2012-05-12 Joel Sherrill <joel.sherrill@oarcorp.com>
[deliverable/binutils-gdb.git] / bfd / elf.c
... / ...
CommitLineData
1/* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
5 Free Software Foundation, Inc.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
22 MA 02110-1301, USA. */
23
24
25/*
26SECTION
27 ELF backends
28
29 BFD support for ELF formats is being worked on.
30 Currently, the best supported back ends are for sparc and i386
31 (running svr4 or Solaris 2).
32
33 Documentation of the internals of the support code still needs
34 to be written. The code is changing quickly enough that we
35 haven't bothered yet. */
36
37/* For sparc64-cross-sparc32. */
38#define _SYSCALL32
39#include "sysdep.h"
40#include "bfd.h"
41#include "bfdlink.h"
42#include "libbfd.h"
43#define ARCH_SIZE 0
44#include "elf-bfd.h"
45#include "libiberty.h"
46#include "safe-ctype.h"
47
48#ifdef CORE_HEADER
49#include CORE_HEADER
50#endif
51
52static int elf_sort_sections (const void *, const void *);
53static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54static bfd_boolean prep_headers (bfd *);
55static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
56static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ;
57static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset);
59
60/* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64/* Swap in a Verdef structure. */
65
66void
67_bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70{
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78}
79
80/* Swap out a Verdef structure. */
81
82void
83_bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86{
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94}
95
96/* Swap in a Verdaux structure. */
97
98void
99_bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102{
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105}
106
107/* Swap out a Verdaux structure. */
108
109void
110_bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113{
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116}
117
118/* Swap in a Verneed structure. */
119
120void
121_bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124{
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130}
131
132/* Swap out a Verneed structure. */
133
134void
135_bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138{
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144}
145
146/* Swap in a Vernaux structure. */
147
148void
149_bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152{
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158}
159
160/* Swap out a Vernaux structure. */
161
162void
163_bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166{
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172}
173
174/* Swap in a Versym structure. */
175
176void
177_bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180{
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182}
183
184/* Swap out a Versym structure. */
185
186void
187_bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190{
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192}
193
194/* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197unsigned long
198bfd_elf_hash (const char *namearg)
199{
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217}
218
219/* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222unsigned long
223bfd_elf_gnu_hash (const char *namearg)
224{
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232}
233
234/* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236bfd_boolean
237bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240{
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 elf_program_header_size (abfd) = (bfd_size_type) -1;
248 return TRUE;
249}
250
251
252bfd_boolean
253bfd_elf_make_object (bfd *abfd)
254{
255 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
256 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
257 bed->target_id);
258}
259
260bfd_boolean
261bfd_elf_mkcorefile (bfd *abfd)
262{
263 /* I think this can be done just like an object file. */
264 return abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd);
265}
266
267static char *
268bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
269{
270 Elf_Internal_Shdr **i_shdrp;
271 bfd_byte *shstrtab = NULL;
272 file_ptr offset;
273 bfd_size_type shstrtabsize;
274
275 i_shdrp = elf_elfsections (abfd);
276 if (i_shdrp == 0
277 || shindex >= elf_numsections (abfd)
278 || i_shdrp[shindex] == 0)
279 return NULL;
280
281 shstrtab = i_shdrp[shindex]->contents;
282 if (shstrtab == NULL)
283 {
284 /* No cached one, attempt to read, and cache what we read. */
285 offset = i_shdrp[shindex]->sh_offset;
286 shstrtabsize = i_shdrp[shindex]->sh_size;
287
288 /* Allocate and clear an extra byte at the end, to prevent crashes
289 in case the string table is not terminated. */
290 if (shstrtabsize + 1 <= 1
291 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL
292 || bfd_seek (abfd, offset, SEEK_SET) != 0)
293 shstrtab = NULL;
294 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
295 {
296 if (bfd_get_error () != bfd_error_system_call)
297 bfd_set_error (bfd_error_file_truncated);
298 shstrtab = NULL;
299 /* Once we've failed to read it, make sure we don't keep
300 trying. Otherwise, we'll keep allocating space for
301 the string table over and over. */
302 i_shdrp[shindex]->sh_size = 0;
303 }
304 else
305 shstrtab[shstrtabsize] = '\0';
306 i_shdrp[shindex]->contents = shstrtab;
307 }
308 return (char *) shstrtab;
309}
310
311char *
312bfd_elf_string_from_elf_section (bfd *abfd,
313 unsigned int shindex,
314 unsigned int strindex)
315{
316 Elf_Internal_Shdr *hdr;
317
318 if (strindex == 0)
319 return "";
320
321 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
322 return NULL;
323
324 hdr = elf_elfsections (abfd)[shindex];
325
326 if (hdr->contents == NULL
327 && bfd_elf_get_str_section (abfd, shindex) == NULL)
328 return NULL;
329
330 if (strindex >= hdr->sh_size)
331 {
332 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
333 (*_bfd_error_handler)
334 (_("%B: invalid string offset %u >= %lu for section `%s'"),
335 abfd, strindex, (unsigned long) hdr->sh_size,
336 (shindex == shstrndx && strindex == hdr->sh_name
337 ? ".shstrtab"
338 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
339 return NULL;
340 }
341
342 return ((char *) hdr->contents) + strindex;
343}
344
345/* Read and convert symbols to internal format.
346 SYMCOUNT specifies the number of symbols to read, starting from
347 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
348 are non-NULL, they are used to store the internal symbols, external
349 symbols, and symbol section index extensions, respectively.
350 Returns a pointer to the internal symbol buffer (malloced if necessary)
351 or NULL if there were no symbols or some kind of problem. */
352
353Elf_Internal_Sym *
354bfd_elf_get_elf_syms (bfd *ibfd,
355 Elf_Internal_Shdr *symtab_hdr,
356 size_t symcount,
357 size_t symoffset,
358 Elf_Internal_Sym *intsym_buf,
359 void *extsym_buf,
360 Elf_External_Sym_Shndx *extshndx_buf)
361{
362 Elf_Internal_Shdr *shndx_hdr;
363 void *alloc_ext;
364 const bfd_byte *esym;
365 Elf_External_Sym_Shndx *alloc_extshndx;
366 Elf_External_Sym_Shndx *shndx;
367 Elf_Internal_Sym *alloc_intsym;
368 Elf_Internal_Sym *isym;
369 Elf_Internal_Sym *isymend;
370 const struct elf_backend_data *bed;
371 size_t extsym_size;
372 bfd_size_type amt;
373 file_ptr pos;
374
375 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
376 abort ();
377
378 if (symcount == 0)
379 return intsym_buf;
380
381 /* Normal syms might have section extension entries. */
382 shndx_hdr = NULL;
383 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
384 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
385
386 /* Read the symbols. */
387 alloc_ext = NULL;
388 alloc_extshndx = NULL;
389 alloc_intsym = NULL;
390 bed = get_elf_backend_data (ibfd);
391 extsym_size = bed->s->sizeof_sym;
392 amt = symcount * extsym_size;
393 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
394 if (extsym_buf == NULL)
395 {
396 alloc_ext = bfd_malloc2 (symcount, extsym_size);
397 extsym_buf = alloc_ext;
398 }
399 if (extsym_buf == NULL
400 || bfd_seek (ibfd, pos, SEEK_SET) != 0
401 || bfd_bread (extsym_buf, amt, ibfd) != amt)
402 {
403 intsym_buf = NULL;
404 goto out;
405 }
406
407 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
408 extshndx_buf = NULL;
409 else
410 {
411 amt = symcount * sizeof (Elf_External_Sym_Shndx);
412 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
413 if (extshndx_buf == NULL)
414 {
415 alloc_extshndx = (Elf_External_Sym_Shndx *)
416 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
417 extshndx_buf = alloc_extshndx;
418 }
419 if (extshndx_buf == NULL
420 || bfd_seek (ibfd, pos, SEEK_SET) != 0
421 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
422 {
423 intsym_buf = NULL;
424 goto out;
425 }
426 }
427
428 if (intsym_buf == NULL)
429 {
430 alloc_intsym = (Elf_Internal_Sym *)
431 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
432 intsym_buf = alloc_intsym;
433 if (intsym_buf == NULL)
434 goto out;
435 }
436
437 /* Convert the symbols to internal form. */
438 isymend = intsym_buf + symcount;
439 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
440 shndx = extshndx_buf;
441 isym < isymend;
442 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
443 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
444 {
445 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
446 (*_bfd_error_handler) (_("%B symbol number %lu references "
447 "nonexistent SHT_SYMTAB_SHNDX section"),
448 ibfd, (unsigned long) symoffset);
449 if (alloc_intsym != NULL)
450 free (alloc_intsym);
451 intsym_buf = NULL;
452 goto out;
453 }
454
455 out:
456 if (alloc_ext != NULL)
457 free (alloc_ext);
458 if (alloc_extshndx != NULL)
459 free (alloc_extshndx);
460
461 return intsym_buf;
462}
463
464/* Look up a symbol name. */
465const char *
466bfd_elf_sym_name (bfd *abfd,
467 Elf_Internal_Shdr *symtab_hdr,
468 Elf_Internal_Sym *isym,
469 asection *sym_sec)
470{
471 const char *name;
472 unsigned int iname = isym->st_name;
473 unsigned int shindex = symtab_hdr->sh_link;
474
475 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
476 /* Check for a bogus st_shndx to avoid crashing. */
477 && isym->st_shndx < elf_numsections (abfd))
478 {
479 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
480 shindex = elf_elfheader (abfd)->e_shstrndx;
481 }
482
483 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
484 if (name == NULL)
485 name = "(null)";
486 else if (sym_sec && *name == '\0')
487 name = bfd_section_name (abfd, sym_sec);
488
489 return name;
490}
491
492/* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
493 sections. The first element is the flags, the rest are section
494 pointers. */
495
496typedef union elf_internal_group {
497 Elf_Internal_Shdr *shdr;
498 unsigned int flags;
499} Elf_Internal_Group;
500
501/* Return the name of the group signature symbol. Why isn't the
502 signature just a string? */
503
504static const char *
505group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
506{
507 Elf_Internal_Shdr *hdr;
508 unsigned char esym[sizeof (Elf64_External_Sym)];
509 Elf_External_Sym_Shndx eshndx;
510 Elf_Internal_Sym isym;
511
512 /* First we need to ensure the symbol table is available. Make sure
513 that it is a symbol table section. */
514 if (ghdr->sh_link >= elf_numsections (abfd))
515 return NULL;
516 hdr = elf_elfsections (abfd) [ghdr->sh_link];
517 if (hdr->sh_type != SHT_SYMTAB
518 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
519 return NULL;
520
521 /* Go read the symbol. */
522 hdr = &elf_tdata (abfd)->symtab_hdr;
523 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
524 &isym, esym, &eshndx) == NULL)
525 return NULL;
526
527 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
528}
529
530/* Set next_in_group list pointer, and group name for NEWSECT. */
531
532static bfd_boolean
533setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
534{
535 unsigned int num_group = elf_tdata (abfd)->num_group;
536
537 /* If num_group is zero, read in all SHT_GROUP sections. The count
538 is set to -1 if there are no SHT_GROUP sections. */
539 if (num_group == 0)
540 {
541 unsigned int i, shnum;
542
543 /* First count the number of groups. If we have a SHT_GROUP
544 section with just a flag word (ie. sh_size is 4), ignore it. */
545 shnum = elf_numsections (abfd);
546 num_group = 0;
547
548#define IS_VALID_GROUP_SECTION_HEADER(shdr) \
549 ( (shdr)->sh_type == SHT_GROUP \
550 && (shdr)->sh_size >= (2 * GRP_ENTRY_SIZE) \
551 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
552 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
553
554 for (i = 0; i < shnum; i++)
555 {
556 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
557
558 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
559 num_group += 1;
560 }
561
562 if (num_group == 0)
563 {
564 num_group = (unsigned) -1;
565 elf_tdata (abfd)->num_group = num_group;
566 }
567 else
568 {
569 /* We keep a list of elf section headers for group sections,
570 so we can find them quickly. */
571 bfd_size_type amt;
572
573 elf_tdata (abfd)->num_group = num_group;
574 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
575 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
576 if (elf_tdata (abfd)->group_sect_ptr == NULL)
577 return FALSE;
578
579 num_group = 0;
580 for (i = 0; i < shnum; i++)
581 {
582 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
583
584 if (IS_VALID_GROUP_SECTION_HEADER (shdr))
585 {
586 unsigned char *src;
587 Elf_Internal_Group *dest;
588
589 /* Add to list of sections. */
590 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
591 num_group += 1;
592
593 /* Read the raw contents. */
594 BFD_ASSERT (sizeof (*dest) >= 4);
595 amt = shdr->sh_size * sizeof (*dest) / 4;
596 shdr->contents = (unsigned char *)
597 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
598 /* PR binutils/4110: Handle corrupt group headers. */
599 if (shdr->contents == NULL)
600 {
601 _bfd_error_handler
602 (_("%B: Corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size);
603 bfd_set_error (bfd_error_bad_value);
604 return FALSE;
605 }
606
607 memset (shdr->contents, 0, amt);
608
609 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
610 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
611 != shdr->sh_size))
612 return FALSE;
613
614 /* Translate raw contents, a flag word followed by an
615 array of elf section indices all in target byte order,
616 to the flag word followed by an array of elf section
617 pointers. */
618 src = shdr->contents + shdr->sh_size;
619 dest = (Elf_Internal_Group *) (shdr->contents + amt);
620 while (1)
621 {
622 unsigned int idx;
623
624 src -= 4;
625 --dest;
626 idx = H_GET_32 (abfd, src);
627 if (src == shdr->contents)
628 {
629 dest->flags = idx;
630 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
631 shdr->bfd_section->flags
632 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
633 break;
634 }
635 if (idx >= shnum)
636 {
637 ((*_bfd_error_handler)
638 (_("%B: invalid SHT_GROUP entry"), abfd));
639 idx = 0;
640 }
641 dest->shdr = elf_elfsections (abfd)[idx];
642 }
643 }
644 }
645 }
646 }
647
648 if (num_group != (unsigned) -1)
649 {
650 unsigned int i;
651
652 for (i = 0; i < num_group; i++)
653 {
654 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
655 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
656 unsigned int n_elt = shdr->sh_size / 4;
657
658 /* Look through this group's sections to see if current
659 section is a member. */
660 while (--n_elt != 0)
661 if ((++idx)->shdr == hdr)
662 {
663 asection *s = NULL;
664
665 /* We are a member of this group. Go looking through
666 other members to see if any others are linked via
667 next_in_group. */
668 idx = (Elf_Internal_Group *) shdr->contents;
669 n_elt = shdr->sh_size / 4;
670 while (--n_elt != 0)
671 if ((s = (++idx)->shdr->bfd_section) != NULL
672 && elf_next_in_group (s) != NULL)
673 break;
674 if (n_elt != 0)
675 {
676 /* Snarf the group name from other member, and
677 insert current section in circular list. */
678 elf_group_name (newsect) = elf_group_name (s);
679 elf_next_in_group (newsect) = elf_next_in_group (s);
680 elf_next_in_group (s) = newsect;
681 }
682 else
683 {
684 const char *gname;
685
686 gname = group_signature (abfd, shdr);
687 if (gname == NULL)
688 return FALSE;
689 elf_group_name (newsect) = gname;
690
691 /* Start a circular list with one element. */
692 elf_next_in_group (newsect) = newsect;
693 }
694
695 /* If the group section has been created, point to the
696 new member. */
697 if (shdr->bfd_section != NULL)
698 elf_next_in_group (shdr->bfd_section) = newsect;
699
700 i = num_group - 1;
701 break;
702 }
703 }
704 }
705
706 if (elf_group_name (newsect) == NULL)
707 {
708 (*_bfd_error_handler) (_("%B: no group info for section %A"),
709 abfd, newsect);
710 }
711 return TRUE;
712}
713
714bfd_boolean
715_bfd_elf_setup_sections (bfd *abfd)
716{
717 unsigned int i;
718 unsigned int num_group = elf_tdata (abfd)->num_group;
719 bfd_boolean result = TRUE;
720 asection *s;
721
722 /* Process SHF_LINK_ORDER. */
723 for (s = abfd->sections; s != NULL; s = s->next)
724 {
725 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
726 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
727 {
728 unsigned int elfsec = this_hdr->sh_link;
729 /* FIXME: The old Intel compiler and old strip/objcopy may
730 not set the sh_link or sh_info fields. Hence we could
731 get the situation where elfsec is 0. */
732 if (elfsec == 0)
733 {
734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
735 if (bed->link_order_error_handler)
736 bed->link_order_error_handler
737 (_("%B: warning: sh_link not set for section `%A'"),
738 abfd, s);
739 }
740 else
741 {
742 asection *linksec = NULL;
743
744 if (elfsec < elf_numsections (abfd))
745 {
746 this_hdr = elf_elfsections (abfd)[elfsec];
747 linksec = this_hdr->bfd_section;
748 }
749
750 /* PR 1991, 2008:
751 Some strip/objcopy may leave an incorrect value in
752 sh_link. We don't want to proceed. */
753 if (linksec == NULL)
754 {
755 (*_bfd_error_handler)
756 (_("%B: sh_link [%d] in section `%A' is incorrect"),
757 s->owner, s, elfsec);
758 result = FALSE;
759 }
760
761 elf_linked_to_section (s) = linksec;
762 }
763 }
764 }
765
766 /* Process section groups. */
767 if (num_group == (unsigned) -1)
768 return result;
769
770 for (i = 0; i < num_group; i++)
771 {
772 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
773 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
774 unsigned int n_elt = shdr->sh_size / 4;
775
776 while (--n_elt != 0)
777 if ((++idx)->shdr->bfd_section)
778 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
779 else if (idx->shdr->sh_type == SHT_RELA
780 || idx->shdr->sh_type == SHT_REL)
781 /* We won't include relocation sections in section groups in
782 output object files. We adjust the group section size here
783 so that relocatable link will work correctly when
784 relocation sections are in section group in input object
785 files. */
786 shdr->bfd_section->size -= 4;
787 else
788 {
789 /* There are some unknown sections in the group. */
790 (*_bfd_error_handler)
791 (_("%B: unknown [%d] section `%s' in group [%s]"),
792 abfd,
793 (unsigned int) idx->shdr->sh_type,
794 bfd_elf_string_from_elf_section (abfd,
795 (elf_elfheader (abfd)
796 ->e_shstrndx),
797 idx->shdr->sh_name),
798 shdr->bfd_section->name);
799 result = FALSE;
800 }
801 }
802 return result;
803}
804
805bfd_boolean
806bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
807{
808 return elf_next_in_group (sec) != NULL;
809}
810
811/* Make a BFD section from an ELF section. We store a pointer to the
812 BFD section in the bfd_section field of the header. */
813
814bfd_boolean
815_bfd_elf_make_section_from_shdr (bfd *abfd,
816 Elf_Internal_Shdr *hdr,
817 const char *name,
818 int shindex)
819{
820 asection *newsect;
821 flagword flags;
822 const struct elf_backend_data *bed;
823
824 if (hdr->bfd_section != NULL)
825 return TRUE;
826
827 newsect = bfd_make_section_anyway (abfd, name);
828 if (newsect == NULL)
829 return FALSE;
830
831 hdr->bfd_section = newsect;
832 elf_section_data (newsect)->this_hdr = *hdr;
833 elf_section_data (newsect)->this_idx = shindex;
834
835 /* Always use the real type/flags. */
836 elf_section_type (newsect) = hdr->sh_type;
837 elf_section_flags (newsect) = hdr->sh_flags;
838
839 newsect->filepos = hdr->sh_offset;
840
841 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
842 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
843 || ! bfd_set_section_alignment (abfd, newsect,
844 bfd_log2 (hdr->sh_addralign)))
845 return FALSE;
846
847 flags = SEC_NO_FLAGS;
848 if (hdr->sh_type != SHT_NOBITS)
849 flags |= SEC_HAS_CONTENTS;
850 if (hdr->sh_type == SHT_GROUP)
851 flags |= SEC_GROUP | SEC_EXCLUDE;
852 if ((hdr->sh_flags & SHF_ALLOC) != 0)
853 {
854 flags |= SEC_ALLOC;
855 if (hdr->sh_type != SHT_NOBITS)
856 flags |= SEC_LOAD;
857 }
858 if ((hdr->sh_flags & SHF_WRITE) == 0)
859 flags |= SEC_READONLY;
860 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
861 flags |= SEC_CODE;
862 else if ((flags & SEC_LOAD) != 0)
863 flags |= SEC_DATA;
864 if ((hdr->sh_flags & SHF_MERGE) != 0)
865 {
866 flags |= SEC_MERGE;
867 newsect->entsize = hdr->sh_entsize;
868 if ((hdr->sh_flags & SHF_STRINGS) != 0)
869 flags |= SEC_STRINGS;
870 }
871 if (hdr->sh_flags & SHF_GROUP)
872 if (!setup_group (abfd, hdr, newsect))
873 return FALSE;
874 if ((hdr->sh_flags & SHF_TLS) != 0)
875 flags |= SEC_THREAD_LOCAL;
876 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
877 flags |= SEC_EXCLUDE;
878
879 if ((flags & SEC_ALLOC) == 0)
880 {
881 /* The debugging sections appear to be recognized only by name,
882 not any sort of flag. Their SEC_ALLOC bits are cleared. */
883 static const struct
884 {
885 const char *name;
886 int len;
887 } debug_sections [] =
888 {
889 { STRING_COMMA_LEN ("debug") }, /* 'd' */
890 { NULL, 0 }, /* 'e' */
891 { NULL, 0 }, /* 'f' */
892 { STRING_COMMA_LEN ("gnu.linkonce.wi.") }, /* 'g' */
893 { NULL, 0 }, /* 'h' */
894 { NULL, 0 }, /* 'i' */
895 { NULL, 0 }, /* 'j' */
896 { NULL, 0 }, /* 'k' */
897 { STRING_COMMA_LEN ("line") }, /* 'l' */
898 { NULL, 0 }, /* 'm' */
899 { NULL, 0 }, /* 'n' */
900 { NULL, 0 }, /* 'o' */
901 { NULL, 0 }, /* 'p' */
902 { NULL, 0 }, /* 'q' */
903 { NULL, 0 }, /* 'r' */
904 { STRING_COMMA_LEN ("stab") }, /* 's' */
905 { NULL, 0 }, /* 't' */
906 { NULL, 0 }, /* 'u' */
907 { NULL, 0 }, /* 'v' */
908 { NULL, 0 }, /* 'w' */
909 { NULL, 0 }, /* 'x' */
910 { NULL, 0 }, /* 'y' */
911 { STRING_COMMA_LEN ("zdebug") } /* 'z' */
912 };
913
914 if (name [0] == '.')
915 {
916 int i = name [1] - 'd';
917 if (i >= 0
918 && i < (int) ARRAY_SIZE (debug_sections)
919 && debug_sections [i].name != NULL
920 && strncmp (&name [1], debug_sections [i].name,
921 debug_sections [i].len) == 0)
922 flags |= SEC_DEBUGGING;
923 }
924 }
925
926 /* As a GNU extension, if the name begins with .gnu.linkonce, we
927 only link a single copy of the section. This is used to support
928 g++. g++ will emit each template expansion in its own section.
929 The symbols will be defined as weak, so that multiple definitions
930 are permitted. The GNU linker extension is to actually discard
931 all but one of the sections. */
932 if (CONST_STRNEQ (name, ".gnu.linkonce")
933 && elf_next_in_group (newsect) == NULL)
934 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
935
936 bed = get_elf_backend_data (abfd);
937 if (bed->elf_backend_section_flags)
938 if (! bed->elf_backend_section_flags (&flags, hdr))
939 return FALSE;
940
941 if (! bfd_set_section_flags (abfd, newsect, flags))
942 return FALSE;
943
944 /* We do not parse the PT_NOTE segments as we are interested even in the
945 separate debug info files which may have the segments offsets corrupted.
946 PT_NOTEs from the core files are currently not parsed using BFD. */
947 if (hdr->sh_type == SHT_NOTE)
948 {
949 bfd_byte *contents;
950
951 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
952 return FALSE;
953
954 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1);
955 free (contents);
956 }
957
958 if ((flags & SEC_ALLOC) != 0)
959 {
960 Elf_Internal_Phdr *phdr;
961 unsigned int i, nload;
962
963 /* Some ELF linkers produce binaries with all the program header
964 p_paddr fields zero. If we have such a binary with more than
965 one PT_LOAD header, then leave the section lma equal to vma
966 so that we don't create sections with overlapping lma. */
967 phdr = elf_tdata (abfd)->phdr;
968 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
969 if (phdr->p_paddr != 0)
970 break;
971 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
972 ++nload;
973 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
974 return TRUE;
975
976 phdr = elf_tdata (abfd)->phdr;
977 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
978 {
979 if (((phdr->p_type == PT_LOAD
980 && (hdr->sh_flags & SHF_TLS) == 0)
981 || phdr->p_type == PT_TLS)
982 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
983 {
984 if ((flags & SEC_LOAD) == 0)
985 newsect->lma = (phdr->p_paddr
986 + hdr->sh_addr - phdr->p_vaddr);
987 else
988 /* We used to use the same adjustment for SEC_LOAD
989 sections, but that doesn't work if the segment
990 is packed with code from multiple VMAs.
991 Instead we calculate the section LMA based on
992 the segment LMA. It is assumed that the
993 segment will contain sections with contiguous
994 LMAs, even if the VMAs are not. */
995 newsect->lma = (phdr->p_paddr
996 + hdr->sh_offset - phdr->p_offset);
997
998 /* With contiguous segments, we can't tell from file
999 offsets whether a section with zero size should
1000 be placed at the end of one segment or the
1001 beginning of the next. Decide based on vaddr. */
1002 if (hdr->sh_addr >= phdr->p_vaddr
1003 && (hdr->sh_addr + hdr->sh_size
1004 <= phdr->p_vaddr + phdr->p_memsz))
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* Compress/decompress DWARF debug sections with names: .debug_* and
1011 .zdebug_*, after the section flags is set. */
1012 if ((flags & SEC_DEBUGGING)
1013 && ((name[1] == 'd' && name[6] == '_')
1014 || (name[1] == 'z' && name[7] == '_')))
1015 {
1016 enum { nothing, compress, decompress } action = nothing;
1017 char *new_name;
1018
1019 if (bfd_is_section_compressed (abfd, newsect))
1020 {
1021 /* Compressed section. Check if we should decompress. */
1022 if ((abfd->flags & BFD_DECOMPRESS))
1023 action = decompress;
1024 }
1025 else
1026 {
1027 /* Normal section. Check if we should compress. */
1028 if ((abfd->flags & BFD_COMPRESS))
1029 action = compress;
1030 }
1031
1032 new_name = NULL;
1033 switch (action)
1034 {
1035 case nothing:
1036 break;
1037 case compress:
1038 if (!bfd_init_section_compress_status (abfd, newsect))
1039 {
1040 (*_bfd_error_handler)
1041 (_("%B: unable to initialize commpress status for section %s"),
1042 abfd, name);
1043 return FALSE;
1044 }
1045 if (name[1] != 'z')
1046 {
1047 unsigned int len = strlen (name);
1048
1049 new_name = bfd_alloc (abfd, len + 2);
1050 if (new_name == NULL)
1051 return FALSE;
1052 new_name[0] = '.';
1053 new_name[1] = 'z';
1054 memcpy (new_name + 2, name + 1, len);
1055 }
1056 break;
1057 case decompress:
1058 if (!bfd_init_section_decompress_status (abfd, newsect))
1059 {
1060 (*_bfd_error_handler)
1061 (_("%B: unable to initialize decommpress status for section %s"),
1062 abfd, name);
1063 return FALSE;
1064 }
1065 if (name[1] == 'z')
1066 {
1067 unsigned int len = strlen (name);
1068
1069 new_name = bfd_alloc (abfd, len);
1070 if (new_name == NULL)
1071 return FALSE;
1072 new_name[0] = '.';
1073 memcpy (new_name + 1, name + 2, len - 1);
1074 }
1075 break;
1076 }
1077 if (new_name != NULL)
1078 bfd_rename_section (abfd, newsect, new_name);
1079 }
1080
1081 return TRUE;
1082}
1083
1084const char *const bfd_elf_section_type_names[] = {
1085 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1086 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1087 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1088};
1089
1090/* ELF relocs are against symbols. If we are producing relocatable
1091 output, and the reloc is against an external symbol, and nothing
1092 has given us any additional addend, the resulting reloc will also
1093 be against the same symbol. In such a case, we don't want to
1094 change anything about the way the reloc is handled, since it will
1095 all be done at final link time. Rather than put special case code
1096 into bfd_perform_relocation, all the reloc types use this howto
1097 function. It just short circuits the reloc if producing
1098 relocatable output against an external symbol. */
1099
1100bfd_reloc_status_type
1101bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1102 arelent *reloc_entry,
1103 asymbol *symbol,
1104 void *data ATTRIBUTE_UNUSED,
1105 asection *input_section,
1106 bfd *output_bfd,
1107 char **error_message ATTRIBUTE_UNUSED)
1108{
1109 if (output_bfd != NULL
1110 && (symbol->flags & BSF_SECTION_SYM) == 0
1111 && (! reloc_entry->howto->partial_inplace
1112 || reloc_entry->addend == 0))
1113 {
1114 reloc_entry->address += input_section->output_offset;
1115 return bfd_reloc_ok;
1116 }
1117
1118 return bfd_reloc_continue;
1119}
1120\f
1121/* Copy the program header and other data from one object module to
1122 another. */
1123
1124bfd_boolean
1125_bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1126{
1127 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1128 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1129 return TRUE;
1130
1131 BFD_ASSERT (!elf_flags_init (obfd)
1132 || (elf_elfheader (obfd)->e_flags
1133 == elf_elfheader (ibfd)->e_flags));
1134
1135 elf_gp (obfd) = elf_gp (ibfd);
1136 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1137 elf_flags_init (obfd) = TRUE;
1138
1139 /* Copy object attributes. */
1140 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1141 return TRUE;
1142}
1143
1144static const char *
1145get_segment_type (unsigned int p_type)
1146{
1147 const char *pt;
1148 switch (p_type)
1149 {
1150 case PT_NULL: pt = "NULL"; break;
1151 case PT_LOAD: pt = "LOAD"; break;
1152 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1153 case PT_INTERP: pt = "INTERP"; break;
1154 case PT_NOTE: pt = "NOTE"; break;
1155 case PT_SHLIB: pt = "SHLIB"; break;
1156 case PT_PHDR: pt = "PHDR"; break;
1157 case PT_TLS: pt = "TLS"; break;
1158 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1159 case PT_GNU_STACK: pt = "STACK"; break;
1160 case PT_GNU_RELRO: pt = "RELRO"; break;
1161 default: pt = NULL; break;
1162 }
1163 return pt;
1164}
1165
1166/* Print out the program headers. */
1167
1168bfd_boolean
1169_bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1170{
1171 FILE *f = (FILE *) farg;
1172 Elf_Internal_Phdr *p;
1173 asection *s;
1174 bfd_byte *dynbuf = NULL;
1175
1176 p = elf_tdata (abfd)->phdr;
1177 if (p != NULL)
1178 {
1179 unsigned int i, c;
1180
1181 fprintf (f, _("\nProgram Header:\n"));
1182 c = elf_elfheader (abfd)->e_phnum;
1183 for (i = 0; i < c; i++, p++)
1184 {
1185 const char *pt = get_segment_type (p->p_type);
1186 char buf[20];
1187
1188 if (pt == NULL)
1189 {
1190 sprintf (buf, "0x%lx", p->p_type);
1191 pt = buf;
1192 }
1193 fprintf (f, "%8s off 0x", pt);
1194 bfd_fprintf_vma (abfd, f, p->p_offset);
1195 fprintf (f, " vaddr 0x");
1196 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1197 fprintf (f, " paddr 0x");
1198 bfd_fprintf_vma (abfd, f, p->p_paddr);
1199 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1200 fprintf (f, " filesz 0x");
1201 bfd_fprintf_vma (abfd, f, p->p_filesz);
1202 fprintf (f, " memsz 0x");
1203 bfd_fprintf_vma (abfd, f, p->p_memsz);
1204 fprintf (f, " flags %c%c%c",
1205 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1206 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1207 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1208 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1209 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1210 fprintf (f, "\n");
1211 }
1212 }
1213
1214 s = bfd_get_section_by_name (abfd, ".dynamic");
1215 if (s != NULL)
1216 {
1217 unsigned int elfsec;
1218 unsigned long shlink;
1219 bfd_byte *extdyn, *extdynend;
1220 size_t extdynsize;
1221 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1222
1223 fprintf (f, _("\nDynamic Section:\n"));
1224
1225 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1226 goto error_return;
1227
1228 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1229 if (elfsec == SHN_BAD)
1230 goto error_return;
1231 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1232
1233 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1234 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1235
1236 extdyn = dynbuf;
1237 extdynend = extdyn + s->size;
1238 for (; extdyn < extdynend; extdyn += extdynsize)
1239 {
1240 Elf_Internal_Dyn dyn;
1241 const char *name = "";
1242 char ab[20];
1243 bfd_boolean stringp;
1244 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1245
1246 (*swap_dyn_in) (abfd, extdyn, &dyn);
1247
1248 if (dyn.d_tag == DT_NULL)
1249 break;
1250
1251 stringp = FALSE;
1252 switch (dyn.d_tag)
1253 {
1254 default:
1255 if (bed->elf_backend_get_target_dtag)
1256 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1257
1258 if (!strcmp (name, ""))
1259 {
1260 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1261 name = ab;
1262 }
1263 break;
1264
1265 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1266 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1267 case DT_PLTGOT: name = "PLTGOT"; break;
1268 case DT_HASH: name = "HASH"; break;
1269 case DT_STRTAB: name = "STRTAB"; break;
1270 case DT_SYMTAB: name = "SYMTAB"; break;
1271 case DT_RELA: name = "RELA"; break;
1272 case DT_RELASZ: name = "RELASZ"; break;
1273 case DT_RELAENT: name = "RELAENT"; break;
1274 case DT_STRSZ: name = "STRSZ"; break;
1275 case DT_SYMENT: name = "SYMENT"; break;
1276 case DT_INIT: name = "INIT"; break;
1277 case DT_FINI: name = "FINI"; break;
1278 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1279 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1280 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1281 case DT_REL: name = "REL"; break;
1282 case DT_RELSZ: name = "RELSZ"; break;
1283 case DT_RELENT: name = "RELENT"; break;
1284 case DT_PLTREL: name = "PLTREL"; break;
1285 case DT_DEBUG: name = "DEBUG"; break;
1286 case DT_TEXTREL: name = "TEXTREL"; break;
1287 case DT_JMPREL: name = "JMPREL"; break;
1288 case DT_BIND_NOW: name = "BIND_NOW"; break;
1289 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1290 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1291 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1292 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1293 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1294 case DT_FLAGS: name = "FLAGS"; break;
1295 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1296 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1297 case DT_CHECKSUM: name = "CHECKSUM"; break;
1298 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1299 case DT_MOVEENT: name = "MOVEENT"; break;
1300 case DT_MOVESZ: name = "MOVESZ"; break;
1301 case DT_FEATURE: name = "FEATURE"; break;
1302 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1303 case DT_SYMINSZ: name = "SYMINSZ"; break;
1304 case DT_SYMINENT: name = "SYMINENT"; break;
1305 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1306 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1307 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1308 case DT_PLTPAD: name = "PLTPAD"; break;
1309 case DT_MOVETAB: name = "MOVETAB"; break;
1310 case DT_SYMINFO: name = "SYMINFO"; break;
1311 case DT_RELACOUNT: name = "RELACOUNT"; break;
1312 case DT_RELCOUNT: name = "RELCOUNT"; break;
1313 case DT_FLAGS_1: name = "FLAGS_1"; break;
1314 case DT_VERSYM: name = "VERSYM"; break;
1315 case DT_VERDEF: name = "VERDEF"; break;
1316 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1317 case DT_VERNEED: name = "VERNEED"; break;
1318 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1319 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1320 case DT_USED: name = "USED"; break;
1321 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1322 case DT_GNU_HASH: name = "GNU_HASH"; break;
1323 }
1324
1325 fprintf (f, " %-20s ", name);
1326 if (! stringp)
1327 {
1328 fprintf (f, "0x");
1329 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1330 }
1331 else
1332 {
1333 const char *string;
1334 unsigned int tagv = dyn.d_un.d_val;
1335
1336 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1337 if (string == NULL)
1338 goto error_return;
1339 fprintf (f, "%s", string);
1340 }
1341 fprintf (f, "\n");
1342 }
1343
1344 free (dynbuf);
1345 dynbuf = NULL;
1346 }
1347
1348 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1349 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1350 {
1351 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1352 return FALSE;
1353 }
1354
1355 if (elf_dynverdef (abfd) != 0)
1356 {
1357 Elf_Internal_Verdef *t;
1358
1359 fprintf (f, _("\nVersion definitions:\n"));
1360 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1361 {
1362 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1363 t->vd_flags, t->vd_hash,
1364 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1365 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1366 {
1367 Elf_Internal_Verdaux *a;
1368
1369 fprintf (f, "\t");
1370 for (a = t->vd_auxptr->vda_nextptr;
1371 a != NULL;
1372 a = a->vda_nextptr)
1373 fprintf (f, "%s ",
1374 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1375 fprintf (f, "\n");
1376 }
1377 }
1378 }
1379
1380 if (elf_dynverref (abfd) != 0)
1381 {
1382 Elf_Internal_Verneed *t;
1383
1384 fprintf (f, _("\nVersion References:\n"));
1385 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1386 {
1387 Elf_Internal_Vernaux *a;
1388
1389 fprintf (f, _(" required from %s:\n"),
1390 t->vn_filename ? t->vn_filename : "<corrupt>");
1391 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1392 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1393 a->vna_flags, a->vna_other,
1394 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1395 }
1396 }
1397
1398 return TRUE;
1399
1400 error_return:
1401 if (dynbuf != NULL)
1402 free (dynbuf);
1403 return FALSE;
1404}
1405
1406/* Display ELF-specific fields of a symbol. */
1407
1408void
1409bfd_elf_print_symbol (bfd *abfd,
1410 void *filep,
1411 asymbol *symbol,
1412 bfd_print_symbol_type how)
1413{
1414 FILE *file = (FILE *) filep;
1415 switch (how)
1416 {
1417 case bfd_print_symbol_name:
1418 fprintf (file, "%s", symbol->name);
1419 break;
1420 case bfd_print_symbol_more:
1421 fprintf (file, "elf ");
1422 bfd_fprintf_vma (abfd, file, symbol->value);
1423 fprintf (file, " %lx", (unsigned long) symbol->flags);
1424 break;
1425 case bfd_print_symbol_all:
1426 {
1427 const char *section_name;
1428 const char *name = NULL;
1429 const struct elf_backend_data *bed;
1430 unsigned char st_other;
1431 bfd_vma val;
1432
1433 section_name = symbol->section ? symbol->section->name : "(*none*)";
1434
1435 bed = get_elf_backend_data (abfd);
1436 if (bed->elf_backend_print_symbol_all)
1437 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1438
1439 if (name == NULL)
1440 {
1441 name = symbol->name;
1442 bfd_print_symbol_vandf (abfd, file, symbol);
1443 }
1444
1445 fprintf (file, " %s\t", section_name);
1446 /* Print the "other" value for a symbol. For common symbols,
1447 we've already printed the size; now print the alignment.
