL;
7074 unsigned int freeidx = 0;
7075
7076 if (elf_dynverref (abfd) != 0)
7077 {
7078 Elf_Internal_Shdr *hdr;
7079 Elf_External_Verneed *everneed;
7080 Elf_Internal_Verneed *iverneed;
7081 unsigned int i;
7082 bfd_byte *contents_end;
7083
7084 hdr = &elf_tdata (abfd)->dynverref_hdr;
7085
7086 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7087 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7088 if (elf_tdata (abfd)->verref == NULL)
7089 goto error_return;
7090
7091 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7092
7093 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7094 if (contents == NULL)
7095 {
7096error_return_verref:
7097 elf_tdata (abfd)->verref = NULL;
7098 elf_tdata (abfd)->cverrefs = 0;
7099 goto error_return;
7100 }
7101 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7102 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7103 goto error_return_verref;
7104
7105 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7106 goto error_return_verref;
7107
7108 BFD_ASSERT (sizeof (Elf_External_Verneed)
7109 == sizeof (Elf_External_Vernaux));
7110 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7111 everneed = (Elf_External_Verneed *) contents;
7112 iverneed = elf_tdata (abfd)->verref;
7113 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7114 {
7115 Elf_External_Vernaux *evernaux;
7116 Elf_Internal_Vernaux *ivernaux;
7117 unsigned int j;
7118
7119 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7120
7121 iverneed->vn_bfd = abfd;
7122
7123 iverneed->vn_filename =
7124 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7125 iverneed->vn_file);
7126 if (iverneed->vn_filename == NULL)
7127 goto error_return_verref;
7128
7129 if (iverneed->vn_cnt == 0)
7130 iverneed->vn_auxptr = NULL;
7131 else
7132 {
7133 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7134 bfd_alloc2 (abfd, iverneed->vn_cnt,
7135 sizeof (Elf_Internal_Vernaux));
7136 if (iverneed->vn_auxptr == NULL)
7137 goto error_return_verref;
7138 }
7139
7140 if (iverneed->vn_aux
7141 > (size_t) (contents_end - (bfd_byte *) everneed))
7142 goto error_return_verref;
7143
7144 evernaux = ((Elf_External_Vernaux *)
7145 ((bfd_byte *) everneed + iverneed->vn_aux));
7146 ivernaux = iverneed->vn_auxptr;
7147 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7148 {
7149 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7150
7151 ivernaux->vna_nodename =
7152 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7153 ivernaux->vna_name);
7154 if (ivernaux->vna_nodename == NULL)
7155 goto error_return_verref;
7156
7157 if (j + 1 < iverneed->vn_cnt)
7158 ivernaux->vna_nextptr = ivernaux + 1;
7159 else
7160 ivernaux->vna_nextptr = NULL;
7161
7162 if (ivernaux->vna_next
7163 > (size_t) (contents_end - (bfd_byte *) evernaux))
7164 goto error_return_verref;
7165
7166 evernaux = ((Elf_External_Vernaux *)
7167 ((bfd_byte *) evernaux + ivernaux->vna_next));
7168
7169 if (ivernaux->vna_other > freeidx)
7170 freeidx = ivernaux->vna_other;
7171 }
7172
7173 if (i + 1 < hdr->sh_info)
7174 iverneed->vn_nextref = iverneed + 1;
7175 else
7176 iverneed->vn_nextref = NULL;
7177
7178 if (iverneed->vn_next
7179 > (size_t) (contents_end - (bfd_byte *) everneed))
7180 goto error_return_verref;
7181
7182 everneed = ((Elf_External_Verneed *)
7183 ((bfd_byte *) everneed + iverneed->vn_next));
7184 }
7185
7186 free (contents);
7187 contents = NULL;
7188 }
7189
7190 if (elf_dynverdef (abfd) != 0)
7191 {
7192 Elf_Internal_Shdr *hdr;
7193 Elf_External_Verdef *everdef;
7194 Elf_Internal_Verdef *iverdef;
7195 Elf_Internal_Verdef *iverdefarr;
7196 Elf_Internal_Verdef iverdefmem;
7197 unsigned int i;
7198 unsigned int maxidx;
7199 bfd_byte *contents_end_def, *contents_end_aux;
7200
7201 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7202
7203 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7204 if (contents == NULL)
7205 goto error_return;
7206 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7207 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7208 goto error_return;
7209
7210 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7211 goto error_return;
7212
7213 BFD_ASSERT (sizeof (Elf_External_Verdef)
7214 >= sizeof (Elf_External_Verdaux));
7215 contents_end_def = contents + hdr->sh_size
7216 - sizeof (Elf_External_Verdef);
7217 contents_end_aux = contents + hdr->sh_size
7218 - sizeof (Elf_External_Verdaux);
7219
7220 /* We know the number of entries in the section but not the maximum
7221 index. Therefore we have to run through all entries and find
7222 the maximum. */
7223 everdef = (Elf_External_Verdef *) contents;
7224 maxidx = 0;
7225 for (i = 0; i < hdr->sh_info; ++i)
7226 {
7227 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7228
7229 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7230 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7231
7232 if (iverdefmem.vd_next
7233 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7234 goto error_return;
7235
7236 everdef = ((Elf_External_Verdef *)
7237 ((bfd_byte *) everdef + iverdefmem.vd_next));
7238 }
7239
7240 if (default_imported_symver)
7241 {
7242 if (freeidx > maxidx)
7243 maxidx = ++freeidx;
7244 else
7245 freeidx = ++maxidx;
7246 }
7247 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7248 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7249 if (elf_tdata (abfd)->verdef == NULL)
7250 goto error_return;
7251
7252 elf_tdata (abfd)->cverdefs = maxidx;
7253
7254 everdef = (Elf_External_Verdef *) contents;
7255 iverdefarr = elf_tdata (abfd)->verdef;
7256 for (i = 0; i < hdr->sh_info; i++)
7257 {
7258 Elf_External_Verdaux *everdaux;
7259 Elf_Internal_Verdaux *iverdaux;
7260 unsigned int j;
7261
7262 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7263
7264 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7265 {
7266error_return_verdef:
7267 elf_tdata (abfd)->verdef = NULL;
7268 elf_tdata (abfd)->cverdefs = 0;
7269 goto error_return;
7270 }
7271
7272 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7273 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7274
7275 iverdef->vd_bfd = abfd;
7276
7277 if (iverdef->vd_cnt == 0)
7278 iverdef->vd_auxptr = NULL;
7279 else
7280 {
7281 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7282 bfd_alloc2 (abfd, iverdef->vd_cnt,
7283 sizeof (Elf_Internal_Verdaux));
7284 if (iverdef->vd_auxptr == NULL)
7285 goto error_return_verdef;
7286 }
7287
7288 if (iverdef->vd_aux
7289 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7290 goto error_return_verdef;
7291
7292 everdaux = ((Elf_External_Verdaux *)
7293 ((bfd_byte *) everdef + iverdef->vd_aux));
7294 iverdaux = iverdef->vd_auxptr;
7295 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7296 {
7297 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7298
7299 iverdaux->vda_nodename =
7300 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7301 iverdaux->vda_name);
7302 if (iverdaux->vda_nodename == NULL)
7303 goto error_return_verdef;
7304
7305 if (j + 1 < iverdef->vd_cnt)
7306 iverdaux->vda_nextptr = iverdaux + 1;
7307 else
7308 iverdaux->vda_nextptr = NULL;
7309
7310 if (iverdaux->vda_next
7311 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7312 goto error_return_verdef;
7313
7314 everdaux = ((Elf_External_Verdaux *)
7315 ((bfd_byte *) everdaux + iverdaux->vda_next));
7316 }
7317
7318 if (iverdef->vd_cnt)
7319 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7320
7321 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7322 iverdef->vd_nextdef = iverdef + 1;
7323 else
7324 iverdef->vd_nextdef = NULL;
7325
7326 everdef = ((Elf_External_Verdef *)
7327 ((bfd_byte *) everdef + iverdef->vd_next));
7328 }
7329
7330 free (contents);
7331 contents = NULL;
7332 }
7333 else if (default_imported_symver)
7334 {
7335 if (freeidx < 3)
7336 freeidx = 3;
7337 else
7338 freeidx++;
7339
7340 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7341 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7342 if (elf_tdata (abfd)->verdef == NULL)
7343 goto error_return;
7344
7345 elf_tdata (abfd)->cverdefs = freeidx;
7346 }
7347
7348 /* Create a default version based on the soname. */
7349 if (default_imported_symver)
7350 {
7351 Elf_Internal_Verdef *iverdef;
7352 Elf_Internal_Verdaux *iverdaux;
7353
7354 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7355
7356 iverdef->vd_version = VER_DEF_CURRENT;
7357 iverdef->vd_flags = 0;
7358 iverdef->vd_ndx = freeidx;
7359 iverdef->vd_cnt = 1;
7360
7361 iverdef->vd_bfd = abfd;
7362
7363 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7364 if (iverdef->vd_nodename == NULL)
7365 goto error_return_verdef;
7366 iverdef->vd_nextdef = NULL;
7367 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7368 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7369 if (iverdef->vd_auxptr == NULL)
7370 goto error_return_verdef;
7371
7372 iverdaux = iverdef->vd_auxptr;
7373 iverdaux->vda_nodename = iverdef->vd_nodename;
7374 iverdaux->vda_nextptr = NULL;
7375 }
7376
7377 return TRUE;
7378
7379 error_return:
7380 if (contents != NULL)
7381 free (contents);
7382 return FALSE;
7383}
7384\f
7385asymbol *
7386_bfd_elf_make_empty_symbol (bfd *abfd)
7387{
7388 elf_symbol_type *newsym;
7389 bfd_size_type amt = sizeof (elf_symbol_type);
7390
7391 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7392 if (!newsym)
7393 return NULL;
7394 else
7395 {
7396 newsym->symbol.the_bfd = abfd;
7397 return &newsym->symbol;
7398 }
7399}
7400
7401void
7402_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7403 asymbol *symbol,
7404 symbol_info *ret)
7405{
7406 bfd_symbol_info (symbol, ret);
7407}
7408
7409/* Return whether a symbol name implies a local symbol. Most targets
7410 use this function for the is_local_label_name entry point, but some
7411 override it. */
7412
7413bfd_boolean
7414_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7415 const char *name)
7416{
7417 /* Normal local symbols start with ``.L''. */
7418 if (name[0] == '.' && name[1] == 'L')
7419 return TRUE;
7420
7421 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7422 DWARF debugging symbols starting with ``..''. */
7423 if (name[0] == '.' && name[1] == '.')
