This adjusts equate handling by
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
... / ...
CommitLineData
1/* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra <amodra@bigpond.net.au>
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24/* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28#include "bfd.h"
29#include "sysdep.h"
30#include "bfdlink.h"
31#include "libbfd.h"
32#include "elf-bfd.h"
33#include "elf/ppc64.h"
34#include "elf64-ppc.h"
35
36static bfd_reloc_status_type ppc64_elf_ha_reloc
37 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
38static bfd_reloc_status_type ppc64_elf_branch_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40static bfd_reloc_status_type ppc64_elf_brtaken_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42static bfd_reloc_status_type ppc64_elf_sectoff_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46static bfd_reloc_status_type ppc64_elf_toc_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50static bfd_reloc_status_type ppc64_elf_toc64_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52static bfd_reloc_status_type ppc64_elf_unhandled_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54static bfd_vma opd_entry_value
55 (asection *, bfd_vma, asection **, bfd_vma *);
56
57#define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
58#define TARGET_LITTLE_NAME "elf64-powerpcle"
59#define TARGET_BIG_SYM bfd_elf64_powerpc_vec
60#define TARGET_BIG_NAME "elf64-powerpc"
61#define ELF_ARCH bfd_arch_powerpc
62#define ELF_MACHINE_CODE EM_PPC64
63#define ELF_MAXPAGESIZE 0x10000
64#define elf_info_to_howto ppc64_elf_info_to_howto
65
66#define elf_backend_want_got_sym 0
67#define elf_backend_want_plt_sym 0
68#define elf_backend_plt_alignment 3
69#define elf_backend_plt_not_loaded 1
70#define elf_backend_got_header_size 8
71#define elf_backend_can_gc_sections 1
72#define elf_backend_can_refcount 1
73#define elf_backend_rela_normal 1
74
75#define bfd_elf64_mkobject ppc64_elf_mkobject
76#define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
77#define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
78#define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
79#define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
80#define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
81#define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
82
83#define elf_backend_object_p ppc64_elf_object_p
84#define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
85#define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
86#define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
87#define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
88#define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
89#define elf_backend_check_directives ppc64_elf_check_directives
90#define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
91#define elf_backend_check_relocs ppc64_elf_check_relocs
92#define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
93#define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
94#define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
95#define elf_backend_hide_symbol ppc64_elf_hide_symbol
96#define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
97#define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
98#define elf_backend_relocate_section ppc64_elf_relocate_section
99#define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
100#define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
101#define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
102#define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
103#define elf_backend_special_sections ppc64_elf_special_sections
104
105/* The name of the dynamic interpreter. This is put in the .interp
106 section. */
107#define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
108
109/* The size in bytes of an entry in the procedure linkage table. */
110#define PLT_ENTRY_SIZE 24
111
112/* The initial size of the plt reserved for the dynamic linker. */
113#define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
114
115/* TOC base pointers offset from start of TOC. */
116#define TOC_BASE_OFF 0x8000
117
118/* Offset of tp and dtp pointers from start of TLS block. */
119#define TP_OFFSET 0x7000
120#define DTP_OFFSET 0x8000
121
122/* .plt call stub instructions. The normal stub is like this, but
123 sometimes the .plt entry crosses a 64k boundary and we need to
124 insert an addis to adjust r12. */
125#define PLT_CALL_STUB_SIZE (7*4)
126#define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
127#define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
128#define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
129#define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
130#define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
131 /* ld %r11,xxx+16@l(%r12) */
132#define BCTR 0x4e800420 /* bctr */
133
134
135#define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
136#define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
137
138#define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
139
140/* glink call stub instructions. We enter with the index in R0, and the
141 address of glink entry in CTR. From that, we can calculate PLT0. */
142#define GLINK_CALL_STUB_SIZE (16*4)
143#define MFCTR_R12 0x7d8902a6 /* mfctr %r12 */
144#define SLDI_R11_R0_3 0x780b1f24 /* sldi %r11,%r0,3 */
145#define ADDIC_R2_R0_32K 0x34408000 /* addic. %r2,%r0,-32768 */
146#define SUB_R12_R12_R11 0x7d8b6050 /* sub %r12,%r12,%r11 */
147#define SRADI_R2_R2_63 0x7c42fe76 /* sradi %r2,%r2,63 */
148#define SLDI_R11_R0_2 0x780b1764 /* sldi %r11,%r0,2 */
149#define AND_R2_R2_R11 0x7c425838 /* and %r2,%r2,%r11 */
150 /* sub %r12,%r12,%r11 */
151#define ADD_R12_R12_R2 0x7d8c1214 /* add %r12,%r12,%r2 */
152#define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
153 /* ld %r11,xxx@l(%r12) */
154#define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,xxx@l */
155 /* ld %r2,8(%r12) */
156 /* mtctr %r11 */
157 /* ld %r11,16(%r12) */
158 /* bctr */
159
160/* Pad with this. */
161#define NOP 0x60000000
162
163/* Some other nops. */
164#define CROR_151515 0x4def7b82
165#define CROR_313131 0x4ffffb82
166
167/* .glink entries for the first 32k functions are two instructions. */
168#define LI_R0_0 0x38000000 /* li %r0,0 */
169#define B_DOT 0x48000000 /* b . */
170
171/* After that, we need two instructions to load the index, followed by
172 a branch. */
173#define LIS_R0_0 0x3c000000 /* lis %r0,0 */
174#define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
175
176/* Instructions used by the save and restore reg functions. */
177#define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
178#define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
179#define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
180#define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
181#define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
182#define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
183#define LI_R12_0 0x39800000 /* li %r12,0 */
184#define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
185#define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
186#define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
187#define BLR 0x4e800020 /* blr */
188
189/* Since .opd is an array of descriptors and each entry will end up
190 with identical R_PPC64_RELATIVE relocs, there is really no need to
191 propagate .opd relocs; The dynamic linker should be taught to
192 relocate .opd without reloc entries. */
193#ifndef NO_OPD_RELOCS
194#define NO_OPD_RELOCS 0
195#endif
196\f
197#define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
198
199/* Relocation HOWTO's. */
200static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
201
202static reloc_howto_type ppc64_elf_howto_raw[] = {
203 /* This reloc does nothing. */
204 HOWTO (R_PPC64_NONE, /* type */
205 0, /* rightshift */
206 2, /* size (0 = byte, 1 = short, 2 = long) */
207 32, /* bitsize */
208 FALSE, /* pc_relative */
209 0, /* bitpos */
210 complain_overflow_dont, /* complain_on_overflow */
211 bfd_elf_generic_reloc, /* special_function */
212 "R_PPC64_NONE", /* name */
213 FALSE, /* partial_inplace */
214 0, /* src_mask */
215 0, /* dst_mask */
216 FALSE), /* pcrel_offset */
217
218 /* A standard 32 bit relocation. */
219 HOWTO (R_PPC64_ADDR32, /* type */
220 0, /* rightshift */
221 2, /* size (0 = byte, 1 = short, 2 = long) */
222 32, /* bitsize */
223 FALSE, /* pc_relative */
224 0, /* bitpos */
225 complain_overflow_bitfield, /* complain_on_overflow */
226 bfd_elf_generic_reloc, /* special_function */
227 "R_PPC64_ADDR32", /* name */
228 FALSE, /* partial_inplace */
229 0, /* src_mask */
230 0xffffffff, /* dst_mask */
231 FALSE), /* pcrel_offset */
232
233 /* An absolute 26 bit branch; the lower two bits must be zero.
234 FIXME: we don't check that, we just clear them. */
235 HOWTO (R_PPC64_ADDR24, /* type */
236 0, /* rightshift */
237 2, /* size (0 = byte, 1 = short, 2 = long) */
238 26, /* bitsize */
239 FALSE, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_bitfield, /* complain_on_overflow */
242 bfd_elf_generic_reloc, /* special_function */
243 "R_PPC64_ADDR24", /* name */
244 FALSE, /* partial_inplace */
245 0, /* src_mask */
246 0x03fffffc, /* dst_mask */
247 FALSE), /* pcrel_offset */
248
249 /* A standard 16 bit relocation. */
250 HOWTO (R_PPC64_ADDR16, /* type */
251 0, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 16, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_bitfield, /* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_PPC64_ADDR16", /* name */
259 FALSE, /* partial_inplace */
260 0, /* src_mask */
261 0xffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
263
264 /* A 16 bit relocation without overflow. */
265 HOWTO (R_PPC64_ADDR16_LO, /* type */
266 0, /* rightshift */
267 1, /* size (0 = byte, 1 = short, 2 = long) */
268 16, /* bitsize */
269 FALSE, /* pc_relative */
270 0, /* bitpos */
271 complain_overflow_dont,/* complain_on_overflow */
272 bfd_elf_generic_reloc, /* special_function */
273 "R_PPC64_ADDR16_LO", /* name */
274 FALSE, /* partial_inplace */
275 0, /* src_mask */
276 0xffff, /* dst_mask */
277 FALSE), /* pcrel_offset */
278
279 /* Bits 16-31 of an address. */
280 HOWTO (R_PPC64_ADDR16_HI, /* type */
281 16, /* rightshift */
282 1, /* size (0 = byte, 1 = short, 2 = long) */
283 16, /* bitsize */
284 FALSE, /* pc_relative */
285 0, /* bitpos */
286 complain_overflow_dont, /* complain_on_overflow */
287 bfd_elf_generic_reloc, /* special_function */
288 "R_PPC64_ADDR16_HI", /* name */
289 FALSE, /* partial_inplace */
290 0, /* src_mask */
291 0xffff, /* dst_mask */
292 FALSE), /* pcrel_offset */
293
294 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
295 bits, treated as a signed number, is negative. */
296 HOWTO (R_PPC64_ADDR16_HA, /* type */
297 16, /* rightshift */
298 1, /* size (0 = byte, 1 = short, 2 = long) */
299 16, /* bitsize */
300 FALSE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_dont, /* complain_on_overflow */
303 ppc64_elf_ha_reloc, /* special_function */
304 "R_PPC64_ADDR16_HA", /* name */
305 FALSE, /* partial_inplace */
306 0, /* src_mask */
307 0xffff, /* dst_mask */
308 FALSE), /* pcrel_offset */
309
310 /* An absolute 16 bit branch; the lower two bits must be zero.
311 FIXME: we don't check that, we just clear them. */
312 HOWTO (R_PPC64_ADDR14, /* type */
313 0, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 16, /* bitsize */
316 FALSE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_bitfield, /* complain_on_overflow */
319 ppc64_elf_branch_reloc, /* special_function */
320 "R_PPC64_ADDR14", /* name */
321 FALSE, /* partial_inplace */
322 0, /* src_mask */
323 0x0000fffc, /* dst_mask */
324 FALSE), /* pcrel_offset */
325
326 /* An absolute 16 bit branch, for which bit 10 should be set to
327 indicate that the branch is expected to be taken. The lower two
328 bits must be zero. */
329 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 16, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield, /* complain_on_overflow */
336 ppc64_elf_brtaken_reloc, /* special_function */
337 "R_PPC64_ADDR14_BRTAKEN",/* name */
338 FALSE, /* partial_inplace */
339 0, /* src_mask */
340 0x0000fffc, /* dst_mask */
341 FALSE), /* pcrel_offset */
342
343 /* An absolute 16 bit branch, for which bit 10 should be set to
344 indicate that the branch is not expected to be taken. The lower
345 two bits must be zero. */
346 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
347 0, /* rightshift */
348 2, /* size (0 = byte, 1 = short, 2 = long) */
349 16, /* bitsize */
350 FALSE, /* pc_relative */
351 0, /* bitpos */
352 complain_overflow_bitfield, /* complain_on_overflow */
353 ppc64_elf_brtaken_reloc, /* special_function */
354 "R_PPC64_ADDR14_BRNTAKEN",/* name */
355 FALSE, /* partial_inplace */
356 0, /* src_mask */
357 0x0000fffc, /* dst_mask */
358 FALSE), /* pcrel_offset */
359
360 /* A relative 26 bit branch; the lower two bits must be zero. */
361 HOWTO (R_PPC64_REL24, /* type */
362 0, /* rightshift */
363 2, /* size (0 = byte, 1 = short, 2 = long) */
364 26, /* bitsize */
365 TRUE, /* pc_relative */
366 0, /* bitpos */
367 complain_overflow_signed, /* complain_on_overflow */
368 ppc64_elf_branch_reloc, /* special_function */
369 "R_PPC64_REL24", /* name */
370 FALSE, /* partial_inplace */
371 0, /* src_mask */
372 0x03fffffc, /* dst_mask */
373 TRUE), /* pcrel_offset */
374
375 /* A relative 16 bit branch; the lower two bits must be zero. */
376 HOWTO (R_PPC64_REL14, /* type */
377 0, /* rightshift */
378 2, /* size (0 = byte, 1 = short, 2 = long) */
379 16, /* bitsize */
380 TRUE, /* pc_relative */
381 0, /* bitpos */
382 complain_overflow_signed, /* complain_on_overflow */
383 ppc64_elf_branch_reloc, /* special_function */
384 "R_PPC64_REL14", /* name */
385 FALSE, /* partial_inplace */
386 0, /* src_mask */
387 0x0000fffc, /* dst_mask */
388 TRUE), /* pcrel_offset */
389
390 /* A relative 16 bit branch. Bit 10 should be set to indicate that
391 the branch is expected to be taken. The lower two bits must be
392 zero. */
393 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
394 0, /* rightshift */
395 2, /* size (0 = byte, 1 = short, 2 = long) */
396 16, /* bitsize */
397 TRUE, /* pc_relative */
398 0, /* bitpos */
399 complain_overflow_signed, /* complain_on_overflow */
400 ppc64_elf_brtaken_reloc, /* special_function */
401 "R_PPC64_REL14_BRTAKEN", /* name */
402 FALSE, /* partial_inplace */
403 0, /* src_mask */
404 0x0000fffc, /* dst_mask */
405 TRUE), /* pcrel_offset */
406
407 /* A relative 16 bit branch. Bit 10 should be set to indicate that
408 the branch is not expected to be taken. The lower two bits must
409 be zero. */
410 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 16, /* bitsize */
414 TRUE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_signed, /* complain_on_overflow */
417 ppc64_elf_brtaken_reloc, /* special_function */
418 "R_PPC64_REL14_BRNTAKEN",/* name */
419 FALSE, /* partial_inplace */
420 0, /* src_mask */
421 0x0000fffc, /* dst_mask */
422 TRUE), /* pcrel_offset */
423
424 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
425 symbol. */
426 HOWTO (R_PPC64_GOT16, /* type */
427 0, /* rightshift */
428 1, /* size (0 = byte, 1 = short, 2 = long) */
429 16, /* bitsize */
430 FALSE, /* pc_relative */
431 0, /* bitpos */
432 complain_overflow_signed, /* complain_on_overflow */
433 ppc64_elf_unhandled_reloc, /* special_function */
434 "R_PPC64_GOT16", /* name */
435 FALSE, /* partial_inplace */
436 0, /* src_mask */
437 0xffff, /* dst_mask */
438 FALSE), /* pcrel_offset */
439
440 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
441 the symbol. */
442 HOWTO (R_PPC64_GOT16_LO, /* type */
443 0, /* rightshift */
444 1, /* size (0 = byte, 1 = short, 2 = long) */
445 16, /* bitsize */
446 FALSE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_dont, /* complain_on_overflow */
449 ppc64_elf_unhandled_reloc, /* special_function */
450 "R_PPC64_GOT16_LO", /* name */
451 FALSE, /* partial_inplace */
452 0, /* src_mask */
453 0xffff, /* dst_mask */
454 FALSE), /* pcrel_offset */
455
456 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
457 the symbol. */
458 HOWTO (R_PPC64_GOT16_HI, /* type */
459 16, /* rightshift */
460 1, /* size (0 = byte, 1 = short, 2 = long) */
461 16, /* bitsize */
462 FALSE, /* pc_relative */
463 0, /* bitpos */
464 complain_overflow_dont,/* complain_on_overflow */
465 ppc64_elf_unhandled_reloc, /* special_function */
466 "R_PPC64_GOT16_HI", /* name */
467 FALSE, /* partial_inplace */
468 0, /* src_mask */
469 0xffff, /* dst_mask */
470 FALSE), /* pcrel_offset */
471
472 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
473 the symbol. */
474 HOWTO (R_PPC64_GOT16_HA, /* type */
475 16, /* rightshift */
476 1, /* size (0 = byte, 1 = short, 2 = long) */
477 16, /* bitsize */
478 FALSE, /* pc_relative */
479 0, /* bitpos */
480 complain_overflow_dont,/* complain_on_overflow */
481 ppc64_elf_unhandled_reloc, /* special_function */
482 "R_PPC64_GOT16_HA", /* name */
483 FALSE, /* partial_inplace */
484 0, /* src_mask */
485 0xffff, /* dst_mask */
486 FALSE), /* pcrel_offset */
487
488 /* This is used only by the dynamic linker. The symbol should exist
489 both in the object being run and in some shared library. The
490 dynamic linker copies the data addressed by the symbol from the
491 shared library into the object, because the object being
492 run has to have the data at some particular address. */
493 HOWTO (R_PPC64_COPY, /* type */
494 0, /* rightshift */
495 0, /* this one is variable size */
496 0, /* bitsize */
497 FALSE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_dont, /* complain_on_overflow */
500 ppc64_elf_unhandled_reloc, /* special_function */
501 "R_PPC64_COPY", /* name */
502 FALSE, /* partial_inplace */
503 0, /* src_mask */
504 0, /* dst_mask */
505 FALSE), /* pcrel_offset */
506
507 /* Like R_PPC64_ADDR64, but used when setting global offset table
508 entries. */
509 HOWTO (R_PPC64_GLOB_DAT, /* type */
510 0, /* rightshift */
511 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
512 64, /* bitsize */
513 FALSE, /* pc_relative */
514 0, /* bitpos */
515 complain_overflow_dont, /* complain_on_overflow */
516 ppc64_elf_unhandled_reloc, /* special_function */
517 "R_PPC64_GLOB_DAT", /* name */
518 FALSE, /* partial_inplace */
519 0, /* src_mask */
520 ONES (64), /* dst_mask */
521 FALSE), /* pcrel_offset */
522
523 /* Created by the link editor. Marks a procedure linkage table
524 entry for a symbol. */
525 HOWTO (R_PPC64_JMP_SLOT, /* type */
526 0, /* rightshift */
527 0, /* size (0 = byte, 1 = short, 2 = long) */
528 0, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont, /* complain_on_overflow */
532 ppc64_elf_unhandled_reloc, /* special_function */
533 "R_PPC64_JMP_SLOT", /* name */
534 FALSE, /* partial_inplace */
535 0, /* src_mask */
536 0, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 /* Used only by the dynamic linker. When the object is run, this
540 doubleword64 is set to the load address of the object, plus the
541 addend. */
542 HOWTO (R_PPC64_RELATIVE, /* type */
543 0, /* rightshift */
544 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
545 64, /* bitsize */
546 FALSE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_dont, /* complain_on_overflow */
549 bfd_elf_generic_reloc, /* special_function */
550 "R_PPC64_RELATIVE", /* name */
551 FALSE, /* partial_inplace */
552 0, /* src_mask */
553 ONES (64), /* dst_mask */
554 FALSE), /* pcrel_offset */
555
556 /* Like R_PPC64_ADDR32, but may be unaligned. */
557 HOWTO (R_PPC64_UADDR32, /* type */
558 0, /* rightshift */
559 2, /* size (0 = byte, 1 = short, 2 = long) */
560 32, /* bitsize */
561 FALSE, /* pc_relative */
562 0, /* bitpos */
563 complain_overflow_bitfield, /* complain_on_overflow */
564 bfd_elf_generic_reloc, /* special_function */
565 "R_PPC64_UADDR32", /* name */
566 FALSE, /* partial_inplace */
567 0, /* src_mask */
568 0xffffffff, /* dst_mask */
569 FALSE), /* pcrel_offset */
570
571 /* Like R_PPC64_ADDR16, but may be unaligned. */
572 HOWTO (R_PPC64_UADDR16, /* type */
573 0, /* rightshift */
574 1, /* size (0 = byte, 1 = short, 2 = long) */
575 16, /* bitsize */
576 FALSE, /* pc_relative */
577 0, /* bitpos */
578 complain_overflow_bitfield, /* complain_on_overflow */
579 bfd_elf_generic_reloc, /* special_function */
580 "R_PPC64_UADDR16", /* name */
581 FALSE, /* partial_inplace */
582 0, /* src_mask */
583 0xffff, /* dst_mask */
584 FALSE), /* pcrel_offset */
585
586 /* 32-bit PC relative. */
587 HOWTO (R_PPC64_REL32, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 32, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 /* FIXME: Verify. Was complain_overflow_bitfield. */
594 complain_overflow_signed, /* complain_on_overflow */
595 bfd_elf_generic_reloc, /* special_function */
596 "R_PPC64_REL32", /* name */
597 FALSE, /* partial_inplace */
598 0, /* src_mask */
599 0xffffffff, /* dst_mask */
600 TRUE), /* pcrel_offset */
601
602 /* 32-bit relocation to the symbol's procedure linkage table. */
603 HOWTO (R_PPC64_PLT32, /* type */
604 0, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 32, /* bitsize */
607 FALSE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_bitfield, /* complain_on_overflow */
610 ppc64_elf_unhandled_reloc, /* special_function */
611 "R_PPC64_PLT32", /* name */
612 FALSE, /* partial_inplace */
613 0, /* src_mask */
614 0xffffffff, /* dst_mask */
615 FALSE), /* pcrel_offset */
616
617 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
618 FIXME: R_PPC64_PLTREL32 not supported. */
619 HOWTO (R_PPC64_PLTREL32, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 32, /* bitsize */
623 TRUE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_signed, /* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_PPC64_PLTREL32", /* name */
628 FALSE, /* partial_inplace */
629 0, /* src_mask */
630 0xffffffff, /* dst_mask */
631 TRUE), /* pcrel_offset */
632
633 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
634 the symbol. */
635 HOWTO (R_PPC64_PLT16_LO, /* type */
636 0, /* rightshift */
637 1, /* size (0 = byte, 1 = short, 2 = long) */
638 16, /* bitsize */
639 FALSE, /* pc_relative */
640 0, /* bitpos */
641 complain_overflow_dont, /* complain_on_overflow */
642 ppc64_elf_unhandled_reloc, /* special_function */
643 "R_PPC64_PLT16_LO", /* name */
644 FALSE, /* partial_inplace */
645 0, /* src_mask */
646 0xffff, /* dst_mask */
647 FALSE), /* pcrel_offset */
648
649 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
650 the symbol. */
651 HOWTO (R_PPC64_PLT16_HI, /* type */
652 16, /* rightshift */
653 1, /* size (0 = byte, 1 = short, 2 = long) */
654 16, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont, /* complain_on_overflow */
658 ppc64_elf_unhandled_reloc, /* special_function */
659 "R_PPC64_PLT16_HI", /* name */
660 FALSE, /* partial_inplace */
661 0, /* src_mask */
662 0xffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
666 the symbol. */
667 HOWTO (R_PPC64_PLT16_HA, /* type */
668 16, /* rightshift */
669 1, /* size (0 = byte, 1 = short, 2 = long) */
670 16, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_dont, /* complain_on_overflow */
674 ppc64_elf_unhandled_reloc, /* special_function */
675 "R_PPC64_PLT16_HA", /* name */
676 FALSE, /* partial_inplace */
677 0, /* src_mask */
678 0xffff, /* dst_mask */
679 FALSE), /* pcrel_offset */
680
681 /* 16-bit section relative relocation. */
682 HOWTO (R_PPC64_SECTOFF, /* type */
683 0, /* rightshift */
684 1, /* size (0 = byte, 1 = short, 2 = long) */
685 16, /* bitsize */
686 FALSE, /* pc_relative */
687 0, /* bitpos */
688 complain_overflow_bitfield, /* complain_on_overflow */
689 ppc64_elf_sectoff_reloc, /* special_function */
690 "R_PPC64_SECTOFF", /* name */
691 FALSE, /* partial_inplace */
692 0, /* src_mask */
693 0xffff, /* dst_mask */
694 FALSE), /* pcrel_offset */
695
696 /* Like R_PPC64_SECTOFF, but no overflow warning. */
697 HOWTO (R_PPC64_SECTOFF_LO, /* type */
698 0, /* rightshift */
699 1, /* size (0 = byte, 1 = short, 2 = long) */
700 16, /* bitsize */
701 FALSE, /* pc_relative */
702 0, /* bitpos */
703 complain_overflow_dont, /* complain_on_overflow */
704 ppc64_elf_sectoff_reloc, /* special_function */
705 "R_PPC64_SECTOFF_LO", /* name */
706 FALSE, /* partial_inplace */
707 0, /* src_mask */
708 0xffff, /* dst_mask */
709 FALSE), /* pcrel_offset */
710
711 /* 16-bit upper half section relative relocation. */
712 HOWTO (R_PPC64_SECTOFF_HI, /* type */
713 16, /* rightshift */
714 1, /* size (0 = byte, 1 = short, 2 = long) */
715 16, /* bitsize */
716 FALSE, /* pc_relative */
717 0, /* bitpos */
718 complain_overflow_dont, /* complain_on_overflow */
719 ppc64_elf_sectoff_reloc, /* special_function */
720 "R_PPC64_SECTOFF_HI", /* name */
721 FALSE, /* partial_inplace */
722 0, /* src_mask */
723 0xffff, /* dst_mask */
724 FALSE), /* pcrel_offset */
725
726 /* 16-bit upper half adjusted section relative relocation. */
727 HOWTO (R_PPC64_SECTOFF_HA, /* type */
728 16, /* rightshift */
729 1, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 FALSE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_dont, /* complain_on_overflow */
734 ppc64_elf_sectoff_ha_reloc, /* special_function */
735 "R_PPC64_SECTOFF_HA", /* name */
736 FALSE, /* partial_inplace */
737 0, /* src_mask */
738 0xffff, /* dst_mask */
739 FALSE), /* pcrel_offset */
740
741 /* Like R_PPC64_REL24 without touching the two least significant bits. */
742 HOWTO (R_PPC64_REL30, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 30, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_dont, /* complain_on_overflow */
749 bfd_elf_generic_reloc, /* special_function */
750 "R_PPC64_REL30", /* name */
751 FALSE, /* partial_inplace */
752 0, /* src_mask */
753 0xfffffffc, /* dst_mask */
754 TRUE), /* pcrel_offset */
755
756 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
757
758 /* A standard 64-bit relocation. */
759 HOWTO (R_PPC64_ADDR64, /* type */
760 0, /* rightshift */
761 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
762 64, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_dont, /* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 "R_PPC64_ADDR64", /* name */
768 FALSE, /* partial_inplace */
769 0, /* src_mask */
770 ONES (64), /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 /* The bits 32-47 of an address. */
774 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
775 32, /* rightshift */
776 1, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 FALSE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont, /* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_PPC64_ADDR16_HIGHER", /* name */
783 FALSE, /* partial_inplace */
784 0, /* src_mask */
785 0xffff, /* dst_mask */
786 FALSE), /* pcrel_offset */
787
788 /* The bits 32-47 of an address, plus 1 if the contents of the low
789 16 bits, treated as a signed number, is negative. */
790 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
791 32, /* rightshift */
792 1, /* size (0 = byte, 1 = short, 2 = long) */
793 16, /* bitsize */
794 FALSE, /* pc_relative */
795 0, /* bitpos */
796 complain_overflow_dont, /* complain_on_overflow */
797 ppc64_elf_ha_reloc, /* special_function */
798 "R_PPC64_ADDR16_HIGHERA", /* name */
799 FALSE, /* partial_inplace */
800 0, /* src_mask */
801 0xffff, /* dst_mask */
802 FALSE), /* pcrel_offset */
803
804 /* The bits 48-63 of an address. */
805 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
806 48, /* rightshift */
807 1, /* size (0 = byte, 1 = short, 2 = long) */
808 16, /* bitsize */
809 FALSE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_dont, /* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_PPC64_ADDR16_HIGHEST", /* name */
814 FALSE, /* partial_inplace */
815 0, /* src_mask */
816 0xffff, /* dst_mask */
817 FALSE), /* pcrel_offset */
818
819 /* The bits 48-63 of an address, plus 1 if the contents of the low
820 16 bits, treated as a signed number, is negative. */
821 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
822 48, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 16, /* bitsize */
825 FALSE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_dont, /* complain_on_overflow */
828 ppc64_elf_ha_reloc, /* special_function */
829 "R_PPC64_ADDR16_HIGHESTA", /* name */
830 FALSE, /* partial_inplace */
831 0, /* src_mask */
832 0xffff, /* dst_mask */
833 FALSE), /* pcrel_offset */
834
835 /* Like ADDR64, but may be unaligned. */
836 HOWTO (R_PPC64_UADDR64, /* type */
837 0, /* rightshift */
838 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
839 64, /* bitsize */
840 FALSE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont, /* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_PPC64_UADDR64", /* name */
845 FALSE, /* partial_inplace */
846 0, /* src_mask */
847 ONES (64), /* dst_mask */
848 FALSE), /* pcrel_offset */
849
850 /* 64-bit relative relocation. */
851 HOWTO (R_PPC64_REL64, /* type */
852 0, /* rightshift */
853 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
854 64, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont, /* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_PPC64_REL64", /* name */
860 FALSE, /* partial_inplace */
861 0, /* src_mask */
862 ONES (64), /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 /* 64-bit relocation to the symbol's procedure linkage table. */
866 HOWTO (R_PPC64_PLT64, /* type */
867 0, /* rightshift */
868 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
869 64, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont, /* complain_on_overflow */
873 ppc64_elf_unhandled_reloc, /* special_function */
874 "R_PPC64_PLT64", /* name */
875 FALSE, /* partial_inplace */
876 0, /* src_mask */
877 ONES (64), /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 /* 64-bit PC relative relocation to the symbol's procedure linkage
881 table. */
882 /* FIXME: R_PPC64_PLTREL64 not supported. */
883 HOWTO (R_PPC64_PLTREL64, /* type */
884 0, /* rightshift */
885 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
886 64, /* bitsize */
887 TRUE, /* pc_relative */
888 0, /* bitpos */
889 complain_overflow_dont, /* complain_on_overflow */
890 ppc64_elf_unhandled_reloc, /* special_function */
891 "R_PPC64_PLTREL64", /* name */
892 FALSE, /* partial_inplace */
893 0, /* src_mask */
894 ONES (64), /* dst_mask */
895 TRUE), /* pcrel_offset */
896
897 /* 16 bit TOC-relative relocation. */
898
899 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
900 HOWTO (R_PPC64_TOC16, /* type */
901 0, /* rightshift */
902 1, /* size (0 = byte, 1 = short, 2 = long) */
903 16, /* bitsize */
904 FALSE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_signed, /* complain_on_overflow */
907 ppc64_elf_toc_reloc, /* special_function */
908 "R_PPC64_TOC16", /* name */
909 FALSE, /* partial_inplace */
910 0, /* src_mask */
911 0xffff, /* dst_mask */
912 FALSE), /* pcrel_offset */
913
914 /* 16 bit TOC-relative relocation without overflow. */
915
916 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
917 HOWTO (R_PPC64_TOC16_LO, /* type */
918 0, /* rightshift */
919 1, /* size (0 = byte, 1 = short, 2 = long) */
920 16, /* bitsize */
921 FALSE, /* pc_relative */
922 0, /* bitpos */
923 complain_overflow_dont, /* complain_on_overflow */
924 ppc64_elf_toc_reloc, /* special_function */
925 "R_PPC64_TOC16_LO", /* name */
926 FALSE, /* partial_inplace */
927 0, /* src_mask */
928 0xffff, /* dst_mask */
929 FALSE), /* pcrel_offset */
930
931 /* 16 bit TOC-relative relocation, high 16 bits. */
932
933 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
934 HOWTO (R_PPC64_TOC16_HI, /* type */
935 16, /* rightshift */
936 1, /* size (0 = byte, 1 = short, 2 = long) */
937 16, /* bitsize */
938 FALSE, /* pc_relative */
939 0, /* bitpos */
940 complain_overflow_dont, /* complain_on_overflow */
941 ppc64_elf_toc_reloc, /* special_function */
942 "R_PPC64_TOC16_HI", /* name */
943 FALSE, /* partial_inplace */
944 0, /* src_mask */
945 0xffff, /* dst_mask */
946 FALSE), /* pcrel_offset */
947
948 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
949 contents of the low 16 bits, treated as a signed number, is
950 negative. */
951
952 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
953 HOWTO (R_PPC64_TOC16_HA, /* type */
954 16, /* rightshift */
955 1, /* size (0 = byte, 1 = short, 2 = long) */
956 16, /* bitsize */
957 FALSE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_dont, /* complain_on_overflow */
960 ppc64_elf_toc_ha_reloc, /* special_function */
961 "R_PPC64_TOC16_HA", /* name */
962 FALSE, /* partial_inplace */
963 0, /* src_mask */
964 0xffff, /* dst_mask */
965 FALSE), /* pcrel_offset */
966
967 /* 64-bit relocation; insert value of TOC base (.TOC.). */
968
969 /* R_PPC64_TOC 51 doubleword64 .TOC. */
970 HOWTO (R_PPC64_TOC, /* type */
971 0, /* rightshift */
972 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
973 64, /* bitsize */
974 FALSE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_bitfield, /* complain_on_overflow */
977 ppc64_elf_toc64_reloc, /* special_function */
978 "R_PPC64_TOC", /* name */
979 FALSE, /* partial_inplace */
980 0, /* src_mask */
981 ONES (64), /* dst_mask */
982 FALSE), /* pcrel_offset */
983
984 /* Like R_PPC64_GOT16, but also informs the link editor that the
985 value to relocate may (!) refer to a PLT entry which the link
986 editor (a) may replace with the symbol value. If the link editor
987 is unable to fully resolve the symbol, it may (b) create a PLT
988 entry and store the address to the new PLT entry in the GOT.