1448 For other symbols, we have no specified alignment, and
1449 we've printed the address; now print the size. */
1450 if (symbol->section && bfd_is_com_section (symbol->section))
1451 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1452 else
1453 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1454 bfd_fprintf_vma (abfd, file, val);
1455
1456 /* If we have version information, print it. */
1457 if (elf_tdata (abfd)->dynversym_section != 0
1458 && (elf_tdata (abfd)->dynverdef_section != 0
1459 || elf_tdata (abfd)->dynverref_section != 0))
1460 {
1461 unsigned int vernum;
1462 const char *version_string;
1463
1464 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1465
1466 if (vernum == 0)
1467 version_string = "";
1468 else if (vernum == 1)
1469 version_string = "Base";
1470 else if (vernum <= elf_tdata (abfd)->cverdefs)
1471 version_string =
1472 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1473 else
1474 {
1475 Elf_Internal_Verneed *t;
1476
1477 version_string = "";
1478 for (t = elf_tdata (abfd)->verref;
1479 t != NULL;
1480 t = t->vn_nextref)
1481 {
1482 Elf_Internal_Vernaux *a;
1483
1484 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1485 {
1486 if (a->vna_other == vernum)
1487 {
1488 version_string = a->vna_nodename;
1489 break;
1490 }
1491 }
1492 }
1493 }
1494
1495 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1496 fprintf (file, " %-11s", version_string);
1497 else
1498 {
1499 int i;
1500
1501 fprintf (file, " (%s)", version_string);
1502 for (i = 10 - strlen (version_string); i > 0; --i)
1503 putc (' ', file);
1504 }
1505 }
1506
1507 /* If the st_other field is not zero, print it. */
1508 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1509
1510 switch (st_other)
1511 {
1512 case 0: break;
1513 case STV_INTERNAL: fprintf (file, " .internal"); break;
1514 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1515 case STV_PROTECTED: fprintf (file, " .protected"); break;
1516 default:
1517 /* Some other non-defined flags are also present, so print
1518 everything hex. */
1519 fprintf (file, " 0x%02x", (unsigned int) st_other);
1520 }
1521
1522 fprintf (file, " %s", name);
1523 }
1524 break;
1525 }
1526}
1527
1528/* Allocate an ELF string table--force the first byte to be zero. */
1529
1530struct bfd_strtab_hash *
1531_bfd_elf_stringtab_init (void)
1532{
1533 struct bfd_strtab_hash *ret;
1534
1535 ret = _bfd_stringtab_init ();
1536 if (ret != NULL)
1537 {
1538 bfd_size_type loc;
1539
1540 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1541 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1542 if (loc == (bfd_size_type) -1)
1543 {
1544 _bfd_stringtab_free (ret);
1545 ret = NULL;
1546 }
1547 }
1548 return ret;
1549}
1550\f
1551/* ELF .o/exec file reading */
1552
1553/* Create a new bfd section from an ELF section header. */
1554
1555bfd_boolean
1556bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1557{
1558 Elf_Internal_Shdr *hdr;
1559 Elf_Internal_Ehdr *ehdr;
1560 const struct elf_backend_data *bed;
1561 const char *name;
1562
1563 if (shindex >= elf_numsections (abfd))
1564 return FALSE;
1565
1566 hdr = elf_elfsections (abfd)[shindex];
1567 ehdr = elf_elfheader (abfd);
1568 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
1569 hdr->sh_name);
1570 if (name == NULL)
1571 return FALSE;
1572
1573 bed = get_elf_backend_data (abfd);
1574 switch (hdr->sh_type)
1575 {
1576 case SHT_NULL:
1577 /* Inactive section. Throw it away. */
1578 return TRUE;
1579
1580 case SHT_PROGBITS: /* Normal section with contents. */
1581 case SHT_NOBITS: /* .bss section. */
1582 case SHT_HASH: /* .hash section. */
1583 case SHT_NOTE: /* .note section. */
1584 case SHT_INIT_ARRAY: /* .init_array section. */
1585 case SHT_FINI_ARRAY: /* .fini_array section. */
1586 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1587 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1588 case SHT_GNU_HASH: /* .gnu.hash section. */
1589 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1590
1591 case SHT_DYNAMIC: /* Dynamic linking information. */
1592 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1593 return FALSE;
1594 if (hdr->sh_link > elf_numsections (abfd))
1595 {
1596 /* PR 10478: Accept Solaris binaries with a sh_link
1597 field set to SHN_BEFORE or SHN_AFTER. */
1598 switch (bfd_get_arch (abfd))
1599 {
1600 case bfd_arch_i386:
1601 case bfd_arch_sparc:
1602 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
1603 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
1604 break;
1605 /* Otherwise fall through. */
1606 default:
1607 return FALSE;
1608 }
1609 }
1610 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
1611 return FALSE;
1612 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1613 {
1614 Elf_Internal_Shdr *dynsymhdr;
1615
1616 /* The shared libraries distributed with hpux11 have a bogus
1617 sh_link field for the ".dynamic" section. Find the
1618 string table for the ".dynsym" section instead. */
1619 if (elf_dynsymtab (abfd) != 0)
1620 {
1621 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1622 hdr->sh_link = dynsymhdr->sh_link;
1623 }
1624 else
1625 {
1626 unsigned int i, num_sec;
1627
1628 num_sec = elf_numsections (abfd);
1629 for (i = 1; i < num_sec; i++)
1630 {
1631 dynsymhdr = elf_elfsections (abfd)[i];
1632 if (dynsymhdr->sh_type == SHT_DYNSYM)
1633 {
1634 hdr->sh_link = dynsymhdr->sh_link;
1635 break;
1636 }
1637 }
1638 }
1639 }
1640 break;
1641
1642 case SHT_SYMTAB: /* A symbol table */
1643 if (elf_onesymtab (abfd) == shindex)
1644 return TRUE;
1645
1646 if (hdr->sh_entsize != bed->s->sizeof_sym)
1647 return FALSE;
1648 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
1649 return FALSE;
1650 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1651 elf_onesymtab (abfd) = shindex;
1652 elf_tdata (abfd)->symtab_hdr = *hdr;
1653 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1654 abfd->flags |= HAS_SYMS;
1655
1656 /* Sometimes a shared object will map in the symbol table. If
1657 SHF_ALLOC is set, and this is a shared object, then we also
1658 treat this section as a BFD section. We can not base the
1659 decision purely on SHF_ALLOC, because that flag is sometimes
1660 set in a relocatable object file, which would confuse the
1661 linker. */
1662 if ((hdr->sh_flags & SHF_ALLOC) != 0
1663 && (abfd->flags & DYNAMIC) != 0
1664 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1665 shindex))
1666 return FALSE;
1667
1668 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
1669 can't read symbols without that section loaded as well. It
1670 is most likely specified by the next section header. */
1671 if (elf_elfsections (abfd)[elf_symtab_shndx (abfd)]->sh_link != shindex)
1672 {
1673 unsigned int i, num_sec;
1674
1675 num_sec = elf_numsections (abfd);
1676 for (i = shindex + 1; i < num_sec; i++)
1677 {
1678 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1679 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1680 && hdr2->sh_link == shindex)
1681 break;
1682 }
1683 if (i == num_sec)
1684 for (i = 1; i < shindex; i++)
1685 {
1686 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1687 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
1688 && hdr2->sh_link == shindex)
1689 break;
1690 }
1691 if (i != shindex)
1692 return bfd_section_from_shdr (abfd, i);
1693 }
1694 return TRUE;
1695
1696 case SHT_DYNSYM: /* A dynamic symbol table */
1697 if (elf_dynsymtab (abfd) == shindex)
1698 return TRUE;
1699
1700 if (hdr->sh_entsize != bed->s->sizeof_sym)
1701 return FALSE;
1702 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1703 elf_dynsymtab (abfd) = shindex;
1704 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1705 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1706 abfd->flags |= HAS_SYMS;
1707
1708 /* Besides being a symbol table, we also treat this as a regular
1709 section, so that objcopy can handle it. */
1710 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1711
1712 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1713 if (elf_symtab_shndx (abfd) == shindex)
1714 return TRUE;
1715
1716 BFD_ASSERT (elf_symtab_shndx (abfd) == 0);
1717 elf_symtab_shndx (abfd) = shindex;
1718 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1719 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1720 return TRUE;
1721
1722 case SHT_STRTAB: /* A string table */
1723 if (hdr->bfd_section != NULL)
1724 return TRUE;
1725 if (ehdr->e_shstrndx == shindex)
1726 {
1727 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1728 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1729 return TRUE;
1730 }
1731 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
1732 {
1733 symtab_strtab:
1734 elf_tdata (abfd)->strtab_hdr = *hdr;
1735 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
1736 return TRUE;
1737 }
1738 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
1739 {
1740 dynsymtab_strtab:
1741 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1742 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
1743 elf_elfsections (abfd)[shindex] = hdr;
1744 /* We also treat this as a regular section, so that objcopy
1745 can handle it. */
1746 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1747 shindex);
1748 }
1749
1750 /* If the string table isn't one of the above, then treat it as a
1751 regular section. We need to scan all the headers to be sure,
1752 just in case this strtab section appeared before the above. */
1753 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
1754 {
1755 unsigned int i, num_sec;
1756
1757 num_sec = elf_numsections (abfd);
1758 for (i = 1; i < num_sec; i++)
1759 {
1760 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1761 if (hdr2->sh_link == shindex)
1762 {
1763 /* Prevent endless recursion on broken objects. */
1764 if (i == shindex)
1765 return FALSE;
1766 if (! bfd_section_from_shdr (abfd, i))
1767 return FALSE;
1768 if (elf_onesymtab (abfd) == i)
1769 goto symtab_strtab;
1770 if (elf_dynsymtab (abfd) == i)
1771 goto dynsymtab_strtab;
1772 }
1773 }
1774 }
1775 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1776
1777 case SHT_REL:
1778 case SHT_RELA:
1779 /* *These* do a lot of work -- but build no sections! */
1780 {
1781 asection *target_sect;
1782 Elf_Internal_Shdr *hdr2, **p_hdr;
1783 unsigned int num_sec = elf_numsections (abfd);
1784 struct bfd_elf_section_data *esdt;
1785 bfd_size_type amt;
1786
1787 if (hdr->sh_entsize
1788 != (bfd_size_type) (hdr->sh_type == SHT_REL
1789 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
1790 return FALSE;
1791
1792 /* Check for a bogus link to avoid crashing. */
1793 if (hdr->sh_link >= num_sec)
1794 {
1795 ((*_bfd_error_handler)
1796 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1797 abfd, hdr->sh_link, name, shindex));
1798 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1799 shindex);
1800 }
1801
1802 /* For some incomprehensible reason Oracle distributes
1803 libraries for Solaris in which some of the objects have
1804 bogus sh_link fields. It would be nice if we could just
1805 reject them, but, unfortunately, some people need to use
1806 them. We scan through the section headers; if we find only
1807 one suitable symbol table, we clobber the sh_link to point
1808 to it. I hope this doesn't break anything.
1809
1810 Don't do it on executable nor shared library. */
1811 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
1812 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1813 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1814 {
1815 unsigned int scan;
1816 int found;
1817
1818 found = 0;
1819 for (scan = 1; scan < num_sec; scan++)
1820 {
1821 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1822 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1823 {
1824 if (found != 0)
1825 {
1826 found = 0;
1827 break;
1828 }
1829 found = scan;
1830 }
1831 }
1832 if (found != 0)
1833 hdr->sh_link = found;
1834 }
1835
1836 /* Get the symbol table. */
1837 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1838 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
1839 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1840 return FALSE;
1841
1842 /* If this reloc section does not use the main symbol table we
1843 don't treat it as a reloc section. BFD can't adequately
1844 represent such a section, so at least for now, we don't
1845 try. We just present it as a normal section. We also
1846 can't use it as a reloc section if it points to the null
1847 section, an invalid section, another reloc section, or its
1848 sh_link points to the null section. */
1849 if (hdr->sh_link != elf_onesymtab (abfd)
1850 || hdr->sh_link == SHN_UNDEF
1851 || hdr->sh_info == SHN_UNDEF
1852 || hdr->sh_info >= num_sec
1853 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
1854 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
1855 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1856 shindex);
1857
1858 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1859 return FALSE;
1860 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1861 if (target_sect == NULL)
1862 return FALSE;
1863
1864 esdt = elf_section_data (target_sect);
1865 if (hdr->sh_type == SHT_RELA)
1866 p_hdr = &esdt->rela.hdr;
1867 else
1868 p_hdr = &esdt->rel.hdr;
1869
1870 BFD_ASSERT (*p_hdr == NULL);
1871 amt = sizeof (*hdr2);
1872 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, amt);
1873 if (hdr2 == NULL)
1874 return FALSE;
1875 *hdr2 = *hdr;
1876 *p_hdr = hdr2;
1877 elf_elfsections (abfd)[shindex] = hdr2;
1878 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1879 target_sect->flags |= SEC_RELOC;
1880 target_sect->relocation = NULL;
1881 target_sect->rel_filepos = hdr->sh_offset;
1882 /* In the section to which the relocations apply, mark whether
1883 its relocations are of the REL or RELA variety. */
1884 if (hdr->sh_size != 0)
1885 {
1886 if (hdr->sh_type == SHT_RELA)
1887 target_sect->use_rela_p = 1;
1888 }
1889 abfd->flags |= HAS_RELOC;
1890 return TRUE;
1891 }
1892
1893 case SHT_GNU_verdef:
1894 elf_dynverdef (abfd) = shindex;
1895 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1896 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1897
1898 case SHT_GNU_versym:
1899 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
1900 return FALSE;
1901 elf_dynversym (abfd) = shindex;
1902 elf_tdata (abfd)->dynversym_hdr = *hdr;
1903 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1904
1905 case SHT_GNU_verneed:
1906 elf_dynverref (abfd) = shindex;
1907 elf_tdata (abfd)->dynverref_hdr = *hdr;
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1909
1910 case SHT_SHLIB:
1911 return TRUE;
1912
1913 case SHT_GROUP:
1914 if (! IS_VALID_GROUP_SECTION_HEADER (hdr))
1915 return FALSE;
1916 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1917 return FALSE;
1918 if (hdr->contents != NULL)
1919 {
1920 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
1921 unsigned int n_elt = hdr->sh_size / GRP_ENTRY_SIZE;
1922 asection *s;
1923
1924 if (idx->flags & GRP_COMDAT)
1925 hdr->bfd_section->flags
1926 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1927
1928 /* We try to keep the same section order as it comes in. */
1929 idx += n_elt;
1930 while (--n_elt != 0)
1931 {
1932 --idx;
1933
1934 if (idx->shdr != NULL
1935 && (s = idx->shdr->bfd_section) != NULL
1936 && elf_next_in_group (s) != NULL)
1937 {
1938 elf_next_in_group (hdr->bfd_section) = s;
1939 break;
1940 }
1941 }
1942 }
1943 break;
1944
1945 default:
1946 /* Possibly an attributes section. */
1947 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
1948 || hdr->sh_type == bed->obj_attrs_section_type)
1949 {
1950 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1951 return FALSE;
1952 _bfd_elf_parse_attributes (abfd, hdr);
1953 return TRUE;
1954 }
1955
1956 /* Check for any processor-specific section types. */
1957 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
1958 return TRUE;
1959
1960 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
1961 {
1962 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1963 /* FIXME: How to properly handle allocated section reserved
1964 for applications? */
1965 (*_bfd_error_handler)
1966 (_("%B: don't know how to handle allocated, application "
1967 "specific section `%s' [0x%8x]"),
1968 abfd, name, hdr->sh_type);
1969 else
1970 /* Allow sections reserved for applications. */
1971 return _bfd_elf_make_section_from_shdr (abfd, hdr, name,
1972 shindex);
1973 }
1974 else if (hdr->sh_type >= SHT_LOPROC
1975 && hdr->sh_type <= SHT_HIPROC)
1976 /* FIXME: We should handle this section. */
1977 (*_bfd_error_handler)
1978 (_("%B: don't know how to handle processor specific section "
1979 "`%s' [0x%8x]"),
1980 abfd, name, hdr->sh_type);
1981 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
1982 {
1983 /* Unrecognised OS-specific sections. */
1984 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
1985 /* SHF_OS_NONCONFORMING indicates that special knowledge is
1986 required to correctly process the section and the file should
1987 be rejected with an error message. */
1988 (*_bfd_error_handler)
1989 (_("%B: don't know how to handle OS specific section "
1990 "`%s' [0x%8x]"),
1991 abfd, name, hdr->sh_type);
1992 else
1993 /* Otherwise it should be processed. */
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
1995 }
1996 else
1997 /* FIXME: We should handle this section. */
1998 (*_bfd_error_handler)
1999 (_("%B: don't know how to handle section `%s' [0x%8x]"),
2000 abfd, name, hdr->sh_type);
2001
2002 return FALSE;
2003 }
2004
2005 return TRUE;
2006}
2007
2008/* Return the local symbol specified by ABFD, R_SYMNDX. */
2009
2010Elf_Internal_Sym *
2011bfd_sym_from_r_symndx (struct sym_cache *cache,
2012 bfd *abfd,
2013 unsigned long r_symndx)
2014{
2015 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2016
2017 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2018 {
2019 Elf_Internal_Shdr *symtab_hdr;
2020 unsigned char esym[sizeof (Elf64_External_Sym)];
2021 Elf_External_Sym_Shndx eshndx;
2022
2023 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2024 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2025 &cache->sym[ent], esym, &eshndx) == NULL)
2026 return NULL;
2027
2028 if (cache->abfd != abfd)
2029 {
2030 memset (cache->indx, -1, sizeof (cache->indx));
2031 cache->abfd = abfd;
2032 }
2033 cache->indx[ent] = r_symndx;
2034 }
2035
2036 return &cache->sym[ent];
2037}
2038
2039/* Given an ELF section number, retrieve the corresponding BFD
2040 section. */
2041
2042asection *
2043bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2044{
2045 if (sec_index >= elf_numsections (abfd))
2046 return NULL;
2047 return elf_elfsections (abfd)[sec_index]->bfd_section;
2048}
2049
2050static const struct bfd_elf_special_section special_sections_b[] =
2051{
2052 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2053 { NULL, 0, 0, 0, 0 }
2054};
2055
2056static const struct bfd_elf_special_section special_sections_c[] =
2057{
2058 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2059 { NULL, 0, 0, 0, 0 }
2060};
2061
2062static const struct bfd_elf_special_section special_sections_d[] =
2063{
2064 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2065 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2066 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2067 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2068 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2069 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2070 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2074 { NULL, 0, 0, 0, 0 }
2075};
2076
2077static const struct bfd_elf_special_section special_sections_f[] =
2078{
2079 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2081 { NULL, 0, 0, 0, 0 }
2082};
2083
2084static const struct bfd_elf_special_section special_sections_g[] =
2085{
2086 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2087 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2088 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2089 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2090 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2091 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2092 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2093 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2094 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2095 { NULL, 0, 0, 0, 0 }
2096};
2097
2098static const struct bfd_elf_special_section special_sections_h[] =
2099{
2100 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2101 { NULL, 0, 0, 0, 0 }
2102};
2103
2104static const struct bfd_elf_special_section special_sections_i[] =
2105{
2106 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2107 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2108 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2109 { NULL, 0, 0, 0, 0 }
2110};
2111
2112static const struct bfd_elf_special_section special_sections_l[] =
2113{
2114 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2115 { NULL, 0, 0, 0, 0 }
2116};
2117
2118static const struct bfd_elf_special_section special_sections_n[] =
2119{
2120 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2121 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2122 { NULL, 0, 0, 0, 0 }
2123};
2124
2125static const struct bfd_elf_special_section special_sections_p[] =
2126{
2127 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2128 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2129 { NULL, 0, 0, 0, 0 }
2130};
2131
2132static const struct bfd_elf_special_section special_sections_r[] =
2133{
2134 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2135 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2136 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2137 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2138 { NULL, 0, 0, 0, 0 }
2139};
2140
2141static const struct bfd_elf_special_section special_sections_s[] =
2142{
2143 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2144 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2145 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2146 /* See struct bfd_elf_special_section declaration for the semantics of
2147 this special case where .prefix_length != strlen (.prefix). */
2148 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2149 { NULL, 0, 0, 0, 0 }
2150};
2151
2152static const struct bfd_elf_special_section special_sections_t[] =
2153{
2154 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2155 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2156 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2157 { NULL, 0, 0, 0, 0 }
2158};
2159
2160static const struct bfd_elf_special_section special_sections_z[] =
2161{
2162 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2163 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2164 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2165 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2166 { NULL, 0, 0, 0, 0 }
2167};
2168
2169static const struct bfd_elf_special_section * const special_sections[] =
2170{
2171 special_sections_b, /* 'b' */
2172 special_sections_c, /* 'c' */
2173 special_sections_d, /* 'd' */
2174 NULL, /* 'e' */
2175 special_sections_f, /* 'f' */
2176 special_sections_g, /* 'g' */
2177 special_sections_h, /* 'h' */
2178 special_sections_i, /* 'i' */
2179 NULL, /* 'j' */
2180 NULL, /* 'k' */
2181 special_sections_l, /* 'l' */
2182 NULL, /* 'm' */
2183 special_sections_n, /* 'n' */
2184 NULL, /* 'o' */
2185 special_sections_p, /* 'p' */
2186 NULL, /* 'q' */
2187 special_sections_r, /* 'r' */
2188 special_sections_s, /* 's' */
2189 special_sections_t, /* 't' */
2190 NULL, /* 'u' */
2191 NULL, /* 'v' */
2192 NULL, /* 'w' */
2193 NULL, /* 'x' */
2194 NULL, /* 'y' */
2195 special_sections_z /* 'z' */
2196};
2197
2198const struct bfd_elf_special_section *
2199_bfd_elf_get_special_section (const char *name,
2200 const struct bfd_elf_special_section *spec,
2201 unsigned int rela)
2202{
2203 int i;
2204 int len;
2205
2206 len = strlen (name);
2207
2208 for (i = 0; spec[i].prefix != NULL; i++)
2209 {
2210 int suffix_len;
2211 int prefix_len = spec[i].prefix_length;
2212
2213 if (len < prefix_len)
2214 continue;
2215 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2216 continue;
2217
2218 suffix_len = spec[i].suffix_length;
2219 if (suffix_len <= 0)
2220 {
2221 if (name[prefix_len] != 0)
2222 {
2223 if (suffix_len == 0)
2224 continue;
2225 if (name[prefix_len] != '.'
2226 && (suffix_len == -2
2227 || (rela && spec[i].type == SHT_REL)))
2228 continue;
2229 }
2230 }
2231 else
2232 {
2233 if (len < prefix_len + suffix_len)
2234 continue;
2235 if (memcmp (name + len - suffix_len,
2236 spec[i].prefix + prefix_len,
2237 suffix_len) != 0)
2238 continue;
2239 }
2240 return &spec[i];
2241 }
2242
2243 return NULL;
2244}
2245
2246const struct bfd_elf_special_section *
2247_bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2248{
2249 int i;
2250 const struct bfd_elf_special_section *spec;
2251 const struct elf_backend_data *bed;
2252
2253 /* See if this is one of the special sections. */
2254 if (sec->name == NULL)
2255 return NULL;
2256
2257 bed = get_elf_backend_data (abfd);
2258 spec = bed->special_sections;
2259 if (spec)
2260 {
2261 spec = _bfd_elf_get_special_section (sec->name,
2262 bed->special_sections,
2263 sec->use_rela_p);
2264 if (spec != NULL)
2265 return spec;
2266 }
2267
2268 if (sec->name[0] != '.')
2269 return NULL;
2270
2271 i = sec->name[1] - 'b';
2272 if (i < 0 || i > 'z' - 'b')
2273 return NULL;
2274
2275 spec = special_sections[i];
2276
2277 if (spec == NULL)
2278 return NULL;
2279
2280 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2281}
2282
2283bfd_boolean
2284_bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2285{
2286 struct bfd_elf_section_data *sdata;
2287 const struct elf_backend_data *bed;
2288 const struct bfd_elf_special_section *ssect;
2289
2290 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2291 if (sdata == NULL)
2292 {
2293 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2294 sizeof (*sdata));
2295 if (sdata == NULL)
2296 return FALSE;
2297 sec->used_by_bfd = sdata;
2298 }
2299
2300 /* Indicate whether or not this section should use RELA relocations. */
2301 bed = get_elf_backend_data (abfd);
2302 sec->use_rela_p = bed->default_use_rela_p;
2303
2304 /* When we read a file, we don't need to set ELF section type and
2305 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2306 anyway. We will set ELF section type and flags for all linker
2307 created sections. If user specifies BFD section flags, we will
2308 set ELF section type and flags based on BFD section flags in
2309 elf_fake_sections. Special handling for .init_array/.fini_array
2310 output sections since they may contain .ctors/.dtors input
2311 sections. We don't want _bfd_elf_init_private_section_data to
2312 copy ELF section type from .ctors/.dtors input sections. */
2313 if (abfd->direction != read_direction
2314 || (sec->flags & SEC_LINKER_CREATED) != 0)
2315 {
2316 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2317 if (ssect != NULL
2318 && (!sec->flags
2319 || (sec->flags & SEC_LINKER_CREATED) != 0
2320 || ssect->type == SHT_INIT_ARRAY
2321 || ssect->type == SHT_FINI_ARRAY))
2322 {
2323 elf_section_type (sec) = ssect->type;
2324 elf_section_flags (sec) = ssect->attr;
2325 }
2326 }
2327
2328 return _bfd_generic_new_section_hook (abfd, sec);
2329}
2330
2331/* Create a new bfd section from an ELF program header.
2332
2333 Since program segments have no names, we generate a synthetic name
2334 of the form segment<NUM>, where NUM is generally the index in the
2335 program header table. For segments that are split (see below) we
2336 generate the names segment<NUM>a and segment<NUM>b.
2337
2338 Note that some program segments may have a file size that is different than
2339 (less than) the memory size. All this means is that at execution the
2340 system must allocate the amount of memory specified by the memory size,
2341 but only initialize it with the first "file size" bytes read from the
2342 file. This would occur for example, with program segments consisting
2343 of combined data+bss.
2344
2345 To handle the above situation, this routine generates TWO bfd sections
2346 for the single program segment. The first has the length specified by
2347 the file size of the segment, and the second has the length specified
2348 by the difference between the two sizes. In effect, the segment is split
2349 into its initialized and uninitialized parts.