7424 return TRUE;
7425
7426 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7427 emitting DWARF debugging output. I suspect this is actually a
7428 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7429 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7430 underscore to be emitted on some ELF targets). For ease of use,
7431 we treat such symbols as local. */
7432 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7433 return TRUE;
7434
7435 return FALSE;
7436}
7437
7438alent *
7439_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7440 asymbol *symbol ATTRIBUTE_UNUSED)
7441{
7442 abort ();
7443 return NULL;
7444}
7445
7446bfd_boolean
7447_bfd_elf_set_arch_mach (bfd *abfd,
7448 enum bfd_architecture arch,
7449 unsigned long machine)
7450{
7451 /* If this isn't the right architecture for this backend, and this
7452 isn't the generic backend, fail. */
7453 if (arch != get_elf_backend_data (abfd)->arch
7454 && arch != bfd_arch_unknown
7455 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7456 return FALSE;
7457
7458 return bfd_default_set_arch_mach (abfd, arch, machine);
7459}
7460
7461/* Find the function to a particular section and offset,
7462 for error reporting. */
7463
7464static bfd_boolean
7465elf_find_function (bfd *abfd,
7466 asection *section,
7467 asymbol **symbols,
7468 bfd_vma offset,
7469 const char **filename_ptr,
7470 const char **functionname_ptr)
7471{
7472 static asection *last_section;
7473 static asymbol *func;
7474 static const char *filename;
7475 static bfd_size_type func_size;
7476
7477 if (symbols == NULL)
7478 return FALSE;
7479
7480 if (last_section != section
7481 || func == NULL
7482 || offset < func->value
7483 || offset >= func->value + func_size)
7484 {
7485 asymbol *file;
7486 bfd_vma low_func;
7487 asymbol **p;
7488 /* ??? Given multiple file symbols, it is impossible to reliably
7489 choose the right file name for global symbols. File symbols are
7490 local symbols, and thus all file symbols must sort before any
7491 global symbols. The ELF spec may be interpreted to say that a
7492 file symbol must sort before other local symbols, but currently
7493 ld -r doesn't do this. So, for ld -r output, it is possible to
7494 make a better choice of file name for local symbols by ignoring
7495 file symbols appearing after a given local symbol. */
7496 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7497 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7498
7499 filename = NULL;
7500 func = NULL;
7501 file = NULL;
7502 low_func = 0;
7503 state = nothing_seen;
7504 func_size = 0;
7505 last_section = section;
7506
7507 for (p = symbols; *p != NULL; p++)
7508 {
7509 asymbol *sym = *p;
7510 bfd_vma code_off;
7511 bfd_size_type size;
7512
7513 if ((sym->flags & BSF_FILE) != 0)
7514 {
7515 file = sym;
7516 if (state == symbol_seen)
7517 state = file_after_symbol_seen;
7518 continue;
7519 }
7520
7521 size = bed->maybe_function_sym (sym, section, &code_off);
7522 if (size != 0
7523 && code_off <= offset
7524 && (code_off > low_func
7525 || (code_off == low_func
7526 && size > func_size)))
7527 {
7528 func = sym;
7529 func_size = size;
7530 low_func = code_off;
7531 filename = NULL;
7532 if (file != NULL
7533 && ((sym->flags & BSF_LOCAL) != 0
7534 || state != file_after_symbol_seen))
7535 filename = bfd_asymbol_name (file);
7536 }
7537 if (state == nothing_seen)
7538 state = symbol_seen;
7539 }
7540 }
7541
7542 if (func == NULL)
7543 return FALSE;
7544
7545 if (filename_ptr)
7546 *filename_ptr = filename;
7547 if (functionname_ptr)
7548 *functionname_ptr = bfd_asymbol_name (func);
7549
7550 return TRUE;
7551}
7552
7553/* Find the nearest line to a particular section and offset,
7554 for error reporting. */
7555
7556bfd_boolean
7557_bfd_elf_find_nearest_line (bfd *abfd,
7558 asection *section,
7559 asymbol **symbols,
7560 bfd_vma offset,
7561 const char **filename_ptr,
7562 const char **functionname_ptr,
7563 unsigned int *line_ptr)
7564{
7565 bfd_boolean found;
7566
7567 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7568 filename_ptr, functionname_ptr,
7569 line_ptr))
7570 {
7571 if (!*functionname_ptr)
7572 elf_find_function (abfd, section, symbols, offset,
7573 *filename_ptr ? NULL : filename_ptr,
7574 functionname_ptr);
7575
7576 return TRUE;
7577 }
7578
7579 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7580 section, symbols, offset,
7581 filename_ptr, functionname_ptr,
7582 line_ptr, 0,
7583 &elf_tdata (abfd)->dwarf2_find_line_info))
7584 {
7585 if (!*functionname_ptr)
7586 elf_find_function (abfd, section, symbols, offset,
7587 *filename_ptr ? NULL : filename_ptr,
7588 functionname_ptr);
7589
7590 return TRUE;
7591 }
7592
7593 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7594 &found, filename_ptr,
7595 functionname_ptr, line_ptr,
7596 &elf_tdata (abfd)->line_info))
7597 return FALSE;
7598 if (found && (*functionname_ptr || *line_ptr))
7599 return TRUE;
7600
7601 if (symbols == NULL)
7602 return FALSE;
7603
7604 if (! elf_find_function (abfd, section, symbols, offset,
7605 filename_ptr, functionname_ptr))
7606 return FALSE;
7607
7608 *line_ptr = 0;
7609 return TRUE;
7610}
7611
7612/* Find the line for a symbol. */
7613
7614bfd_boolean
7615_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7616 const char **filename_ptr, unsigned int *line_ptr)
7617{
7618 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7619 filename_ptr, line_ptr, 0,
7620 &elf_tdata (abfd)->dwarf2_find_line_info);
7621}
7622
7623/* After a call to bfd_find_nearest_line, successive calls to
7624 bfd_find_inliner_info can be used to get source information about
7625 each level of function inlining that terminated at the address
7626 passed to bfd_find_nearest_line. Currently this is only supported
7627 for DWARF2 with appropriate DWARF3 extensions. */
7628
7629bfd_boolean
7630_bfd_elf_find_inliner_info (bfd *abfd,
7631 const char **filename_ptr,
7632 const char **functionname_ptr,
7633 unsigned int *line_ptr)
7634{
7635 bfd_boolean found;
7636 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7637 functionname_ptr, line_ptr,
7638 & elf_tdata (abfd)->dwarf2_find_line_info);
7639 return found;
7640}
7641
7642int
7643_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7644{
7645 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7646 int ret = bed->s->sizeof_ehdr;
7647
7648 if (!info->relocatable)
7649 {
7650 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7651
7652 if (phdr_size == (bfd_size_type) -1)
7653 {
7654 struct elf_segment_map *m;
7655
7656 phdr_size = 0;
7657 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7658 phdr_size += bed->s->sizeof_phdr;
7659
7660 if (phdr_size == 0)
7661 phdr_size = get_program_header_size (abfd, info);
7662 }
7663
7664 elf_tdata (abfd)->program_header_size = phdr_size;
7665 ret += phdr_size;
7666 }
7667
7668 return ret;
7669}
7670
7671bfd_boolean
7672_bfd_elf_set_section_contents (bfd *abfd,
7673 sec_ptr section,
7674 const void *location,
7675 file_ptr offset,
7676 bfd_size_type count)
7677{
7678 Elf_Internal_Shdr *hdr;
7679 bfd_signed_vma pos;
7680
7681 if (! abfd->output_has_begun
7682 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7683 return FALSE;
7684
7685 hdr = &elf_section_data (section)->this_hdr;
7686 pos = hdr->sh_offset + offset;
7687 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7688 || bfd_bwrite (location, count, abfd) != count)
7689 return FALSE;
7690
7691 return TRUE;
7692}
7693
7694void
7695_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7696 arelent *cache_ptr ATTRIBUTE_UNUSED,
7697 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7698{
7699 abort ();
7700}
7701
7702/* Try to convert a non-ELF reloc into an ELF one. */
7703
7704bfd_boolean
7705_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7706{
7707 /* Check whether we really have an ELF howto. */
7708
7709 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7710 {
7711 bfd_reloc_code_real_type code;
7712 reloc_howto_type *howto;
7713
7714 /* Alien reloc: Try to determine its type to replace it with an
7715 equivalent ELF reloc. */
7716
7717 if (areloc->howto->pc_relative)
7718 {
7719 switch (areloc->howto->bitsize)
7720 {
7721 case 8:
7722 code = BFD_RELOC_8_PCREL;
7723 break;
7724 case 12:
7725 code = BFD_RELOC_12_PCREL;
7726 break;
7727 case 16:
7728 code = BFD_RELOC_16_PCREL;
7729 break;
7730 case 24:
7731 code = BFD_RELOC_24_PCREL;
7732 break;
7733 case 32:
7734 code = BFD_RELOC_32_PCREL;
7735 break;
7736 case 64:
7737 code = BFD_RELOC_64_PCREL;
7738 break;
7739 default:
7740 goto fail;
7741 }
7742
7743 howto = bfd_reloc_type_lookup (abfd, code);
7744
7745 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7746 {
7747 if (howto->pcrel_offset)
7748 areloc->addend += areloc->address;
7749 else
7750 areloc->addend -= areloc->address; /* addend is unsigned!! */
7751 }
7752 }
7753 else
7754 {
7755 switch (areloc->howto->bitsize)
7756 {
7757 case 8:
7758 code = BFD_RELOC_8;
7759 break;
7760 case 14:
7761 code = BFD_RELOC_14;
7762 break;
7763 case 16:
7764 code = BFD_RELOC_16;
7765 break;
7766 case 26:
7767 code = BFD_RELOC_26;
7768 break;
7769 case 32:
7770 code = BFD_RELOC_32;
7771 break;
7772 case 64:
7773 code = BFD_RELOC_64;
7774 break;
7775 default:
7776 goto fail;
7777 }
7778
7779 howto = bfd_reloc_type_lookup (abfd, code);
7780 }
7781
7782 if (howto)
7783 areloc->howto = howto;
7784 else
7785 goto fail;
7786 }
7787
7788 return TRUE;
7789
7790 fail:
7791 (*_bfd_error_handler)
7792 (_("%B: unsupported relocation type %s"),
7793 abfd, areloc->howto->name);