989 This permits lazy resolution of function symbols at run time.
990 The link editor may also skip all of this and just (c) emit a
991 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
992 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
993 HOWTO (R_PPC64_PLTGOT16, /* type */
994 0, /* rightshift */
995 1, /* size (0 = byte, 1 = short, 2 = long) */
996 16, /* bitsize */
997 FALSE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_signed, /* complain_on_overflow */
1000 ppc64_elf_unhandled_reloc, /* special_function */
1001 "R_PPC64_PLTGOT16", /* name */
1002 FALSE, /* partial_inplace */
1003 0, /* src_mask */
1004 0xffff, /* dst_mask */
1005 FALSE), /* pcrel_offset */
1006
1007 /* Like R_PPC64_PLTGOT16, but without overflow. */
1008 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1009 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1010 0, /* rightshift */
1011 1, /* size (0 = byte, 1 = short, 2 = long) */
1012 16, /* bitsize */
1013 FALSE, /* pc_relative */
1014 0, /* bitpos */
1015 complain_overflow_dont, /* complain_on_overflow */
1016 ppc64_elf_unhandled_reloc, /* special_function */
1017 "R_PPC64_PLTGOT16_LO", /* name */
1018 FALSE, /* partial_inplace */
1019 0, /* src_mask */
1020 0xffff, /* dst_mask */
1021 FALSE), /* pcrel_offset */
1022
1023 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1024 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1025 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1026 16, /* rightshift */
1027 1, /* size (0 = byte, 1 = short, 2 = long) */
1028 16, /* bitsize */
1029 FALSE, /* pc_relative */
1030 0, /* bitpos */
1031 complain_overflow_dont, /* complain_on_overflow */
1032 ppc64_elf_unhandled_reloc, /* special_function */
1033 "R_PPC64_PLTGOT16_HI", /* name */
1034 FALSE, /* partial_inplace */
1035 0, /* src_mask */
1036 0xffff, /* dst_mask */
1037 FALSE), /* pcrel_offset */
1038
1039 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1040 1 if the contents of the low 16 bits, treated as a signed number,
1041 is negative. */
1042 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1043 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1044 16, /* rightshift */
1045 1, /* size (0 = byte, 1 = short, 2 = long) */
1046 16, /* bitsize */
1047 FALSE, /* pc_relative */
1048 0, /* bitpos */
1049 complain_overflow_dont,/* complain_on_overflow */
1050 ppc64_elf_unhandled_reloc, /* special_function */
1051 "R_PPC64_PLTGOT16_HA", /* name */
1052 FALSE, /* partial_inplace */
1053 0, /* src_mask */
1054 0xffff, /* dst_mask */
1055 FALSE), /* pcrel_offset */
1056
1057 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1058 HOWTO (R_PPC64_ADDR16_DS, /* type */
1059 0, /* rightshift */
1060 1, /* size (0 = byte, 1 = short, 2 = long) */
1061 16, /* bitsize */
1062 FALSE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_bitfield, /* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 "R_PPC64_ADDR16_DS", /* name */
1067 FALSE, /* partial_inplace */
1068 0, /* src_mask */
1069 0xfffc, /* dst_mask */
1070 FALSE), /* pcrel_offset */
1071
1072 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1073 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1074 0, /* rightshift */
1075 1, /* size (0 = byte, 1 = short, 2 = long) */
1076 16, /* bitsize */
1077 FALSE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_PPC64_ADDR16_LO_DS",/* name */
1082 FALSE, /* partial_inplace */
1083 0, /* src_mask */
1084 0xfffc, /* dst_mask */
1085 FALSE), /* pcrel_offset */
1086
1087 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1088 HOWTO (R_PPC64_GOT16_DS, /* type */
1089 0, /* rightshift */
1090 1, /* size (0 = byte, 1 = short, 2 = long) */
1091 16, /* bitsize */
1092 FALSE, /* pc_relative */
1093 0, /* bitpos */
1094 complain_overflow_signed, /* complain_on_overflow */
1095 ppc64_elf_unhandled_reloc, /* special_function */
1096 "R_PPC64_GOT16_DS", /* name */
1097 FALSE, /* partial_inplace */
1098 0, /* src_mask */
1099 0xfffc, /* dst_mask */
1100 FALSE), /* pcrel_offset */
1101
1102 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1103 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1104 0, /* rightshift */
1105 1, /* size (0 = byte, 1 = short, 2 = long) */
1106 16, /* bitsize */
1107 FALSE, /* pc_relative */
1108 0, /* bitpos */
1109 complain_overflow_dont, /* complain_on_overflow */
1110 ppc64_elf_unhandled_reloc, /* special_function */
1111 "R_PPC64_GOT16_LO_DS", /* name */
1112 FALSE, /* partial_inplace */
1113 0, /* src_mask */
1114 0xfffc, /* dst_mask */
1115 FALSE), /* pcrel_offset */
1116
1117 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1118 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1119 0, /* rightshift */
1120 1, /* size (0 = byte, 1 = short, 2 = long) */
1121 16, /* bitsize */
1122 FALSE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont, /* complain_on_overflow */
1125 ppc64_elf_unhandled_reloc, /* special_function */
1126 "R_PPC64_PLT16_LO_DS", /* name */
1127 FALSE, /* partial_inplace */
1128 0, /* src_mask */
1129 0xfffc, /* dst_mask */
1130 FALSE), /* pcrel_offset */
1131
1132 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1133 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1134 0, /* rightshift */
1135 1, /* size (0 = byte, 1 = short, 2 = long) */
1136 16, /* bitsize */
1137 FALSE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_bitfield, /* complain_on_overflow */
1140 ppc64_elf_sectoff_reloc, /* special_function */
1141 "R_PPC64_SECTOFF_DS", /* name */
1142 FALSE, /* partial_inplace */
1143 0, /* src_mask */
1144 0xfffc, /* dst_mask */
1145 FALSE), /* pcrel_offset */
1146
1147 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1148 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1149 0, /* rightshift */
1150 1, /* size (0 = byte, 1 = short, 2 = long) */
1151 16, /* bitsize */
1152 FALSE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont, /* complain_on_overflow */
1155 ppc64_elf_sectoff_reloc, /* special_function */
1156 "R_PPC64_SECTOFF_LO_DS",/* name */
1157 FALSE, /* partial_inplace */
1158 0, /* src_mask */
1159 0xfffc, /* dst_mask */
1160 FALSE), /* pcrel_offset */
1161
1162 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1163 HOWTO (R_PPC64_TOC16_DS, /* type */
1164 0, /* rightshift */
1165 1, /* size (0 = byte, 1 = short, 2 = long) */
1166 16, /* bitsize */
1167 FALSE, /* pc_relative */
1168 0, /* bitpos */
1169 complain_overflow_signed, /* complain_on_overflow */
1170 ppc64_elf_toc_reloc, /* special_function */
1171 "R_PPC64_TOC16_DS", /* name */
1172 FALSE, /* partial_inplace */
1173 0, /* src_mask */
1174 0xfffc, /* dst_mask */
1175 FALSE), /* pcrel_offset */
1176
1177 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1178 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1179 0, /* rightshift */
1180 1, /* size (0 = byte, 1 = short, 2 = long) */
1181 16, /* bitsize */
1182 FALSE, /* pc_relative */
1183 0, /* bitpos */
1184 complain_overflow_dont, /* complain_on_overflow */
1185 ppc64_elf_toc_reloc, /* special_function */
1186 "R_PPC64_TOC16_LO_DS", /* name */
1187 FALSE, /* partial_inplace */
1188 0, /* src_mask */
1189 0xfffc, /* dst_mask */
1190 FALSE), /* pcrel_offset */
1191
1192 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1193 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1194 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1195 0, /* rightshift */
1196 1, /* size (0 = byte, 1 = short, 2 = long) */
1197 16, /* bitsize */
1198 FALSE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_signed, /* complain_on_overflow */
1201 ppc64_elf_unhandled_reloc, /* special_function */
1202 "R_PPC64_PLTGOT16_DS", /* name */
1203 FALSE, /* partial_inplace */
1204 0, /* src_mask */
1205 0xfffc, /* dst_mask */
1206 FALSE), /* pcrel_offset */
1207
1208 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1209 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1210 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1211 0, /* rightshift */
1212 1, /* size (0 = byte, 1 = short, 2 = long) */
1213 16, /* bitsize */
1214 FALSE, /* pc_relative */
1215 0, /* bitpos */
1216 complain_overflow_dont, /* complain_on_overflow */
1217 ppc64_elf_unhandled_reloc, /* special_function */
1218 "R_PPC64_PLTGOT16_LO_DS",/* name */
1219 FALSE, /* partial_inplace */
1220 0, /* src_mask */
1221 0xfffc, /* dst_mask */
1222 FALSE), /* pcrel_offset */
1223
1224 /* Marker reloc for TLS. */
1225 HOWTO (R_PPC64_TLS,
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 32, /* bitsize */
1229 FALSE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont, /* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 "R_PPC64_TLS", /* name */
1234 FALSE, /* partial_inplace */
1235 0, /* src_mask */
1236 0, /* dst_mask */
1237 FALSE), /* pcrel_offset */
1238
1239 /* Computes the load module index of the load module that contains the
1240 definition of its TLS sym. */
1241 HOWTO (R_PPC64_DTPMOD64,
1242 0, /* rightshift */
1243 4, /* size (0 = byte, 1 = short, 2 = long) */
1244 64, /* bitsize */
1245 FALSE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont, /* complain_on_overflow */
1248 ppc64_elf_unhandled_reloc, /* special_function */
1249 "R_PPC64_DTPMOD64", /* name */
1250 FALSE, /* partial_inplace */
1251 0, /* src_mask */
1252 ONES (64), /* dst_mask */
1253 FALSE), /* pcrel_offset */
1254
1255 /* Computes a dtv-relative displacement, the difference between the value
1256 of sym+add and the base address of the thread-local storage block that
1257 contains the definition of sym, minus 0x8000. */
1258 HOWTO (R_PPC64_DTPREL64,
1259 0, /* rightshift */
1260 4, /* size (0 = byte, 1 = short, 2 = long) */
1261 64, /* bitsize */
1262 FALSE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont, /* complain_on_overflow */
1265 ppc64_elf_unhandled_reloc, /* special_function */
1266 "R_PPC64_DTPREL64", /* name */
1267 FALSE, /* partial_inplace */
1268 0, /* src_mask */
1269 ONES (64), /* dst_mask */
1270 FALSE), /* pcrel_offset */
1271
1272 /* A 16 bit dtprel reloc. */
1273 HOWTO (R_PPC64_DTPREL16,
1274 0, /* rightshift */
1275 1, /* size (0 = byte, 1 = short, 2 = long) */
1276 16, /* bitsize */
1277 FALSE, /* pc_relative */
1278 0, /* bitpos */
1279 complain_overflow_signed, /* complain_on_overflow */
1280 ppc64_elf_unhandled_reloc, /* special_function */
1281 "R_PPC64_DTPREL16", /* name */
1282 FALSE, /* partial_inplace */
1283 0, /* src_mask */
1284 0xffff, /* dst_mask */
1285 FALSE), /* pcrel_offset */
1286
1287 /* Like DTPREL16, but no overflow. */
1288 HOWTO (R_PPC64_DTPREL16_LO,
1289 0, /* rightshift */
1290 1, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_dont, /* complain_on_overflow */
1295 ppc64_elf_unhandled_reloc, /* special_function */
1296 "R_PPC64_DTPREL16_LO", /* name */
1297 FALSE, /* partial_inplace */
1298 0, /* src_mask */
1299 0xffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1303 HOWTO (R_PPC64_DTPREL16_HI,
1304 16, /* rightshift */
1305 1, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont, /* complain_on_overflow */
1310 ppc64_elf_unhandled_reloc, /* special_function */
1311 "R_PPC64_DTPREL16_HI", /* name */
1312 FALSE, /* partial_inplace */
1313 0, /* src_mask */
1314 0xffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1318 HOWTO (R_PPC64_DTPREL16_HA,
1319 16, /* rightshift */
1320 1, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont, /* complain_on_overflow */
1325 ppc64_elf_unhandled_reloc, /* special_function */
1326 "R_PPC64_DTPREL16_HA", /* name */
1327 FALSE, /* partial_inplace */
1328 0, /* src_mask */
1329 0xffff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1333 HOWTO (R_PPC64_DTPREL16_HIGHER,
1334 32, /* rightshift */
1335 1, /* size (0 = byte, 1 = short, 2 = long) */
1336 16, /* bitsize */
1337 FALSE, /* pc_relative */
1338 0, /* bitpos */
1339 complain_overflow_dont, /* complain_on_overflow */
1340 ppc64_elf_unhandled_reloc, /* special_function */
1341 "R_PPC64_DTPREL16_HIGHER", /* name */
1342 FALSE, /* partial_inplace */
1343 0, /* src_mask */
1344 0xffff, /* dst_mask */
1345 FALSE), /* pcrel_offset */
1346
1347 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1348 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1349 32, /* rightshift */
1350 1, /* size (0 = byte, 1 = short, 2 = long) */
1351 16, /* bitsize */
1352 FALSE, /* pc_relative */
1353 0, /* bitpos */
1354 complain_overflow_dont, /* complain_on_overflow */
1355 ppc64_elf_unhandled_reloc, /* special_function */
1356 "R_PPC64_DTPREL16_HIGHERA", /* name */
1357 FALSE, /* partial_inplace */
1358 0, /* src_mask */
1359 0xffff, /* dst_mask */
1360 FALSE), /* pcrel_offset */
1361
1362 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1363 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1364 48, /* rightshift */
1365 1, /* size (0 = byte, 1 = short, 2 = long) */
1366 16, /* bitsize */
1367 FALSE, /* pc_relative */
1368 0, /* bitpos */
1369 complain_overflow_dont, /* complain_on_overflow */
1370 ppc64_elf_unhandled_reloc, /* special_function */
1371 "R_PPC64_DTPREL16_HIGHEST", /* name */
1372 FALSE, /* partial_inplace */
1373 0, /* src_mask */
1374 0xffff, /* dst_mask */
1375 FALSE), /* pcrel_offset */
1376
1377 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1378 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1379 48, /* rightshift */
1380 1, /* size (0 = byte, 1 = short, 2 = long) */
1381 16, /* bitsize */
1382 FALSE, /* pc_relative */
1383 0, /* bitpos */
1384 complain_overflow_dont, /* complain_on_overflow */
1385 ppc64_elf_unhandled_reloc, /* special_function */
1386 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1387 FALSE, /* partial_inplace */
1388 0, /* src_mask */
1389 0xffff, /* dst_mask */
1390 FALSE), /* pcrel_offset */
1391
1392 /* Like DTPREL16, but for insns with a DS field. */
1393 HOWTO (R_PPC64_DTPREL16_DS,
1394 0, /* rightshift */
1395 1, /* size (0 = byte, 1 = short, 2 = long) */
1396 16, /* bitsize */
1397 FALSE, /* pc_relative */
1398 0, /* bitpos */
1399 complain_overflow_signed, /* complain_on_overflow */
1400 ppc64_elf_unhandled_reloc, /* special_function */
1401 "R_PPC64_DTPREL16_DS", /* name */
1402 FALSE, /* partial_inplace */
1403 0, /* src_mask */
1404 0xfffc, /* dst_mask */
1405 FALSE), /* pcrel_offset */
1406
1407 /* Like DTPREL16_DS, but no overflow. */
1408 HOWTO (R_PPC64_DTPREL16_LO_DS,
1409 0, /* rightshift */
1410 1, /* size (0 = byte, 1 = short, 2 = long) */
1411 16, /* bitsize */
1412 FALSE, /* pc_relative */
1413 0, /* bitpos */
1414 complain_overflow_dont, /* complain_on_overflow */
1415 ppc64_elf_unhandled_reloc, /* special_function */
1416 "R_PPC64_DTPREL16_LO_DS", /* name */
1417 FALSE, /* partial_inplace */
1418 0, /* src_mask */
1419 0xfffc, /* dst_mask */
1420 FALSE), /* pcrel_offset */
1421
1422 /* Computes a tp-relative displacement, the difference between the value of
1423 sym+add and the value of the thread pointer (r13). */
1424 HOWTO (R_PPC64_TPREL64,
1425 0, /* rightshift */
1426 4, /* size (0 = byte, 1 = short, 2 = long) */
1427 64, /* bitsize */
1428 FALSE, /* pc_relative */
1429 0, /* bitpos */
1430 complain_overflow_dont, /* complain_on_overflow */
1431 ppc64_elf_unhandled_reloc, /* special_function */
1432 "R_PPC64_TPREL64", /* name */
1433 FALSE, /* partial_inplace */
1434 0, /* src_mask */
1435 ONES (64), /* dst_mask */
1436 FALSE), /* pcrel_offset */
1437
1438 /* A 16 bit tprel reloc. */
1439 HOWTO (R_PPC64_TPREL16,
1440 0, /* rightshift */
1441 1, /* size (0 = byte, 1 = short, 2 = long) */
1442 16, /* bitsize */
1443 FALSE, /* pc_relative */
1444 0, /* bitpos */
1445 complain_overflow_signed, /* complain_on_overflow */
1446 ppc64_elf_unhandled_reloc, /* special_function */
1447 "R_PPC64_TPREL16", /* name */
1448 FALSE, /* partial_inplace */
1449 0, /* src_mask */
1450 0xffff, /* dst_mask */
1451 FALSE), /* pcrel_offset */
1452
1453 /* Like TPREL16, but no overflow. */
1454 HOWTO (R_PPC64_TPREL16_LO,
1455 0, /* rightshift */
1456 1, /* size (0 = byte, 1 = short, 2 = long) */
1457 16, /* bitsize */
1458 FALSE, /* pc_relative */
1459 0, /* bitpos */
1460 complain_overflow_dont, /* complain_on_overflow */
1461 ppc64_elf_unhandled_reloc, /* special_function */
1462 "R_PPC64_TPREL16_LO", /* name */
1463 FALSE, /* partial_inplace */
1464 0, /* src_mask */
1465 0xffff, /* dst_mask */
1466 FALSE), /* pcrel_offset */
1467
1468 /* Like TPREL16_LO, but next higher group of 16 bits. */
1469 HOWTO (R_PPC64_TPREL16_HI,
1470 16, /* rightshift */
1471 1, /* size (0 = byte, 1 = short, 2 = long) */
1472 16, /* bitsize */
1473 FALSE, /* pc_relative */
1474 0, /* bitpos */
1475 complain_overflow_dont, /* complain_on_overflow */
1476 ppc64_elf_unhandled_reloc, /* special_function */
1477 "R_PPC64_TPREL16_HI", /* name */
1478 FALSE, /* partial_inplace */
1479 0, /* src_mask */
1480 0xffff, /* dst_mask */
1481 FALSE), /* pcrel_offset */
1482
1483 /* Like TPREL16_HI, but adjust for low 16 bits. */
1484 HOWTO (R_PPC64_TPREL16_HA,
1485 16, /* rightshift */
1486 1, /* size (0 = byte, 1 = short, 2 = long) */
1487 16, /* bitsize */
1488 FALSE, /* pc_relative */
1489 0, /* bitpos */
1490 complain_overflow_dont, /* complain_on_overflow */
1491 ppc64_elf_unhandled_reloc, /* special_function */
1492 "R_PPC64_TPREL16_HA", /* name */
1493 FALSE, /* partial_inplace */
1494 0, /* src_mask */
1495 0xffff, /* dst_mask */
1496 FALSE), /* pcrel_offset */
1497
1498 /* Like TPREL16_HI, but next higher group of 16 bits. */
1499 HOWTO (R_PPC64_TPREL16_HIGHER,
1500 32, /* rightshift */
1501 1, /* size (0 = byte, 1 = short, 2 = long) */
1502 16, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 ppc64_elf_unhandled_reloc, /* special_function */
1507 "R_PPC64_TPREL16_HIGHER", /* name */
1508 FALSE, /* partial_inplace */
1509 0, /* src_mask */
1510 0xffff, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1514 HOWTO (R_PPC64_TPREL16_HIGHERA,
1515 32, /* rightshift */
1516 1, /* size (0 = byte, 1 = short, 2 = long) */
1517 16, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_dont, /* complain_on_overflow */
1521 ppc64_elf_unhandled_reloc, /* special_function */
1522 "R_PPC64_TPREL16_HIGHERA", /* name */
1523 FALSE, /* partial_inplace */
1524 0, /* src_mask */
1525 0xffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1529 HOWTO (R_PPC64_TPREL16_HIGHEST,
1530 48, /* rightshift */
1531 1, /* size (0 = byte, 1 = short, 2 = long) */
1532 16, /* bitsize */
1533 FALSE, /* pc_relative */
1534 0, /* bitpos */
1535 complain_overflow_dont, /* complain_on_overflow */
1536 ppc64_elf_unhandled_reloc, /* special_function */
1537 "R_PPC64_TPREL16_HIGHEST", /* name */
1538 FALSE, /* partial_inplace */
1539 0, /* src_mask */
1540 0xffff, /* dst_mask */
1541 FALSE), /* pcrel_offset */
1542
1543 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1544 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1545 48, /* rightshift */
1546 1, /* size (0 = byte, 1 = short, 2 = long) */
1547 16, /* bitsize */
1548 FALSE, /* pc_relative */
1549 0, /* bitpos */
1550 complain_overflow_dont, /* complain_on_overflow */
1551 ppc64_elf_unhandled_reloc, /* special_function */
1552 "R_PPC64_TPREL16_HIGHESTA", /* name */
1553 FALSE, /* partial_inplace */
1554 0, /* src_mask */
1555 0xffff, /* dst_mask */
1556 FALSE), /* pcrel_offset */
1557
1558 /* Like TPREL16, but for insns with a DS field. */
1559 HOWTO (R_PPC64_TPREL16_DS,
1560 0, /* rightshift */
1561 1, /* size (0 = byte, 1 = short, 2 = long) */
1562 16, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_signed, /* complain_on_overflow */
1566 ppc64_elf_unhandled_reloc, /* special_function */
1567 "R_PPC64_TPREL16_DS", /* name */
1568 FALSE, /* partial_inplace */
1569 0, /* src_mask */
1570 0xfffc, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 /* Like TPREL16_DS, but no overflow. */
1574 HOWTO (R_PPC64_TPREL16_LO_DS,
1575 0, /* rightshift */
1576 1, /* size (0 = byte, 1 = short, 2 = long) */
1577 16, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_dont, /* complain_on_overflow */
1581 ppc64_elf_unhandled_reloc, /* special_function */
1582 "R_PPC64_TPREL16_LO_DS", /* name */
1583 FALSE, /* partial_inplace */
1584 0, /* src_mask */
1585 0xfffc, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1589 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1590 to the first entry relative to the TOC base (r2). */
1591 HOWTO (R_PPC64_GOT_TLSGD16,
1592 0, /* rightshift */
1593 1, /* size (0 = byte, 1 = short, 2 = long) */
1594 16, /* bitsize */
1595 FALSE, /* pc_relative */
1596 0, /* bitpos */
1597 complain_overflow_signed, /* complain_on_overflow */
1598 ppc64_elf_unhandled_reloc, /* special_function */
1599 "R_PPC64_GOT_TLSGD16", /* name */
1600 FALSE, /* partial_inplace */
1601 0, /* src_mask */
1602 0xffff, /* dst_mask */
1603 FALSE), /* pcrel_offset */
1604
1605 /* Like GOT_TLSGD16, but no overflow. */
1606 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1607 0, /* rightshift */
1608 1, /* size (0 = byte, 1 = short, 2 = long) */
1609 16, /* bitsize */
1610 FALSE, /* pc_relative */
1611 0, /* bitpos */
1612 complain_overflow_dont, /* complain_on_overflow */
1613 ppc64_elf_unhandled_reloc, /* special_function */
1614 "R_PPC64_GOT_TLSGD16_LO", /* name */
1615 FALSE, /* partial_inplace */
1616 0, /* src_mask */
1617 0xffff, /* dst_mask */
1618 FALSE), /* pcrel_offset */
1619
1620 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1621 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1622 16, /* rightshift */
1623 1, /* size (0 = byte, 1 = short, 2 = long) */
1624 16, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont, /* complain_on_overflow */
1628 ppc64_elf_unhandled_reloc, /* special_function */
1629 "R_PPC64_GOT_TLSGD16_HI", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0xffff, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1636 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1637 16, /* rightshift */
1638 1, /* size (0 = byte, 1 = short, 2 = long) */
1639 16, /* bitsize */
1640 FALSE, /* pc_relative */
1641 0, /* bitpos */
1642 complain_overflow_dont, /* complain_on_overflow */
1643 ppc64_elf_unhandled_reloc, /* special_function */
1644 "R_PPC64_GOT_TLSGD16_HA", /* name */
1645 FALSE, /* partial_inplace */
1646 0, /* src_mask */
1647 0xffff, /* dst_mask */
1648 FALSE), /* pcrel_offset */
1649
1650 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1651 with values (sym+add)@dtpmod and zero, and computes the offset to the
1652 first entry relative to the TOC base (r2). */
1653 HOWTO (R_PPC64_GOT_TLSLD16,
1654 0, /* rightshift */
1655 1, /* size (0 = byte, 1 = short, 2 = long) */
1656 16, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_signed, /* complain_on_overflow */
1660 ppc64_elf_unhandled_reloc, /* special_function */
1661 "R_PPC64_GOT_TLSLD16", /* name */
1662 FALSE, /* partial_inplace */
1663 0, /* src_mask */
1664 0xffff, /* dst_mask */
1665 FALSE), /* pcrel_offset */
1666
1667 /* Like GOT_TLSLD16, but no overflow. */
1668 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1669 0, /* rightshift */
1670 1, /* size (0 = byte, 1 = short, 2 = long) */
1671 16, /* bitsize */
1672 FALSE, /* pc_relative */
1673 0, /* bitpos */
1674 complain_overflow_dont, /* complain_on_overflow */
1675 ppc64_elf_unhandled_reloc, /* special_function */
1676 "R_PPC64_GOT_TLSLD16_LO", /* name */
1677 FALSE, /* partial_inplace */
1678 0, /* src_mask */
1679 0xffff, /* dst_mask */
1680 FALSE), /* pcrel_offset */
1681
1682 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1683 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1684 16, /* rightshift */
1685 1, /* size (0 = byte, 1 = short, 2 = long) */
1686 16, /* bitsize */
1687 FALSE, /* pc_relative */
1688 0, /* bitpos */
1689 complain_overflow_dont, /* complain_on_overflow */
1690 ppc64_elf_unhandled_reloc, /* special_function */
1691 "R_PPC64_GOT_TLSLD16_HI", /* name */
1692 FALSE, /* partial_inplace */
1693 0, /* src_mask */
1694 0xffff, /* dst_mask */
1695 FALSE), /* pcrel_offset */
1696
1697 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1698 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1699 16, /* rightshift */
1700 1, /* size (0 = byte, 1 = short, 2 = long) */
1701 16, /* bitsize */
1702 FALSE, /* pc_relative */
1703 0, /* bitpos */
1704 complain_overflow_dont, /* complain_on_overflow */
1705 ppc64_elf_unhandled_reloc, /* special_function */
1706 "R_PPC64_GOT_TLSLD16_HA", /* name */
1707 FALSE, /* partial_inplace */
1708 0, /* src_mask */
1709 0xffff, /* dst_mask */
1710 FALSE), /* pcrel_offset */
1711
1712 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1713 the offset to the entry relative to the TOC base (r2). */
1714 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1715 0, /* rightshift */
1716 1, /* size (0 = byte, 1 = short, 2 = long) */
1717 16, /* bitsize */
1718 FALSE, /* pc_relative */
1719 0, /* bitpos */
1720 complain_overflow_signed, /* complain_on_overflow */
1721 ppc64_elf_unhandled_reloc, /* special_function */
1722 "R_PPC64_GOT_DTPREL16_DS", /* name */
1723 FALSE, /* partial_inplace */
1724 0, /* src_mask */
1725 0xfffc, /* dst_mask */
1726 FALSE), /* pcrel_offset */
1727
1728 /* Like GOT_DTPREL16_DS, but no overflow. */
1729 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1730 0, /* rightshift */
1731 1, /* size (0 = byte, 1 = short, 2 = long) */
1732 16, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont, /* complain_on_overflow */
1736 ppc64_elf_unhandled_reloc, /* special_function */
1737 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0xfffc, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1744 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1745 16, /* rightshift */
1746 1, /* size (0 = byte, 1 = short, 2 = long) */
1747 16, /* bitsize */
1748 FALSE, /* pc_relative */
1749 0, /* bitpos */
1750 complain_overflow_dont, /* complain_on_overflow */
1751 ppc64_elf_unhandled_reloc, /* special_function */
1752 "R_PPC64_GOT_DTPREL16_HI", /* name */
1753 FALSE, /* partial_inplace */
1754 0, /* src_mask */
1755 0xffff, /* dst_mask */
1756 FALSE), /* pcrel_offset */
1757
1758 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1759 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1760 16, /* rightshift */
1761 1, /* size (0 = byte, 1 = short, 2 = long) */
1762 16, /* bitsize */
1763 FALSE, /* pc_relative */
1764 0, /* bitpos */
1765 complain_overflow_dont, /* complain_on_overflow */
1766 ppc64_elf_unhandled_reloc, /* special_function */
1767 "R_PPC64_GOT_DTPREL16_HA", /* name */
1768 FALSE, /* partial_inplace */
1769 0, /* src_mask */
1770 0xffff, /* dst_mask */
1771 FALSE), /* pcrel_offset */
1772
1773 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1774 offset to the entry relative to the TOC base (r2). */
1775 HOWTO (R_PPC64_GOT_TPREL16_DS,
1776 0, /* rightshift */
1777 1, /* size (0 = byte, 1 = short, 2 = long) */
1778 16, /* bitsize */
1779 FALSE, /* pc_relative */
1780 0, /* bitpos */
1781 complain_overflow_signed, /* complain_on_overflow */
1782 ppc64_elf_unhandled_reloc, /* special_function */
1783 "R_PPC64_GOT_TPREL16_DS", /* name */
1784 FALSE, /* partial_inplace */
1785 0, /* src_mask */
1786 0xfffc, /* dst_mask */
1787 FALSE), /* pcrel_offset */
1788
1789 /* Like GOT_TPREL16_DS, but no overflow. */
1790 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1791 0, /* rightshift */
1792 1, /* size (0 = byte, 1 = short, 2 = long) */
1793 16, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_dont, /* complain_on_overflow */
1797 ppc64_elf_unhandled_reloc, /* special_function */
1798 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1799 FALSE, /* partial_inplace */
1800 0, /* src_mask */
1801 0xfffc, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803
1804 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1805 HOWTO (R_PPC64_GOT_TPREL16_HI,
1806 16, /* rightshift */
1807 1, /* size (0 = byte, 1 = short, 2 = long) */
1808 16, /* bitsize */
1809 FALSE, /* pc_relative */
1810 0, /* bitpos */
1811 complain_overflow_dont, /* complain_on_overflow */
1812 ppc64_elf_unhandled_reloc, /* special_function */
1813 "R_PPC64_GOT_TPREL16_HI", /* name */
1814 FALSE, /* partial_inplace */
1815 0, /* src_mask */
1816 0xffff, /* dst_mask */
1817 FALSE), /* pcrel_offset */
1818
1819 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1820 HOWTO (R_PPC64_GOT_TPREL16_HA,
1821 16, /* rightshift */
1822 1, /* size (0 = byte, 1 = short, 2 = long) */
1823 16, /* bitsize */
1824 FALSE, /* pc_relative */
1825 0, /* bitpos */
1826 complain_overflow_dont, /* complain_on_overflow */
1827 ppc64_elf_unhandled_reloc, /* special_function */
1828 "R_PPC64_GOT_TPREL16_HA", /* name */
1829 FALSE, /* partial_inplace */
1830 0, /* src_mask */
1831 0xffff, /* dst_mask */
1832 FALSE), /* pcrel_offset */
1833
1834 /* GNU extension to record C++ vtable hierarchy. */
1835 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1836 0, /* rightshift */
1837 0, /* size (0 = byte, 1 = short, 2 = long) */
1838 0, /* bitsize */
1839 FALSE, /* pc_relative */
1840 0, /* bitpos */
1841 complain_overflow_dont, /* complain_on_overflow */
1842 NULL, /* special_function */
1843 "R_PPC64_GNU_VTINHERIT", /* name */
1844 FALSE, /* partial_inplace */
1845 0, /* src_mask */
1846 0, /* dst_mask */
1847 FALSE), /* pcrel_offset */
1848
1849 /* GNU extension to record C++ vtable member usage. */
1850 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
1851 0, /* rightshift */
1852 0, /* size (0 = byte, 1 = short, 2 = long) */
1853 0, /* bitsize */
1854 FALSE, /* pc_relative */
1855 0, /* bitpos */
1856 complain_overflow_dont, /* complain_on_overflow */
1857 NULL, /* special_function */
1858 "R_PPC64_GNU_VTENTRY", /* name */
1859 FALSE, /* partial_inplace */
1860 0, /* src_mask */
1861 0, /* dst_mask */
1862 FALSE), /* pcrel_offset */
1863};
1864
1865\f
1866/* Initialize the ppc64_elf_howto_table, so that linear accesses can
1867 be done. */
1868
1869static void
1870ppc_howto_init (void)
1871{
1872 unsigned int i, type;
1873
1874 for (i = 0;
1875 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
1876 i++)
1877 {
1878 type = ppc64_elf_howto_raw[i].type;
1879 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
1880 / sizeof (ppc64_elf_howto_table[0])));
1881 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
1882 }
1883}
1884
1885static reloc_howto_type *
1886ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1887 bfd_reloc_code_real_type code)
1888{
1889 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1890
1891 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1892 /* Initialize howto table if needed. */
1893 ppc_howto_init ();
1894
1895 switch (code)
1896 {
1897 default:
1898 return NULL;
1899
1900 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1901 break;
1902 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1903 break;
1904 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1905 break;
1906 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1907 break;
1908 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1909 break;
1910 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1911 break;
1912 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1913 break;
1914 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1915 break;
1916 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1917 break;
1918 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1919 break;
1920 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1921 break;
1922 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1923 break;
1924 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1925 break;
1926 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1927 break;
1928 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1929 break;
1930 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1931 break;
1932 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1933 break;
1934 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1935 break;
1936 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1937 break;
1938 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1939 break;
1940 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1941 break;
1942 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1943 break;
1944 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1945 break;
1946 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1947 break;
1948 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1949 break;
1950 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1951 break;
1952 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1953 break;
1954 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1955 break;
1956 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1957 break;
1958 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1959 break;
1960 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1961 break;
1962 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1963 break;
1964 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1965 break;
1966 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1967 break;
1968 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1969 break;
1970 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1971 break;
1972 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1973 break;
1974 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1975 break;
1976 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1977 break;
1978 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1979 break;
1980 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1981 break;
1982 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1983 break;
1984 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1985 break;
1986 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1987 break;
1988 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1989 break;
1990 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1991 break;
1992 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1993 break;
1994 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1995 break;
1996 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1997 break;
1998 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1999 break;
2000 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2001 break;
2002 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2003 break;
2004 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2005 break;
2006 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2007 break;
2008 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2009 break;
2010 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2011 break;
2012 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2013 break;
2014 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2015 break;
2016 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2017 break;
2018 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2019 break;
2020 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2021 break;
2022 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2023 break;
2024 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2025 break;
2026 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2027 break;
2028 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2029 break;
2030 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2031 break;
2032 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2033 break;
2034 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2035 break;
2036 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2037 break;
2038 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2039 break;
2040 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2041 break;
2042 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2043 break;
2044 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2045 break;
2046 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2047 break;
2048 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2049 break;
2050 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2051 break;
2052 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2053 break;
2054 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2055 break;
2056 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2057 break;
2058 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2059 break;
2060 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2061 break;
2062 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2063 break;
2064 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2065 break;
2066 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2067 break;
2068 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2069 break;
2070 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2071 break;
2072 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2073 break;
2074 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2075 break;
2076 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2077 break;
2078 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2079 break;
2080 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2081 break;
2082 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2083 break;
2084 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2085 break;
2086 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2087 break;
2088 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2089 break;
2090 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2091 break;
2092 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2093 break;
2094 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2095 break;
2096 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2097 break;
2098 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2099 break;
2100 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2101 break;
2102 }
2103
2104 return ppc64_elf_howto_table[r];
2105};
2106
2107/* Set the howto pointer for a PowerPC ELF reloc. */
2108
2109static void
2110ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2111 Elf_Internal_Rela *dst)
2112{
2113 unsigned int type;
2114
2115 /* Initialize howto table if needed. */
2116 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2117 ppc_howto_init ();
2118
2119 type = ELF64_R_TYPE (dst->r_info);
2120 if (type >= (sizeof (ppc64_elf_howto_table)
2121 / sizeof (ppc64_elf_howto_table[0])))
2122 {
2123 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2124 abfd, (int) type);
2125 type = R_PPC64_NONE;
2126 }
2127 cache_ptr->howto = ppc64_elf_howto_table[type];
2128}
2129
2130/* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2131
2132static bfd_reloc_status_type
2133ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2134 void *data, asection *input_section,
2135 bfd *output_bfd, char **error_message)
2136{
2137 /* If this is a relocatable link (output_bfd test tells us), just
2138 call the generic function. Any adjustment will be done at final
2139 link time. */
2140 if (output_bfd != NULL)
2141 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2142 input_section, output_bfd, error_message);
2143
2144 /* Adjust the addend for sign extension of the low 16 bits.
2145 We won't actually be using the low 16 bits, so trashing them
2146 doesn't matter. */
2147 reloc_entry->addend += 0x8000;
2148 return bfd_reloc_continue;
2149}
2150
2151static bfd_reloc_status_type
2152ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2153 void *data, asection *input_section,
2154 bfd *output_bfd, char **error_message)
2155{
2156 if (output_bfd != NULL)
2157 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2158 input_section, output_bfd, error_message);
2159
2160 if (strcmp (symbol->section->name, ".opd") == 0
2161 && (symbol->section->owner->flags & DYNAMIC) == 0)
2162 {
2163 bfd_vma dest = opd_entry_value (symbol->section,
2164 symbol->value + reloc_entry->addend,
2165 NULL, NULL);
2166 if (dest != (bfd_vma) -1)
2167 reloc_entry->addend = dest - (symbol->value
2168 + symbol->section->output_section->vma
2169 + symbol->section->output_offset);
2170 }
2171 return bfd_reloc_continue;
2172}
2173
2174static bfd_reloc_status_type
2175ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2176 void *data, asection *input_section,
2177 bfd *output_bfd, char **error_message)
2178{
2179 long insn;
2180 enum elf_ppc64_reloc_type r_type;
2181 bfd_size_type octets;
2182 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
2183 bfd_boolean is_power4 = FALSE;
2184
2185 /* If this is a relocatable link (output_bfd test tells us), just
2186 call the generic function. Any adjustment will be done at final
2187 link time. */
2188 if (output_bfd != NULL)
2189 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2190 input_section, output_bfd, error_message);
2191
2192 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2193 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2194 insn &= ~(0x01 << 21);
2195 r_type = reloc_entry->howto->type;
2196 if (r_type == R_PPC64_ADDR14_BRTAKEN
2197 || r_type == R_PPC64_REL14_BRTAKEN)
2198 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2199
2200 if (is_power4)
2201 {
2202 /* Set 'a' bit. This is 0b00010 in BO field for branch
2203 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2204 for branch on CTR insns (BO == 1a00t or 1a01t). */
2205 if ((insn & (0x14 << 21)) == (0x04 << 21))
2206 insn |= 0x02 << 21;
2207 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2208 insn |= 0x08 << 21;
2209 else
2210 goto out;
2211 }
2212 else
2213 {
2214 bfd_vma target = 0;
2215 bfd_vma from;
2216
2217 if (!bfd_is_com_section (symbol->section))
2218 target = symbol->value;
2219 target += symbol->section->output_section->vma;
2220 target += symbol->section->output_offset;
2221 target += reloc_entry->addend;
2222
2223 from = (reloc_entry->address
2224 + input_section->output_offset
2225 + input_section->output_section->vma);
2226
2227 /* Invert 'y' bit if not the default. */
2228 if ((bfd_signed_vma) (target - from) < 0)
2229 insn ^= 0x01 << 21;
2230 }
2231 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2232 out:
2233 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2234 input_section, output_bfd, error_message);
2235}
2236
2237static bfd_reloc_status_type
2238ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2239 void *data, asection *input_section,
2240 bfd *output_bfd, char **error_message)
2241{
2242 /* If this is a relocatable link (output_bfd test tells us), just
2243 call the generic function. Any adjustment will be done at final
2244 link time. */
2245 if (output_bfd != NULL)
2246 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2247 input_section, output_bfd, error_message);
2248
2249 /* Subtract the symbol section base address. */
2250 reloc_entry->addend -= symbol->section->output_section->vma;
2251 return bfd_reloc_continue;
2252}
2253
2254static bfd_reloc_status_type
2255ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2256 void *data, asection *input_section,
2257 bfd *output_bfd, char **error_message)
2258{
2259 /* If this is a relocatable link (output_bfd test tells us), just
2260 call the generic function. Any adjustment will be done at final
2261 link time. */
2262 if (output_bfd != NULL)
2263 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2264 input_section, output_bfd, error_message);
2265
2266 /* Subtract the symbol section base address. */
2267 reloc_entry->addend -= symbol->section->output_section->vma;
2268
2269 /* Adjust the addend for sign extension of the low 16 bits. */
2270 reloc_entry->addend += 0x8000;
2271 return bfd_reloc_continue;
2272}
2273
2274static bfd_reloc_status_type
2275ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2276 void *data, asection *input_section,
2277 bfd *output_bfd, char **error_message)
2278{
2279 bfd_vma TOCstart;
2280
2281 /* If this is a relocatable link (output_bfd test tells us), just
2282 call the generic function. Any adjustment will be done at final
2283 link time. */
2284 if (output_bfd != NULL)
2285 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2286 input_section, output_bfd, error_message);
2287
2288 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2289 if (TOCstart == 0)
2290 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2291
2292 /* Subtract the TOC base address. */
2293 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2294 return bfd_reloc_continue;
2295}
2296
2297static bfd_reloc_status_type
2298ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2299 void *data, asection *input_section,
2300 bfd *output_bfd, char **error_message)
2301{
2302 bfd_vma TOCstart;
2303
2304 /* If this is a relocatable link (output_bfd test tells us), just
2305 call the generic function. Any adjustment will be done at final
2306 link time. */
2307 if (output_bfd != NULL)
2308 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2309 input_section, output_bfd, error_message);
2310
2311 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2312 if (TOCstart == 0)
2313 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2314
2315 /* Subtract the TOC base address. */
2316 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2317
2318 /* Adjust the addend for sign extension of the low 16 bits. */
2319 reloc_entry->addend += 0x8000;
2320 return bfd_reloc_continue;
2321}
2322
2323static bfd_reloc_status_type
2324ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2325 void *data, asection *input_section,
2326 bfd *output_bfd, char **error_message)
2327{
2328 bfd_vma TOCstart;
2329 bfd_size_type octets;
2330
2331 /* If this is a relocatable link (output_bfd test tells us), just
2332 call the generic function. Any adjustment will be done at final
2333 link time. */
2334 if (output_bfd != NULL)
2335 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2336 input_section, output_bfd, error_message);
2337
2338 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2339 if (TOCstart == 0)
2340 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2341
2342 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2343 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2344 return bfd_reloc_ok;
2345}
2346
2347static bfd_reloc_status_type
2348ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2349 void *data, asection *input_section,
2350 bfd *output_bfd, char **error_message)
2351{
2352 /* If this is a relocatable link (output_bfd test tells us), just
2353 call the generic function. Any adjustment will be done at final
2354 link time. */
2355 if (output_bfd != NULL)
2356 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2357 input_section, output_bfd, error_message);
2358
2359 if (error_message != NULL)
2360 {
2361 static char buf[60];
2362 sprintf (buf, "generic linker can't handle %s",
2363 reloc_entry->howto->name);
2364 *error_message = buf;
2365 }
2366 return bfd_reloc_dangerous;
2367}
2368
2369struct ppc64_elf_obj_tdata
2370{
2371 struct elf_obj_tdata elf;
2372
2373 /* Shortcuts to dynamic linker sections. */
2374 asection *got;
2375 asection *relgot;
2376
2377 union {
2378 /* Used during garbage collection. We attach global symbols defined
2379 on removed .opd entries to this section so that the sym is removed. */
2380 asection *deleted_section;
2381
2382 /* Used when adding symbols. */
2383 bfd_boolean has_dotsym;
2384 } u;
2385
2386 /* TLS local dynamic got entry handling. Suppose for multiple GOT
2387 sections means we potentially need one of these for each input bfd. */
2388 union {
2389 bfd_signed_vma refcount;
2390 bfd_vma offset;
2391 } tlsld_got;
2392
2393 /* A copy of relocs before they are modified for --emit-relocs. */
2394 Elf_Internal_Rela *opd_relocs;
2395};
2396
2397#define ppc64_elf_tdata(bfd) \
2398 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2399
2400#define ppc64_tlsld_got(bfd) \
2401 (&ppc64_elf_tdata (bfd)->tlsld_got)
2402
2403/* Override the generic function because we store some extras. */
2404
2405static bfd_boolean
2406ppc64_elf_mkobject (bfd *abfd)
2407{
2408 bfd_size_type amt = sizeof (struct ppc64_elf_obj_tdata);
2409 abfd->tdata.any = bfd_zalloc (abfd, amt);
2410 if (abfd->tdata.any == NULL)
2411 return FALSE;
2412 return TRUE;
2413}
2414
2415/* Return 1 if target is one of ours. */
2416
2417static bfd_boolean
2418is_ppc64_elf_target (const struct bfd_target *targ)
2419{
2420 extern const bfd_target bfd_elf64_powerpc_vec;
2421 extern const bfd_target bfd_elf64_powerpcle_vec;
2422
2423 return targ == &bfd_elf64_powerpc_vec || targ == &bfd_elf64_powerpcle_vec;
2424}
2425
2426/* Fix bad default arch selected for a 64 bit input bfd when the
2427 default is 32 bit. */
2428
2429static bfd_boolean
2430ppc64_elf_object_p (bfd *abfd)
2431{
2432 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2433 {
2434 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2435
2436 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2437 {
2438 /* Relies on arch after 32 bit default being 64 bit default. */
2439 abfd->arch_info = abfd->arch_info->next;
2440 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2441 }
2442 }
2443 return TRUE;
2444}
2445
2446/* Support for core dump NOTE sections. */
2447
2448static bfd_boolean
2449ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2450{
2451 size_t offset, size;
2452
2453 if (note->descsz != 504)
2454 return FALSE;
2455
2456 /* pr_cursig */
2457 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2458
2459 /* pr_pid */
2460 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2461
2462 /* pr_reg */
2463 offset = 112;
2464 size = 384;
2465
2466 /* Make a ".reg/999" section. */
2467 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2468 size, note->descpos + offset);
2469}
2470
2471static bfd_boolean
2472ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2473{
2474 if (note->descsz != 136)
2475 return FALSE;
2476
2477 elf_tdata (abfd)->core_program
2478 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2479 elf_tdata (abfd)->core_command
2480 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2481
2482 return TRUE;
2483}
2484
2485/* Merge backend specific data from an object file to the output
2486 object file when linking. */
2487
2488static bfd_boolean
2489ppc64_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
2490{
2491 /* Check if we have the same endianess. */
2492 if (ibfd->xvec->byteorder != obfd->xvec->byteorder
2493 && ibfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN
2494 && obfd->xvec->byteorder != BFD_ENDIAN_UNKNOWN)
2495 {
2496 const char *msg;
2497
2498 if (bfd_big_endian (ibfd))
2499 msg = _("%B: compiled for a big endian system "
2500 "and target is little endian");
2501 else
2502 msg = _("%B: compiled for a little endian system "
2503 "and target is big endian");
2504
2505 (*_bfd_error_handler) (msg, ibfd);
2506
2507 bfd_set_error (bfd_error_wrong_format);
2508 return FALSE;
2509 }
2510
2511 return TRUE;
2512}
2513
2514/* Add extra PPC sections. */
2515
2516static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2517{
2518 { ".plt", 4, 0, SHT_NOBITS, 0 },
2519 { ".sbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2520 { ".sdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2521 { ".toc", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2522 { ".toc1", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2523 { ".tocbss", 7, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2524 { NULL, 0, 0, 0, 0 }
2525};
2526
2527struct _ppc64_elf_section_data
2528{
2529 struct bfd_elf_section_data elf;
2530
2531 /* An array with one entry for each opd function descriptor. */
2532 union
2533 {
2534 /* Points to the function code section for local opd entries. */
2535 asection **func_sec;
2536 /* After editing .opd, adjust references to opd local syms. */
2537 long *adjust;
2538 } opd;
2539
2540 /* An array for toc sections, indexed by offset/8.
2541 Specifies the relocation symbol index used at a given toc offset. */
2542 unsigned *t_symndx;
2543};
2544
2545#define ppc64_elf_section_data(sec) \
2546 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2547
2548static bfd_boolean
2549ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2550{
2551 struct _ppc64_elf_section_data *sdata;
2552 bfd_size_type amt = sizeof (*sdata);
2553
2554 sdata = bfd_zalloc (abfd, amt);
2555 if (sdata == NULL)
2556 return FALSE;
2557 sec->used_by_bfd = sdata;
2558
2559 return _bfd_elf_new_section_hook (abfd, sec);
2560}
2561
2562static void *
2563get_opd_info (asection * sec)
2564{
2565 if (sec != NULL
2566 && ppc64_elf_section_data (sec) != NULL
2567 && ppc64_elf_section_data (sec)->opd.adjust != NULL)
2568 return ppc64_elf_section_data (sec)->opd.adjust;
2569 return NULL;
2570}
2571\f
2572/* Parameters for the qsort hook. */
2573static asection *synthetic_opd;
2574static bfd_boolean synthetic_relocatable;
2575
2576/* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2577
2578static int
2579compare_symbols (const void *ap, const void *bp)
2580{
2581 const asymbol *a = * (const asymbol **) ap;
2582 const asymbol *b = * (const asymbol **) bp;
2583
2584 /* Section symbols first. */
2585 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2586 return -1;
2587 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2588 return 1;
2589
2590 /* then .opd symbols. */
2591 if (a->section == synthetic_opd && b->section != synthetic_opd)
2592 return -1;
2593 if (a->section != synthetic_opd && b->section == synthetic_opd)
2594 return 1;
2595
2596 /* then other code symbols. */
2597 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2598 == (SEC_CODE | SEC_ALLOC)
2599 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2600 != (SEC_CODE | SEC_ALLOC))
2601 return -1;
2602
2603 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2604 != (SEC_CODE | SEC_ALLOC)
2605 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2606 == (SEC_CODE | SEC_ALLOC))
2607 return 1;
2608
2609 if (synthetic_relocatable)
2610 {
2611 if (a->section->id < b->section->id)
2612 return -1;
2613
2614 if (a->section->id > b->section->id)
2615 return 1;
2616 }
2617
2618 if (a->value + a->section->vma < b->value + b->section->vma)
2619 return -1;
2620
2621 if (a->value + a->section->vma > b->value + b->section->vma)
2622 return 1;
2623
2624 return 0;
2625}
2626
2627/* Search SYMS for a symbol of the given VALUE. */
2628
2629static asymbol *
2630sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2631{
2632 long mid;
2633
2634 if (id == -1)
2635 {
2636 while (lo < hi)
2637 {
2638 mid = (lo + hi) >> 1;
2639 if (syms[mid]->value + syms[mid]->section->vma < value)
2640 lo = mid + 1;
2641 else if (syms[mid]->value + syms[mid]->section->vma > value)
2642 hi = mid;
2643 else
2644 return syms[mid];
2645 }
2646 }
2647 else
2648 {
2649 while (lo < hi)
2650 {
2651 mid = (lo + hi) >> 1;
2652 if (syms[mid]->section->id < id)
2653 lo = mid + 1;
2654 else if (syms[mid]->section->id > id)
2655 hi = mid;
2656 else if (syms[mid]->value < value)
2657 lo = mid + 1;
2658 else if (syms[mid]->value > value)
2659 hi = mid;
2660 else
2661 return syms[mid];
2662 }
2663 }
2664 return NULL;
2665}
2666
2667/* Create synthetic symbols, effectively restoring "dot-symbol" function
2668 entry syms. */
2669
2670static long
2671ppc64_elf_get_synthetic_symtab (bfd *abfd,
2672 long static_count, asymbol **static_syms,
2673 long dyn_count, asymbol **dyn_syms,
2674 asymbol **ret)
2675{
2676 asymbol *s;
2677 long i;
2678 long count;
2679 char *names;
2680 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2681 asection *opd;
2682 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2683 asymbol **syms;
2684
2685 *ret = NULL;
2686
2687 opd = bfd_get_section_by_name (abfd, ".opd");
2688 if (opd == NULL)
2689 return 0;
2690
2691 symcount = static_count;
2692 if (!relocatable)
2693 symcount += dyn_count;
2694 if (symcount == 0)
2695 return 0;
2696
2697 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2698 if (syms == NULL)
2699 return -1;
2700
2701 if (!relocatable && static_count != 0 && dyn_count != 0)
2702 {
2703 /* Use both symbol tables. */
2704 memcpy (syms, static_syms, static_count * sizeof (*syms));
2705 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
2706 }
2707 else if (!relocatable && static_count == 0)
2708 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2709 else
2710 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2711
2712 synthetic_opd = opd;
2713 synthetic_relocatable = relocatable;
2714 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2715
2716 if (!relocatable && symcount > 1)
2717 {
2718 long j;
2719 /* Trim duplicate syms, since we may have merged the normal and
2720 dynamic symbols. Actually, we only care about syms that have
2721 different values, so trim any with the same value. */
2722 for (i = 1, j = 1; i < symcount; ++i)
2723 if (syms[i - 1]->value + syms[i - 1]->section->vma
2724 != syms[i]->value + syms[i]->section->vma)
2725 syms[j++] = syms[i];
2726 symcount = j;
2727 }
2728
2729 i = 0;
2730 if (syms[i]->section == opd)
2731 ++i;
2732 codesecsym = i;
2733
2734 for (; i < symcount; ++i)
2735 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2736 != (SEC_CODE | SEC_ALLOC))
2737 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2738 break;
2739 codesecsymend = i;
2740
2741 for (; i < symcount; ++i)
2742 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2743 break;
2744 secsymend = i;
2745
2746 for (; i < symcount; ++i)
2747 if (syms[i]->section != opd)
2748 break;
2749 opdsymend = i;
2750
2751 for (; i < symcount; ++i)
2752 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2753 != (SEC_CODE | SEC_ALLOC))
2754 break;
2755 symcount = i;
2756
2757 count = 0;
2758 if (opdsymend == secsymend)
2759 goto done;
2760
2761 if (relocatable)
2762 {
2763 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2764 arelent *r;
2765 size_t size;
2766 long relcount;
2767
2768 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2769 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2770 if (relcount == 0)
2771 goto done;
2772
2773 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2774 {
2775 count = -1;
2776 goto done;
2777 }
2778
2779 size = 0;
2780 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2781 {
2782 asymbol *sym;
2783
2784 while (r < opd->relocation + relcount
2785 && r->address < syms[i]->value + opd->vma)
2786 ++r;
2787
2788 if (r == opd->relocation + relcount)
2789 break;
2790
2791 if (r->address != syms[i]->value + opd->vma)
2792 continue;
2793
2794 if (r->howto->type != R_PPC64_ADDR64)
2795 continue;
2796
2797 sym = *r->sym_ptr_ptr;
2798 if (!sym_exists_at (syms, opdsymend, symcount,
2799 sym->section->id, sym->value + r->addend))
2800 {
2801 ++count;
2802 size += sizeof (asymbol);
2803 size += strlen (syms[i]->name) + 2;
2804 }
2805 }
2806
2807 s = *ret = bfd_malloc (size);
2808 if (s == NULL)
2809 {
2810 count = -1;
2811 goto done;
2812 }
2813
2814 names = (char *) (s + count);
2815
2816 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2817 {
2818 asymbol *sym;
2819
2820 while (r < opd->relocation + relcount
2821 && r->address < syms[i]->value + opd->vma)
2822 ++r;
2823
2824 if (r == opd->relocation + relcount)
2825 break;
2826
2827 if (r->address != syms[i]->value + opd->vma)
2828 continue;
2829
2830 if (r->howto->type != R_PPC64_ADDR64)
2831 continue;
2832
2833 sym = *r->sym_ptr_ptr;
2834 if (!sym_exists_at (syms, opdsymend, symcount,
2835 sym->section->id, sym->value + r->addend))
2836 {
2837 size_t len;
2838
2839 *s = *syms[i];
2840 s->section = sym->section;
2841 s->value = sym->value + r->addend;
2842 s->name = names;
2843 *names++ = '.';
2844 len = strlen (syms[i]->name);
2845 memcpy (names, syms[i]->name, len + 1);
2846 names += len + 1;
2847 s++;
2848 }
2849 }
2850 }
2851 else
2852 {
2853 bfd_byte *contents;
2854 size_t size;
2855
2856 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
2857 {
2858 if (contents)
2859 {
2860 free_contents_and_exit:
2861 free (contents);
2862 }
2863 count = -1;
2864 goto done;
2865 }
2866
2867 size = 0;
2868 for (i = secsymend; i < opdsymend; ++i)
2869 {
2870 bfd_vma ent;
2871
2872 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2873 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2874 {
2875 ++count;
2876 size += sizeof (asymbol);
2877 size += strlen (syms[i]->name) + 2;
2878 }
2879 }
2880
2881 s = *ret = bfd_malloc (size);
2882 if (s == NULL)
2883 goto free_contents_and_exit;
2884
2885 names = (char *) (s + count);
2886
2887 for (i = secsymend; i < opdsymend; ++i)
2888 {
2889 bfd_vma ent;
2890
2891 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2892 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2893 {
2894 long lo, hi;
2895 size_t len;
2896 asection *sec = abfd->sections;
2897
2898 *s = *syms[i];
2899 lo = codesecsym;
2900 hi = codesecsymend;
2901 while (lo < hi)
2902 {
2903 long mid = (lo + hi) >> 1;
2904 if (syms[mid]->section->vma < ent)
2905 lo = mid + 1;
2906 else if (syms[mid]->section->vma > ent)
2907 hi = mid;
2908 else
2909 {
2910 sec = syms[mid]->section;
2911 break;
2912 }
2913 }
2914
2915 if (lo >= hi && lo > codesecsym)
2916 sec = syms[lo - 1]->section;
2917
2918 for (; sec != NULL; sec = sec->next)
2919 {
2920 if (sec->vma > ent)
2921 break;
2922 if ((sec->flags & SEC_ALLOC) == 0
2923 || (sec->flags & SEC_LOAD) == 0)
2924 break;
2925 if ((sec->flags & SEC_CODE) != 0)
2926 s->section = sec;
2927 }
2928 s->value = ent - s->section->vma;
2929 s->name = names;
2930 *names++ = '.';
2931 len = strlen (syms[i]->name);
2932 memcpy (names, syms[i]->name, len + 1);
2933 names += len + 1;
2934 s++;
2935 }
2936 }
2937 free (contents);
2938 }
2939
2940 done:
2941 free (syms);
2942 return count;
2943}
2944\f
2945/* The following functions are specific to the ELF linker, while
2946 functions above are used generally. Those named ppc64_elf_* are
2947 called by the main ELF linker code. They appear in this file more
2948 or less in the order in which they are called. eg.
