Add c-format tags to translatable strings with more than one argument-using formattin...
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
... / ...
CommitLineData
1/* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "libbfd.h"
24#include "elf-bfd.h"
25#include "elf/sparc.h"
26#include "opcode/sparc.h"
27#include "elfxx-sparc.h"
28
29/* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30#define MINUS_ONE (~ (bfd_vma) 0)
31
32/* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36static long
37elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38{
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40}
41
42static long
43elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44{
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46}
47
48/* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53static bfd_boolean
54elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57{
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 /* PR 17512: file: 996185f8. */
102 || ELF64_R_SYM (rela.r_info) > bfd_get_symcount (abfd))
103 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
104 else
105 {
106 asymbol **ps, *s;
107
108 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
109 s = *ps;
110
111 /* Canonicalize ELF section symbols. FIXME: Why? */
112 if ((s->flags & BSF_SECTION_SYM) == 0)
113 relent->sym_ptr_ptr = ps;
114 else
115 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
116 }
117
118 relent->addend = rela.r_addend;
119
120 r_type = ELF64_R_TYPE_ID (rela.r_info);
121 if (r_type == R_SPARC_OLO10)
122 {
123 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
124 relent[1].address = relent->address;
125 relent++;
126 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
127 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
128 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
129 }
130 else
131 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
132 }
133
134 canon_reloc_count (asect) += relent - relents;
135
136 if (allocated != NULL)
137 free (allocated);
138
139 return TRUE;
140
141 error_return:
142 if (allocated != NULL)
143 free (allocated);
144 return FALSE;
145}
146
147/* Read in and swap the external relocs. */
148
149static bfd_boolean
150elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
151 asymbol **symbols, bfd_boolean dynamic)
152{
153 struct bfd_elf_section_data * const d = elf_section_data (asect);
154 Elf_Internal_Shdr *rel_hdr;
155 Elf_Internal_Shdr *rel_hdr2;
156 bfd_size_type amt;
157
158 if (asect->relocation != NULL)
159 return TRUE;
160
161 if (! dynamic)
162 {
163 if ((asect->flags & SEC_RELOC) == 0
164 || asect->reloc_count == 0)
165 return TRUE;
166
167 rel_hdr = d->rel.hdr;
168 rel_hdr2 = d->rela.hdr;
169
170 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
171 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
172 }
173 else
174 {
175 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
176 case because relocations against this section may use the
177 dynamic symbol table, and in that case bfd_section_from_shdr
178 in elf.c does not update the RELOC_COUNT. */
179 if (asect->size == 0)
180 return TRUE;
181
182 rel_hdr = &d->this_hdr;
183 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
184 rel_hdr2 = NULL;
185 }
186
187 amt = asect->reloc_count;
188 amt *= 2 * sizeof (arelent);
189 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
190 if (asect->relocation == NULL)
191 return FALSE;
192
193 /* The elf64_sparc_slurp_one_reloc_table routine increments
194 canon_reloc_count. */
195 canon_reloc_count (asect) = 0;
196
197 if (rel_hdr
198 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
199 dynamic))
200 return FALSE;
201
202 if (rel_hdr2
203 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
204 dynamic))
205 return FALSE;
206
207 return TRUE;
208}
209
210/* Canonicalize the relocs. */
211
212static long
213elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
214 arelent **relptr, asymbol **symbols)
215{
216 arelent *tblptr;
217 unsigned int i;
218 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
219
220 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
221 return -1;
222
223 tblptr = section->relocation;
224 for (i = 0; i < canon_reloc_count (section); i++)
225 *relptr++ = tblptr++;
226
227 *relptr = NULL;
228
229 return canon_reloc_count (section);
230}
231
232
233/* Canonicalize the dynamic relocation entries. Note that we return
234 the dynamic relocations as a single block, although they are
235 actually associated with particular sections; the interface, which
236 was designed for SunOS style shared libraries, expects that there
237 is only one set of dynamic relocs. Any section that was actually
238 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
239 the dynamic symbol table, is considered to be a dynamic reloc
240 section. */
241
242static long
243elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
244 asymbol **syms)
245{
246 asection *s;
247 long ret;
248
249 if (elf_dynsymtab (abfd) == 0)
250 {
251 bfd_set_error (bfd_error_invalid_operation);
252 return -1;
253 }
254
255 ret = 0;
256 for (s = abfd->sections; s != NULL; s = s->next)
257 {
258 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
259 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