7794 bfd_set_error (bfd_error_bad_value);
7795 return FALSE;
7796}
7797
7798bfd_boolean
7799_bfd_elf_close_and_cleanup (bfd *abfd)
7800{
7801 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7802 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7803 {
7804 if (elf_shstrtab (abfd) != NULL)
7805 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7806 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7807 }
7808
7809 return _bfd_generic_close_and_cleanup (abfd);
7810}
7811
7812/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7813 in the relocation's offset. Thus we cannot allow any sort of sanity
7814 range-checking to interfere. There is nothing else to do in processing
7815 this reloc. */
7816
7817bfd_reloc_status_type
7818_bfd_elf_rel_vtable_reloc_fn
7819 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7820 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7821 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7822 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7823{
7824 return bfd_reloc_ok;
7825}
7826\f
7827/* Elf core file support. Much of this only works on native
7828 toolchains, since we rely on knowing the
7829 machine-dependent procfs structure in order to pick
7830 out details about the corefile. */
7831
7832#ifdef HAVE_SYS_PROCFS_H
7833/* Needed for new procfs interface on sparc-solaris. */
7834# define _STRUCTURED_PROC 1
7835# include <sys/procfs.h>
7836#endif
7837
7838/* Return a PID that identifies a "thread" for threaded cores, or the
7839 PID of the main process for non-threaded cores. */
7840
7841static int
7842elfcore_make_pid (bfd *abfd)
7843{
7844 int pid;
7845
7846 pid = elf_tdata (abfd)->core_lwpid;
7847 if (pid == 0)
7848 pid = elf_tdata (abfd)->core_pid;
7849
7850 return pid;
7851}
7852
7853/* If there isn't a section called NAME, make one, using
7854 data from SECT. Note, this function will generate a
7855 reference to NAME, so you shouldn't deallocate or
7856 overwrite it. */
7857
7858static bfd_boolean
7859elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7860{
7861 asection *sect2;
7862
7863 if (bfd_get_section_by_name (abfd, name) != NULL)
7864 return TRUE;
7865
7866 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7867 if (sect2 == NULL)
7868 return FALSE;
7869
7870 sect2->size = sect->size;
7871 sect2->filepos = sect->filepos;
7872 sect2->alignment_power = sect->alignment_power;
7873 return TRUE;
7874}
7875
7876/* Create a pseudosection containing SIZE bytes at FILEPOS. This
7877 actually creates up to two pseudosections:
7878 - For the single-threaded case, a section named NAME, unless
7879 such a section already exists.
7880 - For the multi-threaded case, a section named "NAME/PID", where
7881 PID is elfcore_make_pid (abfd).
7882 Both pseudosections have identical contents. */
7883bfd_boolean
7884_bfd_elfcore_make_pseudosection (bfd *abfd,
7885 char *name,
7886 size_t size,
7887 ufile_ptr filepos)
7888{
7889 char buf[100];
7890 char *threaded_name;
7891 size_t len;
7892 asection *sect;
7893
7894 /* Build the section name. */
7895
7896 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7897 len = strlen (buf) + 1;
7898 threaded_name = (char *) bfd_alloc (abfd, len);
7899 if (threaded_name == NULL)
7900 return FALSE;
7901 memcpy (threaded_name, buf, len);
7902
7903 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7904 SEC_HAS_CONTENTS);
7905 if (sect == NULL)
7906 return FALSE;
7907 sect->size = size;
7908 sect->filepos = filepos;
7909 sect->alignment_power = 2;
7910
7911 return elfcore_maybe_make_sect (abfd, name, sect);
7912}
7913
7914/* prstatus_t exists on:
7915 solaris 2.5+
7916 linux 2.[01] + glibc
7917 unixware 4.2
7918*/
7919
7920#if defined (HAVE_PRSTATUS_T)
7921
7922static bfd_boolean
7923elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7924{
7925 size_t size;
7926 int offset;
7927
7928 if (note->descsz == sizeof (prstatus_t))
7929 {
7930 prstatus_t prstat;
7931
7932 size = sizeof (prstat.pr_reg);
7933 offset = offsetof (prstatus_t, pr_reg);
7934 memcpy (&prstat, note->descdata, sizeof (prstat));
7935
7936 /* Do not overwrite the core signal if it
7937 has already been set by another thread. */
7938 if (elf_tdata (abfd)->core_signal == 0)
7939 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7940 if (elf_tdata (abfd)->core_pid == 0)
7941 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7942
7943 /* pr_who exists on:
7944 solaris 2.5+
7945 unixware 4.2
7946 pr_who doesn't exist on:
7947 linux 2.[01]
7948 */
7949#if defined (HAVE_PRSTATUS_T_PR_WHO)
7950 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7951#else
7952 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7953#endif
7954 }
7955#if defined (HAVE_PRSTATUS32_T)
7956 else if (note->descsz == sizeof (prstatus32_t))
7957 {
7958 /* 64-bit host, 32-bit corefile */
7959 prstatus32_t prstat;
7960
7961 size = sizeof (prstat.pr_reg);
7962 offset = offsetof (prstatus32_t, pr_reg);
7963 memcpy (&prstat, note->descdata, sizeof (prstat));
7964
7965 /* Do not overwrite the core signal if it
7966 has already been set by another thread. */
7967 if (elf_tdata (abfd)->core_signal == 0)
7968 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7969 if (elf_tdata (abfd)->core_pid == 0)
7970 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7971
7972 /* pr_who exists on:
7973 solaris 2.5+
7974 unixware 4.2
7975 pr_who doesn't exist on:
7976 linux 2.[01]
7977 */
7978#if defined (HAVE_PRSTATUS32_T_PR_WHO)
7979 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7980#else
7981 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7982#endif
7983 }
7984#endif /* HAVE_PRSTATUS32_T */
7985 else
7986 {
7987 /* Fail - we don't know how to handle any other
7988 note size (ie. data object type). */
7989 return TRUE;
7990 }
7991
7992 /* Make a ".reg/999" section and a ".reg" section. */
7993 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7994 size, note->descpos + offset);
7995}
7996#endif /* defined (HAVE_PRSTATUS_T) */
7997
7998/* Create a pseudosection containing the exact contents of NOTE. */
7999static bfd_boolean
8000elfcore_make_note_pseudosection (bfd *abfd,
8001 char *name,
8002 Elf_Internal_Note *note)
8003{
8004 return _bfd_elfcore_make_pseudosection (abfd, name,
8005 note->descsz, note->descpos);
8006}
8007
8008/* There isn't a consistent prfpregset_t across platforms,
8009 but it doesn't matter, because we don't have to pick this
8010 data structure apart. */
8011
8012static bfd_boolean
8013elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
8014{
8015 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8016}
8017
8018/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
8019 type of NT_PRXFPREG. Just include the whole note's contents
8020 literally. */
8021
8022static bfd_boolean
8023elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
8024{
8025 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8026}
8027
8028/* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
8029 with a note type of NT_X86_XSTATE. Just include the whole note's
8030 contents literally. */
8031
8032static bfd_boolean
8033elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
8034{
8035 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
8036}
8037
8038static bfd_boolean
8039elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
8040{
8041 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
8042}
8043
8044static bfd_boolean
8045elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
8046{
8047 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
8048}
8049
8050static bfd_boolean
8051elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
8052{
8053 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
8054}
8055
8056static bfd_boolean
8057elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
8058{
8059 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
8060}
8061
8062static bfd_boolean
8063elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
8064{
8065 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
8066}
8067
8068static bfd_boolean
8069elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
8070{
8071 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
8072}
8073
8074static bfd_boolean
8075elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
8076{
8077 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
8078}
8079
8080static bfd_boolean
8081elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
8082{
8083 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
8084}
8085
8086static bfd_boolean
8087elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
8088{
8089 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
8090}
8091
8092static bfd_boolean
8093elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
8094{
8095 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
8096}
8097
8098static bfd_boolean
8099elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
8100{
8101 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8102}
8103
8104#if defined (HAVE_PRPSINFO_T)
8105typedef prpsinfo_t elfcore_psinfo_t;
8106#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8107typedef prpsinfo32_t elfcore_psinfo32_t;
8108#endif
8109#endif
8110
8111#if defined (HAVE_PSINFO_T)
8112typedef psinfo_t elfcore_psinfo_t;
8113#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8114typedef psinfo32_t elfcore_psinfo32_t;
8115#endif
8116#endif
8117
8118/* return a malloc'ed copy of a string at START which is at
8119 most MAX bytes long, possibly without a terminating '\0'.