2949 ppc64_elf_check_relocs is called early in the link process,
2950 ppc64_elf_finish_dynamic_sections is one of the last functions
2951 called.
2952
2953 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2954 functions have both a function code symbol and a function descriptor
2955 symbol. A call to foo in a relocatable object file looks like:
2956
2957 . .text
2958 . x:
2959 . bl .foo
2960 . nop
2961
2962 The function definition in another object file might be:
2963
2964 . .section .opd
2965 . foo: .quad .foo
2966 . .quad .TOC.@tocbase
2967 . .quad 0
2968 .
2969 . .text
2970 . .foo: blr
2971
2972 When the linker resolves the call during a static link, the branch
2973 unsurprisingly just goes to .foo and the .opd information is unused.
2974 If the function definition is in a shared library, things are a little
2975 different: The call goes via a plt call stub, the opd information gets
2976 copied to the plt, and the linker patches the nop.
2977
2978 . x:
2979 . bl .foo_stub
2980 . ld 2,40(1)
2981 .
2982 .
2983 . .foo_stub:
2984 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
2985 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
2986 . std 2,40(1) # this is the general idea
2987 . ld 11,0(12)
2988 . ld 2,8(12)
2989 . mtctr 11
2990 . ld 11,16(12)
2991 . bctr
2992 .
2993 . .section .plt
2994 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2995
2996 The "reloc ()" notation is supposed to indicate that the linker emits
2997 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2998 copying.
2999
3000 What are the difficulties here? Well, firstly, the relocations
3001 examined by the linker in check_relocs are against the function code
3002 sym .foo, while the dynamic relocation in the plt is emitted against
3003 the function descriptor symbol, foo. Somewhere along the line, we need
3004 to carefully copy dynamic link information from one symbol to the other.
3005 Secondly, the generic part of the elf linker will make .foo a dynamic
3006 symbol as is normal for most other backends. We need foo dynamic
3007 instead, at least for an application final link. However, when
3008 creating a shared library containing foo, we need to have both symbols
3009 dynamic so that references to .foo are satisfied during the early
3010 stages of linking. Otherwise the linker might decide to pull in a
3011 definition from some other object, eg. a static library.
3012
3013 Update: As of August 2004, we support a new convention. Function
3014 calls may use the function descriptor symbol, ie. "bl foo". This
3015 behaves exactly as "bl .foo". */
3016
3017/* The linker needs to keep track of the number of relocs that it
3018 decides to copy as dynamic relocs in check_relocs for each symbol.
3019 This is so that it can later discard them if they are found to be
3020 unnecessary. We store the information in a field extending the
3021 regular ELF linker hash table. */
3022
3023struct ppc_dyn_relocs
3024{
3025 struct ppc_dyn_relocs *next;
3026
3027 /* The input section of the reloc. */
3028 asection *sec;
3029
3030 /* Total number of relocs copied for the input section. */
3031 bfd_size_type count;
3032
3033 /* Number of pc-relative relocs copied for the input section. */
3034 bfd_size_type pc_count;
3035};
3036
3037/* Track GOT entries needed for a given symbol. We might need more
3038 than one got entry per symbol. */
3039struct got_entry
3040{
3041 struct got_entry *next;
3042
3043 /* The symbol addend that we'll be placing in the GOT. */
3044 bfd_vma addend;
3045
3046 /* Unlike other ELF targets, we use separate GOT entries for the same
3047 symbol referenced from different input files. This is to support
3048 automatic multiple TOC/GOT sections, where the TOC base can vary
3049 from one input file to another.
3050
3051 Point to the BFD owning this GOT entry. */
3052 bfd *owner;
3053
3054 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
3055 TLS_TPREL or TLS_DTPREL for tls entries. */
3056 char tls_type;
3057
3058 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
3059 union
3060 {
3061 bfd_signed_vma refcount;
3062 bfd_vma offset;
3063 } got;
3064};
3065
3066/* The same for PLT. */
3067struct plt_entry
3068{
3069 struct plt_entry *next;
3070
3071 bfd_vma addend;
3072
3073 union
3074 {
3075 bfd_signed_vma refcount;
3076 bfd_vma offset;
3077 } plt;
3078};
3079
3080/* Of those relocs that might be copied as dynamic relocs, this macro
3081 selects those that must be copied when linking a shared library,
3082 even when the symbol is local. */
3083
3084#define MUST_BE_DYN_RELOC(RTYPE) \
3085 ((RTYPE) != R_PPC64_REL32 \
3086 && (RTYPE) != R_PPC64_REL64 \
3087 && (RTYPE) != R_PPC64_REL30)
3088
3089/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3090 copying dynamic variables from a shared lib into an app's dynbss
3091 section, and instead use a dynamic relocation to point into the
3092 shared lib. With code that gcc generates, it's vital that this be
3093 enabled; In the PowerPC64 ABI, the address of a function is actually
3094 the address of a function descriptor, which resides in the .opd
3095 section. gcc uses the descriptor directly rather than going via the
3096 GOT as some other ABI's do, which means that initialized function
3097 pointers must reference the descriptor. Thus, a function pointer
3098 initialized to the address of a function in a shared library will
3099 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3100 redefines the function descriptor symbol to point to the copy. This
3101 presents a problem as a plt entry for that function is also
3102 initialized from the function descriptor symbol and the copy reloc
3103 may not be initialized first. */
3104#define ELIMINATE_COPY_RELOCS 1
3105
3106/* Section name for stubs is the associated section name plus this
3107 string. */
3108#define STUB_SUFFIX ".stub"
3109
3110/* Linker stubs.
3111 ppc_stub_long_branch:
3112 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3113 destination, but a 24 bit branch in a stub section will reach.
3114 . b dest
3115
3116 ppc_stub_plt_branch:
3117 Similar to the above, but a 24 bit branch in the stub section won't
3118 reach its destination.
3119 . addis %r12,%r2,xxx@toc@ha
3120 . ld %r11,xxx@toc@l(%r12)
3121 . mtctr %r11
3122 . bctr
3123
3124 ppc_stub_plt_call:
3125 Used to call a function in a shared library. If it so happens that
3126 the plt entry referenced crosses a 64k boundary, then an extra
3127 "addis %r12,%r12,1" will be inserted before the load at xxx+8 or
3128 xxx+16 as appropriate.
3129 . addis %r12,%r2,xxx@toc@ha
3130 . std %r2,40(%r1)
3131 . ld %r11,xxx+0@toc@l(%r12)
3132 . ld %r2,xxx+8@toc@l(%r12)
3133 . mtctr %r11
3134 . ld %r11,xxx+16@toc@l(%r12)
3135 . bctr
3136
3137 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3138 code to adjust the value and save r2 to support multiple toc sections.
3139 A ppc_stub_long_branch with an r2 offset looks like:
3140 . std %r2,40(%r1)
3141 . addis %r2,%r2,off@ha
3142 . addi %r2,%r2,off@l
3143 . b dest
3144
3145 A ppc_stub_plt_branch with an r2 offset looks like:
3146 . std %r2,40(%r1)
3147 . addis %r12,%r2,xxx@toc@ha
3148 . ld %r11,xxx@toc@l(%r12)
3149 . addis %r2,%r2,off@ha
3150 . addi %r2,%r2,off@l
3151 . mtctr %r11
3152 . bctr
3153*/
3154
3155enum ppc_stub_type {
3156 ppc_stub_none,
3157 ppc_stub_long_branch,
3158 ppc_stub_long_branch_r2off,
3159 ppc_stub_plt_branch,
3160 ppc_stub_plt_branch_r2off,
3161 ppc_stub_plt_call
3162};
3163
3164struct ppc_stub_hash_entry {
3165
3166 /* Base hash table entry structure. */
3167 struct bfd_hash_entry root;
3168
3169 enum ppc_stub_type stub_type;
3170
3171 /* The stub section. */
3172 asection *stub_sec;
3173
3174 /* Offset within stub_sec of the beginning of this stub. */
3175 bfd_vma stub_offset;
3176
3177 /* Given the symbol's value and its section we can determine its final
3178 value when building the stubs (so the stub knows where to jump. */
3179 bfd_vma target_value;
3180 asection *target_section;
3181
3182 /* The symbol table entry, if any, that this was derived from. */
3183 struct ppc_link_hash_entry *h;
3184
3185 /* And the reloc addend that this was derived from. */
3186 bfd_vma addend;
3187
3188 /* Where this stub is being called from, or, in the case of combined
3189 stub sections, the first input section in the group. */
3190 asection *id_sec;
3191};
3192
3193struct ppc_branch_hash_entry {
3194
3195 /* Base hash table entry structure. */
3196 struct bfd_hash_entry root;
3197
3198 /* Offset within branch lookup table. */
3199 unsigned int offset;
3200
3201 /* Generation marker. */
3202 unsigned int iter;
3203};
3204
3205struct ppc_link_hash_entry
3206{
3207 struct elf_link_hash_entry elf;
3208
3209 /* A pointer to the most recently used stub hash entry against this
3210 symbol. */
3211 struct ppc_stub_hash_entry *stub_cache;
3212
3213 /* Track dynamic relocs copied for this symbol. */
3214 struct ppc_dyn_relocs *dyn_relocs;
3215
3216 /* Link between function code and descriptor symbols. */
3217 struct ppc_link_hash_entry *oh;
3218
3219 /* Flag function code and descriptor symbols. */
3220 unsigned int is_func:1;
3221 unsigned int is_func_descriptor:1;
3222 unsigned int fake:1;
3223
3224 /* Whether global opd/toc sym has been adjusted or not.
3225 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3226 should be set for all globals defined in any opd/toc section. */
3227 unsigned int adjust_done:1;
3228
3229 /* Set if we twiddled this symbol to weak at some stage. */
3230 unsigned int was_undefined:1;
3231
3232 /* Contexts in which symbol is used in the GOT (or TOC).
3233 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3234 corresponding relocs are encountered during check_relocs.
3235 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3236 indicate the corresponding GOT entry type is not needed.
3237 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3238 a TPREL one. We use a separate flag rather than setting TPREL
3239 just for convenience in distinguishing the two cases. */
3240#define TLS_GD 1 /* GD reloc. */
3241#define TLS_LD 2 /* LD reloc. */
3242#define TLS_TPREL 4 /* TPREL reloc, => IE. */
3243#define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3244#define TLS_TLS 16 /* Any TLS reloc. */
3245#define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3246#define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3247 char tls_mask;
3248};
3249
3250/* ppc64 ELF linker hash table. */
3251
3252struct ppc_link_hash_table
3253{
3254 struct elf_link_hash_table elf;
3255
3256 /* The stub hash table. */
3257 struct bfd_hash_table stub_hash_table;
3258
3259 /* Another hash table for plt_branch stubs. */
3260 struct bfd_hash_table branch_hash_table;
3261
3262 /* Linker stub bfd. */
3263 bfd *stub_bfd;
3264
3265 /* Linker call-backs. */
3266 asection * (*add_stub_section) (const char *, asection *);
3267 void (*layout_sections_again) (void);
3268
3269 /* Array to keep track of which stub sections have been created, and
3270 information on stub grouping. */
3271 struct map_stub {
3272 /* This is the section to which stubs in the group will be attached. */
3273 asection *link_sec;
3274 /* The stub section. */
3275 asection *stub_sec;
3276 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3277 bfd_vma toc_off;
3278 } *stub_group;
3279
3280 /* Temp used when calculating TOC pointers. */
3281 bfd_vma toc_curr;
3282
3283 /* Highest input section id. */
3284 int top_id;
3285
3286 /* Highest output section index. */
3287 int top_index;
3288
3289 /* List of input sections for each output section. */
3290 asection **input_list;
3291
3292 /* Short-cuts to get to dynamic linker sections. */
3293 asection *got;
3294 asection *plt;
3295 asection *relplt;
3296 asection *dynbss;
3297 asection *relbss;
3298 asection *glink;
3299 asection *sfpr;
3300 asection *brlt;
3301 asection *relbrlt;
3302
3303 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3304 struct ppc_link_hash_entry *tls_get_addr;
3305 struct ppc_link_hash_entry *tls_get_addr_fd;
3306
3307 /* Statistics. */
3308 unsigned long stub_count[ppc_stub_plt_call];
3309
3310 /* Number of stubs against global syms. */
3311 unsigned long stub_globals;
3312
3313 /* Set if we should emit symbols for stubs. */
3314 unsigned int emit_stub_syms:1;
3315
3316 /* Support for multiple toc sections. */
3317 unsigned int no_multi_toc:1;
3318 unsigned int multi_toc_needed:1;
3319
3320 /* Set on error. */
3321 unsigned int stub_error:1;
3322
3323 /* Flag set when small branches are detected. Used to
3324 select suitable defaults for the stub group size. */
3325 unsigned int has_14bit_branch:1;
3326
3327 /* Temp used by ppc64_elf_check_directives. */
3328 unsigned int twiddled_syms:1;
3329
3330 /* Incremented every time we size stubs. */
3331 unsigned int stub_iteration;
3332
3333 /* Small local sym to section mapping cache. */
3334 struct sym_sec_cache sym_sec;
3335};
3336
3337/* Rename some of the generic section flags to better document how they
3338 are used here. */
3339#define has_toc_reloc has_gp_reloc
3340#define makes_toc_func_call need_finalize_relax
3341#define call_check_in_progress reloc_done
3342
3343/* Get the ppc64 ELF linker hash table from a link_info structure. */
3344
3345#define ppc_hash_table(p) \
3346 ((struct ppc_link_hash_table *) ((p)->hash))
3347
3348#define ppc_stub_hash_lookup(table, string, create, copy) \
3349 ((struct ppc_stub_hash_entry *) \
3350 bfd_hash_lookup ((table), (string), (create), (copy)))
3351
3352#define ppc_branch_hash_lookup(table, string, create, copy) \
3353 ((struct ppc_branch_hash_entry *) \
3354 bfd_hash_lookup ((table), (string), (create), (copy)))
3355
3356/* Create an entry in the stub hash table. */
3357
3358static struct bfd_hash_entry *
3359stub_hash_newfunc (struct bfd_hash_entry *entry,
3360 struct bfd_hash_table *table,
3361 const char *string)
3362{
3363 /* Allocate the structure if it has not already been allocated by a
3364 subclass. */
3365 if (entry == NULL)
3366 {
3367 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3368 if (entry == NULL)
3369 return entry;
3370 }
3371
3372 /* Call the allocation method of the superclass. */
3373 entry = bfd_hash_newfunc (entry, table, string);
3374 if (entry != NULL)
3375 {
3376 struct ppc_stub_hash_entry *eh;
3377
3378 /* Initialize the local fields. */
3379 eh = (struct ppc_stub_hash_entry *) entry;
3380 eh->stub_type = ppc_stub_none;
3381 eh->stub_sec = NULL;
3382 eh->stub_offset = 0;
3383 eh->target_value = 0;
3384 eh->target_section = NULL;
3385 eh->h = NULL;
3386 eh->id_sec = NULL;
3387 }
3388
3389 return entry;
3390}
3391
3392/* Create an entry in the branch hash table. */
3393
3394static struct bfd_hash_entry *
3395branch_hash_newfunc (struct bfd_hash_entry *entry,
3396 struct bfd_hash_table *table,
3397 const char *string)
3398{
3399 /* Allocate the structure if it has not already been allocated by a
3400 subclass. */
3401 if (entry == NULL)
3402 {
3403 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3404 if (entry == NULL)
3405 return entry;
3406 }
3407
3408 /* Call the allocation method of the superclass. */
3409 entry = bfd_hash_newfunc (entry, table, string);
3410 if (entry != NULL)
3411 {
3412 struct ppc_branch_hash_entry *eh;
3413
3414 /* Initialize the local fields. */
3415 eh = (struct ppc_branch_hash_entry *) entry;
3416 eh->offset = 0;
3417 eh->iter = 0;
3418 }
3419
3420 return entry;
3421}
3422
3423/* Create an entry in a ppc64 ELF linker hash table. */
3424
3425static struct bfd_hash_entry *
3426link_hash_newfunc (struct bfd_hash_entry *entry,
3427 struct bfd_hash_table *table,
3428 const char *string)
3429{
3430 /* Allocate the structure if it has not already been allocated by a
3431 subclass. */
3432 if (entry == NULL)
3433 {
3434 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3435 if (entry == NULL)
3436 return entry;
3437 }
3438
3439 /* Call the allocation method of the superclass. */
3440 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3441 if (entry != NULL)
3442 {
3443 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3444
3445 memset (&eh->stub_cache, 0,
3446 (sizeof (struct ppc_link_hash_entry)
3447 - offsetof (struct ppc_link_hash_entry, stub_cache)));
3448 }
3449
3450 return entry;
3451}
3452
3453/* Create a ppc64 ELF linker hash table. */
3454
3455static struct bfd_link_hash_table *
3456ppc64_elf_link_hash_table_create (bfd *abfd)
3457{
3458 struct ppc_link_hash_table *htab;
3459 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3460
3461 htab = bfd_zmalloc (amt);
3462 if (htab == NULL)
3463 return NULL;
3464
3465 if (! _bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc))
3466 {
3467 free (htab);
3468 return NULL;
3469 }
3470
3471 /* Init the stub hash table too. */
3472 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc))
3473 return NULL;
3474
3475 /* And the branch hash table. */
3476 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc))
3477 return NULL;
3478
3479 /* Initializing two fields of the union is just cosmetic. We really
3480 only care about glist, but when compiled on a 32-bit host the
3481 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3482 debugger inspection of these fields look nicer. */
3483 htab->elf.init_got_refcount.refcount = 0;
3484 htab->elf.init_got_refcount.glist = NULL;
3485 htab->elf.init_plt_refcount.refcount = 0;
3486 htab->elf.init_plt_refcount.glist = NULL;
3487 htab->elf.init_got_offset.offset = 0;
3488 htab->elf.init_got_offset.glist = NULL;
3489 htab->elf.init_plt_offset.offset = 0;
3490 htab->elf.init_plt_offset.glist = NULL;
3491
3492 return &htab->elf.root;
3493}
3494
3495/* Free the derived linker hash table. */
3496
3497static void
3498ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
3499{
3500 struct ppc_link_hash_table *ret = (struct ppc_link_hash_table *) hash;
3501
3502 bfd_hash_table_free (&ret->stub_hash_table);
3503 bfd_hash_table_free (&ret->branch_hash_table);
3504 _bfd_generic_link_hash_table_free (hash);
3505}
3506
3507/* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3508
3509void
3510ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
3511{
3512 struct ppc_link_hash_table *htab;
3513
3514 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
3515
3516/* Always hook our dynamic sections into the first bfd, which is the
3517 linker created stub bfd. This ensures that the GOT header is at
3518 the start of the output TOC section. */
3519 htab = ppc_hash_table (info);
3520 htab->stub_bfd = abfd;
3521 htab->elf.dynobj = abfd;
3522}
3523
3524/* Build a name for an entry in the stub hash table. */
3525
3526static char *
3527ppc_stub_name (const asection *input_section,
3528 const asection *sym_sec,
3529 const struct ppc_link_hash_entry *h,
3530 const Elf_Internal_Rela *rel)
3531{
3532 char *stub_name;
3533 bfd_size_type len;
3534
3535 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3536 offsets from a sym as a branch target? In fact, we could
3537 probably assume the addend is always zero. */
3538 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3539
3540 if (h)
3541 {
3542 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3543 stub_name = bfd_malloc (len);
3544 if (stub_name == NULL)
3545 return stub_name;
3546
3547 sprintf (stub_name, "%08x.%s+%x",
3548 input_section->id & 0xffffffff,
3549 h->elf.root.root.string,
3550 (int) rel->r_addend & 0xffffffff);
3551 }
3552 else
3553 {
3554 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3555 stub_name = bfd_malloc (len);
3556 if (stub_name == NULL)
3557 return stub_name;
3558
3559 sprintf (stub_name, "%08x.%x:%x+%x",
3560 input_section->id & 0xffffffff,
3561 sym_sec->id & 0xffffffff,
3562 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3563 (int) rel->r_addend & 0xffffffff);
3564 }
3565 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3566 stub_name[len - 2] = 0;
3567 return stub_name;
3568}
3569
3570/* Look up an entry in the stub hash. Stub entries are cached because
3571 creating the stub name takes a bit of time. */
3572
3573static struct ppc_stub_hash_entry *
3574ppc_get_stub_entry (const asection *input_section,
3575 const asection *sym_sec,
3576 struct ppc_link_hash_entry *h,
3577 const Elf_Internal_Rela *rel,
3578 struct ppc_link_hash_table *htab)
3579{
3580 struct ppc_stub_hash_entry *stub_entry;
3581 const asection *id_sec;
3582
3583 /* If this input section is part of a group of sections sharing one
3584 stub section, then use the id of the first section in the group.
3585 Stub names need to include a section id, as there may well be
3586 more than one stub used to reach say, printf, and we need to
3587 distinguish between them. */
3588 id_sec = htab->stub_group[input_section->id].link_sec;
3589
3590 if (h != NULL && h->stub_cache != NULL
3591 && h->stub_cache->h == h
3592 && h->stub_cache->id_sec == id_sec)
3593 {
3594 stub_entry = h->stub_cache;
3595 }
3596 else
3597 {
3598 char *stub_name;
3599
3600 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
3601 if (stub_name == NULL)
3602 return NULL;
3603
3604 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3605 stub_name, FALSE, FALSE);
3606 if (h != NULL)
3607 h->stub_cache = stub_entry;
3608
3609 free (stub_name);
3610 }
3611
3612 return stub_entry;
3613}
3614
3615/* Add a new stub entry to the stub hash. Not all fields of the new
3616 stub entry are initialised. */
3617
3618static struct ppc_stub_hash_entry *
3619ppc_add_stub (const char *stub_name,
3620 asection *section,
3621 struct ppc_link_hash_table *htab)
3622{
3623 asection *link_sec;
3624 asection *stub_sec;
3625 struct ppc_stub_hash_entry *stub_entry;
3626
3627 link_sec = htab->stub_group[section->id].link_sec;
3628 stub_sec = htab->stub_group[section->id].stub_sec;
3629 if (stub_sec == NULL)
3630 {
3631 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3632 if (stub_sec == NULL)
3633 {
3634 size_t namelen;
3635 bfd_size_type len;
3636 char *s_name;
3637
3638 namelen = strlen (link_sec->name);
3639 len = namelen + sizeof (STUB_SUFFIX);
3640 s_name = bfd_alloc (htab->stub_bfd, len);
3641 if (s_name == NULL)
3642 return NULL;
3643
3644 memcpy (s_name, link_sec->name, namelen);
3645 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3646 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3647 if (stub_sec == NULL)
3648 return NULL;
3649 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3650 }
3651 htab->stub_group[section->id].stub_sec = stub_sec;
3652 }
3653
3654 /* Enter this entry into the linker stub hash table. */
3655 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3656 TRUE, FALSE);
3657 if (stub_entry == NULL)
3658 {
3659 (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
3660 section->owner, stub_name);
3661 return NULL;
3662 }
3663
3664 stub_entry->stub_sec = stub_sec;
3665 stub_entry->stub_offset = 0;
3666 stub_entry->id_sec = link_sec;
3667 return stub_entry;
3668}
3669
3670/* Create sections for linker generated code. */
3671
3672static bfd_boolean
3673create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3674{
3675 struct ppc_link_hash_table *htab;
3676 flagword flags;
3677
3678 htab = ppc_hash_table (info);
3679
3680 /* Create .sfpr for code to save and restore fp regs. */
3681 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3682 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3683 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3684 flags);
3685 if (htab->sfpr == NULL
3686 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3687 return FALSE;
3688
3689 /* Create .glink for lazy dynamic linking support. */
3690 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3691 flags);
3692 if (htab->glink == NULL
3693 || ! bfd_set_section_alignment (dynobj, htab->glink, 2))
3694 return FALSE;
3695
3696 /* Create branch lookup table for plt_branch stubs. */
3697 if (info->shared)
3698 {
3699 flags = (SEC_ALLOC | SEC_LOAD
3700 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3701 htab->brlt
3702 = bfd_make_section_anyway_with_flags (dynobj, ".data.rel.ro.brlt",
3703 flags);
3704 }
3705 else
3706 {
3707 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3708 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3709 htab->brlt
3710 = bfd_make_section_anyway_with_flags (dynobj, ".rodata.brlt", flags);
3711 }
3712
3713 if (htab->brlt == NULL
3714 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
3715 return FALSE;
3716
3717 if (info->shared)
3718 {
3719 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3720 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3721 htab->relbrlt
3722 = bfd_make_section_anyway_with_flags (dynobj, ".rela.data.rel.ro.brlt",
3723 flags);
3724 }
3725 else if (info->emitrelocations)
3726 {
3727 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3728 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3729 htab->relbrlt
3730 = bfd_make_section_anyway_with_flags (dynobj, ".rela.rodata.brlt",
3731 flags);
3732 }
3733 else
3734 return TRUE;
3735
3736 if (!htab->relbrlt
3737 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3738 return FALSE;
3739
3740 return TRUE;
3741}
3742
3743/* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3744 not already done. */
3745
3746static bfd_boolean
3747create_got_section (bfd *abfd, struct bfd_link_info *info)
3748{
3749 asection *got, *relgot;
3750 flagword flags;
3751 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3752
3753 if (!htab->got)
3754 {
3755 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
3756 return FALSE;
3757
3758 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
3759 if (!htab->got)
3760 abort ();
3761 }
3762
3763 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3764 | SEC_LINKER_CREATED);
3765
3766 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3767 if (!got
3768 || !bfd_set_section_alignment (abfd, got, 3))
3769 return FALSE;
3770
3771 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3772 flags | SEC_READONLY);
3773 if (!relgot
3774 || ! bfd_set_section_alignment (abfd, relgot, 3))
3775 return FALSE;
3776
3777 ppc64_elf_tdata (abfd)->got = got;
3778 ppc64_elf_tdata (abfd)->relgot = relgot;
3779 return TRUE;
3780}
3781
3782/* Create the dynamic sections, and set up shortcuts. */
3783
3784static bfd_boolean
3785ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3786{
3787 struct ppc_link_hash_table *htab;
3788
3789 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3790 return FALSE;
3791
3792 htab = ppc_hash_table (info);
3793 if (!htab->got)
3794 htab->got = bfd_get_section_by_name (dynobj, ".got");
3795 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
3796 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
3797 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3798 if (!info->shared)
3799 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
3800
3801 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
3802 || (!info->shared && !htab->relbss))
3803 abort ();
3804
3805 return TRUE;
3806}
3807
3808/* Merge PLT info on FROM with that on TO. */
3809
3810static void
3811move_plt_plist (struct ppc_link_hash_entry *from,
3812 struct ppc_link_hash_entry *to)
3813{
3814 if (from->elf.plt.plist != NULL)
3815 {
3816 if (to->elf.plt.plist != NULL)
3817 {
3818 struct plt_entry **entp;
3819 struct plt_entry *ent;
3820
3821 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3822 {
3823 struct plt_entry *dent;
3824
3825 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3826 if (dent->addend == ent->addend)
3827 {
3828 dent->plt.refcount += ent->plt.refcount;
3829 *entp = ent->next;
3830 break;
3831 }
3832 if (dent == NULL)
3833 entp = &ent->next;
3834 }
3835 *entp = to->elf.plt.plist;
3836 }
3837
3838 to->elf.plt.plist = from->elf.plt.plist;
3839 from->elf.plt.plist = NULL;
3840 }
3841}
3842
3843/* Copy the extra info we tack onto an elf_link_hash_entry. */
3844
3845static void
3846ppc64_elf_copy_indirect_symbol
3847 (const struct elf_backend_data *bed ATTRIBUTE_UNUSED,
3848 struct elf_link_hash_entry *dir,
3849 struct elf_link_hash_entry *ind)
3850{
3851 struct ppc_link_hash_entry *edir, *eind;
3852
3853 edir = (struct ppc_link_hash_entry *) dir;
3854 eind = (struct ppc_link_hash_entry *) ind;
3855
3856 /* Copy over any dynamic relocs we may have on the indirect sym. */
3857 if (eind->dyn_relocs != NULL)
3858 {
3859 if (edir->dyn_relocs != NULL)
3860 {
3861 struct ppc_dyn_relocs **pp;
3862 struct ppc_dyn_relocs *p;
3863
3864 if (eind->elf.root.type == bfd_link_hash_indirect)
3865 abort ();
3866
3867 /* Add reloc counts against the weak sym to the strong sym
3868 list. Merge any entries against the same section. */
3869 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3870 {
3871 struct ppc_dyn_relocs *q;
3872
3873 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3874 if (q->sec == p->sec)
3875 {
3876 q->pc_count += p->pc_count;
3877 q->count += p->count;
3878 *pp = p->next;
3879 break;
3880 }
3881 if (q == NULL)
3882 pp = &p->next;
3883 }
3884 *pp = edir->dyn_relocs;
3885 }
3886
3887 edir->dyn_relocs = eind->dyn_relocs;
3888 eind->dyn_relocs = NULL;
3889 }
3890
3891 edir->is_func |= eind->is_func;
3892 edir->is_func_descriptor |= eind->is_func_descriptor;
3893 edir->tls_mask |= eind->tls_mask;
3894
3895 /* If called to transfer flags for a weakdef during processing
3896 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
3897 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
3898 if (!(ELIMINATE_COPY_RELOCS
3899 && eind->elf.root.type != bfd_link_hash_indirect
3900 && edir->elf.dynamic_adjusted))
3901 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3902
3903 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3904 edir->elf.ref_regular |= eind->elf.ref_regular;
3905 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3906 edir->elf.needs_plt |= eind->elf.needs_plt;
3907
3908 /* If we were called to copy over info for a weak sym, that's all. */
3909 if (eind->elf.root.type != bfd_link_hash_indirect)
3910 return;
3911
3912 /* Copy over got entries that we may have already seen to the
3913 symbol which just became indirect. */
3914 if (eind->elf.got.glist != NULL)
3915 {
3916 if (edir->elf.got.glist != NULL)
3917 {
3918 struct got_entry **entp;
3919 struct got_entry *ent;
3920
3921 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3922 {
3923 struct got_entry *dent;
3924
3925 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3926 if (dent->addend == ent->addend
3927 && dent->owner == ent->owner
3928 && dent->tls_type == ent->tls_type)
3929 {
3930 dent->got.refcount += ent->got.refcount;
3931 *entp = ent->next;
3932 break;
3933 }
3934 if (dent == NULL)
3935 entp = &ent->next;
3936 }
3937 *entp = edir->elf.got.glist;
3938 }
3939
3940 edir->elf.got.glist = eind->elf.got.glist;
3941 eind->elf.got.glist = NULL;
3942 }
3943
3944 /* And plt entries. */
3945 move_plt_plist (eind, edir);
3946
3947 if (edir->elf.dynindx == -1)
3948 {
3949 edir->elf.dynindx = eind->elf.dynindx;
3950 edir->elf.dynstr_index = eind->elf.dynstr_index;
3951 eind->elf.dynindx = -1;
3952 eind->elf.dynstr_index = 0;
3953 }
3954 else
3955 BFD_ASSERT (eind->elf.dynindx == -1);
3956}
3957
3958/* Find the function descriptor hash entry from the given function code
3959 hash entry FH. Link the entries via their OH fields. */
3960
3961static struct ppc_link_hash_entry *
3962get_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3963{
3964 struct ppc_link_hash_entry *fdh = fh->oh;
3965
3966 if (fdh == NULL)
3967 {
3968 const char *fd_name = fh->elf.root.root.string + 1;
3969
3970 fdh = (struct ppc_link_hash_entry *)
3971 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3972 if (fdh != NULL)
3973 {
3974 fdh->is_func_descriptor = 1;
3975 fdh->oh = fh;
3976 fh->is_func = 1;
3977 fh->oh = fdh;
3978 }
3979 }
3980
3981 return fdh;
3982}
3983
3984/* Make a fake function descriptor sym for the code sym FH. */
3985
3986static struct ppc_link_hash_entry *
3987make_fdh (struct bfd_link_info *info,
3988 struct ppc_link_hash_entry *fh)
3989{
3990 bfd *abfd;
3991 asymbol *newsym;
3992 struct bfd_link_hash_entry *bh;
3993 struct ppc_link_hash_entry *fdh;
3994
3995 abfd = fh->elf.root.u.undef.abfd;
3996 newsym = bfd_make_empty_symbol (abfd);
3997 newsym->name = fh->elf.root.root.string + 1;
3998 newsym->section = bfd_und_section_ptr;
3999 newsym->value = 0;
4000 newsym->flags = BSF_WEAK;
4001
4002 bh = NULL;
4003 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4004 newsym->flags, newsym->section,
4005 newsym->value, NULL, FALSE, FALSE,
4006 &bh))
4007 return NULL;
4008
4009 fdh = (struct ppc_link_hash_entry *) bh;
4010 fdh->elf.non_elf = 0;
4011 fdh->fake = 1;
4012 fdh->is_func_descriptor = 1;
4013 fdh->oh = fh;
4014 fh->is_func = 1;
4015 fh->oh = fdh;
4016 return fdh;
4017}
4018
4019/* Hacks to support old ABI code.
4020 When making function calls, old ABI code references function entry
4021 points (dot symbols), while new ABI code references the function
4022 descriptor symbol. We need to make any combination of reference and
4023 definition work together, without breaking archive linking.
4024
4025 For a defined function "foo" and an undefined call to "bar":
4026 An old object defines "foo" and ".foo", references ".bar" (possibly
4027 "bar" too).
4028 A new object defines "foo" and references "bar".
4029
4030 A new object thus has no problem with its undefined symbols being
4031 satisfied by definitions in an old object. On the other hand, the
4032 old object won't have ".bar" satisfied by a new object. */
4033
4034/* Fix function descriptor symbols defined in .opd sections to be
4035 function type. */
4036
4037static bfd_boolean
4038ppc64_elf_add_symbol_hook (bfd *ibfd,
4039 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4040 Elf_Internal_Sym *isym,
4041 const char **name,
4042 flagword *flags ATTRIBUTE_UNUSED,
4043 asection **sec,
4044 bfd_vma *value ATTRIBUTE_UNUSED)
4045{
4046 if (*sec != NULL
4047 && strcmp (bfd_get_section_name (ibfd, *sec), ".opd") == 0)
4048 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4049
4050 if ((*name)[0] == '.'
4051 && ELF_ST_BIND (isym->st_info) == STB_GLOBAL
4052 && ELF_ST_TYPE (isym->st_info) < STT_SECTION
4053 && is_ppc64_elf_target (ibfd->xvec))
4054 ppc64_elf_tdata (ibfd)->u.has_dotsym = 1;
4055
4056 return TRUE;
4057}
4058
4059/* This function makes an old ABI object reference to ".bar" cause the
4060 inclusion of a new ABI object archive that defines "bar".
4061 NAME is a symbol defined in an archive. Return a symbol in the hash
4062 table that might be satisfied by the archive symbols. */
4063
4064static struct elf_link_hash_entry *
4065ppc64_elf_archive_symbol_lookup (bfd *abfd,
4066 struct bfd_link_info *info,
4067 const char *name)
4068{
4069 struct elf_link_hash_entry *h;
4070 char *dot_name;
4071 size_t len;
4072
4073 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4074 if (h != NULL
4075 /* Don't return this sym if it is a fake function descriptor
4076 created by add_symbol_adjust. */
4077 && !(h->root.type == bfd_link_hash_undefweak
4078 && ((struct ppc_link_hash_entry *) h)->fake))
4079 return h;
4080
4081 if (name[0] == '.')
4082 return h;
4083
4084 len = strlen (name);
4085 dot_name = bfd_alloc (abfd, len + 2);
4086 if (dot_name == NULL)
4087 return (struct elf_link_hash_entry *) 0 - 1;
4088 dot_name[0] = '.';
4089 memcpy (dot_name + 1, name, len + 1);
4090 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4091 bfd_release (abfd, dot_name);
4092 return h;
4093}
4094
4095/* This function satisfies all old ABI object references to ".bar" if a
4096 new ABI object defines "bar". Well, at least, undefined dot symbols
4097 are made weak. This stops later archive searches from including an
4098 object if we already have a function descriptor definition. It also
4099 prevents the linker complaining about undefined symbols.
4100 We also check and correct mismatched symbol visibility here. The
4101 most restrictive visibility of the function descriptor and the
4102 function entry symbol is used. */
4103
4104struct add_symbol_adjust_data
4105{
4106 struct bfd_link_info *info;
4107 bfd_boolean ok;
4108};
4109
4110static bfd_boolean
4111add_symbol_adjust (struct elf_link_hash_entry *h, void *inf)
4112{
4113 struct add_symbol_adjust_data *data;
4114 struct ppc_link_hash_table *htab;
4115 struct ppc_link_hash_entry *eh;
4116 struct ppc_link_hash_entry *fdh;
4117
4118 if (h->root.type == bfd_link_hash_indirect)
4119 return TRUE;
4120
4121 if (h->root.type == bfd_link_hash_warning)
4122 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4123
4124 if (h->root.root.string[0] != '.')
4125 return TRUE;
4126
4127 data = inf;
4128 htab = ppc_hash_table (data->info);
4129 eh = (struct ppc_link_hash_entry *) h;
4130 fdh = get_fdh (eh, htab);
4131 if (fdh == NULL
4132 && !data->info->relocatable
4133 && (eh->elf.root.type == bfd_link_hash_undefined
4134 || eh->elf.root.type == bfd_link_hash_undefweak)
4135 && eh->elf.ref_regular)
4136 {
4137 /* Make an undefweak function descriptor sym, which is enough to
4138 pull in an --as-needed shared lib, but won't cause link
4139 errors. Archives are handled elsewhere. */
4140 fdh = make_fdh (data->info, eh);
4141 if (fdh == NULL)
4142 data->ok = FALSE;
4143 else
4144 fdh->elf.ref_regular = 1;
4145 }
4146 else if (fdh != NULL)
4147 {
4148 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4149 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4150 if (entry_vis < descr_vis)
4151 fdh->elf.other += entry_vis - descr_vis;
4152 else if (entry_vis > descr_vis)
4153 eh->elf.other += descr_vis - entry_vis;
4154
4155 if ((fdh->elf.root.type == bfd_link_hash_defined
4156 || fdh->elf.root.type == bfd_link_hash_defweak)
4157 && eh->elf.root.type == bfd_link_hash_undefined)
4158 {
4159 eh->elf.root.type = bfd_link_hash_undefweak;
4160 eh->was_undefined = 1;
4161 htab->twiddled_syms = 1;
4162 }
4163 }
4164
4165 return TRUE;
4166}
4167
4168static bfd_boolean
4169ppc64_elf_check_directives (bfd *abfd, struct bfd_link_info *info)
4170{
4171 struct ppc_link_hash_table *htab;
4172 struct add_symbol_adjust_data data;
4173
4174 if (!is_ppc64_elf_target (abfd->xvec))
4175 return TRUE;
4176
4177 if (!ppc64_elf_tdata (abfd)->u.has_dotsym)
4178 return TRUE;
4179 ppc64_elf_tdata (abfd)->u.deleted_section = NULL;
4180
4181 htab = ppc_hash_table (info);
4182 if (!is_ppc64_elf_target (htab->elf.root.creator))
4183 return TRUE;
4184
4185 data.info = info;
4186 data.ok = TRUE;
4187 elf_link_hash_traverse (&htab->elf, add_symbol_adjust, &data);
4188
4189 /* We need to fix the undefs list for any syms we have twiddled to
4190 undef_weak. */
4191 if (htab->twiddled_syms)
4192 {
4193 bfd_link_repair_undef_list (&htab->elf.root);
4194 htab->twiddled_syms = 0;
4195 }
4196 return data.ok;
4197}
4198
4199static bfd_boolean
4200update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4201 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4202{
4203 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4204 char *local_got_tls_masks;
4205
4206 if (local_got_ents == NULL)
4207 {
4208 bfd_size_type size = symtab_hdr->sh_info;
4209
4210 size *= sizeof (*local_got_ents) + sizeof (*local_got_tls_masks);
4211 local_got_ents = bfd_zalloc (abfd, size);
4212 if (local_got_ents == NULL)
4213 return FALSE;
4214 elf_local_got_ents (abfd) = local_got_ents;
4215 }
4216
4217 if ((tls_type & TLS_EXPLICIT) == 0)
4218 {
4219 struct got_entry *ent;
4220
4221 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4222 if (ent->addend == r_addend
4223 && ent->owner == abfd
4224 && ent->tls_type == tls_type)
4225 break;
4226 if (ent == NULL)
4227 {
4228 bfd_size_type amt = sizeof (*ent);
4229 ent = bfd_alloc (abfd, amt);
4230 if (ent == NULL)
4231 return FALSE;
4232 ent->next = local_got_ents[r_symndx];
4233 ent->addend = r_addend;
4234 ent->owner = abfd;
4235 ent->tls_type = tls_type;
4236 ent->got.refcount = 0;
4237 local_got_ents[r_symndx] = ent;
4238 }
4239 ent->got.refcount += 1;
4240 }
4241
4242 local_got_tls_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
4243 local_got_tls_masks[r_symndx] |= tls_type;
4244 return TRUE;
4245}
4246
4247static bfd_boolean
4248update_plt_info (bfd *abfd, struct ppc_link_hash_entry *eh, bfd_vma addend)
4249{
4250 struct plt_entry *ent;
4251
4252 for (ent = eh->elf.plt.plist; ent != NULL; ent = ent->next)
4253 if (ent->addend == addend)
4254 break;
4255 if (ent == NULL)
4256 {
4257 bfd_size_type amt = sizeof (*ent);
4258 ent = bfd_alloc (abfd, amt);
4259 if (ent == NULL)
4260 return FALSE;
4261 ent->next = eh->elf.plt.plist;
4262 ent->addend = addend;
4263 ent->plt.refcount = 0;
4264 eh->elf.plt.plist = ent;
4265 }
4266 ent->plt.refcount += 1;
4267 eh->elf.needs_plt = 1;
4268 if (eh->elf.root.root.string[0] == '.'