260 {
261 arelent *p;
262 long count, i;
263
264 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
265 return -1;
266 count = canon_reloc_count (s);
267 p = s->relocation;
268 for (i = 0; i < count; i++)
269 *storage++ = p++;
270 ret += count;
271 }
272 }
273
274 *storage = NULL;
275
276 return ret;
277}
278
279/* Write out the relocs. */
280
281static void
282elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
283{
284 bfd_boolean *failedp = (bfd_boolean *) data;
285 Elf_Internal_Shdr *rela_hdr;
286 bfd_vma addr_offset;
287 Elf64_External_Rela *outbound_relocas, *src_rela;
288 unsigned int idx, count;
289 asymbol *last_sym = 0;
290 int last_sym_idx = 0;
291
292 /* If we have already failed, don't do anything. */
293 if (*failedp)
294 return;
295
296 if ((sec->flags & SEC_RELOC) == 0)
297 return;
298
299 /* The linker backend writes the relocs out itself, and sets the
300 reloc_count field to zero to inhibit writing them here. Also,
301 sometimes the SEC_RELOC flag gets set even when there aren't any
302 relocs. */
303 if (sec->reloc_count == 0)
304 return;
305
306 /* We can combine two relocs that refer to the same address
307 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
308 latter is R_SPARC_13 with no associated symbol. */
309 count = 0;
310 for (idx = 0; idx < sec->reloc_count; idx++)
311 {
312 bfd_vma addr;
313
314 ++count;
315
316 addr = sec->orelocation[idx]->address;
317 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
318 && idx < sec->reloc_count - 1)
319 {
320 arelent *r = sec->orelocation[idx + 1];
321
322 if (r->howto->type == R_SPARC_13
323 && r->address == addr
324 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
325 && (*r->sym_ptr_ptr)->value == 0)
326 ++idx;
327 }
328 }
329
330 rela_hdr = elf_section_data (sec)->rela.hdr;
331
332 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
333 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
334 if (rela_hdr->contents == NULL)
335 {
336 *failedp = TRUE;
337 return;
338 }
339
340 /* Figure out whether the relocations are RELA or REL relocations. */
341 if (rela_hdr->sh_type != SHT_RELA)
342 abort ();
343
344 /* The address of an ELF reloc is section relative for an object
345 file, and absolute for an executable file or shared library.
346 The address of a BFD reloc is always section relative. */
347 addr_offset = 0;
348 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
349 addr_offset = sec->vma;
350
351 /* orelocation has the data, reloc_count has the count... */
352 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
353 src_rela = outbound_relocas;
354
355 for (idx = 0; idx < sec->reloc_count; idx++)
356 {
357 Elf_Internal_Rela dst_rela;
358 arelent *ptr;
359 asymbol *sym;
360 int n;
361
362 ptr = sec->orelocation[idx];
363 sym = *ptr->sym_ptr_ptr;
364 if (sym == last_sym)
365 n = last_sym_idx;
366 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
367 n = STN_UNDEF;
368 else
369 {
370 last_sym = sym;
371 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
372 if (n < 0)
373 {
374 *failedp = TRUE;
375 return;
376 }
377 last_sym_idx = n;
378 }
379
380 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
381 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
382 && ! _bfd_elf_validate_reloc (abfd, ptr))
383 {
384 *failedp = TRUE;
385 return;
386 }
387
388 if (ptr->howto->type == R_SPARC_LO10
389 && idx < sec->reloc_count - 1)
390 {
391 arelent *r = sec->orelocation[idx + 1];
392
393 if (r->howto->type == R_SPARC_13
394 && r->address == ptr->address
395 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
396 && (*r->sym_ptr_ptr)->value == 0)
397 {
398 idx++;
399 dst_rela.r_info
400 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
401 R_SPARC_OLO10));
402 }
403 else
404 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
405 }
406 else
407 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
408
409 dst_rela.r_offset = ptr->address + addr_offset;
410 dst_rela.r_addend = ptr->addend;
411
412 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
413 ++src_rela;
414 }
415}
416\f
417/* Hook called by the linker routine which adds symbols from an object
418 file. We use it for STT_REGISTER symbols. */
419
420static bfd_boolean
421elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
422 Elf_Internal_Sym *sym, const char **namep,
423 flagword *flagsp ATTRIBUTE_UNUSED,
424 asection **secp ATTRIBUTE_UNUSED,
425 bfd_vma *valp ATTRIBUTE_UNUSED)
426{
427 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
428
429 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
430 && (abfd->flags & DYNAMIC) == 0
431 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
432 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
433
434 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
435 {
436 int reg;
437 struct _bfd_sparc_elf_app_reg *p;
438
439 reg = (int)sym->st_value;
440 switch (reg & ~1)
441 {
442 case 2: reg -= 2; break;
443 case 6: reg -= 4; break;
444 default:
445 _bfd_error_handler
446 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
447 abfd);
448 return FALSE;
449 }
450
451 if (info->output_bfd->xvec != abfd->xvec
452 || (abfd->flags & DYNAMIC) != 0)
453 {
454 /* STT_REGISTER only works when linking an elf64_sparc object.