2350
2351 */
2352
2353bfd_boolean
2354_bfd_elf_make_section_from_phdr (bfd *abfd,
2355 Elf_Internal_Phdr *hdr,
2356 int hdr_index,
2357 const char *type_name)
2358{
2359 asection *newsect;
2360 char *name;
2361 char namebuf[64];
2362 size_t len;
2363 int split;
2364
2365 split = ((hdr->p_memsz > 0)
2366 && (hdr->p_filesz > 0)
2367 && (hdr->p_memsz > hdr->p_filesz));
2368
2369 if (hdr->p_filesz > 0)
2370 {
2371 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2372 len = strlen (namebuf) + 1;
2373 name = (char *) bfd_alloc (abfd, len);
2374 if (!name)
2375 return FALSE;
2376 memcpy (name, namebuf, len);
2377 newsect = bfd_make_section (abfd, name);
2378 if (newsect == NULL)
2379 return FALSE;
2380 newsect->vma = hdr->p_vaddr;
2381 newsect->lma = hdr->p_paddr;
2382 newsect->size = hdr->p_filesz;
2383 newsect->filepos = hdr->p_offset;
2384 newsect->flags |= SEC_HAS_CONTENTS;
2385 newsect->alignment_power = bfd_log2 (hdr->p_align);
2386 if (hdr->p_type == PT_LOAD)
2387 {
2388 newsect->flags |= SEC_ALLOC;
2389 newsect->flags |= SEC_LOAD;
2390 if (hdr->p_flags & PF_X)
2391 {
2392 /* FIXME: all we known is that it has execute PERMISSION,
2393 may be data. */
2394 newsect->flags |= SEC_CODE;
2395 }
2396 }
2397 if (!(hdr->p_flags & PF_W))
2398 {
2399 newsect->flags |= SEC_READONLY;
2400 }
2401 }
2402
2403 if (hdr->p_memsz > hdr->p_filesz)
2404 {
2405 bfd_vma align;
2406
2407 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2408 len = strlen (namebuf) + 1;
2409 name = (char *) bfd_alloc (abfd, len);
2410 if (!name)
2411 return FALSE;
2412 memcpy (name, namebuf, len);
2413 newsect = bfd_make_section (abfd, name);
2414 if (newsect == NULL)
2415 return FALSE;
2416 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2417 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2418 newsect->size = hdr->p_memsz - hdr->p_filesz;
2419 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2420 align = newsect->vma & -newsect->vma;
2421 if (align == 0 || align > hdr->p_align)
2422 align = hdr->p_align;
2423 newsect->alignment_power = bfd_log2 (align);
2424 if (hdr->p_type == PT_LOAD)
2425 {
2426 /* Hack for gdb. Segments that have not been modified do
2427 not have their contents written to a core file, on the
2428 assumption that a debugger can find the contents in the
2429 executable. We flag this case by setting the fake
2430 section size to zero. Note that "real" bss sections will
2431 always have their contents dumped to the core file. */
2432 if (bfd_get_format (abfd) == bfd_core)
2433 newsect->size = 0;
2434 newsect->flags |= SEC_ALLOC;
2435 if (hdr->p_flags & PF_X)
2436 newsect->flags |= SEC_CODE;
2437 }
2438 if (!(hdr->p_flags & PF_W))
2439 newsect->flags |= SEC_READONLY;
2440 }
2441
2442 return TRUE;
2443}
2444
2445bfd_boolean
2446bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2447{
2448 const struct elf_backend_data *bed;
2449
2450 switch (hdr->p_type)
2451 {
2452 case PT_NULL:
2453 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2454
2455 case PT_LOAD:
2456 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2457
2458 case PT_DYNAMIC:
2459 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2460
2461 case PT_INTERP:
2462 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2463
2464 case PT_NOTE:
2465 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2466 return FALSE;
2467 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2468 return FALSE;
2469 return TRUE;
2470
2471 case PT_SHLIB:
2472 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
2473
2474 case PT_PHDR:
2475 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
2476
2477 case PT_GNU_EH_FRAME:
2478 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
2479 "eh_frame_hdr");
2480
2481 case PT_GNU_STACK:
2482 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
2483
2484 case PT_GNU_RELRO:
2485 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
2486
2487 default:
2488 /* Check for any processor-specific program segment types. */
2489 bed = get_elf_backend_data (abfd);
2490 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
2491 }
2492}
2493
2494/* Return the REL_HDR for SEC, assuming there is only a single one, either
2495 REL or RELA. */
2496
2497Elf_Internal_Shdr *
2498_bfd_elf_single_rel_hdr (asection *sec)
2499{
2500 if (elf_section_data (sec)->rel.hdr)
2501 {
2502 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
2503 return elf_section_data (sec)->rel.hdr;
2504 }
2505 else
2506 return elf_section_data (sec)->rela.hdr;
2507}
2508
2509/* Allocate and initialize a section-header for a new reloc section,
2510 containing relocations against ASECT. It is stored in RELDATA. If
2511 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
2512 relocations. */
2513
2514bfd_boolean
2515_bfd_elf_init_reloc_shdr (bfd *abfd,
2516 struct bfd_elf_section_reloc_data *reldata,
2517 asection *asect,
2518 bfd_boolean use_rela_p)
2519{
2520 Elf_Internal_Shdr *rel_hdr;
2521 char *name;
2522 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2523 bfd_size_type amt;
2524
2525 amt = sizeof (Elf_Internal_Shdr);
2526 BFD_ASSERT (reldata->hdr == NULL);
2527 rel_hdr = bfd_zalloc (abfd, amt);
2528 reldata->hdr = rel_hdr;
2529
2530 amt = sizeof ".rela" + strlen (asect->name);
2531 name = (char *) bfd_alloc (abfd, amt);
2532 if (name == NULL)
2533 return FALSE;
2534 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2535 rel_hdr->sh_name =
2536 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2537 FALSE);
2538 if (rel_hdr->sh_name == (unsigned int) -1)
2539 return FALSE;
2540 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2541 rel_hdr->sh_entsize = (use_rela_p
2542 ? bed->s->sizeof_rela
2543 : bed->s->sizeof_rel);
2544 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
2545 rel_hdr->sh_flags = 0;
2546 rel_hdr->sh_addr = 0;
2547 rel_hdr->sh_size = 0;
2548 rel_hdr->sh_offset = 0;
2549
2550 return TRUE;
2551}
2552
2553/* Return the default section type based on the passed in section flags. */
2554
2555int
2556bfd_elf_get_default_section_type (flagword flags)
2557{
2558 if ((flags & SEC_ALLOC) != 0
2559 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2560 return SHT_NOBITS;
2561 return SHT_PROGBITS;
2562}
2563
2564struct fake_section_arg
2565{
2566 struct bfd_link_info *link_info;
2567 bfd_boolean failed;
2568};
2569
2570/* Set up an ELF internal section header for a section. */
2571
2572static void
2573elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
2574{
2575 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
2576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2577 struct bfd_elf_section_data *esd = elf_section_data (asect);
2578 Elf_Internal_Shdr *this_hdr;
2579 unsigned int sh_type;
2580
2581 if (arg->failed)
2582 {
2583 /* We already failed; just get out of the bfd_map_over_sections
2584 loop. */
2585 return;
2586 }
2587
2588 this_hdr = &esd->this_hdr;
2589
2590 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2591 asect->name, FALSE);
2592 if (this_hdr->sh_name == (unsigned int) -1)
2593 {
2594 arg->failed = TRUE;
2595 return;
2596 }
2597
2598 /* Don't clear sh_flags. Assembler may set additional bits. */
2599
2600 if ((asect->flags & SEC_ALLOC) != 0
2601 || asect->user_set_vma)
2602 this_hdr->sh_addr = asect->vma;
2603 else
2604 this_hdr->sh_addr = 0;
2605
2606 this_hdr->sh_offset = 0;
2607 this_hdr->sh_size = asect->size;
2608 this_hdr->sh_link = 0;
2609 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
2610 /* The sh_entsize and sh_info fields may have been set already by
2611 copy_private_section_data. */
2612
2613 this_hdr->bfd_section = asect;
2614 this_hdr->contents = NULL;
2615
2616 /* If the section type is unspecified, we set it based on
2617 asect->flags. */
2618 if ((asect->flags & SEC_GROUP) != 0)
2619 sh_type = SHT_GROUP;
2620 else
2621 sh_type = bfd_elf_get_default_section_type (asect->flags);
2622
2623 if (this_hdr->sh_type == SHT_NULL)
2624 this_hdr->sh_type = sh_type;
2625 else if (this_hdr->sh_type == SHT_NOBITS
2626 && sh_type == SHT_PROGBITS
2627 && (asect->flags & SEC_ALLOC) != 0)
2628 {
2629 /* Warn if we are changing a NOBITS section to PROGBITS, but
2630 allow the link to proceed. This can happen when users link
2631 non-bss input sections to bss output sections, or emit data
2632 to a bss output section via a linker script. */
2633 (*_bfd_error_handler)
2634 (_("warning: section `%A' type changed to PROGBITS"), asect);
2635 this_hdr->sh_type = sh_type;
2636 }
2637
2638 switch (this_hdr->sh_type)
2639 {
2640 default:
2641 break;
2642
2643 case SHT_STRTAB:
2644 case SHT_INIT_ARRAY:
2645 case SHT_FINI_ARRAY:
2646 case SHT_PREINIT_ARRAY:
2647 case SHT_NOTE:
2648 case SHT_NOBITS:
2649 case SHT_PROGBITS:
2650 break;
2651
2652 case SHT_HASH:
2653 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2654 break;
2655
2656 case SHT_DYNSYM:
2657 this_hdr->sh_entsize = bed->s->sizeof_sym;
2658 break;
2659
2660 case SHT_DYNAMIC:
2661 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2662 break;
2663
2664 case SHT_RELA:
2665 if (get_elf_backend_data (abfd)->may_use_rela_p)
2666 this_hdr->sh_entsize = bed->s->sizeof_rela;
2667 break;
2668
2669 case SHT_REL:
2670 if (get_elf_backend_data (abfd)->may_use_rel_p)
2671 this_hdr->sh_entsize = bed->s->sizeof_rel;
2672 break;
2673
2674 case SHT_GNU_versym:
2675 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2676 break;
2677
2678 case SHT_GNU_verdef:
2679 this_hdr->sh_entsize = 0;
2680 /* objcopy or strip will copy over sh_info, but may not set
2681 cverdefs. The linker will set cverdefs, but sh_info will be
2682 zero. */
2683 if (this_hdr->sh_info == 0)
2684 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2685 else
2686 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2687 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2688 break;
2689
2690 case SHT_GNU_verneed:
2691 this_hdr->sh_entsize = 0;
2692 /* objcopy or strip will copy over sh_info, but may not set
2693 cverrefs. The linker will set cverrefs, but sh_info will be
2694 zero. */
2695 if (this_hdr->sh_info == 0)
2696 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2697 else
2698 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2699 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2700 break;
2701
2702 case SHT_GROUP:
2703 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
2704 break;
2705
2706 case SHT_GNU_HASH:
2707 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
2708 break;
2709 }
2710
2711 if ((asect->flags & SEC_ALLOC) != 0)
2712 this_hdr->sh_flags |= SHF_ALLOC;
2713 if ((asect->flags & SEC_READONLY) == 0)
2714 this_hdr->sh_flags |= SHF_WRITE;
2715 if ((asect->flags & SEC_CODE) != 0)
2716 this_hdr->sh_flags |= SHF_EXECINSTR;
2717 if ((asect->flags & SEC_MERGE) != 0)
2718 {
2719 this_hdr->sh_flags |= SHF_MERGE;
2720 this_hdr->sh_entsize = asect->entsize;
2721 if ((asect->flags & SEC_STRINGS) != 0)
2722 this_hdr->sh_flags |= SHF_STRINGS;
2723 }
2724 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2725 this_hdr->sh_flags |= SHF_GROUP;
2726 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2727 {
2728 this_hdr->sh_flags |= SHF_TLS;
2729 if (asect->size == 0
2730 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2731 {
2732 struct bfd_link_order *o = asect->map_tail.link_order;
2733
2734 this_hdr->sh_size = 0;
2735 if (o != NULL)
2736 {
2737 this_hdr->sh_size = o->offset + o->size;
2738 if (this_hdr->sh_size != 0)
2739 this_hdr->sh_type = SHT_NOBITS;
2740 }
2741 }
2742 }
2743 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2744 this_hdr->sh_flags |= SHF_EXCLUDE;
2745
2746 /* If the section has relocs, set up a section header for the
2747 SHT_REL[A] section. If two relocation sections are required for
2748 this section, it is up to the processor-specific back-end to
2749 create the other. */
2750 if ((asect->flags & SEC_RELOC) != 0)
2751 {
2752 /* When doing a relocatable link, create both REL and RELA sections if
2753 needed. */
2754 if (arg->link_info
2755 /* Do the normal setup if we wouldn't create any sections here. */
2756 && esd->rel.count + esd->rela.count > 0
2757 && (arg->link_info->relocatable || arg->link_info->emitrelocations))
2758 {
2759 if (esd->rel.count && esd->rel.hdr == NULL
2760 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, asect, FALSE))
2761 {
2762 arg->failed = TRUE;
2763 return;
2764 }
2765 if (esd->rela.count && esd->rela.hdr == NULL
2766 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, asect, TRUE))
2767 {
2768 arg->failed = TRUE;
2769 return;
2770 }
2771 }
2772 else if (!_bfd_elf_init_reloc_shdr (abfd,
2773 (asect->use_rela_p
2774 ? &esd->rela : &esd->rel),
2775 asect,
2776 asect->use_rela_p))
2777 arg->failed = TRUE;
2778 }
2779
2780 /* Check for processor-specific section types. */
2781 sh_type = this_hdr->sh_type;
2782 if (bed->elf_backend_fake_sections
2783 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2784 arg->failed = TRUE;
2785
2786 if (sh_type == SHT_NOBITS && asect->size != 0)
2787 {
2788 /* Don't change the header type from NOBITS if we are being
2789 called for objcopy --only-keep-debug. */
2790 this_hdr->sh_type = sh_type;
2791 }
2792}
2793
2794/* Fill in the contents of a SHT_GROUP section. Called from
2795 _bfd_elf_compute_section_file_positions for gas, objcopy, and
2796 when ELF targets use the generic linker, ld. Called for ld -r
2797 from bfd_elf_final_link. */
2798
2799void
2800bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2801{
2802 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
2803 asection *elt, *first;
2804 unsigned char *loc;
2805 bfd_boolean gas;
2806
2807 /* Ignore linker created group section. See elfNN_ia64_object_p in
2808 elfxx-ia64.c. */
2809 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
2810 || *failedptr)
2811 return;
2812
2813 if (elf_section_data (sec)->this_hdr.sh_info == 0)
2814 {
2815 unsigned long symindx = 0;
2816
2817 /* elf_group_id will have been set up by objcopy and the
2818 generic linker. */
2819 if (elf_group_id (sec) != NULL)
2820 symindx = elf_group_id (sec)->udata.i;
2821
2822 if (symindx == 0)
2823 {
2824 /* If called from the assembler, swap_out_syms will have set up
2825 elf_section_syms. */
2826 BFD_ASSERT (elf_section_syms (abfd) != NULL);
2827 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2828 }
2829 elf_section_data (sec)->this_hdr.sh_info = symindx;
2830 }
2831 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
2832 {
2833 /* The ELF backend linker sets sh_info to -2 when the group
2834 signature symbol is global, and thus the index can't be
2835 set until all local symbols are output. */
2836 asection *igroup = elf_sec_group (elf_next_in_group (sec));
2837 struct bfd_elf_section_data *sec_data = elf_section_data (igroup);
2838 unsigned long symndx = sec_data->this_hdr.sh_info;
2839 unsigned long extsymoff = 0;
2840 struct elf_link_hash_entry *h;
2841
2842 if (!elf_bad_symtab (igroup->owner))
2843 {
2844 Elf_Internal_Shdr *symtab_hdr;
2845
2846 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
2847 extsymoff = symtab_hdr->sh_info;
2848 }
2849 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
2850 while (h->root.type == bfd_link_hash_indirect
2851 || h->root.type == bfd_link_hash_warning)
2852 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2853
2854 elf_section_data (sec)->this_hdr.sh_info = h->indx;
2855 }
2856
2857 /* The contents won't be allocated for "ld -r" or objcopy. */
2858 gas = TRUE;
2859 if (sec->contents == NULL)
2860 {
2861 gas = FALSE;
2862 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
2863
2864 /* Arrange for the section to be written out. */
2865 elf_section_data (sec)->this_hdr.contents = sec->contents;
2866 if (sec->contents == NULL)
2867 {
2868 *failedptr = TRUE;
2869 return;
2870 }
2871 }
2872
2873 loc = sec->contents + sec->size;
2874
2875 /* Get the pointer to the first section in the group that gas
2876 squirreled away here. objcopy arranges for this to be set to the
2877 start of the input section group. */
2878 first = elt = elf_next_in_group (sec);
2879
2880 /* First element is a flag word. Rest of section is elf section
2881 indices for all the sections of the group. Write them backwards
2882 just to keep the group in the same order as given in .section
2883 directives, not that it matters. */
2884 while (elt != NULL)
2885 {
2886 asection *s;
2887
2888 s = elt;
2889 if (!gas)
2890 s = s->output_section;
2891 if (s != NULL
2892 && !bfd_is_abs_section (s))
2893 {
2894 unsigned int idx = elf_section_data (s)->this_idx;
2895
2896 loc -= 4;
2897 H_PUT_32 (abfd, idx, loc);
2898 }
2899 elt = elf_next_in_group (elt);
2900 if (elt == first)
2901 break;
2902 }
2903
2904 if ((loc -= 4) != sec->contents)
2905 abort ();
2906
2907 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2908}
2909
2910/* Assign all ELF section numbers. The dummy first section is handled here
2911 too. The link/info pointers for the standard section types are filled
2912 in here too, while we're at it. */
2913
2914static bfd_boolean
2915assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
2916{
2917 struct elf_obj_tdata *t = elf_tdata (abfd);
2918 asection *sec;
2919 unsigned int section_number, secn;
2920 Elf_Internal_Shdr **i_shdrp;
2921 struct bfd_elf_section_data *d;
2922 bfd_boolean need_symtab;
2923
2924 section_number = 1;
2925
2926 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2927
2928 /* SHT_GROUP sections are in relocatable files only. */
2929 if (link_info == NULL || link_info->relocatable)
2930 {
2931 /* Put SHT_GROUP sections first. */
2932 for (sec = abfd->sections; sec != NULL; sec = sec->next)
2933 {
2934 d = elf_section_data (sec);
2935
2936 if (d->this_hdr.sh_type == SHT_GROUP)
2937 {
2938 if (sec->flags & SEC_LINKER_CREATED)
2939 {
2940 /* Remove the linker created SHT_GROUP sections. */
2941 bfd_section_list_remove (abfd, sec);
2942 abfd->section_count--;
2943 }
2944 else
2945 d->this_idx = section_number++;
2946 }
2947 }
2948 }
2949
2950 for (sec = abfd->sections; sec; sec = sec->next)
2951 {
2952 d = elf_section_data (sec);
2953
2954 if (d->this_hdr.sh_type != SHT_GROUP)
2955 d->this_idx = section_number++;
2956 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2957 if (d->rel.hdr)
2958 {
2959 d->rel.idx = section_number++;
2960 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
2961 }
2962 else
2963 d->rel.idx = 0;
2964
2965 if (d->rela.hdr)
2966 {
2967 d->rela.idx = section_number++;
2968 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
2969 }
2970 else
2971 d->rela.idx = 0;
2972 }
2973
2974 t->shstrtab_section = section_number++;
2975 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2976 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2977
2978 need_symtab = (bfd_get_symcount (abfd) > 0
2979 || (link_info == NULL
2980 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
2981 == HAS_RELOC)));
2982 if (need_symtab)
2983 {
2984 t->symtab_section = section_number++;
2985 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2986 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
2987 {
2988 t->symtab_shndx_section = section_number++;
2989 t->symtab_shndx_hdr.sh_name
2990 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2991 ".symtab_shndx", FALSE);
2992 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2993 return FALSE;
2994 }
2995 t->strtab_section = section_number++;
2996 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2997 }
2998
2999 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
3000 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3001
3002 elf_numsections (abfd) = section_number;
3003 elf_elfheader (abfd)->e_shnum = section_number;
3004
3005 /* Set up the list of section header pointers, in agreement with the
3006 indices. */
3007 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3008 sizeof (Elf_Internal_Shdr *));
3009 if (i_shdrp == NULL)
3010 return FALSE;
3011
3012 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3013 sizeof (Elf_Internal_Shdr));
3014 if (i_shdrp[0] == NULL)
3015 {
3016 bfd_release (abfd, i_shdrp);
3017 return FALSE;
3018 }
3019
3020 elf_elfsections (abfd) = i_shdrp;
3021
3022 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
3023 if (need_symtab)
3024 {
3025 i_shdrp[t->symtab_section] = &t->symtab_hdr;
3026 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3027 {
3028 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
3029 t->symtab_shndx_hdr.sh_link = t->symtab_section;
3030 }
3031 i_shdrp[t->strtab_section] = &t->strtab_hdr;
3032 t->symtab_hdr.sh_link = t->strtab_section;
3033 }
3034
3035 for (sec = abfd->sections; sec; sec = sec->next)
3036 {
3037 asection *s;
3038 const char *name;
3039
3040 d = elf_section_data (sec);
3041
3042 i_shdrp[d->this_idx] = &d->this_hdr;
3043 if (d->rel.idx != 0)
3044 i_shdrp[d->rel.idx] = d->rel.hdr;
3045 if (d->rela.idx != 0)
3046 i_shdrp[d->rela.idx] = d->rela.hdr;
3047
3048 /* Fill in the sh_link and sh_info fields while we're at it. */
3049
3050 /* sh_link of a reloc section is the section index of the symbol
3051 table. sh_info is the section index of the section to which
3052 the relocation entries apply. */
3053 if (d->rel.idx != 0)
3054 {
3055 d->rel.hdr->sh_link = t->symtab_section;
3056 d->rel.hdr->sh_info = d->this_idx;
3057 }
3058 if (d->rela.idx != 0)
3059 {
3060 d->rela.hdr->sh_link = t->symtab_section;
3061 d->rela.hdr->sh_info = d->this_idx;
3062 }
3063
3064 /* We need to set up sh_link for SHF_LINK_ORDER. */
3065 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3066 {
3067 s = elf_linked_to_section (sec);
3068 if (s)
3069 {
3070 /* elf_linked_to_section points to the input section. */
3071 if (link_info != NULL)
3072 {
3073 /* Check discarded linkonce section. */
3074 if (discarded_section (s))
3075 {
3076 asection *kept;
3077 (*_bfd_error_handler)
3078 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"),
3079 abfd, d->this_hdr.bfd_section,
3080 s, s->owner);
3081 /* Point to the kept section if it has the same
3082 size as the discarded one. */
3083 kept = _bfd_elf_check_kept_section (s, link_info);
3084 if (kept == NULL)
3085 {
3086 bfd_set_error (bfd_error_bad_value);
3087 return FALSE;
3088 }
3089 s = kept;
3090 }
3091
3092 s = s->output_section;
3093 BFD_ASSERT (s != NULL);
3094 }
3095 else
3096 {
3097 /* Handle objcopy. */
3098 if (s->output_section == NULL)
3099 {
3100 (*_bfd_error_handler)
3101 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"),
3102 abfd, d->this_hdr.bfd_section, s, s->owner);
3103 bfd_set_error (bfd_error_bad_value);
3104 return FALSE;
3105 }
3106 s = s->output_section;
3107 }
3108 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3109 }
3110 else
3111 {
3112 /* PR 290:
3113 The Intel C compiler generates SHT_IA_64_UNWIND with
3114 SHF_LINK_ORDER. But it doesn't set the sh_link or
3115 sh_info fields. Hence we could get the situation
3116 where s is NULL. */
3117 const struct elf_backend_data *bed
3118 = get_elf_backend_data (abfd);
3119 if (bed->link_order_error_handler)
3120 bed->link_order_error_handler
3121 (_("%B: warning: sh_link not set for section `%A'"),
3122 abfd, sec);
3123 }
3124 }
3125
3126 switch (d->this_hdr.sh_type)
3127 {
3128 case SHT_REL:
3129 case SHT_RELA:
3130 /* A reloc section which we are treating as a normal BFD
3131 section. sh_link is the section index of the symbol
3132 table. sh_info is the section index of the section to
3133 which the relocation entries apply. We assume that an
3134 allocated reloc section uses the dynamic symbol table.
3135 FIXME: How can we be sure? */
3136 s = bfd_get_section_by_name (abfd, ".dynsym");
3137 if (s != NULL)
3138 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3139
3140 /* We look up the section the relocs apply to by name. */
3141 name = sec->name;
3142 if (d->this_hdr.sh_type == SHT_REL)
3143 name += 4;
3144 else
3145 name += 5;
3146 s = bfd_get_section_by_name (abfd, name);
3147 if (s != NULL)
3148 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3149 break;
3150
3151 case SHT_STRTAB:
3152 /* We assume that a section named .stab*str is a stabs
3153 string section. We look for a section with the same name
3154 but without the trailing ``str'', and set its sh_link
3155 field to point to this section. */
3156 if (CONST_STRNEQ (sec->name, ".stab")
3157 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3158 {
3159 size_t len;
3160 char *alc;
3161
3162 len = strlen (sec->name);
3163 alc = (char *) bfd_malloc (len - 2);
3164 if (alc == NULL)
3165 return FALSE;
3166 memcpy (alc, sec->name, len - 3);
3167 alc[len - 3] = '\0';
3168 s = bfd_get_section_by_name (abfd, alc);
3169 free (alc);
3170 if (s != NULL)
3171 {
3172 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3173
3174 /* This is a .stab section. */
3175 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3176 elf_section_data (s)->this_hdr.sh_entsize
3177 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3178 }
3179 }
3180 break;
3181
3182 case SHT_DYNAMIC:
3183 case SHT_DYNSYM:
3184 case SHT_GNU_verneed:
3185 case SHT_GNU_verdef:
3186 /* sh_link is the section header index of the string table
3187 used for the dynamic entries, or the symbol table, or the
3188 version strings. */
3189 s = bfd_get_section_by_name (abfd, ".dynstr");
3190 if (s != NULL)
3191 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3192 break;
3193
3194 case SHT_GNU_LIBLIST:
3195 /* sh_link is the section header index of the prelink library
3196 list used for the dynamic entries, or the symbol table, or
3197 the version strings. */
3198 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3199 ? ".dynstr" : ".gnu.libstr");
3200 if (s != NULL)
3201 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3202 break;
3203
3204 case SHT_HASH:
3205 case SHT_GNU_HASH:
3206 case SHT_GNU_versym:
3207 /* sh_link is the section header index of the symbol table
3208 this hash table or version table is for. */
3209 s = bfd_get_section_by_name (abfd, ".dynsym");
3210 if (s != NULL)
3211 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3212 break;
3213
3214 case SHT_GROUP:
3215 d->this_hdr.sh_link = t->symtab_section;
3216 }
3217 }
3218
3219 for (secn = 1; secn < section_number; ++secn)
3220 if (i_shdrp[secn] == NULL)
3221 i_shdrp[secn] = i_shdrp[0];
3222 else
3223 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3224 i_shdrp[secn]->sh_name);
3225 return TRUE;
3226}
3227
3228/* Map symbol from it's internal number to the external number, moving
3229 all local symbols to be at the head of the list. */
3230
3231static bfd_boolean
3232sym_is_global (bfd *abfd, asymbol *sym)
3233{
3234 /* If the backend has a special mapping, use it. */
3235 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3236 if (bed->elf_backend_sym_is_global)
3237 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3238
3239 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3240 || bfd_is_und_section (bfd_get_section (sym))
3241 || bfd_is_com_section (bfd_get_section (sym)));
3242}
3243
3244/* Don't output section symbols for sections that are not going to be
3245 output. */
3246
3247static bfd_boolean
3248ignore_section_sym (bfd *abfd, asymbol *sym)
3249{
3250 return ((sym->flags & BSF_SECTION_SYM) != 0
3251 && !(sym->section->owner == abfd
3252 || (sym->section->output_section->owner == abfd
3253 && sym->section->output_offset == 0)));
3254}
3255
3256static bfd_boolean
3257elf_map_symbols (bfd *abfd)
3258{
3259 unsigned int symcount = bfd_get_symcount (abfd);
3260 asymbol **syms = bfd_get_outsymbols (abfd);
3261 asymbol **sect_syms;
3262 unsigned int num_locals = 0;
3263 unsigned int num_globals = 0;
3264 unsigned int num_locals2 = 0;
3265 unsigned int num_globals2 = 0;
3266 int max_index = 0;
3267 unsigned int idx;
3268 asection *asect;
3269 asymbol **new_syms;
3270
3271#ifdef DEBUG
3272 fprintf (stderr, "elf_map_symbols\n");
3273 fflush (stderr);
3274#endif
3275
3276 for (asect = abfd->sections; asect; asect = asect->next)
3277 {
3278 if (max_index < asect->index)
3279 max_index = asect->index;
3280 }
3281
3282 max_index++;
3283 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
3284 if (sect_syms == NULL)
3285 return FALSE;
3286 elf_section_syms (abfd) = sect_syms;
3287 elf_num_section_syms (abfd) = max_index;
3288
3289 /* Init sect_syms entries for any section symbols we have already
3290 decided to output. */
3291 for (idx = 0; idx < symcount; idx++)
3292 {
3293 asymbol *sym = syms[idx];
3294
3295 if ((sym->flags & BSF_SECTION_SYM) != 0
3296 && sym->value == 0
3297 && !ignore_section_sym (abfd, sym))
3298 {
3299 asection *sec = sym->section;
3300
3301 if (sec->owner != abfd)
3302 sec = sec->output_section;
3303
3304 sect_syms[sec->index] = syms[idx];
3305 }
3306 }
3307
3308 /* Classify all of the symbols. */
3309 for (idx = 0; idx < symcount; idx++)
3310 {
3311 if (ignore_section_sym (abfd, syms[idx]))
3312 continue;
3313 if (!sym_is_global (abfd, syms[idx]))
3314 num_locals++;
3315 else
3316 num_globals++;
3317 }
3318
3319 /* We will be adding a section symbol for each normal BFD section. Most
3320 sections will already have a section symbol in outsymbols, but
3321 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3322 at least in that case. */
3323 for (asect = abfd->sections; asect; asect = asect->next)
3324 {
3325 if (sect_syms[asect->index] == NULL)
3326 {
3327 if (!sym_is_global (abfd, asect->symbol))
3328 num_locals++;
3329 else
3330 num_globals++;
3331 }
3332 }
3333
3334 /* Now sort the symbols so the local symbols are first. */
3335 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
3336 sizeof (asymbol *));
3337
3338 if (new_syms == NULL)
3339 return FALSE;
3340
3341 for (idx = 0; idx < symcount; idx++)
3342 {
3343 asymbol *sym = syms[idx];
3344 unsigned int i;
3345
3346 if (ignore_section_sym (abfd, sym))
3347 continue;
3348 if (!sym_is_global (abfd, sym))
3349 i = num_locals2++;
3350 else
3351 i = num_locals + num_globals2++;
3352 new_syms[i] = sym;
3353 sym->udata.i = i + 1;
3354 }
3355 for (asect = abfd->sections; asect; asect = asect->next)
3356 {
3357 if (sect_syms[asect->index] == NULL)
3358 {
3359 asymbol *sym = asect->symbol;
3360 unsigned int i;
3361
3362 sect_syms[asect->index] = sym;
3363 if (!sym_is_global (abfd, sym))
3364 i = num_locals2++;
3365 else
3366 i = num_locals + num_globals2++;
3367 new_syms[i] = sym;
3368 sym->udata.i = i + 1;
3369 }
3370 }
3371
3372 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3373
3374 elf_num_locals (abfd) = num_locals;
3375 elf_num_globals (abfd) = num_globals;
3376 return TRUE;
3377}
3378
3379/* Align to the maximum file alignment that could be required for any
3380 ELF data structure. */
3381
3382static inline file_ptr
3383align_file_position (file_ptr off, int align)
3384{
3385 return (off + align - 1) & ~(align - 1);
3386}
3387
3388/* Assign a file position to a section, optionally aligning to the
3389 required section alignment. */
3390
3391file_ptr
3392_bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3393 file_ptr offset,
3394 bfd_boolean align)
3395{
3396 if (align && i_shdrp->sh_addralign > 1)
3397 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
3398 i_shdrp->sh_offset = offset;
3399 if (i_shdrp->bfd_section != NULL)
3400 i_shdrp->bfd_section->filepos = offset;
3401 if (i_shdrp->sh_type != SHT_NOBITS)
3402 offset += i_shdrp->sh_size;
3403 return offset;
3404}
3405
3406/* Compute the file positions we are going to put the sections at, and
3407 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3408 is not NULL, this is being called by the ELF backend linker. */
3409
3410bfd_boolean
3411_bfd_elf_compute_section_file_positions (bfd *abfd,
3412 struct bfd_link_info *link_info)
3413{
3414 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3415 struct fake_section_arg fsargs;
3416 bfd_boolean failed;
3417 struct bfd_strtab_hash *strtab = NULL;
3418 Elf_Internal_Shdr *shstrtab_hdr;
3419 bfd_boolean need_symtab;
3420
3421 if (abfd->output_has_begun)
3422 return TRUE;
3423
3424 /* Do any elf backend specific processing first. */
3425 if (bed->elf_backend_begin_write_processing)
3426 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3427
3428 if (! prep_headers (abfd))
3429 return FALSE;
3430
3431 /* Post process the headers if necessary. */
3432 if (bed->elf_backend_post_process_headers)
3433 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3434
3435 fsargs.failed = FALSE;
3436 fsargs.link_info = link_info;
3437 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
3438 if (fsargs.failed)
3439 return FALSE;
3440
3441 if (!assign_section_numbers (abfd, link_info))
3442 return FALSE;
3443
3444 /* The backend linker builds symbol table information itself. */
3445 need_symtab = (link_info == NULL
3446 && (bfd_get_symcount (abfd) > 0
3447 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3448 == HAS_RELOC)));
3449 if (need_symtab)
3450 {
3451 /* Non-zero if doing a relocatable link. */
3452 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3453
3454 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3455 return FALSE;
3456 }
3457
3458 failed = FALSE;
3459 if (link_info == NULL)
3460 {
3461 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3462 if (failed)
3463 return FALSE;
3464 }
3465
3466 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3467 /* sh_name was set in prep_headers. */
3468 shstrtab_hdr->sh_type = SHT_STRTAB;
3469 shstrtab_hdr->sh_flags = 0;
3470 shstrtab_hdr->sh_addr = 0;
3471 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3472 shstrtab_hdr->sh_entsize = 0;
3473 shstrtab_hdr->sh_link = 0;
3474 shstrtab_hdr->sh_info = 0;
3475 /* sh_offset is set in assign_file_positions_except_relocs. */
3476 shstrtab_hdr->sh_addralign = 1;
3477
3478 if (!assign_file_positions_except_relocs (abfd, link_info))
3479 return FALSE;
3480
3481 if (need_symtab)
3482 {
3483 file_ptr off;
3484 Elf_Internal_Shdr *hdr;
3485
3486 off = elf_tdata (abfd)->next_file_pos;
3487
3488 hdr = &elf_tdata (abfd)->symtab_hdr;
3489 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3490
3491 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3492 if (hdr->sh_size != 0)
3493 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3494
3495 hdr = &elf_tdata (abfd)->strtab_hdr;
3496 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3497
3498 elf_tdata (abfd)->next_file_pos = off;
3499
3500 /* Now that we know where the .strtab section goes, write it
3501 out. */
3502 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3503 || ! _bfd_stringtab_emit (abfd, strtab))
3504 return FALSE;
3505 _bfd_stringtab_free (strtab);
3506 }
3507
3508 abfd->output_has_begun = TRUE;
3509
3510 return TRUE;
3511}
3512
3513/* Make an initial estimate of the size of the program header. If we
3514 get the number wrong here, we'll redo section placement. */
3515
3516static bfd_size_type
3517get_program_header_size (bfd *abfd, struct bfd_link_info *info)
3518{
3519 size_t segs;
3520 asection *s;
3521 const struct elf_backend_data *bed;
3522
3523 /* Assume we will need exactly two PT_LOAD segments: one for text
3524 and one for data. */
3525 segs = 2;
3526
3527 s = bfd_get_section_by_name (abfd, ".interp");
3528 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3529 {
3530 /* If we have a loadable interpreter section, we need a
3531 PT_INTERP segment. In this case, assume we also need a
3532 PT_PHDR segment, although that may not be true for all
3533 targets. */
3534 segs += 2;
3535 }
3536
3537 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
3538 {
3539 /* We need a PT_DYNAMIC segment. */
3540 ++segs;
3541 }
3542
3543 if (info != NULL && info->relro)
3544 {
3545 /* We need a PT_GNU_RELRO segment. */
3546 ++segs;
3547 }
3548
3549 if (elf_tdata (abfd)->eh_frame_hdr)
3550 {
3551 /* We need a PT_GNU_EH_FRAME segment. */
3552 ++segs;
3553 }
3554
3555 if (elf_tdata (abfd)->stack_flags)
3556 {
3557 /* We need a PT_GNU_STACK segment. */
3558 ++segs;
3559 }
3560
3561 for (s = abfd->sections; s != NULL; s = s->next)
3562 {
3563 if ((s->flags & SEC_LOAD) != 0
3564 && CONST_STRNEQ (s->name, ".note"))
3565 {
3566 /* We need a PT_NOTE segment. */
3567 ++segs;
3568 /* Try to create just one PT_NOTE segment
3569 for all adjacent loadable .note* sections.
