MIPS/readelf: With `-A' also dump GOT in static binaries
[deliverable/binutils-gdb.git] / bfd / elflink.c
... / ...
CommitLineData
1/* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21#include "sysdep.h"
22#include "bfd.h"
23#include "bfd_stdint.h"
24#include "bfdlink.h"
25#include "libbfd.h"
26#define ARCH_SIZE 0
27#include "elf-bfd.h"
28#include "safe-ctype.h"
29#include "libiberty.h"
30#include "objalloc.h"
31#if BFD_SUPPORTS_PLUGINS
32#include "plugin-api.h"
33#include "plugin.h"
34#endif
35
36/* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39struct elf_info_failed
40{
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43};
44
45/* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48struct elf_find_verdep_info
49{
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56};
57
58static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61asection *
62_bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65{
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100}
101
102/* Define a symbol in a dynamic linkage section. */
103
104struct elf_link_hash_entry *
105_bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109{
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143}
144
145bfd_boolean
146_bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147{
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203}
204\f
205/* Create a strtab to hold the dynamic symbol names. */
206static bfd_boolean
207_bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208{
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
224 {
225 abfd = ibfd;
226 break;
227 }
228 }
229 hash_table->dynobj = abfd;
230 }
231
232 if (hash_table->dynstr == NULL)
233 {
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
236 return FALSE;
237 }
238 return TRUE;
239}
240
241/* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
247
248bfd_boolean
249_bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250{
251 flagword flags;
252 asection *s;
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
255
256 if (! is_elf_hash_table (info->hash))
257 return FALSE;
258
259 if (elf_hash_table (info)->dynamic_sections_created)
260 return TRUE;
261
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
263 return FALSE;
264
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
267
268 flags = bed->dynamic_sec_flags;
269
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
276 if (s == NULL)
277 return FALSE;
278 }
279
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, 1))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
302 if (s == NULL
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 return FALSE;
305 elf_hash_table (info)->dynsym = s;
306
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
309 if (s == NULL)
310 return FALSE;
311
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
313 if (s == NULL
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
315 return FALSE;
316
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
325 if (h == NULL)
326 return FALSE;
327
328 if (info->emit_hash)
329 {
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
332 if (s == NULL
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 return FALSE;
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
336 }
337
338 if (info->emit_gnu_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
350 else
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
352 }
353
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
359 return FALSE;
360
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
362
363 return TRUE;
364}
365
366/* Create dynamic sections when linking against a dynamic object. */
367
368bfd_boolean
369_bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
370{
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
373 asection *s;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
376
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
380
381 pltflags = flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
387 else
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
391
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
393 if (s == NULL
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
395 return FALSE;
396 htab->splt = s;
397
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
399 .plt section. */
400 if (bed->want_plt_sym)
401 {
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
405 if (h == NULL)
406 return FALSE;
407 }
408
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
413 if (s == NULL
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
415 return FALSE;
416 htab->srelplt = s;
417
418 if (! _bfd_elf_create_got_section (abfd, info))
419 return FALSE;
420
421 if (bed->want_dynbss)
422 {
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
431 if (s == NULL)
432 return FALSE;
433 htab->sdynbss = s;
434
435 if (bed->want_dynrelro)
436 {
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
441 flags);
442 if (s == NULL)
443 return FALSE;
444 htab->sdynrelro = s;
445 }
446
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
457 copy relocs. */
458 if (bfd_link_executable (info))
459 {
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
464 if (s == NULL
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
466 return FALSE;
467 htab->srelbss = s;
468
469 if (bed->want_dynrelro)
470 {
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
475 if (s == NULL
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
478 return FALSE;
479 htab->sreldynrelro = s;
480 }
481 }
482 }
483
484 return TRUE;
485}
486\f
487/* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
493 one. */
494
495bfd_boolean
496bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
498{
499 if (h->dynindx == -1)
500 {
501 struct elf_strtab_hash *dynstr;
502 char *p;
503 const char *name;
504 size_t indx;
505
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
511 {
512 case STV_INTERNAL:
513 case STV_HIDDEN:
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
516 {
517 h->forced_local = 1;
518 if (!elf_hash_table (info)->is_relocatable_executable)
519 return TRUE;
520 }
521
522 default:
523 break;
524 }
525
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
528
529 dynstr = elf_hash_table (info)->dynstr;
530 if (dynstr == NULL)
531 {
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
534 if (dynstr == NULL)
535 return FALSE;
536 }
537
538 /* We don't put any version information in the dynamic string
539 table. */
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
542 if (p != NULL)
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
548 *p = 0;
549
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
551
552 if (p != NULL)
553 *p = ELF_VER_CHR;
554
555 if (indx == (size_t) -1)
556 return FALSE;
557 h->dynstr_index = indx;
558 }
559
560 return TRUE;
561}
562\f
563/* Mark a symbol dynamic. */
564
565static void
566bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
569{
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
571
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
574 return;
575
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
579 || (sym != NULL
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
582 || (d != NULL
583 && h->root.type == bfd_link_hash_new
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
585 h->dynamic = 1;
586}
587
588/* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
590
591bfd_boolean
592bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
594 const char *name,
595 bfd_boolean provide,
596 bfd_boolean hidden)
597{
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
601
602 if (!is_elf_hash_table (info->hash))
603 return TRUE;
604
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
607 if (h == NULL)
608 return provide;
609
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
612
613 if (h->versioned == unknown)
614 {
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
617 if (version)
618 {
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
621 else
622 h->versioned = versioned;
623 }
624 }
625
626 switch (h->root.type)
627 {
628 case bfd_link_hash_defined:
629 case bfd_link_hash_defweak:
630 case bfd_link_hash_common:
631 break;
632 case bfd_link_hash_undefweak:
633 case bfd_link_hash_undefined:
634 /* Since we're defining the symbol, don't let it seem to have not
635 been defined. record_dynamic_symbol and size_dynamic_sections
636 may depend on this. */
637 h->root.type = bfd_link_hash_new;
638 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
639 bfd_link_repair_undef_list (&htab->root);
640 break;
641 case bfd_link_hash_new:
642 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643 h->non_elf = 0;
644 break;
645 case bfd_link_hash_indirect:
646 /* We had a versioned symbol in a dynamic library. We make the
647 the versioned symbol point to this one. */
648 bed = get_elf_backend_data (output_bfd);
649 hv = h;
650 while (hv->root.type == bfd_link_hash_indirect
651 || hv->root.type == bfd_link_hash_warning)
652 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
653 /* We don't need to update h->root.u since linker will set them
654 later. */
655 h->root.type = bfd_link_hash_undefined;
656 hv->root.type = bfd_link_hash_indirect;
657 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
658 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
659 break;
660 default:
661 BFD_FAIL ();
662 return FALSE;
663 }
664
665 /* If this symbol is being provided by the linker script, and it is
666 currently defined by a dynamic object, but not by a regular
667 object, then mark it as undefined so that the generic linker will
668 force the correct value. */
669 if (provide
670 && h->def_dynamic
671 && !h->def_regular)
672 h->root.type = bfd_link_hash_undefined;
673
674 /* If this symbol is not being provided by the linker script, and it is
675 currently defined by a dynamic object, but not by a regular object,
676 then clear out any version information because the symbol will not be
677 associated with the dynamic object any more. */
678 if (!provide
679 && h->def_dynamic
680 && !h->def_regular)
681 h->verinfo.verdef = NULL;
682
683 /* Make sure this symbol is not garbage collected. */
684 h->mark = 1;
685
686 h->def_regular = 1;
687
688 if (hidden)
689 {
690 bed = get_elf_backend_data (output_bfd);
691 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
692 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
694 }
695
696 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
697 and executables. */
698 if (!bfd_link_relocatable (info)
699 && h->dynindx != -1
700 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
701 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
702 h->forced_local = 1;
703
704 if ((h->def_dynamic
705 || h->ref_dynamic
706 || bfd_link_dll (info)
707 || elf_hash_table (info)->is_relocatable_executable)
708 && h->dynindx == -1)
709 {
710 if (! bfd_elf_link_record_dynamic_symbol (info, h))
711 return FALSE;
712
713 /* If this is a weak defined symbol, and we know a corresponding
714 real symbol from the same dynamic object, make sure the real
715 symbol is also made into a dynamic symbol. */
716 if (h->u.weakdef != NULL
717 && h->u.weakdef->dynindx == -1)
718 {
719 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
720 return FALSE;
721 }
722 }
723
724 return TRUE;
725}
726
727/* Record a new local dynamic symbol. Returns 0 on failure, 1 on
728 success, and 2 on a failure caused by attempting to record a symbol
729 in a discarded section, eg. a discarded link-once section symbol. */
730
731int
732bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
733 bfd *input_bfd,
734 long input_indx)
735{
736 bfd_size_type amt;
737 struct elf_link_local_dynamic_entry *entry;
738 struct elf_link_hash_table *eht;
739 struct elf_strtab_hash *dynstr;
740 size_t dynstr_index;
741 char *name;
742 Elf_External_Sym_Shndx eshndx;
743 char esym[sizeof (Elf64_External_Sym)];
744
745 if (! is_elf_hash_table (info->hash))
746 return 0;
747
748 /* See if the entry exists already. */
749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
750 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
751 return 1;
752
753 amt = sizeof (*entry);
754 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
755 if (entry == NULL)
756 return 0;
757
758 /* Go find the symbol, so that we can find it's name. */
759 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
760 1, input_indx, &entry->isym, esym, &eshndx))
761 {
762 bfd_release (input_bfd, entry);
763 return 0;
764 }
765
766 if (entry->isym.st_shndx != SHN_UNDEF
767 && entry->isym.st_shndx < SHN_LORESERVE)
768 {
769 asection *s;
770
771 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
772 if (s == NULL || bfd_is_abs_section (s->output_section))
773 {
774 /* We can still bfd_release here as nothing has done another
775 bfd_alloc. We can't do this later in this function. */
776 bfd_release (input_bfd, entry);
777 return 2;
778 }
779 }
780
781 name = (bfd_elf_string_from_elf_section
782 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
783 entry->isym.st_name));
784
785 dynstr = elf_hash_table (info)->dynstr;
786 if (dynstr == NULL)
787 {
788 /* Create a strtab to hold the dynamic symbol names. */
789 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
790 if (dynstr == NULL)
791 return 0;
792 }
793
794 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
795 if (dynstr_index == (size_t) -1)
796 return 0;
797 entry->isym.st_name = dynstr_index;
798
799 eht = elf_hash_table (info);
800
801 entry->next = eht->dynlocal;
802 eht->dynlocal = entry;
803 entry->input_bfd = input_bfd;
804 entry->input_indx = input_indx;
805 eht->dynsymcount++;
806
807 /* Whatever binding the symbol had before, it's now local. */
808 entry->isym.st_info
809 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
810
811 /* The dynindx will be set at the end of size_dynamic_sections. */
812
813 return 1;
814}
815
816/* Return the dynindex of a local dynamic symbol. */
817
818long
819_bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
820 bfd *input_bfd,
821 long input_indx)
822{
823 struct elf_link_local_dynamic_entry *e;
824
825 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
826 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
827 return e->dynindx;
828 return -1;
829}
830
831/* This function is used to renumber the dynamic symbols, if some of
832 them are removed because they are marked as local. This is called
833 via elf_link_hash_traverse. */
834
835static bfd_boolean
836elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
837 void *data)
838{
839 size_t *count = (size_t *) data;
840
841 if (h->forced_local)
842 return TRUE;
843
844 if (h->dynindx != -1)
845 h->dynindx = ++(*count);
846
847 return TRUE;
848}
849
850
851/* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
852 STB_LOCAL binding. */
853
854static bfd_boolean
855elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
856 void *data)
857{
858 size_t *count = (size_t *) data;
859
860 if (!h->forced_local)
861 return TRUE;
862
863 if (h->dynindx != -1)
864 h->dynindx = ++(*count);
865
866 return TRUE;
867}
868
869/* Return true if the dynamic symbol for a given section should be
870 omitted when creating a shared library. */
871bfd_boolean
872_bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
873 struct bfd_link_info *info,
874 asection *p)
875{
876 struct elf_link_hash_table *htab;
877 asection *ip;
878
879 switch (elf_section_data (p)->this_hdr.sh_type)
880 {
881 case SHT_PROGBITS:
882 case SHT_NOBITS:
883 /* If sh_type is yet undecided, assume it could be
884 SHT_PROGBITS/SHT_NOBITS. */
885 case SHT_NULL:
886 htab = elf_hash_table (info);
887 if (p == htab->tls_sec)
888 return FALSE;
889
890 if (htab->text_index_section != NULL)
891 return p != htab->text_index_section && p != htab->data_index_section;
892
893 return (htab->dynobj != NULL
894 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
895 && ip->output_section == p);
896
897 /* There shouldn't be section relative relocations
898 against any other section. */
899 default:
900 return TRUE;
901 }
902}
903
904/* Assign dynsym indices. In a shared library we generate a section
905 symbol for each output section, which come first. Next come symbols
906 which have been forced to local binding. Then all of the back-end
907 allocated local dynamic syms, followed by the rest of the global
908 symbols. */
909
910static unsigned long
911_bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
912 struct bfd_link_info *info,
913 unsigned long *section_sym_count)
914{
915 unsigned long dynsymcount = 0;
916
917 if (bfd_link_pic (info)
918 || elf_hash_table (info)->is_relocatable_executable)
919 {
920 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
921 asection *p;
922 for (p = output_bfd->sections; p ; p = p->next)
923 if ((p->flags & SEC_EXCLUDE) == 0
924 && (p->flags & SEC_ALLOC) != 0
925 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
926 elf_section_data (p)->dynindx = ++dynsymcount;
927 else
928 elf_section_data (p)->dynindx = 0;
929 }
930 *section_sym_count = dynsymcount;
931
932 elf_link_hash_traverse (elf_hash_table (info),
933 elf_link_renumber_local_hash_table_dynsyms,
934 &dynsymcount);
935
936 if (elf_hash_table (info)->dynlocal)
937 {
938 struct elf_link_local_dynamic_entry *p;
939 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
940 p->dynindx = ++dynsymcount;
941 }
942 elf_hash_table (info)->local_dynsymcount = dynsymcount;
943
944 elf_link_hash_traverse (elf_hash_table (info),
945 elf_link_renumber_hash_table_dynsyms,
946 &dynsymcount);
947
948 /* There is an unused NULL entry at the head of the table which we
949 must account for in our count even if the table is empty since it
950 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
951 .dynamic section. */
952 dynsymcount++;
953
954 elf_hash_table (info)->dynsymcount = dynsymcount;
955 return dynsymcount;
956}
957
958/* Merge st_other field. */
959
960static void
961elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
962 const Elf_Internal_Sym *isym, asection *sec,
963 bfd_boolean definition, bfd_boolean dynamic)
964{
965 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
966
967 /* If st_other has a processor-specific meaning, specific
968 code might be needed here. */
969 if (bed->elf_backend_merge_symbol_attribute)
970 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
971 dynamic);
972
973 if (!dynamic)
974 {
975 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
976 unsigned hvis = ELF_ST_VISIBILITY (h->other);
977
978 /* Keep the most constraining visibility. Leave the remainder
979 of the st_other field to elf_backend_merge_symbol_attribute. */
980 if (symvis - 1 < hvis - 1)
981 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
982 }
983 else if (definition
984 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
985 && (sec->flags & SEC_READONLY) == 0)
986 h->protected_def = 1;
987}
988
989/* This function is called when we want to merge a new symbol with an
990 existing symbol. It handles the various cases which arise when we
991 find a definition in a dynamic object, or when there is already a
992 definition in a dynamic object. The new symbol is described by
993 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
994 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
995 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
996 of an old common symbol. We set OVERRIDE if the old symbol is
997 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
998 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
999 to change. By OK to change, we mean that we shouldn't warn if the
1000 type or size does change. */
1001
1002static bfd_boolean
1003_bfd_elf_merge_symbol (bfd *abfd,
1004 struct bfd_link_info *info,
1005 const char *name,
1006 Elf_Internal_Sym *sym,
1007 asection **psec,
1008 bfd_vma *pvalue,
1009 struct elf_link_hash_entry **sym_hash,
1010 bfd **poldbfd,
1011 bfd_boolean *pold_weak,
1012 unsigned int *pold_alignment,
1013 bfd_boolean *skip,
1014 bfd_boolean *override,
1015 bfd_boolean *type_change_ok,
1016 bfd_boolean *size_change_ok,
1017 bfd_boolean *matched)
1018{
1019 asection *sec, *oldsec;
1020 struct elf_link_hash_entry *h;
1021 struct elf_link_hash_entry *hi;
1022 struct elf_link_hash_entry *flip;
1023 int bind;
1024 bfd *oldbfd;
1025 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1026 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1027 const struct elf_backend_data *bed;
1028 char *new_version;
1029
1030 *skip = FALSE;
1031 *override = FALSE;
1032
1033 sec = *psec;
1034 bind = ELF_ST_BIND (sym->st_info);
1035
1036 if (! bfd_is_und_section (sec))
1037 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1038 else
1039 h = ((struct elf_link_hash_entry *)
1040 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1041 if (h == NULL)
1042 return FALSE;
1043 *sym_hash = h;
1044
1045 bed = get_elf_backend_data (abfd);
1046
1047 /* NEW_VERSION is the symbol version of the new symbol. */
1048 if (h->versioned != unversioned)
1049 {
1050 /* Symbol version is unknown or versioned. */
1051 new_version = strrchr (name, ELF_VER_CHR);
1052 if (new_version)
1053 {
1054 if (h->versioned == unknown)
1055 {
1056 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1057 h->versioned = versioned_hidden;
1058 else
1059 h->versioned = versioned;
1060 }
1061 new_version += 1;
1062 if (new_version[0] == '\0')
1063 new_version = NULL;
1064 }
1065 else
1066 h->versioned = unversioned;
1067 }
1068 else
1069 new_version = NULL;
1070
1071 /* For merging, we only care about real symbols. But we need to make
1072 sure that indirect symbol dynamic flags are updated. */
1073 hi = h;
1074 while (h->root.type == bfd_link_hash_indirect
1075 || h->root.type == bfd_link_hash_warning)
1076 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1077
1078 if (!*matched)
1079 {
1080 if (hi == h || h->root.type == bfd_link_hash_new)
1081 *matched = TRUE;
1082 else
1083 {
1084 /* OLD_HIDDEN is true if the existing symbol is only visible
1085 to the symbol with the same symbol version. NEW_HIDDEN is
1086 true if the new symbol is only visible to the symbol with
1087 the same symbol version. */
1088 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1089 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1090 if (!old_hidden && !new_hidden)
1091 /* The new symbol matches the existing symbol if both
1092 aren't hidden. */
1093 *matched = TRUE;
1094 else
1095 {
1096 /* OLD_VERSION is the symbol version of the existing
1097 symbol. */
1098 char *old_version;
1099
1100 if (h->versioned >= versioned)
1101 old_version = strrchr (h->root.root.string,
1102 ELF_VER_CHR) + 1;
1103 else
1104 old_version = NULL;
1105
1106 /* The new symbol matches the existing symbol if they
1107 have the same symbol version. */
1108 *matched = (old_version == new_version
1109 || (old_version != NULL
1110 && new_version != NULL
1111 && strcmp (old_version, new_version) == 0));
1112 }
1113 }
1114 }
1115
1116 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1117 existing symbol. */
1118
1119 oldbfd = NULL;
1120 oldsec = NULL;
1121 switch (h->root.type)
1122 {
1123 default:
1124 break;
1125
1126 case bfd_link_hash_undefined:
1127 case bfd_link_hash_undefweak:
1128 oldbfd = h->root.u.undef.abfd;
1129 break;
1130
1131 case bfd_link_hash_defined:
1132 case bfd_link_hash_defweak:
1133 oldbfd = h->root.u.def.section->owner;
1134 oldsec = h->root.u.def.section;
1135 break;
1136
1137 case bfd_link_hash_common:
1138 oldbfd = h->root.u.c.p->section->owner;
1139 oldsec = h->root.u.c.p->section;
1140 if (pold_alignment)
1141 *pold_alignment = h->root.u.c.p->alignment_power;
1142 break;
1143 }
1144 if (poldbfd && *poldbfd == NULL)
1145 *poldbfd = oldbfd;
1146
1147 /* Differentiate strong and weak symbols. */
1148 newweak = bind == STB_WEAK;
1149 oldweak = (h->root.type == bfd_link_hash_defweak
1150 || h->root.type == bfd_link_hash_undefweak);
1151 if (pold_weak)
1152 *pold_weak = oldweak;
1153
1154 /* This code is for coping with dynamic objects, and is only useful
1155 if we are doing an ELF link. */
1156 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1157 return TRUE;
1158
1159 /* We have to check it for every instance since the first few may be
1160 references and not all compilers emit symbol type for undefined
1161 symbols. */
1162 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1163
1164 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1165 respectively, is from a dynamic object. */
1166
1167 newdyn = (abfd->flags & DYNAMIC) != 0;
1168
1169 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1170 syms and defined syms in dynamic libraries respectively.
1171 ref_dynamic on the other hand can be set for a symbol defined in
1172 a dynamic library, and def_dynamic may not be set; When the
1173 definition in a dynamic lib is overridden by a definition in the
1174 executable use of the symbol in the dynamic lib becomes a
1175 reference to the executable symbol. */
1176 if (newdyn)
1177 {
1178 if (bfd_is_und_section (sec))
1179 {
1180 if (bind != STB_WEAK)
1181 {
1182 h->ref_dynamic_nonweak = 1;
1183 hi->ref_dynamic_nonweak = 1;
1184 }
1185 }
1186 else
1187 {
1188 /* Update the existing symbol only if they match. */
1189 if (*matched)
1190 h->dynamic_def = 1;
1191 hi->dynamic_def = 1;
1192 }
1193 }
1194
1195 /* If we just created the symbol, mark it as being an ELF symbol.
1196 Other than that, there is nothing to do--there is no merge issue
1197 with a newly defined symbol--so we just return. */
1198
1199 if (h->root.type == bfd_link_hash_new)
1200 {
1201 h->non_elf = 0;
1202 return TRUE;
1203 }
1204
1205 /* In cases involving weak versioned symbols, we may wind up trying
1206 to merge a symbol with itself. Catch that here, to avoid the
1207 confusion that results if we try to override a symbol with
1208 itself. The additional tests catch cases like
1209 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1210 dynamic object, which we do want to handle here. */
1211 if (abfd == oldbfd
1212 && (newweak || oldweak)
1213 && ((abfd->flags & DYNAMIC) == 0
1214 || !h->def_regular))
1215 return TRUE;
1216
1217 olddyn = FALSE;
1218 if (oldbfd != NULL)
1219 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1220 else if (oldsec != NULL)
1221 {
1222 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1223 indices used by MIPS ELF. */
1224 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1225 }
1226
1227 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1228 respectively, appear to be a definition rather than reference. */
1229
1230 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1231
1232 olddef = (h->root.type != bfd_link_hash_undefined
1233 && h->root.type != bfd_link_hash_undefweak
1234 && h->root.type != bfd_link_hash_common);
1235
1236 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1237 respectively, appear to be a function. */
1238
1239 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1240 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1241
1242 oldfunc = (h->type != STT_NOTYPE
1243 && bed->is_function_type (h->type));
1244
1245 if (!(newfunc && oldfunc)
1246 && ELF_ST_TYPE (sym->st_info) != h->type
1247 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1248 && h->type != STT_NOTYPE
1249 && (newdef || bfd_is_com_section (sec))
1250 && (olddef || h->root.type == bfd_link_hash_common))
1251 {
1252 /* If creating a default indirect symbol ("foo" or "foo@") from
1253 a dynamic versioned definition ("foo@@") skip doing so if
1254 there is an existing regular definition with a different
1255 type. We don't want, for example, a "time" variable in the
1256 executable overriding a "time" function in a shared library. */
1257 if (newdyn
1258 && !olddyn)
1259 {
1260 *skip = TRUE;
1261 return TRUE;
1262 }
1263
1264 /* When adding a symbol from a regular object file after we have
1265 created indirect symbols, undo the indirection and any
1266 dynamic state. */
1267 if (hi != h
1268 && !newdyn
1269 && olddyn)
1270 {
1271 h = hi;
1272 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1273 h->forced_local = 0;
1274 h->ref_dynamic = 0;
1275 h->def_dynamic = 0;
1276 h->dynamic_def = 0;
1277 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1278 {
1279 h->root.type = bfd_link_hash_undefined;
1280 h->root.u.undef.abfd = abfd;
1281 }
1282 else
1283 {
1284 h->root.type = bfd_link_hash_new;
1285 h->root.u.undef.abfd = NULL;
1286 }
1287 return TRUE;
1288 }
1289 }
1290
1291 /* Check TLS symbols. We don't check undefined symbols introduced
1292 by "ld -u" which have no type (and oldbfd NULL), and we don't
1293 check symbols from plugins because they also have no type. */
1294 if (oldbfd != NULL
1295 && (oldbfd->flags & BFD_PLUGIN) == 0
1296 && (abfd->flags & BFD_PLUGIN) == 0
1297 && ELF_ST_TYPE (sym->st_info) != h->type
1298 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1299 {
1300 bfd *ntbfd, *tbfd;
1301 bfd_boolean ntdef, tdef;
1302 asection *ntsec, *tsec;
1303
1304 if (h->type == STT_TLS)
1305 {
1306 ntbfd = abfd;
1307 ntsec = sec;
1308 ntdef = newdef;
1309 tbfd = oldbfd;
1310 tsec = oldsec;
1311 tdef = olddef;
1312 }
1313 else
1314 {
1315 ntbfd = oldbfd;
1316 ntsec = oldsec;
1317 ntdef = olddef;
1318 tbfd = abfd;
1319 tsec = sec;
1320 tdef = newdef;
1321 }
1322
1323 if (tdef && ntdef)
1324 _bfd_error_handler
1325 /* xgettext:c-format */
1326 (_("%s: TLS definition in %B section %A "
1327 "mismatches non-TLS definition in %B section %A"),
1328 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1329 else if (!tdef && !ntdef)
1330 _bfd_error_handler
1331 /* xgettext:c-format */
1332 (_("%s: TLS reference in %B "
1333 "mismatches non-TLS reference in %B"),
1334 h->root.root.string, tbfd, ntbfd);
1335 else if (tdef)
1336 _bfd_error_handler
1337 /* xgettext:c-format */
1338 (_("%s: TLS definition in %B section %A "
1339 "mismatches non-TLS reference in %B"),
1340 h->root.root.string, tbfd, tsec, ntbfd);
1341 else
1342 _bfd_error_handler
1343 /* xgettext:c-format */
1344 (_("%s: TLS reference in %B "
1345 "mismatches non-TLS definition in %B section %A"),
1346 h->root.root.string, tbfd, ntbfd, ntsec);
1347
1348 bfd_set_error (bfd_error_bad_value);
1349 return FALSE;
1350 }
1351
1352 /* If the old symbol has non-default visibility, we ignore the new
1353 definition from a dynamic object. */
1354 if (newdyn
1355 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1356 && !bfd_is_und_section (sec))
1357 {
1358 *skip = TRUE;
1359 /* Make sure this symbol is dynamic. */
1360 h->ref_dynamic = 1;
1361 hi->ref_dynamic = 1;
1362 /* A protected symbol has external availability. Make sure it is
1363 recorded as dynamic.
1364
1365 FIXME: Should we check type and size for protected symbol? */
1366 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1367 return bfd_elf_link_record_dynamic_symbol (info, h);
1368 else
1369 return TRUE;
1370 }
1371 else if (!newdyn
1372 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1373 && h->def_dynamic)
1374 {
1375 /* If the new symbol with non-default visibility comes from a
1376 relocatable file and the old definition comes from a dynamic
1377 object, we remove the old definition. */
1378 if (hi->root.type == bfd_link_hash_indirect)
1379 {
1380 /* Handle the case where the old dynamic definition is
1381 default versioned. We need to copy the symbol info from
1382 the symbol with default version to the normal one if it
1383 was referenced before. */
1384 if (h->ref_regular)
1385 {
1386 hi->root.type = h->root.type;
1387 h->root.type = bfd_link_hash_indirect;
1388 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1389
1390 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1391 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1392 {
1393 /* If the new symbol is hidden or internal, completely undo
1394 any dynamic link state. */
1395 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1396 h->forced_local = 0;
1397 h->ref_dynamic = 0;
1398 }
1399 else
1400 h->ref_dynamic = 1;
1401
1402 h->def_dynamic = 0;
1403 /* FIXME: Should we check type and size for protected symbol? */
1404 h->size = 0;
1405 h->type = 0;
1406
1407 h = hi;
1408 }
1409 else
1410 h = hi;
1411 }
1412
1413 /* If the old symbol was undefined before, then it will still be
1414 on the undefs list. If the new symbol is undefined or
1415 common, we can't make it bfd_link_hash_new here, because new
1416 undefined or common symbols will be added to the undefs list
1417 by _bfd_generic_link_add_one_symbol. Symbols may not be
1418 added twice to the undefs list. Also, if the new symbol is
1419 undefweak then we don't want to lose the strong undef. */
1420 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1421 {
1422 h->root.type = bfd_link_hash_undefined;
1423 h->root.u.undef.abfd = abfd;
1424 }
1425 else
1426 {
1427 h->root.type = bfd_link_hash_new;
1428 h->root.u.undef.abfd = NULL;
1429 }
1430
1431 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1432 {
1433 /* If the new symbol is hidden or internal, completely undo
1434 any dynamic link state. */
1435 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1436 h->forced_local = 0;
1437 h->ref_dynamic = 0;
1438 }
1439 else
1440 h->ref_dynamic = 1;
1441 h->def_dynamic = 0;
1442 /* FIXME: Should we check type and size for protected symbol? */
1443 h->size = 0;
1444 h->type = 0;
1445 return TRUE;
1446 }
1447
1448 /* If a new weak symbol definition comes from a regular file and the
1449 old symbol comes from a dynamic library, we treat the new one as
1450 strong. Similarly, an old weak symbol definition from a regular
1451 file is treated as strong when the new symbol comes from a dynamic
1452 library. Further, an old weak symbol from a dynamic library is
1453 treated as strong if the new symbol is from a dynamic library.
1454 This reflects the way glibc's ld.so works.
1455
1456 Do this before setting *type_change_ok or *size_change_ok so that
1457 we warn properly when dynamic library symbols are overridden. */
1458
1459 if (newdef && !newdyn && olddyn)
1460 newweak = FALSE;
1461 if (olddef && newdyn)
1462 oldweak = FALSE;
1463
1464 /* Allow changes between different types of function symbol. */
1465 if (newfunc && oldfunc)
1466 *type_change_ok = TRUE;
1467
1468 /* It's OK to change the type if either the existing symbol or the
1469 new symbol is weak. A type change is also OK if the old symbol
1470 is undefined and the new symbol is defined. */
1471
1472 if (oldweak
1473 || newweak
1474 || (newdef
1475 && h->root.type == bfd_link_hash_undefined))
1476 *type_change_ok = TRUE;
1477
1478 /* It's OK to change the size if either the existing symbol or the
1479 new symbol is weak, or if the old symbol is undefined. */
1480
1481 if (*type_change_ok
1482 || h->root.type == bfd_link_hash_undefined)
1483 *size_change_ok = TRUE;
1484
1485 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1486 symbol, respectively, appears to be a common symbol in a dynamic
1487 object. If a symbol appears in an uninitialized section, and is
1488 not weak, and is not a function, then it may be a common symbol
1489 which was resolved when the dynamic object was created. We want
1490 to treat such symbols specially, because they raise special
1491 considerations when setting the symbol size: if the symbol
1492 appears as a common symbol in a regular object, and the size in
1493 the regular object is larger, we must make sure that we use the
1494 larger size. This problematic case can always be avoided in C,
1495 but it must be handled correctly when using Fortran shared
1496 libraries.
1497
1498 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1499 likewise for OLDDYNCOMMON and OLDDEF.
1500
1501 Note that this test is just a heuristic, and that it is quite
1502 possible to have an uninitialized symbol in a shared object which
1503 is really a definition, rather than a common symbol. This could
1504 lead to some minor confusion when the symbol really is a common
1505 symbol in some regular object. However, I think it will be
1506 harmless. */
1507
1508 if (newdyn
1509 && newdef
1510 && !newweak
1511 && (sec->flags & SEC_ALLOC) != 0
1512 && (sec->flags & SEC_LOAD) == 0
1513 && sym->st_size > 0
1514 && !newfunc)
1515 newdyncommon = TRUE;
1516 else
1517 newdyncommon = FALSE;
1518
1519 if (olddyn
1520 && olddef
1521 && h->root.type == bfd_link_hash_defined
1522 && h->def_dynamic
1523 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1524 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1525 && h->size > 0
1526 && !oldfunc)
1527 olddyncommon = TRUE;
1528 else
1529 olddyncommon = FALSE;
1530
1531 /* We now know everything about the old and new symbols. We ask the
1532 backend to check if we can merge them. */
1533 if (bed->merge_symbol != NULL)
1534 {
1535 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1536 return FALSE;
1537 sec = *psec;
1538 }
1539
1540 /* If both the old and the new symbols look like common symbols in a
1541 dynamic object, set the size of the symbol to the larger of the
1542 two. */
1543
1544 if (olddyncommon
1545 && newdyncommon
1546 && sym->st_size != h->size)
1547 {
1548 /* Since we think we have two common symbols, issue a multiple
1549 common warning if desired. Note that we only warn if the
1550 size is different. If the size is the same, we simply let
1551 the old symbol override the new one as normally happens with
1552 symbols defined in dynamic objects. */
1553
1554 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1555 bfd_link_hash_common, sym->st_size);
1556 if (sym->st_size > h->size)
1557 h->size = sym->st_size;
1558
1559 *size_change_ok = TRUE;
1560 }
1561
1562 /* If we are looking at a dynamic object, and we have found a
1563 definition, we need to see if the symbol was already defined by
1564 some other object. If so, we want to use the existing
1565 definition, and we do not want to report a multiple symbol
1566 definition error; we do this by clobbering *PSEC to be
1567 bfd_und_section_ptr.
1568
1569 We treat a common symbol as a definition if the symbol in the
1570 shared library is a function, since common symbols always
1571 represent variables; this can cause confusion in principle, but
1572 any such confusion would seem to indicate an erroneous program or
1573 shared library. We also permit a common symbol in a regular
1574 object to override a weak symbol in a shared object. */
1575
1576 if (newdyn
1577 && newdef
1578 && (olddef
1579 || (h->root.type == bfd_link_hash_common
1580 && (newweak || newfunc))))
1581 {
1582 *override = TRUE;
1583 newdef = FALSE;
1584 newdyncommon = FALSE;
1585
1586 *psec = sec = bfd_und_section_ptr;
1587 *size_change_ok = TRUE;
1588
1589 /* If we get here when the old symbol is a common symbol, then
1590 we are explicitly letting it override a weak symbol or
1591 function in a dynamic object, and we don't want to warn about
1592 a type change. If the old symbol is a defined symbol, a type
1593 change warning may still be appropriate. */
1594
1595 if (h->root.type == bfd_link_hash_common)
1596 *type_change_ok = TRUE;
1597 }
1598
1599 /* Handle the special case of an old common symbol merging with a
1600 new symbol which looks like a common symbol in a shared object.
1601 We change *PSEC and *PVALUE to make the new symbol look like a
1602 common symbol, and let _bfd_generic_link_add_one_symbol do the
1603 right thing. */
1604
1605 if (newdyncommon
1606 && h->root.type == bfd_link_hash_common)
1607 {
1608 *override = TRUE;
1609 newdef = FALSE;
1610 newdyncommon = FALSE;
1611 *pvalue = sym->st_size;
1612 *psec = sec = bed->common_section (oldsec);
1613 *size_change_ok = TRUE;
1614 }
1615
1616 /* Skip weak definitions of symbols that are already defined. */
1617 if (newdef && olddef && newweak)
1618 {
1619 /* Don't skip new non-IR weak syms. */
1620 if (!(oldbfd != NULL
1621 && (oldbfd->flags & BFD_PLUGIN) != 0
1622 && (abfd->flags & BFD_PLUGIN) == 0))
1623 {
1624 newdef = FALSE;
1625 *skip = TRUE;
1626 }
1627
1628 /* Merge st_other. If the symbol already has a dynamic index,
1629 but visibility says it should not be visible, turn it into a
1630 local symbol. */
1631 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1632 if (h->dynindx != -1)
1633 switch (ELF_ST_VISIBILITY (h->other))
1634 {
1635 case STV_INTERNAL:
1636 case STV_HIDDEN:
1637 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1638 break;
1639 }
1640 }
1641
1642 /* If the old symbol is from a dynamic object, and the new symbol is
1643 a definition which is not from a dynamic object, then the new
1644 symbol overrides the old symbol. Symbols from regular files
1645 always take precedence over symbols from dynamic objects, even if
1646 they are defined after the dynamic object in the link.
1647
1648 As above, we again permit a common symbol in a regular object to
1649 override a definition in a shared object if the shared object
1650 symbol is a function or is weak. */
1651
1652 flip = NULL;
1653 if (!newdyn
1654 && (newdef
1655 || (bfd_is_com_section (sec)
1656 && (oldweak || oldfunc)))
1657 && olddyn
1658 && olddef
1659 && h->def_dynamic)
1660 {
1661 /* Change the hash table entry to undefined, and let
1662 _bfd_generic_link_add_one_symbol do the right thing with the
1663 new definition. */
1664
1665 h->root.type = bfd_link_hash_undefined;
1666 h->root.u.undef.abfd = h->root.u.def.section->owner;
1667 *size_change_ok = TRUE;
1668
1669 olddef = FALSE;
1670 olddyncommon = FALSE;
1671
1672 /* We again permit a type change when a common symbol may be
1673 overriding a function. */
1674
1675 if (bfd_is_com_section (sec))
1676 {
1677 if (oldfunc)
1678 {
1679 /* If a common symbol overrides a function, make sure
1680 that it isn't defined dynamically nor has type
1681 function. */
1682 h->def_dynamic = 0;
1683 h->type = STT_NOTYPE;
1684 }
1685 *type_change_ok = TRUE;
1686 }
1687
1688 if (hi->root.type == bfd_link_hash_indirect)
1689 flip = hi;
1690 else
1691 /* This union may have been set to be non-NULL when this symbol
1692 was seen in a dynamic object. We must force the union to be
1693 NULL, so that it is correct for a regular symbol. */
1694 h->verinfo.vertree = NULL;
1695 }
1696
1697 /* Handle the special case of a new common symbol merging with an
1698 old symbol that looks like it might be a common symbol defined in
1699 a shared object. Note that we have already handled the case in
1700 which a new common symbol should simply override the definition
1701 in the shared library. */
1702
1703 if (! newdyn
1704 && bfd_is_com_section (sec)
1705 && olddyncommon)
1706 {
1707 /* It would be best if we could set the hash table entry to a
1708 common symbol, but we don't know what to use for the section
1709 or the alignment. */
1710 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1711 bfd_link_hash_common, sym->st_size);
1712
1713 /* If the presumed common symbol in the dynamic object is
1714 larger, pretend that the new symbol has its size. */
1715
1716 if (h->size > *pvalue)
1717 *pvalue = h->size;
1718
1719 /* We need to remember the alignment required by the symbol
1720 in the dynamic object. */
1721 BFD_ASSERT (pold_alignment);
1722 *pold_alignment = h->root.u.def.section->alignment_power;
1723
1724 olddef = FALSE;
1725 olddyncommon = FALSE;
1726
1727 h->root.type = bfd_link_hash_undefined;
1728 h->root.u.undef.abfd = h->root.u.def.section->owner;
1729
1730 *size_change_ok = TRUE;
1731 *type_change_ok = TRUE;
1732
1733 if (hi->root.type == bfd_link_hash_indirect)
1734 flip = hi;
1735 else
1736 h->verinfo.vertree = NULL;
1737 }
1738
1739 if (flip != NULL)
1740 {
1741 /* Handle the case where we had a versioned symbol in a dynamic
1742 library and now find a definition in a normal object. In this
1743 case, we make the versioned symbol point to the normal one. */
1744 flip->root.type = h->root.type;
1745 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1746 h->root.type = bfd_link_hash_indirect;
1747 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1748 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1749 if (h->def_dynamic)
1750 {
1751 h->def_dynamic = 0;
1752 flip->ref_dynamic = 1;
1753 }
1754 }
1755
1756 return TRUE;
1757}
1758
1759/* This function is called to create an indirect symbol from the
1760 default for the symbol with the default version if needed. The
1761 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1762 set DYNSYM if the new indirect symbol is dynamic. */
1763
1764static bfd_boolean
1765_bfd_elf_add_default_symbol (bfd *abfd,
1766 struct bfd_link_info *info,
1767 struct elf_link_hash_entry *h,
1768 const char *name,
1769 Elf_Internal_Sym *sym,
1770 asection *sec,
1771 bfd_vma value,
1772 bfd **poldbfd,
1773 bfd_boolean *dynsym)
1774{
1775 bfd_boolean type_change_ok;
1776 bfd_boolean size_change_ok;
1777 bfd_boolean skip;
1778 char *shortname;
1779 struct elf_link_hash_entry *hi;
1780 struct bfd_link_hash_entry *bh;
1781 const struct elf_backend_data *bed;
1782 bfd_boolean collect;
1783 bfd_boolean dynamic;
1784 bfd_boolean override;
1785 char *p;
1786 size_t len, shortlen;
1787 asection *tmp_sec;
1788 bfd_boolean matched;
1789
1790 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1791 return TRUE;
1792
1793 /* If this symbol has a version, and it is the default version, we
1794 create an indirect symbol from the default name to the fully
1795 decorated name. This will cause external references which do not
1796 specify a version to be bound to this version of the symbol. */
1797 p = strchr (name, ELF_VER_CHR);
1798 if (h->versioned == unknown)
1799 {
1800 if (p == NULL)
1801 {
1802 h->versioned = unversioned;
1803 return TRUE;
1804 }
1805 else
1806 {
1807 if (p[1] != ELF_VER_CHR)
1808 {
1809 h->versioned = versioned_hidden;
1810 return TRUE;
1811 }
1812 else
1813 h->versioned = versioned;
1814 }
1815 }
1816 else
1817 {
1818 /* PR ld/19073: We may see an unversioned definition after the
1819 default version. */
1820 if (p == NULL)
1821 return TRUE;
1822 }
1823
1824 bed = get_elf_backend_data (abfd);
1825 collect = bed->collect;
1826 dynamic = (abfd->flags & DYNAMIC) != 0;
1827
1828 shortlen = p - name;
1829 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1830 if (shortname == NULL)
1831 return FALSE;
1832 memcpy (shortname, name, shortlen);
1833 shortname[shortlen] = '\0';
1834
1835 /* We are going to create a new symbol. Merge it with any existing
1836 symbol with this name. For the purposes of the merge, act as
1837 though we were defining the symbol we just defined, although we
1838 actually going to define an indirect symbol. */
1839 type_change_ok = FALSE;
1840 size_change_ok = FALSE;
1841 matched = TRUE;
1842 tmp_sec = sec;
1843 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1844 &hi, poldbfd, NULL, NULL, &skip, &override,
1845 &type_change_ok, &size_change_ok, &matched))
1846 return FALSE;
1847
1848 if (skip)
1849 goto nondefault;
1850
1851 if (hi->def_regular)
1852 {
1853 /* If the undecorated symbol will have a version added by a
1854 script different to H, then don't indirect to/from the
1855 undecorated symbol. This isn't ideal because we may not yet
1856 have seen symbol versions, if given by a script on the
1857 command line rather than via --version-script. */
1858 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1859 {
1860 bfd_boolean hide;
1861
1862 hi->verinfo.vertree
1863 = bfd_find_version_for_sym (info->version_info,
1864 hi->root.root.string, &hide);
1865 if (hi->verinfo.vertree != NULL && hide)
1866 {
1867 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1868 goto nondefault;
1869 }
1870 }
1871 if (hi->verinfo.vertree != NULL
1872 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1873 goto nondefault;
1874 }
1875
1876 if (! override)
1877 {
1878 /* Add the default symbol if not performing a relocatable link. */
1879 if (! bfd_link_relocatable (info))
1880 {
1881 bh = &hi->root;
1882 if (! (_bfd_generic_link_add_one_symbol
1883 (info, abfd, shortname, BSF_INDIRECT,
1884 bfd_ind_section_ptr,
1885 0, name, FALSE, collect, &bh)))
1886 return FALSE;
1887 hi = (struct elf_link_hash_entry *) bh;
1888 }
1889 }
1890 else
1891 {
1892 /* In this case the symbol named SHORTNAME is overriding the
1893 indirect symbol we want to add. We were planning on making
1894 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1895 is the name without a version. NAME is the fully versioned
1896 name, and it is the default version.
1897
1898 Overriding means that we already saw a definition for the
1899 symbol SHORTNAME in a regular object, and it is overriding
1900 the symbol defined in the dynamic object.
1901
1902 When this happens, we actually want to change NAME, the
1903 symbol we just added, to refer to SHORTNAME. This will cause
1904 references to NAME in the shared object to become references
1905 to SHORTNAME in the regular object. This is what we expect
1906 when we override a function in a shared object: that the
1907 references in the shared object will be mapped to the
1908 definition in the regular object. */
1909
1910 while (hi->root.type == bfd_link_hash_indirect
1911 || hi->root.type == bfd_link_hash_warning)
1912 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1913
1914 h->root.type = bfd_link_hash_indirect;
1915 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1916 if (h->def_dynamic)
1917 {
1918 h->def_dynamic = 0;
1919 hi->ref_dynamic = 1;
1920 if (hi->ref_regular
1921 || hi->def_regular)
1922 {
1923 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1924 return FALSE;
1925 }
1926 }
1927
1928 /* Now set HI to H, so that the following code will set the
1929 other fields correctly. */
1930 hi = h;
1931 }
1932
1933 /* Check if HI is a warning symbol. */
1934 if (hi->root.type == bfd_link_hash_warning)
1935 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1936
1937 /* If there is a duplicate definition somewhere, then HI may not
1938 point to an indirect symbol. We will have reported an error to
1939 the user in that case. */
1940
1941 if (hi->root.type == bfd_link_hash_indirect)
1942 {
1943 struct elf_link_hash_entry *ht;
1944
1945 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1946 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1947
1948 /* A reference to the SHORTNAME symbol from a dynamic library
1949 will be satisfied by the versioned symbol at runtime. In
1950 effect, we have a reference to the versioned symbol. */
1951 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1952 hi->dynamic_def |= ht->dynamic_def;
1953
1954 /* See if the new flags lead us to realize that the symbol must
1955 be dynamic. */
1956 if (! *dynsym)
1957 {
1958 if (! dynamic)
1959 {
1960 if (! bfd_link_executable (info)
1961 || hi->def_dynamic
1962 || hi->ref_dynamic)
1963 *dynsym = TRUE;
1964 }
1965 else
1966 {
1967 if (hi->ref_regular)
1968 *dynsym = TRUE;
1969 }
1970 }
1971 }
1972
1973 /* We also need to define an indirection from the nondefault version
1974 of the symbol. */
1975
1976nondefault:
1977 len = strlen (name);
1978 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1979 if (shortname == NULL)
1980 return FALSE;
1981 memcpy (shortname, name, shortlen);
1982 memcpy (shortname + shortlen, p + 1, len - shortlen);
1983
1984 /* Once again, merge with any existing symbol. */
1985 type_change_ok = FALSE;
1986 size_change_ok = FALSE;
1987 tmp_sec = sec;
1988 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1989 &hi, poldbfd, NULL, NULL, &skip, &override,
1990 &type_change_ok, &size_change_ok, &matched))
1991 return FALSE;
1992
1993 if (skip)
1994 return TRUE;
1995
1996 if (override)
1997 {
1998 /* Here SHORTNAME is a versioned name, so we don't expect to see
1999 the type of override we do in the case above unless it is
2000 overridden by a versioned definition. */
2001 if (hi->root.type != bfd_link_hash_defined
2002 && hi->root.type != bfd_link_hash_defweak)
2003 _bfd_error_handler
2004 /* xgettext:c-format */
2005 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2006 abfd, shortname);
2007 }
2008 else
2009 {
2010 bh = &hi->root;
2011 if (! (_bfd_generic_link_add_one_symbol
2012 (info, abfd, shortname, BSF_INDIRECT,
2013 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2014 return FALSE;
2015 hi = (struct elf_link_hash_entry *) bh;
2016
2017 /* If there is a duplicate definition somewhere, then HI may not
2018 point to an indirect symbol. We will have reported an error
2019 to the user in that case. */
2020
2021 if (hi->root.type == bfd_link_hash_indirect)
2022 {
2023 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2024 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2025 hi->dynamic_def |= h->dynamic_def;
2026
2027 /* See if the new flags lead us to realize that the symbol
2028 must be dynamic. */
2029 if (! *dynsym)
2030 {
2031 if (! dynamic)
2032 {
2033 if (! bfd_link_executable (info)
2034 || hi->ref_dynamic)
2035 *dynsym = TRUE;
2036 }
2037 else
2038 {
2039 if (hi->ref_regular)
2040 *dynsym = TRUE;
2041 }
2042 }
2043 }
2044 }
2045
2046 return TRUE;
2047}
2048\f
2049/* This routine is used to export all defined symbols into the dynamic
2050 symbol table. It is called via elf_link_hash_traverse. */
2051
2052static bfd_boolean
2053_bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2054{
2055 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2056
2057 /* Ignore indirect symbols. These are added by the versioning code. */
2058 if (h->root.type == bfd_link_hash_indirect)
2059 return TRUE;
2060
2061 /* Ignore this if we won't export it. */
2062 if (!eif->info->export_dynamic && !h->dynamic)
2063 return TRUE;
2064
2065 if (h->dynindx == -1
2066 && (h->def_regular || h->ref_regular)
2067 && ! bfd_hide_sym_by_version (eif->info->version_info,
2068 h->root.root.string))
2069 {
2070 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2071 {
2072 eif->failed = TRUE;
2073 return FALSE;
2074 }
2075 }
2076
2077 return TRUE;
2078}
2079\f
2080/* Look through the symbols which are defined in other shared
2081 libraries and referenced here. Update the list of version
2082 dependencies. This will be put into the .gnu.version_r section.