4269 && eh->elf.root.root.string[1] != '\0')
4270 eh->is_func = 1;
4271 return TRUE;
4272}
4273
4274/* Look through the relocs for a section during the first phase, and
4275 calculate needed space in the global offset table, procedure
4276 linkage table, and dynamic reloc sections. */
4277
4278static bfd_boolean
4279ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4280 asection *sec, const Elf_Internal_Rela *relocs)
4281{
4282 struct ppc_link_hash_table *htab;
4283 Elf_Internal_Shdr *symtab_hdr;
4284 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
4285 const Elf_Internal_Rela *rel;
4286 const Elf_Internal_Rela *rel_end;
4287 asection *sreloc;
4288 asection **opd_sym_map;
4289
4290 if (info->relocatable)
4291 return TRUE;
4292
4293 /* Don't do anything special with non-loaded, non-alloced sections.
4294 In particular, any relocs in such sections should not affect GOT
4295 and PLT reference counting (ie. we don't allow them to create GOT
4296 or PLT entries), there's no possibility or desire to optimize TLS
4297 relocs, and there's not much point in propagating relocs to shared
4298 libs that the dynamic linker won't relocate. */
4299 if ((sec->flags & SEC_ALLOC) == 0)
4300 return TRUE;
4301
4302 htab = ppc_hash_table (info);
4303 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4304
4305 sym_hashes = elf_sym_hashes (abfd);
4306 sym_hashes_end = (sym_hashes
4307 + symtab_hdr->sh_size / sizeof (Elf64_External_Sym)
4308 - symtab_hdr->sh_info);
4309
4310 sreloc = NULL;
4311 opd_sym_map = NULL;
4312 if (strcmp (bfd_get_section_name (abfd, sec), ".opd") == 0)
4313 {
4314 /* Garbage collection needs some extra help with .opd sections.
4315 We don't want to necessarily keep everything referenced by
4316 relocs in .opd, as that would keep all functions. Instead,
4317 if we reference an .opd symbol (a function descriptor), we
4318 want to keep the function code symbol's section. This is
4319 easy for global symbols, but for local syms we need to keep
4320 information about the associated function section. Later, if
4321 edit_opd deletes entries, we'll use this array to adjust
4322 local syms in .opd. */
4323 union opd_info {
4324 asection *func_section;
4325 long entry_adjust;
4326 };
4327 bfd_size_type amt;
4328
4329 amt = sec->size * sizeof (union opd_info) / 8;
4330 opd_sym_map = bfd_zalloc (abfd, amt);
4331 if (opd_sym_map == NULL)
4332 return FALSE;
4333 ppc64_elf_section_data (sec)->opd.func_sec = opd_sym_map;
4334 }
4335
4336 if (htab->sfpr == NULL
4337 && !create_linkage_sections (htab->elf.dynobj, info))
4338 return FALSE;
4339
4340 rel_end = relocs + sec->reloc_count;
4341 for (rel = relocs; rel < rel_end; rel++)
4342 {
4343 unsigned long r_symndx;
4344 struct elf_link_hash_entry *h;
4345 enum elf_ppc64_reloc_type r_type;
4346 int tls_type = 0;
4347
4348 r_symndx = ELF64_R_SYM (rel->r_info);
4349 if (r_symndx < symtab_hdr->sh_info)
4350 h = NULL;
4351 else
4352 {
4353 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4354 while (h->root.type == bfd_link_hash_indirect
4355 || h->root.type == bfd_link_hash_warning)
4356 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4357 }
4358
4359 r_type = ELF64_R_TYPE (rel->r_info);
4360 switch (r_type)
4361 {
4362 case R_PPC64_GOT_TLSLD16:
4363 case R_PPC64_GOT_TLSLD16_LO:
4364 case R_PPC64_GOT_TLSLD16_HI:
4365 case R_PPC64_GOT_TLSLD16_HA:
4366 ppc64_tlsld_got (abfd)->refcount += 1;
4367 tls_type = TLS_TLS | TLS_LD;
4368 goto dogottls;
4369
4370 case R_PPC64_GOT_TLSGD16:
4371 case R_PPC64_GOT_TLSGD16_LO:
4372 case R_PPC64_GOT_TLSGD16_HI:
4373 case R_PPC64_GOT_TLSGD16_HA:
4374 tls_type = TLS_TLS | TLS_GD;
4375 goto dogottls;
4376
4377 case R_PPC64_GOT_TPREL16_DS:
4378 case R_PPC64_GOT_TPREL16_LO_DS:
4379 case R_PPC64_GOT_TPREL16_HI:
4380 case R_PPC64_GOT_TPREL16_HA:
4381 if (info->shared)
4382 info->flags |= DF_STATIC_TLS;
4383 tls_type = TLS_TLS | TLS_TPREL;
4384 goto dogottls;
4385
4386 case R_PPC64_GOT_DTPREL16_DS:
4387 case R_PPC64_GOT_DTPREL16_LO_DS:
4388 case R_PPC64_GOT_DTPREL16_HI:
4389 case R_PPC64_GOT_DTPREL16_HA:
4390 tls_type = TLS_TLS | TLS_DTPREL;
4391 dogottls:
4392 sec->has_tls_reloc = 1;
4393 /* Fall thru */
4394
4395 case R_PPC64_GOT16:
4396 case R_PPC64_GOT16_DS:
4397 case R_PPC64_GOT16_HA:
4398 case R_PPC64_GOT16_HI:
4399 case R_PPC64_GOT16_LO:
4400 case R_PPC64_GOT16_LO_DS:
4401 /* This symbol requires a global offset table entry. */
4402 sec->has_toc_reloc = 1;
4403 if (ppc64_elf_tdata (abfd)->got == NULL
4404 && !create_got_section (abfd, info))
4405 return FALSE;
4406
4407 if (h != NULL)
4408 {
4409 struct ppc_link_hash_entry *eh;
4410 struct got_entry *ent;
4411
4412 eh = (struct ppc_link_hash_entry *) h;
4413 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4414 if (ent->addend == rel->r_addend
4415 && ent->owner == abfd
4416 && ent->tls_type == tls_type)
4417 break;
4418 if (ent == NULL)
4419 {
4420 bfd_size_type amt = sizeof (*ent);
4421 ent = bfd_alloc (abfd, amt);
4422 if (ent == NULL)
4423 return FALSE;
4424 ent->next = eh->elf.got.glist;
4425 ent->addend = rel->r_addend;
4426 ent->owner = abfd;
4427 ent->tls_type = tls_type;
4428 ent->got.refcount = 0;
4429 eh->elf.got.glist = ent;
4430 }
4431 ent->got.refcount += 1;
4432 eh->tls_mask |= tls_type;
4433 }
4434 else
4435 /* This is a global offset table entry for a local symbol. */
4436 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4437 rel->r_addend, tls_type))
4438 return FALSE;
4439 break;
4440
4441 case R_PPC64_PLT16_HA:
4442 case R_PPC64_PLT16_HI:
4443 case R_PPC64_PLT16_LO:
4444 case R_PPC64_PLT32:
4445 case R_PPC64_PLT64:
4446 /* This symbol requires a procedure linkage table entry. We
4447 actually build the entry in adjust_dynamic_symbol,
4448 because this might be a case of linking PIC code without
4449 linking in any dynamic objects, in which case we don't
4450 need to generate a procedure linkage table after all. */
4451 if (h == NULL)
4452 {
4453 /* It does not make sense to have a procedure linkage
4454 table entry for a local symbol. */
4455 bfd_set_error (bfd_error_bad_value);
4456 return FALSE;
4457 }
4458 else
4459 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4460 rel->r_addend))
4461 return FALSE;
4462 break;
4463
4464 /* The following relocations don't need to propagate the
4465 relocation if linking a shared object since they are
4466 section relative. */
4467 case R_PPC64_SECTOFF:
4468 case R_PPC64_SECTOFF_LO:
4469 case R_PPC64_SECTOFF_HI:
4470 case R_PPC64_SECTOFF_HA:
4471 case R_PPC64_SECTOFF_DS:
4472 case R_PPC64_SECTOFF_LO_DS:
4473 case R_PPC64_DTPREL16:
4474 case R_PPC64_DTPREL16_LO:
4475 case R_PPC64_DTPREL16_HI:
4476 case R_PPC64_DTPREL16_HA:
4477 case R_PPC64_DTPREL16_DS:
4478 case R_PPC64_DTPREL16_LO_DS:
4479 case R_PPC64_DTPREL16_HIGHER:
4480 case R_PPC64_DTPREL16_HIGHERA:
4481 case R_PPC64_DTPREL16_HIGHEST:
4482 case R_PPC64_DTPREL16_HIGHESTA:
4483 break;
4484
4485 /* Nor do these. */
4486 case R_PPC64_TOC16:
4487 case R_PPC64_TOC16_LO:
4488 case R_PPC64_TOC16_HI:
4489 case R_PPC64_TOC16_HA:
4490 case R_PPC64_TOC16_DS:
4491 case R_PPC64_TOC16_LO_DS:
4492 sec->has_toc_reloc = 1;
4493 break;
4494
4495 /* This relocation describes the C++ object vtable hierarchy.
4496 Reconstruct it for later use during GC. */
4497 case R_PPC64_GNU_VTINHERIT:
4498 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4499 return FALSE;
4500 break;
4501
4502 /* This relocation describes which C++ vtable entries are actually
4503 used. Record for later use during GC. */
4504 case R_PPC64_GNU_VTENTRY:
4505 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4506 return FALSE;
4507 break;
4508
4509 case R_PPC64_REL14:
4510 case R_PPC64_REL14_BRTAKEN:
4511 case R_PPC64_REL14_BRNTAKEN:
4512 htab->has_14bit_branch = 1;
4513 /* Fall through. */
4514
4515 case R_PPC64_REL24:
4516 if (h != NULL)
4517 {
4518 /* We may need a .plt entry if the function this reloc
4519 refers to is in a shared lib. */
4520 if (!update_plt_info (abfd, (struct ppc_link_hash_entry *) h,
4521 rel->r_addend))
4522 return FALSE;
4523 if (h == &htab->tls_get_addr->elf
4524 || h == &htab->tls_get_addr_fd->elf)
4525 sec->has_tls_reloc = 1;
4526 else if (htab->tls_get_addr == NULL
4527 && !strncmp (h->root.root.string, ".__tls_get_addr", 15)
4528 && (h->root.root.string[15] == 0
4529 || h->root.root.string[15] == '@'))
4530 {
4531 htab->tls_get_addr = (struct ppc_link_hash_entry *) h;
4532 sec->has_tls_reloc = 1;
4533 }
4534 else if (htab->tls_get_addr_fd == NULL
4535 && !strncmp (h->root.root.string, "__tls_get_addr", 14)
4536 && (h->root.root.string[14] == 0
4537 || h->root.root.string[14] == '@'))
4538 {
4539 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) h;
4540 sec->has_tls_reloc = 1;
4541 }
4542 }
4543 break;
4544
4545 case R_PPC64_TPREL64:
4546 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4547 if (info->shared)
4548 info->flags |= DF_STATIC_TLS;
4549 goto dotlstoc;
4550
4551 case R_PPC64_DTPMOD64:
4552 if (rel + 1 < rel_end
4553 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4554 && rel[1].r_offset == rel->r_offset + 8)
4555 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4556 else
4557 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4558 goto dotlstoc;
4559
4560 case R_PPC64_DTPREL64:
4561 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4562 if (rel != relocs
4563 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4564 && rel[-1].r_offset == rel->r_offset - 8)
4565 /* This is the second reloc of a dtpmod, dtprel pair.
4566 Don't mark with TLS_DTPREL. */
4567 goto dodyn;
4568
4569 dotlstoc:
4570 sec->has_tls_reloc = 1;
4571 if (h != NULL)
4572 {
4573 struct ppc_link_hash_entry *eh;
4574 eh = (struct ppc_link_hash_entry *) h;
4575 eh->tls_mask |= tls_type;
4576 }
4577 else
4578 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4579 rel->r_addend, tls_type))
4580 return FALSE;
4581
4582 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4583 {
4584 /* One extra to simplify get_tls_mask. */
4585 bfd_size_type amt = sec->size * sizeof (unsigned) / 8 + 1;
4586 ppc64_elf_section_data (sec)->t_symndx = bfd_zalloc (abfd, amt);
4587 if (ppc64_elf_section_data (sec)->t_symndx == NULL)
4588 return FALSE;
4589 }
4590 BFD_ASSERT (rel->r_offset % 8 == 0);
4591 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8] = r_symndx;
4592
4593 /* Mark the second slot of a GD or LD entry.
4594 -1 to indicate GD and -2 to indicate LD. */
4595 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
4596 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -1;
4597 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
4598 ppc64_elf_section_data (sec)->t_symndx[rel->r_offset / 8 + 1] = -2;
4599 goto dodyn;
4600
4601 case R_PPC64_TPREL16:
4602 case R_PPC64_TPREL16_LO:
4603 case R_PPC64_TPREL16_HI:
4604 case R_PPC64_TPREL16_HA:
4605 case R_PPC64_TPREL16_DS:
4606 case R_PPC64_TPREL16_LO_DS:
4607 case R_PPC64_TPREL16_HIGHER:
4608 case R_PPC64_TPREL16_HIGHERA:
4609 case R_PPC64_TPREL16_HIGHEST:
4610 case R_PPC64_TPREL16_HIGHESTA:
4611 if (info->shared)
4612 {
4613 info->flags |= DF_STATIC_TLS;
4614 goto dodyn;
4615 }
4616 break;
4617
4618 case R_PPC64_ADDR64:
4619 if (opd_sym_map != NULL
4620 && rel + 1 < rel_end
4621 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
4622 {
4623 if (h != NULL)
4624 {
4625 if (h->root.root.string[0] == '.'
4626 && h->root.root.string[1] != 0
4627 && get_fdh ((struct ppc_link_hash_entry *) h, htab))
4628 ;
4629 else
4630 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4631 }
4632 else
4633 {
4634 asection *s;
4635
4636 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec, sec,
4637 r_symndx);
4638 if (s == NULL)
4639 return FALSE;
4640 else if (s != sec)
4641 opd_sym_map[rel->r_offset / 8] = s;
4642 }
4643 }
4644 /* Fall through. */
4645
4646 case R_PPC64_REL30:
4647 case R_PPC64_REL32:
4648 case R_PPC64_REL64:
4649 case R_PPC64_ADDR14:
4650 case R_PPC64_ADDR14_BRNTAKEN:
4651 case R_PPC64_ADDR14_BRTAKEN:
4652 case R_PPC64_ADDR16:
4653 case R_PPC64_ADDR16_DS:
4654 case R_PPC64_ADDR16_HA:
4655 case R_PPC64_ADDR16_HI:
4656 case R_PPC64_ADDR16_HIGHER:
4657 case R_PPC64_ADDR16_HIGHERA:
4658 case R_PPC64_ADDR16_HIGHEST:
4659 case R_PPC64_ADDR16_HIGHESTA:
4660 case R_PPC64_ADDR16_LO:
4661 case R_PPC64_ADDR16_LO_DS:
4662 case R_PPC64_ADDR24:
4663 case R_PPC64_ADDR32:
4664 case R_PPC64_UADDR16:
4665 case R_PPC64_UADDR32:
4666 case R_PPC64_UADDR64:
4667 case R_PPC64_TOC:
4668 if (h != NULL && !info->shared)
4669 /* We may need a copy reloc. */
4670 h->non_got_ref = 1;
4671
4672 /* Don't propagate .opd relocs. */
4673 if (NO_OPD_RELOCS && opd_sym_map != NULL)
4674 break;
4675
4676 /* If we are creating a shared library, and this is a reloc
4677 against a global symbol, or a non PC relative reloc
4678 against a local symbol, then we need to copy the reloc
4679 into the shared library. However, if we are linking with
4680 -Bsymbolic, we do not need to copy a reloc against a
4681 global symbol which is defined in an object we are
4682 including in the link (i.e., DEF_REGULAR is set). At
4683 this point we have not seen all the input files, so it is
4684 possible that DEF_REGULAR is not set now but will be set
4685 later (it is never cleared). In case of a weak definition,
4686 DEF_REGULAR may be cleared later by a strong definition in
4687 a shared library. We account for that possibility below by
4688 storing information in the dyn_relocs field of the hash
4689 table entry. A similar situation occurs when creating
4690 shared libraries and symbol visibility changes render the
4691 symbol local.
4692
4693 If on the other hand, we are creating an executable, we
4694 may need to keep relocations for symbols satisfied by a
4695 dynamic library if we manage to avoid copy relocs for the
4696 symbol. */
4697 dodyn:
4698 if ((info->shared
4699 && (MUST_BE_DYN_RELOC (r_type)
4700 || (h != NULL
4701 && (! info->symbolic
4702 || h->root.type == bfd_link_hash_defweak
4703 || !h->def_regular))))
4704 || (ELIMINATE_COPY_RELOCS
4705 && !info->shared
4706 && h != NULL
4707 && (h->root.type == bfd_link_hash_defweak
4708 || !h->def_regular)))
4709 {
4710 struct ppc_dyn_relocs *p;
4711 struct ppc_dyn_relocs **head;
4712
4713 /* We must copy these reloc types into the output file.
4714 Create a reloc section in dynobj and make room for
4715 this reloc. */
4716 if (sreloc == NULL)
4717 {
4718 const char *name;
4719 bfd *dynobj;
4720
4721 name = (bfd_elf_string_from_elf_section
4722 (abfd,
4723 elf_elfheader (abfd)->e_shstrndx,
4724 elf_section_data (sec)->rel_hdr.sh_name));
4725 if (name == NULL)
4726 return FALSE;
4727
4728 if (strncmp (name, ".rela", 5) != 0
4729 || strcmp (bfd_get_section_name (abfd, sec),
4730 name + 5) != 0)
4731 {
4732 (*_bfd_error_handler)
4733 (_("%B: bad relocation section name `%s\'"),
4734 abfd, name);
4735 bfd_set_error (bfd_error_bad_value);
4736 }
4737
4738 dynobj = htab->elf.dynobj;
4739 sreloc = bfd_get_section_by_name (dynobj, name);
4740 if (sreloc == NULL)
4741 {
4742 flagword flags;
4743
4744 flags = (SEC_HAS_CONTENTS | SEC_READONLY
4745 | SEC_IN_MEMORY | SEC_LINKER_CREATED
4746 | SEC_ALLOC | SEC_LOAD);
4747 sreloc = bfd_make_section_with_flags (dynobj,
4748 name,
4749 flags);
4750 if (sreloc == NULL
4751 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
4752 return FALSE;
4753 }
4754 elf_section_data (sec)->sreloc = sreloc;
4755 }
4756
4757 /* If this is a global symbol, we count the number of
4758 relocations we need for this symbol. */
4759 if (h != NULL)
4760 {
4761 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
4762 }
4763 else
4764 {
4765 /* Track dynamic relocs needed for local syms too.
4766 We really need local syms available to do this
4767 easily. Oh well. */
4768
4769 asection *s;
4770 void *vpp;
4771
4772 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
4773 sec, r_symndx);
4774 if (s == NULL)
4775 return FALSE;
4776
4777 vpp = &elf_section_data (s)->local_dynrel;
4778 head = (struct ppc_dyn_relocs **) vpp;
4779 }
4780
4781 p = *head;
4782 if (p == NULL || p->sec != sec)
4783 {
4784 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
4785 if (p == NULL)
4786 return FALSE;
4787 p->next = *head;
4788 *head = p;
4789 p->sec = sec;
4790 p->count = 0;
4791 p->pc_count = 0;
4792 }
4793
4794 p->count += 1;
4795 if (!MUST_BE_DYN_RELOC (r_type))
4796 p->pc_count += 1;
4797 }
4798 break;
4799
4800 default:
4801 break;
4802 }
4803 }
4804
4805 return TRUE;
4806}
4807
4808/* OFFSET in OPD_SEC specifies a function descriptor. Return the address
4809 of the code entry point, and its section. */
4810
4811static bfd_vma
4812opd_entry_value (asection *opd_sec,
4813 bfd_vma offset,
4814 asection **code_sec,
4815 bfd_vma *code_off)
4816{
4817 bfd *opd_bfd = opd_sec->owner;
4818 Elf_Internal_Rela *relocs;
4819 Elf_Internal_Rela *lo, *hi, *look;
4820 bfd_vma val;
4821
4822 /* No relocs implies we are linking a --just-symbols object. */
4823 if (opd_sec->reloc_count == 0)
4824 {
4825 bfd_vma val;
4826
4827 if (!bfd_get_section_contents (opd_bfd, opd_sec, &val, offset, 8))
4828 return (bfd_vma) -1;
4829
4830 if (code_sec != NULL)
4831 {
4832 asection *sec, *likely = NULL;
4833 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
4834 if (sec->vma <= val
4835 && (sec->flags & SEC_LOAD) != 0
4836 && (sec->flags & SEC_ALLOC) != 0)
4837 likely = sec;
4838 if (likely != NULL)
4839 {
4840 *code_sec = likely;
4841 if (code_off != NULL)
4842 *code_off = val - likely->vma;
4843 }
4844 }
4845 return val;
4846 }
4847
4848 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
4849 if (relocs == NULL)
4850 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
4851
4852 /* Go find the opd reloc at the sym address. */
4853 lo = relocs;
4854 BFD_ASSERT (lo != NULL);
4855 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
4856 val = (bfd_vma) -1;
4857 while (lo < hi)
4858 {
4859 look = lo + (hi - lo) / 2;
4860 if (look->r_offset < offset)
4861 lo = look + 1;
4862 else if (look->r_offset > offset)
4863 hi = look;
4864 else
4865 {
4866 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (opd_bfd)->symtab_hdr;
4867 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
4868 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
4869 {
4870 unsigned long symndx = ELF64_R_SYM (look->r_info);
4871 asection *sec;
4872
4873 if (symndx < symtab_hdr->sh_info)
4874 {
4875 Elf_Internal_Sym *sym;
4876
4877 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
4878 if (sym == NULL)
4879 {
4880 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
4881 symtab_hdr->sh_info,
4882 0, NULL, NULL, NULL);
4883 if (sym == NULL)
4884 break;
4885 symtab_hdr->contents = (bfd_byte *) sym;
4886 }
4887
4888 sym += symndx;
4889 val = sym->st_value;
4890 sec = NULL;
4891 if ((sym->st_shndx != SHN_UNDEF
4892 && sym->st_shndx < SHN_LORESERVE)
4893 || sym->st_shndx > SHN_HIRESERVE)
4894 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
4895 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
4896 }
4897 else
4898 {
4899 struct elf_link_hash_entry **sym_hashes;
4900 struct elf_link_hash_entry *rh;
4901
4902 sym_hashes = elf_sym_hashes (opd_bfd);
4903 rh = sym_hashes[symndx - symtab_hdr->sh_info];
4904 while (rh->root.type == bfd_link_hash_indirect
4905 || rh->root.type == bfd_link_hash_warning)
4906 rh = ((struct elf_link_hash_entry *) rh->root.u.i.link);
4907 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
4908 || rh->root.type == bfd_link_hash_defweak);
4909 val = rh->root.u.def.value;
4910 sec = rh->root.u.def.section;
4911 }
4912 val += look->r_addend;
4913 if (code_off != NULL)
4914 *code_off = val;
4915 if (code_sec != NULL)
4916 *code_sec = sec;
4917 if (sec != NULL && sec->output_section != NULL)
4918 val += sec->output_section->vma + sec->output_offset;
4919 }
4920 break;
4921 }
4922 }
4923
4924 return val;
4925}
4926
4927/* Return the section that should be marked against GC for a given
4928 relocation. */
4929
4930static asection *
4931ppc64_elf_gc_mark_hook (asection *sec,
4932 struct bfd_link_info *info,
4933 Elf_Internal_Rela *rel,
4934 struct elf_link_hash_entry *h,
4935 Elf_Internal_Sym *sym)
4936{
4937 asection *rsec;
4938
4939 /* First mark all our entry sym sections. */
4940 if (info->gc_sym_list != NULL)
4941 {
4942 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4943 struct bfd_sym_chain *sym = info->gc_sym_list;
4944
4945 info->gc_sym_list = NULL;
4946 do
4947 {
4948 struct ppc_link_hash_entry *eh;
4949
4950 eh = (struct ppc_link_hash_entry *)
4951 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, FALSE);
4952 if (eh == NULL)
4953 continue;
4954 if (eh->elf.root.type != bfd_link_hash_defined
4955 && eh->elf.root.type != bfd_link_hash_defweak)
4956 continue;
4957
4958 if (eh->is_func_descriptor
4959 && (eh->oh->elf.root.type == bfd_link_hash_defined
4960 || eh->oh->elf.root.type == bfd_link_hash_defweak))
4961 rsec = eh->oh->elf.root.u.def.section;
4962 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
4963 && opd_entry_value (eh->elf.root.u.def.section,
4964 eh->elf.root.u.def.value,
4965 &rsec, NULL) != (bfd_vma) -1)
4966 ;
4967 else
4968 continue;
4969
4970 if (!rsec->gc_mark)
4971 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4972
4973 rsec = eh->elf.root.u.def.section;
4974 if (!rsec->gc_mark)
4975 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
4976
4977 sym = sym->next;
4978 }
4979 while (sym != NULL);
4980 }
4981
4982 /* Syms return NULL if we're marking .opd, so we avoid marking all
4983 function sections, as all functions are referenced in .opd. */
4984 rsec = NULL;
4985 if (get_opd_info (sec) != NULL)
4986 return rsec;
4987
4988 if (h != NULL)
4989 {
4990 enum elf_ppc64_reloc_type r_type;
4991 struct ppc_link_hash_entry *eh;
4992
4993 r_type = ELF64_R_TYPE (rel->r_info);
4994 switch (r_type)
4995 {
4996 case R_PPC64_GNU_VTINHERIT:
4997 case R_PPC64_GNU_VTENTRY:
4998 break;
4999
5000 default:
5001 switch (h->root.type)
5002 {
5003 case bfd_link_hash_defined:
5004 case bfd_link_hash_defweak:
5005 eh = (struct ppc_link_hash_entry *) h;
5006 if (eh->oh != NULL
5007 && eh->oh->is_func_descriptor
5008 && (eh->oh->elf.root.type == bfd_link_hash_defined
5009 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5010 eh = eh->oh;
5011
5012 /* Function descriptor syms cause the associated
5013 function code sym section to be marked. */
5014 if (eh->is_func_descriptor
5015 && (eh->oh->elf.root.type == bfd_link_hash_defined
5016 || eh->oh->elf.root.type == bfd_link_hash_defweak))
5017 {
5018 /* They also mark their opd section. */
5019 if (!eh->elf.root.u.def.section->gc_mark)
5020 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5021 ppc64_elf_gc_mark_hook);
5022
5023 rsec = eh->oh->elf.root.u.def.section;
5024 }
5025 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5026 && opd_entry_value (eh->elf.root.u.def.section,
5027 eh->elf.root.u.def.value,
5028 &rsec, NULL) != (bfd_vma) -1)
5029 {
5030 if (!eh->elf.root.u.def.section->gc_mark)
5031 _bfd_elf_gc_mark (info, eh->elf.root.u.def.section,
5032 ppc64_elf_gc_mark_hook);
5033 }
5034 else
5035 rsec = h->root.u.def.section;
5036 break;
5037
5038 case bfd_link_hash_common:
5039 rsec = h->root.u.c.p->section;
5040 break;
5041
5042 default:
5043 break;
5044 }
5045 }
5046 }
5047 else
5048 {
5049 asection **opd_sym_section;
5050
5051 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5052 opd_sym_section = get_opd_info (rsec);
5053 if (opd_sym_section != NULL)
5054 {
5055 if (!rsec->gc_mark)
5056 _bfd_elf_gc_mark (info, rsec, ppc64_elf_gc_mark_hook);
5057
5058 rsec = opd_sym_section[(sym->st_value + rel->r_addend) / 8];
5059 }
5060 }
5061
5062 return rsec;
5063}
5064
5065/* Update the .got, .plt. and dynamic reloc reference counts for the
5066 section being removed. */
5067
5068static bfd_boolean
5069ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5070 asection *sec, const Elf_Internal_Rela *relocs)
5071{
5072 struct ppc_link_hash_table *htab;
5073 Elf_Internal_Shdr *symtab_hdr;
5074 struct elf_link_hash_entry **sym_hashes;
5075 struct got_entry **local_got_ents;
5076 const Elf_Internal_Rela *rel, *relend;
5077
5078 if ((sec->flags & SEC_ALLOC) == 0)
5079 return TRUE;
5080
5081 elf_section_data (sec)->local_dynrel = NULL;
5082
5083 htab = ppc_hash_table (info);
5084 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5085 sym_hashes = elf_sym_hashes (abfd);
5086 local_got_ents = elf_local_got_ents (abfd);
5087
5088 relend = relocs + sec->reloc_count;
5089 for (rel = relocs; rel < relend; rel++)
5090 {
5091 unsigned long r_symndx;
5092 enum elf_ppc64_reloc_type r_type;
5093 struct elf_link_hash_entry *h = NULL;
5094 char tls_type = 0;
5095
5096 r_symndx = ELF64_R_SYM (rel->r_info);
5097 r_type = ELF64_R_TYPE (rel->r_info);
5098 if (r_symndx >= symtab_hdr->sh_info)
5099 {
5100 struct ppc_link_hash_entry *eh;
5101 struct ppc_dyn_relocs **pp;
5102 struct ppc_dyn_relocs *p;
5103
5104 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5105 while (h->root.type == bfd_link_hash_indirect
5106 || h->root.type == bfd_link_hash_warning)
5107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5108 eh = (struct ppc_link_hash_entry *) h;
5109
5110 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5111 if (p->sec == sec)
5112 {
5113 /* Everything must go for SEC. */
5114 *pp = p->next;
5115 break;
5116 }
5117 }
5118
5119 switch (r_type)
5120 {
5121 case R_PPC64_GOT_TLSLD16:
5122 case R_PPC64_GOT_TLSLD16_LO:
5123 case R_PPC64_GOT_TLSLD16_HI:
5124 case R_PPC64_GOT_TLSLD16_HA:
5125 ppc64_tlsld_got (abfd)->refcount -= 1;
5126 tls_type = TLS_TLS | TLS_LD;
5127 goto dogot;
5128
5129 case R_PPC64_GOT_TLSGD16:
5130 case R_PPC64_GOT_TLSGD16_LO:
5131 case R_PPC64_GOT_TLSGD16_HI:
5132 case R_PPC64_GOT_TLSGD16_HA:
5133 tls_type = TLS_TLS | TLS_GD;
5134 goto dogot;
5135
5136 case R_PPC64_GOT_TPREL16_DS:
5137 case R_PPC64_GOT_TPREL16_LO_DS:
5138 case R_PPC64_GOT_TPREL16_HI:
5139 case R_PPC64_GOT_TPREL16_HA:
5140 tls_type = TLS_TLS | TLS_TPREL;
5141 goto dogot;
5142
5143 case R_PPC64_GOT_DTPREL16_DS:
5144 case R_PPC64_GOT_DTPREL16_LO_DS:
5145 case R_PPC64_GOT_DTPREL16_HI:
5146 case R_PPC64_GOT_DTPREL16_HA:
5147 tls_type = TLS_TLS | TLS_DTPREL;
5148 goto dogot;
5149
5150 case R_PPC64_GOT16:
5151 case R_PPC64_GOT16_DS:
5152 case R_PPC64_GOT16_HA:
5153 case R_PPC64_GOT16_HI:
5154 case R_PPC64_GOT16_LO:
5155 case R_PPC64_GOT16_LO_DS:
5156 dogot:
5157 {
5158 struct got_entry *ent;
5159
5160 if (h != NULL)
5161 ent = h->got.glist;
5162 else
5163 ent = local_got_ents[r_symndx];
5164
5165 for (; ent != NULL; ent = ent->next)
5166 if (ent->addend == rel->r_addend
5167 && ent->owner == abfd
5168 && ent->tls_type == tls_type)
5169 break;
5170 if (ent == NULL)
5171 abort ();
5172 if (ent->got.refcount > 0)
5173 ent->got.refcount -= 1;
5174 }
5175 break;
5176
5177 case R_PPC64_PLT16_HA:
5178 case R_PPC64_PLT16_HI:
5179 case R_PPC64_PLT16_LO:
5180 case R_PPC64_PLT32:
5181 case R_PPC64_PLT64:
5182 case R_PPC64_REL14:
5183 case R_PPC64_REL14_BRNTAKEN:
5184 case R_PPC64_REL14_BRTAKEN:
5185 case R_PPC64_REL24:
5186 if (h != NULL)
5187 {
5188 struct plt_entry *ent;
5189
5190 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5191 if (ent->addend == rel->r_addend)
5192 break;
5193 if (ent == NULL)
5194 abort ();
5195 if (ent->plt.refcount > 0)
5196 ent->plt.refcount -= 1;
5197 }
5198 break;
5199
5200 default:
5201 break;
5202 }
5203 }
5204 return TRUE;
5205}
5206
5207/* The maximum size of .sfpr. */
5208#define SFPR_MAX (218*4)
5209
5210struct sfpr_def_parms
5211{
5212 const char name[12];
5213 unsigned char lo, hi;
5214 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
5215 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
5216};
5217
5218/* Auto-generate _save*, _rest* functions in .sfpr. */
5219
5220static unsigned int
5221sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
5222{
5223 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5224 unsigned int i;
5225 size_t len = strlen (parm->name);
5226 bfd_boolean writing = FALSE;
5227 char sym[16];
5228
5229 memcpy (sym, parm->name, len);
5230 sym[len + 2] = 0;
5231
5232 for (i = parm->lo; i <= parm->hi; i++)
5233 {
5234 struct elf_link_hash_entry *h;
5235
5236 sym[len + 0] = i / 10 + '0';
5237 sym[len + 1] = i % 10 + '0';
5238 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
5239 if (h != NULL
5240 && !h->def_regular)
5241 {
5242 h->root.type = bfd_link_hash_defined;
5243 h->root.u.def.section = htab->sfpr;
5244 h->root.u.def.value = htab->sfpr->size;
5245 h->type = STT_FUNC;
5246 h->def_regular = 1;
5247 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
5248 writing = TRUE;
5249 if (htab->sfpr->contents == NULL)
5250 {
5251 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5252 if (htab->sfpr->contents == NULL)
5253 return FALSE;
5254 }
5255 }
5256 if (writing)
5257 {
5258 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5259 if (i != parm->hi)
5260 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5261 else
5262 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5263 htab->sfpr->size = p - htab->sfpr->contents;
5264 }
5265 }
5266
5267 return TRUE;
5268}
5269
5270static bfd_byte *
5271savegpr0 (bfd *abfd, bfd_byte *p, int r)
5272{
5273 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5274 return p + 4;
5275}
5276
5277static bfd_byte *
5278savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5279{
5280 p = savegpr0 (abfd, p, r);
5281 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5282 p = p + 4;
5283 bfd_put_32 (abfd, BLR, p);
5284 return p + 4;
5285}
5286
5287static bfd_byte *
5288restgpr0 (bfd *abfd, bfd_byte *p, int r)
5289{
5290 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5291 return p + 4;
5292}
5293
5294static bfd_byte *
5295restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5296{
5297 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5298 p = p + 4;
5299 p = restgpr0 (abfd, p, r);
5300 bfd_put_32 (abfd, MTLR_R0, p);
5301 p = p + 4;
5302 if (r == 29)
5303 {
5304 p = restgpr0 (abfd, p, 30);
5305 p = restgpr0 (abfd, p, 31);
5306 }
5307 bfd_put_32 (abfd, BLR, p);
5308 return p + 4;
5309}
5310
5311static bfd_byte *
5312savegpr1 (bfd *abfd, bfd_byte *p, int r)
5313{
5314 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5315 return p + 4;
5316}
5317
5318static bfd_byte *
5319savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5320{
5321 p = savegpr1 (abfd, p, r);
5322 bfd_put_32 (abfd, BLR, p);
5323 return p + 4;
5324}
5325
5326static bfd_byte *
5327restgpr1 (bfd *abfd, bfd_byte *p, int r)
5328{
5329 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5330 return p + 4;
5331}
5332
5333static bfd_byte *
5334restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5335{
5336 p = restgpr1 (abfd, p, r);
5337 bfd_put_32 (abfd, BLR, p);
5338 return p + 4;
5339}
5340
5341static bfd_byte *
5342savefpr (bfd *abfd, bfd_byte *p, int r)
5343{
5344 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5345 return p + 4;
5346}
5347
5348static bfd_byte *
5349savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5350{
5351 p = savefpr (abfd, p, r);
5352 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
5353 p = p + 4;
5354 bfd_put_32 (abfd, BLR, p);
5355 return p + 4;
5356}
5357
5358static bfd_byte *
5359restfpr (bfd *abfd, bfd_byte *p, int r)
5360{
5361 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5362 return p + 4;
5363}
5364
5365static bfd_byte *
5366restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5367{
5368 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
5369 p = p + 4;
5370 p = restfpr (abfd, p, r);
5371 bfd_put_32 (abfd, MTLR_R0, p);
5372 p = p + 4;
5373 if (r == 29)
5374 {
5375 p = restfpr (abfd, p, 30);
5376 p = restfpr (abfd, p, 31);
5377 }
5378 bfd_put_32 (abfd, BLR, p);
5379 return p + 4;
5380}
5381
5382static bfd_byte *
5383savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5384{
5385 p = savefpr (abfd, p, r);
5386 bfd_put_32 (abfd, BLR, p);
5387 return p + 4;
5388}
5389
5390static bfd_byte *
5391restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
5392{
5393 p = restfpr (abfd, p, r);
5394 bfd_put_32 (abfd, BLR, p);
5395 return p + 4;
5396}
5397
5398static bfd_byte *
5399savevr (bfd *abfd, bfd_byte *p, int r)
5400{
5401 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5402 p = p + 4;
5403 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
5404 return p + 4;
5405}
5406
5407static bfd_byte *
5408savevr_tail (bfd *abfd, bfd_byte *p, int r)
5409{
5410 p = savevr (abfd, p, r);
5411 bfd_put_32 (abfd, BLR, p);
5412 return p + 4;
5413}
5414
5415static bfd_byte *
5416restvr (bfd *abfd, bfd_byte *p, int r)
5417{
5418 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
5419 p = p + 4;
5420 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
5421 return p + 4;
5422}
5423
5424static bfd_byte *
5425restvr_tail (bfd *abfd, bfd_byte *p, int r)
5426{
5427 p = restvr (abfd, p, r);
5428 bfd_put_32 (abfd, BLR, p);
5429 return p + 4;
5430}
5431
5432/* Called via elf_link_hash_traverse to transfer dynamic linking
5433 information on function code symbol entries to their corresponding
5434 function descriptor symbol entries. */
5435
5436static bfd_boolean
5437func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
5438{
5439 struct bfd_link_info *info;
5440 struct ppc_link_hash_table *htab;
5441 struct plt_entry *ent;
5442 struct ppc_link_hash_entry *fh;
5443 struct ppc_link_hash_entry *fdh;
5444 bfd_boolean force_local;
5445
5446 fh = (struct ppc_link_hash_entry *) h;
5447 if (fh->elf.root.type == bfd_link_hash_indirect)
5448 return TRUE;
5449
5450 if (fh->elf.root.type == bfd_link_hash_warning)
5451 fh = (struct ppc_link_hash_entry *) fh->elf.root.u.i.link;
5452
5453 info = inf;
5454 htab = ppc_hash_table (info);
5455
5456 /* Resolve undefined references to dot-symbols as the value
5457 in the function descriptor, if we have one in a regular object.
5458 This is to satisfy cases like ".quad .foo". Calls to functions
5459 in dynamic objects are handled elsewhere. */
5460 if (fh->elf.root.type == bfd_link_hash_undefweak
5461 && fh->was_undefined
5462 && (fh->oh->elf.root.type == bfd_link_hash_defined
5463 || fh->oh->elf.root.type == bfd_link_hash_defweak)
5464 && get_opd_info (fh->oh->elf.root.u.def.section) != NULL
5465 && opd_entry_value (fh->oh->elf.root.u.def.section,
5466 fh->oh->elf.root.u.def.value,
5467 &fh->elf.root.u.def.section,
5468 &fh->elf.root.u.def.value) != (bfd_vma) -1)
5469 {
5470 fh->elf.root.type = fh->oh->elf.root.type;
5471 fh->elf.forced_local = 1;
5472 }
5473
5474 /* If this is a function code symbol, transfer dynamic linking
5475 information to the function descriptor symbol. */
5476 if (!fh->is_func)
5477 return TRUE;
5478
5479 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
5480 if (ent->plt.refcount > 0)
5481 break;
5482 if (ent == NULL
5483 || fh->elf.root.root.string[0] != '.'
5484 || fh->elf.root.root.string[1] == '\0')
5485 return TRUE;
5486
5487 /* Find the corresponding function descriptor symbol. Create it
5488 as undefined if necessary. */
5489
5490 fdh = get_fdh (fh, htab);
5491 if (fdh != NULL)
5492 while (fdh->elf.root.type == bfd_link_hash_indirect
5493 || fdh->elf.root.type == bfd_link_hash_warning)
5494 fdh = (struct ppc_link_hash_entry *) fdh->elf.root.u.i.link;
5495
5496 if (fdh == NULL
5497 && info->shared
5498 && (fh->elf.root.type == bfd_link_hash_undefined
5499 || fh->elf.root.type == bfd_link_hash_undefweak))
5500 {
5501 fdh = make_fdh (info, fh);
5502 if (fdh == NULL)
5503 return FALSE;
5504 }
5505
5506 /* Fake function descriptors are made undefweak. If the function
5507 code symbol is strong undefined, make the fake sym the same.
5508 If the function code symbol is defined, then force the fake
5509 descriptor local; We can't support overriding of symbols in a
5510 shared library on a fake descriptor. */
5511
5512 if (fdh != NULL
5513 && fdh->fake
5514 && fdh->elf.root.type == bfd_link_hash_undefweak)
5515 {
5516 if (fh->elf.root.type == bfd_link_hash_undefined)
5517 {
5518 fdh->elf.root.type = bfd_link_hash_undefined;
5519 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
5520 }
5521 else if (fh->elf.root.type == bfd_link_hash_defined
5522 || fh->elf.root.type == bfd_link_hash_defweak)
5523 {
5524 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
5525 }
5526 }
5527
5528 if (fdh != NULL
5529 && !fdh->elf.forced_local
5530 && (info->shared
5531 || fdh->elf.def_dynamic
5532 || fdh->elf.ref_dynamic
5533 || (fdh->elf.root.type == bfd_link_hash_undefweak
5534 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
5535 {
5536 if (fdh->elf.dynindx == -1)
5537 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
5538 return FALSE;
5539 fdh->elf.ref_regular |= fh->elf.ref_regular;
5540 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
5541 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
5542 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
5543 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
5544 {
5545 move_plt_plist (fh, fdh);
5546 fdh->elf.needs_plt = 1;
5547 }
5548 fdh->is_func_descriptor = 1;
5549 fdh->oh = fh;
5550 fh->oh = fdh;
5551 }
5552
5553 /* Now that the info is on the function descriptor, clear the
5554 function code sym info. Any function code syms for which we
5555 don't have a definition in a regular file, we force local.
5556 This prevents a shared library from exporting syms that have
5557 been imported from another library. Function code syms that
5558 are really in the library we must leave global to prevent the
5559 linker dragging in a definition from a static library. */
5560 force_local = (!fh->elf.def_regular
5561 || fdh == NULL
5562 || !fdh->elf.def_regular
5563 || fdh->elf.forced_local);
5564 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5565
5566 return TRUE;
5567}
5568
5569/* Called near the start of bfd_elf_size_dynamic_sections. We use
5570 this hook to a) provide some gcc support functions, and b) transfer
5571 dynamic linking information gathered so far on function code symbol
5572 entries, to their corresponding function descriptor symbol entries. */
5573
5574static bfd_boolean
5575ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
5576 struct bfd_link_info *info)
5577{
5578 struct ppc_link_hash_table *htab;
5579 unsigned int i;
5580 const struct sfpr_def_parms funcs[] =
5581 {
5582 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
5583 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
5584 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
5585 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
5586 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
5587 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
5588 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
5589 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
5590 { "._savef", 14, 31, savefpr, savefpr1_tail },
5591 { "._restf", 14, 31, restfpr, restfpr1_tail },
5592 { "_savevr_", 20, 31, savevr, savevr_tail },
5593 { "_restvr_", 20, 31, restvr, restvr_tail }
5594 };
5595
5596 htab = ppc_hash_table (info);
5597 if (htab->sfpr == NULL)
5598 /* We don't have any relocs. */
5599 return TRUE;
5600
5601 /* Provide any missing _save* and _rest* functions. */
5602 htab->sfpr->size = 0;
5603 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
5604 if (!sfpr_define (info, &funcs[i]))
5605 return FALSE;
5606
5607 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5608
5609 if (htab->sfpr->size == 0)
5610 htab->sfpr->flags |= SEC_EXCLUDE;
5611
5612 return TRUE;
5613}
5614
5615/* Adjust a symbol defined by a dynamic object and referenced by a
5616 regular object. The current definition is in some section of the
5617 dynamic object, but we're not including those sections. We have to
5618 change the definition to something the rest of the link can
5619 understand. */
5620
5621static bfd_boolean
5622ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
5623 struct elf_link_hash_entry *h)
5624{
5625 struct ppc_link_hash_table *htab;
5626 asection *s;
5627 unsigned int power_of_two;
5628
5629 htab = ppc_hash_table (info);
5630
5631 /* Deal with function syms. */
5632 if (h->type == STT_FUNC
5633 || h->needs_plt)
5634 {
5635 /* Clear procedure linkage table information for any symbol that
5636 won't need a .plt entry. */
5637 struct plt_entry *ent;
5638 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
5639 if (ent->plt.refcount > 0)
5640 break;
5641 if (ent == NULL
5642 || SYMBOL_CALLS_LOCAL (info, h)
5643 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
5644 && h->root.type == bfd_link_hash_undefweak))
5645 {
5646 h->plt.plist = NULL;
5647 h->needs_plt = 0;
5648 }
5649 }
5650 else
5651 h->plt.plist = NULL;
5652
5653 /* If this is a weak symbol, and there is a real definition, the
5654 processor independent code will have arranged for us to see the
5655 real definition first, and we can just use the same value. */
5656 if (h->u.weakdef != NULL)
5657 {
5658 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
5659 || h->u.weakdef->root.type == bfd_link_hash_defweak);
5660 h->root.u.def.section = h->u.weakdef->root.u.def.section;
5661 h->root.u.def.value = h->u.weakdef->root.u.def.value;
5662 if (ELIMINATE_COPY_RELOCS)
5663 h->non_got_ref = h->u.weakdef->non_got_ref;
5664 return TRUE;
5665 }
5666
5667 /* If we are creating a shared library, we must presume that the
5668 only references to the symbol are via the global offset table.
