Still a lot of bogus code; just a checkpoint.
[deliverable/binutils-gdb.git] / bfd / elflink.h
... / ...
CommitLineData
1/* ELF linker support.
2 Copyright 1995, 1996, 1997, 1998 Free Software Foundation, Inc.
3
4This file is part of BFD, the Binary File Descriptor library.
5
6This program is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2 of the License, or
9(at your option) any later version.
10
11This program is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with this program; if not, write to the Free Software
18Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20/* ELF linker code. */
21
22/* This struct is used to pass information to routines called via
23 elf_link_hash_traverse which must return failure. */
24
25struct elf_info_failed
26{
27 boolean failed;
28 struct bfd_link_info *info;
29};
30
31static boolean elf_link_add_object_symbols
32 PARAMS ((bfd *, struct bfd_link_info *));
33static boolean elf_link_add_archive_symbols
34 PARAMS ((bfd *, struct bfd_link_info *));
35static boolean elf_merge_symbol
36 PARAMS ((bfd *, struct bfd_link_info *, const char *, Elf_Internal_Sym *,
37 asection **, bfd_vma *, struct elf_link_hash_entry **,
38 boolean *, boolean *, boolean *));
39static boolean elf_export_symbol
40 PARAMS ((struct elf_link_hash_entry *, PTR));
41static boolean elf_fix_symbol_flags
42 PARAMS ((struct elf_link_hash_entry *, struct elf_info_failed *));
43static boolean elf_adjust_dynamic_symbol
44 PARAMS ((struct elf_link_hash_entry *, PTR));
45static boolean elf_link_find_version_dependencies
46 PARAMS ((struct elf_link_hash_entry *, PTR));
47static boolean elf_link_find_version_dependencies
48 PARAMS ((struct elf_link_hash_entry *, PTR));
49static boolean elf_link_assign_sym_version
50 PARAMS ((struct elf_link_hash_entry *, PTR));
51static boolean elf_link_renumber_dynsyms
52 PARAMS ((struct elf_link_hash_entry *, PTR));
53static boolean elf_collect_hash_codes
54 PARAMS ((struct elf_link_hash_entry *, PTR));
55
56/* Given an ELF BFD, add symbols to the global hash table as
57 appropriate. */
58
59boolean
60elf_bfd_link_add_symbols (abfd, info)
61 bfd *abfd;
62 struct bfd_link_info *info;
63{
64 switch (bfd_get_format (abfd))
65 {
66 case bfd_object:
67 return elf_link_add_object_symbols (abfd, info);
68 case bfd_archive:
69 return elf_link_add_archive_symbols (abfd, info);
70 default:
71 bfd_set_error (bfd_error_wrong_format);
72 return false;
73 }
74}
75\f
76
77/* Add symbols from an ELF archive file to the linker hash table. We
78 don't use _bfd_generic_link_add_archive_symbols because of a
79 problem which arises on UnixWare. The UnixWare libc.so is an
80 archive which includes an entry libc.so.1 which defines a bunch of
81 symbols. The libc.so archive also includes a number of other
82 object files, which also define symbols, some of which are the same
83 as those defined in libc.so.1. Correct linking requires that we
84 consider each object file in turn, and include it if it defines any
85 symbols we need. _bfd_generic_link_add_archive_symbols does not do
86 this; it looks through the list of undefined symbols, and includes
87 any object file which defines them. When this algorithm is used on
88 UnixWare, it winds up pulling in libc.so.1 early and defining a
89 bunch of symbols. This means that some of the other objects in the
90 archive are not included in the link, which is incorrect since they
91 precede libc.so.1 in the archive.
92
93 Fortunately, ELF archive handling is simpler than that done by
94 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
95 oddities. In ELF, if we find a symbol in the archive map, and the
96 symbol is currently undefined, we know that we must pull in that
97 object file.
98
99 Unfortunately, we do have to make multiple passes over the symbol
100 table until nothing further is resolved. */
101
102static boolean
103elf_link_add_archive_symbols (abfd, info)
104 bfd *abfd;
105 struct bfd_link_info *info;
106{
107 symindex c;
108 boolean *defined = NULL;
109 boolean *included = NULL;
110 carsym *symdefs;
111 boolean loop;
112
113 if (! bfd_has_map (abfd))
114 {
115 /* An empty archive is a special case. */
116 if (bfd_openr_next_archived_file (abfd, (bfd *) NULL) == NULL)
117 return true;
118 bfd_set_error (bfd_error_no_armap);
119 return false;
120 }
121
122 /* Keep track of all symbols we know to be already defined, and all
123 files we know to be already included. This is to speed up the
124 second and subsequent passes. */
125 c = bfd_ardata (abfd)->symdef_count;
126 if (c == 0)
127 return true;
128 defined = (boolean *) bfd_malloc (c * sizeof (boolean));
129 included = (boolean *) bfd_malloc (c * sizeof (boolean));
130 if (defined == (boolean *) NULL || included == (boolean *) NULL)
131 goto error_return;
132 memset (defined, 0, c * sizeof (boolean));
133 memset (included, 0, c * sizeof (boolean));
134
135 symdefs = bfd_ardata (abfd)->symdefs;
136
137 do
138 {
139 file_ptr last;
140 symindex i;
141 carsym *symdef;
142 carsym *symdefend;
143
144 loop = false;
145 last = -1;
146
147 symdef = symdefs;
148 symdefend = symdef + c;
149 for (i = 0; symdef < symdefend; symdef++, i++)
150 {
151 struct elf_link_hash_entry *h;
152 bfd *element;
153 struct bfd_link_hash_entry *undefs_tail;
154 symindex mark;
155
156 if (defined[i] || included[i])
157 continue;
158 if (symdef->file_offset == last)
159 {
160 included[i] = true;
161 continue;
162 }
163
164 h = elf_link_hash_lookup (elf_hash_table (info), symdef->name,
165 false, false, false);
166
167 if (h == NULL)
168 {
169 char *p, *copy;
170
171 /* If this is a default version (the name contains @@),
172 look up the symbol again without the version. The
173 effect is that references to the symbol without the
174 version will be matched by the default symbol in the
175 archive. */
176
177 p = strchr (symdef->name, ELF_VER_CHR);
178 if (p == NULL || p[1] != ELF_VER_CHR)
179 continue;
180
181 copy = bfd_alloc (abfd, p - symdef->name + 1);
182 if (copy == NULL)
183 goto error_return;
184 memcpy (copy, symdef->name, p - symdef->name);
185 copy[p - symdef->name] = '\0';
186
187 h = elf_link_hash_lookup (elf_hash_table (info), copy,
188 false, false, false);
189
190 bfd_release (abfd, copy);
191 }
192
193 if (h == NULL)
194 continue;
195
196 if (h->root.type != bfd_link_hash_undefined)
197 {
198 if (h->root.type != bfd_link_hash_undefweak)
199 defined[i] = true;
200 continue;
201 }
202
203 /* We need to include this archive member. */
204
205 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
206 if (element == (bfd *) NULL)
207 goto error_return;
208
209 if (! bfd_check_format (element, bfd_object))
210 goto error_return;
211
212 /* Doublecheck that we have not included this object
213 already--it should be impossible, but there may be
214 something wrong with the archive. */
215 if (element->archive_pass != 0)
216 {
217 bfd_set_error (bfd_error_bad_value);
218 goto error_return;
219 }
220 element->archive_pass = 1;
221
222 undefs_tail = info->hash->undefs_tail;
223
224 if (! (*info->callbacks->add_archive_element) (info, element,
225 symdef->name))
226 goto error_return;
227 if (! elf_link_add_object_symbols (element, info))
228 goto error_return;
229
230 /* If there are any new undefined symbols, we need to make
231 another pass through the archive in order to see whether
232 they can be defined. FIXME: This isn't perfect, because
233 common symbols wind up on undefs_tail and because an
234 undefined symbol which is defined later on in this pass
235 does not require another pass. This isn't a bug, but it
236 does make the code less efficient than it could be. */
237 if (undefs_tail != info->hash->undefs_tail)
238 loop = true;
239
240 /* Look backward to mark all symbols from this object file
241 which we have already seen in this pass. */
242 mark = i;
243 do
244 {
245 included[mark] = true;
246 if (mark == 0)
247 break;
248 --mark;
249 }
250 while (symdefs[mark].file_offset == symdef->file_offset);
251
252 /* We mark subsequent symbols from this object file as we go
253 on through the loop. */
254 last = symdef->file_offset;
255 }
256 }
257 while (loop);
258
259 free (defined);
260 free (included);
261
262 return true;
263
264 error_return:
265 if (defined != (boolean *) NULL)
266 free (defined);
267 if (included != (boolean *) NULL)
268 free (included);
269 return false;
270}
271
272/* This function is called when we want to define a new symbol. It
273 handles the various cases which arise when we find a definition in
274 a dynamic object, or when there is already a definition in a
275 dynamic object. The new symbol is described by NAME, SYM, PSEC,
276 and PVALUE. We set SYM_HASH to the hash table entry. We set
277 OVERRIDE if the old symbol is overriding a new definition. We set
278 TYPE_CHANGE_OK if it is OK for the type to change. We set
279 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
280 change, we mean that we shouldn't warn if the type or size does
281 change. */
282
283static boolean
284elf_merge_symbol (abfd, info, name, sym, psec, pvalue, sym_hash,
285 override, type_change_ok, size_change_ok)
286 bfd *abfd;
287 struct bfd_link_info *info;
288 const char *name;
289 Elf_Internal_Sym *sym;
290 asection **psec;
291 bfd_vma *pvalue;
292 struct elf_link_hash_entry **sym_hash;
293 boolean *override;
294 boolean *type_change_ok;
295 boolean *size_change_ok;
296{
297 asection *sec;
298 struct elf_link_hash_entry *h;
299 int bind;
300 bfd *oldbfd;
301 boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
302
303 *override = false;
304
305 sec = *psec;
306 bind = ELF_ST_BIND (sym->st_info);
307
308 if (! bfd_is_und_section (sec))
309 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false);
310 else
311 h = ((struct elf_link_hash_entry *)
312 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false));
313 if (h == NULL)
314 return false;
315 *sym_hash = h;
316
317 /* This code is for coping with dynamic objects, and is only useful
318 if we are doing an ELF link. */
319 if (info->hash->creator != abfd->xvec)
320 return true;
321
322 /* For merging, we only care about real symbols. */
323
324 while (h->root.type == bfd_link_hash_indirect
325 || h->root.type == bfd_link_hash_warning)
326 h = (struct elf_link_hash_entry *) h->root.u.i.link;
327
328 /* If we just created the symbol, mark it as being an ELF symbol.
329 Other than that, there is nothing to do--there is no merge issue
330 with a newly defined symbol--so we just return. */
331
332 if (h->root.type == bfd_link_hash_new)
333 {
334 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
335 return true;
336 }
337
338 /* OLDBFD is a BFD associated with the existing symbol. */
339
340 switch (h->root.type)
341 {
342 default:
343 oldbfd = NULL;
344 break;
345
346 case bfd_link_hash_undefined:
347 case bfd_link_hash_undefweak:
348 oldbfd = h->root.u.undef.abfd;
349 break;
350
351 case bfd_link_hash_defined:
352 case bfd_link_hash_defweak:
353 oldbfd = h->root.u.def.section->owner;
354 break;
355
356 case bfd_link_hash_common:
357 oldbfd = h->root.u.c.p->section->owner;
358 break;
359 }
360
361 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
362 respectively, is from a dynamic object. */
363
364 if ((abfd->flags & DYNAMIC) != 0)
365 newdyn = true;
366 else
367 newdyn = false;
368
369 if (oldbfd == NULL || (oldbfd->flags & DYNAMIC) == 0)
370 olddyn = false;
371 else
372 olddyn = true;
373
374 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
375 respectively, appear to be a definition rather than reference. */
376
377 if (bfd_is_und_section (sec) || bfd_is_com_section (sec))
378 newdef = false;
379 else
380 newdef = true;
381
382 if (h->root.type == bfd_link_hash_undefined
383 || h->root.type == bfd_link_hash_undefweak
384 || h->root.type == bfd_link_hash_common)
385 olddef = false;
386 else
387 olddef = true;
388
389 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
390 symbol, respectively, appears to be a common symbol in a dynamic
391 object. If a symbol appears in an uninitialized section, and is
392 not weak, and is not a function, then it may be a common symbol
393 which was resolved when the dynamic object was created. We want
394 to treat such symbols specially, because they raise special
395 considerations when setting the symbol size: if the symbol
396 appears as a common symbol in a regular object, and the size in
397 the regular object is larger, we must make sure that we use the
398 larger size. This problematic case can always be avoided in C,
399 but it must be handled correctly when using Fortran shared
400 libraries.
401
402 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
403 likewise for OLDDYNCOMMON and OLDDEF.