3570 gABI requires that within a PT_NOTE segment
3571 (and also inside of each SHT_NOTE section)
3572 each note is padded to a multiple of 4 size,
3573 so we check whether the sections are correctly
3574 aligned. */
3575 if (s->alignment_power == 2)
3576 while (s->next != NULL
3577 && s->next->alignment_power == 2
3578 && (s->next->flags & SEC_LOAD) != 0
3579 && CONST_STRNEQ (s->next->name, ".note"))
3580 s = s->next;
3581 }
3582 }
3583
3584 for (s = abfd->sections; s != NULL; s = s->next)
3585 {
3586 if (s->flags & SEC_THREAD_LOCAL)
3587 {
3588 /* We need a PT_TLS segment. */
3589 ++segs;
3590 break;
3591 }
3592 }
3593
3594 /* Let the backend count up any program headers it might need. */
3595 bed = get_elf_backend_data (abfd);
3596 if (bed->elf_backend_additional_program_headers)
3597 {
3598 int a;
3599
3600 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
3601 if (a == -1)
3602 abort ();
3603 segs += a;
3604 }
3605
3606 return segs * bed->s->sizeof_phdr;
3607}
3608
3609/* Find the segment that contains the output_section of section. */
3610
3611Elf_Internal_Phdr *
3612_bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
3613{
3614 struct elf_segment_map *m;
3615 Elf_Internal_Phdr *p;
3616
3617 for (m = elf_tdata (abfd)->segment_map,
3618 p = elf_tdata (abfd)->phdr;
3619 m != NULL;
3620 m = m->next, p++)
3621 {
3622 int i;
3623
3624 for (i = m->count - 1; i >= 0; i--)
3625 if (m->sections[i] == section)
3626 return p;
3627 }
3628
3629 return NULL;
3630}
3631
3632/* Create a mapping from a set of sections to a program segment. */
3633
3634static struct elf_segment_map *
3635make_mapping (bfd *abfd,
3636 asection **sections,
3637 unsigned int from,
3638 unsigned int to,
3639 bfd_boolean phdr)
3640{
3641 struct elf_segment_map *m;
3642 unsigned int i;
3643 asection **hdrpp;
3644 bfd_size_type amt;
3645
3646 amt = sizeof (struct elf_segment_map);
3647 amt += (to - from - 1) * sizeof (asection *);
3648 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3649 if (m == NULL)
3650 return NULL;
3651 m->next = NULL;
3652 m->p_type = PT_LOAD;
3653 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3654 m->sections[i - from] = *hdrpp;
3655 m->count = to - from;
3656
3657 if (from == 0 && phdr)
3658 {
3659 /* Include the headers in the first PT_LOAD segment. */
3660 m->includes_filehdr = 1;
3661 m->includes_phdrs = 1;
3662 }
3663
3664 return m;
3665}
3666
3667/* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3668 on failure. */
3669
3670struct elf_segment_map *
3671_bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3672{
3673 struct elf_segment_map *m;
3674
3675 m = (struct elf_segment_map *) bfd_zalloc (abfd,
3676 sizeof (struct elf_segment_map));
3677 if (m == NULL)
3678 return NULL;
3679 m->next = NULL;
3680 m->p_type = PT_DYNAMIC;
3681 m->count = 1;
3682 m->sections[0] = dynsec;
3683
3684 return m;
3685}
3686
3687/* Possibly add or remove segments from the segment map. */
3688
3689static bfd_boolean
3690elf_modify_segment_map (bfd *abfd,
3691 struct bfd_link_info *info,
3692 bfd_boolean remove_empty_load)
3693{
3694 struct elf_segment_map **m;
3695 const struct elf_backend_data *bed;
3696
3697 /* The placement algorithm assumes that non allocated sections are
3698 not in PT_LOAD segments. We ensure this here by removing such
3699 sections from the segment map. We also remove excluded
3700 sections. Finally, any PT_LOAD segment without sections is
3701 removed. */
3702 m = &elf_tdata (abfd)->segment_map;
3703 while (*m)
3704 {
3705 unsigned int i, new_count;
3706
3707 for (new_count = 0, i = 0; i < (*m)->count; i++)
3708 {
3709 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
3710 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
3711 || (*m)->p_type != PT_LOAD))
3712 {
3713 (*m)->sections[new_count] = (*m)->sections[i];
3714 new_count++;
3715 }
3716 }
3717 (*m)->count = new_count;
3718
3719 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0)
3720 *m = (*m)->next;
3721 else
3722 m = &(*m)->next;
3723 }
3724
3725 bed = get_elf_backend_data (abfd);
3726 if (bed->elf_backend_modify_segment_map != NULL)
3727 {
3728 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
3729 return FALSE;
3730 }
3731
3732 return TRUE;
3733}
3734
3735/* Set up a mapping from BFD sections to program segments. */
3736
3737bfd_boolean
3738_bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
3739{
3740 unsigned int count;
3741 struct elf_segment_map *m;
3742 asection **sections = NULL;
3743 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3744 bfd_boolean no_user_phdrs;
3745
3746 no_user_phdrs = elf_tdata (abfd)->segment_map == NULL;
3747
3748 if (info != NULL)
3749 info->user_phdrs = !no_user_phdrs;
3750
3751 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
3752 {
3753 asection *s;
3754 unsigned int i;
3755 struct elf_segment_map *mfirst;
3756 struct elf_segment_map **pm;
3757 asection *last_hdr;
3758 bfd_vma last_size;
3759 unsigned int phdr_index;
3760 bfd_vma maxpagesize;
3761 asection **hdrpp;
3762 bfd_boolean phdr_in_segment = TRUE;
3763 bfd_boolean writable;
3764 int tls_count = 0;
3765 asection *first_tls = NULL;
3766 asection *dynsec, *eh_frame_hdr;
3767 bfd_size_type amt;
3768 bfd_vma addr_mask, wrap_to = 0;
3769
3770 /* Select the allocated sections, and sort them. */
3771
3772 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
3773 sizeof (asection *));
3774 if (sections == NULL)
3775 goto error_return;
3776
3777 /* Calculate top address, avoiding undefined behaviour of shift
3778 left operator when shift count is equal to size of type
3779 being shifted. */
3780 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
3781 addr_mask = (addr_mask << 1) + 1;
3782
3783 i = 0;
3784 for (s = abfd->sections; s != NULL; s = s->next)
3785 {
3786 if ((s->flags & SEC_ALLOC) != 0)
3787 {
3788 sections[i] = s;
3789 ++i;
3790 /* A wrapping section potentially clashes with header. */
3791 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
3792 wrap_to = (s->lma + s->size) & addr_mask;
3793 }
3794 }
3795 BFD_ASSERT (i <= bfd_count_sections (abfd));
3796 count = i;
3797
3798 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3799
3800 /* Build the mapping. */
3801
3802 mfirst = NULL;
3803 pm = &mfirst;
3804
3805 /* If we have a .interp section, then create a PT_PHDR segment for
3806 the program headers and a PT_INTERP segment for the .interp
3807 section. */
3808 s = bfd_get_section_by_name (abfd, ".interp");
3809 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3810 {
3811 amt = sizeof (struct elf_segment_map);
3812 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3813 if (m == NULL)
3814 goto error_return;
3815 m->next = NULL;
3816 m->p_type = PT_PHDR;
3817 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3818 m->p_flags = PF_R | PF_X;
3819 m->p_flags_valid = 1;
3820 m->includes_phdrs = 1;
3821
3822 *pm = m;
3823 pm = &m->next;
3824
3825 amt = sizeof (struct elf_segment_map);
3826 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
3827 if (m == NULL)
3828 goto error_return;
3829 m->next = NULL;
3830 m->p_type = PT_INTERP;
3831 m->count = 1;
3832 m->sections[0] = s;
3833
3834 *pm = m;
3835 pm = &m->next;
3836 }
3837
3838 /* Look through the sections. We put sections in the same program
3839 segment when the start of the second section can be placed within
3840 a few bytes of the end of the first section. */
3841 last_hdr = NULL;
3842 last_size = 0;
3843 phdr_index = 0;
3844 maxpagesize = bed->maxpagesize;
3845 writable = FALSE;
3846 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3847 if (dynsec != NULL
3848 && (dynsec->flags & SEC_LOAD) == 0)
3849 dynsec = NULL;
3850
3851 /* Deal with -Ttext or something similar such that the first section
3852 is not adjacent to the program headers. This is an
3853 approximation, since at this point we don't know exactly how many
3854 program headers we will need. */
3855 if (count > 0)
3856 {
3857 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
3858
3859 if (phdr_size == (bfd_size_type) -1)
3860 phdr_size = get_program_header_size (abfd, info);
3861 if ((abfd->flags & D_PAGED) == 0
3862 || (sections[0]->lma & addr_mask) < phdr_size
3863 || ((sections[0]->lma & addr_mask) % maxpagesize
3864 < phdr_size % maxpagesize)
3865 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
3866 phdr_in_segment = FALSE;
3867 }
3868
3869 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3870 {
3871 asection *hdr;
3872 bfd_boolean new_segment;
3873
3874 hdr = *hdrpp;
3875
3876 /* See if this section and the last one will fit in the same
3877 segment. */
3878
3879 if (last_hdr == NULL)
3880 {
3881 /* If we don't have a segment yet, then we don't need a new
3882 one (we build the last one after this loop). */
3883 new_segment = FALSE;
3884 }
3885 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3886 {
3887 /* If this section has a different relation between the
3888 virtual address and the load address, then we need a new
3889 segment. */
3890 new_segment = TRUE;
3891 }
3892 else if (hdr->lma < last_hdr->lma + last_size
3893 || last_hdr->lma + last_size < last_hdr->lma)
3894 {
3895 /* If this section has a load address that makes it overlap
3896 the previous section, then we need a new segment. */
3897 new_segment = TRUE;
3898 }
3899 /* In the next test we have to be careful when last_hdr->lma is close
3900 to the end of the address space. If the aligned address wraps
3901 around to the start of the address space, then there are no more
3902 pages left in memory and it is OK to assume that the current
3903 section can be included in the current segment. */
3904 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3905 > last_hdr->lma)
3906 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize
3907 <= hdr->lma))
3908 {
3909 /* If putting this section in this segment would force us to
3910 skip a page in the segment, then we need a new segment. */
3911 new_segment = TRUE;
3912 }
3913 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3914 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3915 {
3916 /* We don't want to put a loadable section after a
3917 nonloadable section in the same segment.
3918 Consider .tbss sections as loadable for this purpose. */
3919 new_segment = TRUE;
3920 }
3921 else if ((abfd->flags & D_PAGED) == 0)
3922 {
3923 /* If the file is not demand paged, which means that we
3924 don't require the sections to be correctly aligned in the
3925 file, then there is no other reason for a new segment. */
3926 new_segment = FALSE;
3927 }
3928 else if (! writable
3929 && (hdr->flags & SEC_READONLY) == 0
3930 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
3931 != (hdr->lma & -maxpagesize)))
3932 {
3933 /* We don't want to put a writable section in a read only
3934 segment, unless they are on the same page in memory
3935 anyhow. We already know that the last section does not
3936 bring us past the current section on the page, so the
3937 only case in which the new section is not on the same
3938 page as the previous section is when the previous section
3939 ends precisely on a page boundary. */
3940 new_segment = TRUE;
3941 }
3942 else
3943 {
3944 /* Otherwise, we can use the same segment. */
3945 new_segment = FALSE;
3946 }
3947
3948 /* Allow interested parties a chance to override our decision. */
3949 if (last_hdr != NULL
3950 && info != NULL
3951 && info->callbacks->override_segment_assignment != NULL)
3952 new_segment
3953 = info->callbacks->override_segment_assignment (info, abfd, hdr,
3954 last_hdr,
3955 new_segment);
3956
3957 if (! new_segment)
3958 {
3959 if ((hdr->flags & SEC_READONLY) == 0)
3960 writable = TRUE;
3961 last_hdr = hdr;
3962 /* .tbss sections effectively have zero size. */
3963 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
3964 != SEC_THREAD_LOCAL)
3965 last_size = hdr->size;
3966 else
3967 last_size = 0;
3968 continue;
3969 }
3970
3971 /* We need a new program segment. We must create a new program
3972 header holding all the sections from phdr_index until hdr. */
3973
3974 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3975 if (m == NULL)
3976 goto error_return;
3977
3978 *pm = m;
3979 pm = &m->next;
3980
3981 if ((hdr->flags & SEC_READONLY) == 0)
3982 writable = TRUE;
3983 else
3984 writable = FALSE;
3985
3986 last_hdr = hdr;
3987 /* .tbss sections effectively have zero size. */
3988 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3989 last_size = hdr->size;
3990 else
3991 last_size = 0;
3992 phdr_index = i;
3993 phdr_in_segment = FALSE;
3994 }
3995
3996 /* Create a final PT_LOAD program segment, but not if it's just
3997 for .tbss. */
3998 if (last_hdr != NULL
3999 && (i - phdr_index != 1
4000 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4001 != SEC_THREAD_LOCAL)))
4002 {
4003 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4004 if (m == NULL)
4005 goto error_return;
4006
4007 *pm = m;
4008 pm = &m->next;
4009 }
4010
4011 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4012 if (dynsec != NULL)
4013 {
4014 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4015 if (m == NULL)
4016 goto error_return;
4017 *pm = m;
4018 pm = &m->next;
4019 }
4020
4021 /* For each batch of consecutive loadable .note sections,
4022 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4023 because if we link together nonloadable .note sections and
4024 loadable .note sections, we will generate two .note sections
4025 in the output file. FIXME: Using names for section types is
4026 bogus anyhow. */
4027 for (s = abfd->sections; s != NULL; s = s->next)
4028 {
4029 if ((s->flags & SEC_LOAD) != 0
4030 && CONST_STRNEQ (s->name, ".note"))
4031 {
4032 asection *s2;
4033
4034 count = 1;
4035 amt = sizeof (struct elf_segment_map);
4036 if (s->alignment_power == 2)
4037 for (s2 = s; s2->next != NULL; s2 = s2->next)
4038 {
4039 if (s2->next->alignment_power == 2
4040 && (s2->next->flags & SEC_LOAD) != 0
4041 && CONST_STRNEQ (s2->next->name, ".note")
4042 && align_power (s2->lma + s2->size, 2)
4043 == s2->next->lma)
4044 count++;
4045 else
4046 break;
4047 }
4048 amt += (count - 1) * sizeof (asection *);
4049 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4050 if (m == NULL)
4051 goto error_return;
4052 m->next = NULL;
4053 m->p_type = PT_NOTE;
4054 m->count = count;
4055 while (count > 1)
4056 {
4057 m->sections[m->count - count--] = s;
4058 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4059 s = s->next;
4060 }
4061 m->sections[m->count - 1] = s;
4062 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4063 *pm = m;
4064 pm = &m->next;
4065 }
4066 if (s->flags & SEC_THREAD_LOCAL)
4067 {
4068 if (! tls_count)
4069 first_tls = s;
4070 tls_count++;
4071 }
4072 }
4073
4074 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4075 if (tls_count > 0)
4076 {
4077 amt = sizeof (struct elf_segment_map);
4078 amt += (tls_count - 1) * sizeof (asection *);
4079 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4080 if (m == NULL)
4081 goto error_return;
4082 m->next = NULL;
4083 m->p_type = PT_TLS;
4084 m->count = tls_count;
4085 /* Mandated PF_R. */
4086 m->p_flags = PF_R;
4087 m->p_flags_valid = 1;
4088 for (i = 0; i < (unsigned int) tls_count; ++i)
4089 {
4090 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
4091 m->sections[i] = first_tls;
4092 first_tls = first_tls->next;
4093 }
4094
4095 *pm = m;
4096 pm = &m->next;
4097 }
4098
4099 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4100 segment. */
4101 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
4102 if (eh_frame_hdr != NULL
4103 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
4104 {
4105 amt = sizeof (struct elf_segment_map);
4106 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4107 if (m == NULL)
4108 goto error_return;
4109 m->next = NULL;
4110 m->p_type = PT_GNU_EH_FRAME;
4111 m->count = 1;
4112 m->sections[0] = eh_frame_hdr->output_section;
4113
4114 *pm = m;
4115 pm = &m->next;
4116 }
4117
4118 if (elf_tdata (abfd)->stack_flags)
4119 {
4120 amt = sizeof (struct elf_segment_map);
4121 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4122 if (m == NULL)
4123 goto error_return;
4124 m->next = NULL;
4125 m->p_type = PT_GNU_STACK;
4126 m->p_flags = elf_tdata (abfd)->stack_flags;
4127 m->p_flags_valid = 1;
4128
4129 *pm = m;
4130 pm = &m->next;
4131 }
4132
4133 if (info != NULL && info->relro)
4134 {
4135 for (m = mfirst; m != NULL; m = m->next)
4136 {
4137 if (m->p_type == PT_LOAD)
4138 {
4139 asection *last = m->sections[m->count - 1];
4140 bfd_vma vaddr = m->sections[0]->vma;
4141 bfd_vma filesz = last->vma - vaddr + last->size;
4142
4143 if (vaddr < info->relro_end
4144 && vaddr >= info->relro_start
4145 && (vaddr + filesz) >= info->relro_end)
4146 break;
4147 }
4148 }
4149
4150 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
4151 if (m != NULL)
4152 {
4153 amt = sizeof (struct elf_segment_map);
4154 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4155 if (m == NULL)
4156 goto error_return;
4157 m->next = NULL;
4158 m->p_type = PT_GNU_RELRO;
4159 m->p_flags = PF_R;
4160 m->p_flags_valid = 1;
4161
4162 *pm = m;
4163 pm = &m->next;
4164 }
4165 }
4166
4167 free (sections);
4168 elf_tdata (abfd)->segment_map = mfirst;
4169 }
4170
4171 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
4172 return FALSE;
4173
4174 for (count = 0, m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4175 ++count;
4176 elf_tdata (abfd)->program_header_size = count * bed->s->sizeof_phdr;
4177
4178 return TRUE;
4179
4180 error_return:
4181 if (sections != NULL)
4182 free (sections);
4183 return FALSE;
4184}
4185
4186/* Sort sections by address. */
4187
4188static int
4189elf_sort_sections (const void *arg1, const void *arg2)
4190{
4191 const asection *sec1 = *(const asection **) arg1;
4192 const asection *sec2 = *(const asection **) arg2;
4193 bfd_size_type size1, size2;
4194
4195 /* Sort by LMA first, since this is the address used to
4196 place the section into a segment. */
4197 if (sec1->lma < sec2->lma)
4198 return -1;
4199 else if (sec1->lma > sec2->lma)
4200 return 1;
4201
4202 /* Then sort by VMA. Normally the LMA and the VMA will be
4203 the same, and this will do nothing. */
4204 if (sec1->vma < sec2->vma)
4205 return -1;
4206 else if (sec1->vma > sec2->vma)
4207 return 1;
4208
4209 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
4210
4211#define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
4212
4213 if (TOEND (sec1))
4214 {
4215 if (TOEND (sec2))
4216 {
4217 /* If the indicies are the same, do not return 0
4218 here, but continue to try the next comparison. */
4219 if (sec1->target_index - sec2->target_index != 0)
4220 return sec1->target_index - sec2->target_index;
4221 }
4222 else
4223 return 1;
4224 }
4225 else if (TOEND (sec2))
4226 return -1;
4227
4228#undef TOEND
4229
4230 /* Sort by size, to put zero sized sections
4231 before others at the same address. */
4232
4233 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
4234 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
4235
4236 if (size1 < size2)
4237 return -1;
4238 if (size1 > size2)
4239 return 1;
4240
4241 return sec1->target_index - sec2->target_index;
4242}
4243
4244/* Ian Lance Taylor writes:
4245
4246 We shouldn't be using % with a negative signed number. That's just
4247 not good. We have to make sure either that the number is not
4248 negative, or that the number has an unsigned type. When the types
4249 are all the same size they wind up as unsigned. When file_ptr is a
4250 larger signed type, the arithmetic winds up as signed long long,
4251 which is wrong.
4252
4253 What we're trying to say here is something like ``increase OFF by
4254 the least amount that will cause it to be equal to the VMA modulo
4255 the page size.'' */
4256/* In other words, something like:
4257
4258 vma_offset = m->sections[0]->vma % bed->maxpagesize;
4259 off_offset = off % bed->maxpagesize;
4260 if (vma_offset < off_offset)
4261 adjustment = vma_offset + bed->maxpagesize - off_offset;
4262 else
4263 adjustment = vma_offset - off_offset;
4264
4265 which can can be collapsed into the expression below. */
4266
4267static file_ptr
4268vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
4269{
4270 return ((vma - off) % maxpagesize);
4271}
4272
4273static void
4274print_segment_map (const struct elf_segment_map *m)
4275{
4276 unsigned int j;
4277 const char *pt = get_segment_type (m->p_type);
4278 char buf[32];
4279
4280 if (pt == NULL)
4281 {
4282 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
4283 sprintf (buf, "LOPROC+%7.7x",
4284 (unsigned int) (m->p_type - PT_LOPROC));
4285 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
4286 sprintf (buf, "LOOS+%7.7x",
4287 (unsigned int) (m->p_type - PT_LOOS));
4288 else
4289 snprintf (buf, sizeof (buf), "%8.8x",
4290 (unsigned int) m->p_type);
4291 pt = buf;
4292 }
4293 fflush (stdout);
4294 fprintf (stderr, "%s:", pt);
4295 for (j = 0; j < m->count; j++)
4296 fprintf (stderr, " %s", m->sections [j]->name);
4297 putc ('\n',stderr);
4298 fflush (stderr);
4299}
4300
4301static bfd_boolean
4302write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
4303{
4304 void *buf;
4305 bfd_boolean ret;
4306
4307 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
4308 return FALSE;
4309 buf = bfd_zmalloc (len);
4310 if (buf == NULL)
4311 return FALSE;
4312 ret = bfd_bwrite (buf, len, abfd) == len;
4313 free (buf);
4314 return ret;
4315}
4316
4317/* Assign file positions to the sections based on the mapping from
4318 sections to segments. This function also sets up some fields in
4319 the file header. */
4320
4321static bfd_boolean
4322assign_file_positions_for_load_sections (bfd *abfd,
4323 struct bfd_link_info *link_info)
4324{
4325 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4326 struct elf_segment_map *m;
4327 Elf_Internal_Phdr *phdrs;
4328 Elf_Internal_Phdr *p;
4329 file_ptr off;
4330 bfd_size_type maxpagesize;
4331 unsigned int alloc;
4332 unsigned int i, j;
4333 bfd_vma header_pad = 0;
4334
4335 if (link_info == NULL
4336 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
4337 return FALSE;
4338
4339 alloc = 0;
4340 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4341 {
4342 ++alloc;
4343 if (m->header_size)
4344 header_pad = m->header_size;
4345 }
4346
4347 if (alloc)
4348 {
4349 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
4350 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
4351 }
4352 else
4353 {
4354 /* PR binutils/12467. */
4355 elf_elfheader (abfd)->e_phoff = 0;
4356 elf_elfheader (abfd)->e_phentsize = 0;
4357 }
4358
4359 elf_elfheader (abfd)->e_phnum = alloc;
4360
4361 if (elf_tdata (abfd)->program_header_size == (bfd_size_type) -1)
4362 elf_tdata (abfd)->program_header_size = alloc * bed->s->sizeof_phdr;
4363 else
4364 BFD_ASSERT (elf_tdata (abfd)->program_header_size
4365 >= alloc * bed->s->sizeof_phdr);
4366
4367 if (alloc == 0)
4368 {
4369 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
4370 return TRUE;
4371 }
4372
4373 /* We're writing the size in elf_tdata (abfd)->program_header_size,
4374 see assign_file_positions_except_relocs, so make sure we have
4375 that amount allocated, with trailing space cleared.
4376 The variable alloc contains the computed need, while elf_tdata
4377 (abfd)->program_header_size contains the size used for the
4378 layout.
4379 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
4380 where the layout is forced to according to a larger size in the
4381 last iterations for the testcase ld-elf/header. */
4382 BFD_ASSERT (elf_tdata (abfd)->program_header_size % bed->s->sizeof_phdr
4383 == 0);
4384 phdrs = (Elf_Internal_Phdr *)
4385 bfd_zalloc2 (abfd,
4386 (elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr),
4387 sizeof (Elf_Internal_Phdr));
4388 elf_tdata (abfd)->phdr = phdrs;
4389 if (phdrs == NULL)
4390 return FALSE;
4391
4392 maxpagesize = 1;
4393 if ((abfd->flags & D_PAGED) != 0)
4394 maxpagesize = bed->maxpagesize;
4395
4396 off = bed->s->sizeof_ehdr;
4397 off += alloc * bed->s->sizeof_phdr;
4398 if (header_pad < (bfd_vma) off)
4399 header_pad = 0;
4400 else
4401 header_pad -= off;
4402 off += header_pad;
4403
4404 for (m = elf_tdata (abfd)->segment_map, p = phdrs, j = 0;
4405 m != NULL;
4406 m = m->next, p++, j++)
4407 {
4408 asection **secpp;
4409 bfd_vma off_adjust;
4410 bfd_boolean no_contents;
4411
4412 /* If elf_segment_map is not from map_sections_to_segments, the
4413 sections may not be correctly ordered. NOTE: sorting should
4414 not be done to the PT_NOTE section of a corefile, which may
4415 contain several pseudo-sections artificially created by bfd.
4416 Sorting these pseudo-sections breaks things badly. */
4417 if (m->count > 1
4418 && !(elf_elfheader (abfd)->e_type == ET_CORE
4419 && m->p_type == PT_NOTE))
4420 qsort (m->sections, (size_t) m->count, sizeof (asection *),
4421 elf_sort_sections);
4422
4423 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
4424 number of sections with contents contributing to both p_filesz
4425 and p_memsz, followed by a number of sections with no contents
4426 that just contribute to p_memsz. In this loop, OFF tracks next
4427 available file offset for PT_LOAD and PT_NOTE segments. */
4428 p->p_type = m->p_type;
4429 p->p_flags = m->p_flags;
4430
4431 if (m->count == 0)
4432 p->p_vaddr = 0;
4433 else
4434 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
4435
4436 if (m->p_paddr_valid)
4437 p->p_paddr = m->p_paddr;
4438 else if (m->count == 0)
4439 p->p_paddr = 0;
4440 else
4441 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
4442
4443 if (p->p_type == PT_LOAD
4444 && (abfd->flags & D_PAGED) != 0)
4445 {
4446 /* p_align in demand paged PT_LOAD segments effectively stores
4447 the maximum page size. When copying an executable with
4448 objcopy, we set m->p_align from the input file. Use this
4449 value for maxpagesize rather than bed->maxpagesize, which
4450 may be different. Note that we use maxpagesize for PT_TLS
4451 segment alignment later in this function, so we are relying
4452 on at least one PT_LOAD segment appearing before a PT_TLS
4453 segment. */
4454 if (m->p_align_valid)
4455 maxpagesize = m->p_align;
4456
4457 p->p_align = maxpagesize;
4458 }
4459 else if (m->p_align_valid)
4460 p->p_align = m->p_align;
4461 else if (m->count == 0)
4462 p->p_align = 1 << bed->s->log_file_align;
4463 else
4464 p->p_align = 0;
4465
4466 no_contents = FALSE;
4467 off_adjust = 0;
4468 if (p->p_type == PT_LOAD
4469 && m->count > 0)
4470 {
4471 bfd_size_type align;
4472 unsigned int align_power = 0;
4473
4474 if (m->p_align_valid)
4475 align = p->p_align;
4476 else
4477 {
4478 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4479 {
4480 unsigned int secalign;
4481
4482 secalign = bfd_get_section_alignment (abfd, *secpp);
4483 if (secalign > align_power)
4484 align_power = secalign;
4485 }
4486 align = (bfd_size_type) 1 << align_power;
4487 if (align < maxpagesize)
4488 align = maxpagesize;
4489 }
4490
4491 for (i = 0; i < m->count; i++)
4492 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
4493 /* If we aren't making room for this section, then
4494 it must be SHT_NOBITS regardless of what we've
4495 set via struct bfd_elf_special_section. */
4496 elf_section_type (m->sections[i]) = SHT_NOBITS;
4497
4498 /* Find out whether this segment contains any loadable
4499 sections. */
4500 no_contents = TRUE;
4501 for (i = 0; i < m->count; i++)
4502 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
4503 {
4504 no_contents = FALSE;
4505 break;
4506 }
4507
4508 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
4509 off += off_adjust;
4510 if (no_contents)
4511 {
4512 /* We shouldn't need to align the segment on disk since
4513 the segment doesn't need file space, but the gABI
4514 arguably requires the alignment and glibc ld.so
4515 checks it. So to comply with the alignment
4516 requirement but not waste file space, we adjust
4517 p_offset for just this segment. (OFF_ADJUST is
4518 subtracted from OFF later.) This may put p_offset
4519 past the end of file, but that shouldn't matter. */
4520 }
4521 else
4522 off_adjust = 0;
4523 }
4524 /* Make sure the .dynamic section is the first section in the
4525 PT_DYNAMIC segment. */
4526 else if (p->p_type == PT_DYNAMIC
4527 && m->count > 1
4528 && strcmp (m->sections[0]->name, ".dynamic") != 0)
4529 {
4530 _bfd_error_handler
4531 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
4532 abfd);
4533 bfd_set_error (bfd_error_bad_value);
4534 return FALSE;
4535 }
4536 /* Set the note section type to SHT_NOTE. */
4537 else if (p->p_type == PT_NOTE)
4538 for (i = 0; i < m->count; i++)
4539 elf_section_type (m->sections[i]) = SHT_NOTE;
4540
4541 p->p_offset = 0;
4542 p->p_filesz = 0;
4543 p->p_memsz = 0;
4544
4545 if (m->includes_filehdr)
4546 {
4547 if (!m->p_flags_valid)
4548 p->p_flags |= PF_R;
4549 p->p_filesz = bed->s->sizeof_ehdr;
4550 p->p_memsz = bed->s->sizeof_ehdr;
4551 if (m->count > 0)
4552 {
4553 BFD_ASSERT (p->p_type == PT_LOAD);
4554
4555 if (p->p_vaddr < (bfd_vma) off)
4556 {
4557 (*_bfd_error_handler)
4558 (_("%B: Not enough room for program headers, try linking with -N"),
4559 abfd);
4560 bfd_set_error (bfd_error_bad_value);
4561 return FALSE;
4562 }
4563
4564 p->p_vaddr -= off;
4565 if (!m->p_paddr_valid)
4566 p->p_paddr -= off;
4567 }
4568 }
4569
4570 if (m->includes_phdrs)
4571 {
4572 if (!m->p_flags_valid)
4573 p->p_flags |= PF_R;
4574
4575 if (!m->includes_filehdr)
4576 {
4577 p->p_offset = bed->s->sizeof_ehdr;
4578
4579 if (m->count > 0)
4580 {
4581 BFD_ASSERT (p->p_type == PT_LOAD);
4582 p->p_vaddr -= off - p->p_offset;
4583 if (!m->p_paddr_valid)
4584 p->p_paddr -= off - p->p_offset;
4585 }
4586 }
4587
4588 p->p_filesz += alloc * bed->s->sizeof_phdr;
4589 p->p_memsz += alloc * bed->s->sizeof_phdr;
4590 if (m->count)
4591 {
4592 p->p_filesz += header_pad;
4593 p->p_memsz += header_pad;
4594 }
4595 }
4596
4597 if (p->p_type == PT_LOAD
4598 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4599 {
4600 if (!m->includes_filehdr && !m->includes_phdrs)
4601 p->p_offset = off;
4602 else
4603 {
4604 file_ptr adjust;
4605
4606 adjust = off - (p->p_offset + p->p_filesz);
4607 if (!no_contents)
4608 p->p_filesz += adjust;
4609 p->p_memsz += adjust;
4610 }
4611 }
4612
4613 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
4614 maps. Set filepos for sections in PT_LOAD segments, and in
4615 core files, for sections in PT_NOTE segments.
4616 assign_file_positions_for_non_load_sections will set filepos
4617 for other sections and update p_filesz for other segments. */
4618 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4619 {
4620 asection *sec;
4621 bfd_size_type align;
4622 Elf_Internal_Shdr *this_hdr;
4623
4624 sec = *secpp;
4625 this_hdr = &elf_section_data (sec)->this_hdr;
4626 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
4627
4628 if ((p->p_type == PT_LOAD
4629 || p->p_type == PT_TLS)
4630 && (this_hdr->sh_type != SHT_NOBITS
4631 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
4632 && ((this_hdr->sh_flags & SHF_TLS) == 0
4633 || p->p_type == PT_TLS))))
4634 {
4635 bfd_vma p_start = p->p_paddr;
4636 bfd_vma p_end = p_start + p->p_memsz;
4637 bfd_vma s_start = sec->lma;
4638 bfd_vma adjust = s_start - p_end;
4639
4640 if (adjust != 0
4641 && (s_start < p_end
4642 || p_end < p_start))
4643 {
4644 (*_bfd_error_handler)
4645 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec,
4646 (unsigned long) s_start, (unsigned long) p_end);
4647 adjust = 0;
4648 sec->lma = p_end;
4649 }
4650 p->p_memsz += adjust;
4651
4652 if (this_hdr->sh_type != SHT_NOBITS)
4653 {
4654 if (p->p_filesz + adjust < p->p_memsz)
4655 {
4656 /* We have a PROGBITS section following NOBITS ones.
4657 Allocate file space for the NOBITS section(s) and
4658 zero it. */
4659 adjust = p->p_memsz - p->p_filesz;
4660 if (!write_zeros (abfd, off, adjust))
4661 return FALSE;
4662 }
4663 off += adjust;
4664 p->p_filesz += adjust;
4665 }
4666 }
4667
4668 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4669 {
4670 /* The section at i == 0 is the one that actually contains
4671 everything. */
4672 if (i == 0)
4673 {
4674 this_hdr->sh_offset = sec->filepos = off;
4675 off += this_hdr->sh_size;
4676 p->p_filesz = this_hdr->sh_size;
4677 p->p_memsz = 0;
4678 p->p_align = 1;
4679 }
4680 else
4681 {
4682 /* The rest are fake sections that shouldn't be written. */
4683 sec->filepos = 0;
4684 sec->size = 0;
4685 sec->flags = 0;
4686 continue;
4687 }
4688 }
4689 else
4690 {
4691 if (p->p_type == PT_LOAD)
4692 {
4693 this_hdr->sh_offset = sec->filepos = off;
4694 if (this_hdr->sh_type != SHT_NOBITS)
4695 off += this_hdr->sh_size;
4696 }
4697 else if (this_hdr->sh_type == SHT_NOBITS
4698 && (this_hdr->sh_flags & SHF_TLS) != 0
4699 && this_hdr->sh_offset == 0)
4700 {
4701 /* This is a .tbss section that didn't get a PT_LOAD.
4702 (See _bfd_elf_map_sections_to_segments "Create a
4703 final PT_LOAD".) Set sh_offset to the value it
4704 would have if we had created a zero p_filesz and
4705 p_memsz PT_LOAD header for the section. This
4706 also makes the PT_TLS header have the same
4707 p_offset value. */
4708 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
4709 off, align);
4710 this_hdr->sh_offset = sec->filepos = off + adjust;
4711 }
4712
4713 if (this_hdr->sh_type != SHT_NOBITS)
4714 {
4715 p->p_filesz += this_hdr->sh_size;
4716 /* A load section without SHF_ALLOC is something like
4717 a note section in a PT_NOTE segment. These take
4718 file space but are not loaded into memory. */
4719 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4720 p->p_memsz += this_hdr->sh_size;
4721 }
4722 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
4723 {
4724 if (p->p_type == PT_TLS)
4725 p->p_memsz += this_hdr->sh_size;
4726
4727 /* .tbss is special. It doesn't contribute to p_memsz of
4728 normal segments. */
4729 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
4730 p->p_memsz += this_hdr->sh_size;
4731 }
4732
4733 if (align > p->p_align
4734 && !m->p_align_valid
4735 && (p->p_type != PT_LOAD
4736 || (abfd->flags & D_PAGED) == 0))
4737 p->p_align = align;
4738 }
4739
4740 if (!m->p_flags_valid)
4741 {
4742 p->p_flags |= PF_R;
4743 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
4744 p->p_flags |= PF_X;
4745 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
4746 p->p_flags |= PF_W;
4747 }
4748 }
4749 off -= off_adjust;
4750
4751 /* Check that all sections are in a PT_LOAD segment.
4752 Don't check funky gdb generated core files. */
4753 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
4754 {
4755 bfd_boolean check_vma = TRUE;
4756
4757 for (i = 1; i < m->count; i++)
4758 if (m->sections[i]->vma == m->sections[i - 1]->vma
4759 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
4760 ->this_hdr), p) != 0
4761 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
4762 ->this_hdr), p) != 0)
4763 {
4764 /* Looks like we have overlays packed into the segment. */
4765 check_vma = FALSE;
4766 break;
4767 }
4768
4769 for (i = 0; i < m->count; i++)
4770 {
4771 Elf_Internal_Shdr *this_hdr;
4772 asection *sec;
4773
4774 sec = m->sections[i];
4775 this_hdr = &(elf_section_data(sec)->this_hdr);
4776 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
4777 && !ELF_TBSS_SPECIAL (this_hdr, p))
4778 {
4779 (*_bfd_error_handler)
4780 (_("%B: section `%A' can't be allocated in segment %d"),
4781 abfd, sec, j);
4782 print_segment_map (m);
4783 }
4784 }
4785 }
4786 }
4787
4788 elf_tdata (abfd)->next_file_pos = off;
4789 return TRUE;
4790}
4791
4792/* Assign file positions for the other sections. */
4793
4794static bfd_boolean
4795assign_file_positions_for_non_load_sections (bfd *abfd,
4796 struct bfd_link_info *link_info)
4797{
4798 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4799 Elf_Internal_Shdr **i_shdrpp;
4800 Elf_Internal_Shdr **hdrpp;
4801 Elf_Internal_Phdr *phdrs;
4802 Elf_Internal_Phdr *p;
4803 struct elf_segment_map *m;
4804 bfd_vma filehdr_vaddr, filehdr_paddr;
4805 bfd_vma phdrs_vaddr, phdrs_paddr;
4806 file_ptr off;
4807 unsigned int num_sec;
4808 unsigned int i;
4809 unsigned int count;
4810
4811 i_shdrpp = elf_elfsections (abfd);
4812 num_sec = elf_numsections (abfd);
4813 off = elf_tdata (abfd)->next_file_pos;
4814 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4815 {
4816 struct elf_obj_tdata *tdata = elf_tdata (abfd);
4817 Elf_Internal_Shdr *hdr;
4818
4819 hdr = *hdrpp;
4820 if (hdr->bfd_section != NULL
4821 && (hdr->bfd_section->filepos != 0
4822 || (hdr->sh_type == SHT_NOBITS
4823 && hdr->contents == NULL)))
4824 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
4825 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4826 {
4827 if (hdr->sh_size != 0)
4828 (*_bfd_error_handler)
4829 (_("%B: warning: allocated section `%s' not in segment"),
4830 abfd,
4831 (hdr->bfd_section == NULL
4832 ? "*unknown*"
4833 : hdr->bfd_section->name));
4834 /* We don't need to page align empty sections. */
4835 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
4836 off += vma_page_aligned_bias (hdr->sh_addr, off,
4837 bed->maxpagesize);
4838 else
4839 off += vma_page_aligned_bias (hdr->sh_addr, off,
4840 hdr->sh_addralign);
4841 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4842 FALSE);
4843 }
4844 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4845 && hdr->bfd_section == NULL)
4846 || hdr == i_shdrpp[tdata->symtab_section]
4847 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4848 || hdr == i_shdrpp[tdata->strtab_section])
4849 hdr->sh_offset = -1;
4850 else
4851 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4852 }
4853
4854 /* Now that we have set the section file positions, we can set up
4855 the file positions for the non PT_LOAD segments. */
4856 count = 0;
4857 filehdr_vaddr = 0;
4858 filehdr_paddr = 0;
4859 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4860 phdrs_paddr = 0;
4861 phdrs = elf_tdata (abfd)->phdr;
4862 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4863 m != NULL;
4864 m = m->next, p++)
4865 {
4866 ++count;
4867 if (p->p_type != PT_LOAD)
4868 continue;
4869
4870 if (m->includes_filehdr)
4871 {
4872 filehdr_vaddr = p->p_vaddr;
4873 filehdr_paddr = p->p_paddr;
4874 }
4875 if (m->includes_phdrs)
4876 {
4877 phdrs_vaddr = p->p_vaddr;
4878 phdrs_paddr = p->p_paddr;
4879 if (m->includes_filehdr)
4880 {
4881 phdrs_vaddr += bed->s->sizeof_ehdr;
4882 phdrs_paddr += bed->s->sizeof_ehdr;
4883 }
4884 }
4885 }
4886
4887 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4888 m != NULL;
4889 m = m->next, p++)
4890 {
4891 if (p->p_type == PT_GNU_RELRO)
4892 {
4893 const Elf_Internal_Phdr *lp;
4894
4895 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4896
4897 if (link_info != NULL)
4898 {
4899 /* During linking the range of the RELRO segment is passed
4900 in link_info. */
4901 for (lp = phdrs; lp < phdrs + count; ++lp)
4902 {
4903 if (lp->p_type == PT_LOAD
4904 && lp->p_vaddr >= link_info->relro_start
4905 && lp->p_vaddr < link_info->relro_end
4906 && lp->p_vaddr + lp->p_filesz >= link_info->relro_end)
4907 break;
4908 }
4909 }
4910 else
4911 {
4912 /* Otherwise we are copying an executable or shared
4913 library, but we need to use the same linker logic. */
4914 for (lp = phdrs; lp < phdrs + count; ++lp)
4915 {
4916 if (lp->p_type == PT_LOAD
4917 && lp->p_paddr == p->p_paddr)
4918 break;
4919 }
4920 }
4921
4922 if (lp < phdrs + count)
4923 {
4924 p->p_vaddr = lp->p_vaddr;
4925 p->p_paddr = lp->p_paddr;
4926 p->p_offset = lp->p_offset;
4927 if (link_info != NULL)
4928 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4929 else if (m->p_size_valid)
4930 p->p_filesz = m->p_size;
4931 else
4932 abort ();
4933 p->p_memsz = p->p_filesz;
4934 p->p_align = 1;
4935 p->p_flags = (lp->p_flags & ~PF_W);
4936 }
4937 else
4938 {
4939 memset (p, 0, sizeof *p);
4940 p->p_type = PT_NULL;
4941 }
4942 }
4943 else if (m->count != 0)
4944 {
4945 if (p->p_type != PT_LOAD
4946 && (p->p_type != PT_NOTE
4947 || bfd_get_format (abfd) != bfd_core))
4948 {
4949 BFD_ASSERT (!m->includes_filehdr && !m->includes_phdrs);
4950
4951 p->p_filesz = 0;
4952 p->p_offset = m->sections[0]->filepos;
4953 for (i = m->count; i-- != 0;)
4954 {
4955 asection *sect = m->sections[i];
4956 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
4957 if (hdr->sh_type != SHT_NOBITS)
4958 {
4959 p->p_filesz = (sect->filepos - m->sections[0]->filepos
4960 + hdr->sh_size);
4961 break;
4962 }
4963 }
4964 }
4965 }
4966 else if (m->includes_filehdr)
4967 {
4968 p->p_vaddr = filehdr_vaddr;
4969 if (! m->p_paddr_valid)
4970 p->p_paddr = filehdr_paddr;
4971 }
4972 else if (m->includes_phdrs)
4973 {
4974 p->p_vaddr = phdrs_vaddr;
4975 if (! m->p_paddr_valid)
4976 p->p_paddr = phdrs_paddr;
4977 }
4978 }
4979
4980 elf_tdata (abfd)->next_file_pos = off;
4981
4982 return TRUE;
4983}
4984
4985/* Work out the file positions of all the sections. This is called by
4986 _bfd_elf_compute_section_file_positions. All the section sizes and
4987 VMAs must be known before this is called.
4988
4989 Reloc sections come in two flavours: Those processed specially as
4990 "side-channel" data attached to a section to which they apply, and
4991 those that bfd doesn't process as relocations. The latter sort are
4992 stored in a normal bfd section by bfd_section_from_shdr. We don't
4993 consider the former sort here, unless they form part of the loadable
4994 image. Reloc sections not assigned here will be handled later by
4995 assign_file_positions_for_relocs.