8120 the copy will always have a terminating '\0'. */
8121
8122char *
8123_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8124{
8125 char *dups;
8126 char *end = (char *) memchr (start, '\0', max);
8127 size_t len;
8128
8129 if (end == NULL)
8130 len = max;
8131 else
8132 len = end - start;
8133
8134 dups = (char *) bfd_alloc (abfd, len + 1);
8135 if (dups == NULL)
8136 return NULL;
8137
8138 memcpy (dups, start, len);
8139 dups[len] = '\0';
8140
8141 return dups;
8142}
8143
8144#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8145static bfd_boolean
8146elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8147{
8148 if (note->descsz == sizeof (elfcore_psinfo_t))
8149 {
8150 elfcore_psinfo_t psinfo;
8151
8152 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8153
8154#if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8155 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8156#endif
8157 elf_tdata (abfd)->core_program
8158 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8159 sizeof (psinfo.pr_fname));
8160
8161 elf_tdata (abfd)->core_command
8162 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8163 sizeof (psinfo.pr_psargs));
8164 }
8165#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8166 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8167 {
8168 /* 64-bit host, 32-bit corefile */
8169 elfcore_psinfo32_t psinfo;
8170
8171 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8172
8173#if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8174 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8175#endif
8176 elf_tdata (abfd)->core_program
8177 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8178 sizeof (psinfo.pr_fname));
8179
8180 elf_tdata (abfd)->core_command
8181 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8182 sizeof (psinfo.pr_psargs));
8183 }
8184#endif
8185
8186 else
8187 {
8188 /* Fail - we don't know how to handle any other
8189 note size (ie. data object type). */
8190 return TRUE;
8191 }
8192
8193 /* Note that for some reason, a spurious space is tacked
8194 onto the end of the args in some (at least one anyway)
8195 implementations, so strip it off if it exists. */
8196
8197 {
8198 char *command = elf_tdata (abfd)->core_command;
8199 int n = strlen (command);
8200
8201 if (0 < n && command[n - 1] == ' ')
8202 command[n - 1] = '\0';
8203 }
8204
8205 return TRUE;
8206}
8207#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8208
8209#if defined (HAVE_PSTATUS_T)
8210static bfd_boolean
8211elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8212{
8213 if (note->descsz == sizeof (pstatus_t)
8214#if defined (HAVE_PXSTATUS_T)
8215 || note->descsz == sizeof (pxstatus_t)
8216#endif
8217 )
8218 {
8219 pstatus_t pstat;
8220
8221 memcpy (&pstat, note->descdata, sizeof (pstat));
8222
8223 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8224 }
8225#if defined (HAVE_PSTATUS32_T)
8226 else if (note->descsz == sizeof (pstatus32_t))
8227 {
8228 /* 64-bit host, 32-bit corefile */
8229 pstatus32_t pstat;
8230
8231 memcpy (&pstat, note->descdata, sizeof (pstat));
8232
8233 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8234 }
8235#endif
8236 /* Could grab some more details from the "representative"
8237 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8238 NT_LWPSTATUS note, presumably. */
8239
8240 return TRUE;
8241}
8242#endif /* defined (HAVE_PSTATUS_T) */
8243
8244#if defined (HAVE_LWPSTATUS_T)
8245static bfd_boolean
8246elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8247{
8248 lwpstatus_t lwpstat;
8249 char buf[100];
8250 char *name;
8251 size_t len;
8252 asection *sect;
8253
8254 if (note->descsz != sizeof (lwpstat)
8255#if defined (HAVE_LWPXSTATUS_T)
8256 && note->descsz != sizeof (lwpxstatus_t)
8257#endif
8258 )
8259 return TRUE;
8260
8261 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8262
8263 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8264 /* Do not overwrite the core signal if it has already been set by
8265 another thread. */
8266 if (elf_tdata (abfd)->core_signal == 0)
8267 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8268
8269 /* Make a ".reg/999" section. */
8270
8271 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8272 len = strlen (buf) + 1;
8273 name = bfd_alloc (abfd, len);
8274 if (name == NULL)
8275 return FALSE;
8276 memcpy (name, buf, len);
8277
8278 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8279 if (sect == NULL)
8280 return FALSE;
8281
8282#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8283 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8284 sect->filepos = note->descpos
8285 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8286#endif
8287
8288#if defined (HAVE_LWPSTATUS_T_PR_REG)
8289 sect->size = sizeof (lwpstat.pr_reg);
8290 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8291#endif
8292
8293 sect->alignment_power = 2;
8294
8295 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8296 return FALSE;
8297
8298 /* Make a ".reg2/999" section */
8299
8300 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8301 len = strlen (buf) + 1;
8302 name = bfd_alloc (abfd, len);
8303 if (name == NULL)
8304 return FALSE;
8305 memcpy (name, buf, len);
8306
8307 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8308 if (sect == NULL)
8309 return FALSE;
8310
8311#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8312 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8313 sect->filepos = note->descpos
8314 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8315#endif
8316
8317#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8318 sect->size = sizeof (lwpstat.pr_fpreg);
8319 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8320#endif
8321
8322 sect->alignment_power = 2;
8323
8324 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8325}
8326#endif /* defined (HAVE_LWPSTATUS_T) */
8327
8328static bfd_boolean
8329elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8330{
8331 char buf[30];
8332 char *name;
8333 size_t len;
8334 asection *sect;
8335 int type;
8336 int is_active_thread;
8337 bfd_vma base_addr;
8338
8339 if (note->descsz < 728)
8340 return TRUE;
8341
8342 if (! CONST_STRNEQ (note->namedata, "win32"))
8343 return TRUE;
8344
8345 type = bfd_get_32 (abfd, note->descdata);
8346
8347 switch (type)
8348 {
8349 case 1 /* NOTE_INFO_PROCESS */:
8350 /* FIXME: need to add ->core_command. */
8351 /* process_info.pid */
8352 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8353 /* process_info.signal */
8354 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8355 break;
8356
8357 case 2 /* NOTE_INFO_THREAD */:
8358 /* Make a ".reg/999" section. */
8359 /* thread_info.tid */
8360 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8361
8362 len = strlen (buf) + 1;
8363 name = (char *) bfd_alloc (abfd, len);
8364 if (name == NULL)
8365 return FALSE;
8366
8367 memcpy (name, buf, len);
8368
8369 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8370 if (sect == NULL)
8371 return FALSE;
8372
8373 /* sizeof (thread_info.thread_context) */
8374 sect->size = 716;
8375 /* offsetof (thread_info.thread_context) */
8376 sect->filepos = note->descpos + 12;
8377 sect->alignment_power = 2;
8378
8379 /* thread_info.is_active_thread */
8380 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8381
8382 if (is_active_thread)
8383 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8384 return FALSE;
8385 break;
8386
8387 case 3 /* NOTE_INFO_MODULE */:
8388 /* Make a ".module/xxxxxxxx" section. */
8389 /* module_info.base_address */
8390 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8391 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8392
8393 len = strlen (buf) + 1;
8394 name = (char *) bfd_alloc (abfd, len);
8395 if (name == NULL)
8396 return FALSE;
8397
8398 memcpy (name, buf, len);
8399
8400 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8401
8402 if (sect == NULL)
8403 return FALSE;
8404
8405 sect->size = note->descsz;
8406 sect->filepos = note->descpos;
8407 sect->alignment_power = 2;
8408 break;
8409
8410 default:
8411 return TRUE;
8412 }
8413
8414 return TRUE;
8415}
8416
8417static bfd_boolean
8418elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8419{
8420 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8421
8422 switch (note->type)
8423 {
8424 default:
8425 return TRUE;
8426
8427 case NT_PRSTATUS:
8428 if (bed->elf_backend_grok_prstatus)
8429 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8430 return TRUE;
8431#if defined (HAVE_PRSTATUS_T)
8432 return elfcore_grok_prstatus (abfd, note);
8433#else
8434 return TRUE;
8435#endif
8436
8437#if defined (HAVE_PSTATUS_T)
8438 case NT_PSTATUS:
8439 return elfcore_grok_pstatus (abfd, note);
8440#endif
8441
8442#if defined (HAVE_LWPSTATUS_T)
8443 case NT_LWPSTATUS:
8444 return elfcore_grok_lwpstatus (abfd, note);
8445#endif
8446
8447 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8448 return elfcore_grok_prfpreg (abfd, note);
8449
8450 case NT_WIN32PSTATUS:
8451 return elfcore_grok_win32pstatus (abfd, note);
8452
8453 case NT_PRXFPREG: /* Linux SSE extension */
8454 if (note->namesz == 6
8455 && strcmp (note->namedata, "LINUX") == 0)
8456 return elfcore_grok_prxfpreg (abfd, note);