455 If STT_REGISTER comes from a dynamic object, don't put it into
456 the output bfd. The dynamic linker will recheck it. */
457 *namep = NULL;
458 return TRUE;
459 }
460
461 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
462
463 if (p->name != NULL && strcmp (p->name, *namep))
464 {
465 _bfd_error_handler
466 /* xgettext:c-format */
467 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
468 abfd, p->abfd, (int) sym->st_value,
469 **namep ? *namep : "#scratch",
470 *p->name ? p->name : "#scratch");
471 return FALSE;
472 }
473
474 if (p->name == NULL)
475 {
476 if (**namep)
477 {
478 struct elf_link_hash_entry *h;
479
480 h = (struct elf_link_hash_entry *)
481 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
482
483 if (h != NULL)
484 {
485 unsigned char type = h->type;
486
487 if (type > STT_FUNC)
488 type = 0;
489 _bfd_error_handler
490 /* xgettext:c-format */
491 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
492 abfd, p->abfd, *namep, stt_types[type]);
493 return FALSE;
494 }
495
496 p->name = bfd_hash_allocate (&info->hash->table,
497 strlen (*namep) + 1);
498 if (!p->name)
499 return FALSE;
500
501 strcpy (p->name, *namep);
502 }
503 else
504 p->name = "";
505 p->bind = ELF_ST_BIND (sym->st_info);
506 p->abfd = abfd;
507 p->shndx = sym->st_shndx;
508 }
509 else
510 {
511 if (p->bind == STB_WEAK
512 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
513 {
514 p->bind = STB_GLOBAL;
515 p->abfd = abfd;
516 }
517 }
518 *namep = NULL;
519 return TRUE;
520 }
521 else if (*namep && **namep
522 && info->output_bfd->xvec == abfd->xvec)
523 {
524 int i;
525 struct _bfd_sparc_elf_app_reg *p;
526
527 p = _bfd_sparc_elf_hash_table(info)->app_regs;
528 for (i = 0; i < 4; i++, p++)
529 if (p->name != NULL && ! strcmp (p->name, *namep))
530 {
531 unsigned char type = ELF_ST_TYPE (sym->st_info);
532
533 if (type > STT_FUNC)
534 type = 0;
535 _bfd_error_handler
536 /* xgettext:c-format */
537 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
538 abfd, p->abfd, *namep, stt_types[type]);
539 return FALSE;
540 }
541 }
542 return TRUE;
543}
544
545/* This function takes care of emitting STT_REGISTER symbols
546 which we cannot easily keep in the symbol hash table. */
547
548static bfd_boolean
549elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
550 struct bfd_link_info *info,
551 void * flaginfo,
552 int (*func) (void *, const char *,
553 Elf_Internal_Sym *,
554 asection *,
555 struct elf_link_hash_entry *))
556{
557 int reg;
558 struct _bfd_sparc_elf_app_reg *app_regs =
559 _bfd_sparc_elf_hash_table(info)->app_regs;
560 Elf_Internal_Sym sym;
561
562 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
563 at the end of the dynlocal list, so they came at the end of the local
564 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
565 to back up symtab->sh_info. */
566 if (elf_hash_table (info)->dynlocal)
567 {
568 bfd * dynobj = elf_hash_table (info)->dynobj;
569 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
570 struct elf_link_local_dynamic_entry *e;
571
572 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
573 if (e->input_indx == -1)
574 break;
575 if (e)
576 {
577 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
578 = e->dynindx;
579 }
580 }
581
582 if (info->strip == strip_all)
583 return TRUE;
584
585 for (reg = 0; reg < 4; reg++)
586 if (app_regs [reg].name != NULL)
587 {
588 if (info->strip == strip_some
589 && bfd_hash_lookup (info->keep_hash,
590 app_regs [reg].name,
591 FALSE, FALSE) == NULL)
592 continue;
593
594 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
595 sym.st_size = 0;
596 sym.st_other = 0;
597 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