2083 This function is called via elf_link_hash_traverse. */
2084
2085static bfd_boolean
2086_bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2087 void *data)
2088{
2089 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2090 Elf_Internal_Verneed *t;
2091 Elf_Internal_Vernaux *a;
2092 bfd_size_type amt;
2093
2094 /* We only care about symbols defined in shared objects with version
2095 information. */
2096 if (!h->def_dynamic
2097 || h->def_regular
2098 || h->dynindx == -1
2099 || h->verinfo.verdef == NULL
2100 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2101 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2102 return TRUE;
2103
2104 /* See if we already know about this version. */
2105 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2106 t != NULL;
2107 t = t->vn_nextref)
2108 {
2109 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2110 continue;
2111
2112 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2113 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2114 return TRUE;
2115
2116 break;
2117 }
2118
2119 /* This is a new version. Add it to tree we are building. */
2120
2121 if (t == NULL)
2122 {
2123 amt = sizeof *t;
2124 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2125 if (t == NULL)
2126 {
2127 rinfo->failed = TRUE;
2128 return FALSE;
2129 }
2130
2131 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2132 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2133 elf_tdata (rinfo->info->output_bfd)->verref = t;
2134 }
2135
2136 amt = sizeof *a;
2137 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2138 if (a == NULL)
2139 {
2140 rinfo->failed = TRUE;
2141 return FALSE;
2142 }
2143
2144 /* Note that we are copying a string pointer here, and testing it
2145 above. If bfd_elf_string_from_elf_section is ever changed to
2146 discard the string data when low in memory, this will have to be
2147 fixed. */
2148 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2149
2150 a->vna_flags = h->verinfo.verdef->vd_flags;
2151 a->vna_nextptr = t->vn_auxptr;
2152
2153 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2154 ++rinfo->vers;
2155
2156 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2157
2158 t->vn_auxptr = a;
2159
2160 return TRUE;
2161}
2162
2163/* Figure out appropriate versions for all the symbols. We may not
2164 have the version number script until we have read all of the input
2165 files, so until that point we don't know which symbols should be
2166 local. This function is called via elf_link_hash_traverse. */
2167
2168static bfd_boolean
2169_bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2170{
2171 struct elf_info_failed *sinfo;
2172 struct bfd_link_info *info;
2173 const struct elf_backend_data *bed;
2174 struct elf_info_failed eif;
2175 char *p;
2176
2177 sinfo = (struct elf_info_failed *) data;
2178 info = sinfo->info;
2179
2180 /* Fix the symbol flags. */
2181 eif.failed = FALSE;
2182 eif.info = info;
2183 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2184 {
2185 if (eif.failed)
2186 sinfo->failed = TRUE;
2187 return FALSE;
2188 }
2189
2190 /* We only need version numbers for symbols defined in regular
2191 objects. */
2192 if (!h->def_regular)
2193 return TRUE;
2194
2195 bed = get_elf_backend_data (info->output_bfd);
2196 p = strchr (h->root.root.string, ELF_VER_CHR);
2197 if (p != NULL && h->verinfo.vertree == NULL)
2198 {
2199 struct bfd_elf_version_tree *t;
2200
2201 ++p;
2202 if (*p == ELF_VER_CHR)
2203 ++p;
2204
2205 /* If there is no version string, we can just return out. */
2206 if (*p == '\0')
2207 return TRUE;
2208
2209 /* Look for the version. If we find it, it is no longer weak. */
2210 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2211 {
2212 if (strcmp (t->name, p) == 0)
2213 {
2214 size_t len;
2215 char *alc;
2216 struct bfd_elf_version_expr *d;
2217
2218 len = p - h->root.root.string;
2219 alc = (char *) bfd_malloc (len);
2220 if (alc == NULL)
2221 {
2222 sinfo->failed = TRUE;
2223 return FALSE;
2224 }
2225 memcpy (alc, h->root.root.string, len - 1);
2226 alc[len - 1] = '\0';
2227 if (alc[len - 2] == ELF_VER_CHR)
2228 alc[len - 2] = '\0';
2229
2230 h->verinfo.vertree = t;
2231 t->used = TRUE;
2232 d = NULL;
2233
2234 if (t->globals.list != NULL)
2235 d = (*t->match) (&t->globals, NULL, alc);
2236
2237 /* See if there is anything to force this symbol to
2238 local scope. */
2239 if (d == NULL && t->locals.list != NULL)
2240 {
2241 d = (*t->match) (&t->locals, NULL, alc);
2242 if (d != NULL
2243 && h->dynindx != -1
2244 && ! info->export_dynamic)
2245 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2246 }
2247
2248 free (alc);
2249 break;
2250 }
2251 }
2252
2253 /* If we are building an application, we need to create a
2254 version node for this version. */
2255 if (t == NULL && bfd_link_executable (info))
2256 {
2257 struct bfd_elf_version_tree **pp;
2258 int version_index;
2259
2260 /* If we aren't going to export this symbol, we don't need
2261 to worry about it. */
2262 if (h->dynindx == -1)
2263 return TRUE;
2264
2265 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2266 sizeof *t);
2267 if (t == NULL)
2268 {
2269 sinfo->failed = TRUE;
2270 return FALSE;
2271 }
2272
2273 t->name = p;
2274 t->name_indx = (unsigned int) -1;
2275 t->used = TRUE;
2276
2277 version_index = 1;
2278 /* Don't count anonymous version tag. */
2279 if (sinfo->info->version_info != NULL
2280 && sinfo->info->version_info->vernum == 0)
2281 version_index = 0;
2282 for (pp = &sinfo->info->version_info;
2283 *pp != NULL;
2284 pp = &(*pp)->next)
2285 ++version_index;
2286 t->vernum = version_index;
2287
2288 *pp = t;
2289
2290 h->verinfo.vertree = t;
2291 }
2292 else if (t == NULL)
2293 {
2294 /* We could not find the version for a symbol when
2295 generating a shared archive. Return an error. */
2296 _bfd_error_handler
2297 /* xgettext:c-format */
2298 (_("%B: version node not found for symbol %s"),
2299 info->output_bfd, h->root.root.string);
2300 bfd_set_error (bfd_error_bad_value);
2301 sinfo->failed = TRUE;
2302 return FALSE;
2303 }
2304 }
2305
2306 /* If we don't have a version for this symbol, see if we can find
2307 something. */
2308 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2309 {
2310 bfd_boolean hide;
2311
2312 h->verinfo.vertree
2313 = bfd_find_version_for_sym (sinfo->info->version_info,
2314 h->root.root.string, &hide);
2315 if (h->verinfo.vertree != NULL && hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 }
2318
2319 return TRUE;
2320}
2321\f
2322/* Read and swap the relocs from the section indicated by SHDR. This
2323 may be either a REL or a RELA section. The relocations are
2324 translated into RELA relocations and stored in INTERNAL_RELOCS,
2325 which should have already been allocated to contain enough space.
2326 The EXTERNAL_RELOCS are a buffer where the external form of the
2327 relocations should be stored.
2328
2329 Returns FALSE if something goes wrong. */
2330
2331static bfd_boolean
2332elf_link_read_relocs_from_section (bfd *abfd,
2333 asection *sec,
2334 Elf_Internal_Shdr *shdr,
2335 void *external_relocs,
2336 Elf_Internal_Rela *internal_relocs)
2337{
2338 const struct elf_backend_data *bed;
2339 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2340 const bfd_byte *erela;
2341 const bfd_byte *erelaend;
2342 Elf_Internal_Rela *irela;
2343 Elf_Internal_Shdr *symtab_hdr;
2344 size_t nsyms;
2345
2346 /* Position ourselves at the start of the section. */
2347 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2348 return FALSE;
2349
2350 /* Read the relocations. */
2351 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2352 return FALSE;
2353
2354 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2355 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2356
2357 bed = get_elf_backend_data (abfd);
2358
2359 /* Convert the external relocations to the internal format. */
2360 if (shdr->sh_entsize == bed->s->sizeof_rel)
2361 swap_in = bed->s->swap_reloc_in;
2362 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2363 swap_in = bed->s->swap_reloca_in;
2364 else
2365 {
2366 bfd_set_error (bfd_error_wrong_format);
2367 return FALSE;
2368 }
2369
2370 erela = (const bfd_byte *) external_relocs;
2371 erelaend = erela + shdr->sh_size;
2372 irela = internal_relocs;
2373 while (erela < erelaend)
2374 {
2375 bfd_vma r_symndx;
2376
2377 (*swap_in) (abfd, erela, irela);
2378 r_symndx = ELF32_R_SYM (irela->r_info);
2379 if (bed->s->arch_size == 64)
2380 r_symndx >>= 24;
2381 if (nsyms > 0)
2382 {
2383 if ((size_t) r_symndx >= nsyms)
2384 {
2385 _bfd_error_handler
2386 /* xgettext:c-format */
2387 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2388 " for offset 0x%lx in section `%A'"),
2389 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2390 irela->r_offset, sec);
2391 bfd_set_error (bfd_error_bad_value);
2392 return FALSE;
2393 }
2394 }
2395 else if (r_symndx != STN_UNDEF)
2396 {
2397 _bfd_error_handler
2398 /* xgettext:c-format */
2399 (_("%B: non-zero symbol index (0x%lx)"
2400 " for offset 0x%lx in section `%A'"
2401 " when the object file has no symbol table"),
2402 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2403 irela->r_offset, sec);
2404 bfd_set_error (bfd_error_bad_value);
2405 return FALSE;
2406 }
2407 irela += bed->s->int_rels_per_ext_rel;
2408 erela += shdr->sh_entsize;
2409 }
2410
2411 return TRUE;
2412}
2413
2414/* Read and swap the relocs for a section O. They may have been
2415 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2416 not NULL, they are used as buffers to read into. They are known to
2417 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2418 the return value is allocated using either malloc or bfd_alloc,
2419 according to the KEEP_MEMORY argument. If O has two relocation
2420 sections (both REL and RELA relocations), then the REL_HDR
2421 relocations will appear first in INTERNAL_RELOCS, followed by the
2422 RELA_HDR relocations. */
2423
2424Elf_Internal_Rela *
2425_bfd_elf_link_read_relocs (bfd *abfd,
2426 asection *o,
2427 void *external_relocs,
2428 Elf_Internal_Rela *internal_relocs,
2429 bfd_boolean keep_memory)
2430{
2431 void *alloc1 = NULL;
2432 Elf_Internal_Rela *alloc2 = NULL;
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 struct bfd_elf_section_data *esdo = elf_section_data (o);
2435 Elf_Internal_Rela *internal_rela_relocs;
2436
2437 if (esdo->relocs != NULL)
2438 return esdo->relocs;
2439
2440 if (o->reloc_count == 0)
2441 return NULL;
2442
2443 if (internal_relocs == NULL)
2444 {
2445 bfd_size_type size;
2446
2447 size = o->reloc_count;
2448 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2449 if (keep_memory)
2450 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2451 else
2452 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2453 if (internal_relocs == NULL)
2454 goto error_return;
2455 }
2456
2457 if (external_relocs == NULL)
2458 {
2459 bfd_size_type size = 0;
2460
2461 if (esdo->rel.hdr)
2462 size += esdo->rel.hdr->sh_size;
2463 if (esdo->rela.hdr)
2464 size += esdo->rela.hdr->sh_size;
2465
2466 alloc1 = bfd_malloc (size);
2467 if (alloc1 == NULL)
2468 goto error_return;
2469 external_relocs = alloc1;
2470 }
2471
2472 internal_rela_relocs = internal_relocs;
2473 if (esdo->rel.hdr)
2474 {
2475 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2476 external_relocs,
2477 internal_relocs))
2478 goto error_return;
2479 external_relocs = (((bfd_byte *) external_relocs)
2480 + esdo->rel.hdr->sh_size);
2481 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2482 * bed->s->int_rels_per_ext_rel);
2483 }
2484
2485 if (esdo->rela.hdr
2486 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2487 external_relocs,
2488 internal_rela_relocs)))
2489 goto error_return;
2490
2491 /* Cache the results for next time, if we can. */
2492 if (keep_memory)
2493 esdo->relocs = internal_relocs;
2494
2495 if (alloc1 != NULL)
2496 free (alloc1);
2497
2498 /* Don't free alloc2, since if it was allocated we are passing it
2499 back (under the name of internal_relocs). */
2500
2501 return internal_relocs;
2502
2503 error_return:
2504 if (alloc1 != NULL)
2505 free (alloc1);
2506 if (alloc2 != NULL)
2507 {
2508 if (keep_memory)
2509 bfd_release (abfd, alloc2);
2510 else
2511 free (alloc2);
2512 }
2513 return NULL;
2514}
2515
2516/* Compute the size of, and allocate space for, REL_HDR which is the
2517 section header for a section containing relocations for O. */
2518
2519static bfd_boolean
2520_bfd_elf_link_size_reloc_section (bfd *abfd,
2521 struct bfd_elf_section_reloc_data *reldata)
2522{
2523 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2524
2525 /* That allows us to calculate the size of the section. */
2526 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2527
2528 /* The contents field must last into write_object_contents, so we
2529 allocate it with bfd_alloc rather than malloc. Also since we
2530 cannot be sure that the contents will actually be filled in,
2531 we zero the allocated space. */
2532 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2533 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2534 return FALSE;
2535
2536 if (reldata->hashes == NULL && reldata->count)
2537 {
2538 struct elf_link_hash_entry **p;
2539
2540 p = ((struct elf_link_hash_entry **)
2541 bfd_zmalloc (reldata->count * sizeof (*p)));
2542 if (p == NULL)
2543 return FALSE;
2544
2545 reldata->hashes = p;
2546 }
2547
2548 return TRUE;
2549}
2550
2551/* Copy the relocations indicated by the INTERNAL_RELOCS (which
2552 originated from the section given by INPUT_REL_HDR) to the
2553 OUTPUT_BFD. */
2554
2555bfd_boolean
2556_bfd_elf_link_output_relocs (bfd *output_bfd,
2557 asection *input_section,
2558 Elf_Internal_Shdr *input_rel_hdr,
2559 Elf_Internal_Rela *internal_relocs,
2560 struct elf_link_hash_entry **rel_hash
2561 ATTRIBUTE_UNUSED)
2562{
2563 Elf_Internal_Rela *irela;
2564 Elf_Internal_Rela *irelaend;
2565 bfd_byte *erel;
2566 struct bfd_elf_section_reloc_data *output_reldata;
2567 asection *output_section;
2568 const struct elf_backend_data *bed;
2569 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2570 struct bfd_elf_section_data *esdo;
2571
2572 output_section = input_section->output_section;
2573
2574 bed = get_elf_backend_data (output_bfd);
2575 esdo = elf_section_data (output_section);
2576 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2577 {
2578 output_reldata = &esdo->rel;
2579 swap_out = bed->s->swap_reloc_out;
2580 }
2581 else if (esdo->rela.hdr
2582 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2583 {
2584 output_reldata = &esdo->rela;
2585 swap_out = bed->s->swap_reloca_out;
2586 }
2587 else
2588 {
2589 _bfd_error_handler
2590 /* xgettext:c-format */
2591 (_("%B: relocation size mismatch in %B section %A"),
2592 output_bfd, input_section->owner, input_section);
2593 bfd_set_error (bfd_error_wrong_format);
2594 return FALSE;
2595 }
2596
2597 erel = output_reldata->hdr->contents;
2598 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2599 irela = internal_relocs;
2600 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2601 * bed->s->int_rels_per_ext_rel);
2602 while (irela < irelaend)
2603 {
2604 (*swap_out) (output_bfd, irela, erel);
2605 irela += bed->s->int_rels_per_ext_rel;
2606 erel += input_rel_hdr->sh_entsize;
2607 }
2608
2609 /* Bump the counter, so that we know where to add the next set of
2610 relocations. */
2611 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2612
2613 return TRUE;
2614}
2615\f
2616/* Make weak undefined symbols in PIE dynamic. */
2617
2618bfd_boolean
2619_bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2620 struct elf_link_hash_entry *h)
2621{
2622 if (bfd_link_pie (info)
2623 && h->dynindx == -1
2624 && h->root.type == bfd_link_hash_undefweak)
2625 return bfd_elf_link_record_dynamic_symbol (info, h);
2626
2627 return TRUE;
2628}
2629
2630/* Fix up the flags for a symbol. This handles various cases which
2631 can only be fixed after all the input files are seen. This is
2632 currently called by both adjust_dynamic_symbol and
2633 assign_sym_version, which is unnecessary but perhaps more robust in
2634 the face of future changes. */
2635
2636static bfd_boolean
2637_bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2638 struct elf_info_failed *eif)
2639{
2640 const struct elf_backend_data *bed;
2641
2642 /* If this symbol was mentioned in a non-ELF file, try to set
2643 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2644 permit a non-ELF file to correctly refer to a symbol defined in
2645 an ELF dynamic object. */
2646 if (h->non_elf)
2647 {
2648 while (h->root.type == bfd_link_hash_indirect)
2649 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2650
2651 if (h->root.type != bfd_link_hash_defined
2652 && h->root.type != bfd_link_hash_defweak)
2653 {
2654 h->ref_regular = 1;
2655 h->ref_regular_nonweak = 1;
2656 }
2657 else
2658 {
2659 if (h->root.u.def.section->owner != NULL
2660 && (bfd_get_flavour (h->root.u.def.section->owner)
2661 == bfd_target_elf_flavour))
2662 {
2663 h->ref_regular = 1;
2664 h->ref_regular_nonweak = 1;
2665 }
2666 else
2667 h->def_regular = 1;
2668 }
2669
2670 if (h->dynindx == -1
2671 && (h->def_dynamic
2672 || h->ref_dynamic))
2673 {
2674 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2675 {
2676 eif->failed = TRUE;
2677 return FALSE;
2678 }
2679 }
2680 }
2681 else
2682 {
2683 /* Unfortunately, NON_ELF is only correct if the symbol
2684 was first seen in a non-ELF file. Fortunately, if the symbol
2685 was first seen in an ELF file, we're probably OK unless the
2686 symbol was defined in a non-ELF file. Catch that case here.
2687 FIXME: We're still in trouble if the symbol was first seen in
2688 a dynamic object, and then later in a non-ELF regular object. */
2689 if ((h->root.type == bfd_link_hash_defined
2690 || h->root.type == bfd_link_hash_defweak)
2691 && !h->def_regular
2692 && (h->root.u.def.section->owner != NULL
2693 ? (bfd_get_flavour (h->root.u.def.section->owner)
2694 != bfd_target_elf_flavour)
2695 : (bfd_is_abs_section (h->root.u.def.section)
2696 && !h->def_dynamic)))
2697 h->def_regular = 1;
2698 }
2699
2700 /* Backend specific symbol fixup. */
2701 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2702 if (bed->elf_backend_fixup_symbol
2703 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2704 return FALSE;
2705
2706 /* If this is a final link, and the symbol was defined as a common
2707 symbol in a regular object file, and there was no definition in
2708 any dynamic object, then the linker will have allocated space for
2709 the symbol in a common section but the DEF_REGULAR
2710 flag will not have been set. */
2711 if (h->root.type == bfd_link_hash_defined
2712 && !h->def_regular
2713 && h->ref_regular
2714 && !h->def_dynamic
2715 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2716 h->def_regular = 1;
2717
2718 /* If a weak undefined symbol has non-default visibility, we also
2719 hide it from the dynamic linker. */
2720 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2721 && h->root.type == bfd_link_hash_undefweak)
2722 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2723
2724 /* A hidden versioned symbol in executable should be forced local if
2725 it is is locally defined, not referenced by shared library and not
2726 exported. */
2727 else if (bfd_link_executable (eif->info)
2728 && h->versioned == versioned_hidden
2729 && !eif->info->export_dynamic
2730 && !h->dynamic
2731 && !h->ref_dynamic
2732 && h->def_regular)
2733 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2734
2735 /* If -Bsymbolic was used (which means to bind references to global
2736 symbols to the definition within the shared object), and this
2737 symbol was defined in a regular object, then it actually doesn't
2738 need a PLT entry. Likewise, if the symbol has non-default
2739 visibility. If the symbol has hidden or internal visibility, we
2740 will force it local. */
2741 else if (h->needs_plt
2742 && bfd_link_pic (eif->info)
2743 && is_elf_hash_table (eif->info->hash)
2744 && (SYMBOLIC_BIND (eif->info, h)
2745 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2746 && h->def_regular)
2747 {
2748 bfd_boolean force_local;
2749
2750 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2751 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2752 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2753 }
2754
2755 /* If this is a weak defined symbol in a dynamic object, and we know
2756 the real definition in the dynamic object, copy interesting flags
2757 over to the real definition. */
2758 if (h->u.weakdef != NULL)
2759 {
2760 /* If the real definition is defined by a regular object file,
2761 don't do anything special. See the longer description in
2762 _bfd_elf_adjust_dynamic_symbol, below. */
2763 if (h->u.weakdef->def_regular)
2764 h->u.weakdef = NULL;
2765 else
2766 {
2767 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2768
2769 while (h->root.type == bfd_link_hash_indirect)
2770 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2771
2772 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2773 || h->root.type == bfd_link_hash_defweak);
2774 BFD_ASSERT (weakdef->def_dynamic);
2775 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2776 || weakdef->root.type == bfd_link_hash_defweak);
2777 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2778 }
2779 }
2780
2781 return TRUE;
2782}
2783
2784/* Make the backend pick a good value for a dynamic symbol. This is
2785 called via elf_link_hash_traverse, and also calls itself
2786 recursively. */
2787
2788static bfd_boolean
2789_bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2790{
2791 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2792 bfd *dynobj;
2793 const struct elf_backend_data *bed;
2794
2795 if (! is_elf_hash_table (eif->info->hash))
2796 return FALSE;
2797
2798 /* Ignore indirect symbols. These are added by the versioning code. */
2799 if (h->root.type == bfd_link_hash_indirect)
2800 return TRUE;
2801
2802 /* Fix the symbol flags. */
2803 if (! _bfd_elf_fix_symbol_flags (h, eif))
2804 return FALSE;
2805
2806 if (h->root.type == bfd_link_hash_undefweak)
2807 {
2808 if (eif->info->dynamic_undefined_weak == 0)
2809 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2810 else if (eif->info->dynamic_undefined_weak > 0
2811 && h->ref_regular
2812 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2813 && !bfd_hide_sym_by_version (eif->info->version_info,
2814 h->root.root.string))
2815 {
2816 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2817 {
2818 eif->failed = TRUE;
2819 return FALSE;
2820 }
2821 }
2822 }
2823
2824 /* If this symbol does not require a PLT entry, and it is not
2825 defined by a dynamic object, or is not referenced by a regular
2826 object, ignore it. We do have to handle a weak defined symbol,
2827 even if no regular object refers to it, if we decided to add it
2828 to the dynamic symbol table. FIXME: Do we normally need to worry
2829 about symbols which are defined by one dynamic object and
2830 referenced by another one? */
2831 if (!h->needs_plt
2832 && h->type != STT_GNU_IFUNC
2833 && (h->def_regular
2834 || !h->def_dynamic
2835 || (!h->ref_regular
2836 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2837 {
2838 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2839 return TRUE;
2840 }
2841
2842 /* If we've already adjusted this symbol, don't do it again. This
2843 can happen via a recursive call. */
2844 if (h->dynamic_adjusted)
2845 return TRUE;
2846
2847 /* Don't look at this symbol again. Note that we must set this
2848 after checking the above conditions, because we may look at a
2849 symbol once, decide not to do anything, and then get called
2850 recursively later after REF_REGULAR is set below. */
2851 h->dynamic_adjusted = 1;
2852
2853 /* If this is a weak definition, and we know a real definition, and
2854 the real symbol is not itself defined by a regular object file,
2855 then get a good value for the real definition. We handle the
2856 real symbol first, for the convenience of the backend routine.
2857
2858 Note that there is a confusing case here. If the real definition
2859 is defined by a regular object file, we don't get the real symbol
2860 from the dynamic object, but we do get the weak symbol. If the
2861 processor backend uses a COPY reloc, then if some routine in the
2862 dynamic object changes the real symbol, we will not see that
2863 change in the corresponding weak symbol. This is the way other
2864 ELF linkers work as well, and seems to be a result of the shared
2865 library model.
2866
2867 I will clarify this issue. Most SVR4 shared libraries define the
2868 variable _timezone and define timezone as a weak synonym. The
2869 tzset call changes _timezone. If you write
2870 extern int timezone;
2871 int _timezone = 5;
2872 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2873 you might expect that, since timezone is a synonym for _timezone,
2874 the same number will print both times. However, if the processor
2875 backend uses a COPY reloc, then actually timezone will be copied
2876 into your process image, and, since you define _timezone
2877 yourself, _timezone will not. Thus timezone and _timezone will
2878 wind up at different memory locations. The tzset call will set
2879 _timezone, leaving timezone unchanged. */
2880
2881 if (h->u.weakdef != NULL)
2882 {
2883 /* If we get to this point, there is an implicit reference to
2884 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2885 h->u.weakdef->ref_regular = 1;
2886
2887 /* Ensure that the backend adjust_dynamic_symbol function sees
2888 H->U.WEAKDEF before H by recursively calling ourselves. */
2889 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2890 return FALSE;
2891 }
2892
2893 /* If a symbol has no type and no size and does not require a PLT
2894 entry, then we are probably about to do the wrong thing here: we
2895 are probably going to create a COPY reloc for an empty object.
2896 This case can arise when a shared object is built with assembly
2897 code, and the assembly code fails to set the symbol type. */
2898 if (h->size == 0
2899 && h->type == STT_NOTYPE
2900 && !h->needs_plt)
2901 _bfd_error_handler
2902 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2903 h->root.root.string);
2904
2905 dynobj = elf_hash_table (eif->info)->dynobj;
2906 bed = get_elf_backend_data (dynobj);
2907
2908 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2909 {
2910 eif->failed = TRUE;
2911 return FALSE;
2912 }
2913
2914 return TRUE;
2915}
2916
2917/* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2918 DYNBSS. */
2919
2920bfd_boolean
2921_bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2922 struct elf_link_hash_entry *h,
2923 asection *dynbss)
2924{
2925 unsigned int power_of_two;
2926 bfd_vma mask;
2927 asection *sec = h->root.u.def.section;
2928
2929 /* The section aligment of definition is the maximum alignment
2930 requirement of symbols defined in the section. Since we don't
2931 know the symbol alignment requirement, we start with the
2932 maximum alignment and check low bits of the symbol address
2933 for the minimum alignment. */
2934 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2935 mask = ((bfd_vma) 1 << power_of_two) - 1;
2936 while ((h->root.u.def.value & mask) != 0)
2937 {
2938 mask >>= 1;
2939 --power_of_two;
2940 }
2941
2942 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2943 dynbss))
2944 {
2945 /* Adjust the section alignment if needed. */
2946 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2947 power_of_two))
2948 return FALSE;
2949 }
2950
2951 /* We make sure that the symbol will be aligned properly. */
2952 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2953
2954 /* Define the symbol as being at this point in DYNBSS. */
2955 h->root.u.def.section = dynbss;
2956 h->root.u.def.value = dynbss->size;
2957
2958 /* Increment the size of DYNBSS to make room for the symbol. */
2959 dynbss->size += h->size;
2960
2961 /* No error if extern_protected_data is true. */
2962 if (h->protected_def
2963 && (!info->extern_protected_data
2964 || (info->extern_protected_data < 0
2965 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2966 info->callbacks->einfo
2967 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2968 h->root.root.string);
2969
2970 return TRUE;
2971}
2972
2973/* Adjust all external symbols pointing into SEC_MERGE sections
2974 to reflect the object merging within the sections. */
2975
2976static bfd_boolean
2977_bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2978{
2979 asection *sec;
2980
2981 if ((h->root.type == bfd_link_hash_defined
2982 || h->root.type == bfd_link_hash_defweak)
2983 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2984 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2985 {
2986 bfd *output_bfd = (bfd *) data;
2987
2988 h->root.u.def.value =
2989 _bfd_merged_section_offset (output_bfd,
2990 &h->root.u.def.section,
2991 elf_section_data (sec)->sec_info,
2992 h->root.u.def.value);
2993 }
2994
2995 return TRUE;
2996}
2997
2998/* Returns false if the symbol referred to by H should be considered
2999 to resolve local to the current module, and true if it should be
3000 considered to bind dynamically. */
3001
3002bfd_boolean
3003_bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3004 struct bfd_link_info *info,
3005 bfd_boolean not_local_protected)
3006{
3007 bfd_boolean binding_stays_local_p;
3008 const struct elf_backend_data *bed;
3009 struct elf_link_hash_table *hash_table;
3010
3011 if (h == NULL)
3012 return FALSE;
3013
3014 while (h->root.type == bfd_link_hash_indirect
3015 || h->root.type == bfd_link_hash_warning)
3016 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3017
3018 /* If it was forced local, then clearly it's not dynamic. */
3019 if (h->dynindx == -1)
3020 return FALSE;
3021 if (h->forced_local)
3022 return FALSE;
3023
3024 /* Identify the cases where name binding rules say that a
3025 visible symbol resolves locally. */
3026 binding_stays_local_p = (bfd_link_executable (info)
3027 || SYMBOLIC_BIND (info, h));
3028
3029 switch (ELF_ST_VISIBILITY (h->other))
3030 {
3031 case STV_INTERNAL:
3032 case STV_HIDDEN:
3033 return FALSE;
3034
3035 case STV_PROTECTED:
3036 hash_table = elf_hash_table (info);
3037 if (!is_elf_hash_table (hash_table))
3038 return FALSE;
3039
3040 bed = get_elf_backend_data (hash_table->dynobj);
3041
3042 /* Proper resolution for function pointer equality may require
3043 that these symbols perhaps be resolved dynamically, even though
3044 we should be resolving them to the current module. */
3045 if (!not_local_protected || !bed->is_function_type (h->type))
3046 binding_stays_local_p = TRUE;
3047 break;
3048
3049 default:
3050 break;
3051 }
3052
3053 /* If it isn't defined locally, then clearly it's dynamic. */
3054 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3055 return TRUE;
3056
3057 /* Otherwise, the symbol is dynamic if binding rules don't tell
3058 us that it remains local. */
3059 return !binding_stays_local_p;
3060}
3061
3062/* Return true if the symbol referred to by H should be considered
3063 to resolve local to the current module, and false otherwise. Differs
3064 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3065 undefined symbols. The two functions are virtually identical except
3066 for the place where dynindx == -1 is tested. If that test is true,
3067 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3068 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3069 defined symbols.
3070 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3071 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3072 treatment of undefined weak symbols. For those that do not make
3073 undefined weak symbols dynamic, both functions may return false. */
3074
3075bfd_boolean
3076_bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3077 struct bfd_link_info *info,
3078 bfd_boolean local_protected)
3079{
3080 const struct elf_backend_data *bed;
3081 struct elf_link_hash_table *hash_table;
3082
3083 /* If it's a local sym, of course we resolve locally. */
3084 if (h == NULL)
3085 return TRUE;
3086
3087 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3088 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3089 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3090 return TRUE;
3091
3092 /* Forced local symbols resolve locally. */
3093 if (h->forced_local)
3094 return TRUE;
3095
3096 /* Common symbols that become definitions don't get the DEF_REGULAR
3097 flag set, so test it first, and don't bail out. */
3098 if (ELF_COMMON_DEF_P (h))
3099 /* Do nothing. */;
3100 /* If we don't have a definition in a regular file, then we can't
3101 resolve locally. The sym is either undefined or dynamic. */
3102 else if (!h->def_regular)
3103 return FALSE;
3104
3105 /* Non-dynamic symbols resolve locally. */
3106 if (h->dynindx == -1)
3107 return TRUE;
3108
3109 /* At this point, we know the symbol is defined and dynamic. In an
3110 executable it must resolve locally, likewise when building symbolic
3111 shared libraries. */
3112 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3113 return TRUE;
3114
3115 /* Now deal with defined dynamic symbols in shared libraries. Ones
3116 with default visibility might not resolve locally. */
3117 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3118 return FALSE;
3119
3120 hash_table = elf_hash_table (info);
3121 if (!is_elf_hash_table (hash_table))
3122 return TRUE;
3123
3124 bed = get_elf_backend_data (hash_table->dynobj);
3125
3126 /* If extern_protected_data is false, STV_PROTECTED non-function
3127 symbols are local. */
3128 if ((!info->extern_protected_data
3129 || (info->extern_protected_data < 0
3130 && !bed->extern_protected_data))
3131 && !bed->is_function_type (h->type))
3132 return TRUE;
3133
3134 /* Function pointer equality tests may require that STV_PROTECTED
3135 symbols be treated as dynamic symbols. If the address of a
3136 function not defined in an executable is set to that function's
3137 plt entry in the executable, then the address of the function in
3138 a shared library must also be the plt entry in the executable. */
3139 return local_protected;
3140}
3141
3142/* Caches some TLS segment info, and ensures that the TLS segment vma is
3143 aligned. Returns the first TLS output section. */
3144
3145struct bfd_section *
3146_bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3147{
3148 struct bfd_section *sec, *tls;
3149 unsigned int align = 0;
3150
3151 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3152 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3153 break;
3154 tls = sec;
3155
3156 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3157 if (sec->alignment_power > align)
3158 align = sec->alignment_power;
3159
3160 elf_hash_table (info)->tls_sec = tls;
3161
3162 /* Ensure the alignment of the first section is the largest alignment,
3163 so that the tls segment starts aligned. */
3164 if (tls != NULL)
3165 tls->alignment_power = align;
3166
3167 return tls;
3168}
3169
3170/* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3171static bfd_boolean
3172is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3173 Elf_Internal_Sym *sym)
3174{
3175 const struct elf_backend_data *bed;
3176
3177 /* Local symbols do not count, but target specific ones might. */
3178 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3179 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3180 return FALSE;
3181
3182 bed = get_elf_backend_data (abfd);
3183 /* Function symbols do not count. */
3184 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3185 return FALSE;
3186
3187 /* If the section is undefined, then so is the symbol. */
3188 if (sym->st_shndx == SHN_UNDEF)
3189 return FALSE;
3190
3191 /* If the symbol is defined in the common section, then
3192 it is a common definition and so does not count. */
3193 if (bed->common_definition (sym))
3194 return FALSE;
3195
3196 /* If the symbol is in a target specific section then we
3197 must rely upon the backend to tell us what it is. */
3198 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3199 /* FIXME - this function is not coded yet:
3200
3201 return _bfd_is_global_symbol_definition (abfd, sym);
3202
3203 Instead for now assume that the definition is not global,
3204 Even if this is wrong, at least the linker will behave
3205 in the same way that it used to do. */
3206 return FALSE;
3207
3208 return TRUE;
3209}
3210
3211/* Search the symbol table of the archive element of the archive ABFD
3212 whose archive map contains a mention of SYMDEF, and determine if
3213 the symbol is defined in this element. */
3214static bfd_boolean
3215elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3216{
3217 Elf_Internal_Shdr * hdr;
3218 size_t symcount;
3219 size_t extsymcount;
3220 size_t extsymoff;
3221 Elf_Internal_Sym *isymbuf;
3222 Elf_Internal_Sym *isym;
3223 Elf_Internal_Sym *isymend;
3224 bfd_boolean result;
3225
3226 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3227 if (abfd == NULL)
3228 return FALSE;
3229
3230 if (! bfd_check_format (abfd, bfd_object))
3231 return FALSE;
3232
3233 /* Select the appropriate symbol table. If we don't know if the
3234 object file is an IR object, give linker LTO plugin a chance to
3235 get the correct symbol table. */
3236 if (abfd->plugin_format == bfd_plugin_yes
3237#if BFD_SUPPORTS_PLUGINS
3238 || (abfd->plugin_format == bfd_plugin_unknown
3239 && bfd_link_plugin_object_p (abfd))
3240#endif
3241 )
3242 {
3243 /* Use the IR symbol table if the object has been claimed by
3244 plugin. */
3245 abfd = abfd->plugin_dummy_bfd;
3246 hdr = &elf_tdata (abfd)->symtab_hdr;
3247 }
3248 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3249 hdr = &elf_tdata (abfd)->symtab_hdr;
3250 else
3251 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3252
3253 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3254
3255 /* The sh_info field of the symtab header tells us where the
3256 external symbols start. We don't care about the local symbols. */
3257 if (elf_bad_symtab (abfd))
3258 {
3259 extsymcount = symcount;
3260 extsymoff = 0;
3261 }
3262 else
3263 {
3264 extsymcount = symcount - hdr->sh_info;
3265 extsymoff = hdr->sh_info;
3266 }
3267
3268 if (extsymcount == 0)
3269 return FALSE;
3270
3271 /* Read in the symbol table. */
3272 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3273 NULL, NULL, NULL);
3274 if (isymbuf == NULL)
3275 return FALSE;
3276
3277 /* Scan the symbol table looking for SYMDEF. */
3278 result = FALSE;
3279 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3280 {
3281 const char *name;
3282
3283 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3284 isym->st_name);
3285 if (name == NULL)
3286 break;
3287
3288 if (strcmp (name, symdef->name) == 0)
3289 {
3290 result = is_global_data_symbol_definition (abfd, isym);
3291 break;
3292 }
3293 }
3294
3295 free (isymbuf);
3296
3297 return result;
3298}
3299\f
3300/* Add an entry to the .dynamic table. */
3301
3302bfd_boolean
3303_bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3304 bfd_vma tag,
3305 bfd_vma val)
3306{
3307 struct elf_link_hash_table *hash_table;
3308 const struct elf_backend_data *bed;
3309 asection *s;
3310 bfd_size_type newsize;
3311 bfd_byte *newcontents;
3312 Elf_Internal_Dyn dyn;
3313
3314 hash_table = elf_hash_table (info);
3315 if (! is_elf_hash_table (hash_table))
3316 return FALSE;
3317
3318 bed = get_elf_backend_data (hash_table->dynobj);
3319 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3320 BFD_ASSERT (s != NULL);
3321
3322 newsize = s->size + bed->s->sizeof_dyn;
3323 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3324 if (newcontents == NULL)
3325 return FALSE;
3326
3327 dyn.d_tag = tag;
3328 dyn.d_un.d_val = val;
3329 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3330
3331 s->size = newsize;
3332 s->contents = newcontents;
3333
3334 return TRUE;
3335}
3336
3337/* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3338 otherwise just check whether one already exists. Returns -1 on error,
3339 1 if a DT_NEEDED tag already exists, and 0 on success. */
3340
3341static int
3342elf_add_dt_needed_tag (bfd *abfd,
3343 struct bfd_link_info *info,
3344 const char *soname,
3345 bfd_boolean do_it)
3346{
3347 struct elf_link_hash_table *hash_table;
3348 size_t strindex;
3349
3350 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3351 return -1;
3352
3353 hash_table = elf_hash_table (info);
3354 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3355 if (strindex == (size_t) -1)
3356 return -1;
3357
3358 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3359 {
3360 asection *sdyn;
3361 const struct elf_backend_data *bed;
3362 bfd_byte *extdyn;
3363
3364 bed = get_elf_backend_data (hash_table->dynobj);
3365 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3366 if (sdyn != NULL)
3367 for (extdyn = sdyn->contents;
3368 extdyn < sdyn->contents + sdyn->size;
3369 extdyn += bed->s->sizeof_dyn)
3370 {
3371 Elf_Internal_Dyn dyn;
3372
3373 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3374 if (dyn.d_tag == DT_NEEDED
3375 && dyn.d_un.d_val == strindex)
3376 {
3377 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3378 return 1;
3379 }
3380 }
3381 }
3382
3383 if (do_it)
3384 {
3385 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3386 return -1;
3387
3388 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3389 return -1;
3390 }
3391 else
3392 /* We were just checking for existence of the tag. */
3393 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3394
3395 return 0;
3396}
3397
3398/* Return true if SONAME is on the needed list between NEEDED and STOP
3399 (or the end of list if STOP is NULL), and needed by a library that
3400 will be loaded. */
3401
3402static bfd_boolean
3403on_needed_list (const char *soname,
3404 struct bfd_link_needed_list *needed,
3405 struct bfd_link_needed_list *stop)
3406{
3407 struct bfd_link_needed_list *look;
3408 for (look = needed; look != stop; look = look->next)
3409 if (strcmp (soname, look->name) == 0
3410 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3411 /* If needed by a library that itself is not directly
3412 needed, recursively check whether that library is
3413 indirectly needed. Since we add DT_NEEDED entries to
3414 the end of the list, library dependencies appear after
3415 the library. Therefore search prior to the current
3416 LOOK, preventing possible infinite recursion. */
3417 || on_needed_list (elf_dt_name (look->by), needed, look)))
3418 return TRUE;
3419
3420 return FALSE;
3421}
3422
3423/* Sort symbol by value, section, and size. */
3424static int
3425elf_sort_symbol (const void *arg1, const void *arg2)
3426{
3427 const struct elf_link_hash_entry *h1;
3428 const struct elf_link_hash_entry *h2;
3429 bfd_signed_vma vdiff;
3430
3431 h1 = *(const struct elf_link_hash_entry **) arg1;
3432 h2 = *(const struct elf_link_hash_entry **) arg2;
3433 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3434 if (vdiff != 0)
3435 return vdiff > 0 ? 1 : -1;
3436 else
3437 {
3438 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3439 if (sdiff != 0)
3440 return sdiff > 0 ? 1 : -1;
3441 }
3442 vdiff = h1->size - h2->size;
3443 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3444}
3445
3446/* This function is used to adjust offsets into .dynstr for
3447 dynamic symbols. This is called via elf_link_hash_traverse. */
3448
3449static bfd_boolean
3450elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3451{
3452 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3453
3454 if (h->dynindx != -1)
3455 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3456 return TRUE;
3457}
3458
3459/* Assign string offsets in .dynstr, update all structures referencing
3460 them. */
3461
3462static bfd_boolean
3463elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3464{
3465 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3466 struct elf_link_local_dynamic_entry *entry;
3467 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3468 bfd *dynobj = hash_table->dynobj;
3469 asection *sdyn;
3470 bfd_size_type size;
3471 const struct elf_backend_data *bed;
3472 bfd_byte *extdyn;
3473
3474 _bfd_elf_strtab_finalize (dynstr);
3475 size = _bfd_elf_strtab_size (dynstr);
3476
3477 bed = get_elf_backend_data (dynobj);
3478 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3479 BFD_ASSERT (sdyn != NULL);
3480
3481 /* Update all .dynamic entries referencing .dynstr strings. */
3482 for (extdyn = sdyn->contents;
3483 extdyn < sdyn->contents + sdyn->size;
3484 extdyn += bed->s->sizeof_dyn)
3485 {
3486 Elf_Internal_Dyn dyn;
3487
3488 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3489 switch (dyn.d_tag)
3490 {
3491 case DT_STRSZ:
3492 dyn.d_un.d_val = size;
3493 break;
3494 case DT_NEEDED:
3495 case DT_SONAME:
3496 case DT_RPATH:
3497 case DT_RUNPATH:
3498 case DT_FILTER:
3499 case DT_AUXILIARY:
3500 case DT_AUDIT:
3501 case DT_DEPAUDIT:
3502 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3503 break;
3504 default:
3505 continue;
3506 }
3507 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3508 }
3509
3510 /* Now update local dynamic symbols. */
3511 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3512 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3513 entry->isym.st_name);
3514
3515 /* And the rest of dynamic symbols. */
3516 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3517
3518 /* Adjust version definitions. */
3519 if (elf_tdata (output_bfd)->cverdefs)
3520 {
3521 asection *s;
3522 bfd_byte *p;
3523 size_t i;
3524 Elf_Internal_Verdef def;
3525 Elf_Internal_Verdaux defaux;
3526
3527 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3528 p = s->contents;
3529 do
3530 {
3531 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3532 &def);
3533 p += sizeof (Elf_External_Verdef);
3534 if (def.vd_aux != sizeof (Elf_External_Verdef))
3535 continue;
3536 for (i = 0; i < def.vd_cnt; ++i)
3537 {
3538 _bfd_elf_swap_verdaux_in (output_bfd,
3539 (Elf_External_Verdaux *) p, &defaux);
3540 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3541 defaux.vda_name);
3542 _bfd_elf_swap_verdaux_out (output_bfd,
3543 &defaux, (Elf_External_Verdaux *) p);
3544 p += sizeof (Elf_External_Verdaux);
3545 }
3546 }
3547 while (def.vd_next);
3548 }
3549
3550 /* Adjust version references. */
3551 if (elf_tdata (output_bfd)->verref)
3552 {
3553 asection *s;
3554 bfd_byte *p;
3555 size_t i;
3556 Elf_Internal_Verneed need;
3557 Elf_Internal_Vernaux needaux;
3558
3559 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3560 p = s->contents;
3561 do
3562 {
3563 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3564 &need);
3565 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3566 _bfd_elf_swap_verneed_out (output_bfd, &need,
3567 (Elf_External_Verneed *) p);
3568 p += sizeof (Elf_External_Verneed);
3569 for (i = 0; i < need.vn_cnt; ++i)
3570 {
3571 _bfd_elf_swap_vernaux_in (output_bfd,
3572 (Elf_External_Vernaux *) p, &needaux);
3573 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3574 needaux.vna_name);
3575 _bfd_elf_swap_vernaux_out (output_bfd,
3576 &needaux,
3577 (Elf_External_Vernaux *) p);
3578 p += sizeof (Elf_External_Vernaux);
3579 }
3580 }
3581 while (need.vn_next);
3582 }
3583
3584 return TRUE;
3585}
3586\f
3587/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3588 The default is to only match when the INPUT and OUTPUT are exactly
3589 the same target. */
3590
3591bfd_boolean
3592_bfd_elf_default_relocs_compatible (const bfd_target *input,
3593 const bfd_target *output)
3594{
3595 return input == output;
3596}
3597
3598/* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3599 This version is used when different targets for the same architecture
3600 are virtually identical. */
3601
3602bfd_boolean
3603_bfd_elf_relocs_compatible (const bfd_target *input,
3604 const bfd_target *output)
3605{
3606 const struct elf_backend_data *obed, *ibed;
3607
3608 if (input == output)
3609 return TRUE;
3610
3611 ibed = xvec_get_elf_backend_data (input);
3612 obed = xvec_get_elf_backend_data (output);
3613
3614 if (ibed->arch != obed->arch)
3615 return FALSE;
3616
3617 /* If both backends are using this function, deem them compatible. */
3618 return ibed->relocs_compatible == obed->relocs_compatible;
3619}
3620
3621/* Make a special call to the linker "notice" function to tell it that
3622 we are about to handle an as-needed lib, or have finished
3623 processing the lib. */
3624
3625bfd_boolean
3626_bfd_elf_notice_as_needed (bfd *ibfd,
3627 struct bfd_link_info *info,
3628 enum notice_asneeded_action act)
3629{
3630 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3631}
3632
3633/* Check relocations an ELF object file. */
3634
3635bfd_boolean
3636_bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3637{
3638 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3639 struct elf_link_hash_table *htab = elf_hash_table (info);
3640
3641 /* If this object is the same format as the output object, and it is
3642 not a shared library, then let the backend look through the
3643 relocs.
3644
3645 This is required to build global offset table entries and to
3646 arrange for dynamic relocs. It is not required for the
3647 particular common case of linking non PIC code, even when linking
3648 against shared libraries, but unfortunately there is no way of
3649 knowing whether an object file has been compiled PIC or not.
3650 Looking through the relocs is not particularly time consuming.
3651 The problem is that we must either (1) keep the relocs in memory,
3652 which causes the linker to require additional runtime memory or
3653 (2) read the relocs twice from the input file, which wastes time.
3654 This would be a good case for using mmap.
3655
3656 I have no idea how to handle linking PIC code into a file of a
3657 different format. It probably can't be done. */
3658 if ((abfd->flags & DYNAMIC) == 0
3659 && is_elf_hash_table (htab)
3660 && bed->check_relocs != NULL
3661 && elf_object_id (abfd) == elf_hash_table_id (htab)
3662 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3663 {
3664 asection *o;
3665
3666 for (o = abfd->sections; o != NULL; o = o->next)
3667 {
3668 Elf_Internal_Rela *internal_relocs;
3669 bfd_boolean ok;
3670
3671 /* Don't check relocations in excluded sections. */
3672 if ((o->flags & SEC_RELOC) == 0
3673 || (o->flags & SEC_EXCLUDE) != 0
3674 || o->reloc_count == 0
3675 || ((info->strip == strip_all || info->strip == strip_debugger)
3676 && (o->flags & SEC_DEBUGGING) != 0)
3677 || bfd_is_abs_section (o->output_section))
3678 continue;
3679
3680 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3681 info->keep_memory);
3682 if (internal_relocs == NULL)
3683 return FALSE;
3684
3685 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3686
3687 if (elf_section_data (o)->relocs != internal_relocs)
3688 free (internal_relocs);
3689
3690 if (! ok)
3691 return FALSE;
3692 }
3693 }
3694
3695 return TRUE;
3696}
3697
3698/* Add symbols from an ELF object file to the linker hash table. */
3699
3700static bfd_boolean
3701elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3702{
3703 Elf_Internal_Ehdr *ehdr;
3704 Elf_Internal_Shdr *hdr;
3705 size_t symcount;
3706 size_t extsymcount;
3707 size_t extsymoff;
3708 struct elf_link_hash_entry **sym_hash;
3709 bfd_boolean dynamic;
3710 Elf_External_Versym *extversym = NULL;
3711 Elf_External_Versym *ever;
3712 struct elf_link_hash_entry *weaks;
3713 struct elf_link_hash_entry **nondeflt_vers = NULL;
3714 size_t nondeflt_vers_cnt = 0;
3715 Elf_Internal_Sym *isymbuf = NULL;
3716 Elf_Internal_Sym *isym;
3717 Elf_Internal_Sym *isymend;
3718 const struct elf_backend_data *bed;
3719 bfd_boolean add_needed;
3720 struct elf_link_hash_table *htab;
3721 bfd_size_type amt;
3722 void *alloc_mark = NULL;
3723 struct bfd_hash_entry **old_table = NULL;
3724 unsigned int old_size = 0;
3725 unsigned int old_count = 0;
3726 void *old_tab = NULL;
3727 void *old_ent;
3728 struct bfd_link_hash_entry *old_undefs = NULL;
3729 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3730 void *old_strtab = NULL;
3731 size_t tabsize = 0;
3732 asection *s;
3733 bfd_boolean just_syms;
3734
3735 htab = elf_hash_table (info);
3736 bed = get_elf_backend_data (abfd);
3737
3738 if ((abfd->flags & DYNAMIC) == 0)
3739 dynamic = FALSE;
3740 else
3741 {
3742 dynamic = TRUE;
3743
3744 /* You can't use -r against a dynamic object. Also, there's no
3745 hope of using a dynamic object which does not exactly match
3746 the format of the output file. */
3747 if (bfd_link_relocatable (info)
3748 || !is_elf_hash_table (htab)
3749 || info->output_bfd->xvec != abfd->xvec)
3750 {
3751 if (bfd_link_relocatable (info))
3752 bfd_set_error (bfd_error_invalid_operation);
3753 else
3754 bfd_set_error (bfd_error_wrong_format);
3755 goto error_return;
3756 }
3757 }
3758
3759 ehdr = elf_elfheader (abfd);
3760 if (info->warn_alternate_em
3761 && bed->elf_machine_code != ehdr->e_machine
3762 && ((bed->elf_machine_alt1 != 0
3763 && ehdr->e_machine == bed->elf_machine_alt1)
3764 || (bed->elf_machine_alt2 != 0
3765 && ehdr->e_machine == bed->elf_machine_alt2)))
3766 info->callbacks->einfo
3767 /* xgettext:c-format */
3768 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3769 ehdr->e_machine, abfd, bed->elf_machine_code);
3770
3771 /* As a GNU extension, any input sections which are named
3772 .gnu.warning.SYMBOL are treated as warning symbols for the given
3773 symbol. This differs from .gnu.warning sections, which generate
3774 warnings when they are included in an output file. */
3775 /* PR 12761: Also generate this warning when building shared libraries. */
3776 for (s = abfd->sections; s != NULL; s = s->next)
3777 {
3778 const char *name;
3779
3780 name = bfd_get_section_name (abfd, s);
3781 if (CONST_STRNEQ (name, ".gnu.warning."))
3782 {
3783 char *msg;
3784 bfd_size_type sz;
3785
3786 name += sizeof ".gnu.warning." - 1;
3787
3788 /* If this is a shared object, then look up the symbol
3789 in the hash table. If it is there, and it is already
3790 been defined, then we will not be using the entry
3791 from this shared object, so we don't need to warn.