404
405 Note that this test is just a heuristic, and that it is quite
406 possible to have an uninitialized symbol in a shared object which
407 is really a definition, rather than a common symbol. This could
408 lead to some minor confusion when the symbol really is a common
409 symbol in some regular object. However, I think it will be
410 harmless. */
411
412 if (newdyn
413 && newdef
414 && (sec->flags & SEC_ALLOC) != 0
415 && (sec->flags & SEC_LOAD) == 0
416 && sym->st_size > 0
417 && bind != STB_WEAK
418 && ELF_ST_TYPE (sym->st_info) != STT_FUNC)
419 newdyncommon = true;
420 else
421 newdyncommon = false;
422
423 if (olddyn
424 && olddef
425 && h->root.type == bfd_link_hash_defined
426 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
427 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
428 && (h->root.u.def.section->flags & SEC_LOAD) == 0
429 && h->size > 0
430 && h->type != STT_FUNC)
431 olddyncommon = true;
432 else
433 olddyncommon = false;
434
435 /* It's OK to change the type if either the existing symbol or the
436 new symbol is weak. */
437
438 if (h->root.type == bfd_link_hash_defweak
439 || h->root.type == bfd_link_hash_undefweak
440 || bind == STB_WEAK)
441 *type_change_ok = true;
442
443 /* It's OK to change the size if either the existing symbol or the
444 new symbol is weak, or if the old symbol is undefined. */
445
446 if (*type_change_ok
447 || h->root.type == bfd_link_hash_undefined)
448 *size_change_ok = true;
449
450 /* If both the old and the new symbols look like common symbols in a
451 dynamic object, set the size of the symbol to the larger of the
452 two. */
453
454 if (olddyncommon
455 && newdyncommon
456 && sym->st_size != h->size)
457 {
458 /* Since we think we have two common symbols, issue a multiple
459 common warning if desired. Note that we only warn if the
460 size is different. If the size is the same, we simply let
461 the old symbol override the new one as normally happens with
462 symbols defined in dynamic objects. */
463
464 if (! ((*info->callbacks->multiple_common)
465 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
466 h->size, abfd, bfd_link_hash_common, sym->st_size)))
467 return false;
468
469 if (sym->st_size > h->size)
470 h->size = sym->st_size;
471
472 *size_change_ok = true;
473 }
474
475 /* If we are looking at a dynamic object, and we have found a
476 definition, we need to see if the symbol was already defined by
477 some other object. If so, we want to use the existing
478 definition, and we do not want to report a multiple symbol
479 definition error; we do this by clobbering *PSEC to be
480 bfd_und_section_ptr.
481
482 We treat a common symbol as a definition if the symbol in the
483 shared library is a function, since common symbols always
484 represent variables; this can cause confusion in principle, but
485 any such confusion would seem to indicate an erroneous program or
486 shared library. We also permit a common symbol in a regular
487 object to override a weak symbol in a shared object. */
488
489 if (newdyn
490 && newdef
491 && (olddef
492 || (h->root.type == bfd_link_hash_common
493 && (bind == STB_WEAK
494 || ELF_ST_TYPE (sym->st_info) == STT_FUNC))))
495 {
496 *override = true;
497 newdef = false;
498 newdyncommon = false;
499
500 *psec = sec = bfd_und_section_ptr;
501 *size_change_ok = true;
502
503 /* If we get here when the old symbol is a common symbol, then
504 we are explicitly letting it override a weak symbol or
505 function in a dynamic object, and we don't want to warn about
506 a type change. If the old symbol is a defined symbol, a type
507 change warning may still be appropriate. */
508
509 if (h->root.type == bfd_link_hash_common)
510 *type_change_ok = true;
511 }
512
513 /* Handle the special case of an old common symbol merging with a
514 new symbol which looks like a common symbol in a shared object.
515 We change *PSEC and *PVALUE to make the new symbol look like a
516 common symbol, and let _bfd_generic_link_add_one_symbol will do
517 the right thing. */
518
519 if (newdyncommon
520 && h->root.type == bfd_link_hash_common)
521 {
522 *override = true;
523 newdef = false;
524 newdyncommon = false;
525 *pvalue = sym->st_size;
526 *psec = sec = bfd_com_section_ptr;
527 *size_change_ok = true;
528 }
529
530 /* If the old symbol is from a dynamic object, and the new symbol is
531 a definition which is not from a dynamic object, then the new
532 symbol overrides the old symbol. Symbols from regular files
533 always take precedence over symbols from dynamic objects, even if
534 they are defined after the dynamic object in the link.
535
536 As above, we again permit a common symbol in a regular object to
537 override a definition in a shared object if the shared object
538 symbol is a function or is weak. */
539
540 if (! newdyn
541 && (newdef
542 || (bfd_is_com_section (sec)
543 && (h->root.type == bfd_link_hash_defweak
544 || h->type == STT_FUNC)))
545 && olddyn
546 && olddef
547 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0)
548 {
549 /* Change the hash table entry to undefined, and let
550 _bfd_generic_link_add_one_symbol do the right thing with the
551 new definition. */
552
553 h->root.type = bfd_link_hash_undefined;
554 h->root.u.undef.abfd = h->root.u.def.section->owner;
555 *size_change_ok = true;
556
557 olddef = false;
558 olddyncommon = false;
559
560 /* We again permit a type change when a common symbol may be
561 overriding a function. */
562
563 if (bfd_is_com_section (sec))
564 *type_change_ok = true;
565
566 /* This union may have been set to be non-NULL when this symbol
567 was seen in a dynamic object. We must force the union to be
568 NULL, so that it is correct for a regular symbol. */
569
570 h->verinfo.vertree = NULL;
571
572 /* In this special case, if H is the target of an indirection,
573 we want the caller to frob with H rather than with the
574 indirect symbol. That will permit the caller to redefine the
575 target of the indirection, rather than the indirect symbol
576 itself. FIXME: This will break the -y option if we store a
577 symbol with a different name. */
578 *sym_hash = h;
579 }
580
581 /* Handle the special case of a new common symbol merging with an
582 old symbol that looks like it might be a common symbol defined in
583 a shared object. Note that we have already handled the case in
584 which a new common symbol should simply override the definition
585 in the shared library. */
586
587 if (! newdyn
588 && bfd_is_com_section (sec)
589 && olddyncommon)
590 {
591 /* It would be best if we could set the hash table entry to a
592 common symbol, but we don't know what to use for the section
593 or the alignment. */
594 if (! ((*info->callbacks->multiple_common)
595 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
596 h->size, abfd, bfd_link_hash_common, sym->st_size)))
597 return false;
598
599 /* If the predumed common symbol in the dynamic object is
600 larger, pretend that the new symbol has its size. */
601
602 if (h->size > *pvalue)
603 *pvalue = h->size;
604
605 /* FIXME: We no longer know the alignment required by the symbol
606 in the dynamic object, so we just wind up using the one from
607 the regular object. */
608
609 olddef = false;
610 olddyncommon = false;
611
612 h->root.type = bfd_link_hash_undefined;
613 h->root.u.undef.abfd = h->root.u.def.section->owner;
614
615 *size_change_ok = true;
616 *type_change_ok = true;
617
618 h->verinfo.vertree = NULL;
619 }
620
621 return true;
622}
623
624/* Add symbols from an ELF object file to the linker hash table. */
625
626static boolean
627elf_link_add_object_symbols (abfd, info)
628 bfd *abfd;
629 struct bfd_link_info *info;
630{
631 boolean (*add_symbol_hook) PARAMS ((bfd *, struct bfd_link_info *,
632 const Elf_Internal_Sym *,
633 const char **, flagword *,
634 asection **, bfd_vma *));
635 boolean (*check_relocs) PARAMS ((bfd *, struct bfd_link_info *,
636 asection *, const Elf_Internal_Rela *));
637 boolean collect;
638 Elf_Internal_Shdr *hdr;
639 size_t symcount;
640 size_t extsymcount;
641 size_t extsymoff;
642 Elf_External_Sym *buf = NULL;
643 struct elf_link_hash_entry **sym_hash;
644 boolean dynamic;
645 bfd_byte *dynver = NULL;
646 Elf_External_Versym *extversym = NULL;
647 Elf_External_Versym *ever;
648 Elf_External_Dyn *dynbuf = NULL;
649 struct elf_link_hash_entry *weaks;
650 Elf_External_Sym *esym;
651 Elf_External_Sym *esymend;
652
653 add_symbol_hook = get_elf_backend_data (abfd)->elf_add_symbol_hook;
654 collect = get_elf_backend_data (abfd)->collect;
655
656 if ((abfd->flags & DYNAMIC) == 0)
657 dynamic = false;
658 else
659 {
660 dynamic = true;
661
662 /* You can't use -r against a dynamic object. Also, there's no
663 hope of using a dynamic object which does not exactly match
664 the format of the output file. */
665 if (info->relocateable || info->hash->creator != abfd->xvec)
666 {
667 bfd_set_error (bfd_error_invalid_operation);
668 goto error_return;
669 }
670 }
671
672 /* As a GNU extension, any input sections which are named
673 .gnu.warning.SYMBOL are treated as warning symbols for the given
674 symbol. This differs from .gnu.warning sections, which generate
675 warnings when they are included in an output file. */
676 if (! info->shared)
677 {
678 asection *s;
679
680 for (s = abfd->sections; s != NULL; s = s->next)
681 {
682 const char *name;
683
684 name = bfd_get_section_name (abfd, s);
685 if (strncmp (name, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
686 {
687 char *msg;
688 bfd_size_type sz;
689
690 name += sizeof ".gnu.warning." - 1;
691
692 /* If this is a shared object, then look up the symbol
693 in the hash table. If it is there, and it is already
694 been defined, then we will not be using the entry
695 from this shared object, so we don't need to warn.
696 FIXME: If we see the definition in a regular object
697 later on, we will warn, but we shouldn't. The only
698 fix is to keep track of what warnings we are supposed
699 to emit, and then handle them all at the end of the
700 link. */
701 if (dynamic && abfd->xvec == info->hash->creator)
702 {
703 struct elf_link_hash_entry *h;
704
705 h = elf_link_hash_lookup (elf_hash_table (info), name,
706 false, false, true);
707
708 /* FIXME: What about bfd_link_hash_common? */
709 if (h != NULL
710 && (h->root.type == bfd_link_hash_defined
711 || h->root.type == bfd_link_hash_defweak))
712 {
713 /* We don't want to issue this warning. Clobber
714 the section size so that the warning does not
715 get copied into the output file. */
716 s->_raw_size = 0;
717 continue;
718 }
719 }
720
721 sz = bfd_section_size (abfd, s);
722 msg = (char *) bfd_alloc (abfd, sz + 1);
723 if (msg == NULL)
724 goto error_return;
725
726 if (! bfd_get_section_contents (abfd, s, msg, (file_ptr) 0, sz))
727 goto error_return;
728
729 msg[sz] = '\0';
730
731 if (! (_bfd_generic_link_add_one_symbol
732 (info, abfd, name, BSF_WARNING, s, (bfd_vma) 0, msg,
733 false, collect, (struct bfd_link_hash_entry **) NULL)))
734 goto error_return;
735
736 if (! info->relocateable)
737 {
738 /* Clobber the section size so that the warning does
739 not get copied into the output file. */
740 s->_raw_size = 0;
741 }
742 }
743 }
744 }
745
746 /* If this is a dynamic object, we always link against the .dynsym
747 symbol table, not the .symtab symbol table. The dynamic linker
748 will only see the .dynsym symbol table, so there is no reason to
749 look at .symtab for a dynamic object. */
750
751 if (! dynamic || elf_dynsymtab (abfd) == 0)
752 hdr = &elf_tdata (abfd)->symtab_hdr;
753 else
754 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
755
756 if (dynamic)
757 {
758 /* Read in any version definitions. */
759
760 if (! _bfd_elf_slurp_version_tables (abfd))
761 goto error_return;
762
763 /* Read in the symbol versions, but don't bother to convert them
764 to internal format. */
765 if (elf_dynversym (abfd) != 0)
766 {
767 Elf_Internal_Shdr *versymhdr;
768
769 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
770 extversym = (Elf_External_Versym *) bfd_malloc (hdr->sh_size);
771 if (extversym == NULL)
772 goto error_return;
773 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
774 || (bfd_read ((PTR) extversym, 1, versymhdr->sh_size, abfd)
775 != versymhdr->sh_size))
776 goto error_return;
777 }
778 }
779
780 symcount = hdr->sh_size / sizeof (Elf_External_Sym);
781
782 /* The sh_info field of the symtab header tells us where the
783 external symbols start. We don't care about the local symbols at
784 this point. */
785 if (elf_bad_symtab (abfd))
786 {
787 extsymcount = symcount;
788 extsymoff = 0;
789 }
790 else
791 {
792 extsymcount = symcount - hdr->sh_info;
793 extsymoff = hdr->sh_info;
794 }
795
796 buf = ((Elf_External_Sym *)
797 bfd_malloc (extsymcount * sizeof (Elf_External_Sym)));
798 if (buf == NULL && extsymcount != 0)
799 goto error_return;
800
801 /* We store a pointer to the hash table entry for each external
802 symbol. */
803 sym_hash = ((struct elf_link_hash_entry **)
804 bfd_alloc (abfd,
805 extsymcount * sizeof (struct elf_link_hash_entry *)));
806 if (sym_hash == NULL)
807 goto error_return;
808 elf_sym_hashes (abfd) = sym_hash;
809
810 if (! dynamic)
811 {
812 /* If we are creating a shared library, create all the dynamic
813 sections immediately. We need to attach them to something,
814 so we attach them to this BFD, provided it is the right
815 format. FIXME: If there are no input BFD's of the same
816 format as the output, we can't make a shared library. */
817 if (info->shared
818 && ! elf_hash_table (info)->dynamic_sections_created
819 && abfd->xvec == info->hash->creator)
820 {
821 if (! elf_link_create_dynamic_sections (abfd, info))
822 goto error_return;
823 }
824 }
825 else
826 {
827 asection *s;
828 boolean add_needed;
829 const char *name;
830 bfd_size_type oldsize;
831 bfd_size_type strindex;
832
833 /* Find the name to use in a DT_NEEDED entry that refers to this
834 object. If the object has a DT_SONAME entry, we use it.