4996
4997 We also don't set the positions of the .symtab and .strtab here. */
4998
4999static bfd_boolean
5000assign_file_positions_except_relocs (bfd *abfd,
5001 struct bfd_link_info *link_info)
5002{
5003 struct elf_obj_tdata *tdata = elf_tdata (abfd);
5004 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
5005 file_ptr off;
5006 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5007
5008 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
5009 && bfd_get_format (abfd) != bfd_core)
5010 {
5011 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
5012 unsigned int num_sec = elf_numsections (abfd);
5013 Elf_Internal_Shdr **hdrpp;
5014 unsigned int i;
5015
5016 /* Start after the ELF header. */
5017 off = i_ehdrp->e_ehsize;
5018
5019 /* We are not creating an executable, which means that we are
5020 not creating a program header, and that the actual order of
5021 the sections in the file is unimportant. */
5022 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
5023 {
5024 Elf_Internal_Shdr *hdr;
5025
5026 hdr = *hdrpp;
5027 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5028 && hdr->bfd_section == NULL)
5029 || i == tdata->symtab_section
5030 || i == tdata->symtab_shndx_section
5031 || i == tdata->strtab_section)
5032 {
5033 hdr->sh_offset = -1;
5034 }
5035 else
5036 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5037 }
5038 }
5039 else
5040 {
5041 unsigned int alloc;
5042
5043 /* Assign file positions for the loaded sections based on the
5044 assignment of sections to segments. */
5045 if (!assign_file_positions_for_load_sections (abfd, link_info))
5046 return FALSE;
5047
5048 /* And for non-load sections. */
5049 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
5050 return FALSE;
5051
5052 if (bed->elf_backend_modify_program_headers != NULL)
5053 {
5054 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
5055 return FALSE;
5056 }
5057
5058 /* Write out the program headers. */
5059 alloc = tdata->program_header_size / bed->s->sizeof_phdr;
5060 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
5061 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
5062 return FALSE;
5063
5064 off = tdata->next_file_pos;
5065 }
5066
5067 /* Place the section headers. */
5068 off = align_file_position (off, 1 << bed->s->log_file_align);
5069 i_ehdrp->e_shoff = off;
5070 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
5071
5072 tdata->next_file_pos = off;
5073
5074 return TRUE;
5075}
5076
5077static bfd_boolean
5078prep_headers (bfd *abfd)
5079{
5080 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
5081 struct elf_strtab_hash *shstrtab;
5082 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5083
5084 i_ehdrp = elf_elfheader (abfd);
5085
5086 shstrtab = _bfd_elf_strtab_init ();
5087 if (shstrtab == NULL)
5088 return FALSE;
5089
5090 elf_shstrtab (abfd) = shstrtab;
5091
5092 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
5093 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
5094 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
5095 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
5096
5097 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
5098 i_ehdrp->e_ident[EI_DATA] =
5099 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
5100 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
5101
5102 if ((abfd->flags & DYNAMIC) != 0)
5103 i_ehdrp->e_type = ET_DYN;
5104 else if ((abfd->flags & EXEC_P) != 0)
5105 i_ehdrp->e_type = ET_EXEC;
5106 else if (bfd_get_format (abfd) == bfd_core)
5107 i_ehdrp->e_type = ET_CORE;
5108 else
5109 i_ehdrp->e_type = ET_REL;
5110
5111 switch (bfd_get_arch (abfd))
5112 {
5113 case bfd_arch_unknown:
5114 i_ehdrp->e_machine = EM_NONE;
5115 break;
5116
5117 /* There used to be a long list of cases here, each one setting
5118 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
5119 in the corresponding bfd definition. To avoid duplication,
5120 the switch was removed. Machines that need special handling
5121 can generally do it in elf_backend_final_write_processing(),
5122 unless they need the information earlier than the final write.
5123 Such need can generally be supplied by replacing the tests for
5124 e_machine with the conditions used to determine it. */
5125 default:
5126 i_ehdrp->e_machine = bed->elf_machine_code;
5127 }
5128
5129 i_ehdrp->e_version = bed->s->ev_current;
5130 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
5131
5132 /* No program header, for now. */
5133 i_ehdrp->e_phoff = 0;
5134 i_ehdrp->e_phentsize = 0;
5135 i_ehdrp->e_phnum = 0;
5136
5137 /* Each bfd section is section header entry. */
5138 i_ehdrp->e_entry = bfd_get_start_address (abfd);
5139 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
5140
5141 /* If we're building an executable, we'll need a program header table. */
5142 if (abfd->flags & EXEC_P)
5143 /* It all happens later. */
5144 ;
5145 else
5146 {
5147 i_ehdrp->e_phentsize = 0;
5148 i_ehdrp->e_phoff = 0;
5149 }
5150
5151 elf_tdata (abfd)->symtab_hdr.sh_name =
5152 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
5153 elf_tdata (abfd)->strtab_hdr.sh_name =
5154 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
5155 elf_tdata (abfd)->shstrtab_hdr.sh_name =
5156 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
5157 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5158 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
5159 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
5160 return FALSE;
5161
5162 return TRUE;
5163}
5164
5165/* Assign file positions for all the reloc sections which are not part
5166 of the loadable file image. */
5167
5168void
5169_bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
5170{
5171 file_ptr off;
5172 unsigned int i, num_sec;
5173 Elf_Internal_Shdr **shdrpp;
5174
5175 off = elf_tdata (abfd)->next_file_pos;
5176
5177 num_sec = elf_numsections (abfd);
5178 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
5179 {
5180 Elf_Internal_Shdr *shdrp;
5181
5182 shdrp = *shdrpp;
5183 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
5184 && shdrp->sh_offset == -1)
5185 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
5186 }
5187
5188 elf_tdata (abfd)->next_file_pos = off;
5189}
5190
5191bfd_boolean
5192_bfd_elf_write_object_contents (bfd *abfd)
5193{
5194 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5195 Elf_Internal_Shdr **i_shdrp;
5196 bfd_boolean failed;
5197 unsigned int count, num_sec;
5198
5199 if (! abfd->output_has_begun
5200 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
5201 return FALSE;
5202
5203 i_shdrp = elf_elfsections (abfd);
5204
5205 failed = FALSE;
5206 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
5207 if (failed)
5208 return FALSE;
5209
5210 _bfd_elf_assign_file_positions_for_relocs (abfd);
5211
5212 /* After writing the headers, we need to write the sections too... */
5213 num_sec = elf_numsections (abfd);
5214 for (count = 1; count < num_sec; count++)
5215 {
5216 if (bed->elf_backend_section_processing)
5217 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
5218 if (i_shdrp[count]->contents)
5219 {
5220 bfd_size_type amt = i_shdrp[count]->sh_size;
5221
5222 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
5223 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
5224 return FALSE;
5225 }
5226 }
5227
5228 /* Write out the section header names. */
5229 if (elf_shstrtab (abfd) != NULL
5230 && (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
5231 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
5232 return FALSE;
5233
5234 if (bed->elf_backend_final_write_processing)
5235 (*bed->elf_backend_final_write_processing) (abfd,
5236 elf_tdata (abfd)->linker);
5237
5238 if (!bed->s->write_shdrs_and_ehdr (abfd))
5239 return FALSE;
5240
5241 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
5242 if (elf_tdata (abfd)->after_write_object_contents)
5243 return (*elf_tdata (abfd)->after_write_object_contents) (abfd);
5244
5245 return TRUE;
5246}
5247
5248bfd_boolean
5249_bfd_elf_write_corefile_contents (bfd *abfd)
5250{
5251 /* Hopefully this can be done just like an object file. */
5252 return _bfd_elf_write_object_contents (abfd);
5253}
5254
5255/* Given a section, search the header to find them. */
5256
5257unsigned int
5258_bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
5259{
5260 const struct elf_backend_data *bed;
5261 unsigned int sec_index;
5262
5263 if (elf_section_data (asect) != NULL
5264 && elf_section_data (asect)->this_idx != 0)
5265 return elf_section_data (asect)->this_idx;
5266
5267 if (bfd_is_abs_section (asect))
5268 sec_index = SHN_ABS;
5269 else if (bfd_is_com_section (asect))
5270 sec_index = SHN_COMMON;
5271 else if (bfd_is_und_section (asect))
5272 sec_index = SHN_UNDEF;
5273 else
5274 sec_index = SHN_BAD;
5275
5276 bed = get_elf_backend_data (abfd);
5277 if (bed->elf_backend_section_from_bfd_section)
5278 {
5279 int retval = sec_index;
5280
5281 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
5282 return retval;
5283 }
5284
5285 if (sec_index == SHN_BAD)
5286 bfd_set_error (bfd_error_nonrepresentable_section);
5287
5288 return sec_index;
5289}
5290
5291/* Given a BFD symbol, return the index in the ELF symbol table, or -1
5292 on error. */
5293
5294int
5295_bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
5296{
5297 asymbol *asym_ptr = *asym_ptr_ptr;
5298 int idx;
5299 flagword flags = asym_ptr->flags;
5300
5301 /* When gas creates relocations against local labels, it creates its
5302 own symbol for the section, but does put the symbol into the
5303 symbol chain, so udata is 0. When the linker is generating
5304 relocatable output, this section symbol may be for one of the
5305 input sections rather than the output section. */
5306 if (asym_ptr->udata.i == 0
5307 && (flags & BSF_SECTION_SYM)
5308 && asym_ptr->section)
5309 {
5310 asection *sec;
5311 int indx;
5312
5313 sec = asym_ptr->section;
5314 if (sec->owner != abfd && sec->output_section != NULL)
5315 sec = sec->output_section;
5316 if (sec->owner == abfd
5317 && (indx = sec->index) < elf_num_section_syms (abfd)
5318 && elf_section_syms (abfd)[indx] != NULL)
5319 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
5320 }
5321
5322 idx = asym_ptr->udata.i;
5323
5324 if (idx == 0)
5325 {
5326 /* This case can occur when using --strip-symbol on a symbol
5327 which is used in a relocation entry. */
5328 (*_bfd_error_handler)
5329 (_("%B: symbol `%s' required but not present"),
5330 abfd, bfd_asymbol_name (asym_ptr));
5331 bfd_set_error (bfd_error_no_symbols);
5332 return -1;
5333 }
5334
5335#if DEBUG & 4
5336 {
5337 fprintf (stderr,
5338 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n",
5339 (long) asym_ptr, asym_ptr->name, idx, (long) flags);
5340 fflush (stderr);
5341 }
5342#endif
5343
5344 return idx;
5345}
5346
5347/* Rewrite program header information. */
5348
5349static bfd_boolean
5350rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
5351{
5352 Elf_Internal_Ehdr *iehdr;
5353 struct elf_segment_map *map;
5354 struct elf_segment_map *map_first;
5355 struct elf_segment_map **pointer_to_map;
5356 Elf_Internal_Phdr *segment;
5357 asection *section;
5358 unsigned int i;
5359 unsigned int num_segments;
5360 bfd_boolean phdr_included = FALSE;
5361 bfd_boolean p_paddr_valid;
5362 bfd_vma maxpagesize;
5363 struct elf_segment_map *phdr_adjust_seg = NULL;
5364 unsigned int phdr_adjust_num = 0;
5365 const struct elf_backend_data *bed;
5366
5367 bed = get_elf_backend_data (ibfd);
5368 iehdr = elf_elfheader (ibfd);
5369
5370 map_first = NULL;
5371 pointer_to_map = &map_first;
5372
5373 num_segments = elf_elfheader (ibfd)->e_phnum;
5374 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
5375
5376 /* Returns the end address of the segment + 1. */
5377#define SEGMENT_END(segment, start) \
5378 (start + (segment->p_memsz > segment->p_filesz \
5379 ? segment->p_memsz : segment->p_filesz))
5380
5381#define SECTION_SIZE(section, segment) \
5382 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
5383 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
5384 ? section->size : 0)
5385
5386 /* Returns TRUE if the given section is contained within
5387 the given segment. VMA addresses are compared. */
5388#define IS_CONTAINED_BY_VMA(section, segment) \
5389 (section->vma >= segment->p_vaddr \
5390 && (section->vma + SECTION_SIZE (section, segment) \
5391 <= (SEGMENT_END (segment, segment->p_vaddr))))
5392
5393 /* Returns TRUE if the given section is contained within
5394 the given segment. LMA addresses are compared. */
5395#define IS_CONTAINED_BY_LMA(section, segment, base) \
5396 (section->lma >= base \
5397 && (section->lma + SECTION_SIZE (section, segment) \
5398 <= SEGMENT_END (segment, base)))
5399
5400 /* Handle PT_NOTE segment. */
5401#define IS_NOTE(p, s) \
5402 (p->p_type == PT_NOTE \
5403 && elf_section_type (s) == SHT_NOTE \
5404 && (bfd_vma) s->filepos >= p->p_offset \
5405 && ((bfd_vma) s->filepos + s->size \
5406 <= p->p_offset + p->p_filesz))
5407
5408 /* Special case: corefile "NOTE" section containing regs, prpsinfo
5409 etc. */
5410#define IS_COREFILE_NOTE(p, s) \
5411 (IS_NOTE (p, s) \
5412 && bfd_get_format (ibfd) == bfd_core \
5413 && s->vma == 0 \
5414 && s->lma == 0)
5415
5416 /* The complicated case when p_vaddr is 0 is to handle the Solaris
5417 linker, which generates a PT_INTERP section with p_vaddr and
5418 p_memsz set to 0. */
5419#define IS_SOLARIS_PT_INTERP(p, s) \
5420 (p->p_vaddr == 0 \
5421 && p->p_paddr == 0 \
5422 && p->p_memsz == 0 \
5423 && p->p_filesz > 0 \
5424 && (s->flags & SEC_HAS_CONTENTS) != 0 \
5425 && s->size > 0 \
5426 && (bfd_vma) s->filepos >= p->p_offset \
5427 && ((bfd_vma) s->filepos + s->size \
5428 <= p->p_offset + p->p_filesz))
5429
5430 /* Decide if the given section should be included in the given segment.
5431 A section will be included if:
5432 1. It is within the address space of the segment -- we use the LMA
5433 if that is set for the segment and the VMA otherwise,
5434 2. It is an allocated section or a NOTE section in a PT_NOTE
5435 segment.
5436 3. There is an output section associated with it,
5437 4. The section has not already been allocated to a previous segment.
5438 5. PT_GNU_STACK segments do not include any sections.
5439 6. PT_TLS segment includes only SHF_TLS sections.
5440 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
5441 8. PT_DYNAMIC should not contain empty sections at the beginning
5442 (with the possible exception of .dynamic). */
5443#define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
5444 ((((segment->p_paddr \
5445 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
5446 : IS_CONTAINED_BY_VMA (section, segment)) \
5447 && (section->flags & SEC_ALLOC) != 0) \
5448 || IS_NOTE (segment, section)) \
5449 && segment->p_type != PT_GNU_STACK \
5450 && (segment->p_type != PT_TLS \
5451 || (section->flags & SEC_THREAD_LOCAL)) \
5452 && (segment->p_type == PT_LOAD \
5453 || segment->p_type == PT_TLS \
5454 || (section->flags & SEC_THREAD_LOCAL) == 0) \
5455 && (segment->p_type != PT_DYNAMIC \
5456 || SECTION_SIZE (section, segment) > 0 \
5457 || (segment->p_paddr \
5458 ? segment->p_paddr != section->lma \
5459 : segment->p_vaddr != section->vma) \
5460 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
5461 == 0)) \
5462 && !section->segment_mark)
5463
5464/* If the output section of a section in the input segment is NULL,
5465 it is removed from the corresponding output segment. */
5466#define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
5467 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
5468 && section->output_section != NULL)
5469
5470 /* Returns TRUE iff seg1 starts after the end of seg2. */
5471#define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
5472 (seg1->field >= SEGMENT_END (seg2, seg2->field))
5473
5474 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
5475 their VMA address ranges and their LMA address ranges overlap.
5476 It is possible to have overlapping VMA ranges without overlapping LMA
5477 ranges. RedBoot images for example can have both .data and .bss mapped
5478 to the same VMA range, but with the .data section mapped to a different
5479 LMA. */
5480#define SEGMENT_OVERLAPS(seg1, seg2) \
5481 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
5482 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
5483 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
5484 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
5485
5486 /* Initialise the segment mark field. */
5487 for (section = ibfd->sections; section != NULL; section = section->next)
5488 section->segment_mark = FALSE;
5489
5490 /* The Solaris linker creates program headers in which all the
5491 p_paddr fields are zero. When we try to objcopy or strip such a
5492 file, we get confused. Check for this case, and if we find it
5493 don't set the p_paddr_valid fields. */
5494 p_paddr_valid = FALSE;
5495 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5496 i < num_segments;
5497 i++, segment++)
5498 if (segment->p_paddr != 0)
5499 {
5500 p_paddr_valid = TRUE;
5501 break;
5502 }
5503
5504 /* Scan through the segments specified in the program header
5505 of the input BFD. For this first scan we look for overlaps
5506 in the loadable segments. These can be created by weird
5507 parameters to objcopy. Also, fix some solaris weirdness. */
5508 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5509 i < num_segments;
5510 i++, segment++)
5511 {
5512 unsigned int j;
5513 Elf_Internal_Phdr *segment2;
5514
5515 if (segment->p_type == PT_INTERP)
5516 for (section = ibfd->sections; section; section = section->next)
5517 if (IS_SOLARIS_PT_INTERP (segment, section))
5518 {
5519 /* Mininal change so that the normal section to segment
5520 assignment code will work. */
5521 segment->p_vaddr = section->vma;
5522 break;
5523 }
5524
5525 if (segment->p_type != PT_LOAD)
5526 {
5527 /* Remove PT_GNU_RELRO segment. */
5528 if (segment->p_type == PT_GNU_RELRO)
5529 segment->p_type = PT_NULL;
5530 continue;
5531 }
5532
5533 /* Determine if this segment overlaps any previous segments. */
5534 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
5535 {
5536 bfd_signed_vma extra_length;
5537
5538 if (segment2->p_type != PT_LOAD
5539 || !SEGMENT_OVERLAPS (segment, segment2))
5540 continue;
5541
5542 /* Merge the two segments together. */
5543 if (segment2->p_vaddr < segment->p_vaddr)
5544 {
5545 /* Extend SEGMENT2 to include SEGMENT and then delete
5546 SEGMENT. */
5547 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
5548 - SEGMENT_END (segment2, segment2->p_vaddr));
5549
5550 if (extra_length > 0)
5551 {
5552 segment2->p_memsz += extra_length;
5553 segment2->p_filesz += extra_length;
5554 }
5555
5556 segment->p_type = PT_NULL;
5557
5558 /* Since we have deleted P we must restart the outer loop. */
5559 i = 0;
5560 segment = elf_tdata (ibfd)->phdr;
5561 break;
5562 }
5563 else
5564 {
5565 /* Extend SEGMENT to include SEGMENT2 and then delete
5566 SEGMENT2. */
5567 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
5568 - SEGMENT_END (segment, segment->p_vaddr));
5569
5570 if (extra_length > 0)
5571 {
5572 segment->p_memsz += extra_length;
5573 segment->p_filesz += extra_length;
5574 }
5575
5576 segment2->p_type = PT_NULL;
5577 }
5578 }
5579 }
5580
5581 /* The second scan attempts to assign sections to segments. */
5582 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5583 i < num_segments;
5584 i++, segment++)
5585 {
5586 unsigned int section_count;
5587 asection **sections;
5588 asection *output_section;
5589 unsigned int isec;
5590 bfd_vma matching_lma;
5591 bfd_vma suggested_lma;
5592 unsigned int j;
5593 bfd_size_type amt;
5594 asection *first_section;
5595 bfd_boolean first_matching_lma;
5596 bfd_boolean first_suggested_lma;
5597
5598 if (segment->p_type == PT_NULL)
5599 continue;
5600
5601 first_section = NULL;
5602 /* Compute how many sections might be placed into this segment. */
5603 for (section = ibfd->sections, section_count = 0;
5604 section != NULL;
5605 section = section->next)
5606 {
5607 /* Find the first section in the input segment, which may be
5608 removed from the corresponding output segment. */
5609 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
5610 {
5611 if (first_section == NULL)
5612 first_section = section;
5613 if (section->output_section != NULL)
5614 ++section_count;
5615 }
5616 }
5617
5618 /* Allocate a segment map big enough to contain
5619 all of the sections we have selected. */
5620 amt = sizeof (struct elf_segment_map);
5621 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5622 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
5623 if (map == NULL)
5624 return FALSE;
5625
5626 /* Initialise the fields of the segment map. Default to
5627 using the physical address of the segment in the input BFD. */
5628 map->next = NULL;
5629 map->p_type = segment->p_type;
5630 map->p_flags = segment->p_flags;
5631 map->p_flags_valid = 1;
5632
5633 /* If the first section in the input segment is removed, there is
5634 no need to preserve segment physical address in the corresponding
5635 output segment. */
5636 if (!first_section || first_section->output_section != NULL)
5637 {
5638 map->p_paddr = segment->p_paddr;
5639 map->p_paddr_valid = p_paddr_valid;
5640 }
5641
5642 /* Determine if this segment contains the ELF file header
5643 and if it contains the program headers themselves. */
5644 map->includes_filehdr = (segment->p_offset == 0
5645 && segment->p_filesz >= iehdr->e_ehsize);
5646 map->includes_phdrs = 0;
5647
5648 if (!phdr_included || segment->p_type != PT_LOAD)
5649 {
5650 map->includes_phdrs =
5651 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5652 && (segment->p_offset + segment->p_filesz
5653 >= ((bfd_vma) iehdr->e_phoff
5654 + iehdr->e_phnum * iehdr->e_phentsize)));
5655
5656 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5657 phdr_included = TRUE;
5658 }
5659
5660 if (section_count == 0)
5661 {
5662 /* Special segments, such as the PT_PHDR segment, may contain
5663 no sections, but ordinary, loadable segments should contain
5664 something. They are allowed by the ELF spec however, so only
5665 a warning is produced. */
5666 if (segment->p_type == PT_LOAD)
5667 (*_bfd_error_handler) (_("%B: warning: Empty loadable segment"
5668 " detected, is this intentional ?\n"),
5669 ibfd);
5670
5671 map->count = 0;
5672 *pointer_to_map = map;
5673 pointer_to_map = &map->next;
5674
5675 continue;
5676 }
5677
5678 /* Now scan the sections in the input BFD again and attempt
5679 to add their corresponding output sections to the segment map.
5680 The problem here is how to handle an output section which has
5681 been moved (ie had its LMA changed). There are four possibilities:
5682
5683 1. None of the sections have been moved.
5684 In this case we can continue to use the segment LMA from the
5685 input BFD.
5686
5687 2. All of the sections have been moved by the same amount.
5688 In this case we can change the segment's LMA to match the LMA
5689 of the first section.
5690
5691 3. Some of the sections have been moved, others have not.
5692 In this case those sections which have not been moved can be
5693 placed in the current segment which will have to have its size,
5694 and possibly its LMA changed, and a new segment or segments will
5695 have to be created to contain the other sections.
5696
5697 4. The sections have been moved, but not by the same amount.
5698 In this case we can change the segment's LMA to match the LMA
5699 of the first section and we will have to create a new segment
5700 or segments to contain the other sections.
5701
5702 In order to save time, we allocate an array to hold the section
5703 pointers that we are interested in. As these sections get assigned
5704 to a segment, they are removed from this array. */
5705
5706 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
5707 if (sections == NULL)
5708 return FALSE;
5709
5710 /* Step One: Scan for segment vs section LMA conflicts.
5711 Also add the sections to the section array allocated above.
5712 Also add the sections to the current segment. In the common
5713 case, where the sections have not been moved, this means that
5714 we have completely filled the segment, and there is nothing
5715 more to do. */
5716 isec = 0;
5717 matching_lma = 0;
5718 suggested_lma = 0;
5719 first_matching_lma = TRUE;
5720 first_suggested_lma = TRUE;
5721
5722 for (section = ibfd->sections;
5723 section != NULL;
5724 section = section->next)
5725 if (section == first_section)
5726 break;
5727
5728 for (j = 0; section != NULL; section = section->next)
5729 {
5730 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5731 {
5732 output_section = section->output_section;
5733
5734 sections[j++] = section;
5735
5736 /* The Solaris native linker always sets p_paddr to 0.
5737 We try to catch that case here, and set it to the
5738 correct value. Note - some backends require that
5739 p_paddr be left as zero. */
5740 if (!p_paddr_valid
5741 && segment->p_vaddr != 0
5742 && !bed->want_p_paddr_set_to_zero
5743 && isec == 0
5744 && output_section->lma != 0
5745 && output_section->vma == (segment->p_vaddr
5746 + (map->includes_filehdr
5747 ? iehdr->e_ehsize
5748 : 0)
5749 + (map->includes_phdrs
5750 ? (iehdr->e_phnum
5751 * iehdr->e_phentsize)
5752 : 0)))
5753 map->p_paddr = segment->p_vaddr;
5754
5755 /* Match up the physical address of the segment with the
5756 LMA address of the output section. */
5757 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5758 || IS_COREFILE_NOTE (segment, section)
5759 || (bed->want_p_paddr_set_to_zero
5760 && IS_CONTAINED_BY_VMA (output_section, segment)))
5761 {
5762 if (first_matching_lma || output_section->lma < matching_lma)
5763 {
5764 matching_lma = output_section->lma;
5765 first_matching_lma = FALSE;
5766 }
5767
5768 /* We assume that if the section fits within the segment
5769 then it does not overlap any other section within that
5770 segment. */
5771 map->sections[isec++] = output_section;
5772 }
5773 else if (first_suggested_lma)
5774 {
5775 suggested_lma = output_section->lma;
5776 first_suggested_lma = FALSE;
5777 }
5778
5779 if (j == section_count)
5780 break;
5781 }
5782 }
5783
5784 BFD_ASSERT (j == section_count);
5785
5786 /* Step Two: Adjust the physical address of the current segment,
5787 if necessary. */
5788 if (isec == section_count)
5789 {
5790 /* All of the sections fitted within the segment as currently
5791 specified. This is the default case. Add the segment to
5792 the list of built segments and carry on to process the next
5793 program header in the input BFD. */
5794 map->count = section_count;
5795 *pointer_to_map = map;
5796 pointer_to_map = &map->next;
5797
5798 if (p_paddr_valid
5799 && !bed->want_p_paddr_set_to_zero
5800 && matching_lma != map->p_paddr
5801 && !map->includes_filehdr
5802 && !map->includes_phdrs)
5803 /* There is some padding before the first section in the
5804 segment. So, we must account for that in the output
5805 segment's vma. */
5806 map->p_vaddr_offset = matching_lma - map->p_paddr;
5807
5808 free (sections);
5809 continue;
5810 }
5811 else
5812 {
5813 if (!first_matching_lma)
5814 {
5815 /* At least one section fits inside the current segment.
5816 Keep it, but modify its physical address to match the
5817 LMA of the first section that fitted. */
5818 map->p_paddr = matching_lma;
5819 }
5820 else
5821 {
5822 /* None of the sections fitted inside the current segment.
5823 Change the current segment's physical address to match
5824 the LMA of the first section. */
5825 map->p_paddr = suggested_lma;
5826 }
5827
5828 /* Offset the segment physical address from the lma
5829 to allow for space taken up by elf headers. */
5830 if (map->includes_filehdr)
5831 {
5832 if (map->p_paddr >= iehdr->e_ehsize)
5833 map->p_paddr -= iehdr->e_ehsize;
5834 else
5835 {
5836 map->includes_filehdr = FALSE;
5837 map->includes_phdrs = FALSE;
5838 }
5839 }
5840
5841 if (map->includes_phdrs)
5842 {
5843 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
5844 {
5845 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5846
5847 /* iehdr->e_phnum is just an estimate of the number
5848 of program headers that we will need. Make a note
5849 here of the number we used and the segment we chose
5850 to hold these headers, so that we can adjust the
5851 offset when we know the correct value. */
5852 phdr_adjust_num = iehdr->e_phnum;
5853 phdr_adjust_seg = map;
5854 }
5855 else
5856 map->includes_phdrs = FALSE;
5857 }
5858 }
5859
5860 /* Step Three: Loop over the sections again, this time assigning
5861 those that fit to the current segment and removing them from the
5862 sections array; but making sure not to leave large gaps. Once all
5863 possible sections have been assigned to the current segment it is
5864 added to the list of built segments and if sections still remain
5865 to be assigned, a new segment is constructed before repeating
5866 the loop. */
5867 isec = 0;
5868 do
5869 {
5870 map->count = 0;
5871 suggested_lma = 0;
5872 first_suggested_lma = TRUE;
5873
5874 /* Fill the current segment with sections that fit. */
5875 for (j = 0; j < section_count; j++)
5876 {
5877 section = sections[j];
5878
5879 if (section == NULL)
5880 continue;
5881
5882 output_section = section->output_section;
5883
5884 BFD_ASSERT (output_section != NULL);
5885
5886 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5887 || IS_COREFILE_NOTE (segment, section))
5888 {
5889 if (map->count == 0)
5890 {
5891 /* If the first section in a segment does not start at
5892 the beginning of the segment, then something is
5893 wrong. */
5894 if (output_section->lma
5895 != (map->p_paddr
5896 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5897 + (map->includes_phdrs
5898 ? iehdr->e_phnum * iehdr->e_phentsize
5899 : 0)))
5900 abort ();
5901 }
5902 else
5903 {
5904 asection *prev_sec;
5905
5906 prev_sec = map->sections[map->count - 1];
5907
5908 /* If the gap between the end of the previous section
5909 and the start of this section is more than
5910 maxpagesize then we need to start a new segment. */
5911 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5912 maxpagesize)
5913 < BFD_ALIGN (output_section->lma, maxpagesize))
5914 || (prev_sec->lma + prev_sec->size
5915 > output_section->lma))
5916 {
5917 if (first_suggested_lma)
5918 {
5919 suggested_lma = output_section->lma;
5920 first_suggested_lma = FALSE;
5921 }
5922
5923 continue;
5924 }
5925 }
5926
5927 map->sections[map->count++] = output_section;
5928 ++isec;
5929 sections[j] = NULL;
5930 section->segment_mark = TRUE;
5931 }
5932 else if (first_suggested_lma)
5933 {
5934 suggested_lma = output_section->lma;
5935 first_suggested_lma = FALSE;
5936 }
5937 }
5938
5939 BFD_ASSERT (map->count > 0);
5940
5941 /* Add the current segment to the list of built segments. */
5942 *pointer_to_map = map;
5943 pointer_to_map = &map->next;
5944
5945 if (isec < section_count)
5946 {
5947 /* We still have not allocated all of the sections to
5948 segments. Create a new segment here, initialise it
5949 and carry on looping. */
5950 amt = sizeof (struct elf_segment_map);
5951 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5952 map = (struct elf_segment_map *) bfd_alloc (obfd, amt);
5953 if (map == NULL)
5954 {
5955 free (sections);
5956 return FALSE;
5957 }
5958
5959 /* Initialise the fields of the segment map. Set the physical
5960 physical address to the LMA of the first section that has
5961 not yet been assigned. */
5962 map->next = NULL;
5963 map->p_type = segment->p_type;
5964 map->p_flags = segment->p_flags;
5965 map->p_flags_valid = 1;
5966 map->p_paddr = suggested_lma;
5967 map->p_paddr_valid = p_paddr_valid;
5968 map->includes_filehdr = 0;
5969 map->includes_phdrs = 0;
5970 }
5971 }
5972 while (isec < section_count);
5973
5974 free (sections);
5975 }
5976
5977 elf_tdata (obfd)->segment_map = map_first;
5978
5979 /* If we had to estimate the number of program headers that were
5980 going to be needed, then check our estimate now and adjust
5981 the offset if necessary. */
5982 if (phdr_adjust_seg != NULL)
5983 {
5984 unsigned int count;
5985
5986 for (count = 0, map = map_first; map != NULL; map = map->next)
5987 count++;
5988
5989 if (count > phdr_adjust_num)
5990 phdr_adjust_seg->p_paddr
5991 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5992 }
5993
5994#undef SEGMENT_END
5995#undef SECTION_SIZE
5996#undef IS_CONTAINED_BY_VMA
5997#undef IS_CONTAINED_BY_LMA
5998#undef IS_NOTE
5999#undef IS_COREFILE_NOTE
6000#undef IS_SOLARIS_PT_INTERP
6001#undef IS_SECTION_IN_INPUT_SEGMENT
6002#undef INCLUDE_SECTION_IN_SEGMENT
6003#undef SEGMENT_AFTER_SEGMENT
6004#undef SEGMENT_OVERLAPS
6005 return TRUE;
6006}
6007
6008/* Copy ELF program header information. */
6009
6010static bfd_boolean
6011copy_elf_program_header (bfd *ibfd, bfd *obfd)
6012{
6013 Elf_Internal_Ehdr *iehdr;
6014 struct elf_segment_map *map;
6015 struct elf_segment_map *map_first;
6016 struct elf_segment_map **pointer_to_map;
6017 Elf_Internal_Phdr *segment;
6018 unsigned int i;
6019 unsigned int num_segments;
6020 bfd_boolean phdr_included = FALSE;
6021 bfd_boolean p_paddr_valid;
6022
6023 iehdr = elf_elfheader (ibfd);
6024
6025 map_first = NULL;
6026 pointer_to_map = &map_first;
6027
6028 /* If all the segment p_paddr fields are zero, don't set
6029 map->p_paddr_valid. */
6030 p_paddr_valid = FALSE;
6031 num_segments = elf_elfheader (ibfd)->e_phnum;
6032 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6033 i < num_segments;
6034 i++, segment++)
6035 if (segment->p_paddr != 0)
6036 {
6037 p_paddr_valid = TRUE;
6038 break;
6039 }
6040
6041 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6042 i < num_segments;
6043 i++, segment++)
6044 {
6045 asection *section;
6046 unsigned int section_count;
6047 bfd_size_type amt;
6048 Elf_Internal_Shdr *this_hdr;
6049 asection *first_section = NULL;
6050 asection *lowest_section;
6051
6052 /* Compute how many sections are in this segment. */
6053 for (section = ibfd->sections, section_count = 0;
6054 section != NULL;
6055 section = section->next)
6056 {
6057 this_hdr = &(elf_section_data(section)->this_hdr);
6058 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6059 {
6060 if (first_section == NULL)
6061 first_section = section;
6062 section_count++;
6063 }
6064 }
6065
6066 /* Allocate a segment map big enough to contain
6067 all of the sections we have selected. */
6068 amt = sizeof (struct elf_segment_map);
6069 if (section_count != 0)
6070 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6071 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6072 if (map == NULL)
6073 return FALSE;
6074
6075 /* Initialize the fields of the output segment map with the
6076 input segment. */
6077 map->next = NULL;
6078 map->p_type = segment->p_type;
6079 map->p_flags = segment->p_flags;
6080 map->p_flags_valid = 1;
6081 map->p_paddr = segment->p_paddr;
6082 map->p_paddr_valid = p_paddr_valid;
6083 map->p_align = segment->p_align;
6084 map->p_align_valid = 1;
6085 map->p_vaddr_offset = 0;
6086
6087 if (map->p_type == PT_GNU_RELRO)
6088 {
6089 /* The PT_GNU_RELRO segment may contain the first a few
6090 bytes in the .got.plt section even if the whole .got.plt
6091 section isn't in the PT_GNU_RELRO segment. We won't
6092 change the size of the PT_GNU_RELRO segment. */
6093 map->p_size = segment->p_memsz;
6094 map->p_size_valid = 1;
6095 }
6096
6097 /* Determine if this segment contains the ELF file header
6098 and if it contains the program headers themselves. */
6099 map->includes_filehdr = (segment->p_offset == 0
6100 && segment->p_filesz >= iehdr->e_ehsize);
6101
6102 map->includes_phdrs = 0;
6103 if (! phdr_included || segment->p_type != PT_LOAD)
6104 {
6105 map->includes_phdrs =
6106 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6107 && (segment->p_offset + segment->p_filesz
6108 >= ((bfd_vma) iehdr->e_phoff
6109 + iehdr->e_phnum * iehdr->e_phentsize)));
6110
6111 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6112 phdr_included = TRUE;
6113 }
6114
6115 lowest_section = first_section;
6116 if (section_count != 0)
6117 {
6118 unsigned int isec = 0;
6119
6120 for (section = first_section;
6121 section != NULL;
6122 section = section->next)
6123 {
6124 this_hdr = &(elf_section_data(section)->this_hdr);
6125 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6126 {
6127 map->sections[isec++] = section->output_section;
6128 if (section->lma < lowest_section->lma)
6129 lowest_section = section;
6130 if ((section->flags & SEC_ALLOC) != 0)
6131 {
6132 bfd_vma seg_off;
6133
6134 /* Section lmas are set up from PT_LOAD header
6135 p_paddr in _bfd_elf_make_section_from_shdr.