8457 else
8458 return TRUE;
8459
8460 case NT_X86_XSTATE: /* Linux XSAVE extension */
8461 if (note->namesz == 6
8462 && strcmp (note->namedata, "LINUX") == 0)
8463 return elfcore_grok_xstatereg (abfd, note);
8464 else
8465 return TRUE;
8466
8467 case NT_PPC_VMX:
8468 if (note->namesz == 6
8469 && strcmp (note->namedata, "LINUX") == 0)
8470 return elfcore_grok_ppc_vmx (abfd, note);
8471 else
8472 return TRUE;
8473
8474 case NT_PPC_VSX:
8475 if (note->namesz == 6
8476 && strcmp (note->namedata, "LINUX") == 0)
8477 return elfcore_grok_ppc_vsx (abfd, note);
8478 else
8479 return TRUE;
8480
8481 case NT_S390_HIGH_GPRS:
8482 if (note->namesz == 6
8483 && strcmp (note->namedata, "LINUX") == 0)
8484 return elfcore_grok_s390_high_gprs (abfd, note);
8485 else
8486 return TRUE;
8487
8488 case NT_S390_TIMER:
8489 if (note->namesz == 6
8490 && strcmp (note->namedata, "LINUX") == 0)
8491 return elfcore_grok_s390_timer (abfd, note);
8492 else
8493 return TRUE;
8494
8495 case NT_S390_TODCMP:
8496 if (note->namesz == 6
8497 && strcmp (note->namedata, "LINUX") == 0)
8498 return elfcore_grok_s390_todcmp (abfd, note);
8499 else
8500 return TRUE;
8501
8502 case NT_S390_TODPREG:
8503 if (note->namesz == 6
8504 && strcmp (note->namedata, "LINUX") == 0)
8505 return elfcore_grok_s390_todpreg (abfd, note);
8506 else
8507 return TRUE;
8508
8509 case NT_S390_CTRS:
8510 if (note->namesz == 6
8511 && strcmp (note->namedata, "LINUX") == 0)
8512 return elfcore_grok_s390_ctrs (abfd, note);
8513 else
8514 return TRUE;
8515
8516 case NT_S390_PREFIX:
8517 if (note->namesz == 6
8518 && strcmp (note->namedata, "LINUX") == 0)
8519 return elfcore_grok_s390_prefix (abfd, note);
8520 else
8521 return TRUE;
8522
8523 case NT_S390_LAST_BREAK:
8524 if (note->namesz == 6
8525 && strcmp (note->namedata, "LINUX") == 0)
8526 return elfcore_grok_s390_last_break (abfd, note);
8527 else
8528 return TRUE;
8529
8530 case NT_S390_SYSTEM_CALL:
8531 if (note->namesz == 6
8532 && strcmp (note->namedata, "LINUX") == 0)
8533 return elfcore_grok_s390_system_call (abfd, note);
8534 else
8535 return TRUE;
8536
8537 case NT_ARM_VFP:
8538 if (note->namesz == 6
8539 && strcmp (note->namedata, "LINUX") == 0)
8540 return elfcore_grok_arm_vfp (abfd, note);
8541 else
8542 return TRUE;
8543
8544 case NT_PRPSINFO:
8545 case NT_PSINFO:
8546 if (bed->elf_backend_grok_psinfo)
8547 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8548 return TRUE;
8549#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8550 return elfcore_grok_psinfo (abfd, note);
8551#else
8552 return TRUE;
8553#endif
8554
8555 case NT_AUXV:
8556 {
8557 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8558 SEC_HAS_CONTENTS);
8559
8560 if (sect == NULL)
8561 return FALSE;
8562 sect->size = note->descsz;
8563 sect->filepos = note->descpos;
8564 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8565
8566 return TRUE;
8567 }
8568 }
8569}
8570
8571static bfd_boolean
8572elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8573{
8574 elf_tdata (abfd)->build_id_size = note->descsz;
8575 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8576 if (elf_tdata (abfd)->build_id == NULL)
8577 return FALSE;
8578
8579 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8580
8581 return TRUE;
8582}
8583
8584static bfd_boolean
8585elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8586{
8587 switch (note->type)
8588 {
8589 default:
8590 return TRUE;
8591
8592 case NT_GNU_BUILD_ID:
8593 return elfobj_grok_gnu_build_id (abfd, note);
8594 }
8595}
8596
8597static bfd_boolean
8598elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8599{
8600 struct sdt_note *cur =
8601 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8602 + note->descsz);
8603
8604 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8605 cur->size = (bfd_size_type) note->descsz;
8606 memcpy (cur->data, note->descdata, note->descsz);
8607
8608 elf_tdata (abfd)->sdt_note_head = cur;
8609
8610 return TRUE;
8611}
8612
8613static bfd_boolean
8614elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8615{
8616 switch (note->type)
8617 {
8618 case NT_STAPSDT:
8619 return elfobj_grok_stapsdt_note_1 (abfd, note);
8620
8621 default:
8622 return TRUE;
8623 }
8624}
8625
8626static bfd_boolean
8627elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8628{
8629 char *cp;
8630
8631 cp = strchr (note->namedata, '@');
8632 if (cp != NULL)
8633 {
8634 *lwpidp = atoi(cp + 1);
8635 return TRUE;
8636 }
8637 return FALSE;
8638}
8639
8640static bfd_boolean
8641elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8642{
8643 /* Signal number at offset 0x08. */
8644 elf_tdata (abfd)->core_signal
8645 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8646
8647 /* Process ID at offset 0x50. */
8648 elf_tdata (abfd)->core_pid
8649 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8650
8651 /* Command name at 0x7c (max 32 bytes, including nul). */
8652 elf_tdata (abfd)->core_command
8653 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8654
8655 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8656 note);
8657}
8658
8659static bfd_boolean
8660elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8661{
8662 int lwp;
8663
8664 if (elfcore_netbsd_get_lwpid (note, &lwp))
8665 elf_tdata (abfd)->core_lwpid = lwp;
8666
8667 if (note->type == NT_NETBSDCORE_PROCINFO)
8668 {
8669 /* NetBSD-specific core "procinfo". Note that we expect to
8670 find this note before any of the others, which is fine,
8671 since the kernel writes this note out first when it
8672 creates a core file. */
8673
8674 return elfcore_grok_netbsd_procinfo (abfd, note);
8675 }
8676
8677 /* As of Jan 2002 there are no other machine-independent notes
8678 defined for NetBSD core files. If the note type is less
8679 than the start of the machine-dependent note types, we don't
8680 understand it. */
8681
8682 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8683 return TRUE;
8684
8685
8686 switch (bfd_get_arch (abfd))
8687 {
8688 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8689 PT_GETFPREGS == mach+2. */
8690
8691 case bfd_arch_alpha:
8692 case bfd_arch_sparc:
8693 switch (note->type)
8694 {
8695 case NT_NETBSDCORE_FIRSTMACH+0:
8696 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8697
8698 case NT_NETBSDCORE_FIRSTMACH+2:
8699 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8700
8701 default:
8702 return TRUE;
8703 }
8704
8705 /* On all other arch's, PT_GETREGS == mach+1 and
8706 PT_GETFPREGS == mach+3. */
8707
8708 default:
8709 switch (note->type)
8710 {
8711 case NT_NETBSDCORE_FIRSTMACH+1:
8712 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8713
8714 case NT_NETBSDCORE_FIRSTMACH+3:
8715 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8716
8717 default:
8718 return TRUE;
8719 }
8720 }
8721 /* NOTREACHED */
8722}
8723
8724static bfd_boolean
8725elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8726{
8727 /* Signal number at offset 0x08. */
8728 elf_tdata (abfd)->core_signal
8729 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8730
8731 /* Process ID at offset 0x20. */
8732 elf_tdata (abfd)->core_pid
8733 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8734
8735 /* Command name at 0x48 (max 32 bytes, including nul). */
8736 elf_tdata (abfd)->core_command
8737 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8738
8739 return TRUE;
8740}
8741
8742static bfd_boolean
8743elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8744{
8745 if (note->type == NT_OPENBSD_PROCINFO)
8746 return elfcore_grok_openbsd_procinfo (abfd, note);
8747
8748 if (note->type == NT_OPENBSD_REGS)
8749 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8750
8751 if (note->type == NT_OPENBSD_FPREGS)
8752 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8753
8754 if (note->type == NT_OPENBSD_XFPREGS)
8755 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8756
8757 if (note->type == NT_OPENBSD_AUXV)
8758 {
8759 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8760 SEC_HAS_CONTENTS);
8761
8762 if (sect == NULL)
8763 return FALSE;
8764 sect->size = note->descsz;
8765 sect->filepos = note->descpos;
8766 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8767
8768 return TRUE;
8769 }
8770
8771 if (note->type == NT_OPENBSD_WCOOKIE)
8772 {
8773 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8774 SEC_HAS_CONTENTS);
8775
8776 if (sect == NULL)
8777 return FALSE;
8778 sect->size = note->descsz;
8779 sect->filepos = note->descpos;
8780 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8781
8782 return TRUE;
8783 }
8784
8785 return TRUE;
8786}
8787
8788static bfd_boolean
8789elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8790{
8791 void *ddata = note->descdata;
8792 char buf[100];
8793 char *name;
8794 asection *sect;
8795 short sig;
8796 unsigned flags;
8797
8798 /* nto_procfs_status 'pid' field is at offset 0. */
8799 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8800
8801 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8802 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8803
8804 /* nto_procfs_status 'flags' field is at offset 8. */
8805 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8806