835 Otherwise, if the generic linker stuck something in
836 elf_dt_name, we use that. Otherwise, we just use the file
837 name. If the generic linker put a null string into
838 elf_dt_name, we don't make a DT_NEEDED entry at all, even if
839 there is a DT_SONAME entry. */
840 add_needed = true;
841 name = bfd_get_filename (abfd);
842 if (elf_dt_name (abfd) != NULL)
843 {
844 name = elf_dt_name (abfd);
845 if (*name == '\0')
846 add_needed = false;
847 }
848 s = bfd_get_section_by_name (abfd, ".dynamic");
849 if (s != NULL)
850 {
851 Elf_External_Dyn *extdyn;
852 Elf_External_Dyn *extdynend;
853 int elfsec;
854 unsigned long link;
855
856 dynbuf = (Elf_External_Dyn *) bfd_malloc ((size_t) s->_raw_size);
857 if (dynbuf == NULL)
858 goto error_return;
859
860 if (! bfd_get_section_contents (abfd, s, (PTR) dynbuf,
861 (file_ptr) 0, s->_raw_size))
862 goto error_return;
863
864 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
865 if (elfsec == -1)
866 goto error_return;
867 link = elf_elfsections (abfd)[elfsec]->sh_link;
868
869 extdyn = dynbuf;
870 extdynend = extdyn + s->_raw_size / sizeof (Elf_External_Dyn);
871 for (; extdyn < extdynend; extdyn++)
872 {
873 Elf_Internal_Dyn dyn;
874
875 elf_swap_dyn_in (abfd, extdyn, &dyn);
876 if (dyn.d_tag == DT_SONAME)
877 {
878 name = bfd_elf_string_from_elf_section (abfd, link,
879 dyn.d_un.d_val);
880 if (name == NULL)
881 goto error_return;
882 }
883 if (dyn.d_tag == DT_NEEDED)
884 {
885 struct bfd_link_needed_list *n, **pn;
886 char *fnm, *anm;
887
888 n = ((struct bfd_link_needed_list *)
889 bfd_alloc (abfd, sizeof (struct bfd_link_needed_list)));
890 fnm = bfd_elf_string_from_elf_section (abfd, link,
891 dyn.d_un.d_val);
892 if (n == NULL || fnm == NULL)
893 goto error_return;
894 anm = bfd_alloc (abfd, strlen (fnm) + 1);
895 if (anm == NULL)
896 goto error_return;
897 strcpy (anm, fnm);
898 n->name = anm;
899 n->by = abfd;
900 n->next = NULL;
901 for (pn = &elf_hash_table (info)->needed;
902 *pn != NULL;
903 pn = &(*pn)->next)
904 ;
905 *pn = n;
906 }
907 }
908
909 free (dynbuf);
910 dynbuf = NULL;
911 }
912
913 /* We do not want to include any of the sections in a dynamic
914 object in the output file. We hack by simply clobbering the
915 list of sections in the BFD. This could be handled more
916 cleanly by, say, a new section flag; the existing
917 SEC_NEVER_LOAD flag is not the one we want, because that one
918 still implies that the section takes up space in the output
919 file. */
920 abfd->sections = NULL;
921 abfd->section_count = 0;
922
923 /* If this is the first dynamic object found in the link, create
924 the special sections required for dynamic linking. */
925 if (! elf_hash_table (info)->dynamic_sections_created)
926 {
927 if (! elf_link_create_dynamic_sections (abfd, info))
928 goto error_return;
929 }
930
931 if (add_needed)
932 {
933 /* Add a DT_NEEDED entry for this dynamic object. */
934 oldsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
935 strindex = _bfd_stringtab_add (elf_hash_table (info)->dynstr, name,
936 true, false);
937 if (strindex == (bfd_size_type) -1)
938 goto error_return;
939
940 if (oldsize == _bfd_stringtab_size (elf_hash_table (info)->dynstr))
941 {
942 asection *sdyn;
943 Elf_External_Dyn *dyncon, *dynconend;
944
945 /* The hash table size did not change, which means that
946 the dynamic object name was already entered. If we
947 have already included this dynamic object in the
948 link, just ignore it. There is no reason to include
949 a particular dynamic object more than once. */
950 sdyn = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
951 ".dynamic");
952 BFD_ASSERT (sdyn != NULL);
953
954 dyncon = (Elf_External_Dyn *) sdyn->contents;
955 dynconend = (Elf_External_Dyn *) (sdyn->contents +
956 sdyn->_raw_size);
957 for (; dyncon < dynconend; dyncon++)
958 {
959 Elf_Internal_Dyn dyn;
960
961 elf_swap_dyn_in (elf_hash_table (info)->dynobj, dyncon,
962 &dyn);
963 if (dyn.d_tag == DT_NEEDED
964 && dyn.d_un.d_val == strindex)
965 {
966 if (buf != NULL)
967 free (buf);
968 if (extversym != NULL)
969 free (extversym);
970 return true;
971 }
972 }
973 }
974
975 if (! elf_add_dynamic_entry (info, DT_NEEDED, strindex))
976 goto error_return;
977 }
978
979 /* Save the SONAME, if there is one, because sometimes the
980 linker emulation code will need to know it. */
981 if (*name == '\0')
982 name = bfd_get_filename (abfd);
983 elf_dt_name (abfd) = name;
984 }
985
986 if (bfd_seek (abfd,
987 hdr->sh_offset + extsymoff * sizeof (Elf_External_Sym),
988 SEEK_SET) != 0
989 || (bfd_read ((PTR) buf, sizeof (Elf_External_Sym), extsymcount, abfd)
990 != extsymcount * sizeof (Elf_External_Sym)))
991 goto error_return;
992
993 weaks = NULL;
994
995 ever = extversym != NULL ? extversym + extsymoff : NULL;
996 esymend = buf + extsymcount;
997 for (esym = buf;
998 esym < esymend;
999 esym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
1000 {
1001 Elf_Internal_Sym sym;
1002 int bind;
1003 bfd_vma value;
1004 asection *sec;
1005 flagword flags;
1006 const char *name;
1007 struct elf_link_hash_entry *h;
1008 boolean definition;
1009 boolean size_change_ok, type_change_ok;
1010 boolean new_weakdef;
1011 unsigned int old_alignment;
1012
1013 elf_swap_symbol_in (abfd, esym, &sym);
1014
1015 flags = BSF_NO_FLAGS;
1016 sec = NULL;
1017 value = sym.st_value;
1018 *sym_hash = NULL;
1019
1020 bind = ELF_ST_BIND (sym.st_info);
1021 if (bind == STB_LOCAL)
1022 {
1023 /* This should be impossible, since ELF requires that all
1024 global symbols follow all local symbols, and that sh_info
1025 point to the first global symbol. Unfortunatealy, Irix 5
1026 screws this up. */
1027 continue;
1028 }
1029 else if (bind == STB_GLOBAL)
1030 {
1031 if (sym.st_shndx != SHN_UNDEF
1032 && sym.st_shndx != SHN_COMMON)
1033 flags = BSF_GLOBAL;
1034 else
1035 flags = 0;
1036 }
1037 else if (bind == STB_WEAK)
1038 flags = BSF_WEAK;
1039 else
1040 {
1041 /* Leave it up to the processor backend. */
1042 }
1043
1044 if (sym.st_shndx == SHN_UNDEF)
1045 sec = bfd_und_section_ptr;
1046 else if (sym.st_shndx > 0 && sym.st_shndx < SHN_LORESERVE)
1047 {
1048 sec = section_from_elf_index (abfd, sym.st_shndx);
1049 if (sec == NULL)
1050 sec = bfd_abs_section_ptr;
1051 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
1052 value -= sec->vma;
1053 }
1054 else if (sym.st_shndx == SHN_ABS)
1055 sec = bfd_abs_section_ptr;
1056 else if (sym.st_shndx == SHN_COMMON)
1057 {
1058 sec = bfd_com_section_ptr;
1059 /* What ELF calls the size we call the value. What ELF
1060 calls the value we call the alignment. */
1061 value = sym.st_size;
1062 }
1063 else
1064 {
1065 /* Leave it up to the processor backend. */
1066 }
1067
1068 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, sym.st_name);
1069 if (name == (const char *) NULL)
1070 goto error_return;
1071
1072 if (add_symbol_hook)
1073 {
1074 if (! (*add_symbol_hook) (abfd, info, &sym, &name, &flags, &sec,
1075 &value))
1076 goto error_return;
1077
1078 /* The hook function sets the name to NULL if this symbol
1079 should be skipped for some reason. */
1080 if (name == (const char *) NULL)
1081 continue;
1082 }
1083
1084 /* Sanity check that all possibilities were handled. */
1085 if (sec == (asection *) NULL)
1086 {
1087 bfd_set_error (bfd_error_bad_value);
1088 goto error_return;
1089 }
1090
1091 if (bfd_is_und_section (sec)
1092 || bfd_is_com_section (sec))
1093 definition = false;
1094 else
1095 definition = true;
1096
1097 size_change_ok = false;
1098 type_change_ok = get_elf_backend_data (abfd)->type_change_ok;
1099 old_alignment = 0;
1100 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1101 {
1102 Elf_Internal_Versym iver;
1103 unsigned int vernum = 0;
1104 boolean override;
1105
1106 if (ever != NULL)
1107 {
1108 _bfd_elf_swap_versym_in (abfd, ever, &iver);
1109 vernum = iver.vs_vers & VERSYM_VERSION;
1110
1111 /* If this is a hidden symbol, or if it is not version
1112 1, we append the version name to the symbol name.