5669 For such cases we need not do anything here; the relocations will
5670 be handled correctly by relocate_section. */
5671 if (info->shared)
5672 return TRUE;
5673
5674 /* If there are no references to this symbol that do not use the
5675 GOT, we don't need to generate a copy reloc. */
5676 if (!h->non_got_ref)
5677 return TRUE;
5678
5679 if (ELIMINATE_COPY_RELOCS)
5680 {
5681 struct ppc_link_hash_entry * eh;
5682 struct ppc_dyn_relocs *p;
5683
5684 eh = (struct ppc_link_hash_entry *) h;
5685 for (p = eh->dyn_relocs; p != NULL; p = p->next)
5686 {
5687 s = p->sec->output_section;
5688 if (s != NULL && (s->flags & SEC_READONLY) != 0)
5689 break;
5690 }
5691
5692 /* If we didn't find any dynamic relocs in read-only sections, then
5693 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
5694 if (p == NULL)
5695 {
5696 h->non_got_ref = 0;
5697 return TRUE;
5698 }
5699 }
5700
5701 if (h->plt.plist != NULL)
5702 {
5703 /* We should never get here, but unfortunately there are versions
5704 of gcc out there that improperly (for this ABI) put initialized
5705 function pointers, vtable refs and suchlike in read-only
5706 sections. Allow them to proceed, but warn that this might
5707 break at runtime. */
5708 (*_bfd_error_handler)
5709 (_("copy reloc against `%s' requires lazy plt linking; "
5710 "avoid setting LD_BIND_NOW=1 or upgrade gcc"),
5711 h->root.root.string);
5712 }
5713
5714 /* This is a reference to a symbol defined by a dynamic object which
5715 is not a function. */
5716
5717 if (h->size == 0)
5718 {
5719 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
5720 h->root.root.string);
5721 return TRUE;
5722 }
5723
5724 /* We must allocate the symbol in our .dynbss section, which will
5725 become part of the .bss section of the executable. There will be
5726 an entry for this symbol in the .dynsym section. The dynamic
5727 object will contain position independent code, so all references
5728 from the dynamic object to this symbol will go through the global
5729 offset table. The dynamic linker will use the .dynsym entry to
5730 determine the address it must put in the global offset table, so
5731 both the dynamic object and the regular object will refer to the
5732 same memory location for the variable. */
5733
5734 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
5735 to copy the initial value out of the dynamic object and into the
5736 runtime process image. We need to remember the offset into the
5737 .rela.bss section we are going to use. */
5738 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
5739 {
5740 htab->relbss->size += sizeof (Elf64_External_Rela);
5741 h->needs_copy = 1;
5742 }
5743
5744 /* We need to figure out the alignment required for this symbol. I
5745 have no idea how ELF linkers handle this. */
5746 power_of_two = bfd_log2 (h->size);
5747 if (power_of_two > 4)
5748 power_of_two = 4;
5749
5750 /* Apply the required alignment. */
5751 s = htab->dynbss;
5752 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
5753 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
5754 {
5755 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
5756 return FALSE;
5757 }
5758
5759 /* Define the symbol as being at this point in the section. */
5760 h->root.u.def.section = s;
5761 h->root.u.def.value = s->size;
5762
5763 /* Increment the section size to make room for the symbol. */
5764 s->size += h->size;
5765
5766 return TRUE;
5767}
5768
5769/* If given a function descriptor symbol, hide both the function code
5770 sym and the descriptor. */
5771static void
5772ppc64_elf_hide_symbol (struct bfd_link_info *info,
5773 struct elf_link_hash_entry *h,
5774 bfd_boolean force_local)
5775{
5776 struct ppc_link_hash_entry *eh;
5777 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
5778
5779 eh = (struct ppc_link_hash_entry *) h;
5780 if (eh->is_func_descriptor)
5781 {
5782 struct ppc_link_hash_entry *fh = eh->oh;
5783
5784 if (fh == NULL)
5785 {
5786 const char *p, *q;
5787 struct ppc_link_hash_table *htab;
5788 char save;
5789
5790 /* We aren't supposed to use alloca in BFD because on
5791 systems which do not have alloca the version in libiberty
5792 calls xmalloc, which might cause the program to crash
5793 when it runs out of memory. This function doesn't have a
5794 return status, so there's no way to gracefully return an
5795 error. So cheat. We know that string[-1] can be safely
5796 accessed; It's either a string in an ELF string table,
5797 or allocated in an objalloc structure. */
5798
5799 p = eh->elf.root.root.string - 1;
5800 save = *p;
5801 *(char *) p = '.';
5802 htab = ppc_hash_table (info);
5803 fh = (struct ppc_link_hash_entry *)
5804 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5805 *(char *) p = save;
5806
5807 /* Unfortunately, if it so happens that the string we were
5808 looking for was allocated immediately before this string,
5809 then we overwrote the string terminator. That's the only
5810 reason the lookup should fail. */
5811 if (fh == NULL)
5812 {
5813 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
5814 while (q >= eh->elf.root.root.string && *q == *p)
5815 --q, --p;
5816 if (q < eh->elf.root.root.string && *p == '.')
5817 fh = (struct ppc_link_hash_entry *)
5818 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
5819 }
5820 if (fh != NULL)
5821 {
5822 eh->oh = fh;
5823 fh->oh = eh;
5824 }
5825 }
5826 if (fh != NULL)
5827 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
5828 }
5829}
5830
5831static bfd_boolean
5832get_sym_h (struct elf_link_hash_entry **hp,
5833 Elf_Internal_Sym **symp,
5834 asection **symsecp,
5835 char **tls_maskp,
5836 Elf_Internal_Sym **locsymsp,
5837 unsigned long r_symndx,
5838 bfd *ibfd)
5839{
5840 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
5841
5842 if (r_symndx >= symtab_hdr->sh_info)
5843 {
5844 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
5845 struct elf_link_hash_entry *h;
5846
5847 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5848 while (h->root.type == bfd_link_hash_indirect
5849 || h->root.type == bfd_link_hash_warning)
5850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5851
5852 if (hp != NULL)
5853 *hp = h;
5854
5855 if (symp != NULL)
5856 *symp = NULL;
5857
5858 if (symsecp != NULL)
5859 {
5860 asection *symsec = NULL;
5861 if (h->root.type == bfd_link_hash_defined
5862 || h->root.type == bfd_link_hash_defweak)
5863 symsec = h->root.u.def.section;
5864 *symsecp = symsec;
5865 }
5866
5867 if (tls_maskp != NULL)
5868 {
5869 struct ppc_link_hash_entry *eh;
5870
5871 eh = (struct ppc_link_hash_entry *) h;
5872 *tls_maskp = &eh->tls_mask;
5873 }
5874 }
5875 else
5876 {
5877 Elf_Internal_Sym *sym;
5878 Elf_Internal_Sym *locsyms = *locsymsp;
5879
5880 if (locsyms == NULL)
5881 {
5882 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
5883 if (locsyms == NULL)
5884 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
5885 symtab_hdr->sh_info,
5886 0, NULL, NULL, NULL);
5887 if (locsyms == NULL)
5888 return FALSE;
5889 *locsymsp = locsyms;
5890 }
5891 sym = locsyms + r_symndx;
5892
5893 if (hp != NULL)
5894 *hp = NULL;
5895
5896 if (symp != NULL)
5897 *symp = sym;
5898
5899 if (symsecp != NULL)
5900 {
5901 asection *symsec = NULL;
5902 if ((sym->st_shndx != SHN_UNDEF
5903 && sym->st_shndx < SHN_LORESERVE)
5904 || sym->st_shndx > SHN_HIRESERVE)
5905 symsec = bfd_section_from_elf_index (ibfd, sym->st_shndx);
5906 *symsecp = symsec;
5907 }
5908
5909 if (tls_maskp != NULL)
5910 {
5911 struct got_entry **lgot_ents;
5912 char *tls_mask;
5913
5914 tls_mask = NULL;
5915 lgot_ents = elf_local_got_ents (ibfd);
5916 if (lgot_ents != NULL)
5917 {
5918 char *lgot_masks = (char *) (lgot_ents + symtab_hdr->sh_info);
5919 tls_mask = &lgot_masks[r_symndx];
5920 }
5921 *tls_maskp = tls_mask;
5922 }
5923 }
5924 return TRUE;
5925}
5926
5927/* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
5928 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
5929 type suitable for optimization, and 1 otherwise. */
5930
5931static int
5932get_tls_mask (char **tls_maskp, unsigned long *toc_symndx,
5933 Elf_Internal_Sym **locsymsp,
5934 const Elf_Internal_Rela *rel, bfd *ibfd)
5935{
5936 unsigned long r_symndx;
5937 int next_r;
5938 struct elf_link_hash_entry *h;
5939 Elf_Internal_Sym *sym;
5940 asection *sec;
5941 bfd_vma off;
5942
5943 r_symndx = ELF64_R_SYM (rel->r_info);
5944 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5945 return 0;
5946
5947 if ((*tls_maskp != NULL && **tls_maskp != 0)
5948 || sec == NULL
5949 || ppc64_elf_section_data (sec)->t_symndx == NULL)
5950 return 1;
5951
5952 /* Look inside a TOC section too. */
5953 if (h != NULL)
5954 {
5955 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
5956 off = h->root.u.def.value;
5957 }
5958 else
5959 off = sym->st_value;
5960 off += rel->r_addend;
5961 BFD_ASSERT (off % 8 == 0);
5962 r_symndx = ppc64_elf_section_data (sec)->t_symndx[off / 8];
5963 next_r = ppc64_elf_section_data (sec)->t_symndx[off / 8 + 1];
5964 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
5965 return 0;
5966 if (toc_symndx != NULL)
5967 *toc_symndx = r_symndx;
5968 if ((h == NULL
5969 || ((h->root.type == bfd_link_hash_defined
5970 || h->root.type == bfd_link_hash_defweak)
5971 && !h->def_dynamic))
5972 && (next_r == -1 || next_r == -2))
5973 return 1 - next_r;
5974 return 1;
5975}
5976
5977/* Adjust all global syms defined in opd sections. In gcc generated
5978 code for the old ABI, these will already have been done. */
5979
5980static bfd_boolean
5981adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
5982{
5983 struct ppc_link_hash_entry *eh;
5984 asection *sym_sec;
5985 long *opd_adjust;
5986
5987 if (h->root.type == bfd_link_hash_indirect)
5988 return TRUE;
5989
5990 if (h->root.type == bfd_link_hash_warning)
5991 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5992
5993 if (h->root.type != bfd_link_hash_defined
5994 && h->root.type != bfd_link_hash_defweak)
5995 return TRUE;
5996
5997 eh = (struct ppc_link_hash_entry *) h;
5998 if (eh->adjust_done)
5999 return TRUE;
6000
6001 sym_sec = eh->elf.root.u.def.section;
6002 opd_adjust = get_opd_info (sym_sec);
6003 if (opd_adjust != NULL)
6004 {
6005 long adjust = opd_adjust[eh->elf.root.u.def.value / 8];
6006 if (adjust == -1)
6007 {
6008 /* This entry has been deleted. */
6009 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->u.deleted_section;
6010 if (dsec == NULL)
6011 {
6012 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6013 if (elf_discarded_section (dsec))
6014 {
6015 ppc64_elf_tdata (sym_sec->owner)->u.deleted_section = dsec;
6016 break;
6017 }
6018 }
6019 eh->elf.root.u.def.value = 0;
6020 eh->elf.root.u.def.section = dsec;
6021 }
6022 else
6023 eh->elf.root.u.def.value += adjust;
6024 eh->adjust_done = 1;
6025 }
6026 return TRUE;
6027}
6028
6029/* Handles decrementing dynamic reloc counts for the reloc specified by
6030 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6031 have already been determined. */
6032
6033static bfd_boolean
6034dec_dynrel_count (bfd_vma r_info,
6035 asection *sec,
6036 struct bfd_link_info *info,
6037 Elf_Internal_Sym **local_syms,
6038 struct elf_link_hash_entry *h,
6039 asection *sym_sec)
6040{
6041 enum elf_ppc64_reloc_type r_type;
6042 struct ppc_dyn_relocs *p;
6043 struct ppc_dyn_relocs **pp;
6044
6045 /* Can this reloc be dynamic? This switch, and later tests here
6046 should be kept in sync with the code in check_relocs. */
6047 r_type = ELF64_R_TYPE (r_info);
6048 switch (r_type)
6049 {
6050 default:
6051 return TRUE;
6052
6053 case R_PPC64_TPREL16:
6054 case R_PPC64_TPREL16_LO:
6055 case R_PPC64_TPREL16_HI:
6056 case R_PPC64_TPREL16_HA:
6057 case R_PPC64_TPREL16_DS:
6058 case R_PPC64_TPREL16_LO_DS:
6059 case R_PPC64_TPREL16_HIGHER:
6060 case R_PPC64_TPREL16_HIGHERA:
6061 case R_PPC64_TPREL16_HIGHEST:
6062 case R_PPC64_TPREL16_HIGHESTA:
6063 if (!info->shared)
6064 return TRUE;
6065
6066 case R_PPC64_TPREL64:
6067 case R_PPC64_DTPMOD64:
6068 case R_PPC64_DTPREL64:
6069 case R_PPC64_ADDR64:
6070 case R_PPC64_REL30:
6071 case R_PPC64_REL32:
6072 case R_PPC64_REL64:
6073 case R_PPC64_ADDR14:
6074 case R_PPC64_ADDR14_BRNTAKEN:
6075 case R_PPC64_ADDR14_BRTAKEN:
6076 case R_PPC64_ADDR16:
6077 case R_PPC64_ADDR16_DS:
6078 case R_PPC64_ADDR16_HA:
6079 case R_PPC64_ADDR16_HI:
6080 case R_PPC64_ADDR16_HIGHER:
6081 case R_PPC64_ADDR16_HIGHERA:
6082 case R_PPC64_ADDR16_HIGHEST:
6083 case R_PPC64_ADDR16_HIGHESTA:
6084 case R_PPC64_ADDR16_LO:
6085 case R_PPC64_ADDR16_LO_DS:
6086 case R_PPC64_ADDR24:
6087 case R_PPC64_ADDR32:
6088 case R_PPC64_UADDR16:
6089 case R_PPC64_UADDR32:
6090 case R_PPC64_UADDR64:
6091 case R_PPC64_TOC:
6092 break;
6093 }
6094
6095 if (local_syms != NULL)
6096 {
6097 unsigned long r_symndx;
6098 Elf_Internal_Sym *sym;
6099 bfd *ibfd = sec->owner;
6100
6101 r_symndx = ELF64_R_SYM (r_info);
6102 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6103 return FALSE;
6104 }
6105
6106 if ((info->shared
6107 && (MUST_BE_DYN_RELOC (r_type)
6108 || (h != NULL
6109 && (!info->symbolic
6110 || h->root.type == bfd_link_hash_defweak
6111 || !h->def_regular))))
6112 || (ELIMINATE_COPY_RELOCS
6113 && !info->shared
6114 && h != NULL
6115 && (h->root.type == bfd_link_hash_defweak
6116 || !h->def_regular)))
6117 ;
6118 else
6119 return TRUE;
6120
6121 if (h != NULL)
6122 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6123 else if (sym_sec != NULL)
6124 {
6125 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
6126 pp = (struct ppc_dyn_relocs **) vpp;
6127 }
6128 else
6129 {
6130 void *vpp = &elf_section_data (sec)->local_dynrel;
6131 pp = (struct ppc_dyn_relocs **) vpp;
6132 }
6133
6134 while ((p = *pp) != NULL)
6135 {
6136 if (p->sec == sec)
6137 {
6138 if (!MUST_BE_DYN_RELOC (r_type))
6139 p->pc_count -= 1;
6140 p->count -= 1;
6141 if (p->count == 0)
6142 *pp = p->next;
6143 return TRUE;
6144 }
6145 pp = &p->next;
6146 }
6147
6148 (*_bfd_error_handler) (_("dynreloc miscount for %B, section %A"),
6149 sec->owner, sec);
6150 bfd_set_error (bfd_error_bad_value);
6151 return FALSE;
6152}
6153
6154/* Remove unused Official Procedure Descriptor entries. Currently we
6155 only remove those associated with functions in discarded link-once
6156 sections, or weakly defined functions that have been overridden. It
6157 would be possible to remove many more entries for statically linked
6158 applications. */
6159
6160bfd_boolean
6161ppc64_elf_edit_opd (bfd *obfd, struct bfd_link_info *info,
6162 bfd_boolean no_opd_opt,
6163 bfd_boolean non_overlapping)
6164{
6165 bfd *ibfd;
6166 bfd_boolean some_edited = FALSE;
6167 asection *need_pad = NULL;
6168
6169 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6170 {
6171 asection *sec;
6172 Elf_Internal_Rela *relstart, *rel, *relend;
6173 Elf_Internal_Shdr *symtab_hdr;
6174 Elf_Internal_Sym *local_syms;
6175 struct elf_link_hash_entry **sym_hashes;
6176 bfd_vma offset;
6177 bfd_size_type amt;
6178 long *opd_adjust;
6179 bfd_boolean need_edit, add_aux_fields;
6180 bfd_size_type cnt_16b = 0;
6181
6182 sec = bfd_get_section_by_name (ibfd, ".opd");
6183 if (sec == NULL || sec->size == 0)
6184 continue;
6185
6186 amt = sec->size * sizeof (long) / 8;
6187 opd_adjust = get_opd_info (sec);
6188 if (opd_adjust == NULL)
6189 {
6190 /* check_relocs hasn't been called. Must be a ld -r link
6191 or --just-symbols object. */
6192 opd_adjust = bfd_alloc (obfd, amt);
6193 if (opd_adjust == NULL)
6194 return FALSE;
6195 ppc64_elf_section_data (sec)->opd.adjust = opd_adjust;
6196 }
6197 memset (opd_adjust, 0, amt);
6198
6199 if (no_opd_opt)
6200 continue;
6201
6202 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
6203 continue;
6204
6205 if (sec->output_section == bfd_abs_section_ptr)
6206 continue;
6207
6208 /* Look through the section relocs. */
6209 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
6210 continue;
6211
6212 local_syms = NULL;
6213 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6214 sym_hashes = elf_sym_hashes (ibfd);
6215
6216 /* Read the relocations. */
6217 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6218 info->keep_memory);
6219 if (relstart == NULL)
6220 return FALSE;
6221
6222 /* First run through the relocs to check they are sane, and to
6223 determine whether we need to edit this opd section. */
6224 need_edit = FALSE;
6225 need_pad = sec;
6226 offset = 0;
6227 relend = relstart + sec->reloc_count;
6228 for (rel = relstart; rel < relend; )
6229 {
6230 enum elf_ppc64_reloc_type r_type;
6231 unsigned long r_symndx;
6232 asection *sym_sec;
6233 struct elf_link_hash_entry *h;
6234 Elf_Internal_Sym *sym;
6235
6236 /* .opd contains a regular array of 16 or 24 byte entries. We're
6237 only interested in the reloc pointing to a function entry
6238 point. */
6239 if (rel->r_offset != offset
6240 || rel + 1 >= relend
6241 || (rel + 1)->r_offset != offset + 8)
6242 {
6243 /* If someone messes with .opd alignment then after a
6244 "ld -r" we might have padding in the middle of .opd.
6245 Also, there's nothing to prevent someone putting
6246 something silly in .opd with the assembler. No .opd
6247 optimization for them! */
6248 broken_opd:
6249 (*_bfd_error_handler)
6250 (_("%B: .opd is not a regular array of opd entries"), ibfd);
6251 need_edit = FALSE;
6252 break;
6253 }
6254
6255 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
6256 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
6257 {
6258 (*_bfd_error_handler)
6259 (_("%B: unexpected reloc type %u in .opd section"),
6260 ibfd, r_type);
6261 need_edit = FALSE;
6262 break;
6263 }
6264
6265 r_symndx = ELF64_R_SYM (rel->r_info);
6266 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6267 r_symndx, ibfd))
6268 goto error_ret;
6269
6270 if (sym_sec == NULL || sym_sec->owner == NULL)
6271 {
6272 const char *sym_name;
6273 if (h != NULL)
6274 sym_name = h->root.root.string;
6275 else
6276 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
6277 sym_sec);
6278
6279 (*_bfd_error_handler)
6280 (_("%B: undefined sym `%s' in .opd section"),
6281 ibfd, sym_name);
6282 need_edit = FALSE;
6283 break;
6284 }
6285
6286 /* opd entries are always for functions defined in the
6287 current input bfd. If the symbol isn't defined in the
6288 input bfd, then we won't be using the function in this
6289 bfd; It must be defined in a linkonce section in another
6290 bfd, or is weak. It's also possible that we are
6291 discarding the function due to a linker script /DISCARD/,
6292 which we test for via the output_section. */
6293 if (sym_sec->owner != ibfd
6294 || sym_sec->output_section == bfd_abs_section_ptr)
6295 need_edit = TRUE;
6296
6297 rel += 2;
6298 if (rel == relend
6299 || (rel + 1 == relend && rel->r_offset == offset + 16))
6300 {
6301 if (sec->size == offset + 24)
6302 {
6303 need_pad = NULL;
6304 break;
6305 }
6306 if (rel == relend && sec->size == offset + 16)
6307 {
6308 cnt_16b++;
6309 break;
6310 }
6311 goto broken_opd;
6312 }
6313
6314 if (rel->r_offset == offset + 24)
6315 offset += 24;
6316 else if (rel->r_offset != offset + 16)
6317 goto broken_opd;
6318 else if (rel + 1 < relend
6319 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
6320 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
6321 {
6322 offset += 16;
6323 cnt_16b++;
6324 }
6325 else if (rel + 2 < relend
6326 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
6327 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
6328 {
6329 offset += 24;
6330 rel += 1;
6331 }
6332 else
6333 goto broken_opd;
6334 }
6335
6336 add_aux_fields = non_overlapping && cnt_16b > 0;
6337
6338 if (need_edit || add_aux_fields)
6339 {
6340 Elf_Internal_Rela *write_rel;
6341 bfd_byte *rptr, *wptr;
6342 bfd_byte *new_contents = NULL;
6343 bfd_boolean skip;
6344 long opd_ent_size;
6345
6346 /* This seems a waste of time as input .opd sections are all
6347 zeros as generated by gcc, but I suppose there's no reason
6348 this will always be so. We might start putting something in
6349 the third word of .opd entries. */
6350 if ((sec->flags & SEC_IN_MEMORY) == 0)
6351 {
6352 bfd_byte *loc;
6353 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
6354 {
6355 if (loc != NULL)
6356 free (loc);
6357 error_ret:
6358 if (local_syms != NULL
6359 && symtab_hdr->contents != (unsigned char *) local_syms)
6360 free (local_syms);
6361 if (elf_section_data (sec)->relocs != relstart)
6362 free (relstart);
6363 return FALSE;
6364 }
6365 sec->contents = loc;
6366 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6367 }
6368
6369 elf_section_data (sec)->relocs = relstart;
6370
6371 new_contents = sec->contents;
6372 if (add_aux_fields)
6373 {
6374 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
6375 if (new_contents == NULL)
6376 return FALSE;
6377 need_pad = FALSE;
6378 }
6379 wptr = new_contents;
6380 rptr = sec->contents;
6381
6382 write_rel = relstart;
6383 skip = FALSE;
6384 offset = 0;
6385 opd_ent_size = 0;
6386 for (rel = relstart; rel < relend; rel++)
6387 {
6388 unsigned long r_symndx;
6389 asection *sym_sec;
6390 struct elf_link_hash_entry *h;
6391 Elf_Internal_Sym *sym;
6392
6393 r_symndx = ELF64_R_SYM (rel->r_info);
6394 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
6395 r_symndx, ibfd))
6396 goto error_ret;
6397
6398 if (rel->r_offset == offset)
6399 {
6400 struct ppc_link_hash_entry *fdh = NULL;
6401
6402 /* See if the .opd entry is full 24 byte or
6403 16 byte (with fd_aux entry overlapped with next
6404 fd_func). */
6405 opd_ent_size = 24;
6406 if ((rel + 2 == relend && sec->size == offset + 16)
6407 || (rel + 3 < relend
6408 && rel[2].r_offset == offset + 16
6409 && rel[3].r_offset == offset + 24
6410 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
6411 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
6412 opd_ent_size = 16;
6413
6414 if (h != NULL
6415 && h->root.root.string[0] == '.')
6416 {
6417 fdh = get_fdh ((struct ppc_link_hash_entry *) h,
6418 ppc_hash_table (info));
6419 if (fdh != NULL
6420 && fdh->elf.root.type != bfd_link_hash_defined
6421 && fdh->elf.root.type != bfd_link_hash_defweak)
6422 fdh = NULL;
6423 }
6424
6425 skip = (sym_sec->owner != ibfd
6426 || sym_sec->output_section == bfd_abs_section_ptr);
6427 if (skip)
6428 {
6429 if (fdh != NULL && sym_sec->owner == ibfd)
6430 {
6431 /* Arrange for the function descriptor sym
6432 to be dropped. */
6433 fdh->elf.root.u.def.value = 0;
6434 fdh->elf.root.u.def.section = sym_sec;
6435 }
6436 opd_adjust[rel->r_offset / 8] = -1;
6437 }
6438 else
6439 {
6440 /* We'll be keeping this opd entry. */
6441
6442 if (fdh != NULL)
6443 {
6444 /* Redefine the function descriptor symbol to
6445 this location in the opd section. It is
6446 necessary to update the value here rather
6447 than using an array of adjustments as we do
6448 for local symbols, because various places
6449 in the generic ELF code use the value
6450 stored in u.def.value. */
6451 fdh->elf.root.u.def.value = wptr - new_contents;
6452 fdh->adjust_done = 1;
6453 }
6454
6455 /* Local syms are a bit tricky. We could
6456 tweak them as they can be cached, but
6457 we'd need to look through the local syms
6458 for the function descriptor sym which we
6459 don't have at the moment. So keep an
6460 array of adjustments. */
6461 opd_adjust[rel->r_offset / 8]
6462 = (wptr - new_contents) - (rptr - sec->contents);
6463
6464 if (wptr != rptr)
6465 memcpy (wptr, rptr, opd_ent_size);
6466 wptr += opd_ent_size;
6467 if (add_aux_fields && opd_ent_size == 16)
6468 {
6469 memset (wptr, '\0', 8);
6470 wptr += 8;
6471 }
6472 }
6473 rptr += opd_ent_size;
6474 offset += opd_ent_size;
6475 }
6476
6477 if (skip)
6478 {
6479 if (!info->relocatable
6480 && !dec_dynrel_count (rel->r_info, sec, info,
6481 NULL, h, sym_sec))
6482 goto error_ret;
6483 }
6484 else
6485 {
6486 /* We need to adjust any reloc offsets to point to the
6487 new opd entries. While we're at it, we may as well
6488 remove redundant relocs. */
6489 rel->r_offset += opd_adjust[(offset - opd_ent_size) / 8];
6490 if (write_rel != rel)
6491 memcpy (write_rel, rel, sizeof (*rel));
6492 ++write_rel;
6493 }
6494 }
6495
6496 sec->size = wptr - new_contents;
6497 sec->reloc_count = write_rel - relstart;
6498 if (add_aux_fields)
6499 {
6500 free (sec->contents);
6501 sec->contents = new_contents;
6502 }
6503
6504 /* Fudge the size too, as this is used later in
6505 elf_bfd_final_link if we are emitting relocs. */
6506 elf_section_data (sec)->rel_hdr.sh_size
6507 = sec->reloc_count * elf_section_data (sec)->rel_hdr.sh_entsize;
6508 BFD_ASSERT (elf_section_data (sec)->rel_hdr2 == NULL);
6509 some_edited = TRUE;
6510 }
6511 else if (elf_section_data (sec)->relocs != relstart)
6512 free (relstart);
6513
6514 if (local_syms != NULL
6515 && symtab_hdr->contents != (unsigned char *) local_syms)
6516 {
6517 if (!info->keep_memory)
6518 free (local_syms);
6519 else
6520 symtab_hdr->contents = (unsigned char *) local_syms;
6521 }
6522 }
6523
6524 if (some_edited)
6525 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
6526
6527 /* If we are doing a final link and the last .opd entry is just 16 byte
6528 long, add a 8 byte padding after it. */
6529 if (need_pad != NULL && !info->relocatable)
6530 {
6531 bfd_byte *p;
6532
6533 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
6534 {
6535 BFD_ASSERT (need_pad->size > 0);
6536
6537 p = bfd_malloc (need_pad->size + 8);
6538 if (p == NULL)
6539 return FALSE;
6540
6541 if (! bfd_get_section_contents (need_pad->owner, need_pad,
6542 p, 0, need_pad->size))
6543 return FALSE;
6544
6545 need_pad->contents = p;
6546 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
6547 }
6548 else
6549 {
6550 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
6551 if (p == NULL)
6552 return FALSE;
6553
6554 need_pad->contents = p;
6555 }
6556
6557 memset (need_pad->contents + need_pad->size, 0, 8);
6558 need_pad->size += 8;
6559 }
6560
6561 return TRUE;
6562}
6563
6564/* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
6565
6566asection *
6567ppc64_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
6568{
6569 struct ppc_link_hash_table *htab;
6570
6571 htab = ppc_hash_table (info);
6572 if (htab->tls_get_addr != NULL)
6573 {
6574 struct ppc_link_hash_entry *h = htab->tls_get_addr;
6575
6576 while (h->elf.root.type == bfd_link_hash_indirect
6577 || h->elf.root.type == bfd_link_hash_warning)
6578 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6579
6580 htab->tls_get_addr = h;
6581
6582 if (htab->tls_get_addr_fd == NULL
6583 && h->oh != NULL
6584 && h->oh->is_func_descriptor
6585 && (h->oh->elf.root.type == bfd_link_hash_defined
6586 || h->oh->elf.root.type == bfd_link_hash_defweak))
6587 htab->tls_get_addr_fd = h->oh;
6588 }
6589
6590 if (htab->tls_get_addr_fd != NULL)
6591 {
6592 struct ppc_link_hash_entry *h = htab->tls_get_addr_fd;
6593
6594 while (h->elf.root.type == bfd_link_hash_indirect
6595 || h->elf.root.type == bfd_link_hash_warning)
6596 h = (struct ppc_link_hash_entry *) h->elf.root.u.i.link;
6597
6598 htab->tls_get_addr_fd = h;
6599 }
6600
6601 return _bfd_elf_tls_setup (obfd, info);
6602}
6603
6604/* Run through all the TLS relocs looking for optimization
6605 opportunities. The linker has been hacked (see ppc64elf.em) to do
6606 a preliminary section layout so that we know the TLS segment
6607 offsets. We can't optimize earlier because some optimizations need
6608 to know the tp offset, and we need to optimize before allocating
6609 dynamic relocations. */
6610
6611bfd_boolean
6612ppc64_elf_tls_optimize (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6613{
6614 bfd *ibfd;
6615 asection *sec;
6616 struct ppc_link_hash_table *htab;
6617
6618 if (info->relocatable || info->shared)
6619 return TRUE;
6620
6621 htab = ppc_hash_table (info);
6622 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6623 {
6624 Elf_Internal_Sym *locsyms = NULL;
6625
6626 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6627 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
6628 {
6629 Elf_Internal_Rela *relstart, *rel, *relend;
6630 int expecting_tls_get_addr;
6631
6632 /* Read the relocations. */
6633 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
6634 info->keep_memory);
6635 if (relstart == NULL)
6636 return FALSE;
6637
6638 expecting_tls_get_addr = 0;
6639 relend = relstart + sec->reloc_count;
6640 for (rel = relstart; rel < relend; rel++)
6641 {
6642 enum elf_ppc64_reloc_type r_type;
6643 unsigned long r_symndx;
6644 struct elf_link_hash_entry *h;
6645 Elf_Internal_Sym *sym;
6646 asection *sym_sec;
6647 char *tls_mask;
6648 char tls_set, tls_clear, tls_type = 0;
6649 bfd_vma value;
6650 bfd_boolean ok_tprel, is_local;
6651
6652 r_symndx = ELF64_R_SYM (rel->r_info);
6653 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
6654 r_symndx, ibfd))
6655 {
6656 err_free_rel:
6657 if (elf_section_data (sec)->relocs != relstart)
6658 free (relstart);
6659 if (locsyms != NULL
6660 && (elf_tdata (ibfd)->symtab_hdr.contents
6661 != (unsigned char *) locsyms))
6662 free (locsyms);
6663 return FALSE;
6664 }
6665
6666 if (h != NULL)
6667 {
6668 if (h->root.type != bfd_link_hash_defined
6669 && h->root.type != bfd_link_hash_defweak)
6670 continue;
6671 value = h->root.u.def.value;
6672 }
6673 else
6674 /* Symbols referenced by TLS relocs must be of type
6675 STT_TLS. So no need for .opd local sym adjust. */
6676 value = sym->st_value;
6677
6678 ok_tprel = FALSE;
6679 is_local = FALSE;
6680 if (h == NULL
6681 || !h->def_dynamic)
6682 {
6683 is_local = TRUE;
6684 value += sym_sec->output_offset;
6685 value += sym_sec->output_section->vma;
6686 value -= htab->elf.tls_sec->vma;
6687 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
6688 < (bfd_vma) 1 << 32);
6689 }
6690
6691 r_type = ELF64_R_TYPE (rel->r_info);
6692 switch (r_type)
6693 {
6694 case R_PPC64_GOT_TLSLD16:
6695 case R_PPC64_GOT_TLSLD16_LO:
6696 case R_PPC64_GOT_TLSLD16_HI:
6697 case R_PPC64_GOT_TLSLD16_HA:
6698 /* These relocs should never be against a symbol
6699 defined in a shared lib. Leave them alone if
6700 that turns out to be the case. */
6701 ppc64_tlsld_got (ibfd)->refcount -= 1;
6702 if (!is_local)
6703 continue;
6704
6705 /* LD -> LE */
6706 tls_set = 0;
6707 tls_clear = TLS_LD;
6708 tls_type = TLS_TLS | TLS_LD;
6709 expecting_tls_get_addr = 1;
6710 break;
6711
6712 case R_PPC64_GOT_TLSGD16:
6713 case R_PPC64_GOT_TLSGD16_LO:
6714 case R_PPC64_GOT_TLSGD16_HI:
6715 case R_PPC64_GOT_TLSGD16_HA:
6716 if (ok_tprel)
6717 /* GD -> LE */
6718 tls_set = 0;
6719 else
6720 /* GD -> IE */
6721 tls_set = TLS_TLS | TLS_TPRELGD;
6722 tls_clear = TLS_GD;
6723 tls_type = TLS_TLS | TLS_GD;
6724 expecting_tls_get_addr = 1;
6725 break;
6726
6727 case R_PPC64_GOT_TPREL16_DS:
6728 case R_PPC64_GOT_TPREL16_LO_DS:
6729 case R_PPC64_GOT_TPREL16_HI:
6730 case R_PPC64_GOT_TPREL16_HA:
6731 expecting_tls_get_addr = 0;
6732 if (ok_tprel)
6733 {
6734 /* IE -> LE */
6735 tls_set = 0;
6736 tls_clear = TLS_TPREL;
6737 tls_type = TLS_TLS | TLS_TPREL;
6738 break;
6739 }
6740 else
6741 continue;
6742
6743 case R_PPC64_REL14:
6744 case R_PPC64_REL14_BRTAKEN:
6745 case R_PPC64_REL14_BRNTAKEN:
6746 case R_PPC64_REL24:
6747 if (h != NULL
6748 && (h == &htab->tls_get_addr->elf
6749 || h == &htab->tls_get_addr_fd->elf))
6750 {
6751 if (!expecting_tls_get_addr
6752 && rel != relstart
6753 && ((ELF64_R_TYPE (rel[-1].r_info)
6754 == R_PPC64_TOC16)
6755 || (ELF64_R_TYPE (rel[-1].r_info)
6756 == R_PPC64_TOC16_LO)))
6757 {
6758 /* Check for toc tls entries. */
6759 char *toc_tls;
6760 int retval;
6761
6762 retval = get_tls_mask (&toc_tls, NULL, &locsyms,
6763 rel - 1, ibfd);
6764 if (retval == 0)
6765 goto err_free_rel;
6766 if (toc_tls != NULL)
6767 expecting_tls_get_addr = retval > 1;
6768 }
6769
6770 if (expecting_tls_get_addr)
6771 {
6772 struct plt_entry *ent;
6773 for (ent = h->plt.plist; ent; ent = ent->next)
6774 if (ent->addend == 0)
6775 {
6776 if (ent->plt.refcount > 0)
6777 ent->plt.refcount -= 1;
6778 break;
6779 }
6780 }
6781 }
6782 expecting_tls_get_addr = 0;
6783 continue;
6784
6785 case R_PPC64_TPREL64:
6786 expecting_tls_get_addr = 0;
6787 if (ok_tprel)
6788 {
6789 /* IE -> LE */
6790 tls_set = TLS_EXPLICIT;
6791 tls_clear = TLS_TPREL;
6792 break;
6793 }
6794 else
6795 continue;
6796
6797 case R_PPC64_DTPMOD64:
6798 expecting_tls_get_addr = 0;
6799 if (rel + 1 < relend
6800 && (rel[1].r_info
6801 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
6802 && rel[1].r_offset == rel->r_offset + 8)
6803 {
6804 if (ok_tprel)
6805 /* GD -> LE */
6806 tls_set = TLS_EXPLICIT | TLS_GD;
6807 else
6808 /* GD -> IE */
6809 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
6810 tls_clear = TLS_GD;
6811 }
6812 else
6813 {
6814 if (!is_local)
6815 continue;
6816
6817 /* LD -> LE */
6818 tls_set = TLS_EXPLICIT;
6819 tls_clear = TLS_LD;
6820 }
6821 break;
6822
6823 default:
6824 expecting_tls_get_addr = 0;
6825 continue;
6826 }
6827
6828 if ((tls_set & TLS_EXPLICIT) == 0)
6829 {
6830 struct got_entry *ent;
6831
6832 /* Adjust got entry for this reloc. */
6833 if (h != NULL)
6834 ent = h->got.glist;
6835 else
6836 ent = elf_local_got_ents (ibfd)[r_symndx];
6837
6838 for (; ent != NULL; ent = ent->next)
6839 if (ent->addend == rel->r_addend
6840 && ent->owner == ibfd
6841 && ent->tls_type == tls_type)
6842 break;
6843 if (ent == NULL)
6844 abort ();
6845
6846 if (tls_set == 0)
6847 {
6848 /* We managed to get rid of a got entry. */
6849 if (ent->got.refcount > 0)
6850 ent->got.refcount -= 1;
6851 }
6852 }
6853 else
6854 {
6855 /* If we got rid of a DTPMOD/DTPREL reloc pair then
6856 we'll lose one or two dyn relocs. */
6857 if (!dec_dynrel_count (rel->r_info, sec, info,
6858 NULL, h, sym_sec))
6859 return FALSE;
6860
6861 if (tls_set == (TLS_EXPLICIT | TLS_GD))
6862 {
6863 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
6864 NULL, h, sym_sec))
6865 return FALSE;
6866 }
6867 }
6868
6869 *tls_mask |= tls_set;
6870 *tls_mask &= ~tls_clear;
6871 }
6872
6873 if (elf_section_data (sec)->relocs != relstart)
6874 free (relstart);
6875 }
6876
6877 if (locsyms != NULL
6878 && (elf_tdata (ibfd)->symtab_hdr.contents
6879 != (unsigned char *) locsyms))
6880 {
6881 if (!info->keep_memory)
6882 free (locsyms);
6883 else
6884 elf_tdata (ibfd)->symtab_hdr.contents = (unsigned char *) locsyms;
6885 }
6886 }
6887 return TRUE;
6888}
6889
6890/* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
6891 the values of any global symbols in a toc section that has been
6892 edited. Globals in toc sections should be a rarity, so this function
6893 sets a flag if any are found in toc sections other than the one just
6894 edited, so that futher hash table traversals can be avoided. */
6895
6896struct adjust_toc_info
6897{
6898 asection *toc;
6899 unsigned long *skip;
6900 bfd_boolean global_toc_syms;
6901};
6902
6903static bfd_boolean
6904adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
6905{
6906 struct ppc_link_hash_entry *eh;
6907 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
6908
6909 if (h->root.type == bfd_link_hash_indirect)
6910 return TRUE;
6911
6912 if (h->root.type == bfd_link_hash_warning)
6913 h = (struct elf_link_hash_entry *) h->root.u.i.link;
6914
6915 if (h->root.type != bfd_link_hash_defined
6916 && h->root.type != bfd_link_hash_defweak)
6917 return TRUE;
6918
6919 eh = (struct ppc_link_hash_entry *) h;
6920 if (eh->adjust_done)
6921 return TRUE;
6922
6923 if (eh->elf.root.u.def.section == toc_inf->toc)
6924 {
6925 unsigned long skip = toc_inf->skip[eh->elf.root.u.def.value >> 3];
6926 if (skip != (unsigned long) -1)
6927 eh->elf.root.u.def.value -= skip;
6928 else
6929 {
6930 (*_bfd_error_handler)
6931 (_("%s defined in removed toc entry"), eh->elf.root.root.string);
6932 eh->elf.root.u.def.section = &bfd_abs_section;
6933 eh->elf.root.u.def.value = 0;
6934 }
6935 eh->adjust_done = 1;
6936 }
6937 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
6938 toc_inf->global_toc_syms = TRUE;
6939
6940 return TRUE;
6941}
6942
6943/* Examine all relocs referencing .toc sections in order to remove
6944 unused .toc entries. */
6945
6946bfd_boolean
6947ppc64_elf_edit_toc (bfd *obfd ATTRIBUTE_UNUSED, struct bfd_link_info *info)
6948{
6949 bfd *ibfd;
6950 struct adjust_toc_info toc_inf;
6951
6952 toc_inf.global_toc_syms = TRUE;
6953 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6954 {
6955 asection *toc, *sec;
6956 Elf_Internal_Shdr *symtab_hdr;
6957 Elf_Internal_Sym *local_syms;
6958 struct elf_link_hash_entry **sym_hashes;
6959 Elf_Internal_Rela *relstart, *rel;
6960 unsigned long *skip, *drop;
6961 unsigned char *used;
6962 unsigned char *keep, last, some_unused;
6963
6964 toc = bfd_get_section_by_name (ibfd, ".toc");
6965 if (toc == NULL
6966 || toc->size == 0
6967 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6968 || elf_discarded_section (toc))
6969 continue;
6970
6971 local_syms = NULL;
6972 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
6973 sym_hashes = elf_sym_hashes (ibfd);
6974
6975 /* Look at sections dropped from the final link. */
6976 skip = NULL;
6977 relstart = NULL;
6978 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6979 {
6980 if (sec->reloc_count == 0
6981 || !elf_discarded_section (sec)
6982 || get_opd_info (sec)
6983 || (sec->flags & SEC_ALLOC) == 0
6984 || (sec->flags & SEC_DEBUGGING) != 0)
6985 continue;
6986
6987 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
6988 if (relstart == NULL)
6989 goto error_ret;
6990
6991 /* Run through the relocs to see which toc entries might be
6992 unused. */
6993 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
6994 {
6995 enum elf_ppc64_reloc_type r_type;
6996 unsigned long r_symndx;
6997 asection *sym_sec;
6998 struct elf_link_hash_entry *h;
6999 Elf_Internal_Sym *sym;
7000 bfd_vma val;
7001
7002 r_type = ELF64_R_TYPE (rel->r_info);
7003 switch (r_type)
7004 {
7005 default:
7006 continue;
7007
7008 case R_PPC64_TOC16:
7009 case R_PPC64_TOC16_LO:
7010 case R_PPC64_TOC16_HI:
7011 case R_PPC64_TOC16_HA:
7012 case R_PPC64_TOC16_DS:
7013 case R_PPC64_TOC16_LO_DS:
7014 break;
7015 }
7016
7017 r_symndx = ELF64_R_SYM (rel->r_info);
7018 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7019 r_symndx, ibfd))
7020 goto error_ret;
7021
7022 if (sym_sec != toc)
7023 continue;
7024
7025 if (h != NULL)
7026 val = h->root.u.def.value;
7027 else
7028 val = sym->st_value;
7029 val += rel->r_addend;
7030
7031 if (val >= toc->size)
7032 continue;
7033
7034 /* Anything in the toc ought to be aligned to 8 bytes.