3792 FIXME: If we see the definition in a regular object
3793 later on, we will warn, but we shouldn't. The only
3794 fix is to keep track of what warnings we are supposed
3795 to emit, and then handle them all at the end of the
3796 link. */
3797 if (dynamic)
3798 {
3799 struct elf_link_hash_entry *h;
3800
3801 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3802
3803 /* FIXME: What about bfd_link_hash_common? */
3804 if (h != NULL
3805 && (h->root.type == bfd_link_hash_defined
3806 || h->root.type == bfd_link_hash_defweak))
3807 continue;
3808 }
3809
3810 sz = s->size;
3811 msg = (char *) bfd_alloc (abfd, sz + 1);
3812 if (msg == NULL)
3813 goto error_return;
3814
3815 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3816 goto error_return;
3817
3818 msg[sz] = '\0';
3819
3820 if (! (_bfd_generic_link_add_one_symbol
3821 (info, abfd, name, BSF_WARNING, s, 0, msg,
3822 FALSE, bed->collect, NULL)))
3823 goto error_return;
3824
3825 if (bfd_link_executable (info))
3826 {
3827 /* Clobber the section size so that the warning does
3828 not get copied into the output file. */
3829 s->size = 0;
3830
3831 /* Also set SEC_EXCLUDE, so that symbols defined in
3832 the warning section don't get copied to the output. */
3833 s->flags |= SEC_EXCLUDE;
3834 }
3835 }
3836 }
3837
3838 just_syms = ((s = abfd->sections) != NULL
3839 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3840
3841 add_needed = TRUE;
3842 if (! dynamic)
3843 {
3844 /* If we are creating a shared library, create all the dynamic
3845 sections immediately. We need to attach them to something,
3846 so we attach them to this BFD, provided it is the right
3847 format and is not from ld --just-symbols. Always create the
3848 dynamic sections for -E/--dynamic-list. FIXME: If there
3849 are no input BFD's of the same format as the output, we can't
3850 make a shared library. */
3851 if (!just_syms
3852 && (bfd_link_pic (info)
3853 || (!bfd_link_relocatable (info)
3854 && info->nointerp
3855 && (info->export_dynamic || info->dynamic)))
3856 && is_elf_hash_table (htab)
3857 && info->output_bfd->xvec == abfd->xvec
3858 && !htab->dynamic_sections_created)
3859 {
3860 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3861 goto error_return;
3862 }
3863 }
3864 else if (!is_elf_hash_table (htab))
3865 goto error_return;
3866 else
3867 {
3868 const char *soname = NULL;
3869 char *audit = NULL;
3870 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3871 const Elf_Internal_Phdr *phdr;
3872 int ret;
3873
3874 /* ld --just-symbols and dynamic objects don't mix very well.
3875 ld shouldn't allow it. */
3876 if (just_syms)
3877 abort ();
3878
3879 /* If this dynamic lib was specified on the command line with
3880 --as-needed in effect, then we don't want to add a DT_NEEDED
3881 tag unless the lib is actually used. Similary for libs brought
3882 in by another lib's DT_NEEDED. When --no-add-needed is used
3883 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3884 any dynamic library in DT_NEEDED tags in the dynamic lib at
3885 all. */
3886 add_needed = (elf_dyn_lib_class (abfd)
3887 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3888 | DYN_NO_NEEDED)) == 0;
3889
3890 s = bfd_get_section_by_name (abfd, ".dynamic");
3891 if (s != NULL)
3892 {
3893 bfd_byte *dynbuf;
3894 bfd_byte *extdyn;
3895 unsigned int elfsec;
3896 unsigned long shlink;
3897
3898 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3899 {
3900error_free_dyn:
3901 free (dynbuf);
3902 goto error_return;
3903 }
3904
3905 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3906 if (elfsec == SHN_BAD)
3907 goto error_free_dyn;
3908 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3909
3910 for (extdyn = dynbuf;
3911 extdyn < dynbuf + s->size;
3912 extdyn += bed->s->sizeof_dyn)
3913 {
3914 Elf_Internal_Dyn dyn;
3915
3916 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3917 if (dyn.d_tag == DT_SONAME)
3918 {
3919 unsigned int tagv = dyn.d_un.d_val;
3920 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3921 if (soname == NULL)
3922 goto error_free_dyn;
3923 }
3924 if (dyn.d_tag == DT_NEEDED)
3925 {
3926 struct bfd_link_needed_list *n, **pn;
3927 char *fnm, *anm;
3928 unsigned int tagv = dyn.d_un.d_val;
3929
3930 amt = sizeof (struct bfd_link_needed_list);
3931 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3932 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3933 if (n == NULL || fnm == NULL)
3934 goto error_free_dyn;
3935 amt = strlen (fnm) + 1;
3936 anm = (char *) bfd_alloc (abfd, amt);
3937 if (anm == NULL)
3938 goto error_free_dyn;
3939 memcpy (anm, fnm, amt);
3940 n->name = anm;
3941 n->by = abfd;
3942 n->next = NULL;
3943 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3944 ;
3945 *pn = n;
3946 }
3947 if (dyn.d_tag == DT_RUNPATH)
3948 {
3949 struct bfd_link_needed_list *n, **pn;
3950 char *fnm, *anm;
3951 unsigned int tagv = dyn.d_un.d_val;
3952
3953 amt = sizeof (struct bfd_link_needed_list);
3954 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3955 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3956 if (n == NULL || fnm == NULL)
3957 goto error_free_dyn;
3958 amt = strlen (fnm) + 1;
3959 anm = (char *) bfd_alloc (abfd, amt);
3960 if (anm == NULL)
3961 goto error_free_dyn;
3962 memcpy (anm, fnm, amt);
3963 n->name = anm;
3964 n->by = abfd;
3965 n->next = NULL;
3966 for (pn = & runpath;
3967 *pn != NULL;
3968 pn = &(*pn)->next)
3969 ;
3970 *pn = n;
3971 }
3972 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3973 if (!runpath && dyn.d_tag == DT_RPATH)
3974 {
3975 struct bfd_link_needed_list *n, **pn;
3976 char *fnm, *anm;
3977 unsigned int tagv = dyn.d_un.d_val;
3978
3979 amt = sizeof (struct bfd_link_needed_list);
3980 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3981 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3982 if (n == NULL || fnm == NULL)
3983 goto error_free_dyn;
3984 amt = strlen (fnm) + 1;
3985 anm = (char *) bfd_alloc (abfd, amt);
3986 if (anm == NULL)
3987 goto error_free_dyn;
3988 memcpy (anm, fnm, amt);
3989 n->name = anm;
3990 n->by = abfd;
3991 n->next = NULL;
3992 for (pn = & rpath;
3993 *pn != NULL;
3994 pn = &(*pn)->next)
3995 ;
3996 *pn = n;
3997 }
3998 if (dyn.d_tag == DT_AUDIT)
3999 {
4000 unsigned int tagv = dyn.d_un.d_val;
4001 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4002 }
4003 }
4004
4005 free (dynbuf);
4006 }
4007
4008 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4009 frees all more recently bfd_alloc'd blocks as well. */
4010 if (runpath)
4011 rpath = runpath;
4012
4013 if (rpath)
4014 {
4015 struct bfd_link_needed_list **pn;
4016 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4017 ;
4018 *pn = rpath;
4019 }
4020
4021 /* If we have a PT_GNU_RELRO program header, mark as read-only
4022 all sections contained fully therein. This makes relro
4023 shared library sections appear as they will at run-time. */
4024 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4025 while (--phdr >= elf_tdata (abfd)->phdr)
4026 if (phdr->p_type == PT_GNU_RELRO)
4027 {
4028 for (s = abfd->sections; s != NULL; s = s->next)
4029 if ((s->flags & SEC_ALLOC) != 0
4030 && s->vma >= phdr->p_vaddr
4031 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4032 s->flags |= SEC_READONLY;
4033 break;
4034 }
4035
4036 /* We do not want to include any of the sections in a dynamic
4037 object in the output file. We hack by simply clobbering the
4038 list of sections in the BFD. This could be handled more
4039 cleanly by, say, a new section flag; the existing
4040 SEC_NEVER_LOAD flag is not the one we want, because that one
4041 still implies that the section takes up space in the output
4042 file. */
4043 bfd_section_list_clear (abfd);
4044
4045 /* Find the name to use in a DT_NEEDED entry that refers to this
4046 object. If the object has a DT_SONAME entry, we use it.
4047 Otherwise, if the generic linker stuck something in
4048 elf_dt_name, we use that. Otherwise, we just use the file
4049 name. */
4050 if (soname == NULL || *soname == '\0')
4051 {
4052 soname = elf_dt_name (abfd);
4053 if (soname == NULL || *soname == '\0')
4054 soname = bfd_get_filename (abfd);
4055 }
4056
4057 /* Save the SONAME because sometimes the linker emulation code
4058 will need to know it. */
4059 elf_dt_name (abfd) = soname;
4060
4061 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4062 if (ret < 0)
4063 goto error_return;
4064
4065 /* If we have already included this dynamic object in the
4066 link, just ignore it. There is no reason to include a
4067 particular dynamic object more than once. */
4068 if (ret > 0)
4069 return TRUE;
4070
4071 /* Save the DT_AUDIT entry for the linker emulation code. */
4072 elf_dt_audit (abfd) = audit;
4073 }
4074
4075 /* If this is a dynamic object, we always link against the .dynsym
4076 symbol table, not the .symtab symbol table. The dynamic linker
4077 will only see the .dynsym symbol table, so there is no reason to
4078 look at .symtab for a dynamic object. */
4079
4080 if (! dynamic || elf_dynsymtab (abfd) == 0)
4081 hdr = &elf_tdata (abfd)->symtab_hdr;
4082 else
4083 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4084
4085 symcount = hdr->sh_size / bed->s->sizeof_sym;
4086
4087 /* The sh_info field of the symtab header tells us where the
4088 external symbols start. We don't care about the local symbols at
4089 this point. */
4090 if (elf_bad_symtab (abfd))
4091 {
4092 extsymcount = symcount;
4093 extsymoff = 0;
4094 }
4095 else
4096 {
4097 extsymcount = symcount - hdr->sh_info;
4098 extsymoff = hdr->sh_info;
4099 }
4100
4101 sym_hash = elf_sym_hashes (abfd);
4102 if (extsymcount != 0)
4103 {
4104 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4105 NULL, NULL, NULL);
4106 if (isymbuf == NULL)
4107 goto error_return;
4108
4109 if (sym_hash == NULL)
4110 {
4111 /* We store a pointer to the hash table entry for each
4112 external symbol. */
4113 amt = extsymcount;
4114 amt *= sizeof (struct elf_link_hash_entry *);
4115 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4116 if (sym_hash == NULL)
4117 goto error_free_sym;
4118 elf_sym_hashes (abfd) = sym_hash;
4119 }
4120 }
4121
4122 if (dynamic)
4123 {
4124 /* Read in any version definitions. */
4125 if (!_bfd_elf_slurp_version_tables (abfd,
4126 info->default_imported_symver))
4127 goto error_free_sym;
4128
4129 /* Read in the symbol versions, but don't bother to convert them
4130 to internal format. */
4131 if (elf_dynversym (abfd) != 0)
4132 {
4133 Elf_Internal_Shdr *versymhdr;
4134
4135 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4136 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4137 if (extversym == NULL)
4138 goto error_free_sym;
4139 amt = versymhdr->sh_size;
4140 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4141 || bfd_bread (extversym, amt, abfd) != amt)
4142 goto error_free_vers;
4143 }
4144 }
4145
4146 /* If we are loading an as-needed shared lib, save the symbol table
4147 state before we start adding symbols. If the lib turns out
4148 to be unneeded, restore the state. */
4149 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4150 {
4151 unsigned int i;
4152 size_t entsize;
4153
4154 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4155 {
4156 struct bfd_hash_entry *p;
4157 struct elf_link_hash_entry *h;
4158
4159 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4160 {
4161 h = (struct elf_link_hash_entry *) p;
4162 entsize += htab->root.table.entsize;
4163 if (h->root.type == bfd_link_hash_warning)
4164 entsize += htab->root.table.entsize;
4165 }
4166 }
4167
4168 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4169 old_tab = bfd_malloc (tabsize + entsize);
4170 if (old_tab == NULL)
4171 goto error_free_vers;
4172
4173 /* Remember the current objalloc pointer, so that all mem for
4174 symbols added can later be reclaimed. */
4175 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4176 if (alloc_mark == NULL)
4177 goto error_free_vers;
4178
4179 /* Make a special call to the linker "notice" function to
4180 tell it that we are about to handle an as-needed lib. */
4181 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4182 goto error_free_vers;
4183
4184 /* Clone the symbol table. Remember some pointers into the
4185 symbol table, and dynamic symbol count. */
4186 old_ent = (char *) old_tab + tabsize;
4187 memcpy (old_tab, htab->root.table.table, tabsize);
4188 old_undefs = htab->root.undefs;
4189 old_undefs_tail = htab->root.undefs_tail;
4190 old_table = htab->root.table.table;
4191 old_size = htab->root.table.size;
4192 old_count = htab->root.table.count;
4193 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4194 if (old_strtab == NULL)
4195 goto error_free_vers;
4196
4197 for (i = 0; i < htab->root.table.size; i++)
4198 {
4199 struct bfd_hash_entry *p;
4200 struct elf_link_hash_entry *h;
4201
4202 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4203 {
4204 memcpy (old_ent, p, htab->root.table.entsize);
4205 old_ent = (char *) old_ent + htab->root.table.entsize;
4206 h = (struct elf_link_hash_entry *) p;
4207 if (h->root.type == bfd_link_hash_warning)
4208 {
4209 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4210 old_ent = (char *) old_ent + htab->root.table.entsize;
4211 }
4212 }
4213 }
4214 }
4215
4216 weaks = NULL;
4217 ever = extversym != NULL ? extversym + extsymoff : NULL;
4218 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4219 isym < isymend;
4220 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4221 {
4222 int bind;
4223 bfd_vma value;
4224 asection *sec, *new_sec;
4225 flagword flags;
4226 const char *name;
4227 struct elf_link_hash_entry *h;
4228 struct elf_link_hash_entry *hi;
4229 bfd_boolean definition;
4230 bfd_boolean size_change_ok;
4231 bfd_boolean type_change_ok;
4232 bfd_boolean new_weakdef;
4233 bfd_boolean new_weak;
4234 bfd_boolean old_weak;
4235 bfd_boolean override;
4236 bfd_boolean common;
4237 bfd_boolean discarded;
4238 unsigned int old_alignment;
4239 bfd *old_bfd;
4240 bfd_boolean matched;
4241
4242 override = FALSE;
4243
4244 flags = BSF_NO_FLAGS;
4245 sec = NULL;
4246 value = isym->st_value;
4247 common = bed->common_definition (isym);
4248 discarded = FALSE;
4249
4250 bind = ELF_ST_BIND (isym->st_info);
4251 switch (bind)
4252 {
4253 case STB_LOCAL:
4254 /* This should be impossible, since ELF requires that all
4255 global symbols follow all local symbols, and that sh_info
4256 point to the first global symbol. Unfortunately, Irix 5
4257 screws this up. */
4258 continue;
4259
4260 case STB_GLOBAL:
4261 if (isym->st_shndx != SHN_UNDEF && !common)
4262 flags = BSF_GLOBAL;
4263 break;
4264
4265 case STB_WEAK:
4266 flags = BSF_WEAK;
4267 break;
4268
4269 case STB_GNU_UNIQUE:
4270 flags = BSF_GNU_UNIQUE;
4271 break;
4272
4273 default:
4274 /* Leave it up to the processor backend. */
4275 break;
4276 }
4277
4278 if (isym->st_shndx == SHN_UNDEF)
4279 sec = bfd_und_section_ptr;
4280 else if (isym->st_shndx == SHN_ABS)
4281 sec = bfd_abs_section_ptr;
4282 else if (isym->st_shndx == SHN_COMMON)
4283 {
4284 sec = bfd_com_section_ptr;
4285 /* What ELF calls the size we call the value. What ELF
4286 calls the value we call the alignment. */
4287 value = isym->st_size;
4288 }
4289 else
4290 {
4291 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4292 if (sec == NULL)
4293 sec = bfd_abs_section_ptr;
4294 else if (discarded_section (sec))
4295 {
4296 /* Symbols from discarded section are undefined. We keep
4297 its visibility. */
4298 sec = bfd_und_section_ptr;
4299 discarded = TRUE;
4300 isym->st_shndx = SHN_UNDEF;
4301 }
4302 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4303 value -= sec->vma;
4304 }
4305
4306 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4307 isym->st_name);
4308 if (name == NULL)
4309 goto error_free_vers;
4310
4311 if (isym->st_shndx == SHN_COMMON
4312 && (abfd->flags & BFD_PLUGIN) != 0)
4313 {
4314 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4315
4316 if (xc == NULL)
4317 {
4318 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4319 | SEC_EXCLUDE);
4320 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4321 if (xc == NULL)
4322 goto error_free_vers;
4323 }
4324 sec = xc;
4325 }
4326 else if (isym->st_shndx == SHN_COMMON
4327 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4328 && !bfd_link_relocatable (info))
4329 {
4330 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4331
4332 if (tcomm == NULL)
4333 {
4334 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4335 | SEC_LINKER_CREATED);
4336 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4337 if (tcomm == NULL)
4338 goto error_free_vers;
4339 }
4340 sec = tcomm;
4341 }
4342 else if (bed->elf_add_symbol_hook)
4343 {
4344 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4345 &sec, &value))
4346 goto error_free_vers;
4347
4348 /* The hook function sets the name to NULL if this symbol
4349 should be skipped for some reason. */
4350 if (name == NULL)
4351 continue;
4352 }
4353
4354 /* Sanity check that all possibilities were handled. */
4355 if (sec == NULL)
4356 {
4357 bfd_set_error (bfd_error_bad_value);
4358 goto error_free_vers;
4359 }
4360
4361 /* Silently discard TLS symbols from --just-syms. There's
4362 no way to combine a static TLS block with a new TLS block
4363 for this executable. */
4364 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4365 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4366 continue;
4367
4368 if (bfd_is_und_section (sec)
4369 || bfd_is_com_section (sec))
4370 definition = FALSE;
4371 else
4372 definition = TRUE;
4373
4374 size_change_ok = FALSE;
4375 type_change_ok = bed->type_change_ok;
4376 old_weak = FALSE;
4377 matched = FALSE;
4378 old_alignment = 0;
4379 old_bfd = NULL;
4380 new_sec = sec;
4381
4382 if (is_elf_hash_table (htab))
4383 {
4384 Elf_Internal_Versym iver;
4385 unsigned int vernum = 0;
4386 bfd_boolean skip;
4387
4388 if (ever == NULL)
4389 {
4390 if (info->default_imported_symver)
4391 /* Use the default symbol version created earlier. */
4392 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4393 else
4394 iver.vs_vers = 0;
4395 }
4396 else
4397 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4398
4399 vernum = iver.vs_vers & VERSYM_VERSION;
4400
4401 /* If this is a hidden symbol, or if it is not version
4402 1, we append the version name to the symbol name.
4403 However, we do not modify a non-hidden absolute symbol
4404 if it is not a function, because it might be the version
4405 symbol itself. FIXME: What if it isn't? */
4406 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4407 || (vernum > 1
4408 && (!bfd_is_abs_section (sec)
4409 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4410 {
4411 const char *verstr;
4412 size_t namelen, verlen, newlen;
4413 char *newname, *p;
4414
4415 if (isym->st_shndx != SHN_UNDEF)
4416 {
4417 if (vernum > elf_tdata (abfd)->cverdefs)
4418 verstr = NULL;
4419 else if (vernum > 1)
4420 verstr =
4421 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4422 else
4423 verstr = "";
4424
4425 if (verstr == NULL)
4426 {
4427 _bfd_error_handler
4428 /* xgettext:c-format */
4429 (_("%B: %s: invalid version %u (max %d)"),
4430 abfd, name, vernum,
4431 elf_tdata (abfd)->cverdefs);
4432 bfd_set_error (bfd_error_bad_value);
4433 goto error_free_vers;
4434 }
4435 }
4436 else
4437 {
4438 /* We cannot simply test for the number of
4439 entries in the VERNEED section since the
4440 numbers for the needed versions do not start
4441 at 0. */
4442 Elf_Internal_Verneed *t;
4443
4444 verstr = NULL;
4445 for (t = elf_tdata (abfd)->verref;
4446 t != NULL;
4447 t = t->vn_nextref)
4448 {
4449 Elf_Internal_Vernaux *a;
4450
4451 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4452 {
4453 if (a->vna_other == vernum)
4454 {
4455 verstr = a->vna_nodename;
4456 break;
4457 }
4458 }
4459 if (a != NULL)
4460 break;
4461 }
4462 if (verstr == NULL)
4463 {
4464 _bfd_error_handler
4465 /* xgettext:c-format */
4466 (_("%B: %s: invalid needed version %d"),
4467 abfd, name, vernum);
4468 bfd_set_error (bfd_error_bad_value);
4469 goto error_free_vers;
4470 }
4471 }
4472
4473 namelen = strlen (name);
4474 verlen = strlen (verstr);
4475 newlen = namelen + verlen + 2;
4476 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4477 && isym->st_shndx != SHN_UNDEF)
4478 ++newlen;
4479
4480 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4481 if (newname == NULL)
4482 goto error_free_vers;
4483 memcpy (newname, name, namelen);
4484 p = newname + namelen;
4485 *p++ = ELF_VER_CHR;
4486 /* If this is a defined non-hidden version symbol,
4487 we add another @ to the name. This indicates the
4488 default version of the symbol. */
4489 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4490 && isym->st_shndx != SHN_UNDEF)
4491 *p++ = ELF_VER_CHR;
4492 memcpy (p, verstr, verlen + 1);
4493
4494 name = newname;
4495 }
4496
4497 /* If this symbol has default visibility and the user has
4498 requested we not re-export it, then mark it as hidden. */
4499 if (!bfd_is_und_section (sec)
4500 && !dynamic
4501 && abfd->no_export
4502 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4503 isym->st_other = (STV_HIDDEN
4504 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4505
4506 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4507 sym_hash, &old_bfd, &old_weak,
4508 &old_alignment, &skip, &override,
4509 &type_change_ok, &size_change_ok,
4510 &matched))
4511 goto error_free_vers;
4512
4513 if (skip)
4514 continue;
4515
4516 /* Override a definition only if the new symbol matches the
4517 existing one. */
4518 if (override && matched)
4519 definition = FALSE;
4520
4521 h = *sym_hash;
4522 while (h->root.type == bfd_link_hash_indirect
4523 || h->root.type == bfd_link_hash_warning)
4524 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4525
4526 if (elf_tdata (abfd)->verdef != NULL
4527 && vernum > 1
4528 && definition)
4529 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4530 }
4531
4532 if (! (_bfd_generic_link_add_one_symbol
4533 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4534 (struct bfd_link_hash_entry **) sym_hash)))
4535 goto error_free_vers;
4536
4537 if ((flags & BSF_GNU_UNIQUE)
4538 && (abfd->flags & DYNAMIC) == 0
4539 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4540 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4541
4542 h = *sym_hash;
4543 /* We need to make sure that indirect symbol dynamic flags are
4544 updated. */
4545 hi = h;
4546 while (h->root.type == bfd_link_hash_indirect
4547 || h->root.type == bfd_link_hash_warning)
4548 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4549
4550 /* Setting the index to -3 tells elf_link_output_extsym that
4551 this symbol is defined in a discarded section. */
4552 if (discarded)
4553 h->indx = -3;
4554
4555 *sym_hash = h;
4556
4557 new_weak = (flags & BSF_WEAK) != 0;
4558 new_weakdef = FALSE;
4559 if (dynamic
4560 && definition
4561 && new_weak
4562 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4563 && is_elf_hash_table (htab)
4564 && h->u.weakdef == NULL)
4565 {
4566 /* Keep a list of all weak defined non function symbols from
4567 a dynamic object, using the weakdef field. Later in this
4568 function we will set the weakdef field to the correct
4569 value. We only put non-function symbols from dynamic
4570 objects on this list, because that happens to be the only
4571 time we need to know the normal symbol corresponding to a
4572 weak symbol, and the information is time consuming to
4573 figure out. If the weakdef field is not already NULL,
4574 then this symbol was already defined by some previous
4575 dynamic object, and we will be using that previous
4576 definition anyhow. */
4577
4578 h->u.weakdef = weaks;
4579 weaks = h;
4580 new_weakdef = TRUE;
4581 }
4582
4583 /* Set the alignment of a common symbol. */
4584 if ((common || bfd_is_com_section (sec))
4585 && h->root.type == bfd_link_hash_common)
4586 {
4587 unsigned int align;
4588
4589 if (common)
4590 align = bfd_log2 (isym->st_value);
4591 else
4592 {
4593 /* The new symbol is a common symbol in a shared object.
4594 We need to get the alignment from the section. */
4595 align = new_sec->alignment_power;
4596 }
4597 if (align > old_alignment)
4598 h->root.u.c.p->alignment_power = align;
4599 else
4600 h->root.u.c.p->alignment_power = old_alignment;
4601 }
4602
4603 if (is_elf_hash_table (htab))
4604 {
4605 /* Set a flag in the hash table entry indicating the type of
4606 reference or definition we just found. A dynamic symbol
4607 is one which is referenced or defined by both a regular
4608 object and a shared object. */
4609 bfd_boolean dynsym = FALSE;
4610
4611 /* Plugin symbols aren't normal. Don't set def_regular or
4612 ref_regular for them, or make them dynamic. */
4613 if ((abfd->flags & BFD_PLUGIN) != 0)
4614 ;
4615 else if (! dynamic)
4616 {
4617 if (! definition)
4618 {
4619 h->ref_regular = 1;
4620 if (bind != STB_WEAK)
4621 h->ref_regular_nonweak = 1;
4622 }
4623 else
4624 {
4625 h->def_regular = 1;
4626 if (h->def_dynamic)
4627 {
4628 h->def_dynamic = 0;
4629 h->ref_dynamic = 1;
4630 }
4631 }
4632
4633 /* If the indirect symbol has been forced local, don't
4634 make the real symbol dynamic. */
4635 if ((h == hi || !hi->forced_local)
4636 && (bfd_link_dll (info)
4637 || h->def_dynamic
4638 || h->ref_dynamic))
4639 dynsym = TRUE;
4640 }
4641 else
4642 {
4643 if (! definition)
4644 {
4645 h->ref_dynamic = 1;
4646 hi->ref_dynamic = 1;
4647 }
4648 else
4649 {
4650 h->def_dynamic = 1;
4651 hi->def_dynamic = 1;
4652 }
4653
4654 /* If the indirect symbol has been forced local, don't
4655 make the real symbol dynamic. */
4656 if ((h == hi || !hi->forced_local)
4657 && (h->def_regular
4658 || h->ref_regular
4659 || (h->u.weakdef != NULL
4660 && ! new_weakdef
4661 && h->u.weakdef->dynindx != -1)))
4662 dynsym = TRUE;
4663 }
4664
4665 /* Check to see if we need to add an indirect symbol for
4666 the default name. */
4667 if (definition
4668 || (!override && h->root.type == bfd_link_hash_common))
4669 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4670 sec, value, &old_bfd, &dynsym))
4671 goto error_free_vers;
4672
4673 /* Check the alignment when a common symbol is involved. This
4674 can change when a common symbol is overridden by a normal
4675 definition or a common symbol is ignored due to the old
4676 normal definition. We need to make sure the maximum
4677 alignment is maintained. */
4678 if ((old_alignment || common)
4679 && h->root.type != bfd_link_hash_common)
4680 {
4681 unsigned int common_align;
4682 unsigned int normal_align;
4683 unsigned int symbol_align;
4684 bfd *normal_bfd;
4685 bfd *common_bfd;
4686
4687 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4688 || h->root.type == bfd_link_hash_defweak);
4689
4690 symbol_align = ffs (h->root.u.def.value) - 1;
4691 if (h->root.u.def.section->owner != NULL
4692 && (h->root.u.def.section->owner->flags
4693 & (DYNAMIC | BFD_PLUGIN)) == 0)
4694 {
4695 normal_align = h->root.u.def.section->alignment_power;
4696 if (normal_align > symbol_align)
4697 normal_align = symbol_align;
4698 }
4699 else
4700 normal_align = symbol_align;
4701
4702 if (old_alignment)
4703 {
4704 common_align = old_alignment;
4705 common_bfd = old_bfd;
4706 normal_bfd = abfd;
4707 }
4708 else
4709 {
4710 common_align = bfd_log2 (isym->st_value);
4711 common_bfd = abfd;
4712 normal_bfd = old_bfd;
4713 }
4714
4715 if (normal_align < common_align)
4716 {
4717 /* PR binutils/2735 */
4718 if (normal_bfd == NULL)
4719 _bfd_error_handler
4720 /* xgettext:c-format */
4721 (_("Warning: alignment %u of common symbol `%s' in %B is"
4722 " greater than the alignment (%u) of its section %A"),
4723 1 << common_align, name, common_bfd,
4724 1 << normal_align, h->root.u.def.section);
4725 else
4726 _bfd_error_handler
4727 /* xgettext:c-format */
4728 (_("Warning: alignment %u of symbol `%s' in %B"
4729 " is smaller than %u in %B"),
4730 1 << normal_align, name, normal_bfd,
4731 1 << common_align, common_bfd);
4732 }
4733 }
4734
4735 /* Remember the symbol size if it isn't undefined. */
4736 if (isym->st_size != 0
4737 && isym->st_shndx != SHN_UNDEF
4738 && (definition || h->size == 0))
4739 {
4740 if (h->size != 0
4741 && h->size != isym->st_size
4742 && ! size_change_ok)
4743 _bfd_error_handler
4744 /* xgettext:c-format */
4745 (_("Warning: size of symbol `%s' changed"
4746 " from %lu in %B to %lu in %B"),
4747 name, (unsigned long) h->size, old_bfd,
4748 (unsigned long) isym->st_size, abfd);
4749
4750 h->size = isym->st_size;
4751 }
4752
4753 /* If this is a common symbol, then we always want H->SIZE
4754 to be the size of the common symbol. The code just above
4755 won't fix the size if a common symbol becomes larger. We
4756 don't warn about a size change here, because that is
4757 covered by --warn-common. Allow changes between different
4758 function types. */
4759 if (h->root.type == bfd_link_hash_common)
4760 h->size = h->root.u.c.size;
4761
4762 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4763 && ((definition && !new_weak)
4764 || (old_weak && h->root.type == bfd_link_hash_common)
4765 || h->type == STT_NOTYPE))
4766 {
4767 unsigned int type = ELF_ST_TYPE (isym->st_info);
4768
4769 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4770 symbol. */
4771 if (type == STT_GNU_IFUNC
4772 && (abfd->flags & DYNAMIC) != 0)
4773 type = STT_FUNC;
4774
4775 if (h->type != type)
4776 {
4777 if (h->type != STT_NOTYPE && ! type_change_ok)
4778 /* xgettext:c-format */
4779 _bfd_error_handler
4780 (_("Warning: type of symbol `%s' changed"
4781 " from %d to %d in %B"),
4782 name, h->type, type, abfd);
4783
4784 h->type = type;
4785 }
4786 }
4787
4788 /* Merge st_other field. */
4789 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4790
4791 /* We don't want to make debug symbol dynamic. */
4792 if (definition
4793 && (sec->flags & SEC_DEBUGGING)
4794 && !bfd_link_relocatable (info))
4795 dynsym = FALSE;
4796
4797 /* Nor should we make plugin symbols dynamic. */
4798 if ((abfd->flags & BFD_PLUGIN) != 0)
4799 dynsym = FALSE;
4800
4801 if (definition)
4802 {
4803 h->target_internal = isym->st_target_internal;
4804 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4805 }
4806
4807 if (definition && !dynamic)
4808 {
4809 char *p = strchr (name, ELF_VER_CHR);
4810 if (p != NULL && p[1] != ELF_VER_CHR)
4811 {
4812 /* Queue non-default versions so that .symver x, x@FOO
4813 aliases can be checked. */
4814 if (!nondeflt_vers)
4815 {
4816 amt = ((isymend - isym + 1)
4817 * sizeof (struct elf_link_hash_entry *));
4818 nondeflt_vers
4819 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4820 if (!nondeflt_vers)
4821 goto error_free_vers;
4822 }
4823 nondeflt_vers[nondeflt_vers_cnt++] = h;
4824 }
4825 }
4826
4827 if (dynsym && h->dynindx == -1)
4828 {
4829 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4830 goto error_free_vers;
4831 if (h->u.weakdef != NULL
4832 && ! new_weakdef
4833 && h->u.weakdef->dynindx == -1)
4834 {
4835 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4836 goto error_free_vers;
4837 }
4838 }
4839 else if (h->dynindx != -1)
4840 /* If the symbol already has a dynamic index, but
4841 visibility says it should not be visible, turn it into
4842 a local symbol. */
4843 switch (ELF_ST_VISIBILITY (h->other))
4844 {
4845 case STV_INTERNAL:
4846 case STV_HIDDEN:
4847 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4848 dynsym = FALSE;
4849 break;
4850 }
4851
4852 /* Don't add DT_NEEDED for references from the dummy bfd nor
4853 for unmatched symbol. */
4854 if (!add_needed
4855 && matched
4856 && definition
4857 && ((dynsym
4858 && h->ref_regular_nonweak
4859 && (old_bfd == NULL
4860 || (old_bfd->flags & BFD_PLUGIN) == 0))
4861 || (h->ref_dynamic_nonweak
4862 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4863 && !on_needed_list (elf_dt_name (abfd),
4864 htab->needed, NULL))))
4865 {
4866 int ret;
4867 const char *soname = elf_dt_name (abfd);
4868
4869 info->callbacks->minfo ("%!", soname, old_bfd,
4870 h->root.root.string);
4871
4872 /* A symbol from a library loaded via DT_NEEDED of some
4873 other library is referenced by a regular object.
4874 Add a DT_NEEDED entry for it. Issue an error if
4875 --no-add-needed is used and the reference was not
4876 a weak one. */
4877 if (old_bfd != NULL
4878 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4879 {
4880 _bfd_error_handler
4881 /* xgettext:c-format */
4882 (_("%B: undefined reference to symbol '%s'"),
4883 old_bfd, name);
4884 bfd_set_error (bfd_error_missing_dso);
4885 goto error_free_vers;
4886 }
4887
4888 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4889 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4890
4891 add_needed = TRUE;
4892 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4893 if (ret < 0)
4894 goto error_free_vers;
4895
4896 BFD_ASSERT (ret == 0);
4897 }
4898 }
4899 }
4900
4901 if (extversym != NULL)
4902 {
4903 free (extversym);
4904 extversym = NULL;
4905 }
4906
4907 if (isymbuf != NULL)
4908 {
4909 free (isymbuf);
4910 isymbuf = NULL;
4911 }
4912
4913 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4914 {
4915 unsigned int i;
4916
4917 /* Restore the symbol table. */
4918 old_ent = (char *) old_tab + tabsize;
4919 memset (elf_sym_hashes (abfd), 0,
4920 extsymcount * sizeof (struct elf_link_hash_entry *));
4921 htab->root.table.table = old_table;
4922 htab->root.table.size = old_size;
4923 htab->root.table.count = old_count;
4924 memcpy (htab->root.table.table, old_tab, tabsize);
4925 htab->root.undefs = old_undefs;
4926 htab->root.undefs_tail = old_undefs_tail;
4927 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4928 free (old_strtab);
4929 old_strtab = NULL;
4930 for (i = 0; i < htab->root.table.size; i++)
4931 {
4932 struct bfd_hash_entry *p;
4933 struct elf_link_hash_entry *h;
4934 bfd_size_type size;
4935 unsigned int alignment_power;
4936 unsigned int dynamic_ref_after_ir_def;
4937
4938 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4939 {
4940 h = (struct elf_link_hash_entry *) p;
4941 if (h->root.type == bfd_link_hash_warning)
4942 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4943
4944 /* Preserve the maximum alignment and size for common
4945 symbols even if this dynamic lib isn't on DT_NEEDED
4946 since it can still be loaded at run time by another
4947 dynamic lib. */
4948 if (h->root.type == bfd_link_hash_common)
4949 {
4950 size = h->root.u.c.size;
4951 alignment_power = h->root.u.c.p->alignment_power;
4952 }
4953 else
4954 {
4955 size = 0;
4956 alignment_power = 0;
4957 }
4958 /* Preserve dynamic_ref_after_ir_def so that this symbol
4959 will be exported when the dynamic lib becomes needed
4960 in the second pass. */
4961 dynamic_ref_after_ir_def = h->root.dynamic_ref_after_ir_def;
4962 memcpy (p, old_ent, htab->root.table.entsize);
4963 old_ent = (char *) old_ent + htab->root.table.entsize;
4964 h = (struct elf_link_hash_entry *) p;
4965 if (h->root.type == bfd_link_hash_warning)
4966 {
4967 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4968 old_ent = (char *) old_ent + htab->root.table.entsize;
4969 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4970 }
4971 if (h->root.type == bfd_link_hash_common)
4972 {
4973 if (size > h->root.u.c.size)
4974 h->root.u.c.size = size;
4975 if (alignment_power > h->root.u.c.p->alignment_power)
4976 h->root.u.c.p->alignment_power = alignment_power;
4977 }
4978 h->root.dynamic_ref_after_ir_def = dynamic_ref_after_ir_def;
4979 }
4980 }
4981
4982 /* Make a special call to the linker "notice" function to
4983 tell it that symbols added for crefs may need to be removed. */
4984 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4985 goto error_free_vers;
4986
4987 free (old_tab);
4988 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4989 alloc_mark);
4990 if (nondeflt_vers != NULL)
4991 free (nondeflt_vers);
4992 return TRUE;
4993 }
4994
4995 if (old_tab != NULL)
4996 {
4997 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4998 goto error_free_vers;
4999 free (old_tab);
5000 old_tab = NULL;
5001 }
5002
5003 /* Now that all the symbols from this input file are created, if
5004 not performing a relocatable link, handle .symver foo, foo@BAR
5005 such that any relocs against foo become foo@BAR. */
5006 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5007 {
5008 size_t cnt, symidx;
5009
5010 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5011 {
5012 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5013 char *shortname, *p;
5014
5015 p = strchr (h->root.root.string, ELF_VER_CHR);
5016 if (p == NULL
5017 || (h->root.type != bfd_link_hash_defined
5018 && h->root.type != bfd_link_hash_defweak))
5019 continue;
5020
5021 amt = p - h->root.root.string;
5022 shortname = (char *) bfd_malloc (amt + 1);
5023 if (!shortname)
5024 goto error_free_vers;
5025 memcpy (shortname, h->root.root.string, amt);
5026 shortname[amt] = '\0';
5027
5028 hi = (struct elf_link_hash_entry *)
5029 bfd_link_hash_lookup (&htab->root, shortname,
5030 FALSE, FALSE, FALSE);
5031 if (hi != NULL
5032 && hi->root.type == h->root.type
5033 && hi->root.u.def.value == h->root.u.def.value
5034 && hi->root.u.def.section == h->root.u.def.section)
5035 {
5036 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5037 hi->root.type = bfd_link_hash_indirect;
5038 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5039 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5040 sym_hash = elf_sym_hashes (abfd);
5041 if (sym_hash)
5042 for (symidx = 0; symidx < extsymcount; ++symidx)
5043 if (sym_hash[symidx] == hi)
5044 {
5045 sym_hash[symidx] = h;
5046 break;
5047 }
5048 }
5049 free (shortname);
5050 }
5051 free (nondeflt_vers);
5052 nondeflt_vers = NULL;
5053 }
5054
5055 /* Now set the weakdefs field correctly for all the weak defined
5056 symbols we found. The only way to do this is to search all the
5057 symbols. Since we only need the information for non functions in
5058 dynamic objects, that's the only time we actually put anything on
5059 the list WEAKS. We need this information so that if a regular
5060 object refers to a symbol defined weakly in a dynamic object, the
5061 real symbol in the dynamic object is also put in the dynamic
5062 symbols; we also must arrange for both symbols to point to the
5063 same memory location. We could handle the general case of symbol
5064 aliasing, but a general symbol alias can only be generated in
5065 assembler code, handling it correctly would be very time
5066 consuming, and other ELF linkers don't handle general aliasing
5067 either. */
5068 if (weaks != NULL)
5069 {
5070 struct elf_link_hash_entry **hpp;
5071 struct elf_link_hash_entry **hppend;
5072 struct elf_link_hash_entry **sorted_sym_hash;
5073 struct elf_link_hash_entry *h;
5074 size_t sym_count;
5075
5076 /* Since we have to search the whole symbol list for each weak
5077 defined symbol, search time for N weak defined symbols will be
5078 O(N^2). Binary search will cut it down to O(NlogN). */
5079 amt = extsymcount;
5080 amt *= sizeof (struct elf_link_hash_entry *);
5081 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5082 if (sorted_sym_hash == NULL)
5083 goto error_return;
5084 sym_hash = sorted_sym_hash;
5085 hpp = elf_sym_hashes (abfd);
5086 hppend = hpp + extsymcount;
5087 sym_count = 0;
5088 for (; hpp < hppend; hpp++)
5089 {
5090 h = *hpp;
5091 if (h != NULL
5092 && h->root.type == bfd_link_hash_defined
5093 && !bed->is_function_type (h->type))
5094 {
5095 *sym_hash = h;
5096 sym_hash++;
5097 sym_count++;
5098 }
5099 }
5100
5101 qsort (sorted_sym_hash, sym_count,
5102 sizeof (struct elf_link_hash_entry *),
5103 elf_sort_symbol);
5104
5105 while (weaks != NULL)
5106 {
5107 struct elf_link_hash_entry *hlook;
5108 asection *slook;
5109 bfd_vma vlook;
5110 size_t i, j, idx = 0;
5111
5112 hlook = weaks;
5113 weaks = hlook->u.weakdef;
5114 hlook->u.weakdef = NULL;
5115
5116 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5117 || hlook->root.type == bfd_link_hash_defweak
5118 || hlook->root.type == bfd_link_hash_common
5119 || hlook->root.type == bfd_link_hash_indirect);
5120 slook = hlook->root.u.def.section;
5121 vlook = hlook->root.u.def.value;
5122
5123 i = 0;
5124 j = sym_count;
5125 while (i != j)
5126 {
5127 bfd_signed_vma vdiff;
5128 idx = (i + j) / 2;
5129 h = sorted_sym_hash[idx];
5130 vdiff = vlook - h->root.u.def.value;
5131 if (vdiff < 0)
5132 j = idx;
5133 else if (vdiff > 0)
5134 i = idx + 1;
5135 else
5136 {
5137 int sdiff = slook->id - h->root.u.def.section->id;
5138 if (sdiff < 0)
5139 j = idx;
5140 else if (sdiff > 0)
5141 i = idx + 1;
5142 else
5143 break;
5144 }
5145 }
5146
5147 /* We didn't find a value/section match. */
5148 if (i == j)
5149 continue;
5150
5151 /* With multiple aliases, or when the weak symbol is already
5152 strongly defined, we have multiple matching symbols and
5153 the binary search above may land on any of them. Step
5154 one past the matching symbol(s). */
5155 while (++idx != j)
5156 {
5157 h = sorted_sym_hash[idx];
5158 if (h->root.u.def.section != slook
5159 || h->root.u.def.value != vlook)
5160 break;
5161 }
5162
5163 /* Now look back over the aliases. Since we sorted by size
5164 as well as value and section, we'll choose the one with
5165 the largest size. */
5166 while (idx-- != i)
5167 {
5168 h = sorted_sym_hash[idx];
5169
5170 /* Stop if value or section doesn't match. */
5171 if (h->root.u.def.section != slook
5172 || h->root.u.def.value != vlook)
5173 break;
5174 else if (h != hlook)
5175 {
5176 hlook->u.weakdef = h;
5177
5178 /* If the weak definition is in the list of dynamic
5179 symbols, make sure the real definition is put
5180 there as well. */
5181 if (hlook->dynindx != -1 && h->dynindx == -1)
5182 {
5183 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5184 {
5185 err_free_sym_hash:
5186 free (sorted_sym_hash);
5187 goto error_return;
5188 }
5189 }
5190
5191 /* If the real definition is in the list of dynamic
5192 symbols, make sure the weak definition is put
5193 there as well. If we don't do this, then the
5194 dynamic loader might not merge the entries for the
5195 real definition and the weak definition. */
5196 if (h->dynindx != -1 && hlook->dynindx == -1)
5197 {
5198 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5199 goto err_free_sym_hash;
5200 }
5201 break;
5202 }
5203 }
5204 }
5205
5206 free (sorted_sym_hash);
5207 }
5208
5209 if (bed->check_directives
5210 && !(*bed->check_directives) (abfd, info))
5211 return FALSE;
5212
5213 if (!info->check_relocs_after_open_input
5214 && !_bfd_elf_link_check_relocs (abfd, info))
5215 return FALSE;
5216
5217 /* If this is a non-traditional link, try to optimize the handling
5218 of the .stab/.stabstr sections. */
5219 if (! dynamic
5220 && ! info->traditional_format
5221 && is_elf_hash_table (htab)
5222 && (info->strip != strip_all && info->strip != strip_debugger))
5223 {
5224 asection *stabstr;
5225
5226 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5227 if (stabstr != NULL)
5228 {
5229 bfd_size_type string_offset = 0;
5230 asection *stab;
5231
5232 for (stab = abfd->sections; stab; stab = stab->next)
5233 if (CONST_STRNEQ (stab->name, ".stab")
5234 && (!stab->name[5] ||
5235 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5236 && (stab->flags & SEC_MERGE) == 0
5237 && !bfd_is_abs_section (stab->output_section))
5238 {
5239 struct bfd_elf_section_data *secdata;
5240
5241 secdata = elf_section_data (stab);
5242 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5243 stabstr, &secdata->sec_info,
5244 &string_offset))
5245 goto error_return;
5246 if (secdata->sec_info)
5247 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5248 }
5249 }
5250 }
5251
5252 if (is_elf_hash_table (htab) && add_needed)
5253 {
5254 /* Add this bfd to the loaded list. */
5255 struct elf_link_loaded_list *n;
5256
5257 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5258 if (n == NULL)
5259 goto error_return;
5260 n->abfd = abfd;
5261 n->next = htab->loaded;
5262 htab->loaded = n;
5263 }
5264
5265 return TRUE;
5266
5267 error_free_vers:
5268 if (old_tab != NULL)
5269 free (old_tab);
5270 if (old_strtab != NULL)
5271 free (old_strtab);
5272 if (nondeflt_vers != NULL)
5273 free (nondeflt_vers);
5274 if (extversym != NULL)
5275 free (extversym);
5276 error_free_sym:
5277 if (isymbuf != NULL)
5278 free (isymbuf);
5279 error_return:
5280 return FALSE;
5281}
5282
5283/* Return the linker hash table entry of a symbol that might be
5284 satisfied by an archive symbol. Return -1 on error. */
5285
5286struct elf_link_hash_entry *
5287_bfd_elf_archive_symbol_lookup (bfd *abfd,
5288 struct bfd_link_info *info,
5289 const char *name)
5290{
5291 struct elf_link_hash_entry *h;
5292 char *p, *copy;
5293 size_t len, first;
5294
5295 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5296 if (h != NULL)
5297 return h;
5298
5299 /* If this is a default version (the name contains @@), look up the
5300 symbol again with only one `@' as well as without the version.
5301 The effect is that references to the symbol with and without the
5302 version will be matched by the default symbol in the archive. */
5303
5304 p = strchr (name, ELF_VER_CHR);
5305 if (p == NULL || p[1] != ELF_VER_CHR)
5306 return h;
5307
5308 /* First check with only one `@'. */
5309 len = strlen (name);
5310 copy = (char *) bfd_alloc (abfd, len);
5311 if (copy == NULL)
5312 return (struct elf_link_hash_entry *) 0 - 1;
5313
5314 first = p - name + 1;
5315 memcpy (copy, name, first);
5316 memcpy (copy + first, name + first + 1, len - first);
5317
5318 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5319 if (h == NULL)
5320 {
5321 /* We also need to check references to the symbol without the
5322 version. */
5323 copy[first - 1] = '\0';
5324 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5325 FALSE, FALSE, TRUE);
5326 }
5327
5328 bfd_release (abfd, copy);
5329 return h;
5330}
5331
5332/* Add symbols from an ELF archive file to the linker hash table. We
5333 don't use _bfd_generic_link_add_archive_symbols because we need to
5334 handle versioned symbols.
5335
5336 Fortunately, ELF archive handling is simpler than that done by
5337 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5338 oddities. In ELF, if we find a symbol in the archive map, and the
5339 symbol is currently undefined, we know that we must pull in that
5340 object file.
5341
5342 Unfortunately, we do have to make multiple passes over the symbol
5343 table until nothing further is resolved. */
5344
5345static bfd_boolean
5346elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5347{
5348 symindex c;
5349 unsigned char *included = NULL;
5350 carsym *symdefs;
5351 bfd_boolean loop;
5352 bfd_size_type amt;
5353 const struct elf_backend_data *bed;
5354 struct elf_link_hash_entry * (*archive_symbol_lookup)
5355 (bfd *, struct bfd_link_info *, const char *);
5356
5357 if (! bfd_has_map (abfd))
5358 {
5359 /* An empty archive is a special case. */
5360 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5361 return TRUE;
5362 bfd_set_error (bfd_error_no_armap);
5363 return FALSE;
5364 }
5365
5366 /* Keep track of all symbols we know to be already defined, and all
5367 files we know to be already included. This is to speed up the
5368 second and subsequent passes. */
5369 c = bfd_ardata (abfd)->symdef_count;
5370 if (c == 0)
5371 return TRUE;
5372 amt = c;
5373 amt *= sizeof (*included);
5374 included = (unsigned char *) bfd_zmalloc (amt);
5375 if (included == NULL)
5376 return FALSE;
5377
5378 symdefs = bfd_ardata (abfd)->symdefs;
5379 bed = get_elf_backend_data (abfd);
5380 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5381
5382 do
5383 {
5384 file_ptr last;
5385 symindex i;
5386 carsym *symdef;
5387 carsym *symdefend;
5388
5389 loop = FALSE;
5390 last = -1;
5391
5392 symdef = symdefs;
5393 symdefend = symdef + c;
5394 for (i = 0; symdef < symdefend; symdef++, i++)
5395 {
5396 struct elf_link_hash_entry *h;
5397 bfd *element;
5398 struct bfd_link_hash_entry *undefs_tail;
5399 symindex mark;
5400
5401 if (included[i])
5402 continue;
5403 if (symdef->file_offset == last)
5404 {
5405 included[i] = TRUE;
5406 continue;
5407 }
5408
5409 h = archive_symbol_lookup (abfd, info, symdef->name);
5410 if (h == (struct elf_link_hash_entry *) 0 - 1)
5411 goto error_return;
5412
5413 if (h == NULL)
5414 continue;
5415
5416 if (h->root.type == bfd_link_hash_common)
5417 {
5418 /* We currently have a common symbol. The archive map contains
5419 a reference to this symbol, so we may want to include it. We
5420 only want to include it however, if this archive element
5421 contains a definition of the symbol, not just another common
5422 declaration of it.