8807 /* nto_procfs_status 'what' field is at offset 14. */
8808 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8809 {
8810 elf_tdata (abfd)->core_signal = sig;
8811 elf_tdata (abfd)->core_lwpid = *tid;
8812 }
8813
8814 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8815 do not come from signals so we make sure we set the current
8816 thread just in case. */
8817 if (flags & 0x00000080)
8818 elf_tdata (abfd)->core_lwpid = *tid;
8819
8820 /* Make a ".qnx_core_status/%d" section. */
8821 sprintf (buf, ".qnx_core_status/%ld", *tid);
8822
8823 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8824 if (name == NULL)
8825 return FALSE;
8826 strcpy (name, buf);
8827
8828 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8829 if (sect == NULL)
8830 return FALSE;
8831
8832 sect->size = note->descsz;
8833 sect->filepos = note->descpos;
8834 sect->alignment_power = 2;
8835
8836 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8837}
8838
8839static bfd_boolean
8840elfcore_grok_nto_regs (bfd *abfd,
8841 Elf_Internal_Note *note,
8842 long tid,
8843 char *base)
8844{
8845 char buf[100];
8846 char *name;
8847 asection *sect;
8848
8849 /* Make a "(base)/%d" section. */
8850 sprintf (buf, "%s/%ld", base, tid);
8851
8852 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8853 if (name == NULL)
8854 return FALSE;
8855 strcpy (name, buf);
8856
8857 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8858 if (sect == NULL)
8859 return FALSE;
8860
8861 sect->size = note->descsz;
8862 sect->filepos = note->descpos;
8863 sect->alignment_power = 2;
8864
8865 /* This is the current thread. */
8866 if (elf_tdata (abfd)->core_lwpid == tid)
8867 return elfcore_maybe_make_sect (abfd, base, sect);
8868
8869 return TRUE;
8870}
8871
8872#define BFD_QNT_CORE_INFO 7
8873#define BFD_QNT_CORE_STATUS 8
8874#define BFD_QNT_CORE_GREG 9
8875#define BFD_QNT_CORE_FPREG 10
8876
8877static bfd_boolean
8878elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8879{
8880 /* Every GREG section has a STATUS section before it. Store the
8881 tid from the previous call to pass down to the next gregs
8882 function. */
8883 static long tid = 1;
8884
8885 switch (note->type)
8886 {
8887 case BFD_QNT_CORE_INFO:
8888 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8889 case BFD_QNT_CORE_STATUS:
8890 return elfcore_grok_nto_status (abfd, note, &tid);
8891 case BFD_QNT_CORE_GREG:
8892 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8893 case BFD_QNT_CORE_FPREG:
8894 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8895 default:
8896 return TRUE;
8897 }
8898}
8899
8900static bfd_boolean
8901elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8902{
8903 char *name;
8904 asection *sect;
8905 size_t len;
8906
8907 /* Use note name as section name. */
8908 len = note->namesz;
8909 name = (char *) bfd_alloc (abfd, len);
8910 if (name == NULL)
8911 return FALSE;
8912 memcpy (name, note->namedata, len);
8913 name[len - 1] = '\0';
8914
8915 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8916 if (sect == NULL)
8917 return FALSE;
8918
8919 sect->size = note->descsz;
8920 sect->filepos = note->descpos;
8921 sect->alignment_power = 1;
8922
8923 return TRUE;
8924}
8925
8926/* Function: elfcore_write_note
8927
8928 Inputs:
8929 buffer to hold note, and current size of buffer
8930 name of note
8931 type of note
8932 data for note
8933 size of data for note
8934
8935 Writes note to end of buffer. ELF64 notes are written exactly as
8936 for ELF32, despite the current (as of 2006) ELF gabi specifying
8937 that they ought to have 8-byte namesz and descsz field, and have
8938 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8939
8940 Return:
8941 Pointer to realloc'd buffer, *BUFSIZ updated. */
8942
8943char *
8944elfcore_write_note (bfd *abfd,
8945 char *buf,
8946 int *bufsiz,
8947 const char *name,
8948 int type,
8949 const void *input,
8950 int size)
8951{
8952 Elf_External_Note *xnp;
8953 size_t namesz;
8954 size_t newspace;
8955 char *dest;
8956
8957 namesz = 0;
8958 if (name != NULL)
8959 namesz = strlen (name) + 1;
8960
8961 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8962
8963 buf = (char *) realloc (buf, *bufsiz + newspace);
8964 if (buf == NULL)
8965 return buf;
8966 dest = buf + *bufsiz;
8967 *bufsiz += newspace;
8968 xnp = (Elf_External_Note *) dest;
8969 H_PUT_32 (abfd, namesz, xnp->namesz);
8970 H_PUT_32 (abfd, size, xnp->descsz);
8971 H_PUT_32 (abfd, type, xnp->type);
8972 dest = xnp->name;
8973 if (name != NULL)
8974 {
8975 memcpy (dest, name, namesz);
8976 dest += namesz;
8977 while (namesz & 3)
8978 {
8979 *dest++ = '\0';
8980 ++namesz;
8981 }
8982 }
8983 memcpy (dest, input, size);
8984 dest += size;
8985 while (size & 3)
8986 {
8987 *dest++ = '\0';
8988 ++size;
8989 }
8990 return buf;
8991}
8992
8993char *
8994elfcore_write_prpsinfo (bfd *abfd,
8995 char *buf,
8996 int *bufsiz,
8997 const char *fname,
8998 const char *psargs)
8999{
9000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9001
9002 if (bed->elf_backend_write_core_note != NULL)
9003 {
9004 char *ret;
9005 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9006 NT_PRPSINFO, fname, psargs);
9007 if (ret != NULL)
9008 return ret;
9009 }
9010
9011#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9012#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9013 if (bed->s->elfclass == ELFCLASS32)
9014 {
9015#if defined (HAVE_PSINFO32_T)
9016 psinfo32_t data;
9017 int note_type = NT_PSINFO;
9018#else
9019 prpsinfo32_t data;
9020 int note_type = NT_PRPSINFO;
9021#endif
9022
9023 memset (&data, 0, sizeof (data));
9024 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9025 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9026 return elfcore_write_note (abfd, buf, bufsiz,
9027 "CORE", note_type, &data, sizeof (data));
9028 }
9029 else
9030#endif
9031 {
9032#if defined (HAVE_PSINFO_T)
9033 psinfo_t data;
9034 int note_type = NT_PSINFO;
9035#else
9036 prpsinfo_t data;
9037 int note_type = NT_PRPSINFO;
9038#endif
9039
9040 memset (&data, 0, sizeof (data));
9041 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
9042 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
9043 return elfcore_write_note (abfd, buf, bufsiz,
9044 "CORE", note_type, &data, sizeof (data));
9045 }
9046#endif /* PSINFO_T or PRPSINFO_T */
9047
9048 free (buf);
9049 return NULL;
9050}
9051
9052char *
9053elfcore_write_prstatus (bfd *abfd,
9054 char *buf,
9055 int *bufsiz,
9056 long pid,
9057 int cursig,
9058 const void *gregs)
9059{
9060 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9061
9062 if (bed->elf_backend_write_core_note != NULL)
9063 {
9064 char *ret;
9065 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
9066 NT_PRSTATUS,
9067 pid, cursig, gregs);
9068 if (ret != NULL)
9069 return ret;
9070 }
9071
9072#if defined (HAVE_PRSTATUS_T)
9073#if defined (HAVE_PRSTATUS32_T)
9074 if (bed->s->elfclass == ELFCLASS32)
9075 {
9076 prstatus32_t prstat;
9077
9078 memset (&prstat, 0, sizeof (prstat));
9079 prstat.pr_pid = pid;
9080 prstat.pr_cursig = cursig;
9081 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9082 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9083 NT_PRSTATUS, &prstat, sizeof (prstat));
9084 }
9085 else
9086#endif
9087 {
9088 prstatus_t prstat;
9089
9090 memset (&prstat, 0, sizeof (prstat));
9091 prstat.pr_pid = pid;
9092 prstat.pr_cursig = cursig;
9093 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
9094 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
9095 NT_PRSTATUS, &prstat, sizeof (prstat));
9096 }
9097#endif /* HAVE_PRSTATUS_T */
9098
9099 free (buf);
9100 return NULL;
9101}
9102
9103#if defined (HAVE_LWPSTATUS_T)
9104char *
9105elfcore_write_lwpstatus (bfd *abfd,
9106 char *buf,
9107 int *bufsiz,
9108 long pid,
9109 int cursig,
9110 const void *gregs)
9111{
9112 lwpstatus_t lwpstat;
9113 const char *note_name = "CORE";
9114
9115 memset (&lwpstat, 0, sizeof (lwpstat));
9116 lwpstat.pr_lwpid = pid >> 16;
9117 lwpstat.pr_cursig = cursig;
9118#if defined (HAVE_LWPSTATUS_T_PR_REG)
9119 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9120#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9121#if !defined(gregs)
9122 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9123 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9124#else
9125 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9126 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9127#endif
9128#endif
9129 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9130 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9131}
9132#endif /* HAVE_LWPSTATUS_T */
9133
9134#if defined (HAVE_PSTATUS_T)
9135char *
9136elfcore_write_pstatus (bfd *abfd,
9137 char *buf,
9138 int *bufsiz,
9139 long pid,
9140 int cursig ATTRIBUTE_UNUSED,
9141 const void *gregs ATTRIBUTE_UNUSED)
9142{
9143 const char *note_name = "CORE";
9144#if defined (HAVE_PSTATUS32_T)
9145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9146
9147 if (bed->s->elfclass == ELFCLASS32)
9148 {
9149 pstatus32_t pstat;
9150
9151 memset (&pstat, 0, sizeof (pstat));
9152 pstat.pr_pid = pid & 0xffff;
9153 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9154 NT_PSTATUS, &pstat, sizeof (pstat));
9155 return buf;
9156 }
9157 else