7035 If not, don't mark as unused. */
7036 if (val & 7)
7037 continue;
7038
7039 if (skip == NULL)
7040 {
7041 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 7) / 8);
7042 if (skip == NULL)
7043 goto error_ret;
7044 }
7045
7046 skip[val >> 3] = 1;
7047 }
7048
7049 if (elf_section_data (sec)->relocs != relstart)
7050 free (relstart);
7051 }
7052
7053 if (skip == NULL)
7054 continue;
7055
7056 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
7057 if (used == NULL)
7058 {
7059 error_ret:
7060 if (local_syms != NULL
7061 && symtab_hdr->contents != (unsigned char *) local_syms)
7062 free (local_syms);
7063 if (sec != NULL
7064 && relstart != NULL
7065 && elf_section_data (sec)->relocs != relstart)
7066 free (relstart);
7067 if (skip != NULL)
7068 free (skip);
7069 return FALSE;
7070 }
7071
7072 /* Now check all kept sections that might reference the toc. */
7073 for (sec = ibfd->sections;
7074 sec != NULL;
7075 /* Check the toc itself last. */
7076 sec = (sec == toc ? NULL
7077 : sec->next == toc && sec->next->next ? sec->next->next
7078 : sec->next == NULL ? toc
7079 : sec->next))
7080 {
7081 int repeat;
7082
7083 if (sec->reloc_count == 0
7084 || elf_discarded_section (sec)
7085 || get_opd_info (sec)
7086 || (sec->flags & SEC_ALLOC) == 0
7087 || (sec->flags & SEC_DEBUGGING) != 0)
7088 continue;
7089
7090 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, TRUE);
7091 if (relstart == NULL)
7092 goto error_ret;
7093
7094 /* Mark toc entries referenced as used. */
7095 repeat = 0;
7096 do
7097 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7098 {
7099 enum elf_ppc64_reloc_type r_type;
7100 unsigned long r_symndx;
7101 asection *sym_sec;
7102 struct elf_link_hash_entry *h;
7103 Elf_Internal_Sym *sym;
7104 bfd_vma val;
7105
7106 r_type = ELF64_R_TYPE (rel->r_info);
7107 switch (r_type)
7108 {
7109 case R_PPC64_TOC16:
7110 case R_PPC64_TOC16_LO:
7111 case R_PPC64_TOC16_HI:
7112 case R_PPC64_TOC16_HA:
7113 case R_PPC64_TOC16_DS:
7114 case R_PPC64_TOC16_LO_DS:
7115 /* In case we're taking addresses of toc entries. */
7116 case R_PPC64_ADDR64:
7117 break;
7118
7119 default:
7120 continue;
7121 }
7122
7123 r_symndx = ELF64_R_SYM (rel->r_info);
7124 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7125 r_symndx, ibfd))
7126 {
7127 free (used);
7128 goto error_ret;
7129 }
7130
7131 if (sym_sec != toc)
7132 continue;
7133
7134 if (h != NULL)
7135 val = h->root.u.def.value;
7136 else
7137 val = sym->st_value;
7138 val += rel->r_addend;
7139
7140 if (val >= toc->size)
7141 continue;
7142
7143 /* For the toc section, we only mark as used if
7144 this entry itself isn't unused. */
7145 if (sec == toc
7146 && !used[val >> 3]
7147 && (used[rel->r_offset >> 3]
7148 || !skip[rel->r_offset >> 3]))
7149 /* Do all the relocs again, to catch reference
7150 chains. */
7151 repeat = 1;
7152
7153 used[val >> 3] = 1;
7154 }
7155 while (repeat);
7156 }
7157
7158 /* Merge the used and skip arrays. Assume that TOC
7159 doublewords not appearing as either used or unused belong
7160 to to an entry more than one doubleword in size. */
7161 for (drop = skip, keep = used, last = 0, some_unused = 0;
7162 drop < skip + (toc->size + 7) / 8;
7163 ++drop, ++keep)
7164 {
7165 if (*keep)
7166 {
7167 *drop = 0;
7168 last = 0;
7169 }
7170 else if (*drop)
7171 {
7172 some_unused = 1;
7173 last = 1;
7174 }
7175 else
7176 *drop = last;
7177 }
7178
7179 free (used);
7180
7181 if (some_unused)
7182 {
7183 bfd_byte *contents, *src;
7184 unsigned long off;
7185
7186 /* Shuffle the toc contents, and at the same time convert the
7187 skip array from booleans into offsets. */
7188 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
7189 goto error_ret;
7190
7191 elf_section_data (toc)->this_hdr.contents = contents;
7192
7193 for (src = contents, off = 0, drop = skip;
7194 src < contents + toc->size;
7195 src += 8, ++drop)
7196 {
7197 if (*drop)
7198 {
7199 *drop = (unsigned long) -1;
7200 off += 8;
7201 }
7202 else if (off != 0)
7203 {
7204 *drop = off;
7205 memcpy (src - off, src, 8);
7206 }
7207 }
7208 toc->rawsize = toc->size;
7209 toc->size = src - contents - off;
7210
7211 if (toc->reloc_count != 0)
7212 {
7213 Elf_Internal_Rela *wrel;
7214 bfd_size_type sz;
7215
7216 /* Read toc relocs. */
7217 relstart = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
7218 TRUE);
7219 if (relstart == NULL)
7220 goto error_ret;
7221
7222 /* Remove unused toc relocs, and adjust those we keep. */
7223 wrel = relstart;
7224 for (rel = relstart; rel < relstart + toc->reloc_count; ++rel)
7225 if (skip[rel->r_offset >> 3] != (unsigned long) -1)
7226 {
7227 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
7228 wrel->r_info = rel->r_info;
7229 wrel->r_addend = rel->r_addend;
7230 ++wrel;
7231 }
7232 else if (!dec_dynrel_count (rel->r_info, toc, info,
7233 &local_syms, NULL, NULL))
7234 goto error_ret;
7235
7236 toc->reloc_count = wrel - relstart;
7237 sz = elf_section_data (toc)->rel_hdr.sh_entsize;
7238 elf_section_data (toc)->rel_hdr.sh_size = toc->reloc_count * sz;
7239 BFD_ASSERT (elf_section_data (toc)->rel_hdr2 == NULL);
7240 }
7241
7242 /* Adjust addends for relocs against the toc section sym. */
7243 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7244 {
7245 if (sec->reloc_count == 0
7246 || elf_discarded_section (sec))
7247 continue;
7248
7249 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7250 TRUE);
7251 if (relstart == NULL)
7252 goto error_ret;
7253
7254 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
7255 {
7256 enum elf_ppc64_reloc_type r_type;
7257 unsigned long r_symndx;
7258 asection *sym_sec;
7259 struct elf_link_hash_entry *h;
7260 Elf_Internal_Sym *sym;
7261
7262 r_type = ELF64_R_TYPE (rel->r_info);
7263 switch (r_type)
7264 {
7265 default:
7266 continue;
7267
7268 case R_PPC64_TOC16:
7269 case R_PPC64_TOC16_LO:
7270 case R_PPC64_TOC16_HI:
7271 case R_PPC64_TOC16_HA:
7272 case R_PPC64_TOC16_DS:
7273 case R_PPC64_TOC16_LO_DS:
7274 case R_PPC64_ADDR64:
7275 break;
7276 }
7277
7278 r_symndx = ELF64_R_SYM (rel->r_info);
7279 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7280 r_symndx, ibfd))
7281 goto error_ret;
7282
7283 if (sym_sec != toc || h != NULL || sym->st_value != 0)
7284 continue;
7285
7286 rel->r_addend -= skip[rel->r_addend >> 3];
7287 }
7288 }
7289
7290 /* We shouldn't have local or global symbols defined in the TOC,
7291 but handle them anyway. */
7292 if (local_syms != NULL)
7293 {
7294 Elf_Internal_Sym *sym;
7295
7296 for (sym = local_syms;
7297 sym < local_syms + symtab_hdr->sh_info;
7298 ++sym)
7299 if (sym->st_shndx != SHN_UNDEF
7300 && (sym->st_shndx < SHN_LORESERVE
7301 || sym->st_shndx > SHN_HIRESERVE)
7302 && sym->st_value != 0
7303 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
7304 {
7305 if (skip[sym->st_value >> 3] != (unsigned long) -1)
7306 sym->st_value -= skip[sym->st_value >> 3];
7307 else
7308 {
7309 (*_bfd_error_handler)
7310 (_("%s defined in removed toc entry"),
7311 bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7312 NULL));
7313 sym->st_value = 0;
7314 sym->st_shndx = SHN_ABS;
7315 }
7316 symtab_hdr->contents = (unsigned char *) local_syms;
7317 }
7318 }
7319
7320 /* Finally, adjust any global syms defined in the toc. */
7321 if (toc_inf.global_toc_syms)
7322 {
7323 toc_inf.toc = toc;
7324 toc_inf.skip = skip;
7325 toc_inf.global_toc_syms = FALSE;
7326 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
7327 &toc_inf);
7328 }
7329 }
7330
7331 if (local_syms != NULL
7332 && symtab_hdr->contents != (unsigned char *) local_syms)
7333 {
7334 if (!info->keep_memory)
7335 free (local_syms);
7336 else
7337 symtab_hdr->contents = (unsigned char *) local_syms;
7338 }
7339 free (skip);
7340 }
7341
7342 return TRUE;
7343}
7344
7345/* Allocate space in .plt, .got and associated reloc sections for
7346 dynamic relocs. */
7347
7348static bfd_boolean
7349allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7350{
7351 struct bfd_link_info *info;
7352 struct ppc_link_hash_table *htab;
7353 asection *s;
7354 struct ppc_link_hash_entry *eh;
7355 struct ppc_dyn_relocs *p;
7356 struct got_entry *gent;
7357
7358 if (h->root.type == bfd_link_hash_indirect)
7359 return TRUE;
7360
7361 if (h->root.type == bfd_link_hash_warning)
7362 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7363
7364 info = (struct bfd_link_info *) inf;
7365 htab = ppc_hash_table (info);
7366
7367 if (htab->elf.dynamic_sections_created
7368 && h->dynindx != -1
7369 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
7370 {
7371 struct plt_entry *pent;
7372 bfd_boolean doneone = FALSE;
7373 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
7374 if (pent->plt.refcount > 0)
7375 {
7376 /* If this is the first .plt entry, make room for the special
7377 first entry. */
7378 s = htab->plt;
7379 if (s->size == 0)
7380 s->size += PLT_INITIAL_ENTRY_SIZE;
7381
7382 pent->plt.offset = s->size;
7383
7384 /* Make room for this entry. */
7385 s->size += PLT_ENTRY_SIZE;
7386
7387 /* Make room for the .glink code. */
7388 s = htab->glink;
7389 if (s->size == 0)
7390 s->size += GLINK_CALL_STUB_SIZE;
7391 /* We need bigger stubs past index 32767. */
7392 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
7393 s->size += 4;
7394 s->size += 2*4;
7395
7396 /* We also need to make an entry in the .rela.plt section. */
7397 s = htab->relplt;
7398 s->size += sizeof (Elf64_External_Rela);
7399 doneone = TRUE;
7400 }
7401 else
7402 pent->plt.offset = (bfd_vma) -1;
7403 if (!doneone)
7404 {
7405 h->plt.plist = NULL;
7406 h->needs_plt = 0;
7407 }
7408 }
7409 else
7410 {
7411 h->plt.plist = NULL;
7412 h->needs_plt = 0;
7413 }
7414
7415 eh = (struct ppc_link_hash_entry *) h;
7416 /* Run through the TLS GD got entries first if we're changing them
7417 to TPREL. */
7418 if ((eh->tls_mask & TLS_TPRELGD) != 0)
7419 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7420 if (gent->got.refcount > 0
7421 && (gent->tls_type & TLS_GD) != 0)
7422 {
7423 /* This was a GD entry that has been converted to TPREL. If
7424 there happens to be a TPREL entry we can use that one. */
7425 struct got_entry *ent;
7426 for (ent = h->got.glist; ent != NULL; ent = ent->next)
7427 if (ent->got.refcount > 0
7428 && (ent->tls_type & TLS_TPREL) != 0
7429 && ent->addend == gent->addend
7430 && ent->owner == gent->owner)
7431 {
7432 gent->got.refcount = 0;
7433 break;
7434 }
7435
7436 /* If not, then we'll be using our own TPREL entry. */
7437 if (gent->got.refcount != 0)
7438 gent->tls_type = TLS_TLS | TLS_TPREL;
7439 }
7440
7441 for (gent = h->got.glist; gent != NULL; gent = gent->next)
7442 if (gent->got.refcount > 0)
7443 {
7444 bfd_boolean dyn;
7445
7446 /* Make sure this symbol is output as a dynamic symbol.
7447 Undefined weak syms won't yet be marked as dynamic,
7448 nor will all TLS symbols. */
7449 if (h->dynindx == -1
7450 && !h->forced_local)
7451 {
7452 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7453 return FALSE;
7454 }
7455
7456 if ((gent->tls_type & TLS_LD) != 0
7457 && !h->def_dynamic)
7458 {
7459 gent->got.offset = ppc64_tlsld_got (gent->owner)->offset;
7460 continue;
7461 }
7462
7463 s = ppc64_elf_tdata (gent->owner)->got;
7464 gent->got.offset = s->size;
7465 s->size
7466 += (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)) ? 16 : 8;
7467 dyn = htab->elf.dynamic_sections_created;
7468 if ((info->shared
7469 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
7470 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7471 || h->root.type != bfd_link_hash_undefweak))
7472 ppc64_elf_tdata (gent->owner)->relgot->size
7473 += (gent->tls_type & eh->tls_mask & TLS_GD
7474 ? 2 * sizeof (Elf64_External_Rela)
7475 : sizeof (Elf64_External_Rela));
7476 }
7477 else
7478 gent->got.offset = (bfd_vma) -1;
7479
7480 if (eh->dyn_relocs == NULL)
7481 return TRUE;
7482
7483 /* In the shared -Bsymbolic case, discard space allocated for
7484 dynamic pc-relative relocs against symbols which turn out to be
7485 defined in regular objects. For the normal shared case, discard
7486 space for relocs that have become local due to symbol visibility
7487 changes. */
7488
7489 if (info->shared)
7490 {
7491 /* Relocs that use pc_count are those that appear on a call insn,
7492 or certain REL relocs (see MUST_BE_DYN_RELOC) that can be
7493 generated via assembly. We want calls to protected symbols to
7494 resolve directly to the function rather than going via the plt.
7495 If people want function pointer comparisons to work as expected
7496 then they should avoid writing weird assembly. */
7497 if (SYMBOL_CALLS_LOCAL (info, h))
7498 {
7499 struct ppc_dyn_relocs **pp;
7500
7501 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
7502 {
7503 p->count -= p->pc_count;
7504 p->pc_count = 0;
7505 if (p->count == 0)
7506 *pp = p->next;
7507 else
7508 pp = &p->next;
7509 }
7510 }
7511
7512 /* Also discard relocs on undefined weak syms with non-default
7513 visibility. */
7514 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
7515 && h->root.type == bfd_link_hash_undefweak)
7516 eh->dyn_relocs = NULL;
7517 }
7518 else if (ELIMINATE_COPY_RELOCS)
7519 {
7520 /* For the non-shared case, discard space for relocs against
7521 symbols which turn out to need copy relocs or are not
7522 dynamic. */
7523
7524 if (!h->non_got_ref
7525 && h->def_dynamic
7526 && !h->def_regular)
7527 {
7528 /* Make sure this symbol is output as a dynamic symbol.
7529 Undefined weak syms won't yet be marked as dynamic. */
7530 if (h->dynindx == -1
7531 && !h->forced_local)
7532 {
7533 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7534 return FALSE;
7535 }
7536
7537 /* If that succeeded, we know we'll be keeping all the
7538 relocs. */
7539 if (h->dynindx != -1)
7540 goto keep;
7541 }
7542
7543 eh->dyn_relocs = NULL;
7544
7545 keep: ;
7546 }
7547
7548 /* Finally, allocate space. */
7549 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7550 {
7551 asection *sreloc = elf_section_data (p->sec)->sreloc;
7552 sreloc->size += p->count * sizeof (Elf64_External_Rela);
7553 }
7554
7555 return TRUE;
7556}
7557
7558/* Find any dynamic relocs that apply to read-only sections. */
7559
7560static bfd_boolean
7561readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
7562{
7563 struct ppc_link_hash_entry *eh;
7564 struct ppc_dyn_relocs *p;
7565
7566 if (h->root.type == bfd_link_hash_warning)
7567 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7568
7569 eh = (struct ppc_link_hash_entry *) h;
7570 for (p = eh->dyn_relocs; p != NULL; p = p->next)
7571 {
7572 asection *s = p->sec->output_section;
7573
7574 if (s != NULL && (s->flags & SEC_READONLY) != 0)
7575 {
7576 struct bfd_link_info *info = inf;
7577
7578 info->flags |= DF_TEXTREL;
7579
7580 /* Not an error, just cut short the traversal. */
7581 return FALSE;
7582 }
7583 }
7584 return TRUE;
7585}
7586
7587/* Set the sizes of the dynamic sections. */
7588
7589static bfd_boolean
7590ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
7591 struct bfd_link_info *info)
7592{
7593 struct ppc_link_hash_table *htab;
7594 bfd *dynobj;
7595 asection *s;
7596 bfd_boolean relocs;
7597 bfd *ibfd;
7598
7599 htab = ppc_hash_table (info);
7600 dynobj = htab->elf.dynobj;
7601 if (dynobj == NULL)
7602 abort ();
7603
7604 if (htab->elf.dynamic_sections_created)
7605 {
7606 /* Set the contents of the .interp section to the interpreter. */
7607 if (info->executable)
7608 {
7609 s = bfd_get_section_by_name (dynobj, ".interp");
7610 if (s == NULL)
7611 abort ();
7612 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
7613 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
7614 }
7615 }
7616
7617 /* Set up .got offsets for local syms, and space for local dynamic
7618 relocs. */
7619 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7620 {
7621 struct got_entry **lgot_ents;
7622 struct got_entry **end_lgot_ents;
7623 char *lgot_masks;
7624 bfd_size_type locsymcount;
7625 Elf_Internal_Shdr *symtab_hdr;
7626 asection *srel;
7627
7628 if (!is_ppc64_elf_target (ibfd->xvec))
7629 continue;
7630
7631 if (ppc64_tlsld_got (ibfd)->refcount > 0)
7632 {
7633 s = ppc64_elf_tdata (ibfd)->got;
7634 ppc64_tlsld_got (ibfd)->offset = s->size;
7635 s->size += 16;
7636 if (info->shared)
7637 {
7638 srel = ppc64_elf_tdata (ibfd)->relgot;
7639 srel->size += sizeof (Elf64_External_Rela);
7640 }
7641 }
7642 else
7643 ppc64_tlsld_got (ibfd)->offset = (bfd_vma) -1;
7644
7645 for (s = ibfd->sections; s != NULL; s = s->next)
7646 {
7647 struct ppc_dyn_relocs *p;
7648
7649 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
7650 {
7651 if (!bfd_is_abs_section (p->sec)
7652 && bfd_is_abs_section (p->sec->output_section))
7653 {
7654 /* Input section has been discarded, either because
7655 it is a copy of a linkonce section or due to
7656 linker script /DISCARD/, so we'll be discarding
7657 the relocs too. */
7658 }
7659 else if (p->count != 0)
7660 {
7661 srel = elf_section_data (p->sec)->sreloc;
7662 srel->size += p->count * sizeof (Elf64_External_Rela);
7663 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
7664 info->flags |= DF_TEXTREL;
7665 }
7666 }
7667 }
7668
7669 lgot_ents = elf_local_got_ents (ibfd);
7670 if (!lgot_ents)
7671 continue;
7672
7673 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
7674 locsymcount = symtab_hdr->sh_info;
7675 end_lgot_ents = lgot_ents + locsymcount;
7676 lgot_masks = (char *) end_lgot_ents;
7677 s = ppc64_elf_tdata (ibfd)->got;
7678 srel = ppc64_elf_tdata (ibfd)->relgot;
7679 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
7680 {
7681 struct got_entry *ent;
7682
7683 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
7684 if (ent->got.refcount > 0)
7685 {
7686 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
7687 {
7688 if (ppc64_tlsld_got (ibfd)->offset == (bfd_vma) -1)
7689 {
7690 ppc64_tlsld_got (ibfd)->offset = s->size;
7691 s->size += 16;
7692 if (info->shared)
7693 srel->size += sizeof (Elf64_External_Rela);
7694 }
7695 ent->got.offset = ppc64_tlsld_got (ibfd)->offset;
7696 }
7697 else
7698 {
7699 ent->got.offset = s->size;
7700 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
7701 {
7702 s->size += 16;
7703 if (info->shared)
7704 srel->size += 2 * sizeof (Elf64_External_Rela);
7705 }
7706 else
7707 {
7708 s->size += 8;
7709 if (info->shared)
7710 srel->size += sizeof (Elf64_External_Rela);
7711 }
7712 }
7713 }
7714 else
7715 ent->got.offset = (bfd_vma) -1;
7716 }
7717 }
7718
7719 /* Allocate global sym .plt and .got entries, and space for global
7720 sym dynamic relocs. */
7721 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
7722
7723 /* We now have determined the sizes of the various dynamic sections.
7724 Allocate memory for them. */
7725 relocs = FALSE;
7726 for (s = dynobj->sections; s != NULL; s = s->next)
7727 {
7728 if ((s->flags & SEC_LINKER_CREATED) == 0)
7729 continue;
7730
7731 if (s == htab->brlt || s == htab->relbrlt)
7732 /* These haven't been allocated yet; don't strip. */
7733 continue;
7734 else if (s == htab->got
7735 || s == htab->plt
7736 || s == htab->glink
7737 || s == htab->dynbss)
7738 {
7739 /* Strip this section if we don't need it; see the
7740 comment below. */
7741 }
7742 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
7743 {
7744 if (s->size != 0)
7745 {
7746 if (s != htab->relplt)
7747 relocs = TRUE;
7748
7749 /* We use the reloc_count field as a counter if we need
7750 to copy relocs into the output file. */
7751 s->reloc_count = 0;
7752 }
7753 }
7754 else
7755 {
7756 /* It's not one of our sections, so don't allocate space. */
7757 continue;
7758 }
7759
7760 if (s->size == 0)
7761 {
7762 /* If we don't need this section, strip it from the
7763 output file. This is mostly to handle .rela.bss and
7764 .rela.plt. We must create both sections in
7765 create_dynamic_sections, because they must be created
7766 before the linker maps input sections to output
7767 sections. The linker does that before
7768 adjust_dynamic_symbol is called, and it is that
7769 function which decides whether anything needs to go
7770 into these sections. */
7771 s->flags |= SEC_EXCLUDE;
7772 continue;
7773 }
7774
7775 if ((s->flags & SEC_HAS_CONTENTS) == 0)
7776 continue;
7777
7778 /* Allocate memory for the section contents. We use bfd_zalloc
7779 here in case unused entries are not reclaimed before the
7780 section's contents are written out. This should not happen,
7781 but this way if it does we get a R_PPC64_NONE reloc in .rela
7782 sections instead of garbage.
7783 We also rely on the section contents being zero when writing
7784 the GOT. */
7785 s->contents = bfd_zalloc (dynobj, s->size);
7786 if (s->contents == NULL)
7787 return FALSE;
7788 }
7789
7790 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7791 {
7792 if (!is_ppc64_elf_target (ibfd->xvec))
7793 continue;
7794
7795 s = ppc64_elf_tdata (ibfd)->got;
7796 if (s != NULL && s != htab->got)
7797 {
7798 if (s->size == 0)
7799 s->flags |= SEC_EXCLUDE;
7800 else
7801 {
7802 s->contents = bfd_zalloc (ibfd, s->size);
7803 if (s->contents == NULL)
7804 return FALSE;
7805 }
7806 }
7807 s = ppc64_elf_tdata (ibfd)->relgot;
7808 if (s != NULL)
7809 {
7810 if (s->size == 0)
7811 s->flags |= SEC_EXCLUDE;
7812 else
7813 {
7814 s->contents = bfd_zalloc (ibfd, s->size);
7815 if (s->contents == NULL)
7816 return FALSE;
7817 relocs = TRUE;
7818 s->reloc_count = 0;
7819 }
7820 }
7821 }
7822
7823 if (htab->elf.dynamic_sections_created)
7824 {
7825 /* Add some entries to the .dynamic section. We fill in the
7826 values later, in ppc64_elf_finish_dynamic_sections, but we
7827 must add the entries now so that we get the correct size for
7828 the .dynamic section. The DT_DEBUG entry is filled in by the
7829 dynamic linker and used by the debugger. */
7830#define add_dynamic_entry(TAG, VAL) \
7831 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
7832
7833 if (info->executable)
7834 {
7835 if (!add_dynamic_entry (DT_DEBUG, 0))
7836 return FALSE;
7837 }
7838
7839 if (htab->plt != NULL && htab->plt->size != 0)
7840 {
7841 if (!add_dynamic_entry (DT_PLTGOT, 0)
7842 || !add_dynamic_entry (DT_PLTRELSZ, 0)
7843 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
7844 || !add_dynamic_entry (DT_JMPREL, 0)
7845 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
7846 return FALSE;
7847 }
7848
7849 if (NO_OPD_RELOCS)
7850 {
7851 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
7852 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
7853 return FALSE;
7854 }
7855
7856 if (relocs)
7857 {
7858 if (!add_dynamic_entry (DT_RELA, 0)
7859 || !add_dynamic_entry (DT_RELASZ, 0)
7860 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
7861 return FALSE;
7862
7863 /* If any dynamic relocs apply to a read-only section,
7864 then we need a DT_TEXTREL entry. */
7865 if ((info->flags & DF_TEXTREL) == 0)
7866 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
7867
7868 if ((info->flags & DF_TEXTREL) != 0)
7869 {
7870 if (!add_dynamic_entry (DT_TEXTREL, 0))
7871 return FALSE;
7872 }
7873 }
7874 }
7875#undef add_dynamic_entry
7876
7877 return TRUE;
7878}
7879
7880/* Determine the type of stub needed, if any, for a call. */
7881
7882static inline enum ppc_stub_type
7883ppc_type_of_stub (asection *input_sec,
7884 const Elf_Internal_Rela *rel,
7885 struct ppc_link_hash_entry **hash,
7886 bfd_vma destination)
7887{
7888 struct ppc_link_hash_entry *h = *hash;
7889 bfd_vma location;
7890 bfd_vma branch_offset;
7891 bfd_vma max_branch_offset;
7892 enum elf_ppc64_reloc_type r_type;
7893
7894 if (h != NULL)
7895 {
7896 struct ppc_link_hash_entry *fdh = h;
7897 if (fdh->oh != NULL
7898 && fdh->oh->is_func_descriptor)
7899 fdh = fdh->oh;
7900
7901 if (fdh->elf.dynindx != -1)
7902 {
7903 struct plt_entry *ent;
7904
7905 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
7906 if (ent->addend == rel->r_addend
7907 && ent->plt.offset != (bfd_vma) -1)
7908 {
7909 *hash = fdh;
7910 return ppc_stub_plt_call;
7911 }
7912 }
7913
7914 /* Here, we know we don't have a plt entry. If we don't have a
7915 either a defined function descriptor or a defined entry symbol
7916 in a regular object file, then it is pointless trying to make
7917 any other type of stub. */
7918 if (!((fdh->elf.root.type == bfd_link_hash_defined
7919 || fdh->elf.root.type == bfd_link_hash_defweak)
7920 && fdh->elf.root.u.def.section->output_section != NULL)
7921 && !((h->elf.root.type == bfd_link_hash_defined
7922 || h->elf.root.type == bfd_link_hash_defweak)
7923 && h->elf.root.u.def.section->output_section != NULL))
7924 return ppc_stub_none;
7925 }
7926
7927 /* Determine where the call point is. */
7928 location = (input_sec->output_offset
7929 + input_sec->output_section->vma
7930 + rel->r_offset);
7931
7932 branch_offset = destination - location;
7933 r_type = ELF64_R_TYPE (rel->r_info);
7934
7935 /* Determine if a long branch stub is needed. */
7936 max_branch_offset = 1 << 25;
7937 if (r_type != R_PPC64_REL24)
7938 max_branch_offset = 1 << 15;
7939
7940 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
7941 /* We need a stub. Figure out whether a long_branch or plt_branch
7942 is needed later. */
7943 return ppc_stub_long_branch;
7944
7945 return ppc_stub_none;
7946}
7947
7948/* Build a .plt call stub. */
7949
7950static inline bfd_byte *
7951build_plt_stub (bfd *obfd, bfd_byte *p, int offset)
7952{
7953#define PPC_LO(v) ((v) & 0xffff)
7954#define PPC_HI(v) (((v) >> 16) & 0xffff)
7955#define PPC_HA(v) PPC_HI ((v) + 0x8000)
7956
7957 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
7958 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
7959 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7960 if (PPC_HA (offset + 8) != PPC_HA (offset))
7961 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7962 offset += 8;
7963 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset), p), p += 4;
7964 if (PPC_HA (offset + 8) != PPC_HA (offset))
7965 bfd_put_32 (obfd, ADDIS_R12_R12 | 1, p), p += 4;
7966 offset += 8;
7967 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
7968 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
7969 bfd_put_32 (obfd, BCTR, p), p += 4;
7970 return p;
7971}
7972
7973static bfd_boolean
7974ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
7975{
7976 struct ppc_stub_hash_entry *stub_entry;
7977 struct ppc_branch_hash_entry *br_entry;
7978 struct bfd_link_info *info;
7979 struct ppc_link_hash_table *htab;
7980 bfd_byte *loc;
7981 bfd_byte *p;
7982 unsigned int indx;
7983 struct plt_entry *ent;
7984 bfd_vma dest, off;
7985 int size;
7986
7987 /* Massage our args to the form they really have. */
7988 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
7989 info = in_arg;
7990
7991 htab = ppc_hash_table (info);
7992
7993 /* Make a note of the offset within the stubs for this entry. */
7994 stub_entry->stub_offset = stub_entry->stub_sec->size;
7995 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
7996
7997 htab->stub_count[stub_entry->stub_type - 1] += 1;
7998 switch (stub_entry->stub_type)
7999 {
8000 case ppc_stub_long_branch:
8001 case ppc_stub_long_branch_r2off:
8002 /* Branches are relative. This is where we are going to. */
8003 off = dest = (stub_entry->target_value
8004 + stub_entry->target_section->output_offset
8005 + stub_entry->target_section->output_section->vma);
8006
8007 /* And this is where we are coming from. */
8008 off -= (stub_entry->stub_offset
8009 + stub_entry->stub_sec->output_offset
8010 + stub_entry->stub_sec->output_section->vma);
8011
8012 if (stub_entry->stub_type != ppc_stub_long_branch_r2off)
8013 size = 4;
8014 else
8015 {
8016 bfd_vma r2off;
8017
8018 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8019 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8020 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8021 loc += 4;
8022 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8023 loc += 4;
8024 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8025 loc += 4;
8026 off -= 12;
8027 size = 16;
8028 }
8029 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
8030
8031 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8032 {
8033 (*_bfd_error_handler) (_("long branch stub `%s' offset overflow"),
8034 stub_entry->root.string);
8035 htab->stub_error = TRUE;
8036 return FALSE;
8037 }
8038
8039 if (info->emitrelocations)
8040 {
8041 Elf_Internal_Rela *relocs, *r;
8042 struct bfd_elf_section_data *elfsec_data;
8043
8044 elfsec_data = elf_section_data (stub_entry->stub_sec);
8045 relocs = elfsec_data->relocs;
8046 if (relocs == NULL)
8047 {
8048 bfd_size_type relsize;
8049 relsize = stub_entry->stub_sec->reloc_count * sizeof (*relocs);
8050 relocs = bfd_alloc (htab->stub_bfd, relsize);
8051 if (relocs == NULL)
8052 return FALSE;
8053 elfsec_data->relocs = relocs;
8054 elfsec_data->rel_hdr.sh_size = relsize;
8055 elfsec_data->rel_hdr.sh_entsize = 24;
8056 stub_entry->stub_sec->reloc_count = 0;
8057 }
8058 r = relocs + stub_entry->stub_sec->reloc_count;
8059 stub_entry->stub_sec->reloc_count += 1;
8060 r->r_offset = loc - stub_entry->stub_sec->contents;
8061 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
8062 r->r_addend = dest;
8063 if (stub_entry->h != NULL)
8064 {
8065 struct elf_link_hash_entry **hashes;
8066 unsigned long symndx;
8067 struct ppc_link_hash_entry *h;
8068
8069 hashes = elf_sym_hashes (htab->stub_bfd);
8070 if (hashes == NULL)
8071 {
8072 bfd_size_type hsize;
8073
8074 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
8075 hashes = bfd_zalloc (htab->stub_bfd, hsize);
8076 if (hashes == NULL)
8077 return FALSE;
8078 elf_sym_hashes (htab->stub_bfd) = hashes;
8079 htab->stub_globals = 1;
8080 }
8081 symndx = htab->stub_globals++;
8082 h = stub_entry->h;
8083 hashes[symndx] = &h->elf;
8084 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
8085 if (h->oh != NULL && h->oh->is_func)
8086 h = h->oh;
8087 if (h->elf.root.u.def.section != stub_entry->target_section)
8088 /* H is an opd symbol. The addend must be zero. */
8089 r->r_addend = 0;
8090 else
8091 {
8092 off = (h->elf.root.u.def.value
8093 + h->elf.root.u.def.section->output_offset
8094 + h->elf.root.u.def.section->output_section->vma);
8095 r->r_addend -= off;
8096 }
8097 }
8098 }
8099 break;
8100
8101 case ppc_stub_plt_branch:
8102 case ppc_stub_plt_branch_r2off:
8103 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8104 stub_entry->root.string + 9,
8105 FALSE, FALSE);
8106 if (br_entry == NULL)
8107 {
8108 (*_bfd_error_handler) (_("can't find branch stub `%s'"),
8109 stub_entry->root.string);
8110 htab->stub_error = TRUE;
8111 return FALSE;
8112 }
8113
8114 off = (stub_entry->target_value
8115 + stub_entry->target_section->output_offset
8116 + stub_entry->target_section->output_section->vma);
8117
8118 bfd_put_64 (htab->brlt->owner, off,
8119 htab->brlt->contents + br_entry->offset);
8120
8121 if (htab->relbrlt != NULL)
8122 {
8123 /* Create a reloc for the branch lookup table entry. */
8124 Elf_Internal_Rela rela;
8125 bfd_byte *rl;
8126
8127 rela.r_offset = (br_entry->offset
8128 + htab->brlt->output_offset
8129 + htab->brlt->output_section->vma);
8130 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
8131 rela.r_addend = off;
8132
8133 rl = htab->relbrlt->contents;
8134 rl += htab->relbrlt->reloc_count++ * sizeof (Elf64_External_Rela);
8135 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
8136 }
8137
8138 off = (br_entry->offset
8139 + htab->brlt->output_offset
8140 + htab->brlt->output_section->vma
8141 - elf_gp (htab->brlt->output_section->owner)
8142 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8143
8144 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8145 {
8146 (*_bfd_error_handler)
8147 (_("linkage table error against `%s'"),
8148 stub_entry->root.string);
8149 bfd_set_error (bfd_error_bad_value);
8150 htab->stub_error = TRUE;
8151 return FALSE;
8152 }
8153
8154 indx = off;
8155 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
8156 {
8157 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8158 loc += 4;
8159 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8160 size = 16;
8161 }
8162 else
8163 {
8164 bfd_vma r2off;
8165
8166 r2off = (htab->stub_group[stub_entry->target_section->id].toc_off
8167 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8168 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
8169 loc += 4;
8170 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (indx), loc);
8171 loc += 4;
8172 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (indx), loc);
8173 loc += 4;
8174 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
8175 loc += 4;
8176 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
8177 size = 28;
8178 }
8179 loc += 4;
8180 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
8181 loc += 4;
8182 bfd_put_32 (htab->stub_bfd, BCTR, loc);
8183 break;
8184
8185 case ppc_stub_plt_call:
8186 /* Do the best we can for shared libraries built without
8187 exporting ".foo" for each "foo". This can happen when symbol
8188 versioning scripts strip all bar a subset of symbols. */
8189 if (stub_entry->h->oh != NULL
8190 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defined
8191 && stub_entry->h->oh->elf.root.type != bfd_link_hash_defweak)
8192 {
8193 /* Point the symbol at the stub. There may be multiple stubs,
8194 we don't really care; The main thing is to make this sym
8195 defined somewhere. Maybe defining the symbol in the stub
8196 section is a silly idea. If we didn't do this, htab->top_id
8197 could disappear. */
8198 stub_entry->h->oh->elf.root.type = bfd_link_hash_defined;
8199 stub_entry->h->oh->elf.root.u.def.section = stub_entry->stub_sec;
8200 stub_entry->h->oh->elf.root.u.def.value = stub_entry->stub_offset;
8201 }
8202
8203 /* Now build the stub. */
8204 off = (bfd_vma) -1;
8205 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8206 if (ent->addend == stub_entry->addend)
8207 {
8208 off = ent->plt.offset;
8209 break;
8210 }
8211 if (off >= (bfd_vma) -2)
8212 abort ();
8213
8214 off &= ~ (bfd_vma) 1;
8215 off += (htab->plt->output_offset
8216 + htab->plt->output_section->vma
8217 - elf_gp (htab->plt->output_section->owner)
8218 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8219
8220 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
8221 {
8222 (*_bfd_error_handler)
8223 (_("linkage table error against `%s'"),
8224 stub_entry->h->elf.root.root.string);
8225 bfd_set_error (bfd_error_bad_value);
8226 htab->stub_error = TRUE;
8227 return FALSE;
8228 }
8229
8230 p = build_plt_stub (htab->stub_bfd, loc, off);
8231 size = p - loc;
8232 break;
8233
8234 default:
8235 BFD_FAIL ();
8236 return FALSE;
8237 }
8238
8239 stub_entry->stub_sec->size += size;
8240
8241 if (htab->emit_stub_syms)
8242 {
8243 struct elf_link_hash_entry *h;
8244 size_t len1, len2;
8245 char *name;
8246 const char *const stub_str[] = { "long_branch",
8247 "long_branch_r2off",
8248 "plt_branch",
8249 "plt_branch_r2off",
8250 "plt_call" };
8251
8252 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
8253 len2 = strlen (stub_entry->root.string);
8254 name = bfd_malloc (len1 + len2 + 2);
8255 if (name == NULL)
8256 return FALSE;
8257 memcpy (name, stub_entry->root.string, 9);
8258 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
8259 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
8260 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
8261 if (h == NULL)
8262 return FALSE;
8263 if (h->root.type == bfd_link_hash_new)
8264 {
8265 h->root.type = bfd_link_hash_defined;
8266 h->root.u.def.section = stub_entry->stub_sec;
8267 h->root.u.def.value = stub_entry->stub_offset;
8268 h->ref_regular = 1;
8269 h->def_regular = 1;
8270 h->ref_regular_nonweak = 1;
8271 h->forced_local = 1;
8272 h->non_elf = 0;
8273 }
8274 }
8275
8276 return TRUE;
8277}
8278
8279/* As above, but don't actually build the stub. Just bump offset so
8280 we know stub section sizes, and select plt_branch stubs where
8281 long_branch stubs won't do. */
8282
8283static bfd_boolean
8284ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
8285{
8286 struct ppc_stub_hash_entry *stub_entry;
8287 struct bfd_link_info *info;
8288 struct ppc_link_hash_table *htab;
8289 bfd_vma off;
8290 int size;
8291
8292 /* Massage our args to the form they really have. */
8293 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
8294 info = in_arg;
8295
8296 htab = ppc_hash_table (info);
8297
8298 if (stub_entry->stub_type == ppc_stub_plt_call)
8299 {
8300 struct plt_entry *ent;
8301 off = (bfd_vma) -1;
8302 for (ent = stub_entry->h->elf.plt.plist; ent != NULL; ent = ent->next)
8303 if (ent->addend == stub_entry->addend)
8304 {
8305 off = ent->plt.offset & ~(bfd_vma) 1;
8306 break;
8307 }
8308 if (off >= (bfd_vma) -2)
8309 abort ();
8310 off += (htab->plt->output_offset
8311 + htab->plt->output_section->vma
8312 - elf_gp (htab->plt->output_section->owner)
8313 - htab->stub_group[stub_entry->id_sec->id].toc_off);
8314
8315 size = PLT_CALL_STUB_SIZE;
8316 if (PPC_HA (off + 16) != PPC_HA (off))
8317 size += 4;
8318 }
8319 else
8320 {
8321 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
8322 variants. */
8323 off = (stub_entry->target_value
8324 + stub_entry->target_section->output_offset
8325 + stub_entry->target_section->output_section->vma);
8326 off -= (stub_entry->stub_sec->size
8327 + stub_entry->stub_sec->output_offset
8328 + stub_entry->stub_sec->output_section->vma);
8329
8330 /* Reset the stub type from the plt variant in case we now
8331 can reach with a shorter stub. */
8332 if (stub_entry->stub_type >= ppc_stub_plt_branch)
8333 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
8334
8335 size = 4;
8336 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
8337 {
8338 off -= 12;
8339 size = 16;
8340 }
8341
8342 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
8343 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
8344 {
8345 struct ppc_branch_hash_entry *br_entry;
8346
8347 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
8348 stub_entry->root.string + 9,
8349 TRUE, FALSE);
8350 if (br_entry == NULL)
8351 {
8352 (*_bfd_error_handler) (_("can't build branch stub `%s'"),
8353 stub_entry->root.string);
8354 htab->stub_error = TRUE;
8355 return FALSE;
8356 }
8357
8358 if (br_entry->iter != htab->stub_iteration)
8359 {
8360 br_entry->iter = htab->stub_iteration;
8361 br_entry->offset = htab->brlt->size;
8362 htab->brlt->size += 8;
8363
8364 if (htab->relbrlt != NULL)
8365 htab->relbrlt->size += sizeof (Elf64_External_Rela);
8366 }
8367
8368 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
8369 size = 16;
8370 if (stub_entry->stub_type != ppc_stub_plt_branch)
8371 size = 28;
8372 }
8373
8374 if (info->emitrelocations
8375 && (stub_entry->stub_type == ppc_stub_long_branch
8376 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
8377 stub_entry->stub_sec->reloc_count += 1;
8378 }
8379
8380 stub_entry->stub_sec->size += size;
8381 return TRUE;
8382}
8383
8384/* Set up various things so that we can make a list of input sections
8385 for each output section included in the link. Returns -1 on error,
8386 0 when no stubs will be needed, and 1 on success. */
8387
8388int
8389ppc64_elf_setup_section_lists (bfd *output_bfd,
8390 struct bfd_link_info *info,
8391 int no_multi_toc)
8392{
8393 bfd *input_bfd;
8394 int top_id, top_index, id;
8395 asection *section;
8396 asection **input_list;
8397 bfd_size_type amt;
8398 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8399
8400 htab->no_multi_toc = no_multi_toc;
8401
8402 if (htab->brlt == NULL)
8403 return 0;
8404
8405 /* Find the top input section id. */
8406 for (input_bfd = info->input_bfds, top_id = 3;
8407 input_bfd != NULL;
8408 input_bfd = input_bfd->link_next)
8409 {
8410 for (section = input_bfd->sections;
8411 section != NULL;
8412 section = section->next)
8413 {
8414 if (top_id < section->id)
8415 top_id = section->id;
8416 }
8417 }
8418
8419 htab->top_id = top_id;
8420 amt = sizeof (struct map_stub) * (top_id + 1);
8421 htab->stub_group = bfd_zmalloc (amt);
8422 if (htab->stub_group == NULL)
8423 return -1;
8424
8425 /* Set toc_off for com, und, abs and ind sections. */
8426 for (id = 0; id < 3; id++)
8427 htab->stub_group[id].toc_off = TOC_BASE_OFF;
8428
8429 elf_gp (output_bfd) = htab->toc_curr = ppc64_elf_toc (output_bfd);
8430
8431 /* We can't use output_bfd->section_count here to find the top output
8432 section index as some sections may have been removed, and
8433 strip_excluded_output_sections doesn't renumber the indices. */
8434 for (section = output_bfd->sections, top_index = 0;
8435 section != NULL;
8436 section = section->next)
8437 {
8438 if (top_index < section->index)
8439 top_index = section->index;
8440 }
8441
8442 htab->top_index = top_index;
8443 amt = sizeof (asection *) * (top_index + 1);
8444 input_list = bfd_zmalloc (amt);
8445 htab->input_list = input_list;
8446 if (input_list == NULL)
8447 return -1;
8448
8449 return 1;
8450}
8451
8452/* The linker repeatedly calls this function for each TOC input section
8453 and linker generated GOT section. Group input bfds such that the toc
8454 within a group is less than 64k in size. Will break with cute linker
8455 scripts that play games with dot in the output toc section. */
8456
8457void
8458ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
8459{
8460 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8461
8462 if (!htab->no_multi_toc)
8463 {
8464 bfd_vma addr = isec->output_offset + isec->output_section->vma;
8465 bfd_vma off = addr - htab->toc_curr;
8466
8467 if (off + isec->size > 0x10000)
8468 htab->toc_curr = addr;
8469
8470 elf_gp (isec->owner) = (htab->toc_curr
8471 - elf_gp (isec->output_section->owner)
8472 + TOC_BASE_OFF);
8473 }
8474}
8475
8476/* Called after the last call to the above function. */
8477
8478void
8479ppc64_elf_reinit_toc (bfd *output_bfd, struct bfd_link_info *info)
8480{
8481 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8482
8483 htab->multi_toc_needed = htab->toc_curr != elf_gp (output_bfd);
8484
8485 /* toc_curr tracks the TOC offset used for code sections below in
8486 ppc64_elf_next_input_section. Start off at 0x8000. */
8487 htab->toc_curr = TOC_BASE_OFF;
8488}
8489
8490/* No toc references were found in ISEC. If the code in ISEC makes no
8491 calls, then there's no need to use toc adjusting stubs when branching
8492 into ISEC. Actually, indirect calls from ISEC are OK as they will
8493 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
8494 needed, and 2 if a cyclical call-graph was found but no other reason
8495 for a stub was detected. If called from the top level, a return of
8496 2 means the same as a return of 0. */
8497
8498static int
8499toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
8500{
8501 Elf_Internal_Rela *relstart, *rel;
8502 Elf_Internal_Sym *local_syms;
8503 int ret;
8504 struct ppc_link_hash_table *htab;
8505
8506 /* We know none of our code bearing sections will need toc stubs. */
8507 if ((isec->flags & SEC_LINKER_CREATED) != 0)
8508 return 0;
8509
8510 if (isec->size == 0)
8511 return 0;
8512
8513 if (isec->output_section == NULL)
8514 return 0;
8515
8516 /* Hack for linux kernel. .fixup contains branches, but only back to
8517 the function that hit an exception. */
8518 if (strcmp (isec->name, ".fixup") == 0)
8519 return 0;
8520
8521 if (isec->reloc_count == 0)
8522 return 0;
8523
8524 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
8525 info->keep_memory);
8526 if (relstart == NULL)
8527 return -1;
8528
8529 /* Look for branches to outside of this section. */
8530 local_syms = NULL;
8531 ret = 0;
8532 htab = ppc_hash_table (info);
8533 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
8534 {
8535 enum elf_ppc64_reloc_type r_type;
8536 unsigned long r_symndx;
8537 struct elf_link_hash_entry *h;
8538 Elf_Internal_Sym *sym;
8539 asection *sym_sec;
8540 long *opd_adjust;
8541 bfd_vma sym_value;
8542 bfd_vma dest;
8543
8544 r_type = ELF64_R_TYPE (rel->r_info);
8545 if (r_type != R_PPC64_REL24
8546 && r_type != R_PPC64_REL14
8547 && r_type != R_PPC64_REL14_BRTAKEN
8548 && r_type != R_PPC64_REL14_BRNTAKEN)
8549 continue;
8550
8551 r_symndx = ELF64_R_SYM (rel->r_info);
8552 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
8553 isec->owner))
8554 {
8555 ret = -1;
8556 break;
8557 }
8558
8559 /* Calls to dynamic lib functions go through a plt call stub
8560 that uses r2. Branches to undefined symbols might be a call
8561 using old-style dot symbols that can be satisfied by a plt
8562 call into a new-style dynamic library. */
8563 if (sym_sec == NULL)
8564 {
8565 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8566 if (eh != NULL
8567 && eh->oh != NULL
8568 && eh->oh->elf.plt.plist != NULL)
8569 {
8570 ret = 1;
8571 break;
8572 }
8573
8574 /* Ignore other undefined symbols. */
8575 continue;
8576 }
8577
8578 /* Assume branches to other sections not included in the link need
8579 stubs too, to cover -R and absolute syms. */
8580 if (sym_sec->output_section == NULL)
8581 {
8582 ret = 1;
8583 break;
8584 }
8585
8586 if (h == NULL)
8587 sym_value = sym->st_value;
8588 else
8589 {
8590 if (h->root.type != bfd_link_hash_defined
8591 && h->root.type != bfd_link_hash_defweak)
8592 abort ();
8593 sym_value = h->root.u.def.value;
8594 }
8595 sym_value += rel->r_addend;
8596
8597 /* If this branch reloc uses an opd sym, find the code section. */
8598 opd_adjust = get_opd_info (sym_sec);
8599 if (opd_adjust != NULL)
8600 {
8601 if (h == NULL)
8602 {
8603 long adjust;
8604
8605 adjust = opd_adjust[sym->st_value / 8];
8606 if (adjust == -1)
8607 /* Assume deleted functions won't ever be called. */
8608 continue;
8609 sym_value += adjust;
8610 }
8611
8612 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
8613 if (dest == (bfd_vma) -1)
8614 continue;
8615 }
8616 else
8617 dest = (sym_value
8618 + sym_sec->output_offset
8619 + sym_sec->output_section->vma);
8620
8621 /* Ignore branch to self. */
8622 if (sym_sec == isec)
8623 continue;
8624
8625 /* If the called function uses the toc, we need a stub. */
8626 if (sym_sec->has_toc_reloc
8627 || sym_sec->makes_toc_func_call)
8628 {
8629 ret = 1;
8630 break;
8631 }
8632
8633 /* Assume any branch that needs a long branch stub might in fact
8634 need a plt_branch stub. A plt_branch stub uses r2. */
8635 else if (dest - (isec->output_offset
8636 + isec->output_section->vma
8637 + rel->r_offset) + (1 << 25) >= (2 << 25))
8638 {
8639 ret = 1;
8640 break;
8641 }
8642
8643 /* If calling back to a section in the process of being tested, we
8644 can't say for sure that no toc adjusting stubs are needed, so
8645 don't return zero. */
8646 else if (sym_sec->call_check_in_progress)
8647 ret = 2;
8648
8649 /* Branches to another section that itself doesn't have any TOC
8650 references are OK. Recursively call ourselves to check. */
8651 else if (sym_sec->id <= htab->top_id
8652 && htab->stub_group[sym_sec->id].toc_off == 0)
8653 {
8654 int recur;
8655
8656 /* Mark current section as indeterminate, so that other
8657 sections that call back to current won't be marked as
8658 known. */
8659 isec->call_check_in_progress = 1;
8660 recur = toc_adjusting_stub_needed (info, sym_sec);
8661 isec->call_check_in_progress = 0;
8662
8663 if (recur < 0)
8664 {
8665 /* An error. Exit. */
8666 ret = -1;
8667 break;
8668 }
8669 else if (recur <= 1)
8670 {
8671 /* Known result. Mark as checked and set section flag. */
8672 htab->stub_group[sym_sec->id].toc_off = 1;
8673 if (recur != 0)
8674 {
8675 sym_sec->makes_toc_func_call = 1;
8676 ret = 1;
8677 break;
8678 }
8679 }
8680 else
8681 {
8682 /* Unknown result. Continue checking. */
8683 ret = 2;
8684 }
8685 }
8686 }
8687
8688 if (local_syms != NULL
8689 && (elf_tdata (isec->owner)->symtab_hdr.contents
8690 != (unsigned char *) local_syms))
8691 free (local_syms);
8692 if (elf_section_data (isec)->relocs != relstart)
8693 free (relstart);
8694
8695 return ret;
8696}
8697
8698/* The linker repeatedly calls this function for each input section,
8699 in the order that input sections are linked into output sections.