5423
5424 Unfortunately some archivers (including GNU ar) will put
5425 declarations of common symbols into their archive maps, as
5426 well as real definitions, so we cannot just go by the archive
5427 map alone. Instead we must read in the element's symbol
5428 table and check that to see what kind of symbol definition
5429 this is. */
5430 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5431 continue;
5432 }
5433 else if (h->root.type != bfd_link_hash_undefined)
5434 {
5435 if (h->root.type != bfd_link_hash_undefweak)
5436 /* Symbol must be defined. Don't check it again. */
5437 included[i] = TRUE;
5438 continue;
5439 }
5440
5441 /* We need to include this archive member. */
5442 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5443 if (element == NULL)
5444 goto error_return;
5445
5446 if (! bfd_check_format (element, bfd_object))
5447 goto error_return;
5448
5449 undefs_tail = info->hash->undefs_tail;
5450
5451 if (!(*info->callbacks
5452 ->add_archive_element) (info, element, symdef->name, &element))
5453 continue;
5454 if (!bfd_link_add_symbols (element, info))
5455 goto error_return;
5456
5457 /* If there are any new undefined symbols, we need to make
5458 another pass through the archive in order to see whether
5459 they can be defined. FIXME: This isn't perfect, because
5460 common symbols wind up on undefs_tail and because an
5461 undefined symbol which is defined later on in this pass
5462 does not require another pass. This isn't a bug, but it
5463 does make the code less efficient than it could be. */
5464 if (undefs_tail != info->hash->undefs_tail)
5465 loop = TRUE;
5466
5467 /* Look backward to mark all symbols from this object file
5468 which we have already seen in this pass. */
5469 mark = i;
5470 do
5471 {
5472 included[mark] = TRUE;
5473 if (mark == 0)
5474 break;
5475 --mark;
5476 }
5477 while (symdefs[mark].file_offset == symdef->file_offset);
5478
5479 /* We mark subsequent symbols from this object file as we go
5480 on through the loop. */
5481 last = symdef->file_offset;
5482 }
5483 }
5484 while (loop);
5485
5486 free (included);
5487
5488 return TRUE;
5489
5490 error_return:
5491 if (included != NULL)
5492 free (included);
5493 return FALSE;
5494}
5495
5496/* Given an ELF BFD, add symbols to the global hash table as
5497 appropriate. */
5498
5499bfd_boolean
5500bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5501{
5502 switch (bfd_get_format (abfd))
5503 {
5504 case bfd_object:
5505 return elf_link_add_object_symbols (abfd, info);
5506 case bfd_archive:
5507 return elf_link_add_archive_symbols (abfd, info);
5508 default:
5509 bfd_set_error (bfd_error_wrong_format);
5510 return FALSE;
5511 }
5512}
5513\f
5514struct hash_codes_info
5515{
5516 unsigned long *hashcodes;
5517 bfd_boolean error;
5518};
5519
5520/* This function will be called though elf_link_hash_traverse to store
5521 all hash value of the exported symbols in an array. */
5522
5523static bfd_boolean
5524elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5525{
5526 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5527 const char *name;
5528 unsigned long ha;
5529 char *alc = NULL;
5530
5531 /* Ignore indirect symbols. These are added by the versioning code. */
5532 if (h->dynindx == -1)
5533 return TRUE;
5534
5535 name = h->root.root.string;
5536 if (h->versioned >= versioned)
5537 {
5538 char *p = strchr (name, ELF_VER_CHR);
5539 if (p != NULL)
5540 {
5541 alc = (char *) bfd_malloc (p - name + 1);
5542 if (alc == NULL)
5543 {
5544 inf->error = TRUE;
5545 return FALSE;
5546 }
5547 memcpy (alc, name, p - name);
5548 alc[p - name] = '\0';
5549 name = alc;
5550 }
5551 }
5552
5553 /* Compute the hash value. */
5554 ha = bfd_elf_hash (name);
5555
5556 /* Store the found hash value in the array given as the argument. */
5557 *(inf->hashcodes)++ = ha;
5558
5559 /* And store it in the struct so that we can put it in the hash table
5560 later. */
5561 h->u.elf_hash_value = ha;
5562
5563 if (alc != NULL)
5564 free (alc);
5565
5566 return TRUE;
5567}
5568
5569struct collect_gnu_hash_codes
5570{
5571 bfd *output_bfd;
5572 const struct elf_backend_data *bed;
5573 unsigned long int nsyms;
5574 unsigned long int maskbits;
5575 unsigned long int *hashcodes;
5576 unsigned long int *hashval;
5577 unsigned long int *indx;
5578 unsigned long int *counts;
5579 bfd_vma *bitmask;
5580 bfd_byte *contents;
5581 long int min_dynindx;
5582 unsigned long int bucketcount;
5583 unsigned long int symindx;
5584 long int local_indx;
5585 long int shift1, shift2;
5586 unsigned long int mask;
5587 bfd_boolean error;
5588};
5589
5590/* This function will be called though elf_link_hash_traverse to store
5591 all hash value of the exported symbols in an array. */
5592
5593static bfd_boolean
5594elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5595{
5596 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5597 const char *name;
5598 unsigned long ha;
5599 char *alc = NULL;
5600
5601 /* Ignore indirect symbols. These are added by the versioning code. */
5602 if (h->dynindx == -1)
5603 return TRUE;
5604
5605 /* Ignore also local symbols and undefined symbols. */
5606 if (! (*s->bed->elf_hash_symbol) (h))
5607 return TRUE;
5608
5609 name = h->root.root.string;
5610 if (h->versioned >= versioned)
5611 {
5612 char *p = strchr (name, ELF_VER_CHR);
5613 if (p != NULL)
5614 {
5615 alc = (char *) bfd_malloc (p - name + 1);
5616 if (alc == NULL)
5617 {
5618 s->error = TRUE;
5619 return FALSE;
5620 }
5621 memcpy (alc, name, p - name);
5622 alc[p - name] = '\0';
5623 name = alc;
5624 }
5625 }
5626
5627 /* Compute the hash value. */
5628 ha = bfd_elf_gnu_hash (name);
5629
5630 /* Store the found hash value in the array for compute_bucket_count,
5631 and also for .dynsym reordering purposes. */
5632 s->hashcodes[s->nsyms] = ha;
5633 s->hashval[h->dynindx] = ha;
5634 ++s->nsyms;
5635 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5636 s->min_dynindx = h->dynindx;
5637
5638 if (alc != NULL)
5639 free (alc);
5640
5641 return TRUE;
5642}
5643
5644/* This function will be called though elf_link_hash_traverse to do
5645 final dynaminc symbol renumbering. */
5646
5647static bfd_boolean
5648elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5649{
5650 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5651 unsigned long int bucket;
5652 unsigned long int val;
5653
5654 /* Ignore indirect symbols. */
5655 if (h->dynindx == -1)
5656 return TRUE;
5657
5658 /* Ignore also local symbols and undefined symbols. */
5659 if (! (*s->bed->elf_hash_symbol) (h))
5660 {
5661 if (h->dynindx >= s->min_dynindx)
5662 h->dynindx = s->local_indx++;
5663 return TRUE;
5664 }
5665
5666 bucket = s->hashval[h->dynindx] % s->bucketcount;
5667 val = (s->hashval[h->dynindx] >> s->shift1)
5668 & ((s->maskbits >> s->shift1) - 1);
5669 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5670 s->bitmask[val]
5671 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5672 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5673 if (s->counts[bucket] == 1)
5674 /* Last element terminates the chain. */
5675 val |= 1;
5676 bfd_put_32 (s->output_bfd, val,
5677 s->contents + (s->indx[bucket] - s->symindx) * 4);
5678 --s->counts[bucket];
5679 h->dynindx = s->indx[bucket]++;
5680 return TRUE;
5681}
5682
5683/* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5684
5685bfd_boolean
5686_bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5687{
5688 return !(h->forced_local
5689 || h->root.type == bfd_link_hash_undefined
5690 || h->root.type == bfd_link_hash_undefweak
5691 || ((h->root.type == bfd_link_hash_defined
5692 || h->root.type == bfd_link_hash_defweak)
5693 && h->root.u.def.section->output_section == NULL));
5694}
5695
5696/* Array used to determine the number of hash table buckets to use
5697 based on the number of symbols there are. If there are fewer than
5698 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5699 fewer than 37 we use 17 buckets, and so forth. We never use more
5700 than 32771 buckets. */
5701
5702static const size_t elf_buckets[] =
5703{
5704 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5705 16411, 32771, 0
5706};
5707
5708/* Compute bucket count for hashing table. We do not use a static set
5709 of possible tables sizes anymore. Instead we determine for all
5710 possible reasonable sizes of the table the outcome (i.e., the
5711 number of collisions etc) and choose the best solution. The
5712 weighting functions are not too simple to allow the table to grow
5713 without bounds. Instead one of the weighting factors is the size.
5714 Therefore the result is always a good payoff between few collisions
5715 (= short chain lengths) and table size. */
5716static size_t
5717compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5718 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5719 unsigned long int nsyms,
5720 int gnu_hash)
5721{
5722 size_t best_size = 0;
5723 unsigned long int i;
5724
5725 /* We have a problem here. The following code to optimize the table
5726 size requires an integer type with more the 32 bits. If
5727 BFD_HOST_U_64_BIT is set we know about such a type. */
5728#ifdef BFD_HOST_U_64_BIT
5729 if (info->optimize)
5730 {
5731 size_t minsize;
5732 size_t maxsize;
5733 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5734 bfd *dynobj = elf_hash_table (info)->dynobj;
5735 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5736 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5737 unsigned long int *counts;
5738 bfd_size_type amt;
5739 unsigned int no_improvement_count = 0;
5740
5741 /* Possible optimization parameters: if we have NSYMS symbols we say
5742 that the hashing table must at least have NSYMS/4 and at most
5743 2*NSYMS buckets. */
5744 minsize = nsyms / 4;
5745 if (minsize == 0)
5746 minsize = 1;
5747 best_size = maxsize = nsyms * 2;
5748 if (gnu_hash)
5749 {
5750 if (minsize < 2)
5751 minsize = 2;
5752 if ((best_size & 31) == 0)
5753 ++best_size;
5754 }
5755
5756 /* Create array where we count the collisions in. We must use bfd_malloc
5757 since the size could be large. */
5758 amt = maxsize;
5759 amt *= sizeof (unsigned long int);
5760 counts = (unsigned long int *) bfd_malloc (amt);
5761 if (counts == NULL)
5762 return 0;
5763
5764 /* Compute the "optimal" size for the hash table. The criteria is a
5765 minimal chain length. The minor criteria is (of course) the size
5766 of the table. */
5767 for (i = minsize; i < maxsize; ++i)
5768 {
5769 /* Walk through the array of hashcodes and count the collisions. */
5770 BFD_HOST_U_64_BIT max;
5771 unsigned long int j;
5772 unsigned long int fact;
5773
5774 if (gnu_hash && (i & 31) == 0)
5775 continue;
5776
5777 memset (counts, '\0', i * sizeof (unsigned long int));
5778
5779 /* Determine how often each hash bucket is used. */
5780 for (j = 0; j < nsyms; ++j)
5781 ++counts[hashcodes[j] % i];
5782
5783 /* For the weight function we need some information about the
5784 pagesize on the target. This is information need not be 100%
5785 accurate. Since this information is not available (so far) we
5786 define it here to a reasonable default value. If it is crucial
5787 to have a better value some day simply define this value. */
5788# ifndef BFD_TARGET_PAGESIZE
5789# define BFD_TARGET_PAGESIZE (4096)
5790# endif
5791
5792 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5793 and the chains. */
5794 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5795
5796# if 1
5797 /* Variant 1: optimize for short chains. We add the squares
5798 of all the chain lengths (which favors many small chain
5799 over a few long chains). */
5800 for (j = 0; j < i; ++j)
5801 max += counts[j] * counts[j];
5802
5803 /* This adds penalties for the overall size of the table. */
5804 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5805 max *= fact * fact;
5806# else
5807 /* Variant 2: Optimize a lot more for small table. Here we
5808 also add squares of the size but we also add penalties for
5809 empty slots (the +1 term). */
5810 for (j = 0; j < i; ++j)
5811 max += (1 + counts[j]) * (1 + counts[j]);
5812
5813 /* The overall size of the table is considered, but not as
5814 strong as in variant 1, where it is squared. */
5815 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5816 max *= fact;
5817# endif
5818
5819 /* Compare with current best results. */
5820 if (max < best_chlen)
5821 {
5822 best_chlen = max;
5823 best_size = i;
5824 no_improvement_count = 0;
5825 }
5826 /* PR 11843: Avoid futile long searches for the best bucket size
5827 when there are a large number of symbols. */
5828 else if (++no_improvement_count == 100)
5829 break;
5830 }
5831
5832 free (counts);
5833 }
5834 else
5835#endif /* defined (BFD_HOST_U_64_BIT) */
5836 {
5837 /* This is the fallback solution if no 64bit type is available or if we
5838 are not supposed to spend much time on optimizations. We select the
5839 bucket count using a fixed set of numbers. */
5840 for (i = 0; elf_buckets[i] != 0; i++)
5841 {
5842 best_size = elf_buckets[i];
5843 if (nsyms < elf_buckets[i + 1])
5844 break;
5845 }
5846 if (gnu_hash && best_size < 2)
5847 best_size = 2;
5848 }
5849
5850 return best_size;
5851}
5852
5853/* Size any SHT_GROUP section for ld -r. */
5854
5855bfd_boolean
5856_bfd_elf_size_group_sections (struct bfd_link_info *info)
5857{
5858 bfd *ibfd;
5859
5860 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5861 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5862 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5863 return FALSE;
5864 return TRUE;
5865}
5866
5867/* Set a default stack segment size. The value in INFO wins. If it
5868 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5869 undefined it is initialized. */
5870
5871bfd_boolean
5872bfd_elf_stack_segment_size (bfd *output_bfd,
5873 struct bfd_link_info *info,
5874 const char *legacy_symbol,
5875 bfd_vma default_size)
5876{
5877 struct elf_link_hash_entry *h = NULL;
5878
5879 /* Look for legacy symbol. */
5880 if (legacy_symbol)
5881 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5882 FALSE, FALSE, FALSE);
5883 if (h && (h->root.type == bfd_link_hash_defined
5884 || h->root.type == bfd_link_hash_defweak)
5885 && h->def_regular
5886 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5887 {
5888 /* The symbol has no type if specified on the command line. */
5889 h->type = STT_OBJECT;
5890 if (info->stacksize)
5891 /* xgettext:c-format */
5892 _bfd_error_handler (_("%B: stack size specified and %s set"),
5893 output_bfd, legacy_symbol);
5894 else if (h->root.u.def.section != bfd_abs_section_ptr)
5895 /* xgettext:c-format */
5896 _bfd_error_handler (_("%B: %s not absolute"),
5897 output_bfd, legacy_symbol);
5898 else
5899 info->stacksize = h->root.u.def.value;
5900 }
5901
5902 if (!info->stacksize)
5903 /* If the user didn't set a size, or explicitly inhibit the
5904 size, set it now. */
5905 info->stacksize = default_size;
5906
5907 /* Provide the legacy symbol, if it is referenced. */
5908 if (h && (h->root.type == bfd_link_hash_undefined
5909 || h->root.type == bfd_link_hash_undefweak))
5910 {
5911 struct bfd_link_hash_entry *bh = NULL;
5912
5913 if (!(_bfd_generic_link_add_one_symbol
5914 (info, output_bfd, legacy_symbol,
5915 BSF_GLOBAL, bfd_abs_section_ptr,
5916 info->stacksize >= 0 ? info->stacksize : 0,
5917 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5918 return FALSE;
5919
5920 h = (struct elf_link_hash_entry *) bh;
5921 h->def_regular = 1;
5922 h->type = STT_OBJECT;
5923 }
5924
5925 return TRUE;
5926}
5927
5928/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5929
5930struct elf_gc_sweep_symbol_info
5931{
5932 struct bfd_link_info *info;
5933 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5934 bfd_boolean);
5935};
5936
5937static bfd_boolean
5938elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5939{
5940 if (!h->mark
5941 && (((h->root.type == bfd_link_hash_defined
5942 || h->root.type == bfd_link_hash_defweak)
5943 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5944 && h->root.u.def.section->gc_mark))
5945 || h->root.type == bfd_link_hash_undefined
5946 || h->root.type == bfd_link_hash_undefweak))
5947 {
5948 struct elf_gc_sweep_symbol_info *inf;
5949
5950 inf = (struct elf_gc_sweep_symbol_info *) data;
5951 (*inf->hide_symbol) (inf->info, h, TRUE);
5952 h->def_regular = 0;
5953 h->ref_regular = 0;
5954 h->ref_regular_nonweak = 0;
5955 }
5956
5957 return TRUE;
5958}
5959
5960/* Set up the sizes and contents of the ELF dynamic sections. This is
5961 called by the ELF linker emulation before_allocation routine. We
5962 must set the sizes of the sections before the linker sets the
5963 addresses of the various sections. */
5964
5965bfd_boolean
5966bfd_elf_size_dynamic_sections (bfd *output_bfd,
5967 const char *soname,
5968 const char *rpath,
5969 const char *filter_shlib,
5970 const char *audit,
5971 const char *depaudit,
5972 const char * const *auxiliary_filters,
5973 struct bfd_link_info *info,
5974 asection **sinterpptr)
5975{
5976 bfd *dynobj;
5977 const struct elf_backend_data *bed;
5978
5979 *sinterpptr = NULL;
5980
5981 if (!is_elf_hash_table (info->hash))
5982 return TRUE;
5983
5984 dynobj = elf_hash_table (info)->dynobj;
5985
5986 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5987 {
5988 struct bfd_elf_version_tree *verdefs;
5989 struct elf_info_failed asvinfo;
5990 struct bfd_elf_version_tree *t;
5991 struct bfd_elf_version_expr *d;
5992 struct elf_info_failed eif;
5993 bfd_boolean all_defined;
5994 asection *s;
5995 size_t soname_indx;
5996
5997 eif.info = info;
5998 eif.failed = FALSE;
5999
6000 /* If we are supposed to export all symbols into the dynamic symbol
6001 table (this is not the normal case), then do so. */
6002 if (info->export_dynamic
6003 || (bfd_link_executable (info) && info->dynamic))
6004 {
6005 elf_link_hash_traverse (elf_hash_table (info),
6006 _bfd_elf_export_symbol,
6007 &eif);
6008 if (eif.failed)
6009 return FALSE;
6010 }
6011
6012 if (soname != NULL)
6013 {
6014 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6015 soname, TRUE);
6016 if (soname_indx == (size_t) -1
6017 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6018 return FALSE;
6019 }
6020 else
6021 soname_indx = (size_t) -1;
6022
6023 /* Make all global versions with definition. */
6024 for (t = info->version_info; t != NULL; t = t->next)
6025 for (d = t->globals.list; d != NULL; d = d->next)
6026 if (!d->symver && d->literal)
6027 {
6028 const char *verstr, *name;
6029 size_t namelen, verlen, newlen;
6030 char *newname, *p, leading_char;
6031 struct elf_link_hash_entry *newh;
6032
6033 leading_char = bfd_get_symbol_leading_char (output_bfd);
6034 name = d->pattern;
6035 namelen = strlen (name) + (leading_char != '\0');
6036 verstr = t->name;
6037 verlen = strlen (verstr);
6038 newlen = namelen + verlen + 3;
6039
6040 newname = (char *) bfd_malloc (newlen);
6041 if (newname == NULL)
6042 return FALSE;
6043 newname[0] = leading_char;
6044 memcpy (newname + (leading_char != '\0'), name, namelen);
6045
6046 /* Check the hidden versioned definition. */
6047 p = newname + namelen;
6048 *p++ = ELF_VER_CHR;
6049 memcpy (p, verstr, verlen + 1);
6050 newh = elf_link_hash_lookup (elf_hash_table (info),
6051 newname, FALSE, FALSE,
6052 FALSE);
6053 if (newh == NULL
6054 || (newh->root.type != bfd_link_hash_defined
6055 && newh->root.type != bfd_link_hash_defweak))
6056 {
6057 /* Check the default versioned definition. */
6058 *p++ = ELF_VER_CHR;
6059 memcpy (p, verstr, verlen + 1);
6060 newh = elf_link_hash_lookup (elf_hash_table (info),
6061 newname, FALSE, FALSE,
6062 FALSE);
6063 }
6064 free (newname);
6065
6066 /* Mark this version if there is a definition and it is
6067 not defined in a shared object. */
6068 if (newh != NULL
6069 && !newh->def_dynamic
6070 && (newh->root.type == bfd_link_hash_defined
6071 || newh->root.type == bfd_link_hash_defweak))
6072 d->symver = 1;
6073 }
6074
6075 /* Attach all the symbols to their version information. */
6076 asvinfo.info = info;
6077 asvinfo.failed = FALSE;
6078
6079 elf_link_hash_traverse (elf_hash_table (info),
6080 _bfd_elf_link_assign_sym_version,
6081 &asvinfo);
6082 if (asvinfo.failed)
6083 return FALSE;
6084
6085 if (!info->allow_undefined_version)
6086 {
6087 /* Check if all global versions have a definition. */
6088 all_defined = TRUE;
6089 for (t = info->version_info; t != NULL; t = t->next)
6090 for (d = t->globals.list; d != NULL; d = d->next)
6091 if (d->literal && !d->symver && !d->script)
6092 {
6093 _bfd_error_handler
6094 (_("%s: undefined version: %s"),
6095 d->pattern, t->name);
6096 all_defined = FALSE;
6097 }
6098
6099 if (!all_defined)
6100 {
6101 bfd_set_error (bfd_error_bad_value);
6102 return FALSE;
6103 }
6104 }
6105
6106 /* Set up the version definition section. */
6107 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6108 BFD_ASSERT (s != NULL);
6109
6110 /* We may have created additional version definitions if we are
6111 just linking a regular application. */
6112 verdefs = info->version_info;
6113
6114 /* Skip anonymous version tag. */
6115 if (verdefs != NULL && verdefs->vernum == 0)
6116 verdefs = verdefs->next;
6117
6118 if (verdefs == NULL && !info->create_default_symver)
6119 s->flags |= SEC_EXCLUDE;
6120 else
6121 {
6122 unsigned int cdefs;
6123 bfd_size_type size;
6124 bfd_byte *p;
6125 Elf_Internal_Verdef def;
6126 Elf_Internal_Verdaux defaux;
6127 struct bfd_link_hash_entry *bh;
6128 struct elf_link_hash_entry *h;
6129 const char *name;
6130
6131 cdefs = 0;
6132 size = 0;
6133
6134 /* Make space for the base version. */
6135 size += sizeof (Elf_External_Verdef);
6136 size += sizeof (Elf_External_Verdaux);
6137 ++cdefs;
6138
6139 /* Make space for the default version. */
6140 if (info->create_default_symver)
6141 {
6142 size += sizeof (Elf_External_Verdef);
6143 ++cdefs;
6144 }
6145
6146 for (t = verdefs; t != NULL; t = t->next)
6147 {
6148 struct bfd_elf_version_deps *n;
6149
6150 /* Don't emit base version twice. */
6151 if (t->vernum == 0)
6152 continue;
6153
6154 size += sizeof (Elf_External_Verdef);
6155 size += sizeof (Elf_External_Verdaux);
6156 ++cdefs;
6157
6158 for (n = t->deps; n != NULL; n = n->next)
6159 size += sizeof (Elf_External_Verdaux);
6160 }
6161
6162 s->size = size;
6163 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6164 if (s->contents == NULL && s->size != 0)
6165 return FALSE;
6166
6167 /* Fill in the version definition section. */
6168
6169 p = s->contents;
6170
6171 def.vd_version = VER_DEF_CURRENT;
6172 def.vd_flags = VER_FLG_BASE;
6173 def.vd_ndx = 1;
6174 def.vd_cnt = 1;
6175 if (info->create_default_symver)
6176 {
6177 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6178 def.vd_next = sizeof (Elf_External_Verdef);
6179 }
6180 else
6181 {
6182 def.vd_aux = sizeof (Elf_External_Verdef);
6183 def.vd_next = (sizeof (Elf_External_Verdef)
6184 + sizeof (Elf_External_Verdaux));
6185 }
6186
6187 if (soname_indx != (size_t) -1)
6188 {
6189 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6190 soname_indx);
6191 def.vd_hash = bfd_elf_hash (soname);
6192 defaux.vda_name = soname_indx;
6193 name = soname;
6194 }
6195 else
6196 {
6197 size_t indx;
6198
6199 name = lbasename (output_bfd->filename);
6200 def.vd_hash = bfd_elf_hash (name);
6201 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6202 name, FALSE);
6203 if (indx == (size_t) -1)
6204 return FALSE;
6205 defaux.vda_name = indx;
6206 }
6207 defaux.vda_next = 0;
6208
6209 _bfd_elf_swap_verdef_out (output_bfd, &def,
6210 (Elf_External_Verdef *) p);
6211 p += sizeof (Elf_External_Verdef);
6212 if (info->create_default_symver)
6213 {
6214 /* Add a symbol representing this version. */
6215 bh = NULL;
6216 if (! (_bfd_generic_link_add_one_symbol
6217 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6218 0, NULL, FALSE,
6219 get_elf_backend_data (dynobj)->collect, &bh)))
6220 return FALSE;
6221 h = (struct elf_link_hash_entry *) bh;
6222 h->non_elf = 0;
6223 h->def_regular = 1;
6224 h->type = STT_OBJECT;
6225 h->verinfo.vertree = NULL;
6226
6227 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6228 return FALSE;
6229
6230 /* Create a duplicate of the base version with the same
6231 aux block, but different flags. */
6232 def.vd_flags = 0;
6233 def.vd_ndx = 2;
6234 def.vd_aux = sizeof (Elf_External_Verdef);
6235 if (verdefs)
6236 def.vd_next = (sizeof (Elf_External_Verdef)
6237 + sizeof (Elf_External_Verdaux));
6238 else
6239 def.vd_next = 0;
6240 _bfd_elf_swap_verdef_out (output_bfd, &def,
6241 (Elf_External_Verdef *) p);
6242 p += sizeof (Elf_External_Verdef);
6243 }
6244 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6245 (Elf_External_Verdaux *) p);
6246 p += sizeof (Elf_External_Verdaux);
6247
6248 for (t = verdefs; t != NULL; t = t->next)
6249 {
6250 unsigned int cdeps;
6251 struct bfd_elf_version_deps *n;
6252
6253 /* Don't emit the base version twice. */
6254 if (t->vernum == 0)
6255 continue;
6256
6257 cdeps = 0;
6258 for (n = t->deps; n != NULL; n = n->next)
6259 ++cdeps;
6260
6261 /* Add a symbol representing this version. */
6262 bh = NULL;
6263 if (! (_bfd_generic_link_add_one_symbol
6264 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6265 0, NULL, FALSE,
6266 get_elf_backend_data (dynobj)->collect, &bh)))
6267 return FALSE;
6268 h = (struct elf_link_hash_entry *) bh;
6269 h->non_elf = 0;
6270 h->def_regular = 1;
6271 h->type = STT_OBJECT;
6272 h->verinfo.vertree = t;
6273
6274 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6275 return FALSE;
6276
6277 def.vd_version = VER_DEF_CURRENT;
6278 def.vd_flags = 0;
6279 if (t->globals.list == NULL
6280 && t->locals.list == NULL
6281 && ! t->used)
6282 def.vd_flags |= VER_FLG_WEAK;
6283 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6284 def.vd_cnt = cdeps + 1;
6285 def.vd_hash = bfd_elf_hash (t->name);
6286 def.vd_aux = sizeof (Elf_External_Verdef);
6287 def.vd_next = 0;
6288
6289 /* If a basever node is next, it *must* be the last node in
6290 the chain, otherwise Verdef construction breaks. */
6291 if (t->next != NULL && t->next->vernum == 0)
6292 BFD_ASSERT (t->next->next == NULL);
6293
6294 if (t->next != NULL && t->next->vernum != 0)
6295 def.vd_next = (sizeof (Elf_External_Verdef)
6296 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6297
6298 _bfd_elf_swap_verdef_out (output_bfd, &def,
6299 (Elf_External_Verdef *) p);
6300 p += sizeof (Elf_External_Verdef);
6301
6302 defaux.vda_name = h->dynstr_index;
6303 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6304 h->dynstr_index);
6305 defaux.vda_next = 0;
6306 if (t->deps != NULL)
6307 defaux.vda_next = sizeof (Elf_External_Verdaux);
6308 t->name_indx = defaux.vda_name;
6309
6310 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6311 (Elf_External_Verdaux *) p);
6312 p += sizeof (Elf_External_Verdaux);
6313
6314 for (n = t->deps; n != NULL; n = n->next)
6315 {
6316 if (n->version_needed == NULL)
6317 {
6318 /* This can happen if there was an error in the
6319 version script. */
6320 defaux.vda_name = 0;
6321 }
6322 else
6323 {
6324 defaux.vda_name = n->version_needed->name_indx;
6325 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6326 defaux.vda_name);
6327 }
6328 if (n->next == NULL)
6329 defaux.vda_next = 0;
6330 else
6331 defaux.vda_next = sizeof (Elf_External_Verdaux);
6332
6333 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6334 (Elf_External_Verdaux *) p);
6335 p += sizeof (Elf_External_Verdaux);
6336 }
6337 }
6338
6339 elf_tdata (output_bfd)->cverdefs = cdefs;
6340 }
6341
6342 /* Work out the size of the version reference section. */
6343
6344 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6345 BFD_ASSERT (s != NULL);
6346 {
6347 struct elf_find_verdep_info sinfo;
6348
6349 sinfo.info = info;
6350 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6351 if (sinfo.vers == 0)
6352 sinfo.vers = 1;
6353 sinfo.failed = FALSE;
6354
6355 elf_link_hash_traverse (elf_hash_table (info),
6356 _bfd_elf_link_find_version_dependencies,
6357 &sinfo);
6358 if (sinfo.failed)
6359 return FALSE;
6360
6361 if (elf_tdata (output_bfd)->verref == NULL)
6362 s->flags |= SEC_EXCLUDE;
6363 else
6364 {
6365 Elf_Internal_Verneed *vn;
6366 unsigned int size;
6367 unsigned int crefs;
6368 bfd_byte *p;
6369
6370 /* Build the version dependency section. */
6371 size = 0;
6372 crefs = 0;
6373 for (vn = elf_tdata (output_bfd)->verref;
6374 vn != NULL;
6375 vn = vn->vn_nextref)
6376 {
6377 Elf_Internal_Vernaux *a;
6378
6379 size += sizeof (Elf_External_Verneed);
6380 ++crefs;
6381 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6382 size += sizeof (Elf_External_Vernaux);
6383 }
6384
6385 s->size = size;
6386 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6387 if (s->contents == NULL)
6388 return FALSE;
6389
6390 p = s->contents;
6391 for (vn = elf_tdata (output_bfd)->verref;
6392 vn != NULL;
6393 vn = vn->vn_nextref)
6394 {
6395 unsigned int caux;
6396 Elf_Internal_Vernaux *a;
6397 size_t indx;
6398
6399 caux = 0;
6400 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6401 ++caux;
6402
6403 vn->vn_version = VER_NEED_CURRENT;
6404 vn->vn_cnt = caux;
6405 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6406 elf_dt_name (vn->vn_bfd) != NULL
6407 ? elf_dt_name (vn->vn_bfd)
6408 : lbasename (vn->vn_bfd->filename),
6409 FALSE);
6410 if (indx == (size_t) -1)
6411 return FALSE;
6412 vn->vn_file = indx;
6413 vn->vn_aux = sizeof (Elf_External_Verneed);
6414 if (vn->vn_nextref == NULL)
6415 vn->vn_next = 0;
6416 else
6417 vn->vn_next = (sizeof (Elf_External_Verneed)
6418 + caux * sizeof (Elf_External_Vernaux));
6419
6420 _bfd_elf_swap_verneed_out (output_bfd, vn,
6421 (Elf_External_Verneed *) p);
6422 p += sizeof (Elf_External_Verneed);
6423
6424 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6425 {
6426 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6427 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6428 a->vna_nodename, FALSE);
6429 if (indx == (size_t) -1)
6430 return FALSE;
6431 a->vna_name = indx;
6432 if (a->vna_nextptr == NULL)
6433 a->vna_next = 0;
6434 else
6435 a->vna_next = sizeof (Elf_External_Vernaux);
6436
6437 _bfd_elf_swap_vernaux_out (output_bfd, a,
6438 (Elf_External_Vernaux *) p);
6439 p += sizeof (Elf_External_Vernaux);
6440 }
6441 }
6442
6443 elf_tdata (output_bfd)->cverrefs = crefs;
6444 }
6445 }
6446 }
6447
6448 bed = get_elf_backend_data (output_bfd);
6449
6450 if (info->gc_sections && bed->can_gc_sections)
6451 {
6452 struct elf_gc_sweep_symbol_info sweep_info;
6453 unsigned long section_sym_count;
6454
6455 /* Remove the symbols that were in the swept sections from the
6456 dynamic symbol table. GCFIXME: Anyone know how to get them
6457 out of the static symbol table as well? */
6458 sweep_info.info = info;
6459 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6460 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6461 &sweep_info);
6462
6463 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6464 }
6465
6466 /* Any syms created from now on start with -1 in
6467 got.refcount/offset and plt.refcount/offset. */
6468 elf_hash_table (info)->init_got_refcount
6469 = elf_hash_table (info)->init_got_offset;
6470 elf_hash_table (info)->init_plt_refcount
6471 = elf_hash_table (info)->init_plt_offset;
6472
6473 if (bfd_link_relocatable (info)
6474 && !_bfd_elf_size_group_sections (info))
6475 return FALSE;
6476
6477 /* The backend may have to create some sections regardless of whether
6478 we're dynamic or not. */
6479 if (bed->elf_backend_always_size_sections
6480 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6481 return FALSE;
6482
6483 /* Determine any GNU_STACK segment requirements, after the backend
6484 has had a chance to set a default segment size. */
6485 if (info->execstack)
6486 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6487 else if (info->noexecstack)
6488 elf_stack_flags (output_bfd) = PF_R | PF_W;
6489 else
6490 {
6491 bfd *inputobj;
6492 asection *notesec = NULL;
6493 int exec = 0;
6494
6495 for (inputobj = info->input_bfds;
6496 inputobj;
6497 inputobj = inputobj->link.next)
6498 {
6499 asection *s;
6500
6501 if (inputobj->flags
6502 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6503 continue;
6504 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6505 if (s)
6506 {
6507 if (s->flags & SEC_CODE)
6508 exec = PF_X;
6509 notesec = s;
6510 }
6511 else if (bed->default_execstack)
6512 exec = PF_X;
6513 }
6514 if (notesec || info->stacksize > 0)
6515 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6516 if (notesec && exec && bfd_link_relocatable (info)
6517 && notesec->output_section != bfd_abs_section_ptr)
6518 notesec->output_section->flags |= SEC_CODE;
6519 }
6520
6521 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6522 {
6523 struct elf_info_failed eif;
6524 struct elf_link_hash_entry *h;
6525 asection *dynstr;
6526 asection *s;
6527
6528 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6529 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6530
6531 if (info->symbolic)
6532 {
6533 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6534 return FALSE;
6535 info->flags |= DF_SYMBOLIC;
6536 }
6537
6538 if (rpath != NULL)
6539 {
6540 size_t indx;
6541 bfd_vma tag;
6542
6543 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6544 TRUE);
6545 if (indx == (size_t) -1)
6546 return FALSE;
6547
6548 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6549 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6550 return FALSE;
6551 }
6552
6553 if (filter_shlib != NULL)
6554 {
6555 size_t indx;
6556
6557 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6558 filter_shlib, TRUE);
6559 if (indx == (size_t) -1
6560 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6561 return FALSE;
6562 }
6563
6564 if (auxiliary_filters != NULL)
6565 {
6566 const char * const *p;
6567
6568 for (p = auxiliary_filters; *p != NULL; p++)
6569 {
6570 size_t indx;
6571
6572 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6573 *p, TRUE);
6574 if (indx == (size_t) -1
6575 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6576 return FALSE;
6577 }
6578 }
6579
6580 if (audit != NULL)
6581 {
6582 size_t indx;
6583
6584 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6585 TRUE);
6586 if (indx == (size_t) -1
6587 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6588 return FALSE;
6589 }
6590
6591 if (depaudit != NULL)
6592 {
6593 size_t indx;
6594
6595 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6596 TRUE);
6597 if (indx == (size_t) -1
6598 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6599 return FALSE;
6600 }
6601
6602 eif.info = info;
6603 eif.failed = FALSE;
6604
6605 /* Find all symbols which were defined in a dynamic object and make
6606 the backend pick a reasonable value for them. */
6607 elf_link_hash_traverse (elf_hash_table (info),
6608 _bfd_elf_adjust_dynamic_symbol,
6609 &eif);
6610 if (eif.failed)
6611 return FALSE;
6612
6613 /* Add some entries to the .dynamic section. We fill in some of the
6614 values later, in bfd_elf_final_link, but we must add the entries
6615 now so that we know the final size of the .dynamic section. */
6616
6617 /* If there are initialization and/or finalization functions to
6618 call then add the corresponding DT_INIT/DT_FINI entries. */
6619 h = (info->init_function
6620 ? elf_link_hash_lookup (elf_hash_table (info),
6621 info->init_function, FALSE,
6622 FALSE, FALSE)
6623 : NULL);
6624 if (h != NULL
6625 && (h->ref_regular
6626 || h->def_regular))
6627 {
6628 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6629 return FALSE;
6630 }
6631 h = (info->fini_function
6632 ? elf_link_hash_lookup (elf_hash_table (info),
6633 info->fini_function, FALSE,
6634 FALSE, FALSE)
6635 : NULL);
6636 if (h != NULL
6637 && (h->ref_regular
6638 || h->def_regular))
6639 {
6640 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6641 return FALSE;
6642 }
6643
6644 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6645 if (s != NULL && s->linker_has_input)
6646 {
6647 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6648 if (! bfd_link_executable (info))
6649 {
6650 bfd *sub;
6651 asection *o;
6652
6653 for (sub = info->input_bfds; sub != NULL;
6654 sub = sub->link.next)
6655 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6656 for (o = sub->sections; o != NULL; o = o->next)
6657 if (elf_section_data (o)->this_hdr.sh_type
6658 == SHT_PREINIT_ARRAY)
6659 {
6660 _bfd_error_handler
6661 (_("%B: .preinit_array section is not allowed in DSO"),
6662 sub);
6663 break;
6664 }
6665
6666 bfd_set_error (bfd_error_nonrepresentable_section);
6667 return FALSE;
6668 }
6669
6670 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6671 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6672 return FALSE;
6673 }
6674 s = bfd_get_section_by_name (output_bfd, ".init_array");
6675 if (s != NULL && s->linker_has_input)
6676 {
6677 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6678 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6679 return FALSE;
6680 }
6681 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6682 if (s != NULL && s->linker_has_input)
6683 {
6684 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6685 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6686 return FALSE;
6687 }
6688
6689 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6690 /* If .dynstr is excluded from the link, we don't want any of
6691 these tags. Strictly, we should be checking each section
6692 individually; This quick check covers for the case where
6693 someone does a /DISCARD/ : { *(*) }. */
6694 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6695 {
6696 bfd_size_type strsize;
6697
6698 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6699 if ((info->emit_hash
6700 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6701 || (info->emit_gnu_hash
6702 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6703 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6704 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6705 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6706 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6707 bed->s->sizeof_sym))
6708 return FALSE;
6709 }
6710 }
6711
6712 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6713 return FALSE;
6714
6715 /* The backend must work out the sizes of all the other dynamic
6716 sections. */
6717 if (dynobj != NULL
6718 && bed->elf_backend_size_dynamic_sections != NULL
6719 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6720 return FALSE;
6721
6722 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6723 {
6724 unsigned long section_sym_count;
6725
6726 if (elf_tdata (output_bfd)->cverdefs)
6727 {
6728 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6729
6730 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6731 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6732 return FALSE;
6733 }
6734
6735 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6736 {
6737 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6738 return FALSE;
6739 }
6740 else if (info->flags & DF_BIND_NOW)
6741 {
6742 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6743 return FALSE;
6744 }
6745
6746 if (info->flags_1)
6747 {
6748 if (bfd_link_executable (info))
6749 info->flags_1 &= ~ (DF_1_INITFIRST
6750 | DF_1_NODELETE
6751 | DF_1_NOOPEN);
6752 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6753 return FALSE;
6754 }
6755
6756 if (elf_tdata (output_bfd)->cverrefs)
6757 {
6758 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6759
6760 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6761 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6762 return FALSE;
6763 }
6764
6765 if ((elf_tdata (output_bfd)->cverrefs == 0
6766 && elf_tdata (output_bfd)->cverdefs == 0)
6767 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6768 &section_sym_count) == 0)
6769 {
6770 asection *s;
6771
6772 s = bfd_get_linker_section (dynobj, ".gnu.version");
6773 s->flags |= SEC_EXCLUDE;
6774 }
6775 }
6776 return TRUE;
6777}
6778
6779/* Find the first non-excluded output section. We'll use its
6780 section symbol for some emitted relocs. */
6781void
6782_bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6783{
6784 asection *s;
6785
6786 for (s = output_bfd->sections; s != NULL; s = s->next)
6787 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6788 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6789 {
6790 elf_hash_table (info)->text_index_section = s;
6791 break;
6792 }
6793}
6794
6795/* Find two non-excluded output sections, one for code, one for data.
6796 We'll use their section symbols for some emitted relocs. */
6797void
6798_bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6799{
6800 asection *s;
6801
6802 /* Data first, since setting text_index_section changes
6803 _bfd_elf_link_omit_section_dynsym. */
6804 for (s = output_bfd->sections; s != NULL; s = s->next)
6805 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6806 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6807 {
6808 elf_hash_table (info)->data_index_section = s;
6809 break;
6810 }
6811
6812 for (s = output_bfd->sections; s != NULL; s = s->next)
6813 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6814 == (SEC_ALLOC | SEC_READONLY))
6815 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6816 {
6817 elf_hash_table (info)->text_index_section = s;
6818 break;
6819 }
6820
6821 if (elf_hash_table (info)->text_index_section == NULL)
6822 elf_hash_table (info)->text_index_section
6823 = elf_hash_table (info)->data_index_section;
6824}
6825
6826bfd_boolean
6827bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6828{
6829 const struct elf_backend_data *bed;
6830
6831 if (!is_elf_hash_table (info->hash))
6832 return TRUE;
6833
6834 bed = get_elf_backend_data (output_bfd);
6835 (*bed->elf_backend_init_index_section) (output_bfd, info);
6836
6837 if (elf_hash_table (info)->dynamic_sections_created)
6838 {
6839 bfd *dynobj;
6840 asection *s;
6841 bfd_size_type dynsymcount;
6842 unsigned long section_sym_count;
6843 unsigned int dtagcount;
6844
6845 dynobj = elf_hash_table (info)->dynobj;
6846
6847 /* Assign dynsym indicies. In a shared library we generate a
6848 section symbol for each output section, which come first.
6849 Next come all of the back-end allocated local dynamic syms,
6850 followed by the rest of the global symbols. */
6851
6852 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6853 &section_sym_count);
6854
6855 /* Work out the size of the symbol version section. */
6856 s = bfd_get_linker_section (dynobj, ".gnu.version");
6857 BFD_ASSERT (s != NULL);
6858 if ((s->flags & SEC_EXCLUDE) == 0)
6859 {
6860 s->size = dynsymcount * sizeof (Elf_External_Versym);
6861 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6862 if (s->contents == NULL)
6863 return FALSE;
6864
6865 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6866 return FALSE;
6867 }
6868
6869 /* Set the size of the .dynsym and .hash sections. We counted
6870 the number of dynamic symbols in elf_link_add_object_symbols.
6871 We will build the contents of .dynsym and .hash when we build
6872 the final symbol table, because until then we do not know the
6873 correct value to give the symbols. We built the .dynstr
6874 section as we went along in elf_link_add_object_symbols. */
6875 s = elf_hash_table (info)->dynsym;
6876 BFD_ASSERT (s != NULL);
6877 s->size = dynsymcount * bed->s->sizeof_sym;
6878
6879 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6880 if (s->contents == NULL)
6881 return FALSE;
6882
6883 /* The first entry in .dynsym is a dummy symbol. Clear all the
6884 section syms, in case we don't output them all. */
6885 ++section_sym_count;
6886 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6887
6888 elf_hash_table (info)->bucketcount = 0;
6889
6890 /* Compute the size of the hashing table. As a side effect this
6891 computes the hash values for all the names we export. */
6892 if (info->emit_hash)
6893 {
6894 unsigned long int *hashcodes;
6895 struct hash_codes_info hashinf;
6896 bfd_size_type amt;
6897 unsigned long int nsyms;
6898 size_t bucketcount;
6899 size_t hash_entry_size;
6900
6901 /* Compute the hash values for all exported symbols. At the same
6902 time store the values in an array so that we could use them for
6903 optimizations. */
6904 amt = dynsymcount * sizeof (unsigned long int);
6905 hashcodes = (unsigned long int *) bfd_malloc (amt);
6906 if (hashcodes == NULL)
6907 return FALSE;
6908 hashinf.hashcodes = hashcodes;
6909 hashinf.error = FALSE;
6910
6911 /* Put all hash values in HASHCODES. */
6912 elf_link_hash_traverse (elf_hash_table (info),
6913 elf_collect_hash_codes, &hashinf);
6914 if (hashinf.error)
6915 {
6916 free (hashcodes);
6917 return FALSE;
6918 }
6919
6920 nsyms = hashinf.hashcodes - hashcodes;
6921 bucketcount
6922 = compute_bucket_count (info, hashcodes, nsyms, 0);
6923 free (hashcodes);
6924
6925 if (bucketcount == 0)
6926 return FALSE;
6927
6928 elf_hash_table (info)->bucketcount = bucketcount;
6929
6930 s = bfd_get_linker_section (dynobj, ".hash");
6931 BFD_ASSERT (s != NULL);
6932 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6933 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6934 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6935 if (s->contents == NULL)
6936 return FALSE;
6937
6938 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6939 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6940 s->contents + hash_entry_size);
6941 }
6942
6943 if (info->emit_gnu_hash)
6944 {
6945 size_t i, cnt;
6946 unsigned char *contents;
6947 struct collect_gnu_hash_codes cinfo;
6948 bfd_size_type amt;
6949 size_t bucketcount;
6950
6951 memset (&cinfo, 0, sizeof (cinfo));
6952
6953 /* Compute the hash values for all exported symbols. At the same
6954 time store the values in an array so that we could use them for
6955 optimizations. */
6956 amt = dynsymcount * 2 * sizeof (unsigned long int);
6957 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6958 if (cinfo.hashcodes == NULL)
6959 return FALSE;
6960
6961 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6962 cinfo.min_dynindx = -1;
6963 cinfo.output_bfd = output_bfd;
6964 cinfo.bed = bed;
6965
6966 /* Put all hash values in HASHCODES. */
6967 elf_link_hash_traverse (elf_hash_table (info),
6968 elf_collect_gnu_hash_codes, &cinfo);
6969 if (cinfo.error)
6970 {
6971 free (cinfo.hashcodes);
6972 return FALSE;
6973 }
6974
6975 bucketcount
6976 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6977
6978 if (bucketcount == 0)
6979 {
6980 free (cinfo.hashcodes);
6981 return FALSE;
6982 }
6983
6984 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6985 BFD_ASSERT (s != NULL);
6986
6987 if (cinfo.nsyms == 0)
6988 {
6989 /* Empty .gnu.hash section is special. */
6990 BFD_ASSERT (cinfo.min_dynindx == -1);
6991 free (cinfo.hashcodes);
6992 s->size = 5 * 4 + bed->s->arch_size / 8;
6993 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6994 if (contents == NULL)
6995 return FALSE;
6996 s->contents = contents;
6997 /* 1 empty bucket. */
6998 bfd_put_32 (output_bfd, 1, contents);
6999 /* SYMIDX above the special symbol 0. */
7000 bfd_put_32 (output_bfd, 1, contents + 4);
7001 /* Just one word for bitmask. */
7002 bfd_put_32 (output_bfd, 1, contents + 8);
7003 /* Only hash fn bloom filter. */
7004 bfd_put_32 (output_bfd, 0, contents + 12);
7005 /* No hashes are valid - empty bitmask. */
7006 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7007 /* No hashes in the only bucket. */
7008 bfd_put_32 (output_bfd, 0,
7009 contents + 16 + bed->s->arch_size / 8);
7010 }
7011 else
7012 {
7013 unsigned long int maskwords, maskbitslog2, x;
7014 BFD_ASSERT (cinfo.min_dynindx != -1);
7015
7016 x = cinfo.nsyms;
7017 maskbitslog2 = 1;
7018 while ((x >>= 1) != 0)
7019 ++maskbitslog2;
7020 if (maskbitslog2 < 3)
7021 maskbitslog2 = 5;
7022 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7023 maskbitslog2 = maskbitslog2 + 3;
7024 else
7025 maskbitslog2 = maskbitslog2 + 2;
7026 if (bed->s->arch_size == 64)
7027 {
7028 if (maskbitslog2 == 5)
7029 maskbitslog2 = 6;
7030 cinfo.shift1 = 6;
7031 }
7032 else
7033 cinfo.shift1 = 5;
7034 cinfo.mask = (1 << cinfo.shift1) - 1;
7035 cinfo.shift2 = maskbitslog2;
7036 cinfo.maskbits = 1 << maskbitslog2;
7037 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7038 amt = bucketcount * sizeof (unsigned long int) * 2;
7039 amt += maskwords * sizeof (bfd_vma);
7040 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7041 if (cinfo.bitmask == NULL)
7042 {
7043 free (cinfo.hashcodes);
7044 return FALSE;
7045 }
7046
7047 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7048 cinfo.indx = cinfo.counts + bucketcount;
7049 cinfo.symindx = dynsymcount - cinfo.nsyms;
7050 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7051
7052 /* Determine how often each hash bucket is used. */
7053 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7054 for (i = 0; i < cinfo.nsyms; ++i)
7055 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7056
7057 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7058 if (cinfo.counts[i] != 0)
7059 {
7060 cinfo.indx[i] = cnt;
7061 cnt += cinfo.counts[i];
7062 }
7063 BFD_ASSERT (cnt == dynsymcount);
7064 cinfo.bucketcount = bucketcount;
7065 cinfo.local_indx = cinfo.min_dynindx;
7066
7067 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7068 s->size += cinfo.maskbits / 8;
7069 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7070 if (contents == NULL)
7071 {
7072 free (cinfo.bitmask);
7073 free (cinfo.hashcodes);
7074 return FALSE;
7075 }
7076
7077 s->contents = contents;
7078 bfd_put_32 (output_bfd, bucketcount, contents);
7079 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7080 bfd_put_32 (output_bfd, maskwords, contents + 8);
7081 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7082 contents += 16 + cinfo.maskbits / 8;
7083
7084 for (i = 0; i < bucketcount; ++i)
7085 {
7086 if (cinfo.counts[i] == 0)
7087 bfd_put_32 (output_bfd, 0, contents);
7088 else
7089 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7090 contents += 4;
7091 }
7092
7093 cinfo.contents = contents;
7094
7095 /* Renumber dynamic symbols, populate .gnu.hash section. */
7096 elf_link_hash_traverse (elf_hash_table (info),
7097 elf_renumber_gnu_hash_syms, &cinfo);
7098
7099 contents = s->contents + 16;
7100 for (i = 0; i < maskwords; ++i)
7101 {
7102 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7103 contents);
7104 contents += bed->s->arch_size / 8;
7105 }
7106
7107 free (cinfo.bitmask);
7108 free (cinfo.hashcodes);
7109 }
7110 }
7111
7112 s = bfd_get_linker_section (dynobj, ".dynstr");
7113 BFD_ASSERT (s != NULL);
7114
7115 elf_finalize_dynstr (output_bfd, info);
7116
7117 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7118
7119 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7120 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7121 return FALSE;
7122 }
7123
7124 return TRUE;
7125}
7126\f
7127/* Make sure sec_info_type is cleared if sec_info is cleared too. */
7128
7129static void
7130merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7131 asection *sec)
7132{
7133 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7134 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7135}
7136
7137/* Finish SHF_MERGE section merging. */
7138
7139bfd_boolean
7140_bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7141{
7142 bfd *ibfd;
7143 asection *sec;
7144
7145 if (!is_elf_hash_table (info->hash))
7146 return FALSE;
7147
7148 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7149 if ((ibfd->flags & DYNAMIC) == 0
7150 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7151 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7152 == get_elf_backend_data (obfd)->s->elfclass))
7153 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7154 if ((sec->flags & SEC_MERGE) != 0
7155 && !bfd_is_abs_section (sec->output_section))
7156 {
7157 struct bfd_elf_section_data *secdata;
7158
7159 secdata = elf_section_data (sec);
7160 if (! _bfd_add_merge_section (obfd,
7161 &elf_hash_table (info)->merge_info,
7162 sec, &secdata->sec_info))
7163 return FALSE;
7164 else if (secdata->sec_info)
7165 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7166 }
7167
7168 if (elf_hash_table (info)->merge_info != NULL)
7169 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7170 merge_sections_remove_hook);
7171 return TRUE;
7172}
7173
7174/* Create an entry in an ELF linker hash table. */
7175
7176struct bfd_hash_entry *
7177_bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7178 struct bfd_hash_table *table,
7179 const char *string)
7180{
7181 /* Allocate the structure if it has not already been allocated by a
7182 subclass. */
7183 if (entry == NULL)
7184 {
7185 entry = (struct bfd_hash_entry *)
7186 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7187 if (entry == NULL)
7188 return entry;
7189 }
7190
7191 /* Call the allocation method of the superclass. */
7192 entry = _bfd_link_hash_newfunc (entry, table, string);
7193 if (entry != NULL)
7194 {
7195 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7196 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7197
7198 /* Set local fields. */
7199 ret->indx = -1;
7200 ret->dynindx = -1;
7201 ret->got = htab->init_got_refcount;
7202 ret->plt = htab->init_plt_refcount;
7203 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7204 - offsetof (struct elf_link_hash_entry, size)));
7205 /* Assume that we have been called by a non-ELF symbol reader.