598 sym.st_shndx = app_regs [reg].shndx;
599 sym.st_target_internal = 0;
600 if ((*func) (flaginfo, app_regs [reg].name, &sym,
601 sym.st_shndx == SHN_ABS
602 ? bfd_abs_section_ptr : bfd_und_section_ptr,
603 NULL) != 1)
604 return FALSE;
605 }
606
607 return TRUE;
608}
609
610static int
611elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
612{
613 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
614 return STT_REGISTER;
615 else
616 return type;
617}
618
619/* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
620 even in SHN_UNDEF section. */
621
622static void
623elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
624{
625 elf_symbol_type *elfsym;
626
627 elfsym = (elf_symbol_type *) asym;
628 if (elfsym->internal_elf_sym.st_info
629 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
630 {
631 asym->flags |= BSF_GLOBAL;
632 }
633}
634
635\f
636/* Functions for dealing with the e_flags field. */
637
638/* Merge backend specific data from an object file to the output
639 object file when linking. */
640
641static bfd_boolean
642elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
643{
644 bfd *obfd = info->output_bfd;
645 bfd_boolean error;
646 flagword new_flags, old_flags;
647 int new_mm, old_mm;
648
649 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
650 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
651 return TRUE;
652
653 new_flags = elf_elfheader (ibfd)->e_flags;
654 old_flags = elf_elfheader (obfd)->e_flags;
655
656 if (!elf_flags_init (obfd)) /* First call, no flags set */
657 {
658 elf_flags_init (obfd) = TRUE;
659 elf_elfheader (obfd)->e_flags = new_flags;
660 }
661
662 else if (new_flags == old_flags) /* Compatible flags are ok */
663 ;
664
665 else /* Incompatible flags */
666 {
667 error = FALSE;
668
669#define EF_SPARC_ISA_EXTENSIONS \
670 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
671
672 if ((ibfd->flags & DYNAMIC) != 0)
673 {
674 /* We don't want dynamic objects memory ordering and
675 architecture to have any role. That's what dynamic linker
676 should do. */
677 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
678 new_flags |= (old_flags
679 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
680 }
681 else
682 {
683 /* Choose the highest architecture requirements. */
684 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
685 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
686 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
687 && (old_flags & EF_SPARC_HAL_R1))
688 {
689 error = TRUE;
690 _bfd_error_handler
691 (_("%B: linking UltraSPARC specific with HAL specific code"),
692 ibfd);
693 }
694 /* Choose the most restrictive memory ordering. */
695 old_mm = (old_flags & EF_SPARCV9_MM);
696 new_mm = (new_flags & EF_SPARCV9_MM);
697 old_flags &= ~EF_SPARCV9_MM;
698 new_flags &= ~EF_SPARCV9_MM;
699 if (new_mm < old_mm)
700 old_mm = new_mm;
701 old_flags |= old_mm;
702 new_flags |= old_mm;
703 }
704
705 /* Warn about any other mismatches */
706 if (new_flags != old_flags)
707 {
708 error = TRUE;
709 _bfd_error_handler
710 /* xgettext:c-format */
711 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
712 ibfd, (long) new_flags, (long) old_flags);
713 }
714
715 elf_elfheader (obfd)->e_flags = old_flags;
716
717 if (error)
718 {
719 bfd_set_error (bfd_error_bad_value);
720 return FALSE;
721 }
722 }
723 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
724}
725
726/* MARCO: Set the correct entry size for the .stab section. */
727
728static bfd_boolean
729elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
730 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
731 asection *sec)
732{