1113 However, we do not modify a non-hidden absolute
1114 symbol, because it might be the version symbol
1115 itself. FIXME: What if it isn't? */
1116 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
1117 || (vernum > 1 && ! bfd_is_abs_section (sec)))
1118 {
1119 const char *verstr;
1120 int namelen, newlen;
1121 char *newname, *p;
1122
1123 if (sym.st_shndx != SHN_UNDEF)
1124 {
1125 if (vernum > elf_tdata (abfd)->dynverdef_hdr.sh_info)
1126 {
1127 (*_bfd_error_handler)
1128 (_("%s: %s: invalid version %u (max %d)"),
1129 abfd->filename, name, vernum,
1130 elf_tdata (abfd)->dynverdef_hdr.sh_info);
1131 bfd_set_error (bfd_error_bad_value);
1132 goto error_return;
1133 }
1134 else if (vernum > 1)
1135 verstr =
1136 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1137 else
1138 verstr = "";
1139 }
1140 else
1141 {
1142 /* We cannot simply test for the number of
1143 entries in the VERNEED section since the
1144 numbers for the needed versions do not start
1145 at 0. */
1146 Elf_Internal_Verneed *t;
1147
1148 verstr = NULL;
1149 for (t = elf_tdata (abfd)->verref;
1150 t != NULL;
1151 t = t->vn_nextref)
1152 {
1153 Elf_Internal_Vernaux *a;
1154
1155 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1156 {
1157 if (a->vna_other == vernum)
1158 {
1159 verstr = a->vna_nodename;
1160 break;
1161 }
1162 }
1163 if (a != NULL)
1164 break;
1165 }
1166 if (verstr == NULL)
1167 {
1168 (*_bfd_error_handler)
1169 (_("%s: %s: invalid needed version %d"),
1170 abfd->filename, name, vernum);
1171 bfd_set_error (bfd_error_bad_value);
1172 goto error_return;
1173 }
1174 }
1175
1176 namelen = strlen (name);
1177 newlen = namelen + strlen (verstr) + 2;
1178 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1179 ++newlen;
1180
1181 newname = (char *) bfd_alloc (abfd, newlen);
1182 if (newname == NULL)
1183 goto error_return;
1184 strcpy (newname, name);
1185 p = newname + namelen;
1186 *p++ = ELF_VER_CHR;
1187 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
1188 *p++ = ELF_VER_CHR;
1189 strcpy (p, verstr);
1190
1191 name = newname;
1192 }
1193 }
1194
1195 if (! elf_merge_symbol (abfd, info, name, &sym, &sec, &value,
1196 sym_hash, &override, &type_change_ok,
1197 &size_change_ok))
1198 goto error_return;
1199
1200 if (override)
1201 definition = false;
1202
1203 h = *sym_hash;
1204 while (h->root.type == bfd_link_hash_indirect
1205 || h->root.type == bfd_link_hash_warning)
1206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1207
1208 /* Remember the old alignment if this is a common symbol, so
1209 that we don't reduce the alignment later on. We can't
1210 check later, because _bfd_generic_link_add_one_symbol
1211 will set a default for the alignment which we want to
1212 override. */
1213 if (h->root.type == bfd_link_hash_common)
1214 old_alignment = h->root.u.c.p->alignment_power;
1215
1216 if (elf_tdata (abfd)->verdef != NULL
1217 && ! override
1218 && vernum > 1
1219 && definition)
1220 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
1221 }
1222
1223 if (! (_bfd_generic_link_add_one_symbol
1224 (info, abfd, name, flags, sec, value, (const char *) NULL,
1225 false, collect, (struct bfd_link_hash_entry **) sym_hash)))
1226 goto error_return;
1227
1228 h = *sym_hash;
1229 while (h->root.type == bfd_link_hash_indirect
1230 || h->root.type == bfd_link_hash_warning)
1231 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1232 *sym_hash = h;
1233
1234 new_weakdef = false;
1235 if (dynamic
1236 && definition
1237 && (flags & BSF_WEAK) != 0
1238 && ELF_ST_TYPE (sym.st_info) != STT_FUNC
1239 && info->hash->creator->flavour == bfd_target_elf_flavour
1240 && h->weakdef == NULL)
1241 {
1242 /* Keep a list of all weak defined non function symbols from
1243 a dynamic object, using the weakdef field. Later in this
1244 function we will set the weakdef field to the correct
1245 value. We only put non-function symbols from dynamic
1246 objects on this list, because that happens to be the only
1247 time we need to know the normal symbol corresponding to a
1248 weak symbol, and the information is time consuming to
1249 figure out. If the weakdef field is not already NULL,
1250 then this symbol was already defined by some previous
1251 dynamic object, and we will be using that previous
1252 definition anyhow. */
1253
1254 h->weakdef = weaks;
1255 weaks = h;
1256 new_weakdef = true;
1257 }
1258
1259 /* Set the alignment of a common symbol. */
1260 if (sym.st_shndx == SHN_COMMON
1261 && h->root.type == bfd_link_hash_common)
1262 {
1263 unsigned int align;
1264
1265 align = bfd_log2 (sym.st_value);
1266 if (align > old_alignment)
1267 h->root.u.c.p->alignment_power = align;
1268 }
1269
1270 if (info->hash->creator->flavour == bfd_target_elf_flavour)
1271 {
1272 int old_flags;
1273 boolean dynsym;
1274 int new_flag;
1275
1276 /* Remember the symbol size and type. */
1277 if (sym.st_size != 0
1278 && (definition || h->size == 0))
1279 {
1280 if (h->size != 0 && h->size != sym.st_size && ! size_change_ok)
1281 (*_bfd_error_handler)
1282 (_("Warning: size of symbol `%s' changed from %lu to %lu in %s"),
1283 name, (unsigned long) h->size, (unsigned long) sym.st_size,
1284 bfd_get_filename (abfd));
1285
1286 h->size = sym.st_size;
1287 }
1288
1289 /* If this is a common symbol, then we always want H->SIZE
1290 to be the size of the common symbol. The code just above
1291 won't fix the size if a common symbol becomes larger. We
1292 don't warn about a size change here, because that is
1293 covered by --warn-common. */
1294 if (h->root.type == bfd_link_hash_common)
1295 h->size = h->root.u.c.size;
1296
1297 if (ELF_ST_TYPE (sym.st_info) != STT_NOTYPE
1298 && (definition || h->type == STT_NOTYPE))
1299 {
1300 if (h->type != STT_NOTYPE
1301 && h->type != ELF_ST_TYPE (sym.st_info)
1302 && ! type_change_ok)
1303 (*_bfd_error_handler)
1304 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
1305 name, h->type, ELF_ST_TYPE (sym.st_info),
1306 bfd_get_filename (abfd));
1307
1308 h->type = ELF_ST_TYPE (sym.st_info);
1309 }
1310
1311 if (sym.st_other != 0
1312 && (definition || h->other == 0))
1313 h->other = sym.st_other;
1314
1315 /* Set a flag in the hash table entry indicating the type of
1316 reference or definition we just found. Keep a count of
1317 the number of dynamic symbols we find. A dynamic symbol
1318 is one which is referenced or defined by both a regular
1319 object and a shared object. */
1320 old_flags = h->elf_link_hash_flags;
1321 dynsym = false;
1322 if (! dynamic)
1323 {
1324 if (! definition)
1325 new_flag = ELF_LINK_HASH_REF_REGULAR;
1326 else
1327 new_flag = ELF_LINK_HASH_DEF_REGULAR;
1328 if (info->shared
1329 || (old_flags & (ELF_LINK_HASH_DEF_DYNAMIC
1330 | ELF_LINK_HASH_REF_DYNAMIC)) != 0)
1331 dynsym = true;
1332 }
1333 else
1334 {
1335 if (! definition)
1336 new_flag = ELF_LINK_HASH_REF_DYNAMIC;
1337 else
1338 new_flag = ELF_LINK_HASH_DEF_DYNAMIC;
1339 if ((old_flags & (ELF_LINK_HASH_DEF_REGULAR
1340 | ELF_LINK_HASH_REF_REGULAR)) != 0
1341 || (h->weakdef != NULL
1342 && ! new_weakdef
1343 && h->weakdef->dynindx != -1))
1344 dynsym = true;
1345 }
1346
1347 h->elf_link_hash_flags |= new_flag;
1348
1349 /* If this symbol has a version, and it is the default
1350 version, we create an indirect symbol from the default
1351 name to the fully decorated name. This will cause
1352 external references which do not specify a version to be
1353 bound to this version of the symbol. */
1354 if (definition)
1355 {
1356 char *p;
1357
1358 p = strchr (name, ELF_VER_CHR);
1359 if (p != NULL && p[1] == ELF_VER_CHR)
1360 {
1361 char *shortname;
1362 struct elf_link_hash_entry *hi;
1363 boolean override;
1364
1365 shortname = bfd_hash_allocate (&info->hash->table,
1366 p - name + 1);
1367 if (shortname == NULL)
1368 goto error_return;
1369 strncpy (shortname, name, p - name);
1370 shortname[p - name] = '\0';
1371
1372 /* We are going to create a new symbol. Merge it
1373 with any existing symbol with this name. For the
1374 purposes of the merge, act as though we were
1375 defining the symbol we just defined, although we
1376 actually going to define an indirect symbol. */
1377 type_change_ok = false;
1378 size_change_ok = false;
1379 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1380 &value, &hi, &override,
1381 &type_change_ok, &size_change_ok))
1382 goto error_return;
1383
1384 if (! override)
1385 {
1386 if (! (_bfd_generic_link_add_one_symbol
1387 (info, abfd, shortname, BSF_INDIRECT,
1388 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1389 collect, (struct bfd_link_hash_entry **) &hi)))
1390 goto error_return;
1391 }
1392 else
1393 {
1394 /* In this case the symbol named SHORTNAME is
1395 overriding the indirect symbol we want to
1396 add. We were planning on making SHORTNAME an
1397 indirect symbol referring to NAME. SHORTNAME
1398 is the name without a version. NAME is the
1399 fully versioned name, and it is the default
1400 version.
1401
1402 Overriding means that we already saw a
1403 definition for the symbol SHORTNAME in a
1404 regular object, and it is overriding the
1405 symbol defined in the dynamic object.
1406
1407 When this happens, we actually want to change
1408 NAME, the symbol we just added, to refer to
1409 SHORTNAME. This will cause references to
1410 NAME in the shared object to become
1411 references to SHORTNAME in the regular
1412 object. This is what we expect when we
1413 override a function in a shared object: that
1414 the references in the shared object will be
1415 mapped to the definition in the regular
1416 object. */
1417
1418 while (hi->root.type == bfd_link_hash_indirect
1419 || hi->root.type == bfd_link_hash_warning)
1420 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1421
1422 h->root.type = bfd_link_hash_indirect;
1423 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1424 if (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC)
1425 {
1426 h->elf_link_hash_flags &=~ ELF_LINK_HASH_DEF_DYNAMIC;
1427 hi->elf_link_hash_flags |= ELF_LINK_HASH_REF_DYNAMIC;
1428 if (hi->elf_link_hash_flags
1429 & (ELF_LINK_HASH_REF_REGULAR
1430 | ELF_LINK_HASH_DEF_REGULAR))
1431 {
1432 if (! _bfd_elf_link_record_dynamic_symbol (info,
1433 hi))
1434 goto error_return;
1435 }
1436 }
1437
1438 /* Now set HI to H, so that the following code
1439 will set the other fields correctly. */
1440 hi = h;
1441 }
1442
1443 /* If there is a duplicate definition somewhere,
1444 then HI may not point to an indirect symbol. We
1445 will have reported an error to the user in that
1446 case. */
1447
1448 if (hi->root.type == bfd_link_hash_indirect)
1449 {
1450 struct elf_link_hash_entry *ht;
1451
1452 /* If the symbol became indirect, then we assume
1453 that we have not seen a definition before. */
1454 BFD_ASSERT ((hi->elf_link_hash_flags
1455 & (ELF_LINK_HASH_DEF_DYNAMIC
1456 | ELF_LINK_HASH_DEF_REGULAR))
1457 == 0);
1458
1459 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1460
1461 /* Copy down any references that we may have
1462 already seen to the symbol which just became
1463 indirect. */
1464 ht->elf_link_hash_flags |=
1465 (hi->elf_link_hash_flags
1466 & (ELF_LINK_HASH_REF_DYNAMIC
1467 | ELF_LINK_HASH_REF_REGULAR));
1468
1469 /* Copy over the global and procedure linkage table
1470 offset entries. These may have been already set
1471 up by a check_relocs routine. */
1472 if (ht->got.offset == (bfd_vma) -1)
1473 {
1474 ht->got.offset = hi->got.offset;
1475 hi->got.offset = (bfd_vma) -1;
1476 }
1477 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1478
1479 if (ht->plt.offset == (bfd_vma) -1)
1480 {
1481 ht->plt.offset = hi->plt.offset;
1482 hi->plt.offset = (bfd_vma) -1;
1483 }
1484 BFD_ASSERT (hi->plt.offset == (bfd_vma) -1);
1485
1486 if (ht->dynindx == -1)
1487 {
1488 ht->dynindx = hi->dynindx;
1489 ht->dynstr_index = hi->dynstr_index;
1490 hi->dynindx = -1;
1491 hi->dynstr_index = 0;
1492 }
1493 BFD_ASSERT (hi->dynindx == -1);
1494
1495 /* FIXME: There may be other information to copy
1496 over for particular targets. */
1497
1498 /* See if the new flags lead us to realize that
1499 the symbol must be dynamic. */
1500 if (! dynsym)
1501 {
1502 if (! dynamic)
1503 {
1504 if (info->shared
1505 || ((hi->elf_link_hash_flags
1506 & ELF_LINK_HASH_REF_DYNAMIC)
1507 != 0))
1508 dynsym = true;
1509 }
1510 else
1511 {
1512 if ((hi->elf_link_hash_flags
1513 & ELF_LINK_HASH_REF_REGULAR) != 0)
1514 dynsym = true;
1515 }
1516 }
1517 }
1518
1519 /* We also need to define an indirection from the
1520 nondefault version of the symbol. */
1521
1522 shortname = bfd_hash_allocate (&info->hash->table,
1523 strlen (name));
1524 if (shortname == NULL)
1525 goto error_return;
1526 strncpy (shortname, name, p - name);
1527 strcpy (shortname + (p - name), p + 1);
1528
1529 /* Once again, merge with any existing symbol. */
1530 type_change_ok = false;
1531 size_change_ok = false;
1532 if (! elf_merge_symbol (abfd, info, shortname, &sym, &sec,
1533 &value, &hi, &override,
1534 &type_change_ok, &size_change_ok))
1535 goto error_return;
1536
1537 if (override)
1538 {
1539 /* Here SHORTNAME is a versioned name, so we
1540 don't expect to see the type of override we
1541 do in the case above. */
1542 (*_bfd_error_handler)
1543 (_("%s: warning: unexpected redefinition of `%s'"),
1544 bfd_get_filename (abfd), shortname);
1545 }
1546 else
1547 {
1548 if (! (_bfd_generic_link_add_one_symbol
1549 (info, abfd, shortname, BSF_INDIRECT,
1550 bfd_ind_section_ptr, (bfd_vma) 0, name, false,
1551 collect, (struct bfd_link_hash_entry **) &hi)))
1552 goto error_return;
1553
1554 /* If there is a duplicate definition somewhere,
1555 then HI may not point to an indirect symbol.