7206 This flag is then reset by the code which reads an ELF input
7207 file. This ensures that a symbol created by a non-ELF symbol
7208 reader will have the flag set correctly. */
7209 ret->non_elf = 1;
7210 }
7211
7212 return entry;
7213}
7214
7215/* Copy data from an indirect symbol to its direct symbol, hiding the
7216 old indirect symbol. Also used for copying flags to a weakdef. */
7217
7218void
7219_bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7220 struct elf_link_hash_entry *dir,
7221 struct elf_link_hash_entry *ind)
7222{
7223 struct elf_link_hash_table *htab;
7224
7225 /* Copy down any references that we may have already seen to the
7226 symbol which just became indirect. */
7227
7228 if (dir->versioned != versioned_hidden)
7229 dir->ref_dynamic |= ind->ref_dynamic;
7230 dir->ref_regular |= ind->ref_regular;
7231 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7232 dir->non_got_ref |= ind->non_got_ref;
7233 dir->needs_plt |= ind->needs_plt;
7234 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7235
7236 if (ind->root.type != bfd_link_hash_indirect)
7237 return;
7238
7239 /* Copy over the global and procedure linkage table refcount entries.
7240 These may have been already set up by a check_relocs routine. */
7241 htab = elf_hash_table (info);
7242 if (ind->got.refcount > htab->init_got_refcount.refcount)
7243 {
7244 if (dir->got.refcount < 0)
7245 dir->got.refcount = 0;
7246 dir->got.refcount += ind->got.refcount;
7247 ind->got.refcount = htab->init_got_refcount.refcount;
7248 }
7249
7250 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7251 {
7252 if (dir->plt.refcount < 0)
7253 dir->plt.refcount = 0;
7254 dir->plt.refcount += ind->plt.refcount;
7255 ind->plt.refcount = htab->init_plt_refcount.refcount;
7256 }
7257
7258 if (ind->dynindx != -1)
7259 {
7260 if (dir->dynindx != -1)
7261 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7262 dir->dynindx = ind->dynindx;
7263 dir->dynstr_index = ind->dynstr_index;
7264 ind->dynindx = -1;
7265 ind->dynstr_index = 0;
7266 }
7267}
7268
7269void
7270_bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7271 struct elf_link_hash_entry *h,
7272 bfd_boolean force_local)
7273{
7274 /* STT_GNU_IFUNC symbol must go through PLT. */
7275 if (h->type != STT_GNU_IFUNC)
7276 {
7277 h->plt = elf_hash_table (info)->init_plt_offset;
7278 h->needs_plt = 0;
7279 }
7280 if (force_local)
7281 {
7282 h->forced_local = 1;
7283 if (h->dynindx != -1)
7284 {
7285 h->dynindx = -1;
7286 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7287 h->dynstr_index);
7288 }
7289 }
7290}
7291
7292/* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7293 caller. */
7294
7295bfd_boolean
7296_bfd_elf_link_hash_table_init
7297 (struct elf_link_hash_table *table,
7298 bfd *abfd,
7299 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7300 struct bfd_hash_table *,
7301 const char *),
7302 unsigned int entsize,
7303 enum elf_target_id target_id)
7304{
7305 bfd_boolean ret;
7306 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7307
7308 table->init_got_refcount.refcount = can_refcount - 1;
7309 table->init_plt_refcount.refcount = can_refcount - 1;
7310 table->init_got_offset.offset = -(bfd_vma) 1;
7311 table->init_plt_offset.offset = -(bfd_vma) 1;
7312 /* The first dynamic symbol is a dummy. */
7313 table->dynsymcount = 1;
7314
7315 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7316
7317 table->root.type = bfd_link_elf_hash_table;
7318 table->hash_table_id = target_id;
7319
7320 return ret;
7321}
7322
7323/* Create an ELF linker hash table. */
7324
7325struct bfd_link_hash_table *
7326_bfd_elf_link_hash_table_create (bfd *abfd)
7327{
7328 struct elf_link_hash_table *ret;
7329 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7330
7331 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7332 if (ret == NULL)
7333 return NULL;
7334
7335 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7336 sizeof (struct elf_link_hash_entry),
7337 GENERIC_ELF_DATA))
7338 {
7339 free (ret);
7340 return NULL;
7341 }
7342 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7343
7344 return &ret->root;
7345}
7346
7347/* Destroy an ELF linker hash table. */
7348
7349void
7350_bfd_elf_link_hash_table_free (bfd *obfd)
7351{
7352 struct elf_link_hash_table *htab;
7353
7354 htab = (struct elf_link_hash_table *) obfd->link.hash;
7355 if (htab->dynstr != NULL)
7356 _bfd_elf_strtab_free (htab->dynstr);
7357 _bfd_merge_sections_free (htab->merge_info);
7358 _bfd_generic_link_hash_table_free (obfd);
7359}
7360
7361/* This is a hook for the ELF emulation code in the generic linker to
7362 tell the backend linker what file name to use for the DT_NEEDED
7363 entry for a dynamic object. */
7364
7365void
7366bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7367{
7368 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7369 && bfd_get_format (abfd) == bfd_object)
7370 elf_dt_name (abfd) = name;
7371}
7372
7373int
7374bfd_elf_get_dyn_lib_class (bfd *abfd)
7375{
7376 int lib_class;
7377 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7378 && bfd_get_format (abfd) == bfd_object)
7379 lib_class = elf_dyn_lib_class (abfd);
7380 else
7381 lib_class = 0;
7382 return lib_class;
7383}
7384
7385void
7386bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7387{
7388 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7389 && bfd_get_format (abfd) == bfd_object)
7390 elf_dyn_lib_class (abfd) = lib_class;
7391}
7392
7393/* Get the list of DT_NEEDED entries for a link. This is a hook for
7394 the linker ELF emulation code. */
7395
7396struct bfd_link_needed_list *
7397bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7398 struct bfd_link_info *info)
7399{
7400 if (! is_elf_hash_table (info->hash))
7401 return NULL;
7402 return elf_hash_table (info)->needed;
7403}
7404
7405/* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7406 hook for the linker ELF emulation code. */
7407
7408struct bfd_link_needed_list *
7409bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7410 struct bfd_link_info *info)
7411{
7412 if (! is_elf_hash_table (info->hash))
7413 return NULL;
7414 return elf_hash_table (info)->runpath;
7415}
7416
7417/* Get the name actually used for a dynamic object for a link. This
7418 is the SONAME entry if there is one. Otherwise, it is the string
7419 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7420
7421const char *
7422bfd_elf_get_dt_soname (bfd *abfd)
7423{
7424 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7425 && bfd_get_format (abfd) == bfd_object)
7426 return elf_dt_name (abfd);
7427 return NULL;
7428}
7429
7430/* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7431 the ELF linker emulation code. */
7432
7433bfd_boolean
7434bfd_elf_get_bfd_needed_list (bfd *abfd,
7435 struct bfd_link_needed_list **pneeded)
7436{
7437 asection *s;
7438 bfd_byte *dynbuf = NULL;
7439 unsigned int elfsec;
7440 unsigned long shlink;
7441 bfd_byte *extdyn, *extdynend;
7442 size_t extdynsize;
7443 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7444
7445 *pneeded = NULL;
7446
7447 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7448 || bfd_get_format (abfd) != bfd_object)
7449 return TRUE;
7450
7451 s = bfd_get_section_by_name (abfd, ".dynamic");
7452 if (s == NULL || s->size == 0)
7453 return TRUE;
7454
7455 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7456 goto error_return;
7457
7458 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7459 if (elfsec == SHN_BAD)
7460 goto error_return;
7461
7462 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7463
7464 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7465 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7466
7467 extdyn = dynbuf;
7468 extdynend = extdyn + s->size;
7469 for (; extdyn < extdynend; extdyn += extdynsize)
7470 {
7471 Elf_Internal_Dyn dyn;
7472
7473 (*swap_dyn_in) (abfd, extdyn, &dyn);
7474
7475 if (dyn.d_tag == DT_NULL)
7476 break;
7477
7478 if (dyn.d_tag == DT_NEEDED)
7479 {
7480 const char *string;
7481 struct bfd_link_needed_list *l;
7482 unsigned int tagv = dyn.d_un.d_val;
7483 bfd_size_type amt;
7484
7485 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7486 if (string == NULL)
7487 goto error_return;
7488
7489 amt = sizeof *l;
7490 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7491 if (l == NULL)
7492 goto error_return;
7493
7494 l->by = abfd;
7495 l->name = string;
7496 l->next = *pneeded;
7497 *pneeded = l;
7498 }
7499 }
7500
7501 free (dynbuf);
7502
7503 return TRUE;
7504
7505 error_return:
7506 if (dynbuf != NULL)
7507 free (dynbuf);
7508 return FALSE;
7509}
7510
7511struct elf_symbuf_symbol
7512{
7513 unsigned long st_name; /* Symbol name, index in string tbl */
7514 unsigned char st_info; /* Type and binding attributes */
7515 unsigned char st_other; /* Visibilty, and target specific */
7516};
7517
7518struct elf_symbuf_head
7519{
7520 struct elf_symbuf_symbol *ssym;
7521 size_t count;
7522 unsigned int st_shndx;
7523};
7524
7525struct elf_symbol
7526{
7527 union
7528 {
7529 Elf_Internal_Sym *isym;
7530 struct elf_symbuf_symbol *ssym;
7531 } u;
7532 const char *name;
7533};
7534
7535/* Sort references to symbols by ascending section number. */
7536
7537static int
7538elf_sort_elf_symbol (const void *arg1, const void *arg2)
7539{
7540 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7541 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7542
7543 return s1->st_shndx - s2->st_shndx;
7544}
7545
7546static int
7547elf_sym_name_compare (const void *arg1, const void *arg2)
7548{
7549 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7550 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7551 return strcmp (s1->name, s2->name);
7552}
7553
7554static struct elf_symbuf_head *
7555elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7556{
7557 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7558 struct elf_symbuf_symbol *ssym;
7559 struct elf_symbuf_head *ssymbuf, *ssymhead;
7560 size_t i, shndx_count, total_size;
7561
7562 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7563 if (indbuf == NULL)
7564 return NULL;
7565
7566 for (ind = indbuf, i = 0; i < symcount; i++)
7567 if (isymbuf[i].st_shndx != SHN_UNDEF)
7568 *ind++ = &isymbuf[i];
7569 indbufend = ind;
7570
7571 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7572 elf_sort_elf_symbol);
7573
7574 shndx_count = 0;
7575 if (indbufend > indbuf)
7576 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7577 if (ind[0]->st_shndx != ind[1]->st_shndx)
7578 shndx_count++;
7579
7580 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7581 + (indbufend - indbuf) * sizeof (*ssym));
7582 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7583 if (ssymbuf == NULL)
7584 {
7585 free (indbuf);
7586 return NULL;
7587 }
7588
7589 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7590 ssymbuf->ssym = NULL;
7591 ssymbuf->count = shndx_count;
7592 ssymbuf->st_shndx = 0;
7593 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7594 {
7595 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7596 {
7597 ssymhead++;
7598 ssymhead->ssym = ssym;
7599 ssymhead->count = 0;
7600 ssymhead->st_shndx = (*ind)->st_shndx;
7601 }
7602 ssym->st_name = (*ind)->st_name;
7603 ssym->st_info = (*ind)->st_info;
7604 ssym->st_other = (*ind)->st_other;
7605 ssymhead->count++;
7606 }
7607 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7608 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7609 == total_size));
7610
7611 free (indbuf);
7612 return ssymbuf;
7613}
7614
7615/* Check if 2 sections define the same set of local and global
7616 symbols. */
7617
7618static bfd_boolean
7619bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7620 struct bfd_link_info *info)
7621{
7622 bfd *bfd1, *bfd2;
7623 const struct elf_backend_data *bed1, *bed2;
7624 Elf_Internal_Shdr *hdr1, *hdr2;
7625 size_t symcount1, symcount2;
7626 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7627 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7628 Elf_Internal_Sym *isym, *isymend;
7629 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7630 size_t count1, count2, i;
7631 unsigned int shndx1, shndx2;
7632 bfd_boolean result;
7633
7634 bfd1 = sec1->owner;
7635 bfd2 = sec2->owner;
7636
7637 /* Both sections have to be in ELF. */
7638 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7639 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7640 return FALSE;
7641
7642 if (elf_section_type (sec1) != elf_section_type (sec2))
7643 return FALSE;
7644
7645 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7646 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7647 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7648 return FALSE;
7649
7650 bed1 = get_elf_backend_data (bfd1);
7651 bed2 = get_elf_backend_data (bfd2);
7652 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7653 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7654 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7655 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7656
7657 if (symcount1 == 0 || symcount2 == 0)
7658 return FALSE;
7659
7660 result = FALSE;
7661 isymbuf1 = NULL;
7662 isymbuf2 = NULL;
7663 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7664 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7665
7666 if (ssymbuf1 == NULL)
7667 {
7668 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7669 NULL, NULL, NULL);
7670 if (isymbuf1 == NULL)
7671 goto done;
7672
7673 if (!info->reduce_memory_overheads)
7674 elf_tdata (bfd1)->symbuf = ssymbuf1
7675 = elf_create_symbuf (symcount1, isymbuf1);
7676 }
7677
7678 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7679 {
7680 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7681 NULL, NULL, NULL);
7682 if (isymbuf2 == NULL)
7683 goto done;
7684
7685 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7686 elf_tdata (bfd2)->symbuf = ssymbuf2
7687 = elf_create_symbuf (symcount2, isymbuf2);
7688 }
7689
7690 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7691 {
7692 /* Optimized faster version. */
7693 size_t lo, hi, mid;
7694 struct elf_symbol *symp;
7695 struct elf_symbuf_symbol *ssym, *ssymend;
7696
7697 lo = 0;
7698 hi = ssymbuf1->count;
7699 ssymbuf1++;
7700 count1 = 0;
7701 while (lo < hi)
7702 {
7703 mid = (lo + hi) / 2;
7704 if (shndx1 < ssymbuf1[mid].st_shndx)
7705 hi = mid;
7706 else if (shndx1 > ssymbuf1[mid].st_shndx)
7707 lo = mid + 1;
7708 else
7709 {
7710 count1 = ssymbuf1[mid].count;
7711 ssymbuf1 += mid;
7712 break;
7713 }
7714 }
7715
7716 lo = 0;
7717 hi = ssymbuf2->count;
7718 ssymbuf2++;
7719 count2 = 0;
7720 while (lo < hi)
7721 {
7722 mid = (lo + hi) / 2;
7723 if (shndx2 < ssymbuf2[mid].st_shndx)
7724 hi = mid;
7725 else if (shndx2 > ssymbuf2[mid].st_shndx)
7726 lo = mid + 1;
7727 else
7728 {
7729 count2 = ssymbuf2[mid].count;
7730 ssymbuf2 += mid;
7731 break;
7732 }
7733 }
7734
7735 if (count1 == 0 || count2 == 0 || count1 != count2)
7736 goto done;
7737
7738 symtable1
7739 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7740 symtable2
7741 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7742 if (symtable1 == NULL || symtable2 == NULL)
7743 goto done;
7744
7745 symp = symtable1;
7746 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7747 ssym < ssymend; ssym++, symp++)
7748 {
7749 symp->u.ssym = ssym;
7750 symp->name = bfd_elf_string_from_elf_section (bfd1,
7751 hdr1->sh_link,
7752 ssym->st_name);
7753 }
7754
7755 symp = symtable2;
7756 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7757 ssym < ssymend; ssym++, symp++)
7758 {
7759 symp->u.ssym = ssym;
7760 symp->name = bfd_elf_string_from_elf_section (bfd2,
7761 hdr2->sh_link,
7762 ssym->st_name);
7763 }
7764
7765 /* Sort symbol by name. */
7766 qsort (symtable1, count1, sizeof (struct elf_symbol),
7767 elf_sym_name_compare);
7768 qsort (symtable2, count1, sizeof (struct elf_symbol),
7769 elf_sym_name_compare);
7770
7771 for (i = 0; i < count1; i++)
7772 /* Two symbols must have the same binding, type and name. */
7773 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7774 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7775 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7776 goto done;
7777
7778 result = TRUE;
7779 goto done;
7780 }
7781
7782 symtable1 = (struct elf_symbol *)
7783 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7784 symtable2 = (struct elf_symbol *)
7785 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7786 if (symtable1 == NULL || symtable2 == NULL)
7787 goto done;
7788
7789 /* Count definitions in the section. */
7790 count1 = 0;
7791 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7792 if (isym->st_shndx == shndx1)
7793 symtable1[count1++].u.isym = isym;
7794
7795 count2 = 0;
7796 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7797 if (isym->st_shndx == shndx2)
7798 symtable2[count2++].u.isym = isym;
7799
7800 if (count1 == 0 || count2 == 0 || count1 != count2)
7801 goto done;
7802
7803 for (i = 0; i < count1; i++)
7804 symtable1[i].name
7805 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7806 symtable1[i].u.isym->st_name);
7807
7808 for (i = 0; i < count2; i++)
7809 symtable2[i].name
7810 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7811 symtable2[i].u.isym->st_name);
7812
7813 /* Sort symbol by name. */
7814 qsort (symtable1, count1, sizeof (struct elf_symbol),
7815 elf_sym_name_compare);
7816 qsort (symtable2, count1, sizeof (struct elf_symbol),
7817 elf_sym_name_compare);
7818
7819 for (i = 0; i < count1; i++)
7820 /* Two symbols must have the same binding, type and name. */
7821 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7822 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7823 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7824 goto done;
7825
7826 result = TRUE;
7827
7828done:
7829 if (symtable1)
7830 free (symtable1);
7831 if (symtable2)
7832 free (symtable2);
7833 if (isymbuf1)
7834 free (isymbuf1);
7835 if (isymbuf2)
7836 free (isymbuf2);
7837
7838 return result;
7839}
7840
7841/* Return TRUE if 2 section types are compatible. */
7842
7843bfd_boolean
7844_bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7845 bfd *bbfd, const asection *bsec)
7846{
7847 if (asec == NULL
7848 || bsec == NULL
7849 || abfd->xvec->flavour != bfd_target_elf_flavour
7850 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7851 return TRUE;
7852
7853 return elf_section_type (asec) == elf_section_type (bsec);
7854}
7855\f
7856/* Final phase of ELF linker. */
7857
7858/* A structure we use to avoid passing large numbers of arguments. */
7859
7860struct elf_final_link_info
7861{
7862 /* General link information. */
7863 struct bfd_link_info *info;
7864 /* Output BFD. */
7865 bfd *output_bfd;
7866 /* Symbol string table. */
7867 struct elf_strtab_hash *symstrtab;
7868 /* .hash section. */
7869 asection *hash_sec;
7870 /* symbol version section (.gnu.version). */
7871 asection *symver_sec;
7872 /* Buffer large enough to hold contents of any section. */
7873 bfd_byte *contents;
7874 /* Buffer large enough to hold external relocs of any section. */
7875 void *external_relocs;
7876 /* Buffer large enough to hold internal relocs of any section. */
7877 Elf_Internal_Rela *internal_relocs;
7878 /* Buffer large enough to hold external local symbols of any input
7879 BFD. */
7880 bfd_byte *external_syms;
7881 /* And a buffer for symbol section indices. */
7882 Elf_External_Sym_Shndx *locsym_shndx;
7883 /* Buffer large enough to hold internal local symbols of any input
7884 BFD. */
7885 Elf_Internal_Sym *internal_syms;
7886 /* Array large enough to hold a symbol index for each local symbol
7887 of any input BFD. */
7888 long *indices;
7889 /* Array large enough to hold a section pointer for each local
7890 symbol of any input BFD. */
7891 asection **sections;
7892 /* Buffer for SHT_SYMTAB_SHNDX section. */
7893 Elf_External_Sym_Shndx *symshndxbuf;
7894 /* Number of STT_FILE syms seen. */
7895 size_t filesym_count;
7896};
7897
7898/* This struct is used to pass information to elf_link_output_extsym. */
7899
7900struct elf_outext_info
7901{
7902 bfd_boolean failed;
7903 bfd_boolean localsyms;
7904 bfd_boolean file_sym_done;
7905 struct elf_final_link_info *flinfo;
7906};
7907
7908
7909/* Support for evaluating a complex relocation.
7910
7911 Complex relocations are generalized, self-describing relocations. The
7912 implementation of them consists of two parts: complex symbols, and the
7913 relocations themselves.
7914
7915 The relocations are use a reserved elf-wide relocation type code (R_RELC
7916 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7917 information (start bit, end bit, word width, etc) into the addend. This
7918 information is extracted from CGEN-generated operand tables within gas.
7919
7920 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7921 internal) representing prefix-notation expressions, including but not
7922 limited to those sorts of expressions normally encoded as addends in the
7923 addend field. The symbol mangling format is:
7924
7925 <node> := <literal>
7926 | <unary-operator> ':' <node>
7927 | <binary-operator> ':' <node> ':' <node>
7928 ;
7929
7930 <literal> := 's' <digits=N> ':' <N character symbol name>
7931 | 'S' <digits=N> ':' <N character section name>
7932 | '#' <hexdigits>
7933 ;
7934
7935 <binary-operator> := as in C
7936 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7937
7938static void
7939set_symbol_value (bfd *bfd_with_globals,
7940 Elf_Internal_Sym *isymbuf,
7941 size_t locsymcount,
7942 size_t symidx,
7943 bfd_vma val)
7944{
7945 struct elf_link_hash_entry **sym_hashes;
7946 struct elf_link_hash_entry *h;
7947 size_t extsymoff = locsymcount;
7948
7949 if (symidx < locsymcount)
7950 {
7951 Elf_Internal_Sym *sym;
7952
7953 sym = isymbuf + symidx;
7954 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7955 {
7956 /* It is a local symbol: move it to the
7957 "absolute" section and give it a value. */
7958 sym->st_shndx = SHN_ABS;
7959 sym->st_value = val;
7960 return;
7961 }
7962 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7963 extsymoff = 0;
7964 }
7965
7966 /* It is a global symbol: set its link type
7967 to "defined" and give it a value. */
7968
7969 sym_hashes = elf_sym_hashes (bfd_with_globals);
7970 h = sym_hashes [symidx - extsymoff];
7971 while (h->root.type == bfd_link_hash_indirect
7972 || h->root.type == bfd_link_hash_warning)
7973 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7974 h->root.type = bfd_link_hash_defined;
7975 h->root.u.def.value = val;
7976 h->root.u.def.section = bfd_abs_section_ptr;
7977}
7978
7979static bfd_boolean
7980resolve_symbol (const char *name,
7981 bfd *input_bfd,
7982 struct elf_final_link_info *flinfo,
7983 bfd_vma *result,
7984 Elf_Internal_Sym *isymbuf,
7985 size_t locsymcount)
7986{
7987 Elf_Internal_Sym *sym;
7988 struct bfd_link_hash_entry *global_entry;
7989 const char *candidate = NULL;
7990 Elf_Internal_Shdr *symtab_hdr;
7991 size_t i;
7992
7993 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7994
7995 for (i = 0; i < locsymcount; ++ i)
7996 {
7997 sym = isymbuf + i;
7998
7999 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8000 continue;
8001
8002 candidate = bfd_elf_string_from_elf_section (input_bfd,
8003 symtab_hdr->sh_link,
8004 sym->st_name);
8005#ifdef DEBUG
8006 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8007 name, candidate, (unsigned long) sym->st_value);
8008#endif
8009 if (candidate && strcmp (candidate, name) == 0)
8010 {
8011 asection *sec = flinfo->sections [i];
8012
8013 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8014 *result += sec->output_offset + sec->output_section->vma;
8015#ifdef DEBUG
8016 printf ("Found symbol with value %8.8lx\n",
8017 (unsigned long) *result);
8018#endif
8019 return TRUE;
8020 }
8021 }
8022
8023 /* Hmm, haven't found it yet. perhaps it is a global. */
8024 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8025 FALSE, FALSE, TRUE);
8026 if (!global_entry)
8027 return FALSE;
8028
8029 if (global_entry->type == bfd_link_hash_defined
8030 || global_entry->type == bfd_link_hash_defweak)
8031 {
8032 *result = (global_entry->u.def.value
8033 + global_entry->u.def.section->output_section->vma
8034 + global_entry->u.def.section->output_offset);
8035#ifdef DEBUG
8036 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8037 global_entry->root.string, (unsigned long) *result);
8038#endif
8039 return TRUE;
8040 }
8041
8042 return FALSE;
8043}
8044
8045/* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8046 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8047 names like "foo.end" which is the end address of section "foo". */
8048
8049static bfd_boolean
8050resolve_section (const char *name,
8051 asection *sections,
8052 bfd_vma *result,
8053 bfd * abfd)
8054{
8055 asection *curr;
8056 unsigned int len;
8057
8058 for (curr = sections; curr; curr = curr->next)
8059 if (strcmp (curr->name, name) == 0)
8060 {
8061 *result = curr->vma;
8062 return TRUE;
8063 }
8064
8065 /* Hmm. still haven't found it. try pseudo-section names. */
8066 /* FIXME: This could be coded more efficiently... */
8067 for (curr = sections; curr; curr = curr->next)
8068 {
8069 len = strlen (curr->name);
8070 if (len > strlen (name))
8071 continue;
8072
8073 if (strncmp (curr->name, name, len) == 0)
8074 {
8075 if (strncmp (".end", name + len, 4) == 0)
8076 {
8077 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8078 return TRUE;
8079 }
8080
8081 /* Insert more pseudo-section names here, if you like. */
8082 }
8083 }
8084
8085 return FALSE;
8086}
8087
8088static void
8089undefined_reference (const char *reftype, const char *name)
8090{
8091 /* xgettext:c-format */
8092 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8093 reftype, name);
8094}
8095
8096static bfd_boolean
8097eval_symbol (bfd_vma *result,
8098 const char **symp,
8099 bfd *input_bfd,
8100 struct elf_final_link_info *flinfo,
8101 bfd_vma dot,
8102 Elf_Internal_Sym *isymbuf,
8103 size_t locsymcount,
8104 int signed_p)
8105{
8106 size_t len;
8107 size_t symlen;
8108 bfd_vma a;
8109 bfd_vma b;
8110 char symbuf[4096];
8111 const char *sym = *symp;
8112 const char *symend;
8113 bfd_boolean symbol_is_section = FALSE;
8114
8115 len = strlen (sym);
8116 symend = sym + len;
8117
8118 if (len < 1 || len > sizeof (symbuf))
8119 {
8120 bfd_set_error (bfd_error_invalid_operation);
8121 return FALSE;
8122 }
8123
8124 switch (* sym)
8125 {
8126 case '.':
8127 *result = dot;
8128 *symp = sym + 1;
8129 return TRUE;
8130
8131 case '#':
8132 ++sym;
8133 *result = strtoul (sym, (char **) symp, 16);
8134 return TRUE;
8135
8136 case 'S':
8137 symbol_is_section = TRUE;
8138 /* Fall through. */
8139 case 's':
8140 ++sym;
8141 symlen = strtol (sym, (char **) symp, 10);
8142 sym = *symp + 1; /* Skip the trailing ':'. */
8143
8144 if (symend < sym || symlen + 1 > sizeof (symbuf))
8145 {
8146 bfd_set_error (bfd_error_invalid_operation);
8147 return FALSE;
8148 }
8149
8150 memcpy (symbuf, sym, symlen);
8151 symbuf[symlen] = '\0';
8152 *symp = sym + symlen;
8153
8154 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8155 the symbol as a section, or vice-versa. so we're pretty liberal in our
8156 interpretation here; section means "try section first", not "must be a
8157 section", and likewise with symbol. */
8158
8159 if (symbol_is_section)
8160 {
8161 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8162 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8163 isymbuf, locsymcount))
8164 {
8165 undefined_reference ("section", symbuf);
8166 return FALSE;
8167 }
8168 }
8169 else
8170 {
8171 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8172 isymbuf, locsymcount)
8173 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8174 result, input_bfd))
8175 {
8176 undefined_reference ("symbol", symbuf);
8177 return FALSE;
8178 }
8179 }
8180
8181 return TRUE;
8182
8183 /* All that remains are operators. */
8184
8185#define UNARY_OP(op) \
8186 if (strncmp (sym, #op, strlen (#op)) == 0) \
8187 { \
8188 sym += strlen (#op); \
8189 if (*sym == ':') \
8190 ++sym; \
8191 *symp = sym; \
8192 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8193 isymbuf, locsymcount, signed_p)) \
8194 return FALSE; \
8195 if (signed_p) \
8196 *result = op ((bfd_signed_vma) a); \
8197 else \
8198 *result = op a; \
8199 return TRUE; \
8200 }
8201
8202#define BINARY_OP(op) \
8203 if (strncmp (sym, #op, strlen (#op)) == 0) \
8204 { \
8205 sym += strlen (#op); \
8206 if (*sym == ':') \
8207 ++sym; \
8208 *symp = sym; \
8209 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8210 isymbuf, locsymcount, signed_p)) \
8211 return FALSE; \
8212 ++*symp; \
8213 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8214 isymbuf, locsymcount, signed_p)) \
8215 return FALSE; \
8216 if (signed_p) \
8217 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8218 else \
8219 *result = a op b; \
8220 return TRUE; \
8221 }
8222
8223 default:
8224 UNARY_OP (0-);
8225 BINARY_OP (<<);
8226 BINARY_OP (>>);
8227 BINARY_OP (==);
8228 BINARY_OP (!=);
8229 BINARY_OP (<=);
8230 BINARY_OP (>=);
8231 BINARY_OP (&&);
8232 BINARY_OP (||);
8233 UNARY_OP (~);
8234 UNARY_OP (!);
8235 BINARY_OP (*);
8236 BINARY_OP (/);
8237 BINARY_OP (%);
8238 BINARY_OP (^);
8239 BINARY_OP (|);
8240 BINARY_OP (&);
8241 BINARY_OP (+);
8242 BINARY_OP (-);
8243 BINARY_OP (<);
8244 BINARY_OP (>);
8245#undef UNARY_OP
8246#undef BINARY_OP
8247 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8248 bfd_set_error (bfd_error_invalid_operation);
8249 return FALSE;
8250 }
8251}
8252
8253static void
8254put_value (bfd_vma size,
8255 unsigned long chunksz,
8256 bfd *input_bfd,
8257 bfd_vma x,
8258 bfd_byte *location)
8259{
8260 location += (size - chunksz);
8261
8262 for (; size; size -= chunksz, location -= chunksz)
8263 {
8264 switch (chunksz)
8265 {
8266 case 1:
8267 bfd_put_8 (input_bfd, x, location);
8268 x >>= 8;
8269 break;
8270 case 2:
8271 bfd_put_16 (input_bfd, x, location);
8272 x >>= 16;
8273 break;
8274 case 4:
8275 bfd_put_32 (input_bfd, x, location);
8276 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8277 x >>= 16;
8278 x >>= 16;
8279 break;
8280#ifdef BFD64
8281 case 8:
8282 bfd_put_64 (input_bfd, x, location);
8283 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8284 x >>= 32;
8285 x >>= 32;
8286 break;
8287#endif
8288 default:
8289 abort ();
8290 break;
8291 }
8292 }
8293}
8294
8295static bfd_vma
8296get_value (bfd_vma size,
8297 unsigned long chunksz,
8298 bfd *input_bfd,
8299 bfd_byte *location)
8300{
8301 int shift;
8302 bfd_vma x = 0;
8303
8304 /* Sanity checks. */
8305 BFD_ASSERT (chunksz <= sizeof (x)
8306 && size >= chunksz
8307 && chunksz != 0
8308 && (size % chunksz) == 0
8309 && input_bfd != NULL
8310 && location != NULL);
8311
8312 if (chunksz == sizeof (x))
8313 {
8314 BFD_ASSERT (size == chunksz);
8315
8316 /* Make sure that we do not perform an undefined shift operation.
8317 We know that size == chunksz so there will only be one iteration
8318 of the loop below. */
8319 shift = 0;
8320 }
8321 else
8322 shift = 8 * chunksz;
8323
8324 for (; size; size -= chunksz, location += chunksz)
8325 {
8326 switch (chunksz)
8327 {
8328 case 1:
8329 x = (x << shift) | bfd_get_8 (input_bfd, location);
8330 break;
8331 case 2:
8332 x = (x << shift) | bfd_get_16 (input_bfd, location);
8333 break;
8334 case 4:
8335 x = (x << shift) | bfd_get_32 (input_bfd, location);
8336 break;
8337#ifdef BFD64
8338 case 8:
8339 x = (x << shift) | bfd_get_64 (input_bfd, location);
8340 break;
8341#endif
8342 default:
8343 abort ();
8344 }
8345 }
8346 return x;
8347}
8348
8349static void
8350decode_complex_addend (unsigned long *start, /* in bits */
8351 unsigned long *oplen, /* in bits */
8352 unsigned long *len, /* in bits */
8353 unsigned long *wordsz, /* in bytes */
8354 unsigned long *chunksz, /* in bytes */
8355 unsigned long *lsb0_p,
8356 unsigned long *signed_p,
8357 unsigned long *trunc_p,
8358 unsigned long encoded)
8359{
8360 * start = encoded & 0x3F;
8361 * len = (encoded >> 6) & 0x3F;
8362 * oplen = (encoded >> 12) & 0x3F;
8363 * wordsz = (encoded >> 18) & 0xF;
8364 * chunksz = (encoded >> 22) & 0xF;
8365 * lsb0_p = (encoded >> 27) & 1;
8366 * signed_p = (encoded >> 28) & 1;
8367 * trunc_p = (encoded >> 29) & 1;
8368}
8369
8370bfd_reloc_status_type
8371bfd_elf_perform_complex_relocation (bfd *input_bfd,
8372 asection *input_section ATTRIBUTE_UNUSED,
8373 bfd_byte *contents,
8374 Elf_Internal_Rela *rel,
8375 bfd_vma relocation)
8376{
8377 bfd_vma shift, x, mask;
8378 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8379 bfd_reloc_status_type r;
8380
8381 /* Perform this reloc, since it is complex.
8382 (this is not to say that it necessarily refers to a complex
8383 symbol; merely that it is a self-describing CGEN based reloc.
8384 i.e. the addend has the complete reloc information (bit start, end,
8385 word size, etc) encoded within it.). */
8386
8387 decode_complex_addend (&start, &oplen, &len, &wordsz,
8388 &chunksz, &lsb0_p, &signed_p,
8389 &trunc_p, rel->r_addend);
8390
8391 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8392
8393 if (lsb0_p)
8394 shift = (start + 1) - len;
8395 else
8396 shift = (8 * wordsz) - (start + len);
8397
8398 x = get_value (wordsz, chunksz, input_bfd,
8399 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8400
8401#ifdef DEBUG
8402 printf ("Doing complex reloc: "
8403 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8404 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8405 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8406 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8407 oplen, (unsigned long) x, (unsigned long) mask,
8408 (unsigned long) relocation);
8409#endif
8410
8411 r = bfd_reloc_ok;
8412 if (! trunc_p)
8413 /* Now do an overflow check. */
8414 r = bfd_check_overflow ((signed_p
8415 ? complain_overflow_signed
8416 : complain_overflow_unsigned),
8417 len, 0, (8 * wordsz),
8418 relocation);
8419
8420 /* Do the deed. */
8421 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8422
8423#ifdef DEBUG
8424 printf (" relocation: %8.8lx\n"
8425 " shifted mask: %8.8lx\n"
8426 " shifted/masked reloc: %8.8lx\n"
8427 " result: %8.8lx\n",
8428 (unsigned long) relocation, (unsigned long) (mask << shift),
8429 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8430#endif
8431 put_value (wordsz, chunksz, input_bfd, x,
8432 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8433 return r;
8434}
8435
8436/* Functions to read r_offset from external (target order) reloc
8437 entry. Faster than bfd_getl32 et al, because we let the compiler
8438 know the value is aligned. */
8439
8440static bfd_vma
8441ext32l_r_offset (const void *p)
8442{
8443 union aligned32
8444 {
8445 uint32_t v;
8446 unsigned char c[4];
8447 };
8448 const union aligned32 *a
8449 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8450
8451 uint32_t aval = ( (uint32_t) a->c[0]
8452 | (uint32_t) a->c[1] << 8
8453 | (uint32_t) a->c[2] << 16
8454 | (uint32_t) a->c[3] << 24);
8455 return aval;
8456}
8457
8458static bfd_vma
8459ext32b_r_offset (const void *p)
8460{
8461 union aligned32
8462 {
8463 uint32_t v;
8464 unsigned char c[4];
8465 };
8466 const union aligned32 *a
8467 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8468
8469 uint32_t aval = ( (uint32_t) a->c[0] << 24
8470 | (uint32_t) a->c[1] << 16
8471 | (uint32_t) a->c[2] << 8
8472 | (uint32_t) a->c[3]);
8473 return aval;
8474}
8475
8476#ifdef BFD_HOST_64_BIT
8477static bfd_vma
8478ext64l_r_offset (const void *p)
8479{
8480 union aligned64
8481 {
8482 uint64_t v;
8483 unsigned char c[8];
8484 };
8485 const union aligned64 *a
8486 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8487
8488 uint64_t aval = ( (uint64_t) a->c[0]
8489 | (uint64_t) a->c[1] << 8
8490 | (uint64_t) a->c[2] << 16
8491 | (uint64_t) a->c[3] << 24
8492 | (uint64_t) a->c[4] << 32
8493 | (uint64_t) a->c[5] << 40
8494 | (uint64_t) a->c[6] << 48
8495 | (uint64_t) a->c[7] << 56);
8496 return aval;
8497}
8498
8499static bfd_vma
8500ext64b_r_offset (const void *p)
8501{
8502 union aligned64
8503 {
8504 uint64_t v;
8505 unsigned char c[8];
8506 };
8507 const union aligned64 *a
8508 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8509
8510 uint64_t aval = ( (uint64_t) a->c[0] << 56
8511 | (uint64_t) a->c[1] << 48
8512 | (uint64_t) a->c[2] << 40
8513 | (uint64_t) a->c[3] << 32
8514 | (uint64_t) a->c[4] << 24
8515 | (uint64_t) a->c[5] << 16
8516 | (uint64_t) a->c[6] << 8
8517 | (uint64_t) a->c[7]);
8518 return aval;
8519}
8520#endif
8521
8522/* When performing a relocatable link, the input relocations are
8523 preserved. But, if they reference global symbols, the indices
8524 referenced must be updated. Update all the relocations found in
8525 RELDATA. */
8526
8527static bfd_boolean
8528elf_link_adjust_relocs (bfd *abfd,
8529 asection *sec,
8530 struct bfd_elf_section_reloc_data *reldata,
8531 bfd_boolean sort)
8532{
8533 unsigned int i;
8534 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8535 bfd_byte *erela;
8536 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8537 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8538 bfd_vma r_type_mask;
8539 int r_sym_shift;
8540 unsigned int count = reldata->count;
8541 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8542
8543 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8544 {
8545 swap_in = bed->s->swap_reloc_in;
8546 swap_out = bed->s->swap_reloc_out;
8547 }
8548 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8549 {
8550 swap_in = bed->s->swap_reloca_in;
8551 swap_out = bed->s->swap_reloca_out;
8552 }
8553 else
8554 abort ();
8555
8556 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8557 abort ();
8558
8559 if (bed->s->arch_size == 32)
8560 {
8561 r_type_mask = 0xff;
8562 r_sym_shift = 8;
8563 }
8564 else
8565 {
8566 r_type_mask = 0xffffffff;
8567 r_sym_shift = 32;
8568 }
8569
8570 erela = reldata->hdr->contents;
8571 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8572 {
8573 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8574 unsigned int j;
8575
8576 if (*rel_hash == NULL)
8577 continue;
8578
8579 BFD_ASSERT ((*rel_hash)->indx >= 0);
8580
8581 (*swap_in) (abfd, erela, irela);
8582 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8583 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8584 | (irela[j].r_info & r_type_mask));
8585 (*swap_out) (abfd, irela, erela);
8586 }
8587
8588 if (bed->elf_backend_update_relocs)
8589 (*bed->elf_backend_update_relocs) (sec, reldata);
8590
8591 if (sort && count != 0)
8592 {
8593 bfd_vma (*ext_r_off) (const void *);
8594 bfd_vma r_off;
8595 size_t elt_size;
8596 bfd_byte *base, *end, *p, *loc;
8597 bfd_byte *buf = NULL;
8598
8599 if (bed->s->arch_size == 32)
8600 {
8601 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8602 ext_r_off = ext32l_r_offset;
8603 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8604 ext_r_off = ext32b_r_offset;
8605 else
8606 abort ();
8607 }
8608 else
8609 {
8610#ifdef BFD_HOST_64_BIT
8611 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8612 ext_r_off = ext64l_r_offset;
8613 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8614 ext_r_off = ext64b_r_offset;
8615 else
8616#endif
8617 abort ();
8618 }
8619
8620 /* Must use a stable sort here. A modified insertion sort,
8621 since the relocs are mostly sorted already. */
8622 elt_size = reldata->hdr->sh_entsize;
8623 base = reldata->hdr->contents;
8624 end = base + count * elt_size;
8625 if (elt_size > sizeof (Elf64_External_Rela))
8626 abort ();
8627
8628 /* Ensure the first element is lowest. This acts as a sentinel,
8629 speeding the main loop below. */
8630 r_off = (*ext_r_off) (base);
8631 for (p = loc = base; (p += elt_size) < end; )
8632 {
8633 bfd_vma r_off2 = (*ext_r_off) (p);
8634 if (r_off > r_off2)
8635 {
8636 r_off = r_off2;
8637 loc = p;
8638 }
8639 }
8640 if (loc != base)
8641 {
8642 /* Don't just swap *base and *loc as that changes the order
8643 of the original base[0] and base[1] if they happen to
8644 have the same r_offset. */
8645 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8646 memcpy (onebuf, loc, elt_size);
8647 memmove (base + elt_size, base, loc - base);
8648 memcpy (base, onebuf, elt_size);
8649 }
8650
8651 for (p = base + elt_size; (p += elt_size) < end; )
8652 {
8653 /* base to p is sorted, *p is next to insert. */
8654 r_off = (*ext_r_off) (p);
8655 /* Search the sorted region for location to insert. */
8656 loc = p - elt_size;
8657 while (r_off < (*ext_r_off) (loc))
8658 loc -= elt_size;
8659 loc += elt_size;
8660 if (loc != p)
8661 {
8662 /* Chances are there is a run of relocs to insert here,
8663 from one of more input files. Files are not always
8664 linked in order due to the way elf_link_input_bfd is
8665 called. See pr17666. */
8666 size_t sortlen = p - loc;
8667 bfd_vma r_off2 = (*ext_r_off) (loc);
8668 size_t runlen = elt_size;
8669 size_t buf_size = 96 * 1024;
8670 while (p + runlen < end
8671 && (sortlen <= buf_size
8672 || runlen + elt_size <= buf_size)
8673 && r_off2 > (*ext_r_off) (p + runlen))
8674 runlen += elt_size;
8675 if (buf == NULL)
8676 {
8677 buf = bfd_malloc (buf_size);
8678 if (buf == NULL)
8679 return FALSE;
8680 }
8681 if (runlen < sortlen)
8682 {
8683 memcpy (buf, p, runlen);
8684 memmove (loc + runlen, loc, sortlen);
8685 memcpy (loc, buf, runlen);
8686 }
8687 else
8688 {
8689 memcpy (buf, loc, sortlen);
8690 memmove (loc, p, runlen);
8691 memcpy (loc + runlen, buf, sortlen);
8692 }
8693 p += runlen - elt_size;
8694 }
8695 }
8696 /* Hashes are no longer valid. */
8697 free (reldata->hashes);
8698 reldata->hashes = NULL;
8699 free (buf);
8700 }
8701 return TRUE;
8702}
8703
8704struct elf_link_sort_rela
8705{
8706 union {
8707 bfd_vma offset;
8708 bfd_vma sym_mask;
8709 } u;
8710 enum elf_reloc_type_class type;
8711 /* We use this as an array of size int_rels_per_ext_rel. */
8712 Elf_Internal_Rela rela[1];
8713};
8714
8715static int
8716elf_link_sort_cmp1 (const void *A, const void *B)
8717{
8718 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8719 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8720 int relativea, relativeb;
8721
8722 relativea = a->type == reloc_class_relative;
8723 relativeb = b->type == reloc_class_relative;
8724
8725 if (relativea < relativeb)
8726 return 1;
8727 if (relativea > relativeb)
8728 return -1;
8729 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8730 return -1;
8731 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8732 return 1;
8733 if (a->rela->r_offset < b->rela->r_offset)
8734 return -1;
8735 if (a->rela->r_offset > b->rela->r_offset)
8736 return 1;
8737 return 0;
8738}
8739
8740static int
8741elf_link_sort_cmp2 (const void *A, const void *B)
8742{
8743 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8744 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8745
8746 if (a->type < b->type)
8747 return -1;
8748 if (a->type > b->type)
8749 return 1;
8750 if (a->u.offset < b->u.offset)
8751 return -1;
8752 if (a->u.offset > b->u.offset)
8753 return 1;
8754 if (a->rela->r_offset < b->rela->r_offset)
8755 return -1;
8756 if (a->rela->r_offset > b->rela->r_offset)
8757 return 1;
8758 return 0;
8759}
8760
8761static size_t
8762elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8763{
8764 asection *dynamic_relocs;
8765 asection *rela_dyn;
8766 asection *rel_dyn;
8767 bfd_size_type count, size;
8768 size_t i, ret, sort_elt, ext_size;
8769 bfd_byte *sort, *s_non_relative, *p;
8770 struct elf_link_sort_rela *sq;
8771 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8772 int i2e = bed->s->int_rels_per_ext_rel;
8773 unsigned int opb = bfd_octets_per_byte (abfd);
8774 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8775 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8776 struct bfd_link_order *lo;
8777 bfd_vma r_sym_mask;
8778 bfd_boolean use_rela;
8779
8780 /* Find a dynamic reloc section. */
8781 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8782 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8783 if (rela_dyn != NULL && rela_dyn->size > 0
8784 && rel_dyn != NULL && rel_dyn->size > 0)
8785 {
8786 bfd_boolean use_rela_initialised = FALSE;
8787
8788 /* This is just here to stop gcc from complaining.
8789 Its initialization checking code is not perfect. */
8790 use_rela = TRUE;
8791
8792 /* Both sections are present. Examine the sizes
8793 of the indirect sections to help us choose. */
8794 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8795 if (lo->type == bfd_indirect_link_order)
8796 {
8797 asection *o = lo->u.indirect.section;
8798
8799 if ((o->size % bed->s->sizeof_rela) == 0)
8800 {
8801 if ((o->size % bed->s->sizeof_rel) == 0)
8802 /* Section size is divisible by both rel and rela sizes.
8803 It is of no help to us. */
8804 ;
8805 else
8806 {
8807 /* Section size is only divisible by rela. */
8808 if (use_rela_initialised && (use_rela == FALSE))
8809 {
8810 _bfd_error_handler (_("%B: Unable to sort relocs - "
8811 "they are in more than one size"),
8812 abfd);
8813 bfd_set_error (bfd_error_invalid_operation);
8814 return 0;
8815 }
8816 else
8817 {
8818 use_rela = TRUE;
8819 use_rela_initialised = TRUE;
8820 }
8821 }
8822 }
8823 else if ((o->size % bed->s->sizeof_rel) == 0)
8824 {
8825 /* Section size is only divisible by rel. */
8826 if (use_rela_initialised && (use_rela == TRUE))
8827 {
8828 _bfd_error_handler (_("%B: Unable to sort relocs - "
8829 "they are in more than one size"),
8830 abfd);
8831 bfd_set_error (bfd_error_invalid_operation);
8832 return 0;
8833 }
8834 else
8835 {
8836 use_rela = FALSE;
8837 use_rela_initialised = TRUE;
8838 }
8839 }
8840 else
8841 {
8842 /* The section size is not divisible by either -
8843 something is wrong. */
8844 _bfd_error_handler (_("%B: Unable to sort relocs - "
8845 "they are of an unknown size"), abfd);
8846 bfd_set_error (bfd_error_invalid_operation);
8847 return 0;
8848 }
8849 }
8850
8851 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8852 if (lo->type == bfd_indirect_link_order)
8853 {
8854 asection *o = lo->u.indirect.section;
8855
8856 if ((o->size % bed->s->sizeof_rela) == 0)
8857 {
8858 if ((o->size % bed->s->sizeof_rel) == 0)
8859 /* Section size is divisible by both rel and rela sizes.