6136 If this header has a p_paddr that disagrees
6137 with the section lma, flag the p_paddr as
6138 invalid. */
6139 if ((section->flags & SEC_LOAD) != 0)
6140 seg_off = this_hdr->sh_offset - segment->p_offset;
6141 else
6142 seg_off = this_hdr->sh_addr - segment->p_vaddr;
6143 if (section->lma - segment->p_paddr != seg_off)
6144 map->p_paddr_valid = FALSE;
6145 }
6146 if (isec == section_count)
6147 break;
6148 }
6149 }
6150 }
6151
6152 if (map->includes_filehdr && lowest_section != NULL)
6153 /* We need to keep the space used by the headers fixed. */
6154 map->header_size = lowest_section->vma - segment->p_vaddr;
6155
6156 if (!map->includes_phdrs
6157 && !map->includes_filehdr
6158 && map->p_paddr_valid)
6159 /* There is some other padding before the first section. */
6160 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
6161 - segment->p_paddr);
6162
6163 map->count = section_count;
6164 *pointer_to_map = map;
6165 pointer_to_map = &map->next;
6166 }
6167
6168 elf_tdata (obfd)->segment_map = map_first;
6169 return TRUE;
6170}
6171
6172/* Copy private BFD data. This copies or rewrites ELF program header
6173 information. */
6174
6175static bfd_boolean
6176copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6177{
6178 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6179 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6180 return TRUE;
6181
6182 if (elf_tdata (ibfd)->phdr == NULL)
6183 return TRUE;
6184
6185 if (ibfd->xvec == obfd->xvec)
6186 {
6187 /* Check to see if any sections in the input BFD
6188 covered by ELF program header have changed. */
6189 Elf_Internal_Phdr *segment;
6190 asection *section, *osec;
6191 unsigned int i, num_segments;
6192 Elf_Internal_Shdr *this_hdr;
6193 const struct elf_backend_data *bed;
6194
6195 bed = get_elf_backend_data (ibfd);
6196
6197 /* Regenerate the segment map if p_paddr is set to 0. */
6198 if (bed->want_p_paddr_set_to_zero)
6199 goto rewrite;
6200
6201 /* Initialize the segment mark field. */
6202 for (section = obfd->sections; section != NULL;
6203 section = section->next)
6204 section->segment_mark = FALSE;
6205
6206 num_segments = elf_elfheader (ibfd)->e_phnum;
6207 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6208 i < num_segments;
6209 i++, segment++)
6210 {
6211 /* PR binutils/3535. The Solaris linker always sets the p_paddr
6212 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
6213 which severly confuses things, so always regenerate the segment
6214 map in this case. */
6215 if (segment->p_paddr == 0
6216 && segment->p_memsz == 0
6217 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
6218 goto rewrite;
6219
6220 for (section = ibfd->sections;
6221 section != NULL; section = section->next)
6222 {
6223 /* We mark the output section so that we know it comes
6224 from the input BFD. */
6225 osec = section->output_section;
6226 if (osec)
6227 osec->segment_mark = TRUE;
6228
6229 /* Check if this section is covered by the segment. */
6230 this_hdr = &(elf_section_data(section)->this_hdr);
6231 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
6232 {
6233 /* FIXME: Check if its output section is changed or
6234 removed. What else do we need to check? */
6235 if (osec == NULL
6236 || section->flags != osec->flags
6237 || section->lma != osec->lma
6238 || section->vma != osec->vma
6239 || section->size != osec->size
6240 || section->rawsize != osec->rawsize
6241 || section->alignment_power != osec->alignment_power)
6242 goto rewrite;
6243 }
6244 }
6245 }
6246
6247 /* Check to see if any output section do not come from the
6248 input BFD. */
6249 for (section = obfd->sections; section != NULL;
6250 section = section->next)
6251 {
6252 if (section->segment_mark == FALSE)
6253 goto rewrite;
6254 else
6255 section->segment_mark = FALSE;
6256 }
6257
6258 return copy_elf_program_header (ibfd, obfd);
6259 }
6260
6261rewrite:
6262 return rewrite_elf_program_header (ibfd, obfd);
6263}
6264
6265/* Initialize private output section information from input section. */
6266
6267bfd_boolean
6268_bfd_elf_init_private_section_data (bfd *ibfd,
6269 asection *isec,
6270 bfd *obfd,
6271 asection *osec,
6272 struct bfd_link_info *link_info)
6273
6274{
6275 Elf_Internal_Shdr *ihdr, *ohdr;
6276 bfd_boolean final_link = link_info != NULL && !link_info->relocatable;
6277
6278 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6279 || obfd->xvec->flavour != bfd_target_elf_flavour)
6280 return TRUE;
6281
6282 BFD_ASSERT (elf_section_data (osec) != NULL);
6283
6284 /* For objcopy and relocatable link, don't copy the output ELF
6285 section type from input if the output BFD section flags have been
6286 set to something different. For a final link allow some flags
6287 that the linker clears to differ. */
6288 if (elf_section_type (osec) == SHT_NULL
6289 && (osec->flags == isec->flags
6290 || (final_link
6291 && ((osec->flags ^ isec->flags)
6292 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
6293 elf_section_type (osec) = elf_section_type (isec);
6294
6295 /* FIXME: Is this correct for all OS/PROC specific flags? */
6296 elf_section_flags (osec) |= (elf_section_flags (isec)
6297 & (SHF_MASKOS | SHF_MASKPROC));
6298
6299 /* Set things up for objcopy and relocatable link. The output
6300 SHT_GROUP section will have its elf_next_in_group pointing back
6301 to the input group members. Ignore linker created group section.
6302 See elfNN_ia64_object_p in elfxx-ia64.c. */
6303 if (!final_link)
6304 {
6305 if (elf_sec_group (isec) == NULL
6306 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)
6307 {
6308 if (elf_section_flags (isec) & SHF_GROUP)
6309 elf_section_flags (osec) |= SHF_GROUP;
6310 elf_next_in_group (osec) = elf_next_in_group (isec);
6311 elf_section_data (osec)->group = elf_section_data (isec)->group;
6312 }
6313 }
6314
6315 ihdr = &elf_section_data (isec)->this_hdr;
6316
6317 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
6318 don't use the output section of the linked-to section since it
6319 may be NULL at this point. */
6320 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
6321 {
6322 ohdr = &elf_section_data (osec)->this_hdr;
6323 ohdr->sh_flags |= SHF_LINK_ORDER;
6324 elf_linked_to_section (osec) = elf_linked_to_section (isec);
6325 }
6326
6327 osec->use_rela_p = isec->use_rela_p;
6328
6329 return TRUE;
6330}
6331
6332/* Copy private section information. This copies over the entsize
6333 field, and sometimes the info field. */
6334
6335bfd_boolean
6336_bfd_elf_copy_private_section_data (bfd *ibfd,
6337 asection *isec,
6338 bfd *obfd,
6339 asection *osec)
6340{
6341 Elf_Internal_Shdr *ihdr, *ohdr;
6342
6343 if (ibfd->xvec->flavour != bfd_target_elf_flavour
6344 || obfd->xvec->flavour != bfd_target_elf_flavour)
6345 return TRUE;
6346
6347 ihdr = &elf_section_data (isec)->this_hdr;
6348 ohdr = &elf_section_data (osec)->this_hdr;
6349
6350 ohdr->sh_entsize = ihdr->sh_entsize;
6351
6352 if (ihdr->sh_type == SHT_SYMTAB
6353 || ihdr->sh_type == SHT_DYNSYM
6354 || ihdr->sh_type == SHT_GNU_verneed
6355 || ihdr->sh_type == SHT_GNU_verdef)
6356 ohdr->sh_info = ihdr->sh_info;
6357
6358 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
6359 NULL);
6360}
6361
6362/* Look at all the SHT_GROUP sections in IBFD, making any adjustments
6363 necessary if we are removing either the SHT_GROUP section or any of
6364 the group member sections. DISCARDED is the value that a section's
6365 output_section has if the section will be discarded, NULL when this
6366 function is called from objcopy, bfd_abs_section_ptr when called
6367 from the linker. */
6368
6369bfd_boolean
6370_bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
6371{
6372 asection *isec;
6373
6374 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
6375 if (elf_section_type (isec) == SHT_GROUP)
6376 {
6377 asection *first = elf_next_in_group (isec);
6378 asection *s = first;
6379 bfd_size_type removed = 0;
6380
6381 while (s != NULL)
6382 {
6383 /* If this member section is being output but the
6384 SHT_GROUP section is not, then clear the group info
6385 set up by _bfd_elf_copy_private_section_data. */
6386 if (s->output_section != discarded
6387 && isec->output_section == discarded)
6388 {
6389 elf_section_flags (s->output_section) &= ~SHF_GROUP;
6390 elf_group_name (s->output_section) = NULL;
6391 }
6392 /* Conversely, if the member section is not being output
6393 but the SHT_GROUP section is, then adjust its size. */
6394 else if (s->output_section == discarded
6395 && isec->output_section != discarded)
6396 removed += 4;
6397 s = elf_next_in_group (s);
6398 if (s == first)
6399 break;
6400 }
6401 if (removed != 0)
6402 {
6403 if (discarded != NULL)
6404 {
6405 /* If we've been called for ld -r, then we need to
6406 adjust the input section size. This function may
6407 be called multiple times, so save the original
6408 size. */
6409 if (isec->rawsize == 0)
6410 isec->rawsize = isec->size;
6411 isec->size = isec->rawsize - removed;
6412 }
6413 else
6414 {
6415 /* Adjust the output section size when called from
6416 objcopy. */
6417 isec->output_section->size -= removed;
6418 }
6419 }
6420 }
6421
6422 return TRUE;
6423}
6424
6425/* Copy private header information. */
6426
6427bfd_boolean
6428_bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
6429{
6430 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6431 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6432 return TRUE;
6433
6434 /* Copy over private BFD data if it has not already been copied.
6435 This must be done here, rather than in the copy_private_bfd_data
6436 entry point, because the latter is called after the section
6437 contents have been set, which means that the program headers have
6438 already been worked out. */
6439 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
6440 {
6441 if (! copy_private_bfd_data (ibfd, obfd))
6442 return FALSE;
6443 }
6444
6445 return _bfd_elf_fixup_group_sections (ibfd, NULL);
6446}
6447
6448/* Copy private symbol information. If this symbol is in a section
6449 which we did not map into a BFD section, try to map the section
6450 index correctly. We use special macro definitions for the mapped
6451 section indices; these definitions are interpreted by the
6452 swap_out_syms function. */
6453
6454#define MAP_ONESYMTAB (SHN_HIOS + 1)
6455#define MAP_DYNSYMTAB (SHN_HIOS + 2)
6456#define MAP_STRTAB (SHN_HIOS + 3)
6457#define MAP_SHSTRTAB (SHN_HIOS + 4)
6458#define MAP_SYM_SHNDX (SHN_HIOS + 5)
6459
6460bfd_boolean
6461_bfd_elf_copy_private_symbol_data (bfd *ibfd,
6462 asymbol *isymarg,
6463 bfd *obfd,
6464 asymbol *osymarg)
6465{
6466 elf_symbol_type *isym, *osym;
6467
6468 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6469 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6470 return TRUE;
6471
6472 isym = elf_symbol_from (ibfd, isymarg);
6473 osym = elf_symbol_from (obfd, osymarg);
6474
6475 if (isym != NULL
6476 && isym->internal_elf_sym.st_shndx != 0
6477 && osym != NULL
6478 && bfd_is_abs_section (isym->symbol.section))
6479 {
6480 unsigned int shndx;
6481
6482 shndx = isym->internal_elf_sym.st_shndx;
6483 if (shndx == elf_onesymtab (ibfd))
6484 shndx = MAP_ONESYMTAB;
6485 else if (shndx == elf_dynsymtab (ibfd))
6486 shndx = MAP_DYNSYMTAB;
6487 else if (shndx == elf_tdata (ibfd)->strtab_section)
6488 shndx = MAP_STRTAB;
6489 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
6490 shndx = MAP_SHSTRTAB;
6491 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
6492 shndx = MAP_SYM_SHNDX;
6493 osym->internal_elf_sym.st_shndx = shndx;
6494 }
6495
6496 return TRUE;
6497}
6498
6499/* Swap out the symbols. */
6500
6501static bfd_boolean
6502swap_out_syms (bfd *abfd,
6503 struct bfd_strtab_hash **sttp,
6504 int relocatable_p)
6505{
6506 const struct elf_backend_data *bed;
6507 int symcount;
6508 asymbol **syms;
6509 struct bfd_strtab_hash *stt;
6510 Elf_Internal_Shdr *symtab_hdr;
6511 Elf_Internal_Shdr *symtab_shndx_hdr;
6512 Elf_Internal_Shdr *symstrtab_hdr;
6513 bfd_byte *outbound_syms;
6514 bfd_byte *outbound_shndx;
6515 int idx;
6516 bfd_size_type amt;
6517 bfd_boolean name_local_sections;
6518
6519 if (!elf_map_symbols (abfd))
6520 return FALSE;
6521
6522 /* Dump out the symtabs. */
6523 stt = _bfd_elf_stringtab_init ();
6524 if (stt == NULL)
6525 return FALSE;
6526
6527 bed = get_elf_backend_data (abfd);
6528 symcount = bfd_get_symcount (abfd);
6529 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
6530 symtab_hdr->sh_type = SHT_SYMTAB;
6531 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
6532 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
6533 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
6534 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
6535
6536 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
6537 symstrtab_hdr->sh_type = SHT_STRTAB;
6538
6539 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
6540 bed->s->sizeof_sym);
6541 if (outbound_syms == NULL)
6542 {
6543 _bfd_stringtab_free (stt);
6544 return FALSE;
6545 }
6546 symtab_hdr->contents = outbound_syms;
6547
6548 outbound_shndx = NULL;
6549 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
6550 if (symtab_shndx_hdr->sh_name != 0)
6551 {
6552 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
6553 outbound_shndx = (bfd_byte *)
6554 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
6555 if (outbound_shndx == NULL)
6556 {
6557 _bfd_stringtab_free (stt);
6558 return FALSE;
6559 }
6560
6561 symtab_shndx_hdr->contents = outbound_shndx;
6562 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
6563 symtab_shndx_hdr->sh_size = amt;
6564 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
6565 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
6566 }
6567
6568 /* Now generate the data (for "contents"). */
6569 {
6570 /* Fill in zeroth symbol and swap it out. */
6571 Elf_Internal_Sym sym;
6572 sym.st_name = 0;
6573 sym.st_value = 0;
6574 sym.st_size = 0;
6575 sym.st_info = 0;
6576 sym.st_other = 0;
6577 sym.st_shndx = SHN_UNDEF;
6578 sym.st_target_internal = 0;
6579 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6580 outbound_syms += bed->s->sizeof_sym;
6581 if (outbound_shndx != NULL)
6582 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6583 }
6584
6585 name_local_sections
6586 = (bed->elf_backend_name_local_section_symbols
6587 && bed->elf_backend_name_local_section_symbols (abfd));
6588
6589 syms = bfd_get_outsymbols (abfd);
6590 for (idx = 0; idx < symcount; idx++)
6591 {
6592 Elf_Internal_Sym sym;
6593 bfd_vma value = syms[idx]->value;
6594 elf_symbol_type *type_ptr;
6595 flagword flags = syms[idx]->flags;
6596 int type;
6597
6598 if (!name_local_sections
6599 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
6600 {
6601 /* Local section symbols have no name. */
6602 sym.st_name = 0;
6603 }
6604 else
6605 {
6606 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
6607 syms[idx]->name,
6608 TRUE, FALSE);
6609 if (sym.st_name == (unsigned long) -1)
6610 {
6611 _bfd_stringtab_free (stt);
6612 return FALSE;
6613 }
6614 }
6615
6616 type_ptr = elf_symbol_from (abfd, syms[idx]);
6617
6618 if ((flags & BSF_SECTION_SYM) == 0
6619 && bfd_is_com_section (syms[idx]->section))
6620 {
6621 /* ELF common symbols put the alignment into the `value' field,
6622 and the size into the `size' field. This is backwards from
6623 how BFD handles it, so reverse it here. */
6624 sym.st_size = value;
6625 if (type_ptr == NULL
6626 || type_ptr->internal_elf_sym.st_value == 0)
6627 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
6628 else
6629 sym.st_value = type_ptr->internal_elf_sym.st_value;
6630 sym.st_shndx = _bfd_elf_section_from_bfd_section
6631 (abfd, syms[idx]->section);
6632 }
6633 else
6634 {
6635 asection *sec = syms[idx]->section;
6636 unsigned int shndx;
6637
6638 if (sec->output_section)
6639 {
6640 value += sec->output_offset;
6641 sec = sec->output_section;
6642 }
6643
6644 /* Don't add in the section vma for relocatable output. */
6645 if (! relocatable_p)
6646 value += sec->vma;
6647 sym.st_value = value;
6648 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
6649
6650 if (bfd_is_abs_section (sec)
6651 && type_ptr != NULL
6652 && type_ptr->internal_elf_sym.st_shndx != 0)
6653 {
6654 /* This symbol is in a real ELF section which we did
6655 not create as a BFD section. Undo the mapping done
6656 by copy_private_symbol_data. */
6657 shndx = type_ptr->internal_elf_sym.st_shndx;
6658 switch (shndx)
6659 {
6660 case MAP_ONESYMTAB:
6661 shndx = elf_onesymtab (abfd);
6662 break;
6663 case MAP_DYNSYMTAB:
6664 shndx = elf_dynsymtab (abfd);
6665 break;
6666 case MAP_STRTAB:
6667 shndx = elf_tdata (abfd)->strtab_section;
6668 break;
6669 case MAP_SHSTRTAB:
6670 shndx = elf_tdata (abfd)->shstrtab_section;
6671 break;
6672 case MAP_SYM_SHNDX:
6673 shndx = elf_tdata (abfd)->symtab_shndx_section;
6674 break;
6675 default:
6676 break;
6677 }
6678 }
6679 else
6680 {
6681 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
6682
6683 if (shndx == SHN_BAD)
6684 {
6685 asection *sec2;
6686
6687 /* Writing this would be a hell of a lot easier if
6688 we had some decent documentation on bfd, and
6689 knew what to expect of the library, and what to
6690 demand of applications. For example, it
6691 appears that `objcopy' might not set the
6692 section of a symbol to be a section that is
6693 actually in the output file. */
6694 sec2 = bfd_get_section_by_name (abfd, sec->name);
6695 if (sec2 == NULL)
6696 {
6697 _bfd_error_handler (_("\
6698Unable to find equivalent output section for symbol '%s' from section '%s'"),
6699 syms[idx]->name ? syms[idx]->name : "<Local sym>",
6700 sec->name);
6701 bfd_set_error (bfd_error_invalid_operation);
6702 _bfd_stringtab_free (stt);
6703 return FALSE;
6704 }
6705
6706 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
6707 BFD_ASSERT (shndx != SHN_BAD);
6708 }
6709 }
6710
6711 sym.st_shndx = shndx;
6712 }
6713
6714 if ((flags & BSF_THREAD_LOCAL) != 0)
6715 type = STT_TLS;
6716 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
6717 type = STT_GNU_IFUNC;
6718 else if ((flags & BSF_FUNCTION) != 0)
6719 type = STT_FUNC;
6720 else if ((flags & BSF_OBJECT) != 0)
6721 type = STT_OBJECT;
6722 else if ((flags & BSF_RELC) != 0)
6723 type = STT_RELC;
6724 else if ((flags & BSF_SRELC) != 0)
6725 type = STT_SRELC;
6726 else
6727 type = STT_NOTYPE;
6728
6729 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
6730 type = STT_TLS;
6731
6732 /* Processor-specific types. */
6733 if (type_ptr != NULL
6734 && bed->elf_backend_get_symbol_type)
6735 type = ((*bed->elf_backend_get_symbol_type)
6736 (&type_ptr->internal_elf_sym, type));
6737
6738 if (flags & BSF_SECTION_SYM)
6739 {
6740 if (flags & BSF_GLOBAL)
6741 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
6742 else
6743 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
6744 }
6745 else if (bfd_is_com_section (syms[idx]->section))
6746 {
6747#ifdef USE_STT_COMMON
6748 if (type == STT_OBJECT)
6749 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_COMMON);
6750 else
6751#endif
6752 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
6753 }
6754 else if (bfd_is_und_section (syms[idx]->section))
6755 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
6756 ? STB_WEAK
6757 : STB_GLOBAL),
6758 type);
6759 else if (flags & BSF_FILE)
6760 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
6761 else
6762 {
6763 int bind = STB_LOCAL;
6764
6765 if (flags & BSF_LOCAL)
6766 bind = STB_LOCAL;
6767 else if (flags & BSF_GNU_UNIQUE)
6768 bind = STB_GNU_UNIQUE;
6769 else if (flags & BSF_WEAK)
6770 bind = STB_WEAK;
6771 else if (flags & BSF_GLOBAL)
6772 bind = STB_GLOBAL;
6773
6774 sym.st_info = ELF_ST_INFO (bind, type);
6775 }
6776
6777 if (type_ptr != NULL)
6778 {
6779 sym.st_other = type_ptr->internal_elf_sym.st_other;
6780 sym.st_target_internal
6781 = type_ptr->internal_elf_sym.st_target_internal;
6782 }
6783 else
6784 {
6785 sym.st_other = 0;
6786 sym.st_target_internal = 0;
6787 }
6788
6789 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
6790 outbound_syms += bed->s->sizeof_sym;
6791 if (outbound_shndx != NULL)
6792 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
6793 }
6794
6795 *sttp = stt;
6796 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
6797 symstrtab_hdr->sh_type = SHT_STRTAB;
6798
6799 symstrtab_hdr->sh_flags = 0;
6800 symstrtab_hdr->sh_addr = 0;
6801 symstrtab_hdr->sh_entsize = 0;
6802 symstrtab_hdr->sh_link = 0;
6803 symstrtab_hdr->sh_info = 0;
6804 symstrtab_hdr->sh_addralign = 1;
6805
6806 return TRUE;
6807}
6808
6809/* Return the number of bytes required to hold the symtab vector.
6810
6811 Note that we base it on the count plus 1, since we will null terminate
6812 the vector allocated based on this size. However, the ELF symbol table
6813 always has a dummy entry as symbol #0, so it ends up even. */
6814
6815long
6816_bfd_elf_get_symtab_upper_bound (bfd *abfd)
6817{
6818 long symcount;
6819 long symtab_size;
6820 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
6821
6822 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6823 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6824 if (symcount > 0)
6825 symtab_size -= sizeof (asymbol *);
6826
6827 return symtab_size;
6828}
6829
6830long
6831_bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
6832{
6833 long symcount;
6834 long symtab_size;
6835 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
6836
6837 if (elf_dynsymtab (abfd) == 0)
6838 {
6839 bfd_set_error (bfd_error_invalid_operation);
6840 return -1;
6841 }
6842
6843 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
6844 symtab_size = (symcount + 1) * (sizeof (asymbol *));
6845 if (symcount > 0)
6846 symtab_size -= sizeof (asymbol *);
6847
6848 return symtab_size;
6849}
6850
6851long
6852_bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
6853 sec_ptr asect)
6854{
6855 return (asect->reloc_count + 1) * sizeof (arelent *);
6856}
6857
6858/* Canonicalize the relocs. */
6859
6860long
6861_bfd_elf_canonicalize_reloc (bfd *abfd,
6862 sec_ptr section,
6863 arelent **relptr,
6864 asymbol **symbols)
6865{
6866 arelent *tblptr;
6867 unsigned int i;
6868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6869
6870 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
6871 return -1;
6872
6873 tblptr = section->relocation;
6874 for (i = 0; i < section->reloc_count; i++)
6875 *relptr++ = tblptr++;
6876
6877 *relptr = NULL;
6878
6879 return section->reloc_count;
6880}
6881
6882long
6883_bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
6884{
6885 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6886 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
6887
6888 if (symcount >= 0)
6889 bfd_get_symcount (abfd) = symcount;
6890 return symcount;
6891}
6892
6893long
6894_bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
6895 asymbol **allocation)
6896{
6897 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6898 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
6899
6900 if (symcount >= 0)
6901 bfd_get_dynamic_symcount (abfd) = symcount;
6902 return symcount;
6903}
6904
6905/* Return the size required for the dynamic reloc entries. Any loadable
6906 section that was actually installed in the BFD, and has type SHT_REL
6907 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
6908 dynamic reloc section. */
6909
6910long
6911_bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
6912{
6913 long ret;
6914 asection *s;
6915
6916 if (elf_dynsymtab (abfd) == 0)
6917 {
6918 bfd_set_error (bfd_error_invalid_operation);
6919 return -1;
6920 }
6921
6922 ret = sizeof (arelent *);
6923 for (s = abfd->sections; s != NULL; s = s->next)
6924 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6925 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6926 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6927 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
6928 * sizeof (arelent *));
6929
6930 return ret;
6931}
6932
6933/* Canonicalize the dynamic relocation entries. Note that we return the
6934 dynamic relocations as a single block, although they are actually
6935 associated with particular sections; the interface, which was
6936 designed for SunOS style shared libraries, expects that there is only
6937 one set of dynamic relocs. Any loadable section that was actually
6938 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
6939 dynamic symbol table, is considered to be a dynamic reloc section. */
6940
6941long
6942_bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
6943 arelent **storage,
6944 asymbol **syms)
6945{
6946 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
6947 asection *s;
6948 long ret;
6949
6950 if (elf_dynsymtab (abfd) == 0)
6951 {
6952 bfd_set_error (bfd_error_invalid_operation);
6953 return -1;
6954 }
6955
6956 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6957 ret = 0;
6958 for (s = abfd->sections; s != NULL; s = s->next)
6959 {
6960 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6961 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6962 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6963 {
6964 arelent *p;
6965 long count, i;
6966
6967 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6968 return -1;
6969 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6970 p = s->relocation;
6971 for (i = 0; i < count; i++)
6972 *storage++ = p++;
6973 ret += count;
6974 }
6975 }
6976
6977 *storage = NULL;
6978
6979 return ret;
6980}
6981\f
6982/* Read in the version information. */
6983
6984bfd_boolean
6985_bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6986{
6987 bfd_byte *contents = NULL;
6988 unsigned int freeidx = 0;
6989
6990 if (elf_dynverref (abfd) != 0)
6991 {
6992 Elf_Internal_Shdr *hdr;
6993 Elf_External_Verneed *everneed;
6994 Elf_Internal_Verneed *iverneed;
6995 unsigned int i;
6996 bfd_byte *contents_end;
6997
6998 hdr = &elf_tdata (abfd)->dynverref_hdr;
6999
7000 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
7001 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
7002 if (elf_tdata (abfd)->verref == NULL)
7003 goto error_return;
7004
7005 elf_tdata (abfd)->cverrefs = hdr->sh_info;
7006
7007 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7008 if (contents == NULL)
7009 {
7010error_return_verref:
7011 elf_tdata (abfd)->verref = NULL;
7012 elf_tdata (abfd)->cverrefs = 0;
7013 goto error_return;
7014 }
7015 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7016 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7017 goto error_return_verref;
7018
7019 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verneed))
7020 goto error_return_verref;
7021
7022 BFD_ASSERT (sizeof (Elf_External_Verneed)
7023 == sizeof (Elf_External_Vernaux));
7024 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
7025 everneed = (Elf_External_Verneed *) contents;
7026 iverneed = elf_tdata (abfd)->verref;
7027 for (i = 0; i < hdr->sh_info; i++, iverneed++)
7028 {
7029 Elf_External_Vernaux *evernaux;
7030 Elf_Internal_Vernaux *ivernaux;
7031 unsigned int j;
7032
7033 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
7034
7035 iverneed->vn_bfd = abfd;
7036
7037 iverneed->vn_filename =
7038 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7039 iverneed->vn_file);
7040 if (iverneed->vn_filename == NULL)
7041 goto error_return_verref;
7042
7043 if (iverneed->vn_cnt == 0)
7044 iverneed->vn_auxptr = NULL;
7045 else
7046 {
7047 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
7048 bfd_alloc2 (abfd, iverneed->vn_cnt,
7049 sizeof (Elf_Internal_Vernaux));
7050 if (iverneed->vn_auxptr == NULL)
7051 goto error_return_verref;
7052 }
7053
7054 if (iverneed->vn_aux
7055 > (size_t) (contents_end - (bfd_byte *) everneed))
7056 goto error_return_verref;
7057
7058 evernaux = ((Elf_External_Vernaux *)
7059 ((bfd_byte *) everneed + iverneed->vn_aux));
7060 ivernaux = iverneed->vn_auxptr;
7061 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
7062 {
7063 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
7064
7065 ivernaux->vna_nodename =
7066 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7067 ivernaux->vna_name);
7068 if (ivernaux->vna_nodename == NULL)
7069 goto error_return_verref;
7070
7071 if (j + 1 < iverneed->vn_cnt)
7072 ivernaux->vna_nextptr = ivernaux + 1;
7073 else
7074 ivernaux->vna_nextptr = NULL;
7075
7076 if (ivernaux->vna_next
7077 > (size_t) (contents_end - (bfd_byte *) evernaux))
7078 goto error_return_verref;
7079
7080 evernaux = ((Elf_External_Vernaux *)
7081 ((bfd_byte *) evernaux + ivernaux->vna_next));
7082
7083 if (ivernaux->vna_other > freeidx)
7084 freeidx = ivernaux->vna_other;
7085 }
7086
7087 if (i + 1 < hdr->sh_info)
7088 iverneed->vn_nextref = iverneed + 1;
7089 else
7090 iverneed->vn_nextref = NULL;
7091
7092 if (iverneed->vn_next
7093 > (size_t) (contents_end - (bfd_byte *) everneed))
7094 goto error_return_verref;
7095
7096 everneed = ((Elf_External_Verneed *)
7097 ((bfd_byte *) everneed + iverneed->vn_next));
7098 }
7099
7100 free (contents);
7101 contents = NULL;
7102 }
7103
7104 if (elf_dynverdef (abfd) != 0)
7105 {
7106 Elf_Internal_Shdr *hdr;
7107 Elf_External_Verdef *everdef;
7108 Elf_Internal_Verdef *iverdef;
7109 Elf_Internal_Verdef *iverdefarr;
7110 Elf_Internal_Verdef iverdefmem;
7111 unsigned int i;
7112 unsigned int maxidx;
7113 bfd_byte *contents_end_def, *contents_end_aux;
7114
7115 hdr = &elf_tdata (abfd)->dynverdef_hdr;
7116
7117 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
7118 if (contents == NULL)
7119 goto error_return;
7120 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
7121 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
7122 goto error_return;
7123
7124 if (hdr->sh_info && hdr->sh_size < sizeof (Elf_External_Verdef))
7125 goto error_return;
7126
7127 BFD_ASSERT (sizeof (Elf_External_Verdef)
7128 >= sizeof (Elf_External_Verdaux));
7129 contents_end_def = contents + hdr->sh_size
7130 - sizeof (Elf_External_Verdef);
7131 contents_end_aux = contents + hdr->sh_size
7132 - sizeof (Elf_External_Verdaux);
7133
7134 /* We know the number of entries in the section but not the maximum
7135 index. Therefore we have to run through all entries and find
7136 the maximum. */
7137 everdef = (Elf_External_Verdef *) contents;
7138 maxidx = 0;
7139 for (i = 0; i < hdr->sh_info; ++i)
7140 {
7141 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7142
7143 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
7144 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
7145
7146 if (iverdefmem.vd_next
7147 > (size_t) (contents_end_def - (bfd_byte *) everdef))
7148 goto error_return;
7149
7150 everdef = ((Elf_External_Verdef *)
7151 ((bfd_byte *) everdef + iverdefmem.vd_next));
7152 }
7153
7154 if (default_imported_symver)
7155 {
7156 if (freeidx > maxidx)
7157 maxidx = ++freeidx;
7158 else
7159 freeidx = ++maxidx;
7160 }
7161 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7162 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
7163 if (elf_tdata (abfd)->verdef == NULL)
7164 goto error_return;
7165
7166 elf_tdata (abfd)->cverdefs = maxidx;
7167
7168 everdef = (Elf_External_Verdef *) contents;
7169 iverdefarr = elf_tdata (abfd)->verdef;
7170 for (i = 0; i < hdr->sh_info; i++)
7171 {
7172 Elf_External_Verdaux *everdaux;
7173 Elf_Internal_Verdaux *iverdaux;
7174 unsigned int j;
7175
7176 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
7177
7178 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
7179 {
7180error_return_verdef:
7181 elf_tdata (abfd)->verdef = NULL;
7182 elf_tdata (abfd)->cverdefs = 0;
7183 goto error_return;
7184 }
7185
7186 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
7187 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
7188
7189 iverdef->vd_bfd = abfd;
7190
7191 if (iverdef->vd_cnt == 0)
7192 iverdef->vd_auxptr = NULL;
7193 else
7194 {
7195 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7196 bfd_alloc2 (abfd, iverdef->vd_cnt,
7197 sizeof (Elf_Internal_Verdaux));
7198 if (iverdef->vd_auxptr == NULL)
7199 goto error_return_verdef;
7200 }
7201
7202 if (iverdef->vd_aux
7203 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
7204 goto error_return_verdef;
7205
7206 everdaux = ((Elf_External_Verdaux *)
7207 ((bfd_byte *) everdef + iverdef->vd_aux));
7208 iverdaux = iverdef->vd_auxptr;
7209 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
7210 {
7211 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
7212
7213 iverdaux->vda_nodename =
7214 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
7215 iverdaux->vda_name);
7216 if (iverdaux->vda_nodename == NULL)
7217 goto error_return_verdef;
7218
7219 if (j + 1 < iverdef->vd_cnt)
7220 iverdaux->vda_nextptr = iverdaux + 1;
7221 else
7222 iverdaux->vda_nextptr = NULL;
7223
7224 if (iverdaux->vda_next
7225 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
7226 goto error_return_verdef;
7227
7228 everdaux = ((Elf_External_Verdaux *)
7229 ((bfd_byte *) everdaux + iverdaux->vda_next));
7230 }
7231
7232 if (iverdef->vd_cnt)
7233 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
7234
7235 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
7236 iverdef->vd_nextdef = iverdef + 1;
7237 else
7238 iverdef->vd_nextdef = NULL;
7239
7240 everdef = ((Elf_External_Verdef *)
7241 ((bfd_byte *) everdef + iverdef->vd_next));
7242 }
7243
7244 free (contents);
7245 contents = NULL;
7246 }
7247 else if (default_imported_symver)
7248 {
7249 if (freeidx < 3)
7250 freeidx = 3;
7251 else
7252 freeidx++;
7253
7254 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
7255 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
7256 if (elf_tdata (abfd)->verdef == NULL)
7257 goto error_return;
7258
7259 elf_tdata (abfd)->cverdefs = freeidx;
7260 }
7261
7262 /* Create a default version based on the soname. */
7263 if (default_imported_symver)
7264 {
7265 Elf_Internal_Verdef *iverdef;
7266 Elf_Internal_Verdaux *iverdaux;
7267
7268 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
7269
7270 iverdef->vd_version = VER_DEF_CURRENT;
7271 iverdef->vd_flags = 0;
7272 iverdef->vd_ndx = freeidx;
7273 iverdef->vd_cnt = 1;
7274
7275 iverdef->vd_bfd = abfd;
7276
7277 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
7278 if (iverdef->vd_nodename == NULL)
7279 goto error_return_verdef;
7280 iverdef->vd_nextdef = NULL;
7281 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
7282 bfd_alloc (abfd, sizeof (Elf_Internal_Verdaux));
7283 if (iverdef->vd_auxptr == NULL)
7284 goto error_return_verdef;
7285
7286 iverdaux = iverdef->vd_auxptr;
7287 iverdaux->vda_nodename = iverdef->vd_nodename;
7288 iverdaux->vda_nextptr = NULL;
7289 }
7290
7291 return TRUE;
7292
7293 error_return:
7294 if (contents != NULL)
7295 free (contents);
7296 return FALSE;
7297}
7298\f
7299asymbol *
7300_bfd_elf_make_empty_symbol (bfd *abfd)
7301{
7302 elf_symbol_type *newsym;
7303 bfd_size_type amt = sizeof (elf_symbol_type);
7304
7305 newsym = (elf_symbol_type *) bfd_zalloc (abfd, amt);
7306 if (!newsym)
7307 return NULL;
7308 else
7309 {
7310 newsym->symbol.the_bfd = abfd;
7311 return &newsym->symbol;
7312 }
7313}
7314
7315void
7316_bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
7317 asymbol *symbol,
7318 symbol_info *ret)
7319{
7320 bfd_symbol_info (symbol, ret);
7321}
7322
7323/* Return whether a symbol name implies a local symbol. Most targets
7324 use this function for the is_local_label_name entry point, but some
7325 override it. */
7326
7327bfd_boolean
7328_bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
7329 const char *name)
7330{
7331 /* Normal local symbols start with ``.L''. */
7332 if (name[0] == '.' && name[1] == 'L')
7333 return TRUE;
7334
7335 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
7336 DWARF debugging symbols starting with ``..''. */
7337 if (name[0] == '.' && name[1] == '.')