1556 We will have reported an error to the user in
1557 that case. */
1558
1559 if (hi->root.type == bfd_link_hash_indirect)
1560 {
1561 /* If the symbol became indirect, then we
1562 assume that we have not seen a definition
1563 before. */
1564 BFD_ASSERT ((hi->elf_link_hash_flags
1565 & (ELF_LINK_HASH_DEF_DYNAMIC
1566 | ELF_LINK_HASH_DEF_REGULAR))
1567 == 0);
1568
1569 /* Copy down any references that we may have
1570 already seen to the symbol which just
1571 became indirect. */
1572 h->elf_link_hash_flags |=
1573 (hi->elf_link_hash_flags
1574 & (ELF_LINK_HASH_REF_DYNAMIC
1575 | ELF_LINK_HASH_REF_REGULAR));
1576
1577 /* Copy over the global and procedure linkage
1578 table offset entries. These may have been
1579 already set up by a check_relocs routine. */
1580 if (h->got.offset == (bfd_vma) -1)
1581 {
1582 h->got.offset = hi->got.offset;
1583 hi->got.offset = (bfd_vma) -1;
1584 }
1585 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1586
1587 if (h->plt.offset == (bfd_vma) -1)
1588 {
1589 h->plt.offset = hi->plt.offset;
1590 hi->plt.offset = (bfd_vma) -1;
1591 }
1592 BFD_ASSERT (hi->got.offset == (bfd_vma) -1);
1593
1594 if (h->dynindx == -1)
1595 {
1596 h->dynindx = hi->dynindx;
1597 h->dynstr_index = hi->dynstr_index;
1598 hi->dynindx = -1;
1599 hi->dynstr_index = 0;
1600 }
1601 BFD_ASSERT (hi->dynindx == -1);
1602
1603 /* FIXME: There may be other information to
1604 copy over for particular targets. */
1605
1606 /* See if the new flags lead us to realize
1607 that the symbol must be dynamic. */
1608 if (! dynsym)
1609 {
1610 if (! dynamic)
1611 {
1612 if (info->shared
1613 || ((hi->elf_link_hash_flags
1614 & ELF_LINK_HASH_REF_DYNAMIC)
1615 != 0))
1616 dynsym = true;
1617 }
1618 else
1619 {
1620 if ((hi->elf_link_hash_flags
1621 & ELF_LINK_HASH_REF_REGULAR) != 0)
1622 dynsym = true;
1623 }
1624 }
1625 }
1626 }
1627 }
1628 }
1629
1630 if (dynsym && h->dynindx == -1)
1631 {
1632 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1633 goto error_return;
1634 if (h->weakdef != NULL
1635 && ! new_weakdef
1636 && h->weakdef->dynindx == -1)
1637 {
1638 if (! _bfd_elf_link_record_dynamic_symbol (info,
1639 h->weakdef))
1640 goto error_return;
1641 }
1642 }
1643 }
1644 }
1645
1646 /* Now set the weakdefs field correctly for all the weak defined
1647 symbols we found. The only way to do this is to search all the
1648 symbols. Since we only need the information for non functions in
1649 dynamic objects, that's the only time we actually put anything on
1650 the list WEAKS. We need this information so that if a regular
1651 object refers to a symbol defined weakly in a dynamic object, the
1652 real symbol in the dynamic object is also put in the dynamic
1653 symbols; we also must arrange for both symbols to point to the
1654 same memory location. We could handle the general case of symbol
1655 aliasing, but a general symbol alias can only be generated in
1656 assembler code, handling it correctly would be very time
1657 consuming, and other ELF linkers don't handle general aliasing
1658 either. */
1659 while (weaks != NULL)
1660 {
1661 struct elf_link_hash_entry *hlook;
1662 asection *slook;
1663 bfd_vma vlook;
1664 struct elf_link_hash_entry **hpp;
1665 struct elf_link_hash_entry **hppend;
1666
1667 hlook = weaks;
1668 weaks = hlook->weakdef;
1669 hlook->weakdef = NULL;
1670
1671 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
1672 || hlook->root.type == bfd_link_hash_defweak
1673 || hlook->root.type == bfd_link_hash_common
1674 || hlook->root.type == bfd_link_hash_indirect);
1675 slook = hlook->root.u.def.section;
1676 vlook = hlook->root.u.def.value;
1677
1678 hpp = elf_sym_hashes (abfd);
1679 hppend = hpp + extsymcount;
1680 for (; hpp < hppend; hpp++)
1681 {
1682 struct elf_link_hash_entry *h;
1683
1684 h = *hpp;
1685 if (h != NULL && h != hlook
1686 && h->root.type == bfd_link_hash_defined
1687 && h->root.u.def.section == slook
1688 && h->root.u.def.value == vlook)
1689 {
1690 hlook->weakdef = h;
1691
1692 /* If the weak definition is in the list of dynamic
1693 symbols, make sure the real definition is put there
1694 as well. */
1695 if (hlook->dynindx != -1
1696 && h->dynindx == -1)
1697 {
1698 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
1699 goto error_return;
1700 }
1701
1702 /* If the real definition is in the list of dynamic
1703 symbols, make sure the weak definition is put there
1704 as well. If we don't do this, then the dynamic
1705 loader might not merge the entries for the real
1706 definition and the weak definition. */
1707 if (h->dynindx != -1
1708 && hlook->dynindx == -1)
1709 {
1710 if (! _bfd_elf_link_record_dynamic_symbol (info, hlook))
1711 goto error_return;
1712 }
1713
1714 break;
1715 }
1716 }
1717 }
1718
1719 if (buf != NULL)
1720 {
1721 free (buf);
1722 buf = NULL;
1723 }
1724
1725 if (extversym != NULL)
1726 {
1727 free (extversym);
1728 extversym = NULL;
1729 }
1730
1731 /* If this object is the same format as the output object, and it is
1732 not a shared library, then let the backend look through the
1733 relocs.
1734
1735 This is required to build global offset table entries and to
1736 arrange for dynamic relocs. It is not required for the
1737 particular common case of linking non PIC code, even when linking
1738 against shared libraries, but unfortunately there is no way of
1739 knowing whether an object file has been compiled PIC or not.
1740 Looking through the relocs is not particularly time consuming.
1741 The problem is that we must either (1) keep the relocs in memory,
1742 which causes the linker to require additional runtime memory or
1743 (2) read the relocs twice from the input file, which wastes time.
1744 This would be a good case for using mmap.
1745
1746 I have no idea how to handle linking PIC code into a file of a
1747 different format. It probably can't be done. */
1748 check_relocs = get_elf_backend_data (abfd)->check_relocs;
1749 if (! dynamic
1750 && abfd->xvec == info->hash->creator
1751 && check_relocs != NULL)
1752 {
1753 asection *o;
1754
1755 for (o = abfd->sections; o != NULL; o = o->next)
1756 {
1757 Elf_Internal_Rela *internal_relocs;
1758 boolean ok;
1759
1760 if ((o->flags & SEC_RELOC) == 0
1761 || o->reloc_count == 0
1762 || ((info->strip == strip_all || info->strip == strip_debugger)
1763 && (o->flags & SEC_DEBUGGING) != 0)
1764 || bfd_is_abs_section (o->output_section))
1765 continue;
1766
1767 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
1768 (abfd, o, (PTR) NULL,
1769 (Elf_Internal_Rela *) NULL,
1770 info->keep_memory));
1771 if (internal_relocs == NULL)
1772 goto error_return;
1773
1774 ok = (*check_relocs) (abfd, info, o, internal_relocs);
1775
1776 if (! info->keep_memory)
1777 free (internal_relocs);
1778
1779 if (! ok)
1780 goto error_return;
1781 }
1782 }
1783
1784 /* If this is a non-traditional, non-relocateable link, try to
1785 optimize the handling of the .stab/.stabstr sections. */
1786 if (! dynamic
1787 && ! info->relocateable
1788 && ! info->traditional_format
1789 && info->hash->creator->flavour == bfd_target_elf_flavour
1790 && (info->strip != strip_all && info->strip != strip_debugger))
1791 {
1792 asection *stab, *stabstr;
1793
1794 stab = bfd_get_section_by_name (abfd, ".stab");
1795 if (stab != NULL)
1796 {
1797 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
1798
1799 if (stabstr != NULL)
1800 {
1801 struct bfd_elf_section_data *secdata;
1802
1803 secdata = elf_section_data (stab);
1804 if (! _bfd_link_section_stabs (abfd,
1805 &elf_hash_table (info)->stab_info,
1806 stab, stabstr,
1807 &secdata->stab_info))
1808 goto error_return;
1809 }
1810 }
1811 }
1812
1813 return true;
1814
1815 error_return:
1816 if (buf != NULL)
1817 free (buf);
1818 if (dynbuf != NULL)
1819 free (dynbuf);
1820 if (dynver != NULL)
1821 free (dynver);
1822 if (extversym != NULL)
1823 free (extversym);
1824 return false;
1825}
1826
1827/* Create some sections which will be filled in with dynamic linking
1828 information. ABFD is an input file which requires dynamic sections
1829 to be created. The dynamic sections take up virtual memory space
1830 when the final executable is run, so we need to create them before
1831 addresses are assigned to the output sections. We work out the
1832 actual contents and size of these sections later. */
1833
1834boolean
1835elf_link_create_dynamic_sections (abfd, info)
1836 bfd *abfd;
1837 struct bfd_link_info *info;
1838{
1839 flagword flags;
1840 register asection *s;
1841 struct elf_link_hash_entry *h;
1842 struct elf_backend_data *bed;
1843
1844 if (elf_hash_table (info)->dynamic_sections_created)
1845 return true;
1846
1847 /* Make sure that all dynamic sections use the same input BFD. */
1848 if (elf_hash_table (info)->dynobj == NULL)
1849 elf_hash_table (info)->dynobj = abfd;
1850 else
1851 abfd = elf_hash_table (info)->dynobj;
1852
1853 /* Note that we set the SEC_IN_MEMORY flag for all of these
1854 sections. */
1855 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
1856 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1857
1858 /* A dynamically linked executable has a .interp section, but a
1859 shared library does not. */
1860 if (! info->shared)
1861 {
1862 s = bfd_make_section (abfd, ".interp");
1863 if (s == NULL
1864 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1865 return false;
1866 }
1867
1868 /* Create sections to hold version informations. These are removed
1869 if they are not needed. */
1870 s = bfd_make_section (abfd, ".gnu.version_d");
1871 if (s == NULL
1872 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1873 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1874 return false;
1875
1876 s = bfd_make_section (abfd, ".gnu.version");
1877 if (s == NULL
1878 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1879 || ! bfd_set_section_alignment (abfd, s, 1))
1880 return false;
1881
1882 s = bfd_make_section (abfd, ".gnu.version_r");
1883 if (s == NULL
1884 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1885 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1886 return false;
1887
1888 s = bfd_make_section (abfd, ".dynsym");
1889 if (s == NULL
1890 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1891 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1892 return false;
1893
1894 s = bfd_make_section (abfd, ".dynstr");
1895 if (s == NULL
1896 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY))
1897 return false;
1898
1899 /* Create a strtab to hold the dynamic symbol names. */
1900 if (elf_hash_table (info)->dynstr == NULL)
1901 {
1902 elf_hash_table (info)->dynstr = elf_stringtab_init ();
1903 if (elf_hash_table (info)->dynstr == NULL)
1904 return false;
1905 }
1906
1907 s = bfd_make_section (abfd, ".dynamic");
1908 if (s == NULL
1909 || ! bfd_set_section_flags (abfd, s, flags)
1910 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1911 return false;
1912
1913 /* The special symbol _DYNAMIC is always set to the start of the
1914 .dynamic section. This call occurs before we have processed the
1915 symbols for any dynamic object, so we don't have to worry about
1916 overriding a dynamic definition. We could set _DYNAMIC in a
1917 linker script, but we only want to define it if we are, in fact,
1918 creating a .dynamic section. We don't want to define it if there
1919 is no .dynamic section, since on some ELF platforms the start up
1920 code examines it to decide how to initialize the process. */
1921 h = NULL;
1922 if (! (_bfd_generic_link_add_one_symbol
1923 (info, abfd, "_DYNAMIC", BSF_GLOBAL, s, (bfd_vma) 0,
1924 (const char *) NULL, false, get_elf_backend_data (abfd)->collect,
1925 (struct bfd_link_hash_entry **) &h)))
1926 return false;
1927 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
1928 h->type = STT_OBJECT;
1929
1930 if (info->shared
1931 && ! _bfd_elf_link_record_dynamic_symbol (info, h))
1932 return false;
1933
1934 s = bfd_make_section (abfd, ".hash");
1935 if (s == NULL
1936 || ! bfd_set_section_flags (abfd, s, flags | SEC_READONLY)
1937 || ! bfd_set_section_alignment (abfd, s, LOG_FILE_ALIGN))
1938 return false;
1939
1940 /* Let the backend create the rest of the sections. This lets the
1941 backend set the right flags. The backend will normally create
1942 the .got and .plt sections. */
1943 bed = get_elf_backend_data (abfd);
1944 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
1945 return false;
1946
1947 elf_hash_table (info)->dynamic_sections_created = true;
1948
1949 return true;
1950}
1951
1952/* Add an entry to the .dynamic table. */
1953
1954boolean
1955elf_add_dynamic_entry (info, tag, val)
1956 struct bfd_link_info *info;
1957 bfd_vma tag;
1958 bfd_vma val;
1959{
1960 Elf_Internal_Dyn dyn;
1961 bfd *dynobj;
1962 asection *s;
1963 size_t newsize;
1964 bfd_byte *newcontents;
1965
1966 dynobj = elf_hash_table (info)->dynobj;
1967
1968 s = bfd_get_section_by_name (dynobj, ".dynamic");
1969 BFD_ASSERT (s != NULL);
1970
1971 newsize = s->_raw_size + sizeof (Elf_External_Dyn);
1972 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
1973 if (newcontents == NULL)
1974 return false;
1975
1976 dyn.d_tag = tag;
1977 dyn.d_un.d_val = val;
1978 elf_swap_dyn_out (dynobj, &dyn,
1979 (Elf_External_Dyn *) (newcontents + s->_raw_size));
1980
1981 s->_raw_size = newsize;
1982 s->contents = newcontents;
1983
1984 return true;
1985}
1986\f
1987
1988/* Read and swap the relocs for a section. They may have been cached.