8860 It is of no help to us. */
8861 ;
8862 else
8863 {
8864 /* Section size is only divisible by rela. */
8865 if (use_rela_initialised && (use_rela == FALSE))
8866 {
8867 _bfd_error_handler (_("%B: Unable to sort relocs - "
8868 "they are in more than one size"),
8869 abfd);
8870 bfd_set_error (bfd_error_invalid_operation);
8871 return 0;
8872 }
8873 else
8874 {
8875 use_rela = TRUE;
8876 use_rela_initialised = TRUE;
8877 }
8878 }
8879 }
8880 else if ((o->size % bed->s->sizeof_rel) == 0)
8881 {
8882 /* Section size is only divisible by rel. */
8883 if (use_rela_initialised && (use_rela == TRUE))
8884 {
8885 _bfd_error_handler (_("%B: Unable to sort relocs - "
8886 "they are in more than one size"),
8887 abfd);
8888 bfd_set_error (bfd_error_invalid_operation);
8889 return 0;
8890 }
8891 else
8892 {
8893 use_rela = FALSE;
8894 use_rela_initialised = TRUE;
8895 }
8896 }
8897 else
8898 {
8899 /* The section size is not divisible by either -
8900 something is wrong. */
8901 _bfd_error_handler (_("%B: Unable to sort relocs - "
8902 "they are of an unknown size"), abfd);
8903 bfd_set_error (bfd_error_invalid_operation);
8904 return 0;
8905 }
8906 }
8907
8908 if (! use_rela_initialised)
8909 /* Make a guess. */
8910 use_rela = TRUE;
8911 }
8912 else if (rela_dyn != NULL && rela_dyn->size > 0)
8913 use_rela = TRUE;
8914 else if (rel_dyn != NULL && rel_dyn->size > 0)
8915 use_rela = FALSE;
8916 else
8917 return 0;
8918
8919 if (use_rela)
8920 {
8921 dynamic_relocs = rela_dyn;
8922 ext_size = bed->s->sizeof_rela;
8923 swap_in = bed->s->swap_reloca_in;
8924 swap_out = bed->s->swap_reloca_out;
8925 }
8926 else
8927 {
8928 dynamic_relocs = rel_dyn;
8929 ext_size = bed->s->sizeof_rel;
8930 swap_in = bed->s->swap_reloc_in;
8931 swap_out = bed->s->swap_reloc_out;
8932 }
8933
8934 size = 0;
8935 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8936 if (lo->type == bfd_indirect_link_order)
8937 size += lo->u.indirect.section->size;
8938
8939 if (size != dynamic_relocs->size)
8940 return 0;
8941
8942 sort_elt = (sizeof (struct elf_link_sort_rela)
8943 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8944
8945 count = dynamic_relocs->size / ext_size;
8946 if (count == 0)
8947 return 0;
8948 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8949
8950 if (sort == NULL)
8951 {
8952 (*info->callbacks->warning)
8953 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8954 return 0;
8955 }
8956
8957 if (bed->s->arch_size == 32)
8958 r_sym_mask = ~(bfd_vma) 0xff;
8959 else
8960 r_sym_mask = ~(bfd_vma) 0xffffffff;
8961
8962 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8963 if (lo->type == bfd_indirect_link_order)
8964 {
8965 bfd_byte *erel, *erelend;
8966 asection *o = lo->u.indirect.section;
8967
8968 if (o->contents == NULL && o->size != 0)
8969 {
8970 /* This is a reloc section that is being handled as a normal
8971 section. See bfd_section_from_shdr. We can't combine
8972 relocs in this case. */
8973 free (sort);
8974 return 0;
8975 }
8976 erel = o->contents;
8977 erelend = o->contents + o->size;
8978 p = sort + o->output_offset * opb / ext_size * sort_elt;
8979
8980 while (erel < erelend)
8981 {
8982 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8983
8984 (*swap_in) (abfd, erel, s->rela);
8985 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8986 s->u.sym_mask = r_sym_mask;
8987 p += sort_elt;
8988 erel += ext_size;
8989 }
8990 }
8991
8992 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8993
8994 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8995 {
8996 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8997 if (s->type != reloc_class_relative)
8998 break;
8999 }
9000 ret = i;
9001 s_non_relative = p;
9002
9003 sq = (struct elf_link_sort_rela *) s_non_relative;
9004 for (; i < count; i++, p += sort_elt)
9005 {
9006 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9007 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9008 sq = sp;
9009 sp->u.offset = sq->rela->r_offset;
9010 }
9011
9012 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9013
9014 struct elf_link_hash_table *htab = elf_hash_table (info);
9015 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9016 {
9017 /* We have plt relocs in .rela.dyn. */
9018 sq = (struct elf_link_sort_rela *) sort;
9019 for (i = 0; i < count; i++)
9020 if (sq[count - i - 1].type != reloc_class_plt)
9021 break;
9022 if (i != 0 && htab->srelplt->size == i * ext_size)
9023 {
9024 struct bfd_link_order **plo;
9025 /* Put srelplt link_order last. This is so the output_offset
9026 set in the next loop is correct for DT_JMPREL. */
9027 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9028 if ((*plo)->type == bfd_indirect_link_order
9029 && (*plo)->u.indirect.section == htab->srelplt)
9030 {
9031 lo = *plo;
9032 *plo = lo->next;
9033 }
9034 else
9035 plo = &(*plo)->next;
9036 *plo = lo;
9037 lo->next = NULL;
9038 dynamic_relocs->map_tail.link_order = lo;
9039 }
9040 }
9041
9042 p = sort;
9043 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9044 if (lo->type == bfd_indirect_link_order)
9045 {
9046 bfd_byte *erel, *erelend;
9047 asection *o = lo->u.indirect.section;
9048
9049 erel = o->contents;
9050 erelend = o->contents + o->size;
9051 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9052 while (erel < erelend)
9053 {
9054 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9055 (*swap_out) (abfd, s->rela, erel);
9056 p += sort_elt;
9057 erel += ext_size;
9058 }
9059 }
9060
9061 free (sort);
9062 *psec = dynamic_relocs;
9063 return ret;
9064}
9065
9066/* Add a symbol to the output symbol string table. */
9067
9068static int
9069elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9070 const char *name,
9071 Elf_Internal_Sym *elfsym,
9072 asection *input_sec,
9073 struct elf_link_hash_entry *h)
9074{
9075 int (*output_symbol_hook)
9076 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9077 struct elf_link_hash_entry *);
9078 struct elf_link_hash_table *hash_table;
9079 const struct elf_backend_data *bed;
9080 bfd_size_type strtabsize;
9081
9082 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9083
9084 bed = get_elf_backend_data (flinfo->output_bfd);
9085 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9086 if (output_symbol_hook != NULL)
9087 {
9088 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9089 if (ret != 1)
9090 return ret;
9091 }
9092
9093 if (name == NULL
9094 || *name == '\0'
9095 || (input_sec->flags & SEC_EXCLUDE))
9096 elfsym->st_name = (unsigned long) -1;
9097 else
9098 {
9099 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9100 to get the final offset for st_name. */
9101 elfsym->st_name
9102 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9103 name, FALSE);
9104 if (elfsym->st_name == (unsigned long) -1)
9105 return 0;
9106 }
9107
9108 hash_table = elf_hash_table (flinfo->info);
9109 strtabsize = hash_table->strtabsize;
9110 if (strtabsize <= hash_table->strtabcount)
9111 {
9112 strtabsize += strtabsize;
9113 hash_table->strtabsize = strtabsize;
9114 strtabsize *= sizeof (*hash_table->strtab);
9115 hash_table->strtab
9116 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9117 strtabsize);
9118 if (hash_table->strtab == NULL)
9119 return 0;
9120 }
9121 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9122 hash_table->strtab[hash_table->strtabcount].dest_index
9123 = hash_table->strtabcount;
9124 hash_table->strtab[hash_table->strtabcount].destshndx_index
9125 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9126
9127 bfd_get_symcount (flinfo->output_bfd) += 1;
9128 hash_table->strtabcount += 1;
9129
9130 return 1;
9131}
9132
9133/* Swap symbols out to the symbol table and flush the output symbols to
9134 the file. */
9135
9136static bfd_boolean
9137elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9138{
9139 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9140 bfd_size_type amt;
9141 size_t i;
9142 const struct elf_backend_data *bed;
9143 bfd_byte *symbuf;
9144 Elf_Internal_Shdr *hdr;
9145 file_ptr pos;
9146 bfd_boolean ret;
9147
9148 if (!hash_table->strtabcount)
9149 return TRUE;
9150
9151 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9152
9153 bed = get_elf_backend_data (flinfo->output_bfd);
9154
9155 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9156 symbuf = (bfd_byte *) bfd_malloc (amt);
9157 if (symbuf == NULL)
9158 return FALSE;
9159
9160 if (flinfo->symshndxbuf)
9161 {
9162 amt = sizeof (Elf_External_Sym_Shndx);
9163 amt *= bfd_get_symcount (flinfo->output_bfd);
9164 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9165 if (flinfo->symshndxbuf == NULL)
9166 {
9167 free (symbuf);
9168 return FALSE;
9169 }
9170 }
9171
9172 for (i = 0; i < hash_table->strtabcount; i++)
9173 {
9174 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9175 if (elfsym->sym.st_name == (unsigned long) -1)
9176 elfsym->sym.st_name = 0;
9177 else
9178 elfsym->sym.st_name
9179 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9180 elfsym->sym.st_name);
9181 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9182 ((bfd_byte *) symbuf
9183 + (elfsym->dest_index
9184 * bed->s->sizeof_sym)),
9185 (flinfo->symshndxbuf
9186 + elfsym->destshndx_index));
9187 }
9188
9189 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9190 pos = hdr->sh_offset + hdr->sh_size;
9191 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9192 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9193 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9194 {
9195 hdr->sh_size += amt;
9196 ret = TRUE;
9197 }
9198 else
9199 ret = FALSE;
9200
9201 free (symbuf);
9202
9203 free (hash_table->strtab);
9204 hash_table->strtab = NULL;
9205
9206 return ret;
9207}
9208
9209/* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9210
9211static bfd_boolean
9212check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9213{
9214 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9215 && sym->st_shndx < SHN_LORESERVE)
9216 {
9217 /* The gABI doesn't support dynamic symbols in output sections
9218 beyond 64k. */
9219 _bfd_error_handler
9220 /* xgettext:c-format */
9221 (_("%B: Too many sections: %d (>= %d)"),
9222 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9223 bfd_set_error (bfd_error_nonrepresentable_section);
9224 return FALSE;
9225 }
9226 return TRUE;
9227}
9228
9229/* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9230 allowing an unsatisfied unversioned symbol in the DSO to match a
9231 versioned symbol that would normally require an explicit version.
9232 We also handle the case that a DSO references a hidden symbol
9233 which may be satisfied by a versioned symbol in another DSO. */
9234
9235static bfd_boolean
9236elf_link_check_versioned_symbol (struct bfd_link_info *info,
9237 const struct elf_backend_data *bed,
9238 struct elf_link_hash_entry *h)
9239{
9240 bfd *abfd;
9241 struct elf_link_loaded_list *loaded;
9242
9243 if (!is_elf_hash_table (info->hash))
9244 return FALSE;
9245
9246 /* Check indirect symbol. */
9247 while (h->root.type == bfd_link_hash_indirect)
9248 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9249
9250 switch (h->root.type)
9251 {
9252 default:
9253 abfd = NULL;
9254 break;
9255
9256 case bfd_link_hash_undefined:
9257 case bfd_link_hash_undefweak:
9258 abfd = h->root.u.undef.abfd;
9259 if (abfd == NULL
9260 || (abfd->flags & DYNAMIC) == 0
9261 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9262 return FALSE;
9263 break;
9264
9265 case bfd_link_hash_defined:
9266 case bfd_link_hash_defweak:
9267 abfd = h->root.u.def.section->owner;
9268 break;
9269
9270 case bfd_link_hash_common:
9271 abfd = h->root.u.c.p->section->owner;
9272 break;
9273 }
9274 BFD_ASSERT (abfd != NULL);
9275
9276 for (loaded = elf_hash_table (info)->loaded;
9277 loaded != NULL;
9278 loaded = loaded->next)
9279 {
9280 bfd *input;
9281 Elf_Internal_Shdr *hdr;
9282 size_t symcount;
9283 size_t extsymcount;
9284 size_t extsymoff;
9285 Elf_Internal_Shdr *versymhdr;
9286 Elf_Internal_Sym *isym;
9287 Elf_Internal_Sym *isymend;
9288 Elf_Internal_Sym *isymbuf;
9289 Elf_External_Versym *ever;
9290 Elf_External_Versym *extversym;
9291
9292 input = loaded->abfd;
9293
9294 /* We check each DSO for a possible hidden versioned definition. */
9295 if (input == abfd
9296 || (input->flags & DYNAMIC) == 0
9297 || elf_dynversym (input) == 0)
9298 continue;
9299
9300 hdr = &elf_tdata (input)->dynsymtab_hdr;
9301
9302 symcount = hdr->sh_size / bed->s->sizeof_sym;
9303 if (elf_bad_symtab (input))
9304 {
9305 extsymcount = symcount;
9306 extsymoff = 0;
9307 }
9308 else
9309 {
9310 extsymcount = symcount - hdr->sh_info;
9311 extsymoff = hdr->sh_info;
9312 }
9313
9314 if (extsymcount == 0)
9315 continue;
9316
9317 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9318 NULL, NULL, NULL);
9319 if (isymbuf == NULL)
9320 return FALSE;
9321
9322 /* Read in any version definitions. */
9323 versymhdr = &elf_tdata (input)->dynversym_hdr;
9324 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9325 if (extversym == NULL)
9326 goto error_ret;
9327
9328 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9329 || (bfd_bread (extversym, versymhdr->sh_size, input)
9330 != versymhdr->sh_size))
9331 {
9332 free (extversym);
9333 error_ret:
9334 free (isymbuf);
9335 return FALSE;
9336 }
9337
9338 ever = extversym + extsymoff;
9339 isymend = isymbuf + extsymcount;
9340 for (isym = isymbuf; isym < isymend; isym++, ever++)
9341 {
9342 const char *name;
9343 Elf_Internal_Versym iver;
9344 unsigned short version_index;
9345
9346 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9347 || isym->st_shndx == SHN_UNDEF)
9348 continue;
9349
9350 name = bfd_elf_string_from_elf_section (input,
9351 hdr->sh_link,
9352 isym->st_name);
9353 if (strcmp (name, h->root.root.string) != 0)
9354 continue;
9355
9356 _bfd_elf_swap_versym_in (input, ever, &iver);
9357
9358 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9359 && !(h->def_regular
9360 && h->forced_local))
9361 {
9362 /* If we have a non-hidden versioned sym, then it should
9363 have provided a definition for the undefined sym unless
9364 it is defined in a non-shared object and forced local.
9365 */
9366 abort ();
9367 }
9368
9369 version_index = iver.vs_vers & VERSYM_VERSION;
9370 if (version_index == 1 || version_index == 2)
9371 {
9372 /* This is the base or first version. We can use it. */
9373 free (extversym);
9374 free (isymbuf);
9375 return TRUE;
9376 }
9377 }
9378
9379 free (extversym);
9380 free (isymbuf);
9381 }
9382
9383 return FALSE;
9384}
9385
9386/* Convert ELF common symbol TYPE. */
9387
9388static int
9389elf_link_convert_common_type (struct bfd_link_info *info, int type)
9390{
9391 /* Commom symbol can only appear in relocatable link. */
9392 if (!bfd_link_relocatable (info))
9393 abort ();
9394 switch (info->elf_stt_common)
9395 {
9396 case unchanged:
9397 break;
9398 case elf_stt_common:
9399 type = STT_COMMON;
9400 break;
9401 case no_elf_stt_common:
9402 type = STT_OBJECT;
9403 break;
9404 }
9405 return type;
9406}
9407
9408/* Add an external symbol to the symbol table. This is called from
9409 the hash table traversal routine. When generating a shared object,
9410 we go through the symbol table twice. The first time we output
9411 anything that might have been forced to local scope in a version
9412 script. The second time we output the symbols that are still
9413 global symbols. */
9414
9415static bfd_boolean
9416elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9417{
9418 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9419 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9420 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9421 bfd_boolean strip;
9422 Elf_Internal_Sym sym;
9423 asection *input_sec;
9424 const struct elf_backend_data *bed;
9425 long indx;
9426 int ret;
9427 unsigned int type;
9428
9429 if (h->root.type == bfd_link_hash_warning)
9430 {
9431 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9432 if (h->root.type == bfd_link_hash_new)
9433 return TRUE;
9434 }
9435
9436 /* Decide whether to output this symbol in this pass. */
9437 if (eoinfo->localsyms)
9438 {
9439 if (!h->forced_local)
9440 return TRUE;
9441 }
9442 else
9443 {
9444 if (h->forced_local)
9445 return TRUE;
9446 }
9447
9448 bed = get_elf_backend_data (flinfo->output_bfd);
9449
9450 if (h->root.type == bfd_link_hash_undefined)
9451 {
9452 /* If we have an undefined symbol reference here then it must have
9453 come from a shared library that is being linked in. (Undefined
9454 references in regular files have already been handled unless
9455 they are in unreferenced sections which are removed by garbage
9456 collection). */
9457 bfd_boolean ignore_undef = FALSE;
9458
9459 /* Some symbols may be special in that the fact that they're
9460 undefined can be safely ignored - let backend determine that. */
9461 if (bed->elf_backend_ignore_undef_symbol)
9462 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9463
9464 /* If we are reporting errors for this situation then do so now. */
9465 if (!ignore_undef
9466 && h->ref_dynamic
9467 && (!h->ref_regular || flinfo->info->gc_sections)
9468 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9469 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9470 (*flinfo->info->callbacks->undefined_symbol)
9471 (flinfo->info, h->root.root.string,
9472 h->ref_regular ? NULL : h->root.u.undef.abfd,
9473 NULL, 0,
9474 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9475
9476 /* Strip a global symbol defined in a discarded section. */
9477 if (h->indx == -3)
9478 return TRUE;
9479 }
9480
9481 /* We should also warn if a forced local symbol is referenced from
9482 shared libraries. */
9483 if (bfd_link_executable (flinfo->info)
9484 && h->forced_local
9485 && h->ref_dynamic
9486 && h->def_regular
9487 && !h->dynamic_def
9488 && h->ref_dynamic_nonweak
9489 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9490 {
9491 bfd *def_bfd;
9492 const char *msg;
9493 struct elf_link_hash_entry *hi = h;
9494
9495 /* Check indirect symbol. */
9496 while (hi->root.type == bfd_link_hash_indirect)
9497 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9498
9499 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9500 /* xgettext:c-format */
9501 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9502 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9503 /* xgettext:c-format */
9504 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9505 else
9506 /* xgettext:c-format */
9507 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9508 def_bfd = flinfo->output_bfd;
9509 if (hi->root.u.def.section != bfd_abs_section_ptr)
9510 def_bfd = hi->root.u.def.section->owner;
9511 _bfd_error_handler (msg, flinfo->output_bfd,
9512 h->root.root.string, def_bfd);
9513 bfd_set_error (bfd_error_bad_value);
9514 eoinfo->failed = TRUE;
9515 return FALSE;
9516 }
9517
9518 /* We don't want to output symbols that have never been mentioned by
9519 a regular file, or that we have been told to strip. However, if
9520 h->indx is set to -2, the symbol is used by a reloc and we must
9521 output it. */
9522 strip = FALSE;
9523 if (h->indx == -2)
9524 ;
9525 else if ((h->def_dynamic
9526 || h->ref_dynamic
9527 || h->root.type == bfd_link_hash_new)
9528 && !h->def_regular
9529 && !h->ref_regular)
9530 strip = TRUE;
9531 else if (flinfo->info->strip == strip_all)
9532 strip = TRUE;
9533 else if (flinfo->info->strip == strip_some
9534 && bfd_hash_lookup (flinfo->info->keep_hash,
9535 h->root.root.string, FALSE, FALSE) == NULL)
9536 strip = TRUE;
9537 else if ((h->root.type == bfd_link_hash_defined
9538 || h->root.type == bfd_link_hash_defweak)
9539 && ((flinfo->info->strip_discarded
9540 && discarded_section (h->root.u.def.section))
9541 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9542 && h->root.u.def.section->owner != NULL
9543 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9544 strip = TRUE;
9545 else if ((h->root.type == bfd_link_hash_undefined
9546 || h->root.type == bfd_link_hash_undefweak)
9547 && h->root.u.undef.abfd != NULL
9548 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9549 strip = TRUE;
9550
9551 type = h->type;
9552
9553 /* If we're stripping it, and it's not a dynamic symbol, there's
9554 nothing else to do. However, if it is a forced local symbol or
9555 an ifunc symbol we need to give the backend finish_dynamic_symbol
9556 function a chance to make it dynamic. */
9557 if (strip
9558 && h->dynindx == -1
9559 && type != STT_GNU_IFUNC
9560 && !h->forced_local)
9561 return TRUE;
9562
9563 sym.st_value = 0;
9564 sym.st_size = h->size;
9565 sym.st_other = h->other;
9566 switch (h->root.type)
9567 {
9568 default:
9569 case bfd_link_hash_new:
9570 case bfd_link_hash_warning:
9571 abort ();
9572 return FALSE;
9573
9574 case bfd_link_hash_undefined:
9575 case bfd_link_hash_undefweak:
9576 input_sec = bfd_und_section_ptr;
9577 sym.st_shndx = SHN_UNDEF;
9578 break;
9579
9580 case bfd_link_hash_defined:
9581 case bfd_link_hash_defweak:
9582 {
9583 input_sec = h->root.u.def.section;
9584 if (input_sec->output_section != NULL)
9585 {
9586 sym.st_shndx =
9587 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9588 input_sec->output_section);
9589 if (sym.st_shndx == SHN_BAD)
9590 {
9591 _bfd_error_handler
9592 /* xgettext:c-format */
9593 (_("%B: could not find output section %A for input section %A"),
9594 flinfo->output_bfd, input_sec->output_section, input_sec);
9595 bfd_set_error (bfd_error_nonrepresentable_section);
9596 eoinfo->failed = TRUE;
9597 return FALSE;
9598 }
9599
9600 /* ELF symbols in relocatable files are section relative,
9601 but in nonrelocatable files they are virtual
9602 addresses. */
9603 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9604 if (!bfd_link_relocatable (flinfo->info))
9605 {
9606 sym.st_value += input_sec->output_section->vma;
9607 if (h->type == STT_TLS)
9608 {
9609 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9610 if (tls_sec != NULL)
9611 sym.st_value -= tls_sec->vma;
9612 }
9613 }
9614 }
9615 else
9616 {
9617 BFD_ASSERT (input_sec->owner == NULL
9618 || (input_sec->owner->flags & DYNAMIC) != 0);
9619 sym.st_shndx = SHN_UNDEF;
9620 input_sec = bfd_und_section_ptr;
9621 }
9622 }
9623 break;
9624
9625 case bfd_link_hash_common:
9626 input_sec = h->root.u.c.p->section;
9627 sym.st_shndx = bed->common_section_index (input_sec);
9628 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9629 break;
9630
9631 case bfd_link_hash_indirect:
9632 /* These symbols are created by symbol versioning. They point
9633 to the decorated version of the name. For example, if the
9634 symbol foo@@GNU_1.2 is the default, which should be used when
9635 foo is used with no version, then we add an indirect symbol
9636 foo which points to foo@@GNU_1.2. We ignore these symbols,
9637 since the indirected symbol is already in the hash table. */
9638 return TRUE;
9639 }
9640
9641 if (type == STT_COMMON || type == STT_OBJECT)
9642 switch (h->root.type)
9643 {
9644 case bfd_link_hash_common:
9645 type = elf_link_convert_common_type (flinfo->info, type);
9646 break;
9647 case bfd_link_hash_defined:
9648 case bfd_link_hash_defweak:
9649 if (bed->common_definition (&sym))
9650 type = elf_link_convert_common_type (flinfo->info, type);
9651 else
9652 type = STT_OBJECT;
9653 break;
9654 case bfd_link_hash_undefined:
9655 case bfd_link_hash_undefweak:
9656 break;
9657 default:
9658 abort ();
9659 }
9660
9661 if (h->forced_local)
9662 {
9663 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9664 /* Turn off visibility on local symbol. */
9665 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9666 }
9667 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9668 else if (h->unique_global && h->def_regular)
9669 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9670 else if (h->root.type == bfd_link_hash_undefweak
9671 || h->root.type == bfd_link_hash_defweak)
9672 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9673 else
9674 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9675 sym.st_target_internal = h->target_internal;
9676
9677 /* Give the processor backend a chance to tweak the symbol value,
9678 and also to finish up anything that needs to be done for this
9679 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9680 forced local syms when non-shared is due to a historical quirk.
9681 STT_GNU_IFUNC symbol must go through PLT. */
9682 if ((h->type == STT_GNU_IFUNC
9683 && h->def_regular
9684 && !bfd_link_relocatable (flinfo->info))
9685 || ((h->dynindx != -1
9686 || h->forced_local)
9687 && ((bfd_link_pic (flinfo->info)
9688 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9689 || h->root.type != bfd_link_hash_undefweak))
9690 || !h->forced_local)
9691 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9692 {
9693 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9694 (flinfo->output_bfd, flinfo->info, h, &sym)))
9695 {
9696 eoinfo->failed = TRUE;
9697 return FALSE;
9698 }
9699 }
9700
9701 /* If we are marking the symbol as undefined, and there are no
9702 non-weak references to this symbol from a regular object, then
9703 mark the symbol as weak undefined; if there are non-weak
9704 references, mark the symbol as strong. We can't do this earlier,
9705 because it might not be marked as undefined until the
9706 finish_dynamic_symbol routine gets through with it. */
9707 if (sym.st_shndx == SHN_UNDEF
9708 && h->ref_regular
9709 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9710 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9711 {
9712 int bindtype;
9713 type = ELF_ST_TYPE (sym.st_info);
9714
9715 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9716 if (type == STT_GNU_IFUNC)
9717 type = STT_FUNC;
9718
9719 if (h->ref_regular_nonweak)
9720 bindtype = STB_GLOBAL;
9721 else
9722 bindtype = STB_WEAK;
9723 sym.st_info = ELF_ST_INFO (bindtype, type);
9724 }
9725
9726 /* If this is a symbol defined in a dynamic library, don't use the
9727 symbol size from the dynamic library. Relinking an executable
9728 against a new library may introduce gratuitous changes in the
9729 executable's symbols if we keep the size. */
9730 if (sym.st_shndx == SHN_UNDEF
9731 && !h->def_regular
9732 && h->def_dynamic)
9733 sym.st_size = 0;
9734
9735 /* If a non-weak symbol with non-default visibility is not defined
9736 locally, it is a fatal error. */
9737 if (!bfd_link_relocatable (flinfo->info)
9738 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9739 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9740 && h->root.type == bfd_link_hash_undefined
9741 && !h->def_regular)
9742 {
9743 const char *msg;
9744
9745 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9746 /* xgettext:c-format */
9747 msg = _("%B: protected symbol `%s' isn't defined");
9748 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9749 /* xgettext:c-format */
9750 msg = _("%B: internal symbol `%s' isn't defined");
9751 else
9752 /* xgettext:c-format */
9753 msg = _("%B: hidden symbol `%s' isn't defined");
9754 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9755 bfd_set_error (bfd_error_bad_value);
9756 eoinfo->failed = TRUE;
9757 return FALSE;
9758 }
9759
9760 /* If this symbol should be put in the .dynsym section, then put it
9761 there now. We already know the symbol index. We also fill in
9762 the entry in the .hash section. */
9763 if (elf_hash_table (flinfo->info)->dynsym != NULL
9764 && h->dynindx != -1
9765 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9766 {
9767 bfd_byte *esym;
9768
9769 /* Since there is no version information in the dynamic string,
9770 if there is no version info in symbol version section, we will
9771 have a run-time problem if not linking executable, referenced
9772 by shared library, or not bound locally. */
9773 if (h->verinfo.verdef == NULL
9774 && (!bfd_link_executable (flinfo->info)
9775 || h->ref_dynamic
9776 || !h->def_regular))
9777 {
9778 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9779
9780 if (p && p [1] != '\0')
9781 {
9782 _bfd_error_handler
9783 /* xgettext:c-format */
9784 (_("%B: No symbol version section for versioned symbol `%s'"),
9785 flinfo->output_bfd, h->root.root.string);
9786 eoinfo->failed = TRUE;
9787 return FALSE;
9788 }
9789 }
9790
9791 sym.st_name = h->dynstr_index;
9792 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9793 + h->dynindx * bed->s->sizeof_sym);
9794 if (!check_dynsym (flinfo->output_bfd, &sym))
9795 {
9796 eoinfo->failed = TRUE;
9797 return FALSE;
9798 }
9799 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9800
9801 if (flinfo->hash_sec != NULL)
9802 {
9803 size_t hash_entry_size;
9804 bfd_byte *bucketpos;
9805 bfd_vma chain;
9806 size_t bucketcount;
9807 size_t bucket;
9808
9809 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9810 bucket = h->u.elf_hash_value % bucketcount;
9811
9812 hash_entry_size
9813 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9814 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9815 + (bucket + 2) * hash_entry_size);
9816 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9817 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9818 bucketpos);
9819 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9820 ((bfd_byte *) flinfo->hash_sec->contents
9821 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9822 }
9823
9824 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9825 {
9826 Elf_Internal_Versym iversym;
9827 Elf_External_Versym *eversym;
9828
9829 if (!h->def_regular)
9830 {
9831 if (h->verinfo.verdef == NULL
9832 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9833 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9834 iversym.vs_vers = 0;
9835 else
9836 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9837 }
9838 else
9839 {
9840 if (h->verinfo.vertree == NULL)
9841 iversym.vs_vers = 1;
9842 else
9843 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9844 if (flinfo->info->create_default_symver)
9845 iversym.vs_vers++;
9846 }
9847
9848 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9849 defined locally. */
9850 if (h->versioned == versioned_hidden && h->def_regular)
9851 iversym.vs_vers |= VERSYM_HIDDEN;
9852
9853 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9854 eversym += h->dynindx;
9855 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9856 }
9857 }
9858
9859 /* If the symbol is undefined, and we didn't output it to .dynsym,
9860 strip it from .symtab too. Obviously we can't do this for
9861 relocatable output or when needed for --emit-relocs. */
9862 else if (input_sec == bfd_und_section_ptr
9863 && h->indx != -2
9864 && !bfd_link_relocatable (flinfo->info))
9865 return TRUE;
9866 /* Also strip others that we couldn't earlier due to dynamic symbol
9867 processing. */
9868 if (strip)
9869 return TRUE;
9870 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9871 return TRUE;
9872
9873 /* Output a FILE symbol so that following locals are not associated
9874 with the wrong input file. We need one for forced local symbols
9875 if we've seen more than one FILE symbol or when we have exactly
9876 one FILE symbol but global symbols are present in a file other
9877 than the one with the FILE symbol. We also need one if linker
9878 defined symbols are present. In practice these conditions are
9879 always met, so just emit the FILE symbol unconditionally. */
9880 if (eoinfo->localsyms
9881 && !eoinfo->file_sym_done
9882 && eoinfo->flinfo->filesym_count != 0)
9883 {
9884 Elf_Internal_Sym fsym;
9885
9886 memset (&fsym, 0, sizeof (fsym));
9887 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9888 fsym.st_shndx = SHN_ABS;
9889 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9890 bfd_und_section_ptr, NULL))
9891 return FALSE;
9892
9893 eoinfo->file_sym_done = TRUE;
9894 }
9895
9896 indx = bfd_get_symcount (flinfo->output_bfd);
9897 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9898 input_sec, h);
9899 if (ret == 0)
9900 {
9901 eoinfo->failed = TRUE;
9902 return FALSE;
9903 }
9904 else if (ret == 1)
9905 h->indx = indx;
9906 else if (h->indx == -2)
9907 abort();
9908
9909 return TRUE;
9910}
9911
9912/* Return TRUE if special handling is done for relocs in SEC against
9913 symbols defined in discarded sections. */
9914
9915static bfd_boolean
9916elf_section_ignore_discarded_relocs (asection *sec)
9917{
9918 const struct elf_backend_data *bed;
9919
9920 switch (sec->sec_info_type)
9921 {
9922 case SEC_INFO_TYPE_STABS:
9923 case SEC_INFO_TYPE_EH_FRAME:
9924 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9925 return TRUE;
9926 default:
9927 break;
9928 }
9929
9930 bed = get_elf_backend_data (sec->owner);
9931 if (bed->elf_backend_ignore_discarded_relocs != NULL
9932 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9933 return TRUE;
9934
9935 return FALSE;
9936}
9937
9938/* Return a mask saying how ld should treat relocations in SEC against
9939 symbols defined in discarded sections. If this function returns
9940 COMPLAIN set, ld will issue a warning message. If this function
9941 returns PRETEND set, and the discarded section was link-once and the
9942 same size as the kept link-once section, ld will pretend that the
9943 symbol was actually defined in the kept section. Otherwise ld will
9944 zero the reloc (at least that is the intent, but some cooperation by
9945 the target dependent code is needed, particularly for REL targets). */
9946
9947unsigned int
9948_bfd_elf_default_action_discarded (asection *sec)
9949{
9950 if (sec->flags & SEC_DEBUGGING)
9951 return PRETEND;
9952
9953 if (strcmp (".eh_frame", sec->name) == 0)
9954 return 0;
9955
9956 if (strcmp (".gcc_except_table", sec->name) == 0)
9957 return 0;
9958
9959 return COMPLAIN | PRETEND;
9960}
9961
9962/* Find a match between a section and a member of a section group. */
9963
9964static asection *
9965match_group_member (asection *sec, asection *group,
9966 struct bfd_link_info *info)
9967{
9968 asection *first = elf_next_in_group (group);
9969 asection *s = first;
9970
9971 while (s != NULL)
9972 {
9973 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9974 return s;
9975
9976 s = elf_next_in_group (s);
9977 if (s == first)
9978 break;
9979 }
9980
9981 return NULL;
9982}
9983
9984/* Check if the kept section of a discarded section SEC can be used
9985 to replace it. Return the replacement if it is OK. Otherwise return
9986 NULL. */
9987
9988asection *
9989_bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9990{
9991 asection *kept;
9992
9993 kept = sec->kept_section;
9994 if (kept != NULL)
9995 {
9996 if ((kept->flags & SEC_GROUP) != 0)
9997 kept = match_group_member (sec, kept, info);
9998 if (kept != NULL
9999 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10000 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10001 kept = NULL;
10002 sec->kept_section = kept;
10003 }
10004 return kept;
10005}
10006
10007/* Link an input file into the linker output file. This function
10008 handles all the sections and relocations of the input file at once.
10009 This is so that we only have to read the local symbols once, and
10010 don't have to keep them in memory. */
10011
10012static bfd_boolean
10013elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10014{
10015 int (*relocate_section)
10016 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10017 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10018 bfd *output_bfd;
10019 Elf_Internal_Shdr *symtab_hdr;
10020 size_t locsymcount;
10021 size_t extsymoff;
10022 Elf_Internal_Sym *isymbuf;
10023 Elf_Internal_Sym *isym;
10024 Elf_Internal_Sym *isymend;
10025 long *pindex;
10026 asection **ppsection;
10027 asection *o;
10028 const struct elf_backend_data *bed;
10029 struct elf_link_hash_entry **sym_hashes;
10030 bfd_size_type address_size;
10031 bfd_vma r_type_mask;
10032 int r_sym_shift;
10033 bfd_boolean have_file_sym = FALSE;
10034
10035 output_bfd = flinfo->output_bfd;
10036 bed = get_elf_backend_data (output_bfd);
10037 relocate_section = bed->elf_backend_relocate_section;
10038
10039 /* If this is a dynamic object, we don't want to do anything here:
10040 we don't want the local symbols, and we don't want the section
10041 contents. */
10042 if ((input_bfd->flags & DYNAMIC) != 0)
10043 return TRUE;
10044
10045 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10046 if (elf_bad_symtab (input_bfd))
10047 {
10048 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10049 extsymoff = 0;
10050 }
10051 else
10052 {
10053 locsymcount = symtab_hdr->sh_info;
10054 extsymoff = symtab_hdr->sh_info;
10055 }
10056
10057 /* Read the local symbols. */
10058 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10059 if (isymbuf == NULL && locsymcount != 0)
10060 {
10061 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10062 flinfo->internal_syms,
10063 flinfo->external_syms,
10064 flinfo->locsym_shndx);
10065 if (isymbuf == NULL)
10066 return FALSE;
10067 }
10068
10069 /* Find local symbol sections and adjust values of symbols in
10070 SEC_MERGE sections. Write out those local symbols we know are
10071 going into the output file. */
10072 isymend = isymbuf + locsymcount;
10073 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10074 isym < isymend;
10075 isym++, pindex++, ppsection++)
10076 {
10077 asection *isec;
10078 const char *name;
10079 Elf_Internal_Sym osym;
10080 long indx;
10081 int ret;
10082
10083 *pindex = -1;
10084
10085 if (elf_bad_symtab (input_bfd))
10086 {
10087 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10088 {
10089 *ppsection = NULL;
10090 continue;
10091 }
10092 }
10093
10094 if (isym->st_shndx == SHN_UNDEF)
10095 isec = bfd_und_section_ptr;
10096 else if (isym->st_shndx == SHN_ABS)
10097 isec = bfd_abs_section_ptr;
10098 else if (isym->st_shndx == SHN_COMMON)
10099 isec = bfd_com_section_ptr;
10100 else
10101 {
10102 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10103 if (isec == NULL)
10104 {
10105 /* Don't attempt to output symbols with st_shnx in the
10106 reserved range other than SHN_ABS and SHN_COMMON. */
10107 *ppsection = NULL;
10108 continue;
10109 }
10110 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10111 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10112 isym->st_value =
10113 _bfd_merged_section_offset (output_bfd, &isec,
10114 elf_section_data (isec)->sec_info,
10115 isym->st_value);
10116 }
10117
10118 *ppsection = isec;
10119
10120 /* Don't output the first, undefined, symbol. In fact, don't
10121 output any undefined local symbol. */
10122 if (isec == bfd_und_section_ptr)
10123 continue;
10124
10125 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10126 {
10127 /* We never output section symbols. Instead, we use the
10128 section symbol of the corresponding section in the output
10129 file. */
10130 continue;
10131 }
10132
10133 /* If we are stripping all symbols, we don't want to output this
10134 one. */
10135 if (flinfo->info->strip == strip_all)
10136 continue;
10137
10138 /* If we are discarding all local symbols, we don't want to
10139 output this one. If we are generating a relocatable output
10140 file, then some of the local symbols may be required by
10141 relocs; we output them below as we discover that they are
10142 needed. */
10143 if (flinfo->info->discard == discard_all)
10144 continue;
10145
10146 /* If this symbol is defined in a section which we are
10147 discarding, we don't need to keep it. */
10148 if (isym->st_shndx != SHN_UNDEF
10149 && isym->st_shndx < SHN_LORESERVE
10150 && bfd_section_removed_from_list (output_bfd,
10151 isec->output_section))
10152 continue;
10153
10154 /* Get the name of the symbol. */
10155 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10156 isym->st_name);
10157 if (name == NULL)
10158 return FALSE;
10159
10160 /* See if we are discarding symbols with this name. */
10161 if ((flinfo->info->strip == strip_some
10162 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10163 == NULL))
10164 || (((flinfo->info->discard == discard_sec_merge
10165 && (isec->flags & SEC_MERGE)
10166 && !bfd_link_relocatable (flinfo->info))
10167 || flinfo->info->discard == discard_l)
10168 && bfd_is_local_label_name (input_bfd, name)))
10169 continue;
10170
10171 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10172 {
10173 if (input_bfd->lto_output)
10174 /* -flto puts a temp file name here. This means builds
10175 are not reproducible. Discard the symbol. */
10176 continue;
10177 have_file_sym = TRUE;
10178 flinfo->filesym_count += 1;
10179 }
10180 if (!have_file_sym)
10181 {
10182 /* In the absence of debug info, bfd_find_nearest_line uses
10183 FILE symbols to determine the source file for local
10184 function symbols. Provide a FILE symbol here if input
10185 files lack such, so that their symbols won't be
10186 associated with a previous input file. It's not the
10187 source file, but the best we can do. */
10188 have_file_sym = TRUE;
10189 flinfo->filesym_count += 1;
10190 memset (&osym, 0, sizeof (osym));
10191 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10192 osym.st_shndx = SHN_ABS;
10193 if (!elf_link_output_symstrtab (flinfo,
10194 (input_bfd->lto_output ? NULL
10195 : input_bfd->filename),
10196 &osym, bfd_abs_section_ptr,
10197 NULL))
10198 return FALSE;
10199 }
10200
10201 osym = *isym;
10202
10203 /* Adjust the section index for the output file. */
10204 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10205 isec->output_section);
10206 if (osym.st_shndx == SHN_BAD)
10207 return FALSE;
10208
10209 /* ELF symbols in relocatable files are section relative, but
10210 in executable files they are virtual addresses. Note that
10211 this code assumes that all ELF sections have an associated
10212 BFD section with a reasonable value for output_offset; below
10213 we assume that they also have a reasonable value for
10214 output_section. Any special sections must be set up to meet
10215 these requirements. */
10216 osym.st_value += isec->output_offset;
10217 if (!bfd_link_relocatable (flinfo->info))
10218 {
10219 osym.st_value += isec->output_section->vma;
10220 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10221 {
10222 /* STT_TLS symbols are relative to PT_TLS segment base. */
10223 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10224 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10225 }
10226 }
10227
10228 indx = bfd_get_symcount (output_bfd);
10229 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10230 if (ret == 0)
10231 return FALSE;
10232 else if (ret == 1)
10233 *pindex = indx;
10234 }
10235
10236 if (bed->s->arch_size == 32)
10237 {
10238 r_type_mask = 0xff;
10239 r_sym_shift = 8;
10240 address_size = 4;
10241 }
10242 else
10243 {
10244 r_type_mask = 0xffffffff;
10245 r_sym_shift = 32;
10246 address_size = 8;
10247 }
10248
10249 /* Relocate the contents of each section. */
10250 sym_hashes = elf_sym_hashes (input_bfd);
10251 for (o = input_bfd->sections; o != NULL; o = o->next)
10252 {
10253 bfd_byte *contents;
10254
10255 if (! o->linker_mark)
10256 {
10257 /* This section was omitted from the link. */
10258 continue;
10259 }
10260
10261 if (bfd_link_relocatable (flinfo->info)
10262 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10263 {
10264 /* Deal with the group signature symbol. */
10265 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10266 unsigned long symndx = sec_data->this_hdr.sh_info;
10267 asection *osec = o->output_section;
10268
10269 if (symndx >= locsymcount
10270 || (elf_bad_symtab (input_bfd)
10271 && flinfo->sections[symndx] == NULL))
10272 {
10273 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10274 while (h->root.type == bfd_link_hash_indirect
10275 || h->root.type == bfd_link_hash_warning)
10276 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10277 /* Arrange for symbol to be output. */
10278 h->indx = -2;
10279 elf_section_data (osec)->this_hdr.sh_info = -2;
10280 }
10281 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10282 {
10283 /* We'll use the output section target_index. */
10284 asection *sec = flinfo->sections[symndx]->output_section;
10285 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10286 }
10287 else
10288 {
10289 if (flinfo->indices[symndx] == -1)
10290 {
10291 /* Otherwise output the local symbol now. */
10292 Elf_Internal_Sym sym = isymbuf[symndx];
10293 asection *sec = flinfo->sections[symndx]->output_section;
10294 const char *name;
10295 long indx;
10296 int ret;
10297
10298 name = bfd_elf_string_from_elf_section (input_bfd,
10299 symtab_hdr->sh_link,
10300 sym.st_name);
10301 if (name == NULL)
10302 return FALSE;
10303
10304 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10305 sec);
10306 if (sym.st_shndx == SHN_BAD)
10307 return FALSE;
10308
10309 sym.st_value += o->output_offset;
10310
10311 indx = bfd_get_symcount (output_bfd);
10312 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10313 NULL);
10314 if (ret == 0)
10315 return FALSE;
10316 else if (ret == 1)
10317 flinfo->indices[symndx] = indx;
10318 else
10319 abort ();
10320 }
10321 elf_section_data (osec)->this_hdr.sh_info
10322 = flinfo->indices[symndx];
10323 }
10324 }
10325
10326 if ((o->flags & SEC_HAS_CONTENTS) == 0
10327 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10328 continue;
10329
10330 if ((o->flags & SEC_LINKER_CREATED) != 0)
10331 {
10332 /* Section was created by _bfd_elf_link_create_dynamic_sections
10333 or somesuch. */
10334 continue;
10335 }
10336
10337 /* Get the contents of the section. They have been cached by a
10338 relaxation routine. Note that o is a section in an input
10339 file, so the contents field will not have been set by any of
10340 the routines which work on output files. */
10341 if (elf_section_data (o)->this_hdr.contents != NULL)
10342 {
10343 contents = elf_section_data (o)->this_hdr.contents;
10344 if (bed->caches_rawsize
10345 && o->rawsize != 0
10346 && o->rawsize < o->size)
10347 {
10348 memcpy (flinfo->contents, contents, o->rawsize);
10349 contents = flinfo->contents;
10350 }
10351 }
10352 else
10353 {
10354 contents = flinfo->contents;
10355 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10356 return FALSE;
10357 }
10358
10359 if ((o->flags & SEC_RELOC) != 0)
10360 {
10361 Elf_Internal_Rela *internal_relocs;
10362 Elf_Internal_Rela *rel, *relend;
10363 int action_discarded;
10364 int ret;
10365
10366 /* Get the swapped relocs. */
10367 internal_relocs
10368 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10369 flinfo->internal_relocs, FALSE);
10370 if (internal_relocs == NULL
10371 && o->reloc_count > 0)
10372 return FALSE;
10373
10374 /* We need to reverse-copy input .ctors/.dtors sections if
10375 they are placed in .init_array/.finit_array for output. */
10376 if (o->size > address_size
10377 && ((strncmp (o->name, ".ctors", 6) == 0
10378 && strcmp (o->output_section->name,
10379 ".init_array") == 0)
10380 || (strncmp (o->name, ".dtors", 6) == 0
10381 && strcmp (o->output_section->name,
10382 ".fini_array") == 0))
10383 && (o->name[6] == 0 || o->name[6] == '.'))
10384 {
10385 if (o->size != o->reloc_count * address_size)
10386 {
10387 _bfd_error_handler
10388 /* xgettext:c-format */
10389 (_("error: %B: size of section %A is not "
10390 "multiple of address size"),
10391 input_bfd, o);
10392 bfd_set_error (bfd_error_on_input);
10393 return FALSE;
10394 }
10395 o->flags |= SEC_ELF_REVERSE_COPY;
10396 }
10397
10398 action_discarded = -1;
10399 if (!elf_section_ignore_discarded_relocs (o))
10400 action_discarded = (*bed->action_discarded) (o);
10401
10402 /* Run through the relocs evaluating complex reloc symbols and
10403 looking for relocs against symbols from discarded sections
10404 or section symbols from removed link-once sections.
10405 Complain about relocs against discarded sections. Zero
10406 relocs against removed link-once sections. */
10407
10408 rel = internal_relocs;
10409 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10410 for ( ; rel < relend; rel++)
10411 {
10412 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10413 unsigned int s_type;
10414 asection **ps, *sec;
10415 struct elf_link_hash_entry *h = NULL;
10416 const char *sym_name;
10417
10418 if (r_symndx == STN_UNDEF)
10419 continue;
10420
10421 if (r_symndx >= locsymcount
10422 || (elf_bad_symtab (input_bfd)
10423 && flinfo->sections[r_symndx] == NULL))
10424 {
10425 h = sym_hashes[r_symndx - extsymoff];
10426
10427 /* Badly formatted input files can contain relocs that
10428 reference non-existant symbols. Check here so that
10429 we do not seg fault. */
10430 if (h == NULL)
10431 {
10432 char buffer [32];
10433
10434 sprintf_vma (buffer, rel->r_info);
10435 _bfd_error_handler
10436 /* xgettext:c-format */
10437 (_("error: %B contains a reloc (0x%s) for section %A "
10438 "that references a non-existent global symbol"),
10439 input_bfd, buffer, o);
10440 bfd_set_error (bfd_error_bad_value);
10441 return FALSE;
10442 }
10443
10444 while (h->root.type == bfd_link_hash_indirect
10445 || h->root.type == bfd_link_hash_warning)
10446 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10447
10448 s_type = h->type;
10449
10450 /* If a plugin symbol is referenced from a non-IR file,
10451 mark the symbol as undefined. Note that the
10452 linker may attach linker created dynamic sections
10453 to the plugin bfd. Symbols defined in linker
10454 created sections are not plugin symbols. */
10455 if (h->root.non_ir_ref
10456 && (h->root.type == bfd_link_hash_defined
10457 || h->root.type == bfd_link_hash_defweak)
10458 && (h->root.u.def.section->flags
10459 & SEC_LINKER_CREATED) == 0
10460 && h->root.u.def.section->owner != NULL
10461 && (h->root.u.def.section->owner->flags
10462 & BFD_PLUGIN) != 0)
10463 {
10464 h->root.type = bfd_link_hash_undefined;
10465 h->root.u.undef.abfd = h->root.u.def.section->owner;
10466 }
10467
10468 ps = NULL;
10469 if (h->root.type == bfd_link_hash_defined
10470 || h->root.type == bfd_link_hash_defweak)
10471 ps = &h->root.u.def.section;
10472
10473 sym_name = h->root.root.string;
10474 }
10475 else
10476 {
10477 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10478
10479 s_type = ELF_ST_TYPE (sym->st_info);
10480 ps = &flinfo->sections[r_symndx];
10481 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10482 sym, *ps);
10483 }
10484
10485 if ((s_type == STT_RELC || s_type == STT_SRELC)
10486 && !bfd_link_relocatable (flinfo->info))
10487 {
10488 bfd_vma val;
10489 bfd_vma dot = (rel->r_offset
10490 + o->output_offset + o->output_section->vma);
10491#ifdef DEBUG
10492 printf ("Encountered a complex symbol!");
10493 printf (" (input_bfd %s, section %s, reloc %ld\n",
10494 input_bfd->filename, o->name,
10495 (long) (rel - internal_relocs));
10496 printf (" symbol: idx %8.8lx, name %s\n",
10497 r_symndx, sym_name);
10498 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10499 (unsigned long) rel->r_info,
10500 (unsigned long) rel->r_offset);
10501#endif
10502 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10503 isymbuf, locsymcount, s_type == STT_SRELC))
10504 return FALSE;
10505
10506 /* Symbol evaluated OK. Update to absolute value. */
10507 set_symbol_value (input_bfd, isymbuf, locsymcount,
10508 r_symndx, val);
10509 continue;
10510 }
10511
10512 if (action_discarded != -1 && ps != NULL)
10513 {
10514 /* Complain if the definition comes from a
10515 discarded section. */
10516 if ((sec = *ps) != NULL && discarded_section (sec))
10517 {
10518 BFD_ASSERT (r_symndx != STN_UNDEF);
10519 if (action_discarded & COMPLAIN)
10520 (*flinfo->info->callbacks->einfo)
10521 /* xgettext:c-format */
10522 (_("%X`%s' referenced in section `%A' of %B: "
10523 "defined in discarded section `%A' of %B\n"),
10524 sym_name, o, input_bfd, sec, sec->owner);
10525
10526 /* Try to do the best we can to support buggy old
10527 versions of gcc. Pretend that the symbol is
10528 really defined in the kept linkonce section.
10529 FIXME: This is quite broken. Modifying the
10530 symbol here means we will be changing all later
10531 uses of the symbol, not just in this section. */
10532 if (action_discarded & PRETEND)
10533 {
10534 asection *kept;
10535
10536 kept = _bfd_elf_check_kept_section (sec,
10537 flinfo->info);
10538 if (kept != NULL)
10539 {
10540 *ps = kept;
10541 continue;
10542 }
10543 }
10544 }
10545 }
10546 }
10547
10548 /* Relocate the section by invoking a back end routine.
10549
10550 The back end routine is responsible for adjusting the
10551 section contents as necessary, and (if using Rela relocs
10552 and generating a relocatable output file) adjusting the
10553 reloc addend as necessary.
10554
10555 The back end routine does not have to worry about setting
10556 the reloc address or the reloc symbol index.
10557
10558 The back end routine is given a pointer to the swapped in
10559 internal symbols, and can access the hash table entries
10560 for the external symbols via elf_sym_hashes (input_bfd).
10561
10562 When generating relocatable output, the back end routine
10563 must handle STB_LOCAL/STT_SECTION symbols specially. The
10564 output symbol is going to be a section symbol
10565 corresponding to the output section, which will require
10566 the addend to be adjusted. */
10567
10568 ret = (*relocate_section) (output_bfd, flinfo->info,
10569 input_bfd, o, contents,
10570 internal_relocs,
10571 isymbuf,
10572 flinfo->sections);
10573 if (!ret)
10574 return FALSE;
10575
10576 if (ret == 2
10577 || bfd_link_relocatable (flinfo->info)
10578 || flinfo->info->emitrelocations)
10579 {
10580 Elf_Internal_Rela *irela;
10581 Elf_Internal_Rela *irelaend, *irelamid;
10582 bfd_vma last_offset;
10583 struct elf_link_hash_entry **rel_hash;
10584 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10585 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10586 unsigned int next_erel;
10587 bfd_boolean rela_normal;
10588 struct bfd_elf_section_data *esdi, *esdo;
10589
10590 esdi = elf_section_data (o);
10591 esdo = elf_section_data (o->output_section);
10592 rela_normal = FALSE;
10593
10594 /* Adjust the reloc addresses and symbol indices. */
10595
10596 irela = internal_relocs;
10597 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10598 rel_hash = esdo->rel.hashes + esdo->rel.count;
10599 /* We start processing the REL relocs, if any. When we reach
10600 IRELAMID in the loop, we switch to the RELA relocs. */
10601 irelamid = irela;
10602 if (esdi->rel.hdr != NULL)
10603 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10604 * bed->s->int_rels_per_ext_rel);
10605 rel_hash_list = rel_hash;
10606 rela_hash_list = NULL;
10607 last_offset = o->output_offset;
10608 if (!bfd_link_relocatable (flinfo->info))
10609 last_offset += o->output_section->vma;
10610 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10611 {
10612 unsigned long r_symndx;
10613 asection *sec;
10614 Elf_Internal_Sym sym;
10615
10616 if (next_erel == bed->s->int_rels_per_ext_rel)
10617 {
10618 rel_hash++;
10619 next_erel = 0;
10620 }
10621
10622 if (irela == irelamid)
10623 {
10624 rel_hash = esdo->rela.hashes + esdo->rela.count;
10625 rela_hash_list = rel_hash;
10626 rela_normal = bed->rela_normal;
10627 }
10628
10629 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10630 flinfo->info, o,
10631 irela->r_offset);
10632 if (irela->r_offset >= (bfd_vma) -2)
10633 {
10634 /* This is a reloc for a deleted entry or somesuch.