733 const char *name;
734
735 name = bfd_get_section_name (abfd, sec);
736
737 if (strcmp (name, ".stab") == 0)
738 {
739 /* Even in the 64bit case the stab entries are only 12 bytes long. */
740 elf_section_data (sec)->this_hdr.sh_entsize = 12;
741 }
742
743 return TRUE;
744}
745\f
746/* Print a STT_REGISTER symbol to file FILE. */
747
748static const char *
749elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
750 asymbol *symbol)
751{
752 FILE *file = (FILE *) filep;
753 int reg, type;
754
755 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
756 != STT_REGISTER)
757 return NULL;
758
759 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
760 type = symbol->flags;
761 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
762 ((type & BSF_LOCAL)
763 ? (type & BSF_GLOBAL) ? '!' : 'l'
764 : (type & BSF_GLOBAL) ? 'g' : ' '),
765 (type & BSF_WEAK) ? 'w' : ' ');
766 if (symbol->name == NULL || symbol->name [0] == '\0')
767 return "#scratch";
768 else
769 return symbol->name;
770}
771\f
772static enum elf_reloc_type_class
773elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
774 const asection *rel_sec ATTRIBUTE_UNUSED,
775 const Elf_Internal_Rela *rela)
776{
777 switch ((int) ELF64_R_TYPE (rela->r_info))
778 {
779 case R_SPARC_RELATIVE:
780 return reloc_class_relative;
781 case R_SPARC_JMP_SLOT:
782 return reloc_class_plt;
783 case R_SPARC_COPY:
784 return reloc_class_copy;
785 default:
786 return reloc_class_normal;
787 }
788}
789
790/* Relocations in the 64 bit SPARC ELF ABI are more complex than in
791 standard ELF, because R_SPARC_OLO10 has secondary addend in
792 ELF64_R_TYPE_DATA field. This structure is used to redirect the
793 relocation handling routines. */
794
795const struct elf_size_info elf64_sparc_size_info =
796{
797 sizeof (Elf64_External_Ehdr),
798 sizeof (Elf64_External_Phdr),
799 sizeof (Elf64_External_Shdr),
800 sizeof (Elf64_External_Rel),
801 sizeof (Elf64_External_Rela),
802 sizeof (Elf64_External_Sym),
803 sizeof (Elf64_External_Dyn),
804 sizeof (Elf_External_Note),
805 4, /* hash-table entry size. */
806 /* Internal relocations per external relocations.
807 For link purposes we use just 1 internal per
808 1 external, for assembly and slurp symbol table
809 we use 2. */
810 1,
811 64, /* arch_size. */
812 3, /* log_file_align. */
813 ELFCLASS64,
814 EV_CURRENT,
815 bfd_elf64_write_out_phdrs,
816 bfd_elf64_write_shdrs_and_ehdr,
817 bfd_elf64_checksum_contents,
818 elf64_sparc_write_relocs,
819 bfd_elf64_swap_symbol_in,
820 bfd_elf64_swap_symbol_out,
821 elf64_sparc_slurp_reloc_table,
822 bfd_elf64_slurp_symbol_table,
823 bfd_elf64_swap_dyn_in,
824 bfd_elf64_swap_dyn_out,
825 bfd_elf64_swap_reloc_in,
826 bfd_elf64_swap_reloc_out,
827 bfd_elf64_swap_reloca_in,
828 bfd_elf64_swap_reloca_out
829};
830
831#define TARGET_BIG_SYM sparc_elf64_vec
832#define TARGET_BIG_NAME "elf64-sparc"
833#define ELF_ARCH bfd_arch_sparc
834#define ELF_MAXPAGESIZE 0x100000
835#define ELF_COMMONPAGESIZE 0x2000
836
837/* This is the official ABI value. */
838#define ELF_MACHINE_CODE EM_SPARCV9
839
840/* This is the value that we used before the ABI was released. */
841#define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
842
843#define elf_backend_reloc_type_class \
844 elf64_sparc_reloc_type_class
845#define bfd_elf64_get_reloc_upper_bound \
846 elf64_sparc_get_reloc_upper_bound
847#define bfd_elf64_get_dynamic_reloc_upper_bound \
848 elf64_sparc_get_dynamic_reloc_upper_bound
849#define bfd_elf64_canonicalize_reloc \
850 elf64_sparc_canonicalize_reloc
851#define bfd_elf64_canonicalize_dynamic_reloc \
852 elf64_sparc_canonicalize_dynamic_reloc
853#define elf_backend_add_symbol_hook \