8700 Build lists of input sections to determine groupings between which
8701 we may insert linker stubs. */
8702
8703bfd_boolean
8704ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
8705{
8706 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8707
8708 if ((isec->output_section->flags & SEC_CODE) != 0
8709 && isec->output_section->index <= htab->top_index)
8710 {
8711 asection **list = htab->input_list + isec->output_section->index;
8712 /* Steal the link_sec pointer for our list. */
8713#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
8714 /* This happens to make the list in reverse order,
8715 which is what we want. */
8716 PREV_SEC (isec) = *list;
8717 *list = isec;
8718 }
8719
8720 if (htab->multi_toc_needed)
8721 {
8722 /* If a code section has a function that uses the TOC then we need
8723 to use the right TOC (obviously). Also, make sure that .opd gets
8724 the correct TOC value for R_PPC64_TOC relocs that don't have or
8725 can't find their function symbol (shouldn't ever happen now). */
8726 if (isec->has_toc_reloc || (isec->flags & SEC_CODE) == 0)
8727 {
8728 if (elf_gp (isec->owner) != 0)
8729 htab->toc_curr = elf_gp (isec->owner);
8730 }
8731 else if (htab->stub_group[isec->id].toc_off == 0)
8732 {
8733 int ret = toc_adjusting_stub_needed (info, isec);
8734 if (ret < 0)
8735 return FALSE;
8736 else
8737 isec->makes_toc_func_call = ret & 1;
8738 }
8739 }
8740
8741 /* Functions that don't use the TOC can belong in any TOC group.
8742 Use the last TOC base. This happens to make _init and _fini
8743 pasting work. */
8744 htab->stub_group[isec->id].toc_off = htab->toc_curr;
8745 return TRUE;
8746}
8747
8748/* See whether we can group stub sections together. Grouping stub
8749 sections may result in fewer stubs. More importantly, we need to
8750 put all .init* and .fini* stubs at the beginning of the .init or
8751 .fini output sections respectively, because glibc splits the
8752 _init and _fini functions into multiple parts. Putting a stub in
8753 the middle of a function is not a good idea. */
8754
8755static void
8756group_sections (struct ppc_link_hash_table *htab,
8757 bfd_size_type stub_group_size,
8758 bfd_boolean stubs_always_before_branch)
8759{
8760 asection **list = htab->input_list + htab->top_index;
8761 do
8762 {
8763 asection *tail = *list;
8764 while (tail != NULL)
8765 {
8766 asection *curr;
8767 asection *prev;
8768 bfd_size_type total;
8769 bfd_boolean big_sec;
8770 bfd_vma curr_toc;
8771
8772 curr = tail;
8773 total = tail->size;
8774 big_sec = total > stub_group_size;
8775 if (big_sec)
8776 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
8777 tail->owner, tail);
8778 curr_toc = htab->stub_group[tail->id].toc_off;
8779
8780 while ((prev = PREV_SEC (curr)) != NULL
8781 && ((total += curr->output_offset - prev->output_offset)
8782 < stub_group_size)
8783 && htab->stub_group[prev->id].toc_off == curr_toc)
8784 curr = prev;
8785
8786 /* OK, the size from the start of CURR to the end is less
8787 than stub_group_size and thus can be handled by one stub
8788 section. (or the tail section is itself larger than
8789 stub_group_size, in which case we may be toast.) We
8790 should really be keeping track of the total size of stubs
8791 added here, as stubs contribute to the final output
8792 section size. That's a little tricky, and this way will
8793 only break if stubs added make the total size more than
8794 2^25, ie. for the default stub_group_size, if stubs total
8795 more than 2097152 bytes, or nearly 75000 plt call stubs. */
8796 do
8797 {
8798 prev = PREV_SEC (tail);
8799 /* Set up this stub group. */
8800 htab->stub_group[tail->id].link_sec = curr;
8801 }
8802 while (tail != curr && (tail = prev) != NULL);
8803
8804 /* But wait, there's more! Input sections up to stub_group_size
8805 bytes before the stub section can be handled by it too.
8806 Don't do this if we have a really large section after the
8807 stubs, as adding more stubs increases the chance that
8808 branches may not reach into the stub section. */
8809 if (!stubs_always_before_branch && !big_sec)
8810 {
8811 total = 0;
8812 while (prev != NULL
8813 && ((total += tail->output_offset - prev->output_offset)
8814 < stub_group_size)
8815 && htab->stub_group[prev->id].toc_off == curr_toc)
8816 {
8817 tail = prev;
8818 prev = PREV_SEC (tail);
8819 htab->stub_group[tail->id].link_sec = curr;
8820 }
8821 }
8822 tail = prev;
8823 }
8824 }
8825 while (list-- != htab->input_list);
8826 free (htab->input_list);
8827#undef PREV_SEC
8828}
8829
8830/* Determine and set the size of the stub section for a final link.
8831
8832 The basic idea here is to examine all the relocations looking for
8833 PC-relative calls to a target that is unreachable with a "bl"
8834 instruction. */
8835
8836bfd_boolean
8837ppc64_elf_size_stubs (bfd *output_bfd,
8838 struct bfd_link_info *info,
8839 bfd_signed_vma group_size,
8840 asection *(*add_stub_section) (const char *, asection *),
8841 void (*layout_sections_again) (void))
8842{
8843 bfd_size_type stub_group_size;
8844 bfd_boolean stubs_always_before_branch;
8845 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8846
8847 /* Stash our params away. */
8848 htab->add_stub_section = add_stub_section;
8849 htab->layout_sections_again = layout_sections_again;
8850 stubs_always_before_branch = group_size < 0;
8851 if (group_size < 0)
8852 stub_group_size = -group_size;
8853 else
8854 stub_group_size = group_size;
8855 if (stub_group_size == 1)
8856 {
8857 /* Default values. */
8858 if (stubs_always_before_branch)
8859 {
8860 stub_group_size = 0x1e00000;
8861 if (htab->has_14bit_branch)
8862 stub_group_size = 0x7800;
8863 }
8864 else
8865 {
8866 stub_group_size = 0x1c00000;
8867 if (htab->has_14bit_branch)
8868 stub_group_size = 0x7000;
8869 }
8870 }
8871
8872 group_sections (htab, stub_group_size, stubs_always_before_branch);
8873
8874 while (1)
8875 {
8876 bfd *input_bfd;
8877 unsigned int bfd_indx;
8878 asection *stub_sec;
8879
8880 htab->stub_iteration += 1;
8881
8882 for (input_bfd = info->input_bfds, bfd_indx = 0;
8883 input_bfd != NULL;
8884 input_bfd = input_bfd->link_next, bfd_indx++)
8885 {
8886 Elf_Internal_Shdr *symtab_hdr;
8887 asection *section;
8888 Elf_Internal_Sym *local_syms = NULL;
8889
8890 /* We'll need the symbol table in a second. */
8891 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
8892 if (symtab_hdr->sh_info == 0)
8893 continue;
8894
8895 /* Walk over each section attached to the input bfd. */
8896 for (section = input_bfd->sections;
8897 section != NULL;
8898 section = section->next)
8899 {
8900 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
8901
8902 /* If there aren't any relocs, then there's nothing more
8903 to do. */
8904 if ((section->flags & SEC_RELOC) == 0
8905 || section->reloc_count == 0)
8906 continue;
8907
8908 /* If this section is a link-once section that will be
8909 discarded, then don't create any stubs. */
8910 if (section->output_section == NULL
8911 || section->output_section->owner != output_bfd)
8912 continue;
8913
8914 /* Get the relocs. */
8915 internal_relocs
8916 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
8917 info->keep_memory);
8918 if (internal_relocs == NULL)
8919 goto error_ret_free_local;
8920
8921 /* Now examine each relocation. */
8922 irela = internal_relocs;
8923 irelaend = irela + section->reloc_count;
8924 for (; irela < irelaend; irela++)
8925 {
8926 enum elf_ppc64_reloc_type r_type;
8927 unsigned int r_indx;
8928 enum ppc_stub_type stub_type;
8929 struct ppc_stub_hash_entry *stub_entry;
8930 asection *sym_sec, *code_sec;
8931 bfd_vma sym_value;
8932 bfd_vma destination;
8933 bfd_boolean ok_dest;
8934 struct ppc_link_hash_entry *hash;
8935 struct ppc_link_hash_entry *fdh;
8936 struct elf_link_hash_entry *h;
8937 Elf_Internal_Sym *sym;
8938 char *stub_name;
8939 const asection *id_sec;
8940 long *opd_adjust;
8941
8942 r_type = ELF64_R_TYPE (irela->r_info);
8943 r_indx = ELF64_R_SYM (irela->r_info);
8944
8945 if (r_type >= R_PPC64_max)
8946 {
8947 bfd_set_error (bfd_error_bad_value);
8948 goto error_ret_free_internal;
8949 }
8950
8951 /* Only look for stubs on branch instructions. */
8952 if (r_type != R_PPC64_REL24
8953 && r_type != R_PPC64_REL14
8954 && r_type != R_PPC64_REL14_BRTAKEN
8955 && r_type != R_PPC64_REL14_BRNTAKEN)
8956 continue;
8957
8958 /* Now determine the call target, its name, value,
8959 section. */
8960 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8961 r_indx, input_bfd))
8962 goto error_ret_free_internal;
8963 hash = (struct ppc_link_hash_entry *) h;
8964
8965 ok_dest = FALSE;
8966 fdh = NULL;
8967 sym_value = 0;
8968 if (hash == NULL)
8969 {
8970 sym_value = sym->st_value;
8971 ok_dest = TRUE;
8972 }
8973 else if (hash->elf.root.type == bfd_link_hash_defined
8974 || hash->elf.root.type == bfd_link_hash_defweak)
8975 {
8976 sym_value = hash->elf.root.u.def.value;
8977 if (sym_sec->output_section != NULL)
8978 ok_dest = TRUE;
8979 }
8980 else if (hash->elf.root.type == bfd_link_hash_undefweak
8981 || hash->elf.root.type == bfd_link_hash_undefined)
8982 {
8983 /* Recognise an old ABI func code entry sym, and
8984 use the func descriptor sym instead if it is
8985 defined. */
8986 if (hash->elf.root.root.string[0] == '.'
8987 && (fdh = get_fdh (hash, htab)) != NULL)
8988 {
8989 if (fdh->elf.root.type == bfd_link_hash_defined
8990 || fdh->elf.root.type == bfd_link_hash_defweak)
8991 {
8992 sym_sec = fdh->elf.root.u.def.section;
8993 sym_value = fdh->elf.root.u.def.value;
8994 if (sym_sec->output_section != NULL)
8995 ok_dest = TRUE;
8996 }
8997 else
8998 fdh = NULL;
8999 }
9000 }
9001 else
9002 {
9003 bfd_set_error (bfd_error_bad_value);
9004 goto error_ret_free_internal;
9005 }
9006
9007 destination = 0;
9008 if (ok_dest)
9009 {
9010 sym_value += irela->r_addend;
9011 destination = (sym_value
9012 + sym_sec->output_offset
9013 + sym_sec->output_section->vma);
9014 }
9015
9016 code_sec = sym_sec;
9017 opd_adjust = get_opd_info (sym_sec);
9018 if (opd_adjust != NULL)
9019 {
9020 bfd_vma dest;
9021
9022 if (hash == NULL)
9023 {
9024 long adjust = opd_adjust[sym_value / 8];
9025 if (adjust == -1)
9026 continue;
9027 sym_value += adjust;
9028 }
9029 dest = opd_entry_value (sym_sec, sym_value,
9030 &code_sec, &sym_value);
9031 if (dest != (bfd_vma) -1)
9032 {
9033 destination = dest;
9034 if (fdh != NULL)
9035 {
9036 /* Fixup old ABI sym to point at code
9037 entry. */
9038 hash->elf.root.type = bfd_link_hash_defweak;
9039 hash->elf.root.u.def.section = code_sec;
9040 hash->elf.root.u.def.value = sym_value;
9041 }
9042 }
9043 }
9044
9045 /* Determine what (if any) linker stub is needed. */
9046 stub_type = ppc_type_of_stub (section, irela, &hash,
9047 destination);
9048
9049 if (stub_type != ppc_stub_plt_call)
9050 {
9051 /* Check whether we need a TOC adjusting stub.
9052 Since the linker pastes together pieces from
9053 different object files when creating the
9054 _init and _fini functions, it may be that a
9055 call to what looks like a local sym is in
9056 fact a call needing a TOC adjustment. */
9057 if (code_sec != NULL
9058 && code_sec->output_section != NULL
9059 && (htab->stub_group[code_sec->id].toc_off
9060 != htab->stub_group[section->id].toc_off)
9061 && (code_sec->has_toc_reloc
9062 || code_sec->makes_toc_func_call))
9063 stub_type = ppc_stub_long_branch_r2off;
9064 }
9065
9066 if (stub_type == ppc_stub_none)
9067 continue;
9068
9069 /* __tls_get_addr calls might be eliminated. */
9070 if (stub_type != ppc_stub_plt_call
9071 && hash != NULL
9072 && (hash == htab->tls_get_addr
9073 || hash == htab->tls_get_addr_fd)
9074 && section->has_tls_reloc
9075 && irela != internal_relocs)
9076 {
9077 /* Get tls info. */
9078 char *tls_mask;
9079
9080 if (!get_tls_mask (&tls_mask, NULL, &local_syms,
9081 irela - 1, input_bfd))
9082 goto error_ret_free_internal;
9083 if (*tls_mask != 0)
9084 continue;
9085 }
9086
9087 /* Support for grouping stub sections. */
9088 id_sec = htab->stub_group[section->id].link_sec;
9089
9090 /* Get the name of this stub. */
9091 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
9092 if (!stub_name)
9093 goto error_ret_free_internal;
9094
9095 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
9096 stub_name, FALSE, FALSE);
9097 if (stub_entry != NULL)
9098 {
9099 /* The proper stub has already been created. */
9100 free (stub_name);
9101 continue;
9102 }
9103
9104 stub_entry = ppc_add_stub (stub_name, section, htab);
9105 if (stub_entry == NULL)
9106 {
9107 free (stub_name);
9108 error_ret_free_internal:
9109 if (elf_section_data (section)->relocs == NULL)
9110 free (internal_relocs);
9111 error_ret_free_local:
9112 if (local_syms != NULL
9113 && (symtab_hdr->contents
9114 != (unsigned char *) local_syms))
9115 free (local_syms);
9116 return FALSE;
9117 }
9118
9119 stub_entry->stub_type = stub_type;
9120 stub_entry->target_value = sym_value;
9121 stub_entry->target_section = code_sec;
9122 stub_entry->h = hash;
9123 stub_entry->addend = irela->r_addend;
9124
9125 if (stub_entry->h != NULL)
9126 htab->stub_globals += 1;
9127 }
9128
9129 /* We're done with the internal relocs, free them. */
9130 if (elf_section_data (section)->relocs != internal_relocs)
9131 free (internal_relocs);
9132 }
9133
9134 if (local_syms != NULL
9135 && symtab_hdr->contents != (unsigned char *) local_syms)
9136 {
9137 if (!info->keep_memory)
9138 free (local_syms);
9139 else
9140 symtab_hdr->contents = (unsigned char *) local_syms;
9141 }
9142 }
9143
9144 /* We may have added some stubs. Find out the new size of the
9145 stub sections. */
9146 for (stub_sec = htab->stub_bfd->sections;
9147 stub_sec != NULL;
9148 stub_sec = stub_sec->next)
9149 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9150 {
9151 stub_sec->rawsize = stub_sec->size;
9152 stub_sec->size = 0;
9153 stub_sec->reloc_count = 0;
9154 }
9155
9156 htab->brlt->size = 0;
9157 if (htab->relbrlt != NULL)
9158 htab->relbrlt->size = 0;
9159
9160 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
9161
9162 for (stub_sec = htab->stub_bfd->sections;
9163 stub_sec != NULL;
9164 stub_sec = stub_sec->next)
9165 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9166 && stub_sec->rawsize != stub_sec->size)
9167 break;
9168
9169 /* Exit from this loop when no stubs have been added, and no stubs
9170 have changed size. */
9171 if (stub_sec == NULL)
9172 break;
9173
9174 /* Ask the linker to do its stuff. */
9175 (*htab->layout_sections_again) ();
9176 }
9177
9178 /* It would be nice to strip htab->brlt from the output if the
9179 section is empty, but it's too late. If we strip sections here,
9180 the dynamic symbol table is corrupted since the section symbol
9181 for the stripped section isn't written. */
9182
9183 return TRUE;
9184}
9185
9186/* Called after we have determined section placement. If sections
9187 move, we'll be called again. Provide a value for TOCstart. */
9188
9189bfd_vma
9190ppc64_elf_toc (bfd *obfd)
9191{
9192 asection *s;
9193 bfd_vma TOCstart;
9194
9195 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
9196 order. The TOC starts where the first of these sections starts. */
9197 s = bfd_get_section_by_name (obfd, ".got");
9198 if (s == NULL)
9199 s = bfd_get_section_by_name (obfd, ".toc");
9200 if (s == NULL)
9201 s = bfd_get_section_by_name (obfd, ".tocbss");
9202 if (s == NULL)
9203 s = bfd_get_section_by_name (obfd, ".plt");
9204 if (s == NULL)
9205 {
9206 /* This may happen for
9207 o references to TOC base (SYM@toc / TOC[tc0]) without a
9208 .toc directive
9209 o bad linker script
9210 o --gc-sections and empty TOC sections
9211
9212 FIXME: Warn user? */
9213
9214 /* Look for a likely section. We probably won't even be
9215 using TOCstart. */
9216 for (s = obfd->sections; s != NULL; s = s->next)
9217 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY))
9218 == (SEC_ALLOC | SEC_SMALL_DATA))
9219 break;
9220 if (s == NULL)
9221 for (s = obfd->sections; s != NULL; s = s->next)
9222 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA))
9223 == (SEC_ALLOC | SEC_SMALL_DATA))
9224 break;
9225 if (s == NULL)
9226 for (s = obfd->sections; s != NULL; s = s->next)
9227 if ((s->flags & (SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
9228 break;
9229 if (s == NULL)
9230 for (s = obfd->sections; s != NULL; s = s->next)
9231 if ((s->flags & SEC_ALLOC) == SEC_ALLOC)
9232 break;
9233 }
9234
9235 TOCstart = 0;
9236 if (s != NULL)
9237 TOCstart = s->output_section->vma + s->output_offset;
9238
9239 return TOCstart;
9240}
9241
9242/* Build all the stubs associated with the current output file.
9243 The stubs are kept in a hash table attached to the main linker
9244 hash table. This function is called via gldelf64ppc_finish. */
9245
9246bfd_boolean
9247ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
9248 struct bfd_link_info *info,
9249 char **stats)
9250{
9251 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9252 asection *stub_sec;
9253 bfd_byte *p;
9254 int stub_sec_count = 0;
9255
9256 htab->emit_stub_syms = emit_stub_syms;
9257
9258 /* Allocate memory to hold the linker stubs. */
9259 for (stub_sec = htab->stub_bfd->sections;
9260 stub_sec != NULL;
9261 stub_sec = stub_sec->next)
9262 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
9263 && stub_sec->size != 0)
9264 {
9265 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
9266 if (stub_sec->contents == NULL)
9267 return FALSE;
9268 /* We want to check that built size is the same as calculated
9269 size. rawsize is a convenient location to use. */
9270 stub_sec->rawsize = stub_sec->size;
9271 stub_sec->size = 0;
9272 }
9273
9274 if (htab->plt != NULL)
9275 {
9276 unsigned int indx;
9277 bfd_vma plt0;
9278
9279 /* Build the .glink plt call stub. */
9280 plt0 = (htab->plt->output_section->vma
9281 + htab->plt->output_offset
9282 - (htab->glink->output_section->vma
9283 + htab->glink->output_offset
9284 + GLINK_CALL_STUB_SIZE));
9285 if (plt0 + 0x80008000 > 0xffffffff)
9286 {
9287 (*_bfd_error_handler) (_(".glink and .plt too far apart"));
9288 bfd_set_error (bfd_error_bad_value);
9289 return FALSE;
9290 }
9291
9292 if (htab->emit_stub_syms)
9293 {
9294 struct elf_link_hash_entry *h;
9295 h = elf_link_hash_lookup (&htab->elf, "__glink", TRUE, FALSE, FALSE);
9296 if (h == NULL)
9297 return FALSE;
9298 if (h->root.type == bfd_link_hash_new)
9299 {
9300 h->root.type = bfd_link_hash_defined;
9301 h->root.u.def.section = htab->glink;
9302 h->root.u.def.value = 0;
9303 h->ref_regular = 1;
9304 h->def_regular = 1;
9305 h->ref_regular_nonweak = 1;
9306 h->forced_local = 1;
9307 h->non_elf = 0;
9308 }
9309 }
9310 p = htab->glink->contents;
9311 bfd_put_32 (htab->glink->owner, MFCTR_R12, p);
9312 p += 4;
9313 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_3, p);
9314 p += 4;
9315 bfd_put_32 (htab->glink->owner, ADDIC_R2_R0_32K, p);
9316 p += 4;
9317 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9318 p += 4;
9319 bfd_put_32 (htab->glink->owner, SRADI_R2_R2_63, p);
9320 p += 4;
9321 bfd_put_32 (htab->glink->owner, SLDI_R11_R0_2, p);
9322 p += 4;
9323 bfd_put_32 (htab->glink->owner, AND_R2_R2_R11, p);
9324 p += 4;
9325 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
9326 p += 4;
9327 bfd_put_32 (htab->glink->owner, ADD_R12_R12_R2, p);
9328 p += 4;
9329 bfd_put_32 (htab->glink->owner, ADDIS_R12_R12 | PPC_HA (plt0), p);
9330 p += 4;
9331 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | PPC_LO (plt0), p);
9332 p += 4;
9333 bfd_put_32 (htab->glink->owner, ADDI_R12_R12 | PPC_LO (plt0), p);
9334 p += 4;
9335 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
9336 p += 4;
9337 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
9338 p += 4;
9339 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
9340 p += 4;
9341 bfd_put_32 (htab->glink->owner, BCTR, p);
9342 p += 4;
9343
9344 /* Build the .glink lazy link call stubs. */
9345 indx = 0;
9346 while (p < htab->glink->contents + htab->glink->size)
9347 {
9348 if (indx < 0x8000)
9349 {
9350 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
9351 p += 4;
9352 }
9353 else
9354 {
9355 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
9356 p += 4;
9357 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
9358 p += 4;
9359 }
9360 bfd_put_32 (htab->glink->owner,
9361 B_DOT | ((htab->glink->contents - p) & 0x3fffffc), p);
9362 indx++;
9363 p += 4;
9364 }
9365 htab->glink->rawsize = p - htab->glink->contents;
9366 }
9367
9368 if (htab->brlt->size != 0)
9369 {
9370 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
9371 htab->brlt->size);
9372 if (htab->brlt->contents == NULL)
9373 return FALSE;
9374 }
9375 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
9376 {
9377 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
9378 htab->relbrlt->size);
9379 if (htab->relbrlt->contents == NULL)
9380 return FALSE;
9381 }
9382
9383 /* Build the stubs as directed by the stub hash table. */
9384 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
9385
9386 for (stub_sec = htab->stub_bfd->sections;
9387 stub_sec != NULL;
9388 stub_sec = stub_sec->next)
9389 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
9390 {
9391 stub_sec_count += 1;
9392 if (stub_sec->rawsize != stub_sec->size)
9393 break;
9394 }
9395
9396 if (stub_sec != NULL
9397 || htab->glink->rawsize != htab->glink->size)
9398 {
9399 htab->stub_error = TRUE;
9400 (*_bfd_error_handler) (_("stubs don't match calculated size"));
9401 }
9402
9403 if (htab->stub_error)
9404 return FALSE;
9405
9406 if (stats != NULL)
9407 {
9408 *stats = bfd_malloc (500);
9409 if (*stats == NULL)
9410 return FALSE;
9411
9412 sprintf (*stats, _("linker stubs in %u group%s\n"
9413 " branch %lu\n"
9414 " toc adjust %lu\n"
9415 " long branch %lu\n"
9416 " long toc adj %lu\n"
9417 " plt call %lu"),
9418 stub_sec_count,
9419 stub_sec_count == 1 ? "" : "s",
9420 htab->stub_count[ppc_stub_long_branch - 1],
9421 htab->stub_count[ppc_stub_long_branch_r2off - 1],
9422 htab->stub_count[ppc_stub_plt_branch - 1],
9423 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
9424 htab->stub_count[ppc_stub_plt_call - 1]);
9425 }
9426 return TRUE;
9427}
9428
9429/* This function undoes the changes made by add_symbol_adjust. */
9430
9431static bfd_boolean
9432undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
9433{
9434 struct ppc_link_hash_entry *eh;
9435
9436 if (h->root.type == bfd_link_hash_indirect)
9437 return TRUE;
9438
9439 if (h->root.type == bfd_link_hash_warning)
9440 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9441
9442 eh = (struct ppc_link_hash_entry *) h;
9443 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
9444 return TRUE;
9445
9446 eh->elf.root.type = bfd_link_hash_undefined;
9447 return TRUE;
9448}
9449
9450void
9451ppc64_elf_restore_symbols (struct bfd_link_info *info)
9452{
9453 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9454 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
9455}
9456
9457/* The RELOCATE_SECTION function is called by the ELF backend linker
9458 to handle the relocations for a section.
9459
9460 The relocs are always passed as Rela structures; if the section
9461 actually uses Rel structures, the r_addend field will always be
9462 zero.
9463
9464 This function is responsible for adjust the section contents as
9465 necessary, and (if using Rela relocs and generating a
9466 relocatable output file) adjusting the reloc addend as
9467 necessary.
9468
9469 This function does not have to worry about setting the reloc
9470 address or the reloc symbol index.
9471
9472 LOCAL_SYMS is a pointer to the swapped in local symbols.
9473
9474 LOCAL_SECTIONS is an array giving the section in the input file
9475 corresponding to the st_shndx field of each local symbol.
9476
9477 The global hash table entry for the global symbols can be found
9478 via elf_sym_hashes (input_bfd).
9479
9480 When generating relocatable output, this function must handle
9481 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
9482 going to be the section symbol corresponding to the output
9483 section, which means that the addend must be adjusted
9484 accordingly. */
9485
9486static bfd_boolean
9487ppc64_elf_relocate_section (bfd *output_bfd,
9488 struct bfd_link_info *info,
9489 bfd *input_bfd,
9490 asection *input_section,
9491 bfd_byte *contents,
9492 Elf_Internal_Rela *relocs,
9493 Elf_Internal_Sym *local_syms,
9494 asection **local_sections)
9495{
9496 struct ppc_link_hash_table *htab;
9497 Elf_Internal_Shdr *symtab_hdr;
9498 struct elf_link_hash_entry **sym_hashes;
9499 Elf_Internal_Rela *rel;
9500 Elf_Internal_Rela *relend;
9501 Elf_Internal_Rela outrel;
9502 bfd_byte *loc;
9503 struct got_entry **local_got_ents;
9504 bfd_vma TOCstart;
9505 bfd_boolean ret = TRUE;
9506 bfd_boolean is_opd;
9507 /* Disabled until we sort out how ld should choose 'y' vs 'at'. */
9508 bfd_boolean is_power4 = FALSE;
9509
9510 if (info->relocatable)
9511 return TRUE;
9512
9513 /* Initialize howto table if needed. */
9514 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9515 ppc_howto_init ();
9516
9517 htab = ppc_hash_table (info);
9518
9519 /* Don't relocate stub sections. */
9520 if (input_section->owner == htab->stub_bfd)
9521 return TRUE;
9522
9523 local_got_ents = elf_local_got_ents (input_bfd);
9524 TOCstart = elf_gp (output_bfd);
9525 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9526 sym_hashes = elf_sym_hashes (input_bfd);
9527 is_opd = ppc64_elf_section_data (input_section)->opd.adjust != NULL;
9528
9529 rel = relocs;
9530 relend = relocs + input_section->reloc_count;
9531 for (; rel < relend; rel++)
9532 {
9533 enum elf_ppc64_reloc_type r_type;
9534 bfd_vma addend;
9535 bfd_reloc_status_type r;
9536 Elf_Internal_Sym *sym;
9537 asection *sec;
9538 struct elf_link_hash_entry *h_elf;
9539 struct ppc_link_hash_entry *h;
9540 struct ppc_link_hash_entry *fdh;
9541 const char *sym_name;
9542 unsigned long r_symndx, toc_symndx;
9543 char tls_mask, tls_gd, tls_type;
9544 char sym_type;
9545 bfd_vma relocation;
9546 bfd_boolean unresolved_reloc;
9547 bfd_boolean warned;
9548 unsigned long insn, mask;
9549 struct ppc_stub_hash_entry *stub_entry;
9550 bfd_vma max_br_offset;
9551 bfd_vma from;
9552
9553 r_type = ELF64_R_TYPE (rel->r_info);
9554 r_symndx = ELF64_R_SYM (rel->r_info);
9555
9556 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
9557 symbol of the previous ADDR64 reloc. The symbol gives us the
9558 proper TOC base to use. */
9559 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
9560 && rel != relocs
9561 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
9562 && is_opd)
9563 r_symndx = ELF64_R_SYM (rel[-1].r_info);
9564
9565 sym = NULL;
9566 sec = NULL;
9567 h_elf = NULL;
9568 sym_name = NULL;
9569 unresolved_reloc = FALSE;
9570 warned = FALSE;
9571
9572 if (r_symndx < symtab_hdr->sh_info)
9573 {
9574 /* It's a local symbol. */
9575 long *opd_adjust;
9576
9577 sym = local_syms + r_symndx;
9578 sec = local_sections[r_symndx];
9579 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
9580 sym_type = ELF64_ST_TYPE (sym->st_info);
9581 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9582 opd_adjust = get_opd_info (sec);
9583 if (opd_adjust != NULL)
9584 {
9585 long adjust = opd_adjust[(sym->st_value + rel->r_addend) / 8];
9586 if (adjust == -1)
9587 relocation = 0;
9588 else
9589 relocation += adjust;
9590 }
9591 }
9592 else
9593 {
9594 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
9595 r_symndx, symtab_hdr, sym_hashes,
9596 h_elf, sec, relocation,
9597 unresolved_reloc, warned);
9598 sym_name = h_elf->root.root.string;
9599 sym_type = h_elf->type;
9600 }
9601 h = (struct ppc_link_hash_entry *) h_elf;
9602
9603 /* TLS optimizations. Replace instruction sequences and relocs
9604 based on information we collected in tls_optimize. We edit
9605 RELOCS so that --emit-relocs will output something sensible
9606 for the final instruction stream. */
9607 tls_mask = 0;
9608 tls_gd = 0;
9609 toc_symndx = 0;
9610 if (IS_PPC64_TLS_RELOC (r_type))
9611 {
9612 if (h != NULL)
9613 tls_mask = h->tls_mask;
9614 else if (local_got_ents != NULL)
9615 {
9616 char *lgot_masks;
9617 lgot_masks = (char *) (local_got_ents + symtab_hdr->sh_info);
9618 tls_mask = lgot_masks[r_symndx];
9619 }
9620 if (tls_mask == 0 && r_type == R_PPC64_TLS)
9621 {
9622 /* Check for toc tls entries. */
9623 char *toc_tls;
9624
9625 if (!get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9626 rel, input_bfd))
9627 return FALSE;
9628
9629 if (toc_tls)
9630 tls_mask = *toc_tls;
9631 }
9632 }
9633
9634 /* Check that tls relocs are used with tls syms, and non-tls
9635 relocs are used with non-tls syms. */
9636 if (r_symndx != 0
9637 && r_type != R_PPC64_NONE
9638 && (h == NULL
9639 || h->elf.root.type == bfd_link_hash_defined
9640 || h->elf.root.type == bfd_link_hash_defweak)
9641 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
9642 {
9643 if (r_type == R_PPC64_TLS && tls_mask != 0)
9644 /* R_PPC64_TLS is OK against a symbol in the TOC. */
9645 ;
9646 else
9647 (*_bfd_error_handler)
9648 (sym_type == STT_TLS
9649 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
9650 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s"),
9651 input_bfd,
9652 input_section,
9653 (long) rel->r_offset,
9654 ppc64_elf_howto_table[r_type]->name,
9655 sym_name);
9656 }
9657
9658 /* Ensure reloc mapping code below stays sane. */
9659 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
9660 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
9661 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
9662 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
9663 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
9664 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
9665 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
9666 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
9667 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
9668 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
9669 abort ();
9670
9671 switch (r_type)
9672 {
9673 default:
9674 break;
9675
9676 case R_PPC64_TOC16:
9677 case R_PPC64_TOC16_LO:
9678 case R_PPC64_TOC16_DS:
9679 case R_PPC64_TOC16_LO_DS:
9680 {
9681 /* Check for toc tls entries. */
9682 char *toc_tls;
9683 int retval;
9684
9685 retval = get_tls_mask (&toc_tls, &toc_symndx, &local_syms,
9686 rel, input_bfd);
9687 if (retval == 0)
9688 return FALSE;
9689
9690 if (toc_tls)
9691 {
9692 tls_mask = *toc_tls;
9693 if (r_type == R_PPC64_TOC16_DS
9694 || r_type == R_PPC64_TOC16_LO_DS)
9695 {
9696 if (tls_mask != 0
9697 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
9698 goto toctprel;
9699 }
9700 else
9701 {
9702 /* If we found a GD reloc pair, then we might be
9703 doing a GD->IE transition. */
9704 if (retval == 2)
9705 {
9706 tls_gd = TLS_TPRELGD;
9707 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9708 goto tls_get_addr_check;
9709 }
9710 else if (retval == 3)
9711 {
9712 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9713 goto tls_get_addr_check;
9714 }
9715 }
9716 }
9717 }
9718 break;
9719
9720 case R_PPC64_GOT_TPREL16_DS:
9721 case R_PPC64_GOT_TPREL16_LO_DS:
9722 if (tls_mask != 0
9723 && (tls_mask & TLS_TPREL) == 0)
9724 {
9725 toctprel:
9726 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - 2);
9727 insn &= 31 << 21;
9728 insn |= 0x3c0d0000; /* addis 0,13,0 */
9729 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - 2);
9730 r_type = R_PPC64_TPREL16_HA;
9731 if (toc_symndx != 0)
9732 {
9733 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9734 /* We changed the symbol. Start over in order to
9735 get h, sym, sec etc. right. */
9736 rel--;
9737 continue;
9738 }
9739 else
9740 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9741 }
9742 break;
9743
9744 case R_PPC64_TLS:
9745 if (tls_mask != 0
9746 && (tls_mask & TLS_TPREL) == 0)
9747 {
9748 bfd_vma rtra;
9749 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
9750 if ((insn & ((0x3f << 26) | (31 << 11)))
9751 == ((31 << 26) | (13 << 11)))
9752 rtra = insn & ((1 << 26) - (1 << 16));
9753 else if ((insn & ((0x3f << 26) | (31 << 16)))
9754 == ((31 << 26) | (13 << 16)))
9755 rtra = (insn & (31 << 21)) | ((insn & (31 << 11)) << 5);
9756 else
9757 abort ();
9758 if ((insn & ((1 << 11) - (1 << 1))) == 266 << 1)
9759 /* add -> addi. */
9760 insn = 14 << 26;
9761 else if ((insn & (31 << 1)) == 23 << 1
9762 && ((insn & (31 << 6)) < 14 << 6
9763 || ((insn & (31 << 6)) >= 16 << 6
9764 && (insn & (31 << 6)) < 24 << 6)))
9765 /* load and store indexed -> dform. */
9766 insn = (32 | ((insn >> 6) & 31)) << 26;
9767 else if ((insn & (31 << 1)) == 21 << 1
9768 && (insn & (0x1a << 6)) == 0)
9769 /* ldx, ldux, stdx, stdux -> ld, ldu, std, stdu. */
9770 insn = (((58 | ((insn >> 6) & 4)) << 26)
9771 | ((insn >> 6) & 1));
9772 else if ((insn & (31 << 1)) == 21 << 1
9773 && (insn & ((1 << 11) - (1 << 1))) == 341 << 1)
9774 /* lwax -> lwa. */
9775 insn = (58 << 26) | 2;
9776 else
9777 abort ();
9778 insn |= rtra;
9779 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
9780 /* Was PPC64_TLS which sits on insn boundary, now
9781 PPC64_TPREL16_LO which is at insn+2. */
9782 rel->r_offset += 2;
9783 r_type = R_PPC64_TPREL16_LO;
9784 if (toc_symndx != 0)
9785 {
9786 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
9787 /* We changed the symbol. Start over in order to
9788 get h, sym, sec etc. right. */
9789 rel--;
9790 continue;
9791 }
9792 else
9793 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9794 }
9795 break;
9796
9797 case R_PPC64_GOT_TLSGD16_HI:
9798 case R_PPC64_GOT_TLSGD16_HA:
9799 tls_gd = TLS_TPRELGD;
9800 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9801 goto tls_gdld_hi;
9802 break;
9803
9804 case R_PPC64_GOT_TLSLD16_HI:
9805 case R_PPC64_GOT_TLSLD16_HA:
9806 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9807 {
9808 tls_gdld_hi:
9809 if ((tls_mask & tls_gd) != 0)
9810 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9811 + R_PPC64_GOT_TPREL16_DS);
9812 else
9813 {
9814 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
9815 rel->r_offset -= 2;
9816 r_type = R_PPC64_NONE;
9817 }
9818 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9819 }
9820 break;
9821
9822 case R_PPC64_GOT_TLSGD16:
9823 case R_PPC64_GOT_TLSGD16_LO:
9824 tls_gd = TLS_TPRELGD;
9825 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
9826 goto tls_get_addr_check;
9827 break;
9828
9829 case R_PPC64_GOT_TLSLD16:
9830 case R_PPC64_GOT_TLSLD16_LO:
9831 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
9832 {
9833 tls_get_addr_check:
9834 if (rel + 1 < relend)
9835 {
9836 enum elf_ppc64_reloc_type r_type2;
9837 unsigned long r_symndx2;
9838 struct elf_link_hash_entry *h2;
9839 bfd_vma insn1, insn2, insn3;
9840 bfd_vma offset;
9841
9842 /* The next instruction should be a call to
9843 __tls_get_addr. Peek at the reloc to be sure. */
9844 r_type2 = ELF64_R_TYPE (rel[1].r_info);
9845 r_symndx2 = ELF64_R_SYM (rel[1].r_info);
9846 if (r_symndx2 < symtab_hdr->sh_info
9847 || (r_type2 != R_PPC64_REL14
9848 && r_type2 != R_PPC64_REL14_BRTAKEN
9849 && r_type2 != R_PPC64_REL14_BRNTAKEN
9850 && r_type2 != R_PPC64_REL24))
9851 break;
9852
9853 h2 = sym_hashes[r_symndx2 - symtab_hdr->sh_info];
9854 while (h2->root.type == bfd_link_hash_indirect
9855 || h2->root.type == bfd_link_hash_warning)
9856 h2 = (struct elf_link_hash_entry *) h2->root.u.i.link;
9857 if (h2 == NULL || (h2 != &htab->tls_get_addr->elf
9858 && h2 != &htab->tls_get_addr_fd->elf))
9859 break;
9860
9861 /* OK, it checks out. Replace the call. */
9862 offset = rel[1].r_offset;
9863 insn1 = bfd_get_32 (output_bfd,
9864 contents + rel->r_offset - 2);
9865 insn3 = bfd_get_32 (output_bfd,
9866 contents + offset + 4);
9867 if ((tls_mask & tls_gd) != 0)
9868 {
9869 /* IE */
9870 insn1 &= (1 << 26) - (1 << 2);
9871 insn1 |= 58 << 26; /* ld */
9872 insn2 = 0x7c636a14; /* add 3,3,13 */
9873 rel[1].r_info = ELF64_R_INFO (r_symndx2, R_PPC64_NONE);
9874 if ((tls_mask & TLS_EXPLICIT) == 0)
9875 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
9876 + R_PPC64_GOT_TPREL16_DS);
9877 else
9878 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
9879 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9880 }
9881 else
9882 {
9883 /* LE */
9884 insn1 = 0x3c6d0000; /* addis 3,13,0 */
9885 insn2 = 0x38630000; /* addi 3,3,0 */
9886 if (tls_gd == 0)
9887 {
9888 /* Was an LD reloc. */
9889 r_symndx = 0;
9890 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9891 rel[1].r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
9892 }
9893 else if (toc_symndx != 0)
9894 r_symndx = toc_symndx;
9895 r_type = R_PPC64_TPREL16_HA;
9896 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9897 rel[1].r_info = ELF64_R_INFO (r_symndx,
9898 R_PPC64_TPREL16_LO);
9899 rel[1].r_offset += 2;
9900 }
9901 if (insn3 == NOP
9902 || insn3 == CROR_151515 || insn3 == CROR_313131)
9903 {
9904 insn3 = insn2;
9905 insn2 = NOP;
9906 rel[1].r_offset += 4;
9907 }
9908 bfd_put_32 (output_bfd, insn1, contents + rel->r_offset - 2);
9909 bfd_put_32 (output_bfd, insn2, contents + offset);
9910 bfd_put_32 (output_bfd, insn3, contents + offset + 4);
9911 if (tls_gd == 0 || toc_symndx != 0)
9912 {
9913 /* We changed the symbol. Start over in order
9914 to get h, sym, sec etc. right. */
9915 rel--;
9916 continue;
9917 }
9918 }
9919 }
9920 break;
9921
9922 case R_PPC64_DTPMOD64:
9923 if (rel + 1 < relend
9924 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
9925 && rel[1].r_offset == rel->r_offset + 8)
9926 {
9927 if ((tls_mask & TLS_GD) == 0)
9928 {
9929 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
9930 if ((tls_mask & TLS_TPRELGD) != 0)
9931 r_type = R_PPC64_TPREL64;
9932 else
9933 {
9934 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9935 r_type = R_PPC64_NONE;
9936 }
9937 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9938 }
9939 }
9940 else
9941 {
9942 if ((tls_mask & TLS_LD) == 0)
9943 {
9944 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
9945 r_type = R_PPC64_NONE;
9946 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9947 }
9948 }
9949 break;
9950
9951 case R_PPC64_TPREL64:
9952 if ((tls_mask & TLS_TPREL) == 0)
9953 {
9954 r_type = R_PPC64_NONE;
9955 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
9956 }
9957 break;
9958 }
9959
9960 /* Handle other relocations that tweak non-addend part of insn. */
9961 insn = 0;
9962 max_br_offset = 1 << 25;
9963 addend = rel->r_addend;
9964 switch (r_type)
9965 {
9966 default:
9967 break;
9968
9969 /* Branch taken prediction relocations. */
9970 case R_PPC64_ADDR14_BRTAKEN:
9971 case R_PPC64_REL14_BRTAKEN:
9972 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
9973 /* Fall thru. */
9974
9975 /* Branch not taken prediction relocations. */
9976 case R_PPC64_ADDR14_BRNTAKEN:
9977 case R_PPC64_REL14_BRNTAKEN:
9978 insn |= bfd_get_32 (output_bfd,
9979 contents + rel->r_offset) & ~(0x01 << 21);
9980 /* Fall thru. */
9981
9982 case R_PPC64_REL14:
9983 max_br_offset = 1 << 15;
9984 /* Fall thru. */
9985
9986 case R_PPC64_REL24:
9987 /* Calls to functions with a different TOC, such as calls to
9988 shared objects, need to alter the TOC pointer. This is
9989 done using a linkage stub. A REL24 branching to these
9990 linkage stubs needs to be followed by a nop, as the nop
9991 will be replaced with an instruction to restore the TOC
9992 base pointer. */
9993 stub_entry = NULL;
9994 fdh = h;
9995 if (((h != NULL
9996 && (((fdh = h->oh) != NULL
9997 && fdh->elf.plt.plist != NULL)
9998 || (fdh = h)->elf.plt.plist != NULL))
9999 || (sec != NULL
10000 && sec->output_section != NULL
10001 && sec->id <= htab->top_id
10002 && (htab->stub_group[sec->id].toc_off
10003 != htab->stub_group[input_section->id].toc_off)))
10004 && (stub_entry = ppc_get_stub_entry (input_section, sec, fdh,
10005 rel, htab)) != NULL
10006 && (stub_entry->stub_type == ppc_stub_plt_call
10007 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
10008 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
10009 {
10010 bfd_boolean can_plt_call = FALSE;
10011
10012 if (rel->r_offset + 8 <= input_section->size)
10013 {
10014 unsigned long nop;
10015 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
10016 if (nop == NOP
10017 || nop == CROR_151515 || nop == CROR_313131)
10018 {
10019 bfd_put_32 (input_bfd, LD_R2_40R1,
10020 contents + rel->r_offset + 4);
10021 can_plt_call = TRUE;
10022 }
10023 }
10024
10025 if (!can_plt_call)
10026 {
10027 if (stub_entry->stub_type == ppc_stub_plt_call)
10028 {
10029 /* If this is a plain branch rather than a branch
10030 and link, don't require a nop. */
10031 unsigned long br;
10032 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
10033 if ((br & 1) == 0)
10034 can_plt_call = TRUE;
10035 else
10036 stub_entry = NULL;
10037 }
10038 else if (h != NULL
10039 && strcmp (h->elf.root.root.string,
10040 ".__libc_start_main") == 0)
10041 {
10042 /* Allow crt1 branch to go via a toc adjusting stub. */
10043 can_plt_call = TRUE;
10044 }
10045 else
10046 {
10047 if (strcmp (input_section->output_section->name,
10048 ".init") == 0
10049 || strcmp (input_section->output_section->name,
10050 ".fini") == 0)
10051 (*_bfd_error_handler)
10052 (_("%B(%A+0x%lx): automatic multiple TOCs "
10053 "not supported using your crt files; "
10054 "recompile with -mminimal-toc or upgrade gcc"),
10055 input_bfd,
10056 input_section,
10057 (long) rel->r_offset);
10058 else
10059 (*_bfd_error_handler)
10060 (_("%B(%A+0x%lx): sibling call optimization to `%s' "
10061 "does not allow automatic multiple TOCs; "
10062 "recompile with -mminimal-toc or "
10063 "-fno-optimize-sibling-calls, "
10064 "or make `%s' extern"),
10065 input_bfd,
10066 input_section,
10067 (long) rel->r_offset,
10068 sym_name,
10069 sym_name);
10070 bfd_set_error (bfd_error_bad_value);
10071 ret = FALSE;
10072 }
10073 }
10074
10075 if (can_plt_call
10076 && stub_entry->stub_type == ppc_stub_plt_call)
10077 unresolved_reloc = FALSE;
10078 }
10079
10080 if (stub_entry == NULL
10081 && get_opd_info (sec) != NULL)
10082 {
10083 /* The branch destination is the value of the opd entry. */
10084 bfd_vma off = (relocation - sec->output_section->vma
10085 - sec->output_offset + rel->r_addend);
10086 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
10087 if (dest != (bfd_vma) -1)
10088 {
10089 relocation = dest;
10090 addend = 0;
10091 }
10092 }
10093
10094 /* If the branch is out of reach we ought to have a long
10095 branch stub. */
10096 from = (rel->r_offset
10097 + input_section->output_offset
10098 + input_section->output_section->vma);
10099
10100 if (stub_entry == NULL
10101 && (relocation + rel->r_addend - from + max_br_offset
10102 >= 2 * max_br_offset)
10103 && r_type != R_PPC64_ADDR14_BRTAKEN
10104 && r_type != R_PPC64_ADDR14_BRNTAKEN)
10105 stub_entry = ppc_get_stub_entry (input_section, sec, h, rel,
10106 htab);
10107
10108 if (stub_entry != NULL)
10109 {
10110 /* Munge up the value and addend so that we call the stub
10111 rather than the procedure directly. */
10112 relocation = (stub_entry->stub_offset
10113 + stub_entry->stub_sec->output_offset
10114 + stub_entry->stub_sec->output_section->vma);
10115 addend = 0;
10116 }
10117
10118 if (insn != 0)
10119 {
10120 if (is_power4)
10121 {
10122 /* Set 'a' bit. This is 0b00010 in BO field for branch
10123 on CR(BI) insns (BO == 001at or 011at), and 0b01000
10124 for branch on CTR insns (BO == 1a00t or 1a01t). */
10125 if ((insn & (0x14 << 21)) == (0x04 << 21))
10126 insn |= 0x02 << 21;
10127 else if ((insn & (0x14 << 21)) == (0x10 << 21))
10128 insn |= 0x08 << 21;
10129 else
10130 break;
10131 }
10132 else
10133 {
10134 /* Invert 'y' bit if not the default. */
10135 if ((bfd_signed_vma) (relocation + rel->r_addend - from) < 0)
10136 insn ^= 0x01 << 21;
10137 }
10138
10139 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
10140 }
10141
10142 /* NOP out calls to undefined weak functions.