7338 return TRUE;
7339
7340 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
7341 emitting DWARF debugging output. I suspect this is actually a
7342 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
7343 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
7344 underscore to be emitted on some ELF targets). For ease of use,
7345 we treat such symbols as local. */
7346 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
7347 return TRUE;
7348
7349 return FALSE;
7350}
7351
7352alent *
7353_bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
7354 asymbol *symbol ATTRIBUTE_UNUSED)
7355{
7356 abort ();
7357 return NULL;
7358}
7359
7360bfd_boolean
7361_bfd_elf_set_arch_mach (bfd *abfd,
7362 enum bfd_architecture arch,
7363 unsigned long machine)
7364{
7365 /* If this isn't the right architecture for this backend, and this
7366 isn't the generic backend, fail. */
7367 if (arch != get_elf_backend_data (abfd)->arch
7368 && arch != bfd_arch_unknown
7369 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
7370 return FALSE;
7371
7372 return bfd_default_set_arch_mach (abfd, arch, machine);
7373}
7374
7375/* Find the function to a particular section and offset,
7376 for error reporting. */
7377
7378static bfd_boolean
7379elf_find_function (bfd *abfd,
7380 asection *section,
7381 asymbol **symbols,
7382 bfd_vma offset,
7383 const char **filename_ptr,
7384 const char **functionname_ptr)
7385{
7386 const char *filename;
7387 asymbol *func, *file;
7388 bfd_vma low_func;
7389 asymbol **p;
7390 /* ??? Given multiple file symbols, it is impossible to reliably
7391 choose the right file name for global symbols. File symbols are
7392 local symbols, and thus all file symbols must sort before any
7393 global symbols. The ELF spec may be interpreted to say that a
7394 file symbol must sort before other local symbols, but currently
7395 ld -r doesn't do this. So, for ld -r output, it is possible to
7396 make a better choice of file name for local symbols by ignoring
7397 file symbols appearing after a given local symbol. */
7398 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state;
7399 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7400
7401 if (symbols == NULL)
7402 return FALSE;
7403
7404 filename = NULL;
7405 func = NULL;
7406 file = NULL;
7407 low_func = 0;
7408 state = nothing_seen;
7409
7410 for (p = symbols; *p != NULL; p++)
7411 {
7412 asymbol *sym = *p;
7413 asection *code_sec;
7414 bfd_vma code_off;
7415
7416 if ((sym->flags & BSF_FILE) != 0)
7417 {
7418 file = sym;
7419 if (state == symbol_seen)
7420 state = file_after_symbol_seen;
7421 continue;
7422 }
7423
7424 if (bed->maybe_function_sym (sym, &code_sec, &code_off)
7425 && code_sec == section
7426 && code_off >= low_func
7427 && code_off <= offset)
7428 {
7429 func = sym;
7430 low_func = code_off;
7431 filename = NULL;
7432 if (file != NULL
7433 && ((sym->flags & BSF_LOCAL) != 0
7434 || state != file_after_symbol_seen))
7435 filename = bfd_asymbol_name (file);
7436 }
7437 if (state == nothing_seen)
7438 state = symbol_seen;
7439 }
7440
7441 if (func == NULL)
7442 return FALSE;
7443
7444 if (filename_ptr)
7445 *filename_ptr = filename;
7446 if (functionname_ptr)
7447 *functionname_ptr = bfd_asymbol_name (func);
7448
7449 return TRUE;
7450}
7451
7452/* Find the nearest line to a particular section and offset,
7453 for error reporting. */
7454
7455bfd_boolean
7456_bfd_elf_find_nearest_line (bfd *abfd,
7457 asection *section,
7458 asymbol **symbols,
7459 bfd_vma offset,
7460 const char **filename_ptr,
7461 const char **functionname_ptr,
7462 unsigned int *line_ptr)
7463{
7464 bfd_boolean found;
7465
7466 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
7467 filename_ptr, functionname_ptr,
7468 line_ptr))
7469 {
7470 if (!*functionname_ptr)
7471 elf_find_function (abfd, section, symbols, offset,
7472 *filename_ptr ? NULL : filename_ptr,
7473 functionname_ptr);
7474
7475 return TRUE;
7476 }
7477
7478 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
7479 section, symbols, offset,
7480 filename_ptr, functionname_ptr,
7481 line_ptr, 0,
7482 &elf_tdata (abfd)->dwarf2_find_line_info))
7483 {
7484 if (!*functionname_ptr)
7485 elf_find_function (abfd, section, symbols, offset,
7486 *filename_ptr ? NULL : filename_ptr,
7487 functionname_ptr);
7488
7489 return TRUE;
7490 }
7491
7492 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7493 &found, filename_ptr,
7494 functionname_ptr, line_ptr,
7495 &elf_tdata (abfd)->line_info))
7496 return FALSE;
7497 if (found && (*functionname_ptr || *line_ptr))
7498 return TRUE;
7499
7500 if (symbols == NULL)
7501 return FALSE;
7502
7503 if (! elf_find_function (abfd, section, symbols, offset,
7504 filename_ptr, functionname_ptr))
7505 return FALSE;
7506
7507 *line_ptr = 0;
7508 return TRUE;
7509}
7510
7511/* Find the line for a symbol. */
7512
7513bfd_boolean
7514_bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
7515 const char **filename_ptr, unsigned int *line_ptr)
7516{
7517 return _bfd_dwarf2_find_line (abfd, symbols, symbol,
7518 filename_ptr, line_ptr, 0,
7519 &elf_tdata (abfd)->dwarf2_find_line_info);
7520}
7521
7522/* After a call to bfd_find_nearest_line, successive calls to
7523 bfd_find_inliner_info can be used to get source information about
7524 each level of function inlining that terminated at the address
7525 passed to bfd_find_nearest_line. Currently this is only supported
7526 for DWARF2 with appropriate DWARF3 extensions. */
7527
7528bfd_boolean
7529_bfd_elf_find_inliner_info (bfd *abfd,
7530 const char **filename_ptr,
7531 const char **functionname_ptr,
7532 unsigned int *line_ptr)
7533{
7534 bfd_boolean found;
7535 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7536 functionname_ptr, line_ptr,
7537 & elf_tdata (abfd)->dwarf2_find_line_info);
7538 return found;
7539}
7540
7541int
7542_bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
7543{
7544 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7545 int ret = bed->s->sizeof_ehdr;
7546
7547 if (!info->relocatable)
7548 {
7549 bfd_size_type phdr_size = elf_tdata (abfd)->program_header_size;
7550
7551 if (phdr_size == (bfd_size_type) -1)
7552 {
7553 struct elf_segment_map *m;
7554
7555 phdr_size = 0;
7556 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
7557 phdr_size += bed->s->sizeof_phdr;
7558
7559 if (phdr_size == 0)
7560 phdr_size = get_program_header_size (abfd, info);
7561 }
7562
7563 elf_tdata (abfd)->program_header_size = phdr_size;
7564 ret += phdr_size;
7565 }
7566
7567 return ret;
7568}
7569
7570bfd_boolean
7571_bfd_elf_set_section_contents (bfd *abfd,
7572 sec_ptr section,
7573 const void *location,
7574 file_ptr offset,
7575 bfd_size_type count)
7576{
7577 Elf_Internal_Shdr *hdr;
7578 bfd_signed_vma pos;
7579
7580 if (! abfd->output_has_begun
7581 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
7582 return FALSE;
7583
7584 hdr = &elf_section_data (section)->this_hdr;
7585 pos = hdr->sh_offset + offset;
7586 if (bfd_seek (abfd, pos, SEEK_SET) != 0
7587 || bfd_bwrite (location, count, abfd) != count)
7588 return FALSE;
7589
7590 return TRUE;
7591}
7592
7593void
7594_bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
7595 arelent *cache_ptr ATTRIBUTE_UNUSED,
7596 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
7597{
7598 abort ();
7599}
7600
7601/* Try to convert a non-ELF reloc into an ELF one. */
7602
7603bfd_boolean
7604_bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
7605{
7606 /* Check whether we really have an ELF howto. */
7607
7608 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
7609 {
7610 bfd_reloc_code_real_type code;
7611 reloc_howto_type *howto;
7612
7613 /* Alien reloc: Try to determine its type to replace it with an
7614 equivalent ELF reloc. */
7615
7616 if (areloc->howto->pc_relative)
7617 {
7618 switch (areloc->howto->bitsize)
7619 {
7620 case 8:
7621 code = BFD_RELOC_8_PCREL;
7622 break;
7623 case 12:
7624 code = BFD_RELOC_12_PCREL;
7625 break;
7626 case 16:
7627 code = BFD_RELOC_16_PCREL;
7628 break;
7629 case 24:
7630 code = BFD_RELOC_24_PCREL;
7631 break;
7632 case 32:
7633 code = BFD_RELOC_32_PCREL;
7634 break;
7635 case 64:
7636 code = BFD_RELOC_64_PCREL;
7637 break;
7638 default:
7639 goto fail;
7640 }
7641
7642 howto = bfd_reloc_type_lookup (abfd, code);
7643
7644 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
7645 {
7646 if (howto->pcrel_offset)
7647 areloc->addend += areloc->address;
7648 else
7649 areloc->addend -= areloc->address; /* addend is unsigned!! */
7650 }
7651 }
7652 else
7653 {
7654 switch (areloc->howto->bitsize)
7655 {
7656 case 8:
7657 code = BFD_RELOC_8;
7658 break;
7659 case 14:
7660 code = BFD_RELOC_14;
7661 break;
7662 case 16:
7663 code = BFD_RELOC_16;
7664 break;
7665 case 26:
7666 code = BFD_RELOC_26;
7667 break;
7668 case 32:
7669 code = BFD_RELOC_32;
7670 break;
7671 case 64:
7672 code = BFD_RELOC_64;
7673 break;
7674 default:
7675 goto fail;
7676 }
7677
7678 howto = bfd_reloc_type_lookup (abfd, code);
7679 }
7680
7681 if (howto)
7682 areloc->howto = howto;
7683 else
7684 goto fail;
7685 }
7686
7687 return TRUE;
7688
7689 fail:
7690 (*_bfd_error_handler)
7691 (_("%B: unsupported relocation type %s"),
7692 abfd, areloc->howto->name);
7693 bfd_set_error (bfd_error_bad_value);
7694 return FALSE;
7695}
7696
7697bfd_boolean
7698_bfd_elf_close_and_cleanup (bfd *abfd)
7699{
7700 struct elf_obj_tdata *tdata = elf_tdata (abfd);
7701 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
7702 {
7703 if (elf_shstrtab (abfd) != NULL)
7704 _bfd_elf_strtab_free (elf_shstrtab (abfd));
7705 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
7706 }
7707
7708 return _bfd_generic_close_and_cleanup (abfd);
7709}
7710
7711/* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
7712 in the relocation's offset. Thus we cannot allow any sort of sanity
7713 range-checking to interfere. There is nothing else to do in processing
7714 this reloc. */
7715
7716bfd_reloc_status_type
7717_bfd_elf_rel_vtable_reloc_fn
7718 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
7719 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
7720 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
7721 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
7722{
7723 return bfd_reloc_ok;
7724}
7725\f
7726/* Elf core file support. Much of this only works on native
7727 toolchains, since we rely on knowing the
7728 machine-dependent procfs structure in order to pick
7729 out details about the corefile. */
7730
7731#ifdef HAVE_SYS_PROCFS_H
7732/* Needed for new procfs interface on sparc-solaris. */
7733# define _STRUCTURED_PROC 1
7734# include <sys/procfs.h>
7735#endif
7736
7737/* Return a PID that identifies a "thread" for threaded cores, or the
7738 PID of the main process for non-threaded cores. */
7739
7740static int
7741elfcore_make_pid (bfd *abfd)
7742{
7743 int pid;
7744
7745 pid = elf_tdata (abfd)->core_lwpid;
7746 if (pid == 0)
7747 pid = elf_tdata (abfd)->core_pid;
7748
7749 return pid;
7750}
7751
7752/* If there isn't a section called NAME, make one, using
7753 data from SECT. Note, this function will generate a
7754 reference to NAME, so you shouldn't deallocate or
7755 overwrite it. */
7756
7757static bfd_boolean
7758elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
7759{
7760 asection *sect2;
7761
7762 if (bfd_get_section_by_name (abfd, name) != NULL)
7763 return TRUE;
7764
7765 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
7766 if (sect2 == NULL)
7767 return FALSE;
7768
7769 sect2->size = sect->size;
7770 sect2->filepos = sect->filepos;
7771 sect2->alignment_power = sect->alignment_power;
7772 return TRUE;
7773}
7774
7775/* Create a pseudosection containing SIZE bytes at FILEPOS. This
7776 actually creates up to two pseudosections:
7777 - For the single-threaded case, a section named NAME, unless
7778 such a section already exists.
7779 - For the multi-threaded case, a section named "NAME/PID", where
7780 PID is elfcore_make_pid (abfd).
7781 Both pseudosections have identical contents. */
7782bfd_boolean
7783_bfd_elfcore_make_pseudosection (bfd *abfd,
7784 char *name,
7785 size_t size,
7786 ufile_ptr filepos)
7787{
7788 char buf[100];
7789 char *threaded_name;
7790 size_t len;
7791 asection *sect;
7792
7793 /* Build the section name. */
7794
7795 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
7796 len = strlen (buf) + 1;
7797 threaded_name = (char *) bfd_alloc (abfd, len);
7798 if (threaded_name == NULL)
7799 return FALSE;
7800 memcpy (threaded_name, buf, len);
7801
7802 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
7803 SEC_HAS_CONTENTS);
7804 if (sect == NULL)
7805 return FALSE;
7806 sect->size = size;
7807 sect->filepos = filepos;
7808 sect->alignment_power = 2;
7809
7810 return elfcore_maybe_make_sect (abfd, name, sect);
7811}
7812
7813/* prstatus_t exists on:
7814 solaris 2.5+
7815 linux 2.[01] + glibc
7816 unixware 4.2
7817*/
7818
7819#if defined (HAVE_PRSTATUS_T)
7820
7821static bfd_boolean
7822elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
7823{
7824 size_t size;
7825 int offset;
7826
7827 if (note->descsz == sizeof (prstatus_t))
7828 {
7829 prstatus_t prstat;
7830
7831 size = sizeof (prstat.pr_reg);
7832 offset = offsetof (prstatus_t, pr_reg);
7833 memcpy (&prstat, note->descdata, sizeof (prstat));
7834
7835 /* Do not overwrite the core signal if it
7836 has already been set by another thread. */
7837 if (elf_tdata (abfd)->core_signal == 0)
7838 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7839 if (elf_tdata (abfd)->core_pid == 0)
7840 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7841
7842 /* pr_who exists on:
7843 solaris 2.5+
7844 unixware 4.2
7845 pr_who doesn't exist on:
7846 linux 2.[01]
7847 */
7848#if defined (HAVE_PRSTATUS_T_PR_WHO)
7849 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7850#else
7851 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7852#endif
7853 }
7854#if defined (HAVE_PRSTATUS32_T)
7855 else if (note->descsz == sizeof (prstatus32_t))
7856 {
7857 /* 64-bit host, 32-bit corefile */
7858 prstatus32_t prstat;
7859
7860 size = sizeof (prstat.pr_reg);
7861 offset = offsetof (prstatus32_t, pr_reg);
7862 memcpy (&prstat, note->descdata, sizeof (prstat));
7863
7864 /* Do not overwrite the core signal if it
7865 has already been set by another thread. */
7866 if (elf_tdata (abfd)->core_signal == 0)
7867 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
7868 if (elf_tdata (abfd)->core_pid == 0)
7869 elf_tdata (abfd)->core_pid = prstat.pr_pid;
7870
7871 /* pr_who exists on:
7872 solaris 2.5+
7873 unixware 4.2
7874 pr_who doesn't exist on:
7875 linux 2.[01]
7876 */
7877#if defined (HAVE_PRSTATUS32_T_PR_WHO)
7878 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
7879#else
7880 elf_tdata (abfd)->core_lwpid = prstat.pr_pid;
7881#endif
7882 }
7883#endif /* HAVE_PRSTATUS32_T */
7884 else
7885 {
7886 /* Fail - we don't know how to handle any other
7887 note size (ie. data object type). */
7888 return TRUE;
7889 }
7890
7891 /* Make a ".reg/999" section and a ".reg" section. */
7892 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
7893 size, note->descpos + offset);
7894}
7895#endif /* defined (HAVE_PRSTATUS_T) */
7896
7897/* Create a pseudosection containing the exact contents of NOTE. */
7898static bfd_boolean
7899elfcore_make_note_pseudosection (bfd *abfd,
7900 char *name,
7901 Elf_Internal_Note *note)
7902{
7903 return _bfd_elfcore_make_pseudosection (abfd, name,
7904 note->descsz, note->descpos);
7905}
7906
7907/* There isn't a consistent prfpregset_t across platforms,
7908 but it doesn't matter, because we don't have to pick this
7909 data structure apart. */
7910
7911static bfd_boolean
7912elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
7913{
7914 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7915}
7916
7917/* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
7918 type of NT_PRXFPREG. Just include the whole note's contents
7919 literally. */
7920
7921static bfd_boolean
7922elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
7923{
7924 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
7925}
7926
7927/* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
7928 with a note type of NT_X86_XSTATE. Just include the whole note's
7929 contents literally. */
7930
7931static bfd_boolean
7932elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
7933{
7934 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
7935}
7936
7937static bfd_boolean
7938elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
7939{
7940 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
7941}
7942
7943static bfd_boolean
7944elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
7945{
7946 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
7947}
7948
7949static bfd_boolean
7950elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
7951{
7952 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
7953}
7954
7955static bfd_boolean
7956elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
7957{
7958 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
7959}
7960
7961static bfd_boolean
7962elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
7963{
7964 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
7965}
7966
7967static bfd_boolean
7968elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
7969{
7970 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
7971}
7972
7973static bfd_boolean
7974elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
7975{
7976 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
7977}
7978
7979static bfd_boolean
7980elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
7981{
7982 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
7983}
7984
7985static bfd_boolean
7986elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
7987{
7988 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
7989}
7990
7991static bfd_boolean
7992elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
7993{
7994 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
7995}
7996
7997static bfd_boolean
7998elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
7999{
8000 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
8001}
8002
8003#if defined (HAVE_PRPSINFO_T)
8004typedef prpsinfo_t elfcore_psinfo_t;
8005#if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
8006typedef prpsinfo32_t elfcore_psinfo32_t;
8007#endif
8008#endif
8009
8010#if defined (HAVE_PSINFO_T)
8011typedef psinfo_t elfcore_psinfo_t;
8012#if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
8013typedef psinfo32_t elfcore_psinfo32_t;
8014#endif
8015#endif
8016
8017/* return a malloc'ed copy of a string at START which is at
8018 most MAX bytes long, possibly without a terminating '\0'.
8019 the copy will always have a terminating '\0'. */
8020
8021char *
8022_bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
8023{
8024 char *dups;
8025 char *end = (char *) memchr (start, '\0', max);
8026 size_t len;
8027
8028 if (end == NULL)
8029 len = max;
8030 else
8031 len = end - start;
8032
8033 dups = (char *) bfd_alloc (abfd, len + 1);
8034 if (dups == NULL)
8035 return NULL;
8036
8037 memcpy (dups, start, len);
8038 dups[len] = '\0';
8039
8040 return dups;
8041}
8042
8043#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8044static bfd_boolean
8045elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
8046{
8047 if (note->descsz == sizeof (elfcore_psinfo_t))
8048 {
8049 elfcore_psinfo_t psinfo;
8050
8051 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8052
8053#if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
8054 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8055#endif
8056 elf_tdata (abfd)->core_program
8057 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8058 sizeof (psinfo.pr_fname));
8059
8060 elf_tdata (abfd)->core_command
8061 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8062 sizeof (psinfo.pr_psargs));
8063 }
8064#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8065 else if (note->descsz == sizeof (elfcore_psinfo32_t))
8066 {
8067 /* 64-bit host, 32-bit corefile */
8068 elfcore_psinfo32_t psinfo;
8069
8070 memcpy (&psinfo, note->descdata, sizeof (psinfo));
8071
8072#if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
8073 elf_tdata (abfd)->core_pid = psinfo.pr_pid;
8074#endif
8075 elf_tdata (abfd)->core_program
8076 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
8077 sizeof (psinfo.pr_fname));
8078
8079 elf_tdata (abfd)->core_command
8080 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
8081 sizeof (psinfo.pr_psargs));
8082 }
8083#endif
8084
8085 else
8086 {
8087 /* Fail - we don't know how to handle any other
8088 note size (ie. data object type). */
8089 return TRUE;
8090 }
8091
8092 /* Note that for some reason, a spurious space is tacked
8093 onto the end of the args in some (at least one anyway)
8094 implementations, so strip it off if it exists. */
8095
8096 {
8097 char *command = elf_tdata (abfd)->core_command;
8098 int n = strlen (command);
8099
8100 if (0 < n && command[n - 1] == ' ')
8101 command[n - 1] = '\0';
8102 }
8103
8104 return TRUE;
8105}
8106#endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
8107
8108#if defined (HAVE_PSTATUS_T)
8109static bfd_boolean
8110elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
8111{
8112 if (note->descsz == sizeof (pstatus_t)
8113#if defined (HAVE_PXSTATUS_T)
8114 || note->descsz == sizeof (pxstatus_t)
8115#endif
8116 )
8117 {
8118 pstatus_t pstat;
8119
8120 memcpy (&pstat, note->descdata, sizeof (pstat));
8121
8122 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8123 }
8124#if defined (HAVE_PSTATUS32_T)
8125 else if (note->descsz == sizeof (pstatus32_t))
8126 {
8127 /* 64-bit host, 32-bit corefile */
8128 pstatus32_t pstat;
8129
8130 memcpy (&pstat, note->descdata, sizeof (pstat));
8131
8132 elf_tdata (abfd)->core_pid = pstat.pr_pid;
8133 }
8134#endif
8135 /* Could grab some more details from the "representative"
8136 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
8137 NT_LWPSTATUS note, presumably. */
8138
8139 return TRUE;
8140}
8141#endif /* defined (HAVE_PSTATUS_T) */
8142
8143#if defined (HAVE_LWPSTATUS_T)
8144static bfd_boolean
8145elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
8146{
8147 lwpstatus_t lwpstat;
8148 char buf[100];
8149 char *name;
8150 size_t len;
8151 asection *sect;
8152
8153 if (note->descsz != sizeof (lwpstat)
8154#if defined (HAVE_LWPXSTATUS_T)
8155 && note->descsz != sizeof (lwpxstatus_t)
8156#endif
8157 )
8158 return TRUE;
8159
8160 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
8161
8162 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
8163 /* Do not overwrite the core signal if it has already been set by
8164 another thread. */
8165 if (elf_tdata (abfd)->core_signal == 0)
8166 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
8167
8168 /* Make a ".reg/999" section. */
8169
8170 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
8171 len = strlen (buf) + 1;
8172 name = bfd_alloc (abfd, len);
8173 if (name == NULL)
8174 return FALSE;
8175 memcpy (name, buf, len);
8176
8177 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8178 if (sect == NULL)
8179 return FALSE;
8180
8181#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8182 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
8183 sect->filepos = note->descpos
8184 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
8185#endif
8186
8187#if defined (HAVE_LWPSTATUS_T_PR_REG)
8188 sect->size = sizeof (lwpstat.pr_reg);
8189 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
8190#endif
8191
8192 sect->alignment_power = 2;
8193
8194 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
8195 return FALSE;
8196
8197 /* Make a ".reg2/999" section */
8198
8199 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
8200 len = strlen (buf) + 1;
8201 name = bfd_alloc (abfd, len);
8202 if (name == NULL)
8203 return FALSE;
8204 memcpy (name, buf, len);
8205
8206 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8207 if (sect == NULL)
8208 return FALSE;
8209
8210#if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
8211 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
8212 sect->filepos = note->descpos
8213 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
8214#endif
8215
8216#if defined (HAVE_LWPSTATUS_T_PR_FPREG)
8217 sect->size = sizeof (lwpstat.pr_fpreg);
8218 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
8219#endif
8220
8221 sect->alignment_power = 2;
8222
8223 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
8224}
8225#endif /* defined (HAVE_LWPSTATUS_T) */
8226
8227static bfd_boolean
8228elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
8229{
8230 char buf[30];
8231 char *name;
8232 size_t len;
8233 asection *sect;
8234 int type;
8235 int is_active_thread;
8236 bfd_vma base_addr;
8237
8238 if (note->descsz < 728)
8239 return TRUE;
8240
8241 if (! CONST_STRNEQ (note->namedata, "win32"))
8242 return TRUE;
8243
8244 type = bfd_get_32 (abfd, note->descdata);
8245
8246 switch (type)
8247 {
8248 case 1 /* NOTE_INFO_PROCESS */:
8249 /* FIXME: need to add ->core_command. */
8250 /* process_info.pid */
8251 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 8);
8252 /* process_info.signal */
8253 elf_tdata (abfd)->core_signal = bfd_get_32 (abfd, note->descdata + 12);
8254 break;
8255
8256 case 2 /* NOTE_INFO_THREAD */:
8257 /* Make a ".reg/999" section. */
8258 /* thread_info.tid */
8259 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
8260
8261 len = strlen (buf) + 1;
8262 name = (char *) bfd_alloc (abfd, len);
8263 if (name == NULL)
8264 return FALSE;
8265
8266 memcpy (name, buf, len);
8267
8268 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8269 if (sect == NULL)
8270 return FALSE;
8271
8272 /* sizeof (thread_info.thread_context) */
8273 sect->size = 716;
8274 /* offsetof (thread_info.thread_context) */
8275 sect->filepos = note->descpos + 12;
8276 sect->alignment_power = 2;
8277
8278 /* thread_info.is_active_thread */
8279 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
8280
8281 if (is_active_thread)
8282 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
8283 return FALSE;
8284 break;
8285
8286 case 3 /* NOTE_INFO_MODULE */:
8287 /* Make a ".module/xxxxxxxx" section. */
8288 /* module_info.base_address */
8289 base_addr = bfd_get_32 (abfd, note->descdata + 4);
8290 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
8291
8292 len = strlen (buf) + 1;
8293 name = (char *) bfd_alloc (abfd, len);
8294 if (name == NULL)
8295 return FALSE;
8296
8297 memcpy (name, buf, len);
8298
8299 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8300
8301 if (sect == NULL)
8302 return FALSE;
8303
8304 sect->size = note->descsz;
8305 sect->filepos = note->descpos;
8306 sect->alignment_power = 2;
8307 break;
8308
8309 default:
8310 return TRUE;
8311 }
8312
8313 return TRUE;
8314}
8315
8316static bfd_boolean
8317elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
8318{
8319 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8320
8321 switch (note->type)
8322 {
8323 default:
8324 return TRUE;
8325
8326 case NT_PRSTATUS:
8327 if (bed->elf_backend_grok_prstatus)
8328 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
8329 return TRUE;
8330#if defined (HAVE_PRSTATUS_T)
8331 return elfcore_grok_prstatus (abfd, note);
8332#else
8333 return TRUE;
8334#endif
8335
8336#if defined (HAVE_PSTATUS_T)
8337 case NT_PSTATUS:
8338 return elfcore_grok_pstatus (abfd, note);
8339#endif
8340
8341#if defined (HAVE_LWPSTATUS_T)
8342 case NT_LWPSTATUS:
8343 return elfcore_grok_lwpstatus (abfd, note);
8344#endif
8345
8346 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
8347 return elfcore_grok_prfpreg (abfd, note);
8348
8349 case NT_WIN32PSTATUS:
8350 return elfcore_grok_win32pstatus (abfd, note);
8351
8352 case NT_PRXFPREG: /* Linux SSE extension */
8353 if (note->namesz == 6
8354 && strcmp (note->namedata, "LINUX") == 0)
8355 return elfcore_grok_prxfpreg (abfd, note);
8356 else
8357 return TRUE;
8358
8359 case NT_X86_XSTATE: /* Linux XSAVE extension */
8360 if (note->namesz == 6
8361 && strcmp (note->namedata, "LINUX") == 0)
8362 return elfcore_grok_xstatereg (abfd, note);
8363 else
8364 return TRUE;
8365
8366 case NT_PPC_VMX:
8367 if (note->namesz == 6
8368 && strcmp (note->namedata, "LINUX") == 0)
8369 return elfcore_grok_ppc_vmx (abfd, note);
8370 else
8371 return TRUE;
8372
8373 case NT_PPC_VSX:
8374 if (note->namesz == 6
8375 && strcmp (note->namedata, "LINUX") == 0)
8376 return elfcore_grok_ppc_vsx (abfd, note);
8377 else
8378 return TRUE;
8379
8380 case NT_S390_HIGH_GPRS:
8381 if (note->namesz == 6
8382 && strcmp (note->namedata, "LINUX") == 0)
8383 return elfcore_grok_s390_high_gprs (abfd, note);
8384 else
8385 return TRUE;
8386
8387 case NT_S390_TIMER:
8388 if (note->namesz == 6
8389 && strcmp (note->namedata, "LINUX") == 0)
8390 return elfcore_grok_s390_timer (abfd, note);
8391 else
8392 return TRUE;
8393
8394 case NT_S390_TODCMP:
8395 if (note->namesz == 6
8396 && strcmp (note->namedata, "LINUX") == 0)
8397 return elfcore_grok_s390_todcmp (abfd, note);
8398 else
8399 return TRUE;
8400
8401 case NT_S390_TODPREG:
8402 if (note->namesz == 6
8403 && strcmp (note->namedata, "LINUX") == 0)
8404 return elfcore_grok_s390_todpreg (abfd, note);
8405 else
8406 return TRUE;
8407
8408 case NT_S390_CTRS:
8409 if (note->namesz == 6
8410 && strcmp (note->namedata, "LINUX") == 0)
8411 return elfcore_grok_s390_ctrs (abfd, note);
8412 else
8413 return TRUE;
8414
8415 case NT_S390_PREFIX:
8416 if (note->namesz == 6
8417 && strcmp (note->namedata, "LINUX") == 0)
8418 return elfcore_grok_s390_prefix (abfd, note);
8419 else
8420 return TRUE;
8421
8422 case NT_S390_LAST_BREAK:
8423 if (note->namesz == 6
8424 && strcmp (note->namedata, "LINUX") == 0)
8425 return elfcore_grok_s390_last_break (abfd, note);
8426 else
8427 return TRUE;
8428
8429 case NT_S390_SYSTEM_CALL:
8430 if (note->namesz == 6
8431 && strcmp (note->namedata, "LINUX") == 0)
8432 return elfcore_grok_s390_system_call (abfd, note);
8433 else
8434 return TRUE;
8435
8436 case NT_ARM_VFP:
8437 if (note->namesz == 6
8438 && strcmp (note->namedata, "LINUX") == 0)
8439 return elfcore_grok_arm_vfp (abfd, note);
8440 else
8441 return TRUE;
8442
8443 case NT_PRPSINFO:
8444 case NT_PSINFO:
8445 if (bed->elf_backend_grok_psinfo)
8446 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
8447 return TRUE;
8448#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8449 return elfcore_grok_psinfo (abfd, note);
8450#else
8451 return TRUE;
8452#endif
8453
8454 case NT_AUXV:
8455 {
8456 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8457 SEC_HAS_CONTENTS);
8458
8459 if (sect == NULL)
8460 return FALSE;
8461 sect->size = note->descsz;
8462 sect->filepos = note->descpos;
8463 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8464
8465 return TRUE;
8466 }
8467 }
8468}
8469
8470static bfd_boolean
8471elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
8472{
8473 elf_tdata (abfd)->build_id_size = note->descsz;
8474 elf_tdata (abfd)->build_id = (bfd_byte *) bfd_alloc (abfd, note->descsz);
8475 if (elf_tdata (abfd)->build_id == NULL)
8476 return FALSE;
8477
8478 memcpy (elf_tdata (abfd)->build_id, note->descdata, note->descsz);
8479
8480 return TRUE;
8481}
8482
8483static bfd_boolean
8484elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
8485{
8486 switch (note->type)
8487 {
8488 default:
8489 return TRUE;
8490
8491 case NT_GNU_BUILD_ID:
8492 return elfobj_grok_gnu_build_id (abfd, note);
8493 }
8494}
8495
8496static bfd_boolean
8497elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
8498{
8499 struct sdt_note *cur =
8500 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
8501 + note->descsz);
8502
8503 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
8504 cur->size = (bfd_size_type) note->descsz;
8505 memcpy (cur->data, note->descdata, note->descsz);
8506
8507 elf_tdata (abfd)->sdt_note_head = cur;
8508
8509 return TRUE;
8510}
8511
8512static bfd_boolean
8513elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
8514{
8515 switch (note->type)
8516 {
8517 case NT_STAPSDT:
8518 return elfobj_grok_stapsdt_note_1 (abfd, note);
8519
8520 default:
8521 return TRUE;
8522 }
8523}
8524
8525static bfd_boolean
8526elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
8527{
8528 char *cp;
8529
8530 cp = strchr (note->namedata, '@');
8531 if (cp != NULL)
8532 {
8533 *lwpidp = atoi(cp + 1);
8534 return TRUE;
8535 }
8536 return FALSE;
8537}
8538
8539static bfd_boolean
8540elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8541{
8542 /* Signal number at offset 0x08. */
8543 elf_tdata (abfd)->core_signal
8544 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8545
8546 /* Process ID at offset 0x50. */
8547 elf_tdata (abfd)->core_pid
8548 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
8549
8550 /* Command name at 0x7c (max 32 bytes, including nul). */
8551 elf_tdata (abfd)->core_command
8552 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
8553
8554 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
8555 note);
8556}
8557
8558static bfd_boolean
8559elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
8560{
8561 int lwp;
8562
8563 if (elfcore_netbsd_get_lwpid (note, &lwp))
8564 elf_tdata (abfd)->core_lwpid = lwp;
8565
8566 if (note->type == NT_NETBSDCORE_PROCINFO)
8567 {
8568 /* NetBSD-specific core "procinfo". Note that we expect to
8569 find this note before any of the others, which is fine,
8570 since the kernel writes this note out first when it
8571 creates a core file. */
8572
8573 return elfcore_grok_netbsd_procinfo (abfd, note);
8574 }
8575
8576 /* As of Jan 2002 there are no other machine-independent notes
8577 defined for NetBSD core files. If the note type is less
8578 than the start of the machine-dependent note types, we don't
8579 understand it. */
8580
8581 if (note->type < NT_NETBSDCORE_FIRSTMACH)
8582 return TRUE;
8583
8584
8585 switch (bfd_get_arch (abfd))
8586 {
8587 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
8588 PT_GETFPREGS == mach+2. */
8589
8590 case bfd_arch_alpha:
8591 case bfd_arch_sparc:
8592 switch (note->type)
8593 {
8594 case NT_NETBSDCORE_FIRSTMACH+0:
8595 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8596
8597 case NT_NETBSDCORE_FIRSTMACH+2:
8598 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8599
8600 default:
8601 return TRUE;
8602 }
8603
8604 /* On all other arch's, PT_GETREGS == mach+1 and
8605 PT_GETFPREGS == mach+3. */
8606
8607 default:
8608 switch (note->type)
8609 {
8610 case NT_NETBSDCORE_FIRSTMACH+1:
8611 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8612
8613 case NT_NETBSDCORE_FIRSTMACH+3:
8614 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8615
8616 default:
8617 return TRUE;
8618 }
8619 }
8620 /* NOTREACHED */
8621}
8622
8623static bfd_boolean
8624elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
8625{
8626 /* Signal number at offset 0x08. */
8627 elf_tdata (abfd)->core_signal
8628 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
8629
8630 /* Process ID at offset 0x20. */
8631 elf_tdata (abfd)->core_pid
8632 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
8633
8634 /* Command name at 0x48 (max 32 bytes, including nul). */
8635 elf_tdata (abfd)->core_command
8636 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
8637
8638 return TRUE;
8639}
8640
8641static bfd_boolean
8642elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
8643{
8644 if (note->type == NT_OPENBSD_PROCINFO)
8645 return elfcore_grok_openbsd_procinfo (abfd, note);
8646
8647 if (note->type == NT_OPENBSD_REGS)
8648 return elfcore_make_note_pseudosection (abfd, ".reg", note);
8649
8650 if (note->type == NT_OPENBSD_FPREGS)
8651 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
8652
8653 if (note->type == NT_OPENBSD_XFPREGS)
8654 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
8655
8656 if (note->type == NT_OPENBSD_AUXV)
8657 {
8658 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
8659 SEC_HAS_CONTENTS);
8660
8661 if (sect == NULL)
8662 return FALSE;
8663 sect->size = note->descsz;
8664 sect->filepos = note->descpos;
8665 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8666
8667 return TRUE;
8668 }
8669
8670 if (note->type == NT_OPENBSD_WCOOKIE)
8671 {
8672 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
8673 SEC_HAS_CONTENTS);
8674
8675 if (sect == NULL)
8676 return FALSE;
8677 sect->size = note->descsz;
8678 sect->filepos = note->descpos;
8679 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
8680
8681 return TRUE;
8682 }
8683
8684 return TRUE;
8685}
8686
8687static bfd_boolean
8688elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
8689{
8690 void *ddata = note->descdata;
8691 char buf[100];
8692 char *name;
8693 asection *sect;
8694 short sig;
8695 unsigned flags;
8696
8697 /* nto_procfs_status 'pid' field is at offset 0. */
8698 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
8699
8700 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
8701 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
8702
8703 /* nto_procfs_status 'flags' field is at offset 8. */
8704 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
8705
8706 /* nto_procfs_status 'what' field is at offset 14. */
8707 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
8708 {
8709 elf_tdata (abfd)->core_signal = sig;
8710 elf_tdata (abfd)->core_lwpid = *tid;
8711 }
8712
8713 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
8714 do not come from signals so we make sure we set the current
8715 thread just in case. */
8716 if (flags & 0x00000080)
8717 elf_tdata (abfd)->core_lwpid = *tid;
8718
8719 /* Make a ".qnx_core_status/%d" section. */
8720 sprintf (buf, ".qnx_core_status/%ld", *tid);
8721
8722 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8723 if (name == NULL)
8724 return FALSE;
8725 strcpy (name, buf);
8726
8727 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8728 if (sect == NULL)
8729 return FALSE;
8730
8731 sect->size = note->descsz;
8732 sect->filepos = note->descpos;
8733 sect->alignment_power = 2;
8734
8735 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
8736}
8737
8738static bfd_boolean
8739elfcore_grok_nto_regs (bfd *abfd,
8740 Elf_Internal_Note *note,
8741 long tid,
8742 char *base)
8743{
8744 char buf[100];
8745 char *name;
8746 asection *sect;
8747
8748 /* Make a "(base)/%d" section. */
8749 sprintf (buf, "%s/%ld", base, tid);
8750
8751 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
8752 if (name == NULL)
8753 return FALSE;
8754 strcpy (name, buf);
8755
8756 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8757 if (sect == NULL)
8758 return FALSE;
8759
8760 sect->size = note->descsz;
8761 sect->filepos = note->descpos;
8762 sect->alignment_power = 2;
8763
8764 /* This is the current thread. */
8765 if (elf_tdata (abfd)->core_lwpid == tid)
8766 return elfcore_maybe_make_sect (abfd, base, sect);
8767
8768 return TRUE;
8769}
8770
8771#define BFD_QNT_CORE_INFO 7
8772#define BFD_QNT_CORE_STATUS 8
8773#define BFD_QNT_CORE_GREG 9
8774#define BFD_QNT_CORE_FPREG 10
8775
8776static bfd_boolean
8777elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
8778{
8779 /* Every GREG section has a STATUS section before it. Store the
8780 tid from the previous call to pass down to the next gregs
8781 function. */
8782 static long tid = 1;
8783
8784 switch (note->type)
8785 {
8786 case BFD_QNT_CORE_INFO:
8787 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
8788 case BFD_QNT_CORE_STATUS:
8789 return elfcore_grok_nto_status (abfd, note, &tid);
8790 case BFD_QNT_CORE_GREG:
8791 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
8792 case BFD_QNT_CORE_FPREG:
8793 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
8794 default:
8795 return TRUE;
8796 }
8797}
8798
8799static bfd_boolean
8800elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
8801{
8802 char *name;
8803 asection *sect;
8804 size_t len;
8805
8806 /* Use note name as section name. */
8807 len = note->namesz;
8808 name = (char *) bfd_alloc (abfd, len);
8809 if (name == NULL)
8810 return FALSE;
8811 memcpy (name, note->namedata, len);
8812 name[len - 1] = '\0';
8813
8814 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
8815 if (sect == NULL)
8816 return FALSE;
8817
8818 sect->size = note->descsz;
8819 sect->filepos = note->descpos;
8820 sect->alignment_power = 1;
8821
8822 return TRUE;
8823}
8824
8825/* Function: elfcore_write_note
8826
8827 Inputs:
8828 buffer to hold note, and current size of buffer
8829 name of note
8830 type of note
8831 data for note
8832 size of data for note
8833
8834 Writes note to end of buffer. ELF64 notes are written exactly as
8835 for ELF32, despite the current (as of 2006) ELF gabi specifying
8836 that they ought to have 8-byte namesz and descsz field, and have
8837 8-byte alignment. Other writers, eg. Linux kernel, do the same.