9158#endif
9159 {
9160 pstatus_t pstat;
9161
9162 memset (&pstat, 0, sizeof (pstat));
9163 pstat.pr_pid = pid & 0xffff;
9164 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9165 NT_PSTATUS, &pstat, sizeof (pstat));
9166 return buf;
9167 }
9168}
9169#endif /* HAVE_PSTATUS_T */
9170
9171char *
9172elfcore_write_prfpreg (bfd *abfd,
9173 char *buf,
9174 int *bufsiz,
9175 const void *fpregs,
9176 int size)
9177{
9178 const char *note_name = "CORE";
9179 return elfcore_write_note (abfd, buf, bufsiz,
9180 note_name, NT_FPREGSET, fpregs, size);
9181}
9182
9183char *
9184elfcore_write_prxfpreg (bfd *abfd,
9185 char *buf,
9186 int *bufsiz,
9187 const void *xfpregs,
9188 int size)
9189{
9190 char *note_name = "LINUX";
9191 return elfcore_write_note (abfd, buf, bufsiz,
9192 note_name, NT_PRXFPREG, xfpregs, size);
9193}
9194
9195char *
9196elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9197 const void *xfpregs, int size)
9198{
9199 char *note_name = "LINUX";
9200 return elfcore_write_note (abfd, buf, bufsiz,
9201 note_name, NT_X86_XSTATE, xfpregs, size);
9202}
9203
9204char *
9205elfcore_write_ppc_vmx (bfd *abfd,
9206 char *buf,
9207 int *bufsiz,
9208 const void *ppc_vmx,
9209 int size)
9210{
9211 char *note_name = "LINUX";
9212 return elfcore_write_note (abfd, buf, bufsiz,
9213 note_name, NT_PPC_VMX, ppc_vmx, size);
9214}
9215
9216char *
9217elfcore_write_ppc_vsx (bfd *abfd,
9218 char *buf,
9219 int *bufsiz,
9220 const void *ppc_vsx,
9221 int size)
9222{
9223 char *note_name = "LINUX";
9224 return elfcore_write_note (abfd, buf, bufsiz,
9225 note_name, NT_PPC_VSX, ppc_vsx, size);
9226}
9227
9228static char *
9229elfcore_write_s390_high_gprs (bfd *abfd,
9230 char *buf,
9231 int *bufsiz,
9232 const void *s390_high_gprs,
9233 int size)
9234{
9235 char *note_name = "LINUX";
9236 return elfcore_write_note (abfd, buf, bufsiz,
9237 note_name, NT_S390_HIGH_GPRS,
9238 s390_high_gprs, size);
9239}
9240
9241char *
9242elfcore_write_s390_timer (bfd *abfd,
9243 char *buf,
9244 int *bufsiz,
9245 const void *s390_timer,
9246 int size)
9247{
9248 char *note_name = "LINUX";
9249 return elfcore_write_note (abfd, buf, bufsiz,
9250 note_name, NT_S390_TIMER, s390_timer, size);
9251}
9252
9253char *
9254elfcore_write_s390_todcmp (bfd *abfd,
9255 char *buf,
9256 int *bufsiz,
9257 const void *s390_todcmp,
9258 int size)
9259{
9260 char *note_name = "LINUX";
9261 return elfcore_write_note (abfd, buf, bufsiz,
9262 note_name, NT_S390_TODCMP, s390_todcmp, size);
9263}
9264
9265char *
9266elfcore_write_s390_todpreg (bfd *abfd,
9267 char *buf,
9268 int *bufsiz,
9269 const void *s390_todpreg,
9270 int size)
9271{
9272 char *note_name = "LINUX";
9273 return elfcore_write_note (abfd, buf, bufsiz,
9274 note_name, NT_S390_TODPREG, s390_todpreg, size);
9275}
9276
9277char *
9278elfcore_write_s390_ctrs (bfd *abfd,
9279 char *buf,
9280 int *bufsiz,
9281 const void *s390_ctrs,
9282 int size)
9283{
9284 char *note_name = "LINUX";
9285 return elfcore_write_note (abfd, buf, bufsiz,
9286 note_name, NT_S390_CTRS, s390_ctrs, size);
9287}
9288
9289char *
9290elfcore_write_s390_prefix (bfd *abfd,
9291 char *buf,
9292 int *bufsiz,
9293 const void *s390_prefix,
9294 int size)
9295{
9296 char *note_name = "LINUX";
9297 return elfcore_write_note (abfd, buf, bufsiz,
9298 note_name, NT_S390_PREFIX, s390_prefix, size);
9299}
9300
9301char *
9302elfcore_write_s390_last_break (bfd *abfd,
9303 char *buf,
9304 int *bufsiz,
9305 const void *s390_last_break,
9306 int size)
9307{
9308 char *note_name = "LINUX";
9309 return elfcore_write_note (abfd, buf, bufsiz,
9310 note_name, NT_S390_LAST_BREAK,
9311 s390_last_break, size);
9312}
9313
9314char *
9315elfcore_write_s390_system_call (bfd *abfd,
9316 char *buf,
9317 int *bufsiz,
9318 const void *s390_system_call,
9319 int size)
9320{
9321 char *note_name = "LINUX";
9322 return elfcore_write_note (abfd, buf, bufsiz,
9323 note_name, NT_S390_SYSTEM_CALL,
9324 s390_system_call, size);
9325}
9326
9327char *
9328elfcore_write_arm_vfp (bfd *abfd,
9329 char *buf,
9330 int *bufsiz,
9331 const void *arm_vfp,
9332 int size)
9333{
9334 char *note_name = "LINUX";
9335 return elfcore_write_note (abfd, buf, bufsiz,
9336 note_name, NT_ARM_VFP, arm_vfp, size);
9337}
9338
9339char *
9340elfcore_write_register_note (bfd *abfd,
9341 char *buf,
9342 int *bufsiz,
9343 const char *section,
9344 const void *data,
9345 int size)
9346{
9347 if (strcmp (section, ".reg2") == 0)
9348 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9349 if (strcmp (section, ".reg-xfp") == 0)
9350 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9351 if (strcmp (section, ".reg-xstate") == 0)
9352 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9353 if (strcmp (section, ".reg-ppc-vmx") == 0)
9354 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9355 if (strcmp (section, ".reg-ppc-vsx") == 0)
9356 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9357 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9358 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9359 if (strcmp (section, ".reg-s390-timer") == 0)
9360 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9361 if (strcmp (section, ".reg-s390-todcmp") == 0)
9362 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9363 if (strcmp (section, ".reg-s390-todpreg") == 0)
9364 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9365 if (strcmp (section, ".reg-s390-ctrs") == 0)
9366 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9367 if (strcmp (section, ".reg-s390-prefix") == 0)
9368 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9369 if (strcmp (section, ".reg-s390-last-break") == 0)
9370 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9371 if (strcmp (section, ".reg-s390-system-call") == 0)
9372 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9373 if (strcmp (section, ".reg-arm-vfp") == 0)
9374 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9375 return NULL;
9376}
9377
9378static bfd_boolean
9379elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9380{
9381 char *p;
9382
9383 p = buf;
9384 while (p < buf + size)
9385 {
9386 /* FIXME: bad alignment assumption. */
9387 Elf_External_Note *xnp = (Elf_External_Note *) p;
9388 Elf_Internal_Note in;
9389
9390 if (offsetof (Elf_External_Note, name) > buf - p + size)
9391 return FALSE;
9392
9393 in.type = H_GET_32 (abfd, xnp->type);
9394
9395 in.namesz = H_GET_32 (abfd, xnp->namesz);
9396 in.namedata = xnp->name;
9397 if (in.namesz > buf - in.namedata + size)
9398 return FALSE;
9399
9400 in.descsz = H_GET_32 (abfd, xnp->descsz);
9401 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9402 in.descpos = offset + (in.descdata - buf);
9403 if (in.descsz != 0
9404 && (in.descdata >= buf + size
9405 || in.descsz > buf - in.descdata + size))
9406 return FALSE;
9407
9408 switch (bfd_get_format (abfd))
9409 {
9410 default:
9411 return TRUE;
9412
9413 case bfd_core:
9414 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9415 {
9416 if (! elfcore_grok_netbsd_note (abfd, &in))
9417 return FALSE;
9418 }
9419 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9420 {
9421 if (! elfcore_grok_openbsd_note (abfd, &in))
9422 return FALSE;
9423 }
9424 else if (CONST_STRNEQ (in.namedata, "QNX"))
9425 {
9426 if (! elfcore_grok_nto_note (abfd, &in))
9427 return FALSE;
9428 }
9429 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9430 {
9431 if (! elfcore_grok_spu_note (abfd, &in))
9432 return FALSE;
9433 }
9434 else
9435 {
9436 if (! elfcore_grok_note (abfd, &in))
9437 return FALSE;
9438 }
9439 break;
9440
9441 case bfd_object:
9442 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9443 {
9444 if (! elfobj_grok_gnu_note (abfd, &in))
9445 return FALSE;
9446 }
9447 else if (in.namesz == sizeof "stapsdt"
9448 && strcmp (in.namedata, "stapsdt") == 0)
9449 {
9450 if (! elfobj_grok_stapsdt_note (abfd, &in))
9451 return FALSE;
9452 }
9453 break;
9454 }
9455
9456 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9457 }
9458
9459 return TRUE;
9460}
9461
9462static bfd_boolean
9463elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9464{
9465 char *buf;
9466
9467 if (size <= 0)
9468 return TRUE;
9469
9470 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9471 return FALSE;
9472
9473 buf = (char *) bfd_malloc (size);
9474 if (buf == NULL)
9475 return FALSE;
9476
9477 if (bfd_bread (buf, size, abfd) != size
9478 || !elf_parse_notes (abfd, buf, size, offset))
9479 {
9480 free (buf);
9481 return FALSE;
9482 }
9483
9484 free (buf);
9485 return TRUE;
9486}
9487\f
9488/* Providing external access to the ELF program header table. */
9489
9490/* Return an upper bound on the number of bytes required to store a
9491 copy of ABFD's program header table entries. Return -1 if an error
9492 occurs; bfd_get_error will return an appropriate code. */
9493
9494long
9495bfd_get_elf_phdr_upper_bound (bfd *abfd)
9496{
9497 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9498 {
9499 bfd_set_error (bfd_error_wrong_format);
9500 return -1;
9501 }
9502
9503 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9504}
9505
9506/* Copy ABFD's program header table entries to *PHDRS. The entries
9507 will be stored as an array of Elf_Internal_Phdr structures, as