1989 If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are not NULL,
1990 they are used as buffers to read into. They are known to be large
1991 enough. If the INTERNAL_RELOCS relocs argument is NULL, the return
1992 value is allocated using either malloc or bfd_alloc, according to
1993 the KEEP_MEMORY argument. */
1994
1995Elf_Internal_Rela *
1996NAME(_bfd_elf,link_read_relocs) (abfd, o, external_relocs, internal_relocs,
1997 keep_memory)
1998 bfd *abfd;
1999 asection *o;
2000 PTR external_relocs;
2001 Elf_Internal_Rela *internal_relocs;
2002 boolean keep_memory;
2003{
2004 Elf_Internal_Shdr *rel_hdr;
2005 PTR alloc1 = NULL;
2006 Elf_Internal_Rela *alloc2 = NULL;
2007
2008 if (elf_section_data (o)->relocs != NULL)
2009 return elf_section_data (o)->relocs;
2010
2011 if (o->reloc_count == 0)
2012 return NULL;
2013
2014 rel_hdr = &elf_section_data (o)->rel_hdr;
2015
2016 if (internal_relocs == NULL)
2017 {
2018 size_t size;
2019
2020 size = o->reloc_count * sizeof (Elf_Internal_Rela);
2021 if (keep_memory)
2022 internal_relocs = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2023 else
2024 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2025 if (internal_relocs == NULL)
2026 goto error_return;
2027 }
2028
2029 if (external_relocs == NULL)
2030 {
2031 alloc1 = (PTR) bfd_malloc ((size_t) rel_hdr->sh_size);
2032 if (alloc1 == NULL)
2033 goto error_return;
2034 external_relocs = alloc1;
2035 }
2036
2037 if ((bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0)
2038 || (bfd_read (external_relocs, 1, rel_hdr->sh_size, abfd)
2039 != rel_hdr->sh_size))
2040 goto error_return;
2041
2042 /* Swap in the relocs. For convenience, we always produce an
2043 Elf_Internal_Rela array; if the relocs are Rel, we set the addend
2044 to 0. */
2045 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
2046 {
2047 Elf_External_Rel *erel;
2048 Elf_External_Rel *erelend;
2049 Elf_Internal_Rela *irela;
2050
2051 erel = (Elf_External_Rel *) external_relocs;
2052 erelend = erel + o->reloc_count;
2053 irela = internal_relocs;
2054 for (; erel < erelend; erel++, irela++)
2055 {
2056 Elf_Internal_Rel irel;
2057
2058 elf_swap_reloc_in (abfd, erel, &irel);
2059 irela->r_offset = irel.r_offset;
2060 irela->r_info = irel.r_info;
2061 irela->r_addend = 0;
2062 }
2063 }
2064 else
2065 {
2066 Elf_External_Rela *erela;
2067 Elf_External_Rela *erelaend;
2068 Elf_Internal_Rela *irela;
2069
2070 BFD_ASSERT (rel_hdr->sh_entsize == sizeof (Elf_External_Rela));
2071
2072 erela = (Elf_External_Rela *) external_relocs;
2073 erelaend = erela + o->reloc_count;
2074 irela = internal_relocs;
2075 for (; erela < erelaend; erela++, irela++)
2076 elf_swap_reloca_in (abfd, erela, irela);
2077 }
2078
2079 /* Cache the results for next time, if we can. */
2080 if (keep_memory)
2081 elf_section_data (o)->relocs = internal_relocs;
2082
2083 if (alloc1 != NULL)
2084 free (alloc1);
2085
2086 /* Don't free alloc2, since if it was allocated we are passing it
2087 back (under the name of internal_relocs). */
2088
2089 return internal_relocs;
2090
2091 error_return:
2092 if (alloc1 != NULL)
2093 free (alloc1);
2094 if (alloc2 != NULL)
2095 free (alloc2);
2096 return NULL;
2097}
2098\f
2099
2100/* Record an assignment to a symbol made by a linker script. We need
2101 this in case some dynamic object refers to this symbol. */
2102
2103/*ARGSUSED*/
2104boolean
2105NAME(bfd_elf,record_link_assignment) (output_bfd, info, name, provide)
2106 bfd *output_bfd;
2107 struct bfd_link_info *info;
2108 const char *name;
2109 boolean provide;
2110{
2111 struct elf_link_hash_entry *h;
2112
2113 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2114 return true;
2115
2116 h = elf_link_hash_lookup (elf_hash_table (info), name, true, true, false);
2117 if (h == NULL)
2118 return false;
2119
2120 if (h->root.type == bfd_link_hash_new)
2121 h->elf_link_hash_flags &=~ ELF_LINK_NON_ELF;
2122
2123 /* If this symbol is being provided by the linker script, and it is
2124 currently defined by a dynamic object, but not by a regular
2125 object, then mark it as undefined so that the generic linker will
2126 force the correct value. */
2127 if (provide
2128 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2129 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2130 h->root.type = bfd_link_hash_undefined;
2131
2132 /* If this symbol is not being provided by the linker script, and it is
2133 currently defined by a dynamic object, but not by a regular object,
2134 then clear out any version information because the symbol will not be
2135 associated with the dynamic object any more. */
2136 if (!provide
2137 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2138 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2139 h->verinfo.verdef = NULL;
2140
2141 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2142 h->type = STT_OBJECT;
2143
2144 if (((h->elf_link_hash_flags & (ELF_LINK_HASH_DEF_DYNAMIC
2145 | ELF_LINK_HASH_REF_DYNAMIC)) != 0
2146 || info->shared)
2147 && h->dynindx == -1)
2148 {
2149 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2150 return false;
2151
2152 /* If this is a weak defined symbol, and we know a corresponding
2153 real symbol from the same dynamic object, make sure the real
2154 symbol is also made into a dynamic symbol. */
2155 if (h->weakdef != NULL
2156 && h->weakdef->dynindx == -1)
2157 {
2158 if (! _bfd_elf_link_record_dynamic_symbol (info, h->weakdef))
2159 return false;
2160 }
2161 }
2162
2163 return true;
2164}
2165\f
2166/* This structure is used to pass information to
2167 elf_link_assign_sym_version. */
2168
2169struct elf_assign_sym_version_info
2170{
2171 /* Output BFD. */
2172 bfd *output_bfd;
2173 /* General link information. */
2174 struct bfd_link_info *info;
2175 /* Version tree. */
2176 struct bfd_elf_version_tree *verdefs;
2177 /* Whether we are exporting all dynamic symbols. */
2178 boolean export_dynamic;
2179 /* Whether we removed any symbols from the dynamic symbol table. */
2180 boolean removed_dynamic;
2181 /* Whether we had a failure. */
2182 boolean failed;
2183};
2184
2185/* This structure is used to pass information to
2186 elf_link_find_version_dependencies. */
2187
2188struct elf_find_verdep_info
2189{
2190 /* Output BFD. */
2191 bfd *output_bfd;
2192 /* General link information. */
2193 struct bfd_link_info *info;
2194 /* The number of dependencies. */
2195 unsigned int vers;
2196 /* Whether we had a failure. */
2197 boolean failed;
2198};
2199
2200/* Array used to determine the number of hash table buckets to use
2201 based on the number of symbols there are. If there are fewer than
2202 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
2203 fewer than 37 we use 17 buckets, and so forth. We never use more
2204 than 32771 buckets. */
2205
2206static const size_t elf_buckets[] =
2207{
2208 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
2209 16411, 32771, 0
2210};
2211
2212/* Compute bucket count for hashing table. We do not use a static set
2213 of possible tables sizes anymore. Instead we determine for all
2214 possible reasonable sizes of the table the outcome (i.e., the
2215 number of collisions etc) and choose the best solution. The
2216 weighting functions are not too simple to allow the table to grow
2217 without bounds. Instead one of the weighting factors is the size.