854 elf64_sparc_add_symbol_hook
855#define elf_backend_get_symbol_type \
856 elf64_sparc_get_symbol_type
857#define elf_backend_symbol_processing \
858 elf64_sparc_symbol_processing
859#define elf_backend_print_symbol_all \
860 elf64_sparc_print_symbol_all
861#define elf_backend_output_arch_syms \
862 elf64_sparc_output_arch_syms
863#define bfd_elf64_bfd_merge_private_bfd_data \
864 elf64_sparc_merge_private_bfd_data
865#define elf_backend_fake_sections \
866 elf64_sparc_fake_sections
867#define elf_backend_size_info \
868 elf64_sparc_size_info
869
870#define elf_backend_plt_sym_val \
871 _bfd_sparc_elf_plt_sym_val
872#define bfd_elf64_bfd_link_hash_table_create \
873 _bfd_sparc_elf_link_hash_table_create
874#define elf_info_to_howto \
875 _bfd_sparc_elf_info_to_howto
876#define elf_backend_copy_indirect_symbol \
877 _bfd_sparc_elf_copy_indirect_symbol
878#define bfd_elf64_bfd_reloc_type_lookup \
879 _bfd_sparc_elf_reloc_type_lookup
880#define bfd_elf64_bfd_reloc_name_lookup \
881 _bfd_sparc_elf_reloc_name_lookup
882#define bfd_elf64_bfd_relax_section \
883 _bfd_sparc_elf_relax_section
884#define bfd_elf64_new_section_hook \
885 _bfd_sparc_elf_new_section_hook
886
887#define elf_backend_create_dynamic_sections \
888 _bfd_sparc_elf_create_dynamic_sections
889#define elf_backend_relocs_compatible \
890 _bfd_elf_relocs_compatible
891#define elf_backend_check_relocs \
892 _bfd_sparc_elf_check_relocs
893#define elf_backend_adjust_dynamic_symbol \
894 _bfd_sparc_elf_adjust_dynamic_symbol
895#define elf_backend_omit_section_dynsym \
896 _bfd_sparc_elf_omit_section_dynsym
897#define elf_backend_size_dynamic_sections \
898 _bfd_sparc_elf_size_dynamic_sections
899#define elf_backend_relocate_section \
900 _bfd_sparc_elf_relocate_section
901#define elf_backend_finish_dynamic_symbol \
902 _bfd_sparc_elf_finish_dynamic_symbol
903#define elf_backend_finish_dynamic_sections \
904 _bfd_sparc_elf_finish_dynamic_sections
905
906#define bfd_elf64_mkobject \
907 _bfd_sparc_elf_mkobject
908#define elf_backend_object_p \
909 _bfd_sparc_elf_object_p
910#define elf_backend_gc_mark_hook \
911 _bfd_sparc_elf_gc_mark_hook
912#define elf_backend_gc_sweep_hook \
913 _bfd_sparc_elf_gc_sweep_hook
914#define elf_backend_init_index_section \
915 _bfd_elf_init_1_index_section
916
917#define elf_backend_can_gc_sections 1
918#define elf_backend_can_refcount 1
919#define elf_backend_want_got_plt 0
920#define elf_backend_plt_readonly 0
921#define elf_backend_want_plt_sym 1
922#define elf_backend_got_header_size 8
923#define elf_backend_rela_normal 1
924
925/* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
926#define elf_backend_plt_alignment 8
927
928#include "elf64-target.h"
929
930/* FreeBSD support */
931#undef TARGET_BIG_SYM
932#define TARGET_BIG_SYM sparc_elf64_fbsd_vec
933#undef TARGET_BIG_NAME
934#define TARGET_BIG_NAME "elf64-sparc-freebsd"
935#undef ELF_OSABI
936#define ELF_OSABI ELFOSABI_FREEBSD
937
938#undef elf64_bed
939#define elf64_bed elf64_sparc_fbsd_bed
940
941#include "elf64-target.h"
942
943/* Solaris 2. */
944
945#undef TARGET_BIG_SYM
946#define TARGET_BIG_SYM sparc_elf64_sol2_vec
947#undef TARGET_BIG_NAME
948#define TARGET_BIG_NAME "elf64-sparc-sol2"
949
950/* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
951 objects won't be recognized. */
952#undef ELF_OSABI
953
954#undef elf64_bed
955#define elf64_bed elf64_sparc_sol2_bed
956
957/* The 64-bit static TLS arena size is rounded to the nearest 16-byte
958 boundary. */
959#undef elf_backend_static_tls_alignment
960#define elf_backend_static_tls_alignment 16
961
962#include "elf64-target.h"
This page took 0.026024 seconds and 4 git commands to generate.