9508 defined in include/elf/internal.h. To find out how large the
9509 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9510
9511 Return the number of program header table entries read, or -1 if an
9512 error occurs; bfd_get_error will return an appropriate code. */
9513
9514int
9515bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9516{
9517 int num_phdrs;
9518
9519 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9520 {
9521 bfd_set_error (bfd_error_wrong_format);
9522 return -1;
9523 }
9524
9525 num_phdrs = elf_elfheader (abfd)->e_phnum;
9526 memcpy (phdrs, elf_tdata (abfd)->phdr,
9527 num_phdrs * sizeof (Elf_Internal_Phdr));
9528
9529 return num_phdrs;
9530}
9531
9532enum elf_reloc_type_class
9533_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9534{
9535 return reloc_class_normal;
9536}
9537
9538/* For RELA architectures, return the relocation value for a
9539 relocation against a local symbol. */
9540
9541bfd_vma
9542_bfd_elf_rela_local_sym (bfd *abfd,
9543 Elf_Internal_Sym *sym,
9544 asection **psec,
9545 Elf_Internal_Rela *rel)
9546{
9547 asection *sec = *psec;
9548 bfd_vma relocation;
9549
9550 relocation = (sec->output_section->vma
9551 + sec->output_offset
9552 + sym->st_value);
9553 if ((sec->flags & SEC_MERGE)
9554 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9555 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9556 {
9557 rel->r_addend =
9558 _bfd_merged_section_offset (abfd, psec,
9559 elf_section_data (sec)->sec_info,
9560 sym->st_value + rel->r_addend);
9561 if (sec != *psec)
9562 {
9563 /* If we have changed the section, and our original section is
9564 marked with SEC_EXCLUDE, it means that the original
9565 SEC_MERGE section has been completely subsumed in some
9566 other SEC_MERGE section. In this case, we need to leave
9567 some info around for --emit-relocs. */
9568 if ((sec->flags & SEC_EXCLUDE) != 0)
9569 sec->kept_section = *psec;
9570 sec = *psec;
9571 }
9572 rel->r_addend -= relocation;
9573 rel->r_addend += sec->output_section->vma + sec->output_offset;
9574 }
9575 return relocation;
9576}
9577
9578bfd_vma
9579_bfd_elf_rel_local_sym (bfd *abfd,
9580 Elf_Internal_Sym *sym,
9581 asection **psec,
9582 bfd_vma addend)
9583{
9584 asection *sec = *psec;
9585
9586 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9587 return sym->st_value + addend;
9588
9589 return _bfd_merged_section_offset (abfd, psec,
9590 elf_section_data (sec)->sec_info,
9591 sym->st_value + addend);
9592}
9593
9594bfd_vma
9595_bfd_elf_section_offset (bfd *abfd,
9596 struct bfd_link_info *info,
9597 asection *sec,
9598 bfd_vma offset)
9599{
9600 switch (sec->sec_info_type)
9601 {
9602 case SEC_INFO_TYPE_STABS:
9603 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9604 offset);
9605 case SEC_INFO_TYPE_EH_FRAME:
9606 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9607 default:
9608 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9609 {
9610 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9611 bfd_size_type address_size = bed->s->arch_size / 8;
9612 offset = sec->size - offset - address_size;
9613 }
9614 return offset;
9615 }
9616}
9617\f
9618/* Create a new BFD as if by bfd_openr. Rather than opening a file,
9619 reconstruct an ELF file by reading the segments out of remote memory
9620 based on the ELF file header at EHDR_VMA and the ELF program headers it
9621 points to. If not null, *LOADBASEP is filled in with the difference
9622 between the VMAs from which the segments were read, and the VMAs the
9623 file headers (and hence BFD's idea of each section's VMA) put them at.
9624
9625 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9626 remote memory at target address VMA into the local buffer at MYADDR; it
9627 should return zero on success or an `errno' code on failure. TEMPL must
9628 be a BFD for an ELF target with the word size and byte order found in
9629 the remote memory. */
9630
9631bfd *
9632bfd_elf_bfd_from_remote_memory
9633 (bfd *templ,
9634 bfd_vma ehdr_vma,
9635 bfd_vma *loadbasep,
9636 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
9637{
9638 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9639 (templ, ehdr_vma, loadbasep, target_read_memory);
9640}
9641\f
9642long
9643_bfd_elf_get_synthetic_symtab (bfd *abfd,
9644 long symcount ATTRIBUTE_UNUSED,
9645 asymbol **syms ATTRIBUTE_UNUSED,
9646 long dynsymcount,
9647 asymbol **dynsyms,
9648 asymbol **ret)
9649{
9650 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9651 asection *relplt;
9652 asymbol *s;
9653 const char *relplt_name;
9654 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9655 arelent *p;
9656 long count, i, n;
9657 size_t size;
9658 Elf_Internal_Shdr *hdr;
9659 char *names;
9660 asection *plt;
9661
9662 *ret = NULL;
9663
9664 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9665 return 0;
9666
9667 if (dynsymcount <= 0)
9668 return 0;
9669
9670 if (!bed->plt_sym_val)
9671 return 0;
9672
9673 relplt_name = bed->relplt_name;
9674 if (relplt_name == NULL)
9675 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9676 relplt = bfd_get_section_by_name (abfd, relplt_name);
9677 if (relplt == NULL)
9678 return 0;
9679
9680 hdr = &elf_section_data (relplt)->this_hdr;
9681 if (hdr->sh_link != elf_dynsymtab (abfd)
9682 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9683 return 0;
9684
9685 plt = bfd_get_section_by_name (abfd, ".plt");
9686 if (plt == NULL)
9687 return 0;
9688
9689 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9690 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9691 return -1;
9692
9693 count = relplt->size / hdr->sh_entsize;
9694 size = count * sizeof (asymbol);
9695 p = relplt->relocation;
9696 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9697 {
9698 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9699 if (p->addend != 0)
9700 {
9701#ifdef BFD64
9702 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9703#else
9704 size += sizeof ("+0x") - 1 + 8;
9705#endif
9706 }
9707 }
9708
9709 s = *ret = (asymbol *) bfd_malloc (size);
9710 if (s == NULL)
9711 return -1;
9712
9713 names = (char *) (s + count);
9714 p = relplt->relocation;
9715 n = 0;
9716 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9717 {
9718 size_t len;
9719 bfd_vma addr;
9720
9721 addr = bed->plt_sym_val (i, plt, p);
9722 if (addr == (bfd_vma) -1)
9723 continue;
9724
9725 *s = **p->sym_ptr_ptr;
9726 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9727 we are defining a symbol, ensure one of them is set. */
9728 if ((s->flags & BSF_LOCAL) == 0)
9729 s->flags |= BSF_GLOBAL;
9730 s->flags |= BSF_SYNTHETIC;
9731 s->section = plt;
9732 s->value = addr - plt->vma;
9733 s->name = names;
9734 s->udata.p = NULL;
9735 len = strlen ((*p->sym_ptr_ptr)->name);
9736 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9737 names += len;
9738 if (p->addend != 0)
9739 {
9740 char buf[30], *a;
9741
9742 memcpy (names, "+0x", sizeof ("+0x") - 1);
9743 names += sizeof ("+0x") - 1;
9744 bfd_sprintf_vma (abfd, buf, p->addend);
9745 for (a = buf; *a == '0'; ++a)
9746 ;
9747 len = strlen (a);
9748 memcpy (names, a, len);
9749 names += len;
9750 }
9751 memcpy (names, "@plt", sizeof ("@plt"));
9752 names += sizeof ("@plt");
9753 ++s, ++n;
9754 }
9755
9756 return n;
9757}
9758
9759/* It is only used by x86-64 so far. */
9760asection _bfd_elf_large_com_section
9761 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9762 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9763
9764void
9765_bfd_elf_set_osabi (bfd * abfd,
9766 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9767{
9768 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9769
9770 i_ehdrp = elf_elfheader (abfd);
9771
9772 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9773
9774 /* To make things simpler for the loader on Linux systems we set the
9775 osabi field to ELFOSABI_GNU if the binary contains symbols of
9776 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9777 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9778 && elf_tdata (abfd)->has_gnu_symbols)
9779 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9780}
9781
9782
9783/* Return TRUE for ELF symbol types that represent functions.
9784 This is the default version of this function, which is sufficient for
9785 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9786
9787bfd_boolean
9788_bfd_elf_is_function_type (unsigned int type)
9789{
9790 return (type == STT_FUNC
9791 || type == STT_GNU_IFUNC);
9792}
9793
9794/* If the ELF symbol SYM might be a function in SEC, return the
9795 function size and set *CODE_OFF to the function's entry point,
9796 otherwise return zero. */
9797
9798bfd_size_type
9799_bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
9800 bfd_vma *code_off)
9801{
9802 bfd_size_type size;
9803
9804 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9805 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
9806 || sym->section != sec)
9807 return 0;
9808
9809 *code_off = sym->value;
9810 size = 0;
9811 if (!(sym->flags & BSF_SYNTHETIC))
9812 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
9813 if (size == 0)
9814 size = 1;
9815 return size;
9816}
This page took 0.060588 seconds and 4 git commands to generate.