2218 Therefore the result is always a good payoff between few collisions
2219 (= short chain lengths) and table size. */
2220static size_t
2221compute_bucket_count (info)
2222 struct bfd_link_info *info;
2223{
2224 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
2225 size_t best_size;
2226 unsigned long int *hashcodes;
2227 unsigned long int *hashcodesp;
2228 unsigned long int i;
2229
2230 /* Compute the hash values for all exported symbols. At the same
2231 time store the values in an array so that we could use them for
2232 optimizations. */
2233 hashcodes = (unsigned long int *) bfd_malloc (dynsymcount
2234 * sizeof (unsigned long int));
2235 if (hashcodes == NULL)
2236 return 0;
2237 hashcodesp = hashcodes;
2238
2239 /* Put all hash values in HASHCODES. */
2240 elf_link_hash_traverse (elf_hash_table (info),
2241 elf_collect_hash_codes, &hashcodesp);
2242
2243/* We have a problem here. The following code to optimize the table size
2244 requires an integer type with more the 32 bits. If BFD_HOST_U_64_BIT
2245 is set or GCC 2 is used we know about such a type. */
2246#if defined BFD_HOST_U_64_BIT || __GNUC__ >= 2
2247# ifndef BFD_HOST_U_64_BIT
2248# define BFD_HOST_U_64_BIT unsigned long long int
2249# endif
2250 if (info->optimize == true)
2251 {
2252 unsigned long int nsyms = hashcodesp - hashcodes;
2253 size_t minsize;
2254 size_t maxsize;
2255 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
2256 unsigned long int *counts ;
2257
2258 /* Possible optimization parameters: if we have NSYMS symbols we say
2259 that the hashing table must at least have NSYMS/4 and at most
2260 2*NSYMS buckets. */
2261 minsize = nsyms / 4;
2262 if (minsize == 0)
2263 minsize = 1;
2264 best_size = maxsize = nsyms * 2;
2265
2266 /* Create array where we count the collisions in. We must use bfd_malloc
2267 since the size could be large. */
2268 counts = (unsigned long int *) bfd_malloc (maxsize
2269 * sizeof (unsigned long int));
2270 if (counts == NULL)
2271 {
2272 free (hashcodes);
2273 return 0;
2274 }
2275
2276 /* Compute the "optimal" size for the hash table. The criteria is a
2277 minimal chain length. The minor criteria is (of course) the size
2278 of the table. */
2279 for (i = minsize; i < maxsize; ++i)
2280 {
2281 /* Walk through the array of hashcodes and count the collisions. */
2282 BFD_HOST_U_64_BIT max;
2283 unsigned long int j;
2284 unsigned long int fact;
2285
2286 memset (counts, '\0', i * sizeof (unsigned long int));
2287
2288 /* Determine how often each hash bucket is used. */
2289 for (j = 0; j < nsyms; ++j)
2290 ++counts[hashcodes[j] % i];
2291
2292 /* For the weight function we need some information about the
2293 pagesize on the target. This is information need not be 100%
2294 accurate. Since this information is not available (so far) we
2295 define it here to a reasonable default value. If it is crucial
2296 to have a better value some day simply define this value. */
2297# ifndef BFD_TARGET_PAGESIZE
2298# define BFD_TARGET_PAGESIZE (4096)
2299# endif
2300
2301 /* We in any case need 2 + NSYMS entries for the size values and
2302 the chains. */
2303 max = (2 + nsyms) * (ARCH_SIZE / 8);
2304
2305# if 1
2306 /* Variant 1: optimize for short chains. We add the squares
2307 of all the chain lengths (which favous many small chain
2308 over a few long chains). */
2309 for (j = 0; j < i; ++j)
2310 max += counts[j] * counts[j];
2311
2312 /* This adds penalties for the overall size of the table. */
2313 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2314 max *= fact * fact;
2315# else
2316 /* Variant 2: Optimize a lot more for small table. Here we
2317 also add squares of the size but we also add penalties for
2318 empty slots (the +1 term). */
2319 for (j = 0; j < i; ++j)
2320 max += (1 + counts[j]) * (1 + counts[j]);
2321
2322 /* The overall size of the table is considered, but not as
2323 strong as in variant 1, where it is squared. */
2324 fact = i / (BFD_TARGET_PAGESIZE / (ARCH_SIZE / 8)) + 1;
2325 max *= fact;
2326# endif
2327
2328 /* Compare with current best results. */
2329 if (max < best_chlen)
2330 {
2331 best_chlen = max;
2332 best_size = i;
2333 }
2334 }
2335
2336 free (counts);
2337 }
2338 else
2339#endif
2340 {
2341 /* This is the fallback solution if no 64bit type is available or if we
2342 are not supposed to spend much time on optimizations. We select the
2343 bucket count using a fixed set of numbers. */
2344 for (i = 0; elf_buckets[i] != 0; i++)
2345 {
2346 best_size = elf_buckets[i];
2347 if (dynsymcount < elf_buckets[i + 1])
2348 break;
2349 }
2350 }
2351
2352 /* Free the arrays we needed. */
2353 free (hashcodes);
2354
2355 return best_size;
2356}
2357
2358/* Set up the sizes and contents of the ELF dynamic sections. This is
2359 called by the ELF linker emulation before_allocation routine. We
2360 must set the sizes of the sections before the linker sets the
2361 addresses of the various sections. */
2362
2363boolean
2364NAME(bfd_elf,size_dynamic_sections) (output_bfd, soname, rpath,
2365 export_dynamic, filter_shlib,
2366 auxiliary_filters, info, sinterpptr,
2367 verdefs)
2368 bfd *output_bfd;
2369 const char *soname;
2370 const char *rpath;
2371 boolean export_dynamic;
2372 const char *filter_shlib;
2373 const char * const *auxiliary_filters;
2374 struct bfd_link_info *info;
2375 asection **sinterpptr;
2376 struct bfd_elf_version_tree *verdefs;
2377{
2378 bfd_size_type soname_indx;
2379 bfd *dynobj;
2380 struct elf_backend_data *bed;
2381 bfd_size_type old_dynsymcount;
2382 struct elf_assign_sym_version_info asvinfo;
2383
2384 *sinterpptr = NULL;
2385
2386 soname_indx = (bfd_size_type) -1;
2387
2388 if (info->hash->creator->flavour != bfd_target_elf_flavour)
2389 return true;
2390
2391 /* The backend may have to create some sections regardless of whether
2392 we're dynamic or not. */
2393 bed = get_elf_backend_data (output_bfd);
2394 if (bed->elf_backend_always_size_sections
2395 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
2396 return false;
2397
2398 dynobj = elf_hash_table (info)->dynobj;
2399
2400 /* If there were no dynamic objects in the link, there is nothing to
2401 do here. */
2402 if (dynobj == NULL)
2403 return true;
2404
2405 /* If we are supposed to export all symbols into the dynamic symbol
2406 table (this is not the normal case), then do so. */
2407 if (export_dynamic)
2408 {
2409 struct elf_info_failed eif;
2410
2411 eif.failed = false;
2412 eif.info = info;
2413 elf_link_hash_traverse (elf_hash_table (info), elf_export_symbol,
2414 (PTR) &eif);
2415 if (eif.failed)
2416 return false;
2417 }
2418
2419 if (elf_hash_table (info)->dynamic_sections_created)
2420 {
2421 struct elf_info_failed eif;
2422 struct elf_link_hash_entry *h;
2423 bfd_size_type strsize;
2424
2425 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
2426 BFD_ASSERT (*sinterpptr != NULL || info->shared);
2427
2428 if (soname != NULL)
2429 {
2430 soname_indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2431 soname, true, true);
2432 if (soname_indx == (bfd_size_type) -1
2433 || ! elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
2434 return false;
2435 }
2436
2437 if (info->symbolic)
2438 {
2439 if (! elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
2440 return false;
2441 }
2442
2443 if (rpath != NULL)
2444 {
2445 bfd_size_type indx;
2446
2447 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr, rpath,
2448 true, true);
2449 if (indx == (bfd_size_type) -1
2450 || ! elf_add_dynamic_entry (info, DT_RPATH, indx))
2451 return false;
2452 }
2453
2454 if (filter_shlib != NULL)
2455 {
2456 bfd_size_type indx;
2457
2458 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2459 filter_shlib, true, true);
2460 if (indx == (bfd_size_type) -1
2461 || ! elf_add_dynamic_entry (info, DT_FILTER, indx))
2462 return false;
2463 }
2464
2465 if (auxiliary_filters != NULL)
2466 {
2467 const char * const *p;
2468
2469 for (p = auxiliary_filters; *p != NULL; p++)
2470 {
2471 bfd_size_type indx;
2472
2473 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2474 *p, true, true);
2475 if (indx == (bfd_size_type) -1
2476 || ! elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
2477 return false;
2478 }
2479 }
2480
2481 /* Attach all the symbols to their version information. */
2482 asvinfo.output_bfd = output_bfd;
2483 asvinfo.info = info;
2484 asvinfo.verdefs = verdefs;
2485 asvinfo.export_dynamic = export_dynamic;
2486 asvinfo.removed_dynamic = false;
2487 asvinfo.failed = false;
2488
2489 elf_link_hash_traverse (elf_hash_table (info),
2490 elf_link_assign_sym_version,
2491 (PTR) &asvinfo);
2492 if (asvinfo.failed)
2493 return false;
2494
2495 /* Find all symbols which were defined in a dynamic object and make
2496 the backend pick a reasonable value for them. */
2497 eif.failed = false;
2498 eif.info = info;
2499 elf_link_hash_traverse (elf_hash_table (info),
2500 elf_adjust_dynamic_symbol,
2501 (PTR) &eif);
2502 if (eif.failed)
2503 return false;
2504
2505 /* Add some entries to the .dynamic section. We fill in some of the
2506 values later, in elf_bfd_final_link, but we must add the entries
2507 now so that we know the final size of the .dynamic section. */
2508 h = elf_link_hash_lookup (elf_hash_table (info), "_init", false,
2509 false, false);
2510 if (h != NULL
2511 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2512 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2513 {
2514 if (! elf_add_dynamic_entry (info, DT_INIT, 0))
2515 return false;
2516 }
2517 h = elf_link_hash_lookup (elf_hash_table (info), "_fini", false,
2518 false, false);
2519 if (h != NULL
2520 && (h->elf_link_hash_flags & (ELF_LINK_HASH_REF_REGULAR
2521 | ELF_LINK_HASH_DEF_REGULAR)) != 0)
2522 {
2523 if (! elf_add_dynamic_entry (info, DT_FINI, 0))
2524 return false;
2525 }
2526 strsize = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2527 if (! elf_add_dynamic_entry (info, DT_HASH, 0)
2528 || ! elf_add_dynamic_entry (info, DT_STRTAB, 0)
2529 || ! elf_add_dynamic_entry (info, DT_SYMTAB, 0)
2530 || ! elf_add_dynamic_entry (info, DT_STRSZ, strsize)
2531 || ! elf_add_dynamic_entry (info, DT_SYMENT,
2532 sizeof (Elf_External_Sym)))
2533 return false;
2534 }
2535
2536 /* The backend must work out the sizes of all the other dynamic
2537 sections. */
2538 old_dynsymcount = elf_hash_table (info)->dynsymcount;
2539 if (bed->elf_backend_size_dynamic_sections
2540 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
2541 return false;
2542
2543 if (elf_hash_table (info)->dynamic_sections_created)
2544 {
2545 size_t dynsymcount;
2546 asection *s;
2547 size_t i;
2548 size_t bucketcount = 0;
2549 Elf_Internal_Sym isym;
2550
2551 /* Set up the version definition section. */
2552 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
2553 BFD_ASSERT (s != NULL);
2554
2555 /* We may have created additional version definitions if we are
2556 just linking a regular application. */
2557 verdefs = asvinfo.verdefs;
2558
2559 if (verdefs == NULL)
2560 {
2561 asection **spp;
2562
2563 /* Don't include this section in the output file. */
2564 for (spp = &output_bfd->sections;
2565 *spp != s->output_section;
2566 spp = &(*spp)->next)
2567 ;
2568 *spp = s->output_section->next;
2569 --output_bfd->section_count;
2570 }
2571 else
2572 {
2573 unsigned int cdefs;
2574 bfd_size_type size;
2575 struct bfd_elf_version_tree *t;
2576 bfd_byte *p;
2577 Elf_Internal_Verdef def;
2578 Elf_Internal_Verdaux defaux;
2579
2580 if (asvinfo.removed_dynamic)
2581 {
2582 /* Some dynamic symbols were changed to be local
2583 symbols. In this case, we renumber all of the
2584 dynamic symbols, so that we don't have a hole. If
2585 the backend changed dynsymcount, then assume that the
2586 new symbols are at the start. This is the case on
2587 the MIPS. FIXME: The names of the removed symbols
2588 will still be in the dynamic string table, wasting
2589 space. */
2590 elf_hash_table (info)->dynsymcount =
2591 1 + (elf_hash_table (info)->dynsymcount - old_dynsymcount);
2592 elf_link_hash_traverse (elf_hash_table (info),
2593 elf_link_renumber_dynsyms,
2594 (PTR) info);
2595 }
2596
2597 cdefs = 0;
2598 size = 0;
2599
2600 /* Make space for the base version. */
2601 size += sizeof (Elf_External_Verdef);
2602 size += sizeof (Elf_External_Verdaux);
2603 ++cdefs;
2604
2605 for (t = verdefs; t != NULL; t = t->next)
2606 {
2607 struct bfd_elf_version_deps *n;
2608
2609 size += sizeof (Elf_External_Verdef);
2610 size += sizeof (Elf_External_Verdaux);
2611 ++cdefs;
2612
2613 for (n = t->deps; n != NULL; n = n->next)
2614 size += sizeof (Elf_External_Verdaux);
2615 }
2616
2617 s->_raw_size = size;
2618 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2619 if (s->contents == NULL && s->_raw_size != 0)
2620 return false;
2621
2622 /* Fill in the version definition section. */
2623
2624 p = s->contents;
2625
2626 def.vd_version = VER_DEF_CURRENT;
2627 def.vd_flags = VER_FLG_BASE;
2628 def.vd_ndx = 1;
2629 def.vd_cnt = 1;
2630 def.vd_aux = sizeof (Elf_External_Verdef);
2631 def.vd_next = (sizeof (Elf_External_Verdef)
2632 + sizeof (Elf_External_Verdaux));
2633
2634 if (soname_indx != (bfd_size_type) -1)
2635 {
2636 def.vd_hash = bfd_elf_hash ((const unsigned char *) soname);
2637 defaux.vda_name = soname_indx;
2638 }
2639 else
2640 {
2641 const char *name;
2642 bfd_size_type indx;
2643
2644 name = output_bfd->filename;
2645 def.vd_hash = bfd_elf_hash ((const unsigned char *) name);
2646 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2647 name, true, false);