10635 Turn it into an R_*_NONE reloc, at the same
10636 offset as the last reloc. elf_eh_frame.c and
10637 bfd_elf_discard_info rely on reloc offsets
10638 being ordered. */
10639 irela->r_offset = last_offset;
10640 irela->r_info = 0;
10641 irela->r_addend = 0;
10642 continue;
10643 }
10644
10645 irela->r_offset += o->output_offset;
10646
10647 /* Relocs in an executable have to be virtual addresses. */
10648 if (!bfd_link_relocatable (flinfo->info))
10649 irela->r_offset += o->output_section->vma;
10650
10651 last_offset = irela->r_offset;
10652
10653 r_symndx = irela->r_info >> r_sym_shift;
10654 if (r_symndx == STN_UNDEF)
10655 continue;
10656
10657 if (r_symndx >= locsymcount
10658 || (elf_bad_symtab (input_bfd)
10659 && flinfo->sections[r_symndx] == NULL))
10660 {
10661 struct elf_link_hash_entry *rh;
10662 unsigned long indx;
10663
10664 /* This is a reloc against a global symbol. We
10665 have not yet output all the local symbols, so
10666 we do not know the symbol index of any global
10667 symbol. We set the rel_hash entry for this
10668 reloc to point to the global hash table entry
10669 for this symbol. The symbol index is then
10670 set at the end of bfd_elf_final_link. */
10671 indx = r_symndx - extsymoff;
10672 rh = elf_sym_hashes (input_bfd)[indx];
10673 while (rh->root.type == bfd_link_hash_indirect
10674 || rh->root.type == bfd_link_hash_warning)
10675 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10676
10677 /* Setting the index to -2 tells
10678 elf_link_output_extsym that this symbol is
10679 used by a reloc. */
10680 BFD_ASSERT (rh->indx < 0);
10681 rh->indx = -2;
10682
10683 *rel_hash = rh;
10684
10685 continue;
10686 }
10687
10688 /* This is a reloc against a local symbol. */
10689
10690 *rel_hash = NULL;
10691 sym = isymbuf[r_symndx];
10692 sec = flinfo->sections[r_symndx];
10693 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10694 {
10695 /* I suppose the backend ought to fill in the
10696 section of any STT_SECTION symbol against a
10697 processor specific section. */
10698 r_symndx = STN_UNDEF;
10699 if (bfd_is_abs_section (sec))
10700 ;
10701 else if (sec == NULL || sec->owner == NULL)
10702 {
10703 bfd_set_error (bfd_error_bad_value);
10704 return FALSE;
10705 }
10706 else
10707 {
10708 asection *osec = sec->output_section;
10709
10710 /* If we have discarded a section, the output
10711 section will be the absolute section. In
10712 case of discarded SEC_MERGE sections, use
10713 the kept section. relocate_section should
10714 have already handled discarded linkonce
10715 sections. */
10716 if (bfd_is_abs_section (osec)
10717 && sec->kept_section != NULL
10718 && sec->kept_section->output_section != NULL)
10719 {
10720 osec = sec->kept_section->output_section;
10721 irela->r_addend -= osec->vma;
10722 }
10723
10724 if (!bfd_is_abs_section (osec))
10725 {
10726 r_symndx = osec->target_index;
10727 if (r_symndx == STN_UNDEF)
10728 {
10729 irela->r_addend += osec->vma;
10730 osec = _bfd_nearby_section (output_bfd, osec,
10731 osec->vma);
10732 irela->r_addend -= osec->vma;
10733 r_symndx = osec->target_index;
10734 }
10735 }
10736 }
10737
10738 /* Adjust the addend according to where the
10739 section winds up in the output section. */
10740 if (rela_normal)
10741 irela->r_addend += sec->output_offset;
10742 }
10743 else
10744 {
10745 if (flinfo->indices[r_symndx] == -1)
10746 {
10747 unsigned long shlink;
10748 const char *name;
10749 asection *osec;
10750 long indx;
10751
10752 if (flinfo->info->strip == strip_all)
10753 {
10754 /* You can't do ld -r -s. */
10755 bfd_set_error (bfd_error_invalid_operation);
10756 return FALSE;
10757 }
10758
10759 /* This symbol was skipped earlier, but
10760 since it is needed by a reloc, we
10761 must output it now. */
10762 shlink = symtab_hdr->sh_link;
10763 name = (bfd_elf_string_from_elf_section
10764 (input_bfd, shlink, sym.st_name));
10765 if (name == NULL)
10766 return FALSE;
10767
10768 osec = sec->output_section;
10769 sym.st_shndx =
10770 _bfd_elf_section_from_bfd_section (output_bfd,
10771 osec);
10772 if (sym.st_shndx == SHN_BAD)
10773 return FALSE;
10774
10775 sym.st_value += sec->output_offset;
10776 if (!bfd_link_relocatable (flinfo->info))
10777 {
10778 sym.st_value += osec->vma;
10779 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10780 {
10781 /* STT_TLS symbols are relative to PT_TLS
10782 segment base. */
10783 BFD_ASSERT (elf_hash_table (flinfo->info)
10784 ->tls_sec != NULL);
10785 sym.st_value -= (elf_hash_table (flinfo->info)
10786 ->tls_sec->vma);
10787 }
10788 }
10789
10790 indx = bfd_get_symcount (output_bfd);
10791 ret = elf_link_output_symstrtab (flinfo, name,
10792 &sym, sec,
10793 NULL);
10794 if (ret == 0)
10795 return FALSE;
10796 else if (ret == 1)
10797 flinfo->indices[r_symndx] = indx;
10798 else
10799 abort ();
10800 }
10801
10802 r_symndx = flinfo->indices[r_symndx];
10803 }
10804
10805 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10806 | (irela->r_info & r_type_mask));
10807 }
10808
10809 /* Swap out the relocs. */
10810 input_rel_hdr = esdi->rel.hdr;
10811 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10812 {
10813 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10814 input_rel_hdr,
10815 internal_relocs,
10816 rel_hash_list))
10817 return FALSE;
10818 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10819 * bed->s->int_rels_per_ext_rel);
10820 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10821 }
10822
10823 input_rela_hdr = esdi->rela.hdr;
10824 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10825 {
10826 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10827 input_rela_hdr,
10828 internal_relocs,
10829 rela_hash_list))
10830 return FALSE;
10831 }
10832 }
10833 }
10834
10835 /* Write out the modified section contents. */
10836 if (bed->elf_backend_write_section
10837 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10838 contents))
10839 {
10840 /* Section written out. */
10841 }
10842 else switch (o->sec_info_type)
10843 {
10844 case SEC_INFO_TYPE_STABS:
10845 if (! (_bfd_write_section_stabs
10846 (output_bfd,
10847 &elf_hash_table (flinfo->info)->stab_info,
10848 o, &elf_section_data (o)->sec_info, contents)))
10849 return FALSE;
10850 break;
10851 case SEC_INFO_TYPE_MERGE:
10852 if (! _bfd_write_merged_section (output_bfd, o,
10853 elf_section_data (o)->sec_info))
10854 return FALSE;
10855 break;
10856 case SEC_INFO_TYPE_EH_FRAME:
10857 {
10858 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10859 o, contents))
10860 return FALSE;
10861 }
10862 break;
10863 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10864 {
10865 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10866 flinfo->info,
10867 o, contents))
10868 return FALSE;
10869 }
10870 break;
10871 default:
10872 {
10873 if (! (o->flags & SEC_EXCLUDE))
10874 {
10875 file_ptr offset = (file_ptr) o->output_offset;
10876 bfd_size_type todo = o->size;
10877
10878 offset *= bfd_octets_per_byte (output_bfd);
10879
10880 if ((o->flags & SEC_ELF_REVERSE_COPY))
10881 {
10882 /* Reverse-copy input section to output. */
10883 do
10884 {
10885 todo -= address_size;
10886 if (! bfd_set_section_contents (output_bfd,
10887 o->output_section,
10888 contents + todo,
10889 offset,
10890 address_size))
10891 return FALSE;
10892 if (todo == 0)
10893 break;
10894 offset += address_size;
10895 }
10896 while (1);
10897 }
10898 else if (! bfd_set_section_contents (output_bfd,
10899 o->output_section,
10900 contents,
10901 offset, todo))
10902 return FALSE;
10903 }
10904 }
10905 break;
10906 }
10907 }
10908
10909 return TRUE;
10910}
10911
10912/* Generate a reloc when linking an ELF file. This is a reloc
10913 requested by the linker, and does not come from any input file. This
10914 is used to build constructor and destructor tables when linking
10915 with -Ur. */
10916
10917static bfd_boolean
10918elf_reloc_link_order (bfd *output_bfd,
10919 struct bfd_link_info *info,
10920 asection *output_section,
10921 struct bfd_link_order *link_order)
10922{
10923 reloc_howto_type *howto;
10924 long indx;
10925 bfd_vma offset;
10926 bfd_vma addend;
10927 struct bfd_elf_section_reloc_data *reldata;
10928 struct elf_link_hash_entry **rel_hash_ptr;
10929 Elf_Internal_Shdr *rel_hdr;
10930 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10931 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10932 bfd_byte *erel;
10933 unsigned int i;
10934 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10935
10936 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10937 if (howto == NULL)
10938 {
10939 bfd_set_error (bfd_error_bad_value);
10940 return FALSE;
10941 }
10942
10943 addend = link_order->u.reloc.p->addend;
10944
10945 if (esdo->rel.hdr)
10946 reldata = &esdo->rel;
10947 else if (esdo->rela.hdr)
10948 reldata = &esdo->rela;
10949 else
10950 {
10951 reldata = NULL;
10952 BFD_ASSERT (0);
10953 }
10954
10955 /* Figure out the symbol index. */
10956 rel_hash_ptr = reldata->hashes + reldata->count;
10957 if (link_order->type == bfd_section_reloc_link_order)
10958 {
10959 indx = link_order->u.reloc.p->u.section->target_index;
10960 BFD_ASSERT (indx != 0);
10961 *rel_hash_ptr = NULL;
10962 }
10963 else
10964 {
10965 struct elf_link_hash_entry *h;
10966
10967 /* Treat a reloc against a defined symbol as though it were
10968 actually against the section. */
10969 h = ((struct elf_link_hash_entry *)
10970 bfd_wrapped_link_hash_lookup (output_bfd, info,
10971 link_order->u.reloc.p->u.name,
10972 FALSE, FALSE, TRUE));
10973 if (h != NULL
10974 && (h->root.type == bfd_link_hash_defined
10975 || h->root.type == bfd_link_hash_defweak))
10976 {
10977 asection *section;
10978
10979 section = h->root.u.def.section;
10980 indx = section->output_section->target_index;
10981 *rel_hash_ptr = NULL;
10982 /* It seems that we ought to add the symbol value to the
10983 addend here, but in practice it has already been added
10984 because it was passed to constructor_callback. */
10985 addend += section->output_section->vma + section->output_offset;
10986 }
10987 else if (h != NULL)
10988 {
10989 /* Setting the index to -2 tells elf_link_output_extsym that
10990 this symbol is used by a reloc. */
10991 h->indx = -2;
10992 *rel_hash_ptr = h;
10993 indx = 0;
10994 }
10995 else
10996 {
10997 (*info->callbacks->unattached_reloc)
10998 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10999 indx = 0;
11000 }
11001 }
11002
11003 /* If this is an inplace reloc, we must write the addend into the
11004 object file. */
11005 if (howto->partial_inplace && addend != 0)
11006 {
11007 bfd_size_type size;
11008 bfd_reloc_status_type rstat;
11009 bfd_byte *buf;
11010 bfd_boolean ok;
11011 const char *sym_name;
11012
11013 size = (bfd_size_type) bfd_get_reloc_size (howto);
11014 buf = (bfd_byte *) bfd_zmalloc (size);
11015 if (buf == NULL && size != 0)
11016 return FALSE;
11017 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11018 switch (rstat)
11019 {
11020 case bfd_reloc_ok:
11021 break;
11022
11023 default:
11024 case bfd_reloc_outofrange:
11025 abort ();
11026
11027 case bfd_reloc_overflow:
11028 if (link_order->type == bfd_section_reloc_link_order)
11029 sym_name = bfd_section_name (output_bfd,
11030 link_order->u.reloc.p->u.section);
11031 else
11032 sym_name = link_order->u.reloc.p->u.name;
11033 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11034 howto->name, addend, NULL, NULL,
11035 (bfd_vma) 0);
11036 break;
11037 }
11038
11039 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11040 link_order->offset
11041 * bfd_octets_per_byte (output_bfd),
11042 size);
11043 free (buf);
11044 if (! ok)
11045 return FALSE;
11046 }
11047
11048 /* The address of a reloc is relative to the section in a
11049 relocatable file, and is a virtual address in an executable
11050 file. */
11051 offset = link_order->offset;
11052 if (! bfd_link_relocatable (info))
11053 offset += output_section->vma;
11054
11055 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11056 {
11057 irel[i].r_offset = offset;
11058 irel[i].r_info = 0;
11059 irel[i].r_addend = 0;
11060 }
11061 if (bed->s->arch_size == 32)
11062 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11063 else
11064 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11065
11066 rel_hdr = reldata->hdr;
11067 erel = rel_hdr->contents;
11068 if (rel_hdr->sh_type == SHT_REL)
11069 {
11070 erel += reldata->count * bed->s->sizeof_rel;
11071 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11072 }
11073 else
11074 {
11075 irel[0].r_addend = addend;
11076 erel += reldata->count * bed->s->sizeof_rela;
11077 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11078 }
11079
11080 ++reldata->count;
11081
11082 return TRUE;
11083}
11084
11085
11086/* Get the output vma of the section pointed to by the sh_link field. */
11087
11088static bfd_vma
11089elf_get_linked_section_vma (struct bfd_link_order *p)
11090{
11091 Elf_Internal_Shdr **elf_shdrp;
11092 asection *s;
11093 int elfsec;
11094
11095 s = p->u.indirect.section;
11096 elf_shdrp = elf_elfsections (s->owner);
11097 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11098 elfsec = elf_shdrp[elfsec]->sh_link;
11099 /* PR 290:
11100 The Intel C compiler generates SHT_IA_64_UNWIND with
11101 SHF_LINK_ORDER. But it doesn't set the sh_link or
11102 sh_info fields. Hence we could get the situation
11103 where elfsec is 0. */
11104 if (elfsec == 0)
11105 {
11106 const struct elf_backend_data *bed
11107 = get_elf_backend_data (s->owner);
11108 if (bed->link_order_error_handler)
11109 bed->link_order_error_handler
11110 /* xgettext:c-format */
11111 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11112 return 0;
11113 }
11114 else
11115 {
11116 s = elf_shdrp[elfsec]->bfd_section;
11117 return s->output_section->vma + s->output_offset;
11118 }
11119}
11120
11121
11122/* Compare two sections based on the locations of the sections they are
11123 linked to. Used by elf_fixup_link_order. */
11124
11125static int
11126compare_link_order (const void * a, const void * b)
11127{
11128 bfd_vma apos;
11129 bfd_vma bpos;
11130
11131 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11132 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11133 if (apos < bpos)
11134 return -1;
11135 return apos > bpos;
11136}
11137
11138
11139/* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11140 order as their linked sections. Returns false if this could not be done
11141 because an output section includes both ordered and unordered
11142 sections. Ideally we'd do this in the linker proper. */
11143
11144static bfd_boolean
11145elf_fixup_link_order (bfd *abfd, asection *o)
11146{
11147 int seen_linkorder;
11148 int seen_other;
11149 int n;
11150 struct bfd_link_order *p;
11151 bfd *sub;
11152 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11153 unsigned elfsec;
11154 struct bfd_link_order **sections;
11155 asection *s, *other_sec, *linkorder_sec;
11156 bfd_vma offset;
11157
11158 other_sec = NULL;
11159 linkorder_sec = NULL;
11160 seen_other = 0;
11161 seen_linkorder = 0;
11162 for (p = o->map_head.link_order; p != NULL; p = p->next)
11163 {
11164 if (p->type == bfd_indirect_link_order)
11165 {
11166 s = p->u.indirect.section;
11167 sub = s->owner;
11168 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11169 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11170 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11171 && elfsec < elf_numsections (sub)
11172 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11173 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11174 {
11175 seen_linkorder++;
11176 linkorder_sec = s;
11177 }
11178 else
11179 {
11180 seen_other++;
11181 other_sec = s;
11182 }
11183 }
11184 else
11185 seen_other++;
11186
11187 if (seen_other && seen_linkorder)
11188 {
11189 if (other_sec && linkorder_sec)
11190 _bfd_error_handler
11191 /* xgettext:c-format */
11192 (_("%A has both ordered [`%A' in %B] "
11193 "and unordered [`%A' in %B] sections"),
11194 o, linkorder_sec, linkorder_sec->owner,
11195 other_sec, other_sec->owner);
11196 else
11197 _bfd_error_handler
11198 (_("%A has both ordered and unordered sections"), o);
11199 bfd_set_error (bfd_error_bad_value);
11200 return FALSE;
11201 }
11202 }
11203
11204 if (!seen_linkorder)
11205 return TRUE;
11206
11207 sections = (struct bfd_link_order **)
11208 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11209 if (sections == NULL)
11210 return FALSE;
11211 seen_linkorder = 0;
11212
11213 for (p = o->map_head.link_order; p != NULL; p = p->next)
11214 {
11215 sections[seen_linkorder++] = p;
11216 }
11217 /* Sort the input sections in the order of their linked section. */
11218 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11219 compare_link_order);
11220
11221 /* Change the offsets of the sections. */
11222 offset = 0;
11223 for (n = 0; n < seen_linkorder; n++)
11224 {
11225 s = sections[n]->u.indirect.section;
11226 offset &= ~(bfd_vma) 0 << s->alignment_power;
11227 s->output_offset = offset / bfd_octets_per_byte (abfd);
11228 sections[n]->offset = offset;
11229 offset += sections[n]->size;
11230 }
11231
11232 free (sections);
11233 return TRUE;
11234}
11235
11236/* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11237 Returns TRUE upon success, FALSE otherwise. */
11238
11239static bfd_boolean
11240elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11241{
11242 bfd_boolean ret = FALSE;
11243 bfd *implib_bfd;
11244 const struct elf_backend_data *bed;
11245 flagword flags;
11246 enum bfd_architecture arch;
11247 unsigned int mach;
11248 asymbol **sympp = NULL;
11249 long symsize;
11250 long symcount;
11251 long src_count;
11252 elf_symbol_type *osymbuf;
11253
11254 implib_bfd = info->out_implib_bfd;
11255 bed = get_elf_backend_data (abfd);
11256
11257 if (!bfd_set_format (implib_bfd, bfd_object))
11258 return FALSE;
11259
11260 flags = bfd_get_file_flags (abfd);
11261 flags &= ~HAS_RELOC;
11262 if (!bfd_set_start_address (implib_bfd, 0)
11263 || !bfd_set_file_flags (implib_bfd, flags))
11264 return FALSE;
11265
11266 /* Copy architecture of output file to import library file. */
11267 arch = bfd_get_arch (abfd);
11268 mach = bfd_get_mach (abfd);
11269 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11270 && (abfd->target_defaulted
11271 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11272 return FALSE;
11273
11274 /* Get symbol table size. */
11275 symsize = bfd_get_symtab_upper_bound (abfd);
11276 if (symsize < 0)
11277 return FALSE;
11278
11279 /* Read in the symbol table. */
11280 sympp = (asymbol **) xmalloc (symsize);
11281 symcount = bfd_canonicalize_symtab (abfd, sympp);
11282 if (symcount < 0)
11283 goto free_sym_buf;
11284
11285 /* Allow the BFD backend to copy any private header data it
11286 understands from the output BFD to the import library BFD. */
11287 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11288 goto free_sym_buf;
11289
11290 /* Filter symbols to appear in the import library. */
11291 if (bed->elf_backend_filter_implib_symbols)
11292 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11293 symcount);
11294 else
11295 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11296 if (symcount == 0)
11297 {
11298 bfd_set_error (bfd_error_no_symbols);
11299 _bfd_error_handler (_("%B: no symbol found for import library"),
11300 implib_bfd);
11301 goto free_sym_buf;
11302 }
11303
11304
11305 /* Make symbols absolute. */
11306 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11307 sizeof (*osymbuf));
11308 for (src_count = 0; src_count < symcount; src_count++)
11309 {
11310 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11311 sizeof (*osymbuf));
11312 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11313 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11314 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11315 osymbuf[src_count].internal_elf_sym.st_value =
11316 osymbuf[src_count].symbol.value;
11317 sympp[src_count] = &osymbuf[src_count].symbol;
11318 }
11319
11320 bfd_set_symtab (implib_bfd, sympp, symcount);
11321
11322 /* Allow the BFD backend to copy any private data it understands
11323 from the output BFD to the import library BFD. This is done last
11324 to permit the routine to look at the filtered symbol table. */
11325 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11326 goto free_sym_buf;
11327
11328 if (!bfd_close (implib_bfd))
11329 goto free_sym_buf;
11330
11331 ret = TRUE;
11332
11333free_sym_buf:
11334 free (sympp);
11335 return ret;
11336}
11337
11338static void
11339elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11340{
11341 asection *o;
11342
11343 if (flinfo->symstrtab != NULL)
11344 _bfd_elf_strtab_free (flinfo->symstrtab);
11345 if (flinfo->contents != NULL)
11346 free (flinfo->contents);
11347 if (flinfo->external_relocs != NULL)
11348 free (flinfo->external_relocs);
11349 if (flinfo->internal_relocs != NULL)
11350 free (flinfo->internal_relocs);
11351 if (flinfo->external_syms != NULL)
11352 free (flinfo->external_syms);
11353 if (flinfo->locsym_shndx != NULL)
11354 free (flinfo->locsym_shndx);
11355 if (flinfo->internal_syms != NULL)
11356 free (flinfo->internal_syms);
11357 if (flinfo->indices != NULL)
11358 free (flinfo->indices);
11359 if (flinfo->sections != NULL)
11360 free (flinfo->sections);
11361 if (flinfo->symshndxbuf != NULL)
11362 free (flinfo->symshndxbuf);
11363 for (o = obfd->sections; o != NULL; o = o->next)
11364 {
11365 struct bfd_elf_section_data *esdo = elf_section_data (o);
11366 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11367 free (esdo->rel.hashes);
11368 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11369 free (esdo->rela.hashes);
11370 }
11371}
11372
11373/* Do the final step of an ELF link. */
11374
11375bfd_boolean
11376bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11377{
11378 bfd_boolean dynamic;
11379 bfd_boolean emit_relocs;
11380 bfd *dynobj;
11381 struct elf_final_link_info flinfo;
11382 asection *o;
11383 struct bfd_link_order *p;
11384 bfd *sub;
11385 bfd_size_type max_contents_size;
11386 bfd_size_type max_external_reloc_size;
11387 bfd_size_type max_internal_reloc_count;
11388 bfd_size_type max_sym_count;
11389 bfd_size_type max_sym_shndx_count;
11390 Elf_Internal_Sym elfsym;
11391 unsigned int i;
11392 Elf_Internal_Shdr *symtab_hdr;
11393 Elf_Internal_Shdr *symtab_shndx_hdr;
11394 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11395 struct elf_outext_info eoinfo;
11396 bfd_boolean merged;
11397 size_t relativecount = 0;
11398 asection *reldyn = 0;
11399 bfd_size_type amt;
11400 asection *attr_section = NULL;
11401 bfd_vma attr_size = 0;
11402 const char *std_attrs_section;
11403 struct elf_link_hash_table *htab = elf_hash_table (info);
11404
11405 if (!is_elf_hash_table (htab))
11406 return FALSE;
11407
11408 if (bfd_link_pic (info))
11409 abfd->flags |= DYNAMIC;
11410
11411 dynamic = htab->dynamic_sections_created;
11412 dynobj = htab->dynobj;
11413
11414 emit_relocs = (bfd_link_relocatable (info)
11415 || info->emitrelocations);
11416
11417 flinfo.info = info;
11418 flinfo.output_bfd = abfd;
11419 flinfo.symstrtab = _bfd_elf_strtab_init ();
11420 if (flinfo.symstrtab == NULL)
11421 return FALSE;
11422
11423 if (! dynamic)
11424 {
11425 flinfo.hash_sec = NULL;
11426 flinfo.symver_sec = NULL;
11427 }
11428 else
11429 {
11430 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11431 /* Note that dynsym_sec can be NULL (on VMS). */
11432 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11433 /* Note that it is OK if symver_sec is NULL. */
11434 }
11435
11436 flinfo.contents = NULL;
11437 flinfo.external_relocs = NULL;
11438 flinfo.internal_relocs = NULL;
11439 flinfo.external_syms = NULL;
11440 flinfo.locsym_shndx = NULL;
11441 flinfo.internal_syms = NULL;
11442 flinfo.indices = NULL;
11443 flinfo.sections = NULL;
11444 flinfo.symshndxbuf = NULL;
11445 flinfo.filesym_count = 0;
11446
11447 /* The object attributes have been merged. Remove the input
11448 sections from the link, and set the contents of the output
11449 secton. */
11450 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11451 for (o = abfd->sections; o != NULL; o = o->next)
11452 {
11453 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11454 || strcmp (o->name, ".gnu.attributes") == 0)
11455 {
11456 for (p = o->map_head.link_order; p != NULL; p = p->next)
11457 {
11458 asection *input_section;
11459
11460 if (p->type != bfd_indirect_link_order)
11461 continue;
11462 input_section = p->u.indirect.section;
11463 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11464 elf_link_input_bfd ignores this section. */
11465 input_section->flags &= ~SEC_HAS_CONTENTS;
11466 }
11467
11468 attr_size = bfd_elf_obj_attr_size (abfd);
11469 if (attr_size)
11470 {
11471 bfd_set_section_size (abfd, o, attr_size);
11472 attr_section = o;
11473 /* Skip this section later on. */
11474 o->map_head.link_order = NULL;
11475 }
11476 else
11477 o->flags |= SEC_EXCLUDE;
11478 }
11479 }
11480
11481 /* Count up the number of relocations we will output for each output
11482 section, so that we know the sizes of the reloc sections. We
11483 also figure out some maximum sizes. */
11484 max_contents_size = 0;
11485 max_external_reloc_size = 0;
11486 max_internal_reloc_count = 0;
11487 max_sym_count = 0;
11488 max_sym_shndx_count = 0;
11489 merged = FALSE;
11490 for (o = abfd->sections; o != NULL; o = o->next)
11491 {
11492 struct bfd_elf_section_data *esdo = elf_section_data (o);
11493 o->reloc_count = 0;
11494
11495 for (p = o->map_head.link_order; p != NULL; p = p->next)
11496 {
11497 unsigned int reloc_count = 0;
11498 unsigned int additional_reloc_count = 0;
11499 struct bfd_elf_section_data *esdi = NULL;
11500
11501 if (p->type == bfd_section_reloc_link_order
11502 || p->type == bfd_symbol_reloc_link_order)
11503 reloc_count = 1;
11504 else if (p->type == bfd_indirect_link_order)
11505 {
11506 asection *sec;
11507
11508 sec = p->u.indirect.section;
11509
11510 /* Mark all sections which are to be included in the
11511 link. This will normally be every section. We need
11512 to do this so that we can identify any sections which
11513 the linker has decided to not include. */
11514 sec->linker_mark = TRUE;
11515
11516 if (sec->flags & SEC_MERGE)
11517 merged = TRUE;
11518
11519 if (sec->rawsize > max_contents_size)
11520 max_contents_size = sec->rawsize;
11521 if (sec->size > max_contents_size)
11522 max_contents_size = sec->size;
11523
11524 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11525 && (sec->owner->flags & DYNAMIC) == 0)
11526 {
11527 size_t sym_count;
11528
11529 /* We are interested in just local symbols, not all
11530 symbols. */
11531 if (elf_bad_symtab (sec->owner))
11532 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11533 / bed->s->sizeof_sym);
11534 else
11535 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11536
11537 if (sym_count > max_sym_count)
11538 max_sym_count = sym_count;
11539
11540 if (sym_count > max_sym_shndx_count
11541 && elf_symtab_shndx_list (sec->owner) != NULL)
11542 max_sym_shndx_count = sym_count;
11543
11544 if (esdo->this_hdr.sh_type == SHT_REL
11545 || esdo->this_hdr.sh_type == SHT_RELA)
11546 /* Some backends use reloc_count in relocation sections
11547 to count particular types of relocs. Of course,
11548 reloc sections themselves can't have relocations. */
11549 ;
11550 else if (emit_relocs)
11551 {
11552 reloc_count = sec->reloc_count;
11553 if (bed->elf_backend_count_additional_relocs)
11554 {
11555 int c;
11556 c = (*bed->elf_backend_count_additional_relocs) (sec);
11557 additional_reloc_count += c;
11558 }
11559 }
11560 else if (bed->elf_backend_count_relocs)
11561 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11562
11563 esdi = elf_section_data (sec);
11564
11565 if ((sec->flags & SEC_RELOC) != 0)
11566 {
11567 size_t ext_size = 0;
11568
11569 if (esdi->rel.hdr != NULL)
11570 ext_size = esdi->rel.hdr->sh_size;
11571 if (esdi->rela.hdr != NULL)
11572 ext_size += esdi->rela.hdr->sh_size;
11573
11574 if (ext_size > max_external_reloc_size)
11575 max_external_reloc_size = ext_size;
11576 if (sec->reloc_count > max_internal_reloc_count)
11577 max_internal_reloc_count = sec->reloc_count;
11578 }
11579 }
11580 }
11581
11582 if (reloc_count == 0)
11583 continue;
11584
11585 reloc_count += additional_reloc_count;
11586 o->reloc_count += reloc_count;
11587
11588 if (p->type == bfd_indirect_link_order && emit_relocs)
11589 {
11590 if (esdi->rel.hdr)
11591 {
11592 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11593 esdo->rel.count += additional_reloc_count;
11594 }
11595 if (esdi->rela.hdr)
11596 {
11597 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11598 esdo->rela.count += additional_reloc_count;
11599 }
11600 }
11601 else
11602 {
11603 if (o->use_rela_p)
11604 esdo->rela.count += reloc_count;
11605 else
11606 esdo->rel.count += reloc_count;
11607 }
11608 }
11609
11610 if (o->reloc_count > 0)
11611 o->flags |= SEC_RELOC;
11612 else
11613 {
11614 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11615 set it (this is probably a bug) and if it is set
11616 assign_section_numbers will create a reloc section. */
11617 o->flags &=~ SEC_RELOC;
11618 }
11619
11620 /* If the SEC_ALLOC flag is not set, force the section VMA to
11621 zero. This is done in elf_fake_sections as well, but forcing
11622 the VMA to 0 here will ensure that relocs against these
11623 sections are handled correctly. */
11624 if ((o->flags & SEC_ALLOC) == 0
11625 && ! o->user_set_vma)
11626 o->vma = 0;
11627 }
11628
11629 if (! bfd_link_relocatable (info) && merged)
11630 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11631
11632 /* Figure out the file positions for everything but the symbol table
11633 and the relocs. We set symcount to force assign_section_numbers
11634 to create a symbol table. */
11635 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11636 BFD_ASSERT (! abfd->output_has_begun);
11637 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11638 goto error_return;
11639
11640 /* Set sizes, and assign file positions for reloc sections. */
11641 for (o = abfd->sections; o != NULL; o = o->next)
11642 {
11643 struct bfd_elf_section_data *esdo = elf_section_data (o);
11644 if ((o->flags & SEC_RELOC) != 0)
11645 {
11646 if (esdo->rel.hdr
11647 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11648 goto error_return;
11649
11650 if (esdo->rela.hdr
11651 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11652 goto error_return;
11653 }
11654
11655 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11656 to count upwards while actually outputting the relocations. */
11657 esdo->rel.count = 0;
11658 esdo->rela.count = 0;
11659
11660 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11661 {
11662 /* Cache the section contents so that they can be compressed
11663 later. Use bfd_malloc since it will be freed by
11664 bfd_compress_section_contents. */
11665 unsigned char *contents = esdo->this_hdr.contents;
11666 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11667 abort ();
11668 contents
11669 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11670 if (contents == NULL)
11671 goto error_return;
11672 esdo->this_hdr.contents = contents;
11673 }
11674 }
11675
11676 /* We have now assigned file positions for all the sections except
11677 .symtab, .strtab, and non-loaded reloc sections. We start the
11678 .symtab section at the current file position, and write directly
11679 to it. We build the .strtab section in memory. */
11680 bfd_get_symcount (abfd) = 0;
11681 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11682 /* sh_name is set in prep_headers. */
11683 symtab_hdr->sh_type = SHT_SYMTAB;
11684 /* sh_flags, sh_addr and sh_size all start off zero. */
11685 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11686 /* sh_link is set in assign_section_numbers. */
11687 /* sh_info is set below. */
11688 /* sh_offset is set just below. */
11689 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11690
11691 if (max_sym_count < 20)
11692 max_sym_count = 20;
11693 htab->strtabsize = max_sym_count;
11694 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11695 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11696 if (htab->strtab == NULL)
11697 goto error_return;
11698 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11699 flinfo.symshndxbuf
11700 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11701 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11702
11703 if (info->strip != strip_all || emit_relocs)
11704 {
11705 file_ptr off = elf_next_file_pos (abfd);
11706
11707 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11708
11709 /* Note that at this point elf_next_file_pos (abfd) is
11710 incorrect. We do not yet know the size of the .symtab section.
11711 We correct next_file_pos below, after we do know the size. */
11712
11713 /* Start writing out the symbol table. The first symbol is always a
11714 dummy symbol. */
11715 elfsym.st_value = 0;
11716 elfsym.st_size = 0;
11717 elfsym.st_info = 0;
11718 elfsym.st_other = 0;
11719 elfsym.st_shndx = SHN_UNDEF;
11720 elfsym.st_target_internal = 0;
11721 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11722 bfd_und_section_ptr, NULL) != 1)
11723 goto error_return;
11724
11725 /* Output a symbol for each section. We output these even if we are
11726 discarding local symbols, since they are used for relocs. These
11727 symbols have no names. We store the index of each one in the
11728 index field of the section, so that we can find it again when
11729 outputting relocs. */
11730
11731 elfsym.st_size = 0;
11732 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11733 elfsym.st_other = 0;
11734 elfsym.st_value = 0;
11735 elfsym.st_target_internal = 0;
11736 for (i = 1; i < elf_numsections (abfd); i++)
11737 {
11738 o = bfd_section_from_elf_index (abfd, i);
11739 if (o != NULL)
11740 {
11741 o->target_index = bfd_get_symcount (abfd);
11742 elfsym.st_shndx = i;
11743 if (!bfd_link_relocatable (info))
11744 elfsym.st_value = o->vma;
11745 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11746 NULL) != 1)
11747 goto error_return;
11748 }
11749 }
11750 }
11751
11752 /* Allocate some memory to hold information read in from the input
11753 files. */
11754 if (max_contents_size != 0)
11755 {
11756 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11757 if (flinfo.contents == NULL)
11758 goto error_return;
11759 }
11760
11761 if (max_external_reloc_size != 0)
11762 {
11763 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11764 if (flinfo.external_relocs == NULL)
11765 goto error_return;
11766 }
11767
11768 if (max_internal_reloc_count != 0)
11769 {
11770 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11771 amt *= sizeof (Elf_Internal_Rela);
11772 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11773 if (flinfo.internal_relocs == NULL)
11774 goto error_return;
11775 }
11776
11777 if (max_sym_count != 0)
11778 {
11779 amt = max_sym_count * bed->s->sizeof_sym;
11780 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11781 if (flinfo.external_syms == NULL)
11782 goto error_return;
11783
11784 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11785 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11786 if (flinfo.internal_syms == NULL)
11787 goto error_return;
11788
11789 amt = max_sym_count * sizeof (long);
11790 flinfo.indices = (long int *) bfd_malloc (amt);
11791 if (flinfo.indices == NULL)
11792 goto error_return;
11793
11794 amt = max_sym_count * sizeof (asection *);
11795 flinfo.sections = (asection **) bfd_malloc (amt);
11796 if (flinfo.sections == NULL)
11797 goto error_return;
11798 }
11799
11800 if (max_sym_shndx_count != 0)
11801 {
11802 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11803 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11804 if (flinfo.locsym_shndx == NULL)
11805 goto error_return;
11806 }
11807
11808 if (htab->tls_sec)
11809 {
11810 bfd_vma base, end = 0;
11811 asection *sec;
11812
11813 for (sec = htab->tls_sec;
11814 sec && (sec->flags & SEC_THREAD_LOCAL);
11815 sec = sec->next)
11816 {
11817 bfd_size_type size = sec->size;
11818
11819 if (size == 0
11820 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11821 {
11822 struct bfd_link_order *ord = sec->map_tail.link_order;
11823
11824 if (ord != NULL)
11825 size = ord->offset + ord->size;
11826 }
11827 end = sec->vma + size;
11828 }
11829 base = htab->tls_sec->vma;
11830 /* Only align end of TLS section if static TLS doesn't have special
11831 alignment requirements. */
11832 if (bed->static_tls_alignment == 1)
11833 end = align_power (end, htab->tls_sec->alignment_power);
11834 htab->tls_size = end - base;
11835 }
11836
11837 /* Reorder SHF_LINK_ORDER sections. */
11838 for (o = abfd->sections; o != NULL; o = o->next)
11839 {
11840 if (!elf_fixup_link_order (abfd, o))
11841 return FALSE;
11842 }
11843
11844 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11845 return FALSE;
11846
11847 /* Since ELF permits relocations to be against local symbols, we
11848 must have the local symbols available when we do the relocations.
11849 Since we would rather only read the local symbols once, and we
11850 would rather not keep them in memory, we handle all the
11851 relocations for a single input file at the same time.
11852
11853 Unfortunately, there is no way to know the total number of local
11854 symbols until we have seen all of them, and the local symbol
11855 indices precede the global symbol indices. This means that when
11856 we are generating relocatable output, and we see a reloc against
11857 a global symbol, we can not know the symbol index until we have
11858 finished examining all the local symbols to see which ones we are
11859 going to output. To deal with this, we keep the relocations in
11860 memory, and don't output them until the end of the link. This is
11861 an unfortunate waste of memory, but I don't see a good way around
11862 it. Fortunately, it only happens when performing a relocatable
11863 link, which is not the common case. FIXME: If keep_memory is set
11864 we could write the relocs out and then read them again; I don't
11865 know how bad the memory loss will be. */
11866
11867 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11868 sub->output_has_begun = FALSE;
11869 for (o = abfd->sections; o != NULL; o = o->next)
11870 {
11871 for (p = o->map_head.link_order; p != NULL; p = p->next)
11872 {
11873 if (p->type == bfd_indirect_link_order
11874 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11875 == bfd_target_elf_flavour)
11876 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11877 {
11878 if (! sub->output_has_begun)
11879 {
11880 if (! elf_link_input_bfd (&flinfo, sub))
11881 goto error_return;
11882 sub->output_has_begun = TRUE;
11883 }
11884 }
11885 else if (p->type == bfd_section_reloc_link_order
11886 || p->type == bfd_symbol_reloc_link_order)
11887 {
11888 if (! elf_reloc_link_order (abfd, info, o, p))
11889 goto error_return;
11890 }
11891 else
11892 {
11893 if (! _bfd_default_link_order (abfd, info, o, p))
11894 {
11895 if (p->type == bfd_indirect_link_order
11896 && (bfd_get_flavour (sub)
11897 == bfd_target_elf_flavour)
11898 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11899 != bed->s->elfclass))
11900 {
11901 const char *iclass, *oclass;
11902
11903 switch (bed->s->elfclass)
11904 {
11905 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11906 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11907 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11908 default: abort ();
11909 }
11910
11911 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11912 {
11913 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11914 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11915 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11916 default: abort ();
11917 }
11918
11919 bfd_set_error (bfd_error_wrong_format);
11920 _bfd_error_handler
11921 /* xgettext:c-format */
11922 (_("%B: file class %s incompatible with %s"),
11923 sub, iclass, oclass);
11924 }
11925
11926 goto error_return;
11927 }
11928 }
11929 }
11930 }
11931
11932 /* Free symbol buffer if needed. */
11933 if (!info->reduce_memory_overheads)
11934 {
11935 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11936 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11937 && elf_tdata (sub)->symbuf)
11938 {
11939 free (elf_tdata (sub)->symbuf);
11940 elf_tdata (sub)->symbuf = NULL;
11941 }
11942 }
11943
11944 /* Output any global symbols that got converted to local in a
11945 version script or due to symbol visibility. We do this in a
11946 separate step since ELF requires all local symbols to appear
11947 prior to any global symbols. FIXME: We should only do this if
11948 some global symbols were, in fact, converted to become local.
11949 FIXME: Will this work correctly with the Irix 5 linker? */
11950 eoinfo.failed = FALSE;
11951 eoinfo.flinfo = &flinfo;
11952 eoinfo.localsyms = TRUE;
11953 eoinfo.file_sym_done = FALSE;
11954 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11955 if (eoinfo.failed)
11956 return FALSE;
11957
11958 /* If backend needs to output some local symbols not present in the hash
11959 table, do it now. */
11960 if (bed->elf_backend_output_arch_local_syms
11961 && (info->strip != strip_all || emit_relocs))
11962 {
11963 typedef int (*out_sym_func)
11964 (void *, const char *, Elf_Internal_Sym *, asection *,
11965 struct elf_link_hash_entry *);
11966
11967 if (! ((*bed->elf_backend_output_arch_local_syms)
11968 (abfd, info, &flinfo,
11969 (out_sym_func) elf_link_output_symstrtab)))
11970 return FALSE;
11971 }
11972
11973 /* That wrote out all the local symbols. Finish up the symbol table
11974 with the global symbols. Even if we want to strip everything we
11975 can, we still need to deal with those global symbols that got
11976 converted to local in a version script. */
11977
11978 /* The sh_info field records the index of the first non local symbol. */
11979 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11980
11981 if (dynamic
11982 && htab->dynsym != NULL
11983 && htab->dynsym->output_section != bfd_abs_section_ptr)
11984 {
11985 Elf_Internal_Sym sym;
11986 bfd_byte *dynsym = htab->dynsym->contents;
11987
11988 o = htab->dynsym->output_section;
11989 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11990
11991 /* Write out the section symbols for the output sections. */
11992 if (bfd_link_pic (info)
11993 || htab->is_relocatable_executable)
11994 {
11995 asection *s;
11996
11997 sym.st_size = 0;
11998 sym.st_name = 0;
11999 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12000 sym.st_other = 0;
12001 sym.st_target_internal = 0;
12002
12003 for (s = abfd->sections; s != NULL; s = s->next)
12004 {
12005 int indx;
12006 bfd_byte *dest;
12007 long dynindx;
12008
12009 dynindx = elf_section_data (s)->dynindx;
12010 if (dynindx <= 0)
12011 continue;
12012 indx = elf_section_data (s)->this_idx;
12013 BFD_ASSERT (indx > 0);
12014 sym.st_shndx = indx;
12015 if (! check_dynsym (abfd, &sym))
12016 return FALSE;
12017 sym.st_value = s->vma;
12018 dest = dynsym + dynindx * bed->s->sizeof_sym;
12019 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12020 }
12021 }
12022
12023 /* Write out the local dynsyms. */
12024 if (htab->dynlocal)
12025 {
12026 struct elf_link_local_dynamic_entry *e;
12027 for (e = htab->dynlocal; e ; e = e->next)
12028 {
12029 asection *s;
12030 bfd_byte *dest;
12031
12032 /* Copy the internal symbol and turn off visibility.
12033 Note that we saved a word of storage and overwrote
12034 the original st_name with the dynstr_index. */
12035 sym = e->isym;
12036 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12037
12038 s = bfd_section_from_elf_index (e->input_bfd,
12039 e->isym.st_shndx);
12040 if (s != NULL)
12041 {
12042 sym.st_shndx =
12043 elf_section_data (s->output_section)->this_idx;
12044 if (! check_dynsym (abfd, &sym))
12045 return FALSE;
12046 sym.st_value = (s->output_section->vma
12047 + s->output_offset
12048 + e->isym.st_value);
12049 }
12050
12051 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12052 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12053 }
12054 }
12055 }
12056
12057 /* We get the global symbols from the hash table. */
12058 eoinfo.failed = FALSE;
12059 eoinfo.localsyms = FALSE;
12060 eoinfo.flinfo = &flinfo;
12061 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12062 if (eoinfo.failed)
12063 return FALSE;
12064
12065 /* If backend needs to output some symbols not present in the hash
12066 table, do it now. */
12067 if (bed->elf_backend_output_arch_syms
12068 && (info->strip != strip_all || emit_relocs))
12069 {
12070 typedef int (*out_sym_func)
12071 (void *, const char *, Elf_Internal_Sym *, asection *,
12072 struct elf_link_hash_entry *);
12073
12074 if (! ((*bed->elf_backend_output_arch_syms)
12075 (abfd, info, &flinfo,
12076 (out_sym_func) elf_link_output_symstrtab)))
12077 return FALSE;
12078 }
12079
12080 /* Finalize the .strtab section. */
12081 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12082
12083 /* Swap out the .strtab section. */
12084 if (!elf_link_swap_symbols_out (&flinfo))
12085 return FALSE;
12086
12087 /* Now we know the size of the symtab section. */
12088 if (bfd_get_symcount (abfd) > 0)
12089 {
12090 /* Finish up and write out the symbol string table (.strtab)
12091 section. */
12092 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12093 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12094
12095 if (elf_symtab_shndx_list (abfd))
12096 {
12097 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12098
12099 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12100 {
12101 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12102 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12103 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12104 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12105 symtab_shndx_hdr->sh_size = amt;
12106
12107 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12108 off, TRUE);
12109
12110 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12111 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12112 return FALSE;
12113 }
12114 }
12115
12116 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12117 /* sh_name was set in prep_headers. */
12118 symstrtab_hdr->sh_type = SHT_STRTAB;
12119 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12120 symstrtab_hdr->sh_addr = 0;
12121 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12122 symstrtab_hdr->sh_entsize = 0;
12123 symstrtab_hdr->sh_link = 0;
12124 symstrtab_hdr->sh_info = 0;
12125 /* sh_offset is set just below. */
12126 symstrtab_hdr->sh_addralign = 1;
12127
12128 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12129 off, TRUE);
12130 elf_next_file_pos (abfd) = off;
12131
12132 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12133 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12134 return FALSE;
12135 }
12136
12137 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12138 {
12139 _bfd_error_handler (_("%B: failed to generate import library"),
12140 info->out_implib_bfd);
12141 return FALSE;
12142 }
12143
12144 /* Adjust the relocs to have the correct symbol indices. */
12145 for (o = abfd->sections; o != NULL; o = o->next)
12146 {
12147 struct bfd_elf_section_data *esdo = elf_section_data (o);
12148 bfd_boolean sort;
12149 if ((o->flags & SEC_RELOC) == 0)
12150 continue;
12151
12152 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12153 if (esdo->rel.hdr != NULL
12154 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12155 return FALSE;
12156 if (esdo->rela.hdr != NULL
12157 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12158 return FALSE;
12159
12160 /* Set the reloc_count field to 0 to prevent write_relocs from
12161 trying to swap the relocs out itself. */
12162 o->reloc_count = 0;
12163 }
12164
12165 if (dynamic && info->combreloc && dynobj != NULL)
12166 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12167
12168 /* If we are linking against a dynamic object, or generating a
12169 shared library, finish up the dynamic linking information. */
12170 if (dynamic)
12171 {
12172 bfd_byte *dyncon, *dynconend;
12173
12174 /* Fix up .dynamic entries. */
12175 o = bfd_get_linker_section (dynobj, ".dynamic");
12176 BFD_ASSERT (o != NULL);
12177
12178 dyncon = o->contents;
12179 dynconend = o->contents + o->size;
12180 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12181 {
12182 Elf_Internal_Dyn dyn;
12183 const char *name;
12184 unsigned int type;
12185 bfd_size_type sh_size;
12186 bfd_vma sh_addr;
12187
12188 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12189
12190 switch (dyn.d_tag)
12191 {
12192 default:
12193 continue;
12194 case DT_NULL:
12195 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12196 {
12197 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12198 {
12199 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12200 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12201 default: continue;
12202 }
12203 dyn.d_un.d_val = relativecount;
12204 relativecount = 0;
12205 break;
12206 }
12207 continue;
12208
12209 case DT_INIT:
12210 name = info->init_function;
12211 goto get_sym;
12212 case DT_FINI:
12213 name = info->fini_function;
12214 get_sym:
12215 {
12216 struct elf_link_hash_entry *h;
12217
12218 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12219 if (h != NULL
12220 && (h->root.type == bfd_link_hash_defined
12221 || h->root.type == bfd_link_hash_defweak))
12222 {
12223 dyn.d_un.d_ptr = h->root.u.def.value;
12224 o = h->root.u.def.section;
12225 if (o->output_section != NULL)
12226 dyn.d_un.d_ptr += (o->output_section->vma
12227 + o->output_offset);
12228 else
12229 {
12230 /* The symbol is imported from another shared
12231 library and does not apply to this one. */
12232 dyn.d_un.d_ptr = 0;
12233 }
12234 break;
12235 }
12236 }
12237 continue;
12238
12239 case DT_PREINIT_ARRAYSZ:
12240 name = ".preinit_array";
12241 goto get_out_size;
12242 case DT_INIT_ARRAYSZ:
12243 name = ".init_array";
12244 goto get_out_size;
12245 case DT_FINI_ARRAYSZ:
12246 name = ".fini_array";
12247 get_out_size:
12248 o = bfd_get_section_by_name (abfd, name);
12249 if (o == NULL)
12250 {
12251 _bfd_error_handler
12252 (_("could not find section %s"), name);
12253 goto error_return;
12254 }
12255 if (o->size == 0)
12256 _bfd_error_handler
12257 (_("warning: %s section has zero size"), name);
12258 dyn.d_un.d_val = o->size;
12259 break;
12260
12261 case DT_PREINIT_ARRAY:
12262 name = ".preinit_array";
12263 goto get_out_vma;
12264 case DT_INIT_ARRAY:
12265 name = ".init_array";
12266 goto get_out_vma;
12267 case DT_FINI_ARRAY:
12268 name = ".fini_array";
12269 get_out_vma:
12270 o = bfd_get_section_by_name (abfd, name);
12271 goto do_vma;
12272
12273 case DT_HASH:
12274 name = ".hash";
12275 goto get_vma;
12276 case DT_GNU_HASH:
12277 name = ".gnu.hash";
12278 goto get_vma;
12279 case DT_STRTAB:
12280 name = ".dynstr";
12281 goto get_vma;
12282 case DT_SYMTAB:
12283 name = ".dynsym";
12284 goto get_vma;
12285 case DT_VERDEF:
12286 name = ".gnu.version_d";
12287 goto get_vma;
12288 case DT_VERNEED:
12289 name = ".gnu.version_r";
12290 goto get_vma;
12291 case DT_VERSYM:
12292 name = ".gnu.version";
12293 get_vma:
12294 o = bfd_get_linker_section (dynobj, name);
12295 do_vma:
12296 if (o == NULL)
12297 {
12298 _bfd_error_handler
12299 (_("could not find section %s"), name);
12300 goto error_return;
12301 }
12302 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12303 {
12304 _bfd_error_handler
12305 (_("warning: section '%s' is being made into a note"), name);
12306 bfd_set_error (bfd_error_nonrepresentable_section);
12307 goto error_return;
12308 }
12309 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12310 break;
12311
12312 case DT_REL:
12313 case DT_RELA:
12314 case DT_RELSZ:
12315 case DT_RELASZ:
12316 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12317 type = SHT_REL;
12318 else
12319 type = SHT_RELA;
12320 sh_size = 0;
12321 sh_addr = 0;
12322 for (i = 1; i < elf_numsections (abfd); i++)
12323 {
12324 Elf_Internal_Shdr *hdr;
12325
12326 hdr = elf_elfsections (abfd)[i];
12327 if (hdr->sh_type == type
12328 && (hdr->sh_flags & SHF_ALLOC) != 0)
12329 {
12330 sh_size += hdr->sh_size;
12331 if (sh_addr == 0
12332 || sh_addr > hdr->sh_addr)
12333 sh_addr = hdr->sh_addr;
12334 }
12335 }
12336
12337 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12338 {
12339 /* Don't count procedure linkage table relocs in the
12340 overall reloc count. */
12341 sh_size -= htab->srelplt->size;
12342 if (sh_size == 0)
12343 /* If the size is zero, make the address zero too.