10143 We can thus call a weak function without first
10144 checking whether the function is defined. */
10145 else if (h != NULL
10146 && h->elf.root.type == bfd_link_hash_undefweak
10147 && r_type == R_PPC64_REL24
10148 && relocation == 0
10149 && rel->r_addend == 0)
10150 {
10151 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
10152 continue;
10153 }
10154 break;
10155 }
10156
10157 /* Set `addend'. */
10158 tls_type = 0;
10159 switch (r_type)
10160 {
10161 default:
10162 (*_bfd_error_handler)
10163 (_("%B: unknown relocation type %d for symbol %s"),
10164 input_bfd, (int) r_type, sym_name);
10165
10166 bfd_set_error (bfd_error_bad_value);
10167 ret = FALSE;
10168 continue;
10169
10170 case R_PPC64_NONE:
10171 case R_PPC64_TLS:
10172 case R_PPC64_GNU_VTINHERIT:
10173 case R_PPC64_GNU_VTENTRY:
10174 continue;
10175
10176 /* GOT16 relocations. Like an ADDR16 using the symbol's
10177 address in the GOT as relocation value instead of the
10178 symbol's value itself. Also, create a GOT entry for the
10179 symbol and put the symbol value there. */
10180 case R_PPC64_GOT_TLSGD16:
10181 case R_PPC64_GOT_TLSGD16_LO:
10182 case R_PPC64_GOT_TLSGD16_HI:
10183 case R_PPC64_GOT_TLSGD16_HA:
10184 tls_type = TLS_TLS | TLS_GD;
10185 goto dogot;
10186
10187 case R_PPC64_GOT_TLSLD16:
10188 case R_PPC64_GOT_TLSLD16_LO:
10189 case R_PPC64_GOT_TLSLD16_HI:
10190 case R_PPC64_GOT_TLSLD16_HA:
10191 tls_type = TLS_TLS | TLS_LD;
10192 goto dogot;
10193
10194 case R_PPC64_GOT_TPREL16_DS:
10195 case R_PPC64_GOT_TPREL16_LO_DS:
10196 case R_PPC64_GOT_TPREL16_HI:
10197 case R_PPC64_GOT_TPREL16_HA:
10198 tls_type = TLS_TLS | TLS_TPREL;
10199 goto dogot;
10200
10201 case R_PPC64_GOT_DTPREL16_DS:
10202 case R_PPC64_GOT_DTPREL16_LO_DS:
10203 case R_PPC64_GOT_DTPREL16_HI:
10204 case R_PPC64_GOT_DTPREL16_HA:
10205 tls_type = TLS_TLS | TLS_DTPREL;
10206 goto dogot;
10207
10208 case R_PPC64_GOT16:
10209 case R_PPC64_GOT16_LO:
10210 case R_PPC64_GOT16_HI:
10211 case R_PPC64_GOT16_HA:
10212 case R_PPC64_GOT16_DS:
10213 case R_PPC64_GOT16_LO_DS:
10214 dogot:
10215 {
10216 /* Relocation is to the entry for this symbol in the global
10217 offset table. */
10218 asection *got;
10219 bfd_vma *offp;
10220 bfd_vma off;
10221 unsigned long indx = 0;
10222
10223 if (tls_type == (TLS_TLS | TLS_LD)
10224 && (h == NULL
10225 || !h->elf.def_dynamic))
10226 offp = &ppc64_tlsld_got (input_bfd)->offset;
10227 else
10228 {
10229 struct got_entry *ent;
10230
10231 if (h != NULL)
10232 {
10233 bfd_boolean dyn = htab->elf.dynamic_sections_created;
10234 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
10235 &h->elf)
10236 || (info->shared
10237 && SYMBOL_REFERENCES_LOCAL (info, &h->elf)))
10238 /* This is actually a static link, or it is a
10239 -Bsymbolic link and the symbol is defined
10240 locally, or the symbol was forced to be local
10241 because of a version file. */
10242 ;
10243 else
10244 {
10245 indx = h->elf.dynindx;
10246 unresolved_reloc = FALSE;
10247 }
10248 ent = h->elf.got.glist;
10249 }
10250 else
10251 {
10252 if (local_got_ents == NULL)
10253 abort ();
10254 ent = local_got_ents[r_symndx];
10255 }
10256
10257 for (; ent != NULL; ent = ent->next)
10258 if (ent->addend == rel->r_addend
10259 && ent->owner == input_bfd
10260 && ent->tls_type == tls_type)
10261 break;
10262 if (ent == NULL)
10263 abort ();
10264 offp = &ent->got.offset;
10265 }
10266
10267 got = ppc64_elf_tdata (input_bfd)->got;
10268 if (got == NULL)
10269 abort ();
10270
10271 /* The offset must always be a multiple of 8. We use the
10272 least significant bit to record whether we have already
10273 processed this entry. */
10274 off = *offp;
10275 if ((off & 1) != 0)
10276 off &= ~1;
10277 else
10278 {
10279 /* Generate relocs for the dynamic linker, except in
10280 the case of TLSLD where we'll use one entry per
10281 module. */
10282 asection *relgot = ppc64_elf_tdata (input_bfd)->relgot;
10283
10284 *offp = off | 1;
10285 if ((info->shared || indx != 0)
10286 && (h == NULL
10287 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10288 || h->elf.root.type != bfd_link_hash_undefweak))
10289 {
10290 outrel.r_offset = (got->output_section->vma
10291 + got->output_offset
10292 + off);
10293 outrel.r_addend = rel->r_addend;
10294 if (tls_type & (TLS_LD | TLS_GD))
10295 {
10296 outrel.r_addend = 0;
10297 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
10298 if (tls_type == (TLS_TLS | TLS_GD))
10299 {
10300 loc = relgot->contents;
10301 loc += (relgot->reloc_count++
10302 * sizeof (Elf64_External_Rela));
10303 bfd_elf64_swap_reloca_out (output_bfd,
10304 &outrel, loc);
10305 outrel.r_offset += 8;
10306 outrel.r_addend = rel->r_addend;
10307 outrel.r_info
10308 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10309 }
10310 }
10311 else if (tls_type == (TLS_TLS | TLS_DTPREL))
10312 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
10313 else if (tls_type == (TLS_TLS | TLS_TPREL))
10314 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
10315 else if (indx == 0)
10316 {
10317 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_RELATIVE);
10318
10319 /* Write the .got section contents for the sake
10320 of prelink. */
10321 loc = got->contents + off;
10322 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
10323 loc);
10324 }
10325 else
10326 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
10327
10328 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
10329 {
10330 outrel.r_addend += relocation;
10331 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
10332 outrel.r_addend -= htab->elf.tls_sec->vma;
10333 }
10334 loc = relgot->contents;
10335 loc += (relgot->reloc_count++
10336 * sizeof (Elf64_External_Rela));
10337 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10338 }
10339
10340 /* Init the .got section contents here if we're not
10341 emitting a reloc. */
10342 else
10343 {
10344 relocation += rel->r_addend;
10345 if (tls_type == (TLS_TLS | TLS_LD))
10346 relocation = 1;
10347 else if (tls_type != 0)
10348 {
10349 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
10350 if (tls_type == (TLS_TLS | TLS_TPREL))
10351 relocation += DTP_OFFSET - TP_OFFSET;
10352
10353 if (tls_type == (TLS_TLS | TLS_GD))
10354 {
10355 bfd_put_64 (output_bfd, relocation,
10356 got->contents + off + 8);
10357 relocation = 1;
10358 }
10359 }
10360
10361 bfd_put_64 (output_bfd, relocation,
10362 got->contents + off);
10363 }
10364 }
10365
10366 if (off >= (bfd_vma) -2)
10367 abort ();
10368
10369 relocation = got->output_offset + off;
10370
10371 /* TOC base (r2) is TOC start plus 0x8000. */
10372 addend = -TOC_BASE_OFF;
10373 }
10374 break;
10375
10376 case R_PPC64_PLT16_HA:
10377 case R_PPC64_PLT16_HI:
10378 case R_PPC64_PLT16_LO:
10379 case R_PPC64_PLT32:
10380 case R_PPC64_PLT64:
10381 /* Relocation is to the entry for this symbol in the
10382 procedure linkage table. */
10383
10384 /* Resolve a PLT reloc against a local symbol directly,
10385 without using the procedure linkage table. */
10386 if (h == NULL)
10387 break;
10388
10389 /* It's possible that we didn't make a PLT entry for this
10390 symbol. This happens when statically linking PIC code,
10391 or when using -Bsymbolic. Go find a match if there is a
10392 PLT entry. */
10393 if (htab->plt != NULL)
10394 {
10395 struct plt_entry *ent;
10396 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
10397 if (ent->addend == rel->r_addend
10398 && ent->plt.offset != (bfd_vma) -1)
10399 {
10400 relocation = (htab->plt->output_section->vma
10401 + htab->plt->output_offset
10402 + ent->plt.offset);
10403 unresolved_reloc = FALSE;
10404 }
10405 }
10406 break;
10407
10408 case R_PPC64_TOC:
10409 /* Relocation value is TOC base. */
10410 relocation = TOCstart;
10411 if (r_symndx == 0)
10412 relocation += htab->stub_group[input_section->id].toc_off;
10413 else if (unresolved_reloc)
10414 ;
10415 else if (sec != NULL && sec->id <= htab->top_id)
10416 relocation += htab->stub_group[sec->id].toc_off;
10417 else
10418 unresolved_reloc = TRUE;
10419 goto dodyn2;
10420
10421 /* TOC16 relocs. We want the offset relative to the TOC base,
10422 which is the address of the start of the TOC plus 0x8000.
10423 The TOC consists of sections .got, .toc, .tocbss, and .plt,
10424 in this order. */
10425 case R_PPC64_TOC16:
10426 case R_PPC64_TOC16_LO:
10427 case R_PPC64_TOC16_HI:
10428 case R_PPC64_TOC16_DS:
10429 case R_PPC64_TOC16_LO_DS:
10430 case R_PPC64_TOC16_HA:
10431 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
10432 break;
10433
10434 /* Relocate against the beginning of the section. */
10435 case R_PPC64_SECTOFF:
10436 case R_PPC64_SECTOFF_LO:
10437 case R_PPC64_SECTOFF_HI:
10438 case R_PPC64_SECTOFF_DS:
10439 case R_PPC64_SECTOFF_LO_DS:
10440 case R_PPC64_SECTOFF_HA:
10441 if (sec != NULL)
10442 addend -= sec->output_section->vma;
10443 break;
10444
10445 case R_PPC64_REL14:
10446 case R_PPC64_REL14_BRNTAKEN:
10447 case R_PPC64_REL14_BRTAKEN:
10448 case R_PPC64_REL24:
10449 break;
10450
10451 case R_PPC64_TPREL16:
10452 case R_PPC64_TPREL16_LO:
10453 case R_PPC64_TPREL16_HI:
10454 case R_PPC64_TPREL16_HA:
10455 case R_PPC64_TPREL16_DS:
10456 case R_PPC64_TPREL16_LO_DS:
10457 case R_PPC64_TPREL16_HIGHER:
10458 case R_PPC64_TPREL16_HIGHERA:
10459 case R_PPC64_TPREL16_HIGHEST:
10460 case R_PPC64_TPREL16_HIGHESTA:
10461 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10462 if (info->shared)
10463 /* The TPREL16 relocs shouldn't really be used in shared
10464 libs as they will result in DT_TEXTREL being set, but
10465 support them anyway. */
10466 goto dodyn;
10467 break;
10468
10469 case R_PPC64_DTPREL16:
10470 case R_PPC64_DTPREL16_LO:
10471 case R_PPC64_DTPREL16_HI:
10472 case R_PPC64_DTPREL16_HA:
10473 case R_PPC64_DTPREL16_DS:
10474 case R_PPC64_DTPREL16_LO_DS:
10475 case R_PPC64_DTPREL16_HIGHER:
10476 case R_PPC64_DTPREL16_HIGHERA:
10477 case R_PPC64_DTPREL16_HIGHEST:
10478 case R_PPC64_DTPREL16_HIGHESTA:
10479 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10480 break;
10481
10482 case R_PPC64_DTPMOD64:
10483 relocation = 1;
10484 addend = 0;
10485 goto dodyn;
10486
10487 case R_PPC64_TPREL64:
10488 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
10489 goto dodyn;
10490
10491 case R_PPC64_DTPREL64:
10492 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
10493 /* Fall thru */
10494
10495 /* Relocations that may need to be propagated if this is a
10496 dynamic object. */
10497 case R_PPC64_REL30:
10498 case R_PPC64_REL32:
10499 case R_PPC64_REL64:
10500 case R_PPC64_ADDR14:
10501 case R_PPC64_ADDR14_BRNTAKEN:
10502 case R_PPC64_ADDR14_BRTAKEN:
10503 case R_PPC64_ADDR16:
10504 case R_PPC64_ADDR16_DS:
10505 case R_PPC64_ADDR16_HA:
10506 case R_PPC64_ADDR16_HI:
10507 case R_PPC64_ADDR16_HIGHER:
10508 case R_PPC64_ADDR16_HIGHERA:
10509 case R_PPC64_ADDR16_HIGHEST:
10510 case R_PPC64_ADDR16_HIGHESTA:
10511 case R_PPC64_ADDR16_LO:
10512 case R_PPC64_ADDR16_LO_DS:
10513 case R_PPC64_ADDR24:
10514 case R_PPC64_ADDR32:
10515 case R_PPC64_ADDR64:
10516 case R_PPC64_UADDR16:
10517 case R_PPC64_UADDR32:
10518 case R_PPC64_UADDR64:
10519 /* r_symndx will be zero only for relocs against symbols
10520 from removed linkonce sections, or sections discarded by
10521 a linker script. */
10522 dodyn:
10523 if (r_symndx == 0)
10524 break;
10525 /* Fall thru. */
10526
10527 dodyn2:
10528 if ((input_section->flags & SEC_ALLOC) == 0)
10529 break;
10530
10531 if (NO_OPD_RELOCS && is_opd)
10532 break;
10533
10534 if ((info->shared
10535 && (h == NULL
10536 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
10537 || h->elf.root.type != bfd_link_hash_undefweak)
10538 && (MUST_BE_DYN_RELOC (r_type)
10539 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
10540 || (ELIMINATE_COPY_RELOCS
10541 && !info->shared
10542 && h != NULL
10543 && h->elf.dynindx != -1
10544 && !h->elf.non_got_ref
10545 && h->elf.def_dynamic
10546 && !h->elf.def_regular))
10547 {
10548 Elf_Internal_Rela outrel;
10549 bfd_boolean skip, relocate;
10550 asection *sreloc;
10551 bfd_byte *loc;
10552 bfd_vma out_off;
10553
10554 /* When generating a dynamic object, these relocations
10555 are copied into the output file to be resolved at run
10556 time. */
10557
10558 skip = FALSE;
10559 relocate = FALSE;
10560
10561 out_off = _bfd_elf_section_offset (output_bfd, info,
10562 input_section, rel->r_offset);
10563 if (out_off == (bfd_vma) -1)
10564 skip = TRUE;
10565 else if (out_off == (bfd_vma) -2)
10566 skip = TRUE, relocate = TRUE;
10567 out_off += (input_section->output_section->vma
10568 + input_section->output_offset);
10569 outrel.r_offset = out_off;
10570 outrel.r_addend = rel->r_addend;
10571
10572 /* Optimize unaligned reloc use. */
10573 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
10574 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
10575 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
10576 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
10577 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
10578 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
10579 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
10580 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
10581 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
10582
10583 if (skip)
10584 memset (&outrel, 0, sizeof outrel);
10585 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
10586 && !is_opd
10587 && r_type != R_PPC64_TOC)
10588 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
10589 else
10590 {
10591 /* This symbol is local, or marked to become local,
10592 or this is an opd section reloc which must point
10593 at a local function. */
10594 outrel.r_addend += relocation;
10595 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
10596 {
10597 if (is_opd && h != NULL)
10598 {
10599 /* Lie about opd entries. This case occurs
10600 when building shared libraries and we
10601 reference a function in another shared
10602 lib. The same thing happens for a weak
10603 definition in an application that's
10604 overridden by a strong definition in a
10605 shared lib. (I believe this is a generic
10606 bug in binutils handling of weak syms.)
10607 In these cases we won't use the opd
10608 entry in this lib. */
10609 unresolved_reloc = FALSE;
10610 }
10611 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10612
10613 /* We need to relocate .opd contents for ld.so.
10614 Prelink also wants simple and consistent rules
10615 for relocs. This make all RELATIVE relocs have
10616 *r_offset equal to r_addend. */
10617 relocate = TRUE;
10618 }
10619 else
10620 {
10621 long indx = 0;
10622
10623 if (bfd_is_abs_section (sec))
10624 ;
10625 else if (sec == NULL || sec->owner == NULL)
10626 {
10627 bfd_set_error (bfd_error_bad_value);
10628 return FALSE;
10629 }
10630 else
10631 {
10632 asection *osec;
10633
10634 osec = sec->output_section;
10635 indx = elf_section_data (osec)->dynindx;
10636
10637 /* We are turning this relocation into one
10638 against a section symbol, so subtract out
10639 the output section's address but not the
10640 offset of the input section in the output
10641 section. */
10642 outrel.r_addend -= osec->vma;
10643 }
10644
10645 outrel.r_info = ELF64_R_INFO (indx, r_type);
10646 }
10647 }
10648
10649 sreloc = elf_section_data (input_section)->sreloc;
10650 if (sreloc == NULL)
10651 abort ();
10652
10653 loc = sreloc->contents;
10654 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
10655 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
10656
10657 /* If this reloc is against an external symbol, it will
10658 be computed at runtime, so there's no need to do
10659 anything now. However, for the sake of prelink ensure
10660 that the section contents are a known value. */
10661 if (! relocate)
10662 {
10663 unresolved_reloc = FALSE;
10664 /* The value chosen here is quite arbitrary as ld.so
10665 ignores section contents except for the special
10666 case of .opd where the contents might be accessed
10667 before relocation. Choose zero, as that won't
10668 cause reloc overflow. */
10669 relocation = 0;
10670 addend = 0;
10671 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
10672 to improve backward compatibility with older
10673 versions of ld. */
10674 if (r_type == R_PPC64_ADDR64)
10675 addend = outrel.r_addend;
10676 /* Adjust pc_relative relocs to have zero in *r_offset. */
10677 else if (ppc64_elf_howto_table[r_type]->pc_relative)
10678 addend = (input_section->output_section->vma
10679 + input_section->output_offset
10680 + rel->r_offset);
10681 }
10682 }
10683 break;
10684
10685 case R_PPC64_COPY:
10686 case R_PPC64_GLOB_DAT:
10687 case R_PPC64_JMP_SLOT:
10688 case R_PPC64_RELATIVE:
10689 /* We shouldn't ever see these dynamic relocs in relocatable
10690 files. */
10691 /* Fall through. */
10692
10693 case R_PPC64_PLTGOT16:
10694 case R_PPC64_PLTGOT16_DS:
10695 case R_PPC64_PLTGOT16_HA:
10696 case R_PPC64_PLTGOT16_HI:
10697 case R_PPC64_PLTGOT16_LO:
10698 case R_PPC64_PLTGOT16_LO_DS:
10699 case R_PPC64_PLTREL32:
10700 case R_PPC64_PLTREL64:
10701 /* These ones haven't been implemented yet. */
10702
10703 (*_bfd_error_handler)
10704 (_("%B: relocation %s is not supported for symbol %s."),
10705 input_bfd,
10706 ppc64_elf_howto_table[r_type]->name, sym_name);
10707
10708 bfd_set_error (bfd_error_invalid_operation);
10709 ret = FALSE;
10710 continue;
10711 }
10712
10713 /* Do any further special processing. */
10714 switch (r_type)
10715 {
10716 default:
10717 break;
10718
10719 case R_PPC64_ADDR16_HA:
10720 case R_PPC64_ADDR16_HIGHERA:
10721 case R_PPC64_ADDR16_HIGHESTA:
10722 case R_PPC64_GOT16_HA:
10723 case R_PPC64_PLTGOT16_HA:
10724 case R_PPC64_PLT16_HA:
10725 case R_PPC64_TOC16_HA:
10726 case R_PPC64_SECTOFF_HA:
10727 case R_PPC64_TPREL16_HA:
10728 case R_PPC64_DTPREL16_HA:
10729 case R_PPC64_GOT_TLSGD16_HA:
10730 case R_PPC64_GOT_TLSLD16_HA:
10731 case R_PPC64_GOT_TPREL16_HA:
10732 case R_PPC64_GOT_DTPREL16_HA:
10733 case R_PPC64_TPREL16_HIGHER:
10734 case R_PPC64_TPREL16_HIGHERA:
10735 case R_PPC64_TPREL16_HIGHEST:
10736 case R_PPC64_TPREL16_HIGHESTA:
10737 case R_PPC64_DTPREL16_HIGHER:
10738 case R_PPC64_DTPREL16_HIGHERA:
10739 case R_PPC64_DTPREL16_HIGHEST:
10740 case R_PPC64_DTPREL16_HIGHESTA:
10741 /* It's just possible that this symbol is a weak symbol
10742 that's not actually defined anywhere. In that case,
10743 'sec' would be NULL, and we should leave the symbol
10744 alone (it will be set to zero elsewhere in the link). */
10745 if (sec != NULL)
10746 /* Add 0x10000 if sign bit in 0:15 is set.
10747 Bits 0:15 are not used. */
10748 addend += 0x8000;
10749 break;
10750
10751 case R_PPC64_ADDR16_DS:
10752 case R_PPC64_ADDR16_LO_DS:
10753 case R_PPC64_GOT16_DS:
10754 case R_PPC64_GOT16_LO_DS:
10755 case R_PPC64_PLT16_LO_DS:
10756 case R_PPC64_SECTOFF_DS:
10757 case R_PPC64_SECTOFF_LO_DS:
10758 case R_PPC64_TOC16_DS:
10759 case R_PPC64_TOC16_LO_DS:
10760 case R_PPC64_PLTGOT16_DS:
10761 case R_PPC64_PLTGOT16_LO_DS:
10762 case R_PPC64_GOT_TPREL16_DS:
10763 case R_PPC64_GOT_TPREL16_LO_DS:
10764 case R_PPC64_GOT_DTPREL16_DS:
10765 case R_PPC64_GOT_DTPREL16_LO_DS:
10766 case R_PPC64_TPREL16_DS:
10767 case R_PPC64_TPREL16_LO_DS:
10768 case R_PPC64_DTPREL16_DS:
10769 case R_PPC64_DTPREL16_LO_DS:
10770 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
10771 mask = 3;
10772 /* If this reloc is against an lq insn, then the value must be
10773 a multiple of 16. This is somewhat of a hack, but the
10774 "correct" way to do this by defining _DQ forms of all the
10775 _DS relocs bloats all reloc switches in this file. It
10776 doesn't seem to make much sense to use any of these relocs
10777 in data, so testing the insn should be safe. */
10778 if ((insn & (0x3f << 26)) == (56u << 26))
10779 mask = 15;
10780 if (((relocation + addend) & mask) != 0)
10781 {
10782 (*_bfd_error_handler)
10783 (_("%B: error: relocation %s not a multiple of %d"),
10784 input_bfd,
10785 ppc64_elf_howto_table[r_type]->name,
10786 mask + 1);
10787 bfd_set_error (bfd_error_bad_value);
10788 ret = FALSE;
10789 continue;
10790 }
10791 break;
10792 }
10793
10794 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10795 because such sections are not SEC_ALLOC and thus ld.so will
10796 not process them. */
10797 if (unresolved_reloc
10798 && !((input_section->flags & SEC_DEBUGGING) != 0
10799 && h->elf.def_dynamic))
10800 {
10801 (*_bfd_error_handler)
10802 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10803 input_bfd,
10804 input_section,
10805 (long) rel->r_offset,
10806 ppc64_elf_howto_table[(int) r_type]->name,
10807 h->elf.root.root.string);
10808 ret = FALSE;
10809 }
10810
10811 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
10812 input_bfd,
10813 input_section,
10814 contents,
10815 rel->r_offset,
10816 relocation,
10817 addend);
10818
10819 if (r != bfd_reloc_ok)
10820 {
10821 if (sym_name == NULL)
10822 sym_name = "(null)";
10823 if (r == bfd_reloc_overflow)
10824 {
10825 if (warned)
10826 continue;
10827 if (h != NULL
10828 && h->elf.root.type == bfd_link_hash_undefweak
10829 && ppc64_elf_howto_table[r_type]->pc_relative)
10830 {
10831 /* Assume this is a call protected by other code that
10832 detects the symbol is undefined. If this is the case,
10833 we can safely ignore the overflow. If not, the
10834 program is hosed anyway, and a little warning isn't
10835 going to help. */
10836
10837 continue;
10838 }
10839
10840 if (!((*info->callbacks->reloc_overflow)
10841 (info, (h ? &h->elf.root : NULL), sym_name,
10842 ppc64_elf_howto_table[r_type]->name,
10843 rel->r_addend, input_bfd, input_section, rel->r_offset)))
10844 return FALSE;
10845 }
10846 else
10847 {
10848 (*_bfd_error_handler)
10849 (_("%B(%A+0x%lx): %s reloc against `%s': error %d"),
10850 input_bfd,
10851 input_section,
10852 (long) rel->r_offset,
10853 ppc64_elf_howto_table[r_type]->name,
10854 sym_name,
10855 (int) r);
10856 ret = FALSE;
10857 }
10858 }
10859 }
10860
10861 /* If we're emitting relocations, then shortly after this function
10862 returns, reloc offsets and addends for this section will be
10863 adjusted. Worse, reloc symbol indices will be for the output
10864 file rather than the input. Save a copy of the relocs for
10865 opd_entry_value. */
10866 if (is_opd && info->emitrelocations)
10867 {
10868 bfd_size_type amt;
10869 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
10870 rel = bfd_alloc (input_bfd, amt);
10871 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
10872 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
10873 if (rel == NULL)
10874 return FALSE;
10875 memcpy (rel, relocs, amt);
10876 }
10877 return ret;
10878}
10879
10880/* Adjust the value of any local symbols in opd sections. */
10881
10882static bfd_boolean
10883ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
10884 const char *name ATTRIBUTE_UNUSED,
10885 Elf_Internal_Sym *elfsym,
10886 asection *input_sec,
10887 struct elf_link_hash_entry *h)
10888{
10889 long *opd_adjust, adjust;
10890 bfd_vma value;
10891
10892 if (h != NULL)
10893 return TRUE;
10894
10895 opd_adjust = get_opd_info (input_sec);
10896 if (opd_adjust == NULL)
10897 return TRUE;
10898
10899 value = elfsym->st_value - input_sec->output_offset;
10900 if (!info->relocatable)
10901 value -= input_sec->output_section->vma;
10902
10903 adjust = opd_adjust[value / 8];
10904 if (adjust == -1)
10905 elfsym->st_value = 0;
10906 else
10907 elfsym->st_value += adjust;
10908 return TRUE;
10909}
10910
10911/* Finish up dynamic symbol handling. We set the contents of various
10912 dynamic sections here. */
10913
10914static bfd_boolean
10915ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
10916 struct bfd_link_info *info,
10917 struct elf_link_hash_entry *h,
10918 Elf_Internal_Sym *sym)
10919{
10920 struct ppc_link_hash_table *htab;
10921 bfd *dynobj;
10922 struct plt_entry *ent;
10923 Elf_Internal_Rela rela;
10924 bfd_byte *loc;
10925
10926 htab = ppc_hash_table (info);
10927 dynobj = htab->elf.dynobj;
10928
10929 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
10930 if (ent->plt.offset != (bfd_vma) -1)
10931 {
10932 /* This symbol has an entry in the procedure linkage
10933 table. Set it up. */
10934
10935 if (htab->plt == NULL
10936 || htab->relplt == NULL
10937 || htab->glink == NULL)
10938 abort ();
10939
10940 /* Create a JMP_SLOT reloc to inform the dynamic linker to
10941 fill in the PLT entry. */
10942 rela.r_offset = (htab->plt->output_section->vma
10943 + htab->plt->output_offset
10944 + ent->plt.offset);
10945 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
10946 rela.r_addend = ent->addend;
10947
10948 loc = htab->relplt->contents;
10949 loc += ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE
10950 * sizeof (Elf64_External_Rela));
10951 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10952 }
10953
10954 if (h->needs_copy)
10955 {
10956 Elf_Internal_Rela rela;
10957 bfd_byte *loc;
10958
10959 /* This symbol needs a copy reloc. Set it up. */
10960
10961 if (h->dynindx == -1
10962 || (h->root.type != bfd_link_hash_defined
10963 && h->root.type != bfd_link_hash_defweak)
10964 || htab->relbss == NULL)
10965 abort ();
10966
10967 rela.r_offset = (h->root.u.def.value
10968 + h->root.u.def.section->output_section->vma
10969 + h->root.u.def.section->output_offset);
10970 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
10971 rela.r_addend = 0;
10972 loc = htab->relbss->contents;
10973 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
10974 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
10975 }
10976
10977 /* Mark some specially defined symbols as absolute. */
10978 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
10979 sym->st_shndx = SHN_ABS;
10980
10981 return TRUE;
10982}
10983
10984/* Used to decide how to sort relocs in an optimal manner for the
10985 dynamic linker, before writing them out. */
10986
10987static enum elf_reloc_type_class
10988ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
10989{
10990 enum elf_ppc64_reloc_type r_type;
10991
10992 r_type = ELF64_R_TYPE (rela->r_info);
10993 switch (r_type)
10994 {
10995 case R_PPC64_RELATIVE:
10996 return reloc_class_relative;
10997 case R_PPC64_JMP_SLOT:
10998 return reloc_class_plt;
10999 case R_PPC64_COPY:
11000 return reloc_class_copy;
11001 default:
11002 return reloc_class_normal;
11003 }
11004}
11005
11006/* Finish up the dynamic sections. */
11007
11008static bfd_boolean
11009ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
11010 struct bfd_link_info *info)
11011{
11012 struct ppc_link_hash_table *htab;
11013 bfd *dynobj;
11014 asection *sdyn;
11015
11016 htab = ppc_hash_table (info);
11017 dynobj = htab->elf.dynobj;
11018 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11019
11020 if (htab->elf.dynamic_sections_created)
11021 {
11022 Elf64_External_Dyn *dyncon, *dynconend;
11023
11024 if (sdyn == NULL || htab->got == NULL)
11025 abort ();
11026
11027 dyncon = (Elf64_External_Dyn *) sdyn->contents;
11028 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
11029 for (; dyncon < dynconend; dyncon++)
11030 {
11031 Elf_Internal_Dyn dyn;
11032 asection *s;
11033
11034 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
11035
11036 switch (dyn.d_tag)
11037 {
11038 default:
11039 continue;
11040
11041 case DT_PPC64_GLINK:
11042 s = htab->glink;
11043 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11044 /* We stupidly defined DT_PPC64_GLINK to be the start
11045 of glink rather than the first entry point, which is
11046 what ld.so needs, and now have a bigger stub to
11047 support automatic multiple TOCs. */
11048 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
11049 break;
11050
11051 case DT_PPC64_OPD:
11052 s = bfd_get_section_by_name (output_bfd, ".opd");
11053 if (s == NULL)
11054 continue;
11055 dyn.d_un.d_ptr = s->vma;
11056 break;
11057
11058 case DT_PPC64_OPDSZ:
11059 s = bfd_get_section_by_name (output_bfd, ".opd");
11060 if (s == NULL)
11061 continue;
11062 dyn.d_un.d_val = s->size;
11063 break;
11064
11065 case DT_PLTGOT:
11066 s = htab->plt;
11067 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11068 break;
11069
11070 case DT_JMPREL:
11071 s = htab->relplt;
11072 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11073 break;
11074
11075 case DT_PLTRELSZ:
11076 dyn.d_un.d_val = htab->relplt->size;
11077 break;
11078
11079 case DT_RELASZ:
11080 /* Don't count procedure linkage table relocs in the
11081 overall reloc count. */
11082 s = htab->relplt;
11083 if (s == NULL)
11084 continue;
11085 dyn.d_un.d_val -= s->size;
11086 break;
11087
11088 case DT_RELA:
11089 /* We may not be using the standard ELF linker script.
11090 If .rela.plt is the first .rela section, we adjust
11091 DT_RELA to not include it. */
11092 s = htab->relplt;
11093 if (s == NULL)
11094 continue;
11095 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
11096 continue;
11097 dyn.d_un.d_ptr += s->size;
11098 break;
11099 }
11100
11101 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
11102 }
11103 }
11104
11105 if (htab->got != NULL && htab->got->size != 0)
11106 {
11107 /* Fill in the first entry in the global offset table.
11108 We use it to hold the link-time TOCbase. */
11109 bfd_put_64 (output_bfd,
11110 elf_gp (output_bfd) + TOC_BASE_OFF,
11111 htab->got->contents);
11112
11113 /* Set .got entry size. */
11114 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
11115 }
11116
11117 if (htab->plt != NULL && htab->plt->size != 0)
11118 {
11119 /* Set .plt entry size. */
11120 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
11121 = PLT_ENTRY_SIZE;
11122 }
11123
11124 /* We need to handle writing out multiple GOT sections ourselves,
11125 since we didn't add them to DYNOBJ. We know dynobj is the first
11126 bfd. */
11127 while ((dynobj = dynobj->link_next) != NULL)
11128 {
11129 asection *s;
11130
11131 if (!is_ppc64_elf_target (dynobj->xvec))
11132 continue;
11133
11134 s = ppc64_elf_tdata (dynobj)->got;
11135 if (s != NULL
11136 && s->size != 0
11137 && s->output_section != bfd_abs_section_ptr
11138 && !bfd_set_section_contents (output_bfd, s->output_section,
11139 s->contents, s->output_offset,
11140 s->size))
11141 return FALSE;
11142 s = ppc64_elf_tdata (dynobj)->relgot;
11143 if (s != NULL
11144 && s->size != 0
11145 && s->output_section != bfd_abs_section_ptr
11146 && !bfd_set_section_contents (output_bfd, s->output_section,
11147 s->contents, s->output_offset,
11148 s->size))
11149 return FALSE;
11150 }
11151
11152 return TRUE;
11153}
11154
11155#include "elf64-target.h"
This page took 0.061117 seconds and 4 git commands to generate.