8838
8839 Return:
8840 Pointer to realloc'd buffer, *BUFSIZ updated. */
8841
8842char *
8843elfcore_write_note (bfd *abfd,
8844 char *buf,
8845 int *bufsiz,
8846 const char *name,
8847 int type,
8848 const void *input,
8849 int size)
8850{
8851 Elf_External_Note *xnp;
8852 size_t namesz;
8853 size_t newspace;
8854 char *dest;
8855
8856 namesz = 0;
8857 if (name != NULL)
8858 namesz = strlen (name) + 1;
8859
8860 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
8861
8862 buf = (char *) realloc (buf, *bufsiz + newspace);
8863 if (buf == NULL)
8864 return buf;
8865 dest = buf + *bufsiz;
8866 *bufsiz += newspace;
8867 xnp = (Elf_External_Note *) dest;
8868 H_PUT_32 (abfd, namesz, xnp->namesz);
8869 H_PUT_32 (abfd, size, xnp->descsz);
8870 H_PUT_32 (abfd, type, xnp->type);
8871 dest = xnp->name;
8872 if (name != NULL)
8873 {
8874 memcpy (dest, name, namesz);
8875 dest += namesz;
8876 while (namesz & 3)
8877 {
8878 *dest++ = '\0';
8879 ++namesz;
8880 }
8881 }
8882 memcpy (dest, input, size);
8883 dest += size;
8884 while (size & 3)
8885 {
8886 *dest++ = '\0';
8887 ++size;
8888 }
8889 return buf;
8890}
8891
8892char *
8893elfcore_write_prpsinfo (bfd *abfd,
8894 char *buf,
8895 int *bufsiz,
8896 const char *fname,
8897 const char *psargs)
8898{
8899 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8900
8901 if (bed->elf_backend_write_core_note != NULL)
8902 {
8903 char *ret;
8904 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8905 NT_PRPSINFO, fname, psargs);
8906 if (ret != NULL)
8907 return ret;
8908 }
8909
8910#if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
8911#if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
8912 if (bed->s->elfclass == ELFCLASS32)
8913 {
8914#if defined (HAVE_PSINFO32_T)
8915 psinfo32_t data;
8916 int note_type = NT_PSINFO;
8917#else
8918 prpsinfo32_t data;
8919 int note_type = NT_PRPSINFO;
8920#endif
8921
8922 memset (&data, 0, sizeof (data));
8923 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8924 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8925 return elfcore_write_note (abfd, buf, bufsiz,
8926 "CORE", note_type, &data, sizeof (data));
8927 }
8928 else
8929#endif
8930 {
8931#if defined (HAVE_PSINFO_T)
8932 psinfo_t data;
8933 int note_type = NT_PSINFO;
8934#else
8935 prpsinfo_t data;
8936 int note_type = NT_PRPSINFO;
8937#endif
8938
8939 memset (&data, 0, sizeof (data));
8940 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
8941 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
8942 return elfcore_write_note (abfd, buf, bufsiz,
8943 "CORE", note_type, &data, sizeof (data));
8944 }
8945#endif /* PSINFO_T or PRPSINFO_T */
8946
8947 free (buf);
8948 return NULL;
8949}
8950
8951char *
8952elfcore_write_prstatus (bfd *abfd,
8953 char *buf,
8954 int *bufsiz,
8955 long pid,
8956 int cursig,
8957 const void *gregs)
8958{
8959 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8960
8961 if (bed->elf_backend_write_core_note != NULL)
8962 {
8963 char *ret;
8964 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
8965 NT_PRSTATUS,
8966 pid, cursig, gregs);
8967 if (ret != NULL)
8968 return ret;
8969 }
8970
8971#if defined (HAVE_PRSTATUS_T)
8972#if defined (HAVE_PRSTATUS32_T)
8973 if (bed->s->elfclass == ELFCLASS32)
8974 {
8975 prstatus32_t prstat;
8976
8977 memset (&prstat, 0, sizeof (prstat));
8978 prstat.pr_pid = pid;
8979 prstat.pr_cursig = cursig;
8980 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8981 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
8982 NT_PRSTATUS, &prstat, sizeof (prstat));
8983 }
8984 else
8985#endif
8986 {
8987 prstatus_t prstat;
8988
8989 memset (&prstat, 0, sizeof (prstat));
8990 prstat.pr_pid = pid;
8991 prstat.pr_cursig = cursig;
8992 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
8993 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
8994 NT_PRSTATUS, &prstat, sizeof (prstat));
8995 }
8996#endif /* HAVE_PRSTATUS_T */
8997
8998 free (buf);
8999 return NULL;
9000}
9001
9002#if defined (HAVE_LWPSTATUS_T)
9003char *
9004elfcore_write_lwpstatus (bfd *abfd,
9005 char *buf,
9006 int *bufsiz,
9007 long pid,
9008 int cursig,
9009 const void *gregs)
9010{
9011 lwpstatus_t lwpstat;
9012 const char *note_name = "CORE";
9013
9014 memset (&lwpstat, 0, sizeof (lwpstat));
9015 lwpstat.pr_lwpid = pid >> 16;
9016 lwpstat.pr_cursig = cursig;
9017#if defined (HAVE_LWPSTATUS_T_PR_REG)
9018 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
9019#elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9020#if !defined(gregs)
9021 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
9022 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
9023#else
9024 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
9025 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
9026#endif
9027#endif
9028 return elfcore_write_note (abfd, buf, bufsiz, note_name,
9029 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
9030}
9031#endif /* HAVE_LWPSTATUS_T */
9032
9033#if defined (HAVE_PSTATUS_T)
9034char *
9035elfcore_write_pstatus (bfd *abfd,
9036 char *buf,
9037 int *bufsiz,
9038 long pid,
9039 int cursig ATTRIBUTE_UNUSED,
9040 const void *gregs ATTRIBUTE_UNUSED)
9041{
9042 const char *note_name = "CORE";
9043#if defined (HAVE_PSTATUS32_T)
9044 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9045
9046 if (bed->s->elfclass == ELFCLASS32)
9047 {
9048 pstatus32_t pstat;
9049
9050 memset (&pstat, 0, sizeof (pstat));
9051 pstat.pr_pid = pid & 0xffff;
9052 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9053 NT_PSTATUS, &pstat, sizeof (pstat));
9054 return buf;
9055 }
9056 else
9057#endif
9058 {
9059 pstatus_t pstat;
9060
9061 memset (&pstat, 0, sizeof (pstat));
9062 pstat.pr_pid = pid & 0xffff;
9063 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
9064 NT_PSTATUS, &pstat, sizeof (pstat));
9065 return buf;
9066 }
9067}
9068#endif /* HAVE_PSTATUS_T */
9069
9070char *
9071elfcore_write_prfpreg (bfd *abfd,
9072 char *buf,
9073 int *bufsiz,
9074 const void *fpregs,
9075 int size)
9076{
9077 const char *note_name = "CORE";
9078 return elfcore_write_note (abfd, buf, bufsiz,
9079 note_name, NT_FPREGSET, fpregs, size);
9080}
9081
9082char *
9083elfcore_write_prxfpreg (bfd *abfd,
9084 char *buf,
9085 int *bufsiz,
9086 const void *xfpregs,
9087 int size)
9088{
9089 char *note_name = "LINUX";
9090 return elfcore_write_note (abfd, buf, bufsiz,
9091 note_name, NT_PRXFPREG, xfpregs, size);
9092}
9093
9094char *
9095elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
9096 const void *xfpregs, int size)
9097{
9098 char *note_name = "LINUX";
9099 return elfcore_write_note (abfd, buf, bufsiz,
9100 note_name, NT_X86_XSTATE, xfpregs, size);
9101}
9102
9103char *
9104elfcore_write_ppc_vmx (bfd *abfd,
9105 char *buf,
9106 int *bufsiz,
9107 const void *ppc_vmx,
9108 int size)
9109{
9110 char *note_name = "LINUX";
9111 return elfcore_write_note (abfd, buf, bufsiz,
9112 note_name, NT_PPC_VMX, ppc_vmx, size);
9113}
9114
9115char *
9116elfcore_write_ppc_vsx (bfd *abfd,
9117 char *buf,
9118 int *bufsiz,
9119 const void *ppc_vsx,
9120 int size)
9121{
9122 char *note_name = "LINUX";
9123 return elfcore_write_note (abfd, buf, bufsiz,
9124 note_name, NT_PPC_VSX, ppc_vsx, size);
9125}
9126
9127static char *
9128elfcore_write_s390_high_gprs (bfd *abfd,
9129 char *buf,
9130 int *bufsiz,
9131 const void *s390_high_gprs,
9132 int size)
9133{
9134 char *note_name = "LINUX";
9135 return elfcore_write_note (abfd, buf, bufsiz,
9136 note_name, NT_S390_HIGH_GPRS,
9137 s390_high_gprs, size);
9138}
9139
9140char *
9141elfcore_write_s390_timer (bfd *abfd,
9142 char *buf,
9143 int *bufsiz,
9144 const void *s390_timer,
9145 int size)
9146{
9147 char *note_name = "LINUX";
9148 return elfcore_write_note (abfd, buf, bufsiz,
9149 note_name, NT_S390_TIMER, s390_timer, size);
9150}
9151
9152char *
9153elfcore_write_s390_todcmp (bfd *abfd,
9154 char *buf,
9155 int *bufsiz,
9156 const void *s390_todcmp,
9157 int size)
9158{
9159 char *note_name = "LINUX";
9160 return elfcore_write_note (abfd, buf, bufsiz,
9161 note_name, NT_S390_TODCMP, s390_todcmp, size);
9162}
9163
9164char *
9165elfcore_write_s390_todpreg (bfd *abfd,
9166 char *buf,
9167 int *bufsiz,
9168 const void *s390_todpreg,
9169 int size)
9170{
9171 char *note_name = "LINUX";
9172 return elfcore_write_note (abfd, buf, bufsiz,
9173 note_name, NT_S390_TODPREG, s390_todpreg, size);
9174}
9175
9176char *
9177elfcore_write_s390_ctrs (bfd *abfd,
9178 char *buf,
9179 int *bufsiz,
9180 const void *s390_ctrs,
9181 int size)
9182{
9183 char *note_name = "LINUX";
9184 return elfcore_write_note (abfd, buf, bufsiz,
9185 note_name, NT_S390_CTRS, s390_ctrs, size);
9186}
9187
9188char *
9189elfcore_write_s390_prefix (bfd *abfd,
9190 char *buf,
9191 int *bufsiz,
9192 const void *s390_prefix,
9193 int size)
9194{
9195 char *note_name = "LINUX";
9196 return elfcore_write_note (abfd, buf, bufsiz,
9197 note_name, NT_S390_PREFIX, s390_prefix, size);
9198}
9199
9200char *
9201elfcore_write_s390_last_break (bfd *abfd,
9202 char *buf,
9203 int *bufsiz,
9204 const void *s390_last_break,
9205 int size)
9206{
9207 char *note_name = "LINUX";
9208 return elfcore_write_note (abfd, buf, bufsiz,
9209 note_name, NT_S390_LAST_BREAK,
9210 s390_last_break, size);
9211}
9212
9213char *
9214elfcore_write_s390_system_call (bfd *abfd,
9215 char *buf,
9216 int *bufsiz,
9217 const void *s390_system_call,
9218 int size)
9219{
9220 char *note_name = "LINUX";
9221 return elfcore_write_note (abfd, buf, bufsiz,
9222 note_name, NT_S390_SYSTEM_CALL,
9223 s390_system_call, size);
9224}
9225
9226char *
9227elfcore_write_arm_vfp (bfd *abfd,
9228 char *buf,
9229 int *bufsiz,
9230 const void *arm_vfp,
9231 int size)
9232{
9233 char *note_name = "LINUX";
9234 return elfcore_write_note (abfd, buf, bufsiz,
9235 note_name, NT_ARM_VFP, arm_vfp, size);
9236}
9237
9238char *
9239elfcore_write_register_note (bfd *abfd,
9240 char *buf,
9241 int *bufsiz,
9242 const char *section,
9243 const void *data,
9244 int size)
9245{
9246 if (strcmp (section, ".reg2") == 0)
9247 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
9248 if (strcmp (section, ".reg-xfp") == 0)
9249 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
9250 if (strcmp (section, ".reg-xstate") == 0)
9251 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
9252 if (strcmp (section, ".reg-ppc-vmx") == 0)
9253 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
9254 if (strcmp (section, ".reg-ppc-vsx") == 0)
9255 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
9256 if (strcmp (section, ".reg-s390-high-gprs") == 0)
9257 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
9258 if (strcmp (section, ".reg-s390-timer") == 0)
9259 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
9260 if (strcmp (section, ".reg-s390-todcmp") == 0)
9261 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
9262 if (strcmp (section, ".reg-s390-todpreg") == 0)
9263 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
9264 if (strcmp (section, ".reg-s390-ctrs") == 0)
9265 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
9266 if (strcmp (section, ".reg-s390-prefix") == 0)
9267 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
9268 if (strcmp (section, ".reg-s390-last-break") == 0)
9269 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
9270 if (strcmp (section, ".reg-s390-system-call") == 0)
9271 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
9272 if (strcmp (section, ".reg-arm-vfp") == 0)
9273 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
9274 return NULL;
9275}
9276
9277static bfd_boolean
9278elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset)
9279{
9280 char *p;
9281
9282 p = buf;
9283 while (p < buf + size)
9284 {
9285 /* FIXME: bad alignment assumption. */
9286 Elf_External_Note *xnp = (Elf_External_Note *) p;
9287 Elf_Internal_Note in;
9288
9289 if (offsetof (Elf_External_Note, name) > buf - p + size)
9290 return FALSE;
9291
9292 in.type = H_GET_32 (abfd, xnp->type);
9293
9294 in.namesz = H_GET_32 (abfd, xnp->namesz);
9295 in.namedata = xnp->name;
9296 if (in.namesz > buf - in.namedata + size)
9297 return FALSE;
9298
9299 in.descsz = H_GET_32 (abfd, xnp->descsz);
9300 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
9301 in.descpos = offset + (in.descdata - buf);
9302 if (in.descsz != 0
9303 && (in.descdata >= buf + size
9304 || in.descsz > buf - in.descdata + size))
9305 return FALSE;
9306
9307 switch (bfd_get_format (abfd))
9308 {
9309 default:
9310 return TRUE;
9311
9312 case bfd_core:
9313 if (CONST_STRNEQ (in.namedata, "NetBSD-CORE"))
9314 {
9315 if (! elfcore_grok_netbsd_note (abfd, &in))
9316 return FALSE;
9317 }
9318 else if (CONST_STRNEQ (in.namedata, "OpenBSD"))
9319 {
9320 if (! elfcore_grok_openbsd_note (abfd, &in))
9321 return FALSE;
9322 }
9323 else if (CONST_STRNEQ (in.namedata, "QNX"))
9324 {
9325 if (! elfcore_grok_nto_note (abfd, &in))
9326 return FALSE;
9327 }
9328 else if (CONST_STRNEQ (in.namedata, "SPU/"))
9329 {
9330 if (! elfcore_grok_spu_note (abfd, &in))
9331 return FALSE;
9332 }
9333 else
9334 {
9335 if (! elfcore_grok_note (abfd, &in))
9336 return FALSE;
9337 }
9338 break;
9339
9340 case bfd_object:
9341 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
9342 {
9343 if (! elfobj_grok_gnu_note (abfd, &in))
9344 return FALSE;
9345 }
9346 else if (in.namesz == sizeof "stapsdt"
9347 && strcmp (in.namedata, "stapsdt") == 0)
9348 {
9349 if (! elfobj_grok_stapsdt_note (abfd, &in))
9350 return FALSE;
9351 }
9352 break;
9353 }
9354
9355 p = in.descdata + BFD_ALIGN (in.descsz, 4);
9356 }
9357
9358 return TRUE;
9359}
9360
9361static bfd_boolean
9362elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
9363{
9364 char *buf;
9365
9366 if (size <= 0)
9367 return TRUE;
9368
9369 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
9370 return FALSE;
9371
9372 buf = (char *) bfd_malloc (size);
9373 if (buf == NULL)
9374 return FALSE;
9375
9376 if (bfd_bread (buf, size, abfd) != size
9377 || !elf_parse_notes (abfd, buf, size, offset))
9378 {
9379 free (buf);
9380 return FALSE;
9381 }
9382
9383 free (buf);
9384 return TRUE;
9385}
9386\f
9387/* Providing external access to the ELF program header table. */
9388
9389/* Return an upper bound on the number of bytes required to store a
9390 copy of ABFD's program header table entries. Return -1 if an error
9391 occurs; bfd_get_error will return an appropriate code. */
9392
9393long
9394bfd_get_elf_phdr_upper_bound (bfd *abfd)
9395{
9396 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9397 {
9398 bfd_set_error (bfd_error_wrong_format);
9399 return -1;
9400 }
9401
9402 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
9403}
9404
9405/* Copy ABFD's program header table entries to *PHDRS. The entries
9406 will be stored as an array of Elf_Internal_Phdr structures, as
9407 defined in include/elf/internal.h. To find out how large the
9408 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
9409
9410 Return the number of program header table entries read, or -1 if an
9411 error occurs; bfd_get_error will return an appropriate code. */
9412
9413int
9414bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
9415{
9416 int num_phdrs;
9417
9418 if (abfd->xvec->flavour != bfd_target_elf_flavour)
9419 {
9420 bfd_set_error (bfd_error_wrong_format);
9421 return -1;
9422 }
9423
9424 num_phdrs = elf_elfheader (abfd)->e_phnum;
9425 memcpy (phdrs, elf_tdata (abfd)->phdr,
9426 num_phdrs * sizeof (Elf_Internal_Phdr));
9427
9428 return num_phdrs;
9429}
9430
9431enum elf_reloc_type_class
9432_bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
9433{
9434 return reloc_class_normal;
9435}
9436
9437/* For RELA architectures, return the relocation value for a
9438 relocation against a local symbol. */
9439
9440bfd_vma
9441_bfd_elf_rela_local_sym (bfd *abfd,
9442 Elf_Internal_Sym *sym,
9443 asection **psec,
9444 Elf_Internal_Rela *rel)
9445{
9446 asection *sec = *psec;
9447 bfd_vma relocation;
9448
9449 relocation = (sec->output_section->vma
9450 + sec->output_offset
9451 + sym->st_value);
9452 if ((sec->flags & SEC_MERGE)
9453 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
9454 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
9455 {
9456 rel->r_addend =
9457 _bfd_merged_section_offset (abfd, psec,
9458 elf_section_data (sec)->sec_info,
9459 sym->st_value + rel->r_addend);
9460 if (sec != *psec)
9461 {
9462 /* If we have changed the section, and our original section is
9463 marked with SEC_EXCLUDE, it means that the original
9464 SEC_MERGE section has been completely subsumed in some
9465 other SEC_MERGE section. In this case, we need to leave
9466 some info around for --emit-relocs. */
9467 if ((sec->flags & SEC_EXCLUDE) != 0)
9468 sec->kept_section = *psec;
9469 sec = *psec;
9470 }
9471 rel->r_addend -= relocation;
9472 rel->r_addend += sec->output_section->vma + sec->output_offset;
9473 }
9474 return relocation;
9475}
9476
9477bfd_vma
9478_bfd_elf_rel_local_sym (bfd *abfd,
9479 Elf_Internal_Sym *sym,
9480 asection **psec,
9481 bfd_vma addend)
9482{
9483 asection *sec = *psec;
9484
9485 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
9486 return sym->st_value + addend;
9487
9488 return _bfd_merged_section_offset (abfd, psec,
9489 elf_section_data (sec)->sec_info,
9490 sym->st_value + addend);
9491}
9492
9493bfd_vma
9494_bfd_elf_section_offset (bfd *abfd,
9495 struct bfd_link_info *info,
9496 asection *sec,
9497 bfd_vma offset)
9498{
9499 switch (sec->sec_info_type)
9500 {
9501 case SEC_INFO_TYPE_STABS:
9502 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
9503 offset);
9504 case SEC_INFO_TYPE_EH_FRAME:
9505 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
9506 default:
9507 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
9508 {
9509 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9510 bfd_size_type address_size = bed->s->arch_size / 8;
9511 offset = sec->size - offset - address_size;
9512 }
9513 return offset;
9514 }
9515}
9516\f
9517/* Create a new BFD as if by bfd_openr. Rather than opening a file,
9518 reconstruct an ELF file by reading the segments out of remote memory
9519 based on the ELF file header at EHDR_VMA and the ELF program headers it
9520 points to. If not null, *LOADBASEP is filled in with the difference
9521 between the VMAs from which the segments were read, and the VMAs the
9522 file headers (and hence BFD's idea of each section's VMA) put them at.
9523
9524 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
9525 remote memory at target address VMA into the local buffer at MYADDR; it
9526 should return zero on success or an `errno' code on failure. TEMPL must
9527 be a BFD for an ELF target with the word size and byte order found in
9528 the remote memory. */
9529
9530bfd *
9531bfd_elf_bfd_from_remote_memory
9532 (bfd *templ,
9533 bfd_vma ehdr_vma,
9534 bfd_vma *loadbasep,
9535 int (*target_read_memory) (bfd_vma, bfd_byte *, int))
9536{
9537 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
9538 (templ, ehdr_vma, loadbasep, target_read_memory);
9539}
9540\f
9541long
9542_bfd_elf_get_synthetic_symtab (bfd *abfd,
9543 long symcount ATTRIBUTE_UNUSED,
9544 asymbol **syms ATTRIBUTE_UNUSED,
9545 long dynsymcount,
9546 asymbol **dynsyms,
9547 asymbol **ret)
9548{
9549 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9550 asection *relplt;
9551 asymbol *s;
9552 const char *relplt_name;
9553 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
9554 arelent *p;
9555 long count, i, n;
9556 size_t size;
9557 Elf_Internal_Shdr *hdr;
9558 char *names;
9559 asection *plt;
9560
9561 *ret = NULL;
9562
9563 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
9564 return 0;
9565
9566 if (dynsymcount <= 0)
9567 return 0;
9568
9569 if (!bed->plt_sym_val)
9570 return 0;
9571
9572 relplt_name = bed->relplt_name;
9573 if (relplt_name == NULL)
9574 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
9575 relplt = bfd_get_section_by_name (abfd, relplt_name);
9576 if (relplt == NULL)
9577 return 0;
9578
9579 hdr = &elf_section_data (relplt)->this_hdr;
9580 if (hdr->sh_link != elf_dynsymtab (abfd)
9581 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
9582 return 0;
9583
9584 plt = bfd_get_section_by_name (abfd, ".plt");
9585 if (plt == NULL)
9586 return 0;
9587
9588 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
9589 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
9590 return -1;
9591
9592 count = relplt->size / hdr->sh_entsize;
9593 size = count * sizeof (asymbol);
9594 p = relplt->relocation;
9595 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9596 {
9597 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
9598 if (p->addend != 0)
9599 {
9600#ifdef BFD64
9601 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
9602#else
9603 size += sizeof ("+0x") - 1 + 8;
9604#endif
9605 }
9606 }
9607
9608 s = *ret = (asymbol *) bfd_malloc (size);
9609 if (s == NULL)
9610 return -1;
9611
9612 names = (char *) (s + count);
9613 p = relplt->relocation;
9614 n = 0;
9615 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
9616 {
9617 size_t len;
9618 bfd_vma addr;
9619
9620 addr = bed->plt_sym_val (i, plt, p);
9621 if (addr == (bfd_vma) -1)
9622 continue;
9623
9624 *s = **p->sym_ptr_ptr;
9625 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
9626 we are defining a symbol, ensure one of them is set. */
9627 if ((s->flags & BSF_LOCAL) == 0)
9628 s->flags |= BSF_GLOBAL;
9629 s->flags |= BSF_SYNTHETIC;
9630 s->section = plt;
9631 s->value = addr - plt->vma;
9632 s->name = names;
9633 s->udata.p = NULL;
9634 len = strlen ((*p->sym_ptr_ptr)->name);
9635 memcpy (names, (*p->sym_ptr_ptr)->name, len);
9636 names += len;
9637 if (p->addend != 0)
9638 {
9639 char buf[30], *a;
9640
9641 memcpy (names, "+0x", sizeof ("+0x") - 1);
9642 names += sizeof ("+0x") - 1;
9643 bfd_sprintf_vma (abfd, buf, p->addend);
9644 for (a = buf; *a == '0'; ++a)
9645 ;
9646 len = strlen (a);
9647 memcpy (names, a, len);
9648 names += len;
9649 }
9650 memcpy (names, "@plt", sizeof ("@plt"));
9651 names += sizeof ("@plt");
9652 ++s, ++n;
9653 }
9654
9655 return n;
9656}
9657
9658/* It is only used by x86-64 so far. */
9659asection _bfd_elf_large_com_section
9660 = BFD_FAKE_SECTION (_bfd_elf_large_com_section,
9661 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0);
9662
9663void
9664_bfd_elf_set_osabi (bfd * abfd,
9665 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9666{
9667 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9668
9669 i_ehdrp = elf_elfheader (abfd);
9670
9671 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
9672
9673 /* To make things simpler for the loader on Linux systems we set the
9674 osabi field to ELFOSABI_GNU if the binary contains symbols of
9675 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
9676 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
9677 && elf_tdata (abfd)->has_gnu_symbols)
9678 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
9679}
9680
9681
9682/* Return TRUE for ELF symbol types that represent functions.
9683 This is the default version of this function, which is sufficient for
9684 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
9685
9686bfd_boolean
9687_bfd_elf_is_function_type (unsigned int type)
9688{
9689 return (type == STT_FUNC
9690 || type == STT_GNU_IFUNC);
9691}
9692
9693/* Return TRUE iff the ELF symbol SYM might be a function. Set *CODE_SEC
9694 and *CODE_OFF to the function's entry point. */
9695
9696bfd_boolean
9697_bfd_elf_maybe_function_sym (const asymbol *sym,
9698 asection **code_sec, bfd_vma *code_off)
9699{
9700 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
9701 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
9702 return FALSE;
9703
9704 *code_sec = sym->section;
9705 *code_off = sym->value;
9706 return TRUE;
9707}
This page took 0.056645 seconds and 4 git commands to generate.