12344 This is to avoid a glibc bug. If the backend
12345 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12346 zero, then we'll put DT_RELA at the end of
12347 DT_JMPREL. glibc will interpret the end of
12348 DT_RELA matching the end of DT_JMPREL as the
12349 case where DT_RELA includes DT_JMPREL, and for
12350 LD_BIND_NOW will decide that processing DT_RELA
12351 will process the PLT relocs too. Net result:
12352 No PLT relocs applied. */
12353 sh_addr = 0;
12354
12355 /* If .rela.plt is the first .rela section, exclude
12356 it from DT_RELA. */
12357 else if (sh_addr == (htab->srelplt->output_section->vma
12358 + htab->srelplt->output_offset))
12359 sh_addr += htab->srelplt->size;
12360 }
12361
12362 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12363 dyn.d_un.d_val = sh_size;
12364 else
12365 dyn.d_un.d_ptr = sh_addr;
12366 break;
12367 }
12368 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12369 }
12370 }
12371
12372 /* If we have created any dynamic sections, then output them. */
12373 if (dynobj != NULL)
12374 {
12375 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12376 goto error_return;
12377
12378 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12379 if (((info->warn_shared_textrel && bfd_link_pic (info))
12380 || info->error_textrel)
12381 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12382 {
12383 bfd_byte *dyncon, *dynconend;
12384
12385 dyncon = o->contents;
12386 dynconend = o->contents + o->size;
12387 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12388 {
12389 Elf_Internal_Dyn dyn;
12390
12391 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12392
12393 if (dyn.d_tag == DT_TEXTREL)
12394 {
12395 if (info->error_textrel)
12396 info->callbacks->einfo
12397 (_("%P%X: read-only segment has dynamic relocations.\n"));
12398 else
12399 info->callbacks->einfo
12400 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12401 break;
12402 }
12403 }
12404 }
12405
12406 for (o = dynobj->sections; o != NULL; o = o->next)
12407 {
12408 if ((o->flags & SEC_HAS_CONTENTS) == 0
12409 || o->size == 0
12410 || o->output_section == bfd_abs_section_ptr)
12411 continue;
12412 if ((o->flags & SEC_LINKER_CREATED) == 0)
12413 {
12414 /* At this point, we are only interested in sections
12415 created by _bfd_elf_link_create_dynamic_sections. */
12416 continue;
12417 }
12418 if (htab->stab_info.stabstr == o)
12419 continue;
12420 if (htab->eh_info.hdr_sec == o)
12421 continue;
12422 if (strcmp (o->name, ".dynstr") != 0)
12423 {
12424 if (! bfd_set_section_contents (abfd, o->output_section,
12425 o->contents,
12426 (file_ptr) o->output_offset
12427 * bfd_octets_per_byte (abfd),
12428 o->size))
12429 goto error_return;
12430 }
12431 else
12432 {
12433 /* The contents of the .dynstr section are actually in a
12434 stringtab. */
12435 file_ptr off;
12436
12437 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12438 if (bfd_seek (abfd, off, SEEK_SET) != 0
12439 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12440 goto error_return;
12441 }
12442 }
12443 }
12444
12445 if (bfd_link_relocatable (info))
12446 {
12447 bfd_boolean failed = FALSE;
12448
12449 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12450 if (failed)
12451 goto error_return;
12452 }
12453
12454 /* If we have optimized stabs strings, output them. */
12455 if (htab->stab_info.stabstr != NULL)
12456 {
12457 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12458 goto error_return;
12459 }
12460
12461 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12462 goto error_return;
12463
12464 elf_final_link_free (abfd, &flinfo);
12465
12466 elf_linker (abfd) = TRUE;
12467
12468 if (attr_section)
12469 {
12470 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12471 if (contents == NULL)
12472 return FALSE; /* Bail out and fail. */
12473 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12474 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12475 free (contents);
12476 }
12477
12478 return TRUE;
12479
12480 error_return:
12481 elf_final_link_free (abfd, &flinfo);
12482 return FALSE;
12483}
12484\f
12485/* Initialize COOKIE for input bfd ABFD. */
12486
12487static bfd_boolean
12488init_reloc_cookie (struct elf_reloc_cookie *cookie,
12489 struct bfd_link_info *info, bfd *abfd)
12490{
12491 Elf_Internal_Shdr *symtab_hdr;
12492 const struct elf_backend_data *bed;
12493
12494 bed = get_elf_backend_data (abfd);
12495 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12496
12497 cookie->abfd = abfd;
12498 cookie->sym_hashes = elf_sym_hashes (abfd);
12499 cookie->bad_symtab = elf_bad_symtab (abfd);
12500 if (cookie->bad_symtab)
12501 {
12502 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12503 cookie->extsymoff = 0;
12504 }
12505 else
12506 {
12507 cookie->locsymcount = symtab_hdr->sh_info;
12508 cookie->extsymoff = symtab_hdr->sh_info;
12509 }
12510
12511 if (bed->s->arch_size == 32)
12512 cookie->r_sym_shift = 8;
12513 else
12514 cookie->r_sym_shift = 32;
12515
12516 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12517 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12518 {
12519 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12520 cookie->locsymcount, 0,
12521 NULL, NULL, NULL);
12522 if (cookie->locsyms == NULL)
12523 {
12524 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12525 return FALSE;
12526 }
12527 if (info->keep_memory)
12528 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12529 }
12530 return TRUE;
12531}
12532
12533/* Free the memory allocated by init_reloc_cookie, if appropriate. */
12534
12535static void
12536fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12537{
12538 Elf_Internal_Shdr *symtab_hdr;
12539
12540 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12541 if (cookie->locsyms != NULL
12542 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12543 free (cookie->locsyms);
12544}
12545
12546/* Initialize the relocation information in COOKIE for input section SEC
12547 of input bfd ABFD. */
12548
12549static bfd_boolean
12550init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12551 struct bfd_link_info *info, bfd *abfd,
12552 asection *sec)
12553{
12554 const struct elf_backend_data *bed;
12555
12556 if (sec->reloc_count == 0)
12557 {
12558 cookie->rels = NULL;
12559 cookie->relend = NULL;
12560 }
12561 else
12562 {
12563 bed = get_elf_backend_data (abfd);
12564
12565 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12566 info->keep_memory);
12567 if (cookie->rels == NULL)
12568 return FALSE;
12569 cookie->rel = cookie->rels;
12570 cookie->relend = (cookie->rels
12571 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12572 }
12573 cookie->rel = cookie->rels;
12574 return TRUE;
12575}
12576
12577/* Free the memory allocated by init_reloc_cookie_rels,
12578 if appropriate. */
12579
12580static void
12581fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12582 asection *sec)
12583{
12584 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12585 free (cookie->rels);
12586}
12587
12588/* Initialize the whole of COOKIE for input section SEC. */
12589
12590static bfd_boolean
12591init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12592 struct bfd_link_info *info,
12593 asection *sec)
12594{
12595 if (!init_reloc_cookie (cookie, info, sec->owner))
12596 goto error1;
12597 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12598 goto error2;
12599 return TRUE;
12600
12601 error2:
12602 fini_reloc_cookie (cookie, sec->owner);
12603 error1:
12604 return FALSE;
12605}
12606
12607/* Free the memory allocated by init_reloc_cookie_for_section,
12608 if appropriate. */
12609
12610static void
12611fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12612 asection *sec)
12613{
12614 fini_reloc_cookie_rels (cookie, sec);
12615 fini_reloc_cookie (cookie, sec->owner);
12616}
12617\f
12618/* Garbage collect unused sections. */
12619
12620/* Default gc_mark_hook. */
12621
12622asection *
12623_bfd_elf_gc_mark_hook (asection *sec,
12624 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12625 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12626 struct elf_link_hash_entry *h,
12627 Elf_Internal_Sym *sym)
12628{
12629 if (h != NULL)
12630 {
12631 switch (h->root.type)
12632 {
12633 case bfd_link_hash_defined:
12634 case bfd_link_hash_defweak:
12635 return h->root.u.def.section;
12636
12637 case bfd_link_hash_common:
12638 return h->root.u.c.p->section;
12639
12640 default:
12641 break;
12642 }
12643 }
12644 else
12645 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12646
12647 return NULL;
12648}
12649
12650/* For undefined __start_<name> and __stop_<name> symbols, return the
12651 first input section matching <name>. Return NULL otherwise. */
12652
12653asection *
12654_bfd_elf_is_start_stop (const struct bfd_link_info *info,
12655 struct elf_link_hash_entry *h)
12656{
12657 asection *s;
12658 const char *sec_name;
12659
12660 if (h->root.type != bfd_link_hash_undefined
12661 && h->root.type != bfd_link_hash_undefweak)
12662 return NULL;
12663
12664 s = h->root.u.undef.section;
12665 if (s != NULL)
12666 {
12667 if (s == (asection *) 0 - 1)
12668 return NULL;
12669 return s;
12670 }
12671
12672 sec_name = NULL;
12673 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12674 sec_name = h->root.root.string + 8;
12675 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12676 sec_name = h->root.root.string + 7;
12677
12678 if (sec_name != NULL && *sec_name != '\0')
12679 {
12680 bfd *i;
12681
12682 for (i = info->input_bfds; i != NULL; i = i->link.next)
12683 {
12684 s = bfd_get_section_by_name (i, sec_name);
12685 if (s != NULL)
12686 {
12687 h->root.u.undef.section = s;
12688 break;
12689 }
12690 }
12691 }
12692
12693 if (s == NULL)
12694 h->root.u.undef.section = (asection *) 0 - 1;
12695
12696 return s;
12697}
12698
12699/* COOKIE->rel describes a relocation against section SEC, which is
12700 a section we've decided to keep. Return the section that contains
12701 the relocation symbol, or NULL if no section contains it. */
12702
12703asection *
12704_bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12705 elf_gc_mark_hook_fn gc_mark_hook,
12706 struct elf_reloc_cookie *cookie,
12707 bfd_boolean *start_stop)
12708{
12709 unsigned long r_symndx;
12710 struct elf_link_hash_entry *h;
12711
12712 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12713 if (r_symndx == STN_UNDEF)
12714 return NULL;
12715
12716 if (r_symndx >= cookie->locsymcount
12717 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12718 {
12719 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12720 if (h == NULL)
12721 {
12722 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12723 sec->owner);
12724 return NULL;
12725 }
12726 while (h->root.type == bfd_link_hash_indirect
12727 || h->root.type == bfd_link_hash_warning)
12728 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12729 h->mark = 1;
12730 /* If this symbol is weak and there is a non-weak definition, we
12731 keep the non-weak definition because many backends put
12732 dynamic reloc info on the non-weak definition for code
12733 handling copy relocs. */
12734 if (h->u.weakdef != NULL)
12735 h->u.weakdef->mark = 1;
12736
12737 if (start_stop != NULL)
12738 {
12739 /* To work around a glibc bug, mark all XXX input sections
12740 when there is an as yet undefined reference to __start_XXX
12741 or __stop_XXX symbols. The linker will later define such
12742 symbols for orphan input sections that have a name
12743 representable as a C identifier. */
12744 asection *s = _bfd_elf_is_start_stop (info, h);
12745
12746 if (s != NULL)
12747 {
12748 *start_stop = !s->gc_mark;
12749 return s;
12750 }
12751 }
12752
12753 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12754 }
12755
12756 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12757 &cookie->locsyms[r_symndx]);
12758}
12759
12760/* COOKIE->rel describes a relocation against section SEC, which is
12761 a section we've decided to keep. Mark the section that contains
12762 the relocation symbol. */
12763
12764bfd_boolean
12765_bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12766 asection *sec,
12767 elf_gc_mark_hook_fn gc_mark_hook,
12768 struct elf_reloc_cookie *cookie)
12769{
12770 asection *rsec;
12771 bfd_boolean start_stop = FALSE;
12772
12773 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12774 while (rsec != NULL)
12775 {
12776 if (!rsec->gc_mark)
12777 {
12778 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12779 || (rsec->owner->flags & DYNAMIC) != 0)
12780 rsec->gc_mark = 1;
12781 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12782 return FALSE;
12783 }
12784 if (!start_stop)
12785 break;
12786 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12787 }
12788 return TRUE;
12789}
12790
12791/* The mark phase of garbage collection. For a given section, mark
12792 it and any sections in this section's group, and all the sections
12793 which define symbols to which it refers. */
12794
12795bfd_boolean
12796_bfd_elf_gc_mark (struct bfd_link_info *info,
12797 asection *sec,
12798 elf_gc_mark_hook_fn gc_mark_hook)
12799{
12800 bfd_boolean ret;
12801 asection *group_sec, *eh_frame;
12802
12803 sec->gc_mark = 1;
12804
12805 /* Mark all the sections in the group. */
12806 group_sec = elf_section_data (sec)->next_in_group;
12807 if (group_sec && !group_sec->gc_mark)
12808 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12809 return FALSE;
12810
12811 /* Look through the section relocs. */
12812 ret = TRUE;
12813 eh_frame = elf_eh_frame_section (sec->owner);
12814 if ((sec->flags & SEC_RELOC) != 0
12815 && sec->reloc_count > 0
12816 && sec != eh_frame)
12817 {
12818 struct elf_reloc_cookie cookie;
12819
12820 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12821 ret = FALSE;
12822 else
12823 {
12824 for (; cookie.rel < cookie.relend; cookie.rel++)
12825 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12826 {
12827 ret = FALSE;
12828 break;
12829 }
12830 fini_reloc_cookie_for_section (&cookie, sec);
12831 }
12832 }
12833
12834 if (ret && eh_frame && elf_fde_list (sec))
12835 {
12836 struct elf_reloc_cookie cookie;
12837
12838 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12839 ret = FALSE;
12840 else
12841 {
12842 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12843 gc_mark_hook, &cookie))
12844 ret = FALSE;
12845 fini_reloc_cookie_for_section (&cookie, eh_frame);
12846 }
12847 }
12848
12849 eh_frame = elf_section_eh_frame_entry (sec);
12850 if (ret && eh_frame && !eh_frame->gc_mark)
12851 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12852 ret = FALSE;
12853
12854 return ret;
12855}
12856
12857/* Scan and mark sections in a special or debug section group. */
12858
12859static void
12860_bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12861{
12862 /* Point to first section of section group. */
12863 asection *ssec;
12864 /* Used to iterate the section group. */
12865 asection *msec;
12866
12867 bfd_boolean is_special_grp = TRUE;
12868 bfd_boolean is_debug_grp = TRUE;
12869
12870 /* First scan to see if group contains any section other than debug
12871 and special section. */
12872 ssec = msec = elf_next_in_group (grp);
12873 do
12874 {
12875 if ((msec->flags & SEC_DEBUGGING) == 0)
12876 is_debug_grp = FALSE;
12877
12878 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12879 is_special_grp = FALSE;
12880
12881 msec = elf_next_in_group (msec);
12882 }
12883 while (msec != ssec);
12884
12885 /* If this is a pure debug section group or pure special section group,
12886 keep all sections in this group. */
12887 if (is_debug_grp || is_special_grp)
12888 {
12889 do
12890 {
12891 msec->gc_mark = 1;
12892 msec = elf_next_in_group (msec);
12893 }
12894 while (msec != ssec);
12895 }
12896}
12897
12898/* Keep debug and special sections. */
12899
12900bfd_boolean
12901_bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12902 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12903{
12904 bfd *ibfd;
12905
12906 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12907 {
12908 asection *isec;
12909 bfd_boolean some_kept;
12910 bfd_boolean debug_frag_seen;
12911
12912 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12913 continue;
12914
12915 /* Ensure all linker created sections are kept,
12916 see if any other section is already marked,
12917 and note if we have any fragmented debug sections. */
12918 debug_frag_seen = some_kept = FALSE;
12919 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12920 {
12921 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12922 isec->gc_mark = 1;
12923 else if (isec->gc_mark)
12924 some_kept = TRUE;
12925
12926 if (debug_frag_seen == FALSE
12927 && (isec->flags & SEC_DEBUGGING)
12928 && CONST_STRNEQ (isec->name, ".debug_line."))
12929 debug_frag_seen = TRUE;
12930 }
12931
12932 /* If no section in this file will be kept, then we can
12933 toss out the debug and special sections. */
12934 if (!some_kept)
12935 continue;
12936
12937 /* Keep debug and special sections like .comment when they are
12938 not part of a group. Also keep section groups that contain
12939 just debug sections or special sections. */
12940 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12941 {
12942 if ((isec->flags & SEC_GROUP) != 0)
12943 _bfd_elf_gc_mark_debug_special_section_group (isec);
12944 else if (((isec->flags & SEC_DEBUGGING) != 0
12945 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12946 && elf_next_in_group (isec) == NULL)
12947 isec->gc_mark = 1;
12948 }
12949
12950 if (! debug_frag_seen)
12951 continue;
12952
12953 /* Look for CODE sections which are going to be discarded,
12954 and find and discard any fragmented debug sections which
12955 are associated with that code section. */
12956 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12957 if ((isec->flags & SEC_CODE) != 0
12958 && isec->gc_mark == 0)
12959 {
12960 unsigned int ilen;
12961 asection *dsec;
12962
12963 ilen = strlen (isec->name);
12964
12965 /* Association is determined by the name of the debug section
12966 containing the name of the code section as a suffix. For
12967 example .debug_line.text.foo is a debug section associated
12968 with .text.foo. */
12969 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12970 {
12971 unsigned int dlen;
12972
12973 if (dsec->gc_mark == 0
12974 || (dsec->flags & SEC_DEBUGGING) == 0)
12975 continue;
12976
12977 dlen = strlen (dsec->name);
12978
12979 if (dlen > ilen
12980 && strncmp (dsec->name + (dlen - ilen),
12981 isec->name, ilen) == 0)
12982 {
12983 dsec->gc_mark = 0;
12984 }
12985 }
12986 }
12987 }
12988 return TRUE;
12989}
12990
12991/* The sweep phase of garbage collection. Remove all garbage sections. */
12992
12993typedef bfd_boolean (*gc_sweep_hook_fn)
12994 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12995
12996static bfd_boolean
12997elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12998{
12999 bfd *sub;
13000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13001 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13002
13003 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13004 {
13005 asection *o;
13006
13007 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13008 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13009 continue;
13010
13011 for (o = sub->sections; o != NULL; o = o->next)
13012 {
13013 /* When any section in a section group is kept, we keep all
13014 sections in the section group. If the first member of
13015 the section group is excluded, we will also exclude the
13016 group section. */
13017 if (o->flags & SEC_GROUP)
13018 {
13019 asection *first = elf_next_in_group (o);
13020 o->gc_mark = first->gc_mark;
13021 }
13022
13023 if (o->gc_mark)
13024 continue;
13025
13026 /* Skip sweeping sections already excluded. */
13027 if (o->flags & SEC_EXCLUDE)
13028 continue;
13029
13030 /* Since this is early in the link process, it is simple
13031 to remove a section from the output. */
13032 o->flags |= SEC_EXCLUDE;
13033
13034 if (info->print_gc_sections && o->size != 0)
13035 /* xgettext:c-format */
13036 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13037 o, sub);
13038
13039 /* But we also have to update some of the relocation
13040 info we collected before. */
13041 if (gc_sweep_hook
13042 && (o->flags & SEC_RELOC) != 0
13043 && o->reloc_count != 0
13044 && !((info->strip == strip_all || info->strip == strip_debugger)
13045 && (o->flags & SEC_DEBUGGING) != 0)
13046 && !bfd_is_abs_section (o->output_section))
13047 {
13048 Elf_Internal_Rela *internal_relocs;
13049 bfd_boolean r;
13050
13051 internal_relocs
13052 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13053 info->keep_memory);
13054 if (internal_relocs == NULL)
13055 return FALSE;
13056
13057 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13058
13059 if (elf_section_data (o)->relocs != internal_relocs)
13060 free (internal_relocs);
13061
13062 if (!r)
13063 return FALSE;
13064 }
13065 }
13066 }
13067
13068 return TRUE;
13069}
13070
13071/* Propagate collected vtable information. This is called through
13072 elf_link_hash_traverse. */
13073
13074static bfd_boolean
13075elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13076{
13077 /* Those that are not vtables. */
13078 if (h->vtable == NULL || h->vtable->parent == NULL)
13079 return TRUE;
13080
13081 /* Those vtables that do not have parents, we cannot merge. */
13082 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13083 return TRUE;
13084
13085 /* If we've already been done, exit. */
13086 if (h->vtable->used && h->vtable->used[-1])
13087 return TRUE;
13088
13089 /* Make sure the parent's table is up to date. */
13090 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13091
13092 if (h->vtable->used == NULL)
13093 {
13094 /* None of this table's entries were referenced. Re-use the
13095 parent's table. */
13096 h->vtable->used = h->vtable->parent->vtable->used;
13097 h->vtable->size = h->vtable->parent->vtable->size;
13098 }
13099 else
13100 {
13101 size_t n;
13102 bfd_boolean *cu, *pu;
13103
13104 /* Or the parent's entries into ours. */
13105 cu = h->vtable->used;
13106 cu[-1] = TRUE;
13107 pu = h->vtable->parent->vtable->used;
13108 if (pu != NULL)
13109 {
13110 const struct elf_backend_data *bed;
13111 unsigned int log_file_align;
13112
13113 bed = get_elf_backend_data (h->root.u.def.section->owner);
13114 log_file_align = bed->s->log_file_align;
13115 n = h->vtable->parent->vtable->size >> log_file_align;
13116 while (n--)
13117 {
13118 if (*pu)
13119 *cu = TRUE;
13120 pu++;
13121 cu++;
13122 }
13123 }
13124 }
13125
13126 return TRUE;
13127}
13128
13129static bfd_boolean
13130elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13131{
13132 asection *sec;
13133 bfd_vma hstart, hend;
13134 Elf_Internal_Rela *relstart, *relend, *rel;
13135 const struct elf_backend_data *bed;
13136 unsigned int log_file_align;
13137
13138 /* Take care of both those symbols that do not describe vtables as
13139 well as those that are not loaded. */
13140 if (h->vtable == NULL || h->vtable->parent == NULL)
13141 return TRUE;
13142
13143 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13144 || h->root.type == bfd_link_hash_defweak);
13145
13146 sec = h->root.u.def.section;
13147 hstart = h->root.u.def.value;
13148 hend = hstart + h->size;
13149
13150 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13151 if (!relstart)
13152 return *(bfd_boolean *) okp = FALSE;
13153 bed = get_elf_backend_data (sec->owner);
13154 log_file_align = bed->s->log_file_align;
13155
13156 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13157
13158 for (rel = relstart; rel < relend; ++rel)
13159 if (rel->r_offset >= hstart && rel->r_offset < hend)
13160 {
13161 /* If the entry is in use, do nothing. */
13162 if (h->vtable->used
13163 && (rel->r_offset - hstart) < h->vtable->size)
13164 {
13165 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13166 if (h->vtable->used[entry])
13167 continue;
13168 }
13169 /* Otherwise, kill it. */
13170 rel->r_offset = rel->r_info = rel->r_addend = 0;
13171 }
13172
13173 return TRUE;
13174}
13175
13176/* Mark sections containing dynamically referenced symbols. When
13177 building shared libraries, we must assume that any visible symbol is
13178 referenced. */
13179
13180bfd_boolean
13181bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13182{
13183 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13184 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13185
13186 if ((h->root.type == bfd_link_hash_defined
13187 || h->root.type == bfd_link_hash_defweak)
13188 && (h->ref_dynamic
13189 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13190 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13191 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13192 && (!bfd_link_executable (info)
13193 || info->gc_keep_exported
13194 || info->export_dynamic
13195 || (h->dynamic
13196 && d != NULL
13197 && (*d->match) (&d->head, NULL, h->root.root.string)))
13198 && (h->versioned >= versioned
13199 || !bfd_hide_sym_by_version (info->version_info,
13200 h->root.root.string)))))
13201 h->root.u.def.section->flags |= SEC_KEEP;
13202
13203 return TRUE;
13204}
13205
13206/* Keep all sections containing symbols undefined on the command-line,
13207 and the section containing the entry symbol. */
13208
13209void
13210_bfd_elf_gc_keep (struct bfd_link_info *info)
13211{
13212 struct bfd_sym_chain *sym;
13213
13214 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13215 {
13216 struct elf_link_hash_entry *h;
13217
13218 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13219 FALSE, FALSE, FALSE);
13220
13221 if (h != NULL
13222 && (h->root.type == bfd_link_hash_defined
13223 || h->root.type == bfd_link_hash_defweak)
13224 && !bfd_is_abs_section (h->root.u.def.section)
13225 && !bfd_is_und_section (h->root.u.def.section))
13226 h->root.u.def.section->flags |= SEC_KEEP;
13227 }
13228}
13229
13230bfd_boolean
13231bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13232 struct bfd_link_info *info)
13233{
13234 bfd *ibfd = info->input_bfds;
13235
13236 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13237 {
13238 asection *sec;
13239 struct elf_reloc_cookie cookie;
13240
13241 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13242 continue;
13243
13244 if (!init_reloc_cookie (&cookie, info, ibfd))
13245 return FALSE;
13246
13247 for (sec = ibfd->sections; sec; sec = sec->next)
13248 {
13249 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13250 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13251 {
13252 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13253 fini_reloc_cookie_rels (&cookie, sec);
13254 }
13255 }
13256 }
13257 return TRUE;
13258}
13259
13260/* Do mark and sweep of unused sections. */
13261
13262bfd_boolean
13263bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13264{
13265 bfd_boolean ok = TRUE;
13266 bfd *sub;
13267 elf_gc_mark_hook_fn gc_mark_hook;
13268 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13269 struct elf_link_hash_table *htab;
13270
13271 if (!bed->can_gc_sections
13272 || !is_elf_hash_table (info->hash))
13273 {
13274 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13275 return TRUE;
13276 }
13277
13278 bed->gc_keep (info);
13279 htab = elf_hash_table (info);
13280
13281 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13282 at the .eh_frame section if we can mark the FDEs individually. */
13283 for (sub = info->input_bfds;
13284 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13285 sub = sub->link.next)
13286 {
13287 asection *sec;
13288 struct elf_reloc_cookie cookie;
13289
13290 sec = bfd_get_section_by_name (sub, ".eh_frame");
13291 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13292 {
13293 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13294 if (elf_section_data (sec)->sec_info
13295 && (sec->flags & SEC_LINKER_CREATED) == 0)
13296 elf_eh_frame_section (sub) = sec;
13297 fini_reloc_cookie_for_section (&cookie, sec);
13298 sec = bfd_get_next_section_by_name (NULL, sec);
13299 }
13300 }
13301
13302 /* Apply transitive closure to the vtable entry usage info. */
13303 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13304 if (!ok)
13305 return FALSE;
13306
13307 /* Kill the vtable relocations that were not used. */
13308 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13309 if (!ok)
13310 return FALSE;
13311
13312 /* Mark dynamically referenced symbols. */
13313 if (htab->dynamic_sections_created || info->gc_keep_exported)
13314 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13315
13316 /* Grovel through relocs to find out who stays ... */
13317 gc_mark_hook = bed->gc_mark_hook;
13318 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13319 {
13320 asection *o;
13321
13322 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13323 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13324 continue;
13325
13326 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13327 Also treat note sections as a root, if the section is not part
13328 of a group. */
13329 for (o = sub->sections; o != NULL; o = o->next)
13330 if (!o->gc_mark
13331 && (o->flags & SEC_EXCLUDE) == 0
13332 && ((o->flags & SEC_KEEP) != 0
13333 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13334 && elf_next_in_group (o) == NULL )))
13335 {
13336 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13337 return FALSE;
13338 }
13339 }
13340
13341 /* Allow the backend to mark additional target specific sections. */
13342 bed->gc_mark_extra_sections (info, gc_mark_hook);
13343
13344 /* ... and mark SEC_EXCLUDE for those that go. */
13345 return elf_gc_sweep (abfd, info);
13346}
13347\f
13348/* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13349
13350bfd_boolean
13351bfd_elf_gc_record_vtinherit (bfd *abfd,
13352 asection *sec,
13353 struct elf_link_hash_entry *h,
13354 bfd_vma offset)
13355{
13356 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13357 struct elf_link_hash_entry **search, *child;
13358 size_t extsymcount;
13359 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13360
13361 /* The sh_info field of the symtab header tells us where the
13362 external symbols start. We don't care about the local symbols at
13363 this point. */
13364 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13365 if (!elf_bad_symtab (abfd))
13366 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13367
13368 sym_hashes = elf_sym_hashes (abfd);
13369 sym_hashes_end = sym_hashes + extsymcount;
13370
13371 /* Hunt down the child symbol, which is in this section at the same
13372 offset as the relocation. */
13373 for (search = sym_hashes; search != sym_hashes_end; ++search)
13374 {
13375 if ((child = *search) != NULL
13376 && (child->root.type == bfd_link_hash_defined
13377 || child->root.type == bfd_link_hash_defweak)
13378 && child->root.u.def.section == sec
13379 && child->root.u.def.value == offset)
13380 goto win;
13381 }
13382
13383 /* xgettext:c-format */
13384 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13385 abfd, sec, (unsigned long) offset);
13386 bfd_set_error (bfd_error_invalid_operation);
13387 return FALSE;
13388
13389 win:
13390 if (!child->vtable)
13391 {
13392 child->vtable = ((struct elf_link_virtual_table_entry *)
13393 bfd_zalloc (abfd, sizeof (*child->vtable)));
13394 if (!child->vtable)
13395 return FALSE;
13396 }
13397 if (!h)
13398 {
13399 /* This *should* only be the absolute section. It could potentially
13400 be that someone has defined a non-global vtable though, which
13401 would be bad. It isn't worth paging in the local symbols to be
13402 sure though; that case should simply be handled by the assembler. */
13403
13404 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13405 }
13406 else
13407 child->vtable->parent = h;
13408
13409 return TRUE;
13410}
13411
13412/* Called from check_relocs to record the existence of a VTENTRY reloc. */
13413
13414bfd_boolean
13415bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13416 asection *sec ATTRIBUTE_UNUSED,
13417 struct elf_link_hash_entry *h,
13418 bfd_vma addend)
13419{
13420 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13421 unsigned int log_file_align = bed->s->log_file_align;
13422
13423 if (!h->vtable)
13424 {
13425 h->vtable = ((struct elf_link_virtual_table_entry *)
13426 bfd_zalloc (abfd, sizeof (*h->vtable)));
13427 if (!h->vtable)
13428 return FALSE;
13429 }
13430
13431 if (addend >= h->vtable->size)
13432 {
13433 size_t size, bytes, file_align;
13434 bfd_boolean *ptr = h->vtable->used;
13435
13436 /* While the symbol is undefined, we have to be prepared to handle
13437 a zero size. */
13438 file_align = 1 << log_file_align;
13439 if (h->root.type == bfd_link_hash_undefined)
13440 size = addend + file_align;
13441 else
13442 {
13443 size = h->size;
13444 if (addend >= size)
13445 {
13446 /* Oops! We've got a reference past the defined end of
13447 the table. This is probably a bug -- shall we warn? */
13448 size = addend + file_align;
13449 }
13450 }
13451 size = (size + file_align - 1) & -file_align;
13452
13453 /* Allocate one extra entry for use as a "done" flag for the
13454 consolidation pass. */
13455 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13456
13457 if (ptr)
13458 {
13459 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13460
13461 if (ptr != NULL)
13462 {
13463 size_t oldbytes;
13464
13465 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13466 * sizeof (bfd_boolean));
13467 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13468 }
13469 }
13470 else
13471 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13472
13473 if (ptr == NULL)
13474 return FALSE;
13475
13476 /* And arrange for that done flag to be at index -1. */
13477 h->vtable->used = ptr + 1;
13478 h->vtable->size = size;
13479 }
13480
13481 h->vtable->used[addend >> log_file_align] = TRUE;
13482
13483 return TRUE;
13484}
13485
13486/* Map an ELF section header flag to its corresponding string. */
13487typedef struct
13488{
13489 char *flag_name;
13490 flagword flag_value;
13491} elf_flags_to_name_table;
13492
13493static elf_flags_to_name_table elf_flags_to_names [] =
13494{
13495 { "SHF_WRITE", SHF_WRITE },
13496 { "SHF_ALLOC", SHF_ALLOC },
13497 { "SHF_EXECINSTR", SHF_EXECINSTR },
13498 { "SHF_MERGE", SHF_MERGE },
13499 { "SHF_STRINGS", SHF_STRINGS },
13500 { "SHF_INFO_LINK", SHF_INFO_LINK},
13501 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13502 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13503 { "SHF_GROUP", SHF_GROUP },
13504 { "SHF_TLS", SHF_TLS },
13505 { "SHF_MASKOS", SHF_MASKOS },
13506 { "SHF_EXCLUDE", SHF_EXCLUDE },
13507};
13508
13509/* Returns TRUE if the section is to be included, otherwise FALSE. */
13510bfd_boolean
13511bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13512 struct flag_info *flaginfo,
13513 asection *section)
13514{
13515 const bfd_vma sh_flags = elf_section_flags (section);
13516
13517 if (!flaginfo->flags_initialized)
13518 {
13519 bfd *obfd = info->output_bfd;
13520 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13521 struct flag_info_list *tf = flaginfo->flag_list;
13522 int with_hex = 0;
13523 int without_hex = 0;
13524
13525 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13526 {
13527 unsigned i;
13528 flagword (*lookup) (char *);
13529
13530 lookup = bed->elf_backend_lookup_section_flags_hook;
13531 if (lookup != NULL)
13532 {
13533 flagword hexval = (*lookup) ((char *) tf->name);
13534
13535 if (hexval != 0)
13536 {
13537 if (tf->with == with_flags)
13538 with_hex |= hexval;
13539 else if (tf->with == without_flags)
13540 without_hex |= hexval;
13541 tf->valid = TRUE;
13542 continue;
13543 }
13544 }
13545 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13546 {
13547 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13548 {
13549 if (tf->with == with_flags)
13550 with_hex |= elf_flags_to_names[i].flag_value;
13551 else if (tf->with == without_flags)
13552 without_hex |= elf_flags_to_names[i].flag_value;
13553 tf->valid = TRUE;
13554 break;
13555 }
13556 }
13557 if (!tf->valid)
13558 {
13559 info->callbacks->einfo
13560 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13561 return FALSE;
13562 }
13563 }
13564 flaginfo->flags_initialized = TRUE;
13565 flaginfo->only_with_flags |= with_hex;
13566 flaginfo->not_with_flags |= without_hex;
13567 }
13568
13569 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13570 return FALSE;
13571
13572 if ((flaginfo->not_with_flags & sh_flags) != 0)
13573 return FALSE;
13574
13575 return TRUE;
13576}
13577
13578struct alloc_got_off_arg {
13579 bfd_vma gotoff;
13580 struct bfd_link_info *info;
13581};
13582
13583/* We need a special top-level link routine to convert got reference counts
13584 to real got offsets. */
13585
13586static bfd_boolean
13587elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13588{
13589 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13590 bfd *obfd = gofarg->info->output_bfd;
13591 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13592
13593 if (h->got.refcount > 0)
13594 {
13595 h->got.offset = gofarg->gotoff;
13596 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13597 }
13598 else
13599 h->got.offset = (bfd_vma) -1;
13600
13601 return TRUE;
13602}
13603
13604/* And an accompanying bit to work out final got entry offsets once
13605 we're done. Should be called from final_link. */
13606
13607bfd_boolean
13608bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13609 struct bfd_link_info *info)
13610{
13611 bfd *i;
13612 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13613 bfd_vma gotoff;
13614 struct alloc_got_off_arg gofarg;
13615
13616 BFD_ASSERT (abfd == info->output_bfd);
13617
13618 if (! is_elf_hash_table (info->hash))
13619 return FALSE;
13620
13621 /* The GOT offset is relative to the .got section, but the GOT header is
13622 put into the .got.plt section, if the backend uses it. */
13623 if (bed->want_got_plt)
13624 gotoff = 0;
13625 else
13626 gotoff = bed->got_header_size;
13627
13628 /* Do the local .got entries first. */
13629 for (i = info->input_bfds; i; i = i->link.next)
13630 {
13631 bfd_signed_vma *local_got;
13632 size_t j, locsymcount;
13633 Elf_Internal_Shdr *symtab_hdr;
13634
13635 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13636 continue;
13637
13638 local_got = elf_local_got_refcounts (i);
13639 if (!local_got)
13640 continue;
13641
13642 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13643 if (elf_bad_symtab (i))
13644 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13645 else
13646 locsymcount = symtab_hdr->sh_info;
13647
13648 for (j = 0; j < locsymcount; ++j)
13649 {
13650 if (local_got[j] > 0)
13651 {
13652 local_got[j] = gotoff;
13653 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13654 }
13655 else
13656 local_got[j] = (bfd_vma) -1;
13657 }
13658 }
13659
13660 /* Then the global .got entries. .plt refcounts are handled by
13661 adjust_dynamic_symbol */
13662 gofarg.gotoff = gotoff;
13663 gofarg.info = info;
13664 elf_link_hash_traverse (elf_hash_table (info),
13665 elf_gc_allocate_got_offsets,
13666 &gofarg);
13667 return TRUE;
13668}
13669
13670/* Many folk need no more in the way of final link than this, once
13671 got entry reference counting is enabled. */
13672
13673bfd_boolean
13674bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13675{
13676 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13677 return FALSE;
13678
13679 /* Invoke the regular ELF backend linker to do all the work. */
13680 return bfd_elf_final_link (abfd, info);
13681}
13682
13683bfd_boolean
13684bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13685{
13686 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13687
13688 if (rcookie->bad_symtab)
13689 rcookie->rel = rcookie->rels;
13690
13691 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13692 {
13693 unsigned long r_symndx;
13694
13695 if (! rcookie->bad_symtab)
13696 if (rcookie->rel->r_offset > offset)
13697 return FALSE;
13698 if (rcookie->rel->r_offset != offset)
13699 continue;
13700
13701 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13702 if (r_symndx == STN_UNDEF)
13703 return TRUE;
13704
13705 if (r_symndx >= rcookie->locsymcount
13706 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13707 {
13708 struct elf_link_hash_entry *h;
13709
13710 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13711
13712 while (h->root.type == bfd_link_hash_indirect
13713 || h->root.type == bfd_link_hash_warning)
13714 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13715
13716 if ((h->root.type == bfd_link_hash_defined
13717 || h->root.type == bfd_link_hash_defweak)
13718 && (h->root.u.def.section->owner != rcookie->abfd
13719 || h->root.u.def.section->kept_section != NULL
13720 || discarded_section (h->root.u.def.section)))
13721 return TRUE;
13722 }
13723 else
13724 {
13725 /* It's not a relocation against a global symbol,
13726 but it could be a relocation against a local
13727 symbol for a discarded section. */
13728 asection *isec;
13729 Elf_Internal_Sym *isym;
13730
13731 /* Need to: get the symbol; get the section. */
13732 isym = &rcookie->locsyms[r_symndx];
13733 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13734 if (isec != NULL
13735 && (isec->kept_section != NULL
13736 || discarded_section (isec)))
13737 return TRUE;
13738 }
13739 return FALSE;
13740 }
13741 return FALSE;
13742}
13743
13744/* Discard unneeded references to discarded sections.
13745 Returns -1 on error, 1 if any section's size was changed, 0 if
13746 nothing changed. This function assumes that the relocations are in
13747 sorted order, which is true for all known assemblers. */
13748
13749int
13750bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13751{
13752 struct elf_reloc_cookie cookie;
13753 asection *o;
13754 bfd *abfd;
13755 int changed = 0;
13756
13757 if (info->traditional_format
13758 || !is_elf_hash_table (info->hash))
13759 return 0;
13760
13761 o = bfd_get_section_by_name (output_bfd, ".stab");
13762 if (o != NULL)
13763 {
13764 asection *i;
13765
13766 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13767 {
13768 if (i->size == 0
13769 || i->reloc_count == 0
13770 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13771 continue;
13772
13773 abfd = i->owner;
13774 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13775 continue;
13776
13777 if (!init_reloc_cookie_for_section (&cookie, info, i))
13778 return -1;
13779
13780 if (_bfd_discard_section_stabs (abfd, i,
13781 elf_section_data (i)->sec_info,
13782 bfd_elf_reloc_symbol_deleted_p,
13783 &cookie))
13784 changed = 1;
13785
13786 fini_reloc_cookie_for_section (&cookie, i);
13787 }
13788 }
13789
13790 o = NULL;
13791 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13792 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13793 if (o != NULL)
13794 {
13795 asection *i;
13796
13797 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13798 {
13799 if (i->size == 0)
13800 continue;
13801
13802 abfd = i->owner;
13803 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13804 continue;
13805
13806 if (!init_reloc_cookie_for_section (&cookie, info, i))
13807 return -1;
13808
13809 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13810 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13811 bfd_elf_reloc_symbol_deleted_p,
13812 &cookie))
13813 changed = 1;
13814
13815 fini_reloc_cookie_for_section (&cookie, i);
13816 }
13817 }
13818
13819 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13820 {
13821 const struct elf_backend_data *bed;
13822
13823 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13824 continue;
13825
13826 bed = get_elf_backend_data (abfd);
13827
13828 if (bed->elf_backend_discard_info != NULL)
13829 {
13830 if (!init_reloc_cookie (&cookie, info, abfd))
13831 return -1;
13832
13833 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13834 changed = 1;
13835
13836 fini_reloc_cookie (&cookie, abfd);
13837 }
13838 }
13839
13840 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13841 _bfd_elf_end_eh_frame_parsing (info);
13842
13843 if (info->eh_frame_hdr_type
13844 && !bfd_link_relocatable (info)
13845 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13846 changed = 1;
13847
13848 return changed;
13849}
13850
13851bfd_boolean
13852_bfd_elf_section_already_linked (bfd *abfd,
13853 asection *sec,
13854 struct bfd_link_info *info)
13855{
13856 flagword flags;
13857 const char *name, *key;
13858 struct bfd_section_already_linked *l;
13859 struct bfd_section_already_linked_hash_entry *already_linked_list;
13860
13861 if (sec->output_section == bfd_abs_section_ptr)
13862 return FALSE;
13863
13864 flags = sec->flags;
13865
13866 /* Return if it isn't a linkonce section. A comdat group section
13867 also has SEC_LINK_ONCE set. */
13868 if ((flags & SEC_LINK_ONCE) == 0)
13869 return FALSE;
13870
13871 /* Don't put group member sections on our list of already linked
13872 sections. They are handled as a group via their group section. */
13873 if (elf_sec_group (sec) != NULL)
13874 return FALSE;
13875
13876 /* For a SHT_GROUP section, use the group signature as the key. */
13877 name = sec->name;
13878 if ((flags & SEC_GROUP) != 0
13879 && elf_next_in_group (sec) != NULL
13880 && elf_group_name (elf_next_in_group (sec)) != NULL)
13881 key = elf_group_name (elf_next_in_group (sec));
13882 else
13883 {
13884 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13885 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13886 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13887 key++;
13888 else
13889 /* Must be a user linkonce section that doesn't follow gcc's
13890 naming convention. In this case we won't be matching
13891 single member groups. */
13892 key = name;
13893 }
13894
13895 already_linked_list = bfd_section_already_linked_table_lookup (key);
13896
13897 for (l = already_linked_list->entry; l != NULL; l = l->next)
13898 {
13899 /* We may have 2 different types of sections on the list: group
13900 sections with a signature of <key> (<key> is some string),
13901 and linkonce sections named .gnu.linkonce.<type>.<key>.
13902 Match like sections. LTO plugin sections are an exception.
13903 They are always named .gnu.linkonce.t.<key> and match either
13904 type of section. */
13905 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13906 && ((flags & SEC_GROUP) != 0
13907 || strcmp (name, l->sec->name) == 0))
13908 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13909 {
13910 /* The section has already been linked. See if we should
13911 issue a warning. */
13912 if (!_bfd_handle_already_linked (sec, l, info))
13913 return FALSE;
13914
13915 if (flags & SEC_GROUP)
13916 {
13917 asection *first = elf_next_in_group (sec);
13918 asection *s = first;
13919
13920 while (s != NULL)
13921 {
13922 s->output_section = bfd_abs_section_ptr;
13923 /* Record which group discards it. */
13924 s->kept_section = l->sec;
13925 s = elf_next_in_group (s);
13926 /* These lists are circular. */
13927 if (s == first)
13928 break;
13929 }
13930 }
13931
13932 return TRUE;
13933 }
13934 }
13935
13936 /* A single member comdat group section may be discarded by a
13937 linkonce section and vice versa. */
13938 if ((flags & SEC_GROUP) != 0)
13939 {
13940 asection *first = elf_next_in_group (sec);
13941
13942 if (first != NULL && elf_next_in_group (first) == first)
13943 /* Check this single member group against linkonce sections. */
13944 for (l = already_linked_list->entry; l != NULL; l = l->next)
13945 if ((l->sec->flags & SEC_GROUP) == 0
13946 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13947 {
13948 first->output_section = bfd_abs_section_ptr;
13949 first->kept_section = l->sec;
13950 sec->output_section = bfd_abs_section_ptr;
13951 break;
13952 }
13953 }
13954 else
13955 /* Check this linkonce section against single member groups. */
13956 for (l = already_linked_list->entry; l != NULL; l = l->next)
13957 if (l->sec->flags & SEC_GROUP)
13958 {
13959 asection *first = elf_next_in_group (l->sec);
13960
13961 if (first != NULL
13962 && elf_next_in_group (first) == first
13963 && bfd_elf_match_symbols_in_sections (first, sec, info))
13964 {
13965 sec->output_section = bfd_abs_section_ptr;
13966 sec->kept_section = first;
13967 break;
13968 }
13969 }
13970
13971 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13972 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13973 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13974 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13975 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13976 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13977 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13978 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13979 The reverse order cannot happen as there is never a bfd with only the
13980 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13981 matter as here were are looking only for cross-bfd sections. */
13982
13983 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13984 for (l = already_linked_list->entry; l != NULL; l = l->next)
13985 if ((l->sec->flags & SEC_GROUP) == 0
13986 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13987 {
13988 if (abfd != l->sec->owner)
13989 sec->output_section = bfd_abs_section_ptr;
13990 break;
13991 }
13992
13993 /* This is the first section with this name. Record it. */
13994 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13995 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13996 return sec->output_section == bfd_abs_section_ptr;
13997}
13998
13999bfd_boolean
14000_bfd_elf_common_definition (Elf_Internal_Sym *sym)
14001{
14002 return sym->st_shndx == SHN_COMMON;
14003}
14004
14005unsigned int
14006_bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14007{
14008 return SHN_COMMON;
14009}
14010
14011asection *
14012_bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14013{
14014 return bfd_com_section_ptr;
14015}
14016
14017bfd_vma
14018_bfd_elf_default_got_elt_size (bfd *abfd,
14019 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14020 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14021 bfd *ibfd ATTRIBUTE_UNUSED,
14022 unsigned long symndx ATTRIBUTE_UNUSED)
14023{
14024 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14025 return bed->s->arch_size / 8;
14026}
14027
14028/* Routines to support the creation of dynamic relocs. */
14029
14030/* Returns the name of the dynamic reloc section associated with SEC. */
14031
14032static const char *
14033get_dynamic_reloc_section_name (bfd * abfd,
14034 asection * sec,
14035 bfd_boolean is_rela)
14036{
14037 char *name;
14038 const char *old_name = bfd_get_section_name (NULL, sec);
14039 const char *prefix = is_rela ? ".rela" : ".rel";
14040
14041 if (old_name == NULL)
14042 return NULL;
14043
14044 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14045 sprintf (name, "%s%s", prefix, old_name);
14046
14047 return name;
14048}
14049
14050/* Returns the dynamic reloc section associated with SEC.
14051 If necessary compute the name of the dynamic reloc section based
14052 on SEC's name (looked up in ABFD's string table) and the setting
14053 of IS_RELA. */
14054
14055asection *
14056_bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14057 asection * sec,
14058 bfd_boolean is_rela)
14059{
14060 asection * reloc_sec = elf_section_data (sec)->sreloc;
14061
14062 if (reloc_sec == NULL)
14063 {
14064 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14065
14066 if (name != NULL)
14067 {
14068 reloc_sec = bfd_get_linker_section (abfd, name);
14069
14070 if (reloc_sec != NULL)
14071 elf_section_data (sec)->sreloc = reloc_sec;
14072 }
14073 }
14074
14075 return reloc_sec;
14076}
14077
14078/* Returns the dynamic reloc section associated with SEC. If the
14079 section does not exist it is created and attached to the DYNOBJ
14080 bfd and stored in the SRELOC field of SEC's elf_section_data
14081 structure.
14082
14083 ALIGNMENT is the alignment for the newly created section and
14084 IS_RELA defines whether the name should be .rela.<SEC's name>
14085 or .rel.<SEC's name>. The section name is looked up in the
14086 string table associated with ABFD. */
14087
14088asection *
14089_bfd_elf_make_dynamic_reloc_section (asection *sec,
14090 bfd *dynobj,
14091 unsigned int alignment,
14092 bfd *abfd,
14093 bfd_boolean is_rela)
14094{
14095 asection * reloc_sec = elf_section_data (sec)->sreloc;
14096
14097 if (reloc_sec == NULL)
14098 {
14099 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14100
14101 if (name == NULL)
14102 return NULL;
14103
14104 reloc_sec = bfd_get_linker_section (dynobj, name);
14105
14106 if (reloc_sec == NULL)
14107 {
14108 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14109 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14110 if ((sec->flags & SEC_ALLOC) != 0)
14111 flags |= SEC_ALLOC | SEC_LOAD;
14112
14113 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14114 if (reloc_sec != NULL)
14115 {
14116 /* _bfd_elf_get_sec_type_attr chooses a section type by
14117 name. Override as it may be wrong, eg. for a user
14118 section named "auto" we'll get ".relauto" which is
14119 seen to be a .rela section. */
14120 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14121 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14122 reloc_sec = NULL;
14123 }
14124 }
14125
14126 elf_section_data (sec)->sreloc = reloc_sec;
14127 }
14128
14129 return reloc_sec;
14130}
14131
14132/* Copy the ELF symbol type and other attributes for a linker script
14133 assignment from HSRC to HDEST. Generally this should be treated as
14134 if we found a strong non-dynamic definition for HDEST (except that
14135 ld ignores multiple definition errors). */
14136void
14137_bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14138 struct bfd_link_hash_entry *hdest,
14139 struct bfd_link_hash_entry *hsrc)
14140{
14141 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14142 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14143 Elf_Internal_Sym isym;
14144
14145 ehdest->type = ehsrc->type;
14146 ehdest->target_internal = ehsrc->target_internal;
14147
14148 isym.st_other = ehsrc->other;
14149 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14150}
14151
14152/* Append a RELA relocation REL to section S in BFD. */
14153
14154void
14155elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14156{
14157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14158 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14159 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14160 bed->s->swap_reloca_out (abfd, rel, loc);
14161}
14162
14163/* Append a REL relocation REL to section S in BFD. */
14164
14165void
14166elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14167{
14168 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14169 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14170 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14171 bed->s->swap_reloc_out (abfd, rel, loc);
14172}
This page took 0.071934 seconds and 4 git commands to generate.