2648 if (indx == (bfd_size_type) -1)
2649 return false;
2650 defaux.vda_name = indx;
2651 }
2652 defaux.vda_next = 0;
2653
2654 _bfd_elf_swap_verdef_out (output_bfd, &def,
2655 (Elf_External_Verdef *)p);
2656 p += sizeof (Elf_External_Verdef);
2657 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2658 (Elf_External_Verdaux *) p);
2659 p += sizeof (Elf_External_Verdaux);
2660
2661 for (t = verdefs; t != NULL; t = t->next)
2662 {
2663 unsigned int cdeps;
2664 struct bfd_elf_version_deps *n;
2665 struct elf_link_hash_entry *h;
2666
2667 cdeps = 0;
2668 for (n = t->deps; n != NULL; n = n->next)
2669 ++cdeps;
2670
2671 /* Add a symbol representing this version. */
2672 h = NULL;
2673 if (! (_bfd_generic_link_add_one_symbol
2674 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
2675 (bfd_vma) 0, (const char *) NULL, false,
2676 get_elf_backend_data (dynobj)->collect,
2677 (struct bfd_link_hash_entry **) &h)))
2678 return false;
2679 h->elf_link_hash_flags &= ~ ELF_LINK_NON_ELF;
2680 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2681 h->type = STT_OBJECT;
2682 h->verinfo.vertree = t;
2683
2684 if (! _bfd_elf_link_record_dynamic_symbol (info, h))
2685 return false;
2686
2687 def.vd_version = VER_DEF_CURRENT;
2688 def.vd_flags = 0;
2689 if (t->globals == NULL && t->locals == NULL && ! t->used)
2690 def.vd_flags |= VER_FLG_WEAK;
2691 def.vd_ndx = t->vernum + 1;
2692 def.vd_cnt = cdeps + 1;
2693 def.vd_hash = bfd_elf_hash ((const unsigned char *) t->name);
2694 def.vd_aux = sizeof (Elf_External_Verdef);
2695 if (t->next != NULL)
2696 def.vd_next = (sizeof (Elf_External_Verdef)
2697 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
2698 else
2699 def.vd_next = 0;
2700
2701 _bfd_elf_swap_verdef_out (output_bfd, &def,
2702 (Elf_External_Verdef *) p);
2703 p += sizeof (Elf_External_Verdef);
2704
2705 defaux.vda_name = h->dynstr_index;
2706 if (t->deps == NULL)
2707 defaux.vda_next = 0;
2708 else
2709 defaux.vda_next = sizeof (Elf_External_Verdaux);
2710 t->name_indx = defaux.vda_name;
2711
2712 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2713 (Elf_External_Verdaux *) p);
2714 p += sizeof (Elf_External_Verdaux);
2715
2716 for (n = t->deps; n != NULL; n = n->next)
2717 {
2718 if (n->version_needed == NULL)
2719 {
2720 /* This can happen if there was an error in the
2721 version script. */
2722 defaux.vda_name = 0;
2723 }
2724 else
2725 defaux.vda_name = n->version_needed->name_indx;
2726 if (n->next == NULL)
2727 defaux.vda_next = 0;
2728 else
2729 defaux.vda_next = sizeof (Elf_External_Verdaux);
2730
2731 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
2732 (Elf_External_Verdaux *) p);
2733 p += sizeof (Elf_External_Verdaux);
2734 }
2735 }
2736
2737 if (! elf_add_dynamic_entry (info, DT_VERDEF, 0)
2738 || ! elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
2739 return false;
2740
2741 elf_tdata (output_bfd)->cverdefs = cdefs;
2742 }
2743
2744 /* Work out the size of the version reference section. */
2745
2746 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
2747 BFD_ASSERT (s != NULL);
2748 {
2749 struct elf_find_verdep_info sinfo;
2750
2751 sinfo.output_bfd = output_bfd;
2752 sinfo.info = info;
2753 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
2754 if (sinfo.vers == 0)
2755 sinfo.vers = 1;
2756 sinfo.failed = false;
2757
2758 elf_link_hash_traverse (elf_hash_table (info),
2759 elf_link_find_version_dependencies,
2760 (PTR) &sinfo);
2761
2762 if (elf_tdata (output_bfd)->verref == NULL)
2763 {
2764 asection **spp;
2765
2766 /* We don't have any version definitions, so we can just
2767 remove the section. */
2768
2769 for (spp = &output_bfd->sections;
2770 *spp != s->output_section;
2771 spp = &(*spp)->next)
2772 ;
2773 *spp = s->output_section->next;
2774 --output_bfd->section_count;
2775 }
2776 else
2777 {
2778 Elf_Internal_Verneed *t;
2779 unsigned int size;
2780 unsigned int crefs;
2781 bfd_byte *p;
2782
2783 /* Build the version definition section. */
2784 size = 0;
2785 crefs = 0;
2786 for (t = elf_tdata (output_bfd)->verref;
2787 t != NULL;
2788 t = t->vn_nextref)
2789 {
2790 Elf_Internal_Vernaux *a;
2791
2792 size += sizeof (Elf_External_Verneed);
2793 ++crefs;
2794 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2795 size += sizeof (Elf_External_Vernaux);
2796 }
2797
2798 s->_raw_size = size;
2799 s->contents = (bfd_byte *) bfd_alloc (output_bfd, size);
2800 if (s->contents == NULL)
2801 return false;
2802
2803 p = s->contents;
2804 for (t = elf_tdata (output_bfd)->verref;
2805 t != NULL;
2806 t = t->vn_nextref)
2807 {
2808 unsigned int caux;
2809 Elf_Internal_Vernaux *a;
2810 bfd_size_type indx;
2811
2812 caux = 0;
2813 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2814 ++caux;
2815
2816 t->vn_version = VER_NEED_CURRENT;
2817 t->vn_cnt = caux;
2818 if (elf_dt_name (t->vn_bfd) != NULL)
2819 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2820 elf_dt_name (t->vn_bfd),
2821 true, false);
2822 else
2823 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2824 t->vn_bfd->filename, true, false);
2825 if (indx == (bfd_size_type) -1)
2826 return false;
2827 t->vn_file = indx;
2828 t->vn_aux = sizeof (Elf_External_Verneed);
2829 if (t->vn_nextref == NULL)
2830 t->vn_next = 0;
2831 else
2832 t->vn_next = (sizeof (Elf_External_Verneed)
2833 + caux * sizeof (Elf_External_Vernaux));
2834
2835 _bfd_elf_swap_verneed_out (output_bfd, t,
2836 (Elf_External_Verneed *) p);
2837 p += sizeof (Elf_External_Verneed);
2838
2839 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2840 {
2841 a->vna_hash = bfd_elf_hash ((const unsigned char *)
2842 a->vna_nodename);
2843 indx = _bfd_stringtab_add (elf_hash_table (info)->dynstr,
2844 a->vna_nodename, true, false);
2845 if (indx == (bfd_size_type) -1)
2846 return false;
2847 a->vna_name = indx;
2848 if (a->vna_nextptr == NULL)
2849 a->vna_next = 0;
2850 else
2851 a->vna_next = sizeof (Elf_External_Vernaux);
2852
2853 _bfd_elf_swap_vernaux_out (output_bfd, a,
2854 (Elf_External_Vernaux *) p);
2855 p += sizeof (Elf_External_Vernaux);
2856 }
2857 }
2858
2859 if (! elf_add_dynamic_entry (info, DT_VERNEED, 0)
2860 || ! elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
2861 return false;
2862
2863 elf_tdata (output_bfd)->cverrefs = crefs;
2864 }
2865 }
2866
2867 dynsymcount = elf_hash_table (info)->dynsymcount;
2868
2869 /* Work out the size of the symbol version section. */
2870 s = bfd_get_section_by_name (dynobj, ".gnu.version");
2871 BFD_ASSERT (s != NULL);
2872 if (dynsymcount == 0
2873 || (verdefs == NULL && elf_tdata (output_bfd)->verref == NULL))
2874 {
2875 asection **spp;
2876
2877 /* We don't need any symbol versions; just discard the
2878 section. */
2879 for (spp = &output_bfd->sections;
2880 *spp != s->output_section;
2881 spp = &(*spp)->next)
2882 ;
2883 *spp = s->output_section->next;
2884 --output_bfd->section_count;
2885 }
2886 else
2887 {
2888 s->_raw_size = dynsymcount * sizeof (Elf_External_Versym);
2889 s->contents = (bfd_byte *) bfd_zalloc (output_bfd, s->_raw_size);
2890 if (s->contents == NULL)
2891 return false;
2892
2893 if (! elf_add_dynamic_entry (info, DT_VERSYM, 0))
2894 return false;
2895 }
2896
2897 /* Set the size of the .dynsym and .hash sections. We counted
2898 the number of dynamic symbols in elf_link_add_object_symbols.
2899 We will build the contents of .dynsym and .hash when we build
2900 the final symbol table, because until then we do not know the
2901 correct value to give the symbols. We built the .dynstr
2902 section as we went along in elf_link_add_object_symbols. */
2903 s = bfd_get_section_by_name (dynobj, ".dynsym");
2904 BFD_ASSERT (s != NULL);
2905 s->_raw_size = dynsymcount * sizeof (Elf_External_Sym);
2906 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2907 if (s->contents == NULL && s->_raw_size != 0)
2908 return false;
2909
2910 /* The first entry in .dynsym is a dummy symbol. */
2911 isym.st_value = 0;
2912 isym.st_size = 0;
2913 isym.st_name = 0;
2914 isym.st_info = 0;
2915 isym.st_other = 0;
2916 isym.st_shndx = 0;
2917 elf_swap_symbol_out (output_bfd, &isym,
2918 (PTR) (Elf_External_Sym *) s->contents);
2919
2920 /* Compute the size of the hashing table. As a side effect this
2921 computes the hash values for all the names we export. */
2922 bucketcount = compute_bucket_count (info);
2923
2924 s = bfd_get_section_by_name (dynobj, ".hash");
2925 BFD_ASSERT (s != NULL);
2926 s->_raw_size = (2 + bucketcount + dynsymcount) * (ARCH_SIZE / 8);
2927 s->contents = (bfd_byte *) bfd_alloc (output_bfd, s->_raw_size);
2928 if (s->contents == NULL)
2929 return false;
2930 memset (s->contents, 0, (size_t) s->_raw_size);
2931
2932 put_word (output_bfd, bucketcount, s->contents);
2933 put_word (output_bfd, dynsymcount, s->contents + (ARCH_SIZE / 8));
2934
2935 elf_hash_table (info)->bucketcount = bucketcount;
2936
2937 s = bfd_get_section_by_name (dynobj, ".dynstr");
2938 BFD_ASSERT (s != NULL);
2939 s->_raw_size = _bfd_stringtab_size (elf_hash_table (info)->dynstr);
2940
2941 if (! elf_add_dynamic_entry (info, DT_NULL, 0))
2942 return false;
2943 }
2944
2945 return true;
2946}
2947\f
2948/* Fix up the flags for a symbol. This handles various cases which
2949 can only be fixed after all the input files are seen. This is
2950 currently called by both adjust_dynamic_symbol and
2951 assign_sym_version, which is unnecessary but perhaps more robust in
2952 the face of future changes. */
2953
2954static boolean
2955elf_fix_symbol_flags (h, eif)
2956 struct elf_link_hash_entry *h;
2957 struct elf_info_failed *eif;
2958{
2959 /* If this symbol was mentioned in a non-ELF file, try to set
2960 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2961 permit a non-ELF file to correctly refer to a symbol defined in
2962 an ELF dynamic object. */
2963 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) != 0)
2964 {
2965 if (h->root.type != bfd_link_hash_defined
2966 && h->root.type != bfd_link_hash_defweak)
2967 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2968 else
2969 {
2970 if (h->root.u.def.section->owner != NULL
2971 && (bfd_get_flavour (h->root.u.def.section->owner)
2972 == bfd_target_elf_flavour))
2973 h->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
2974 else
2975 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
2976 }
2977
2978 if (h->dynindx == -1
2979 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2980 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0))
2981 {
2982 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
2983 {
2984 eif->failed = true;
2985 return false;
2986 }
2987 }
2988 }
2989
2990 /* If this is a final link, and the symbol was defined as a common
2991 symbol in a regular object file, and there was no definition in
2992 any dynamic object, then the linker will have allocated space for
2993 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2994 flag will not have been set. */
2995 if (h->root.type == bfd_link_hash_defined
2996 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
2997 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) != 0
2998 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
2999 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
3000 h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR;
3001
3002 /* If -Bsymbolic was used (which means to bind references to global
3003 symbols to the definition within the shared object), and this
3004 symbol was defined in a regular object, then it actually doesn't
3005 need a PLT entry. */
3006 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
3007 && eif->info->shared
3008 && eif->info->symbolic
3009 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3010 {
3011 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3012 h->plt.offset = (bfd_vma) -1;
3013 }
3014
3015 return true;
3016}
3017
3018/* Make the backend pick a good value for a dynamic symbol. This is
3019 called via elf_link_hash_traverse, and also calls itself
3020 recursively. */
3021
3022static boolean
3023elf_adjust_dynamic_symbol (h, data)
3024 struct elf_link_hash_entry *h;
3025 PTR data;
3026{
3027 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3028 bfd *dynobj;
3029 struct elf_backend_data *bed;
3030
3031 /* Ignore indirect symbols. These are added by the versioning code. */
3032 if (h->root.type == bfd_link_hash_indirect)
3033 return true;
3034
3035 /* Fix the symbol flags. */
3036 if (! elf_fix_symbol_flags (h, eif))
3037 return false;
3038
3039 /* If this symbol does not require a PLT entry, and it is not
3040 defined by a dynamic object, or is not referenced by a regular
3041 object, ignore it. We do have to handle a weak defined symbol,
3042 even if no regular object refers to it, if we decided to add it
3043 to the dynamic symbol table. FIXME: Do we normally need to worry
3044 about symbols which are defined by one dynamic object and
3045 referenced by another one? */
3046 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0
3047 && ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3048 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3049 || ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0
3050 && (h->weakdef == NULL || h->weakdef->dynindx == -1))))
3051 {
3052 h->plt.offset = (bfd_vma) -1;
3053 return true;
3054 }
3055
3056 /* If we've already adjusted this symbol, don't do it again. This
3057 can happen via a recursive call. */
3058 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
3059 return true;
3060
3061 /* Don't look at this symbol again. Note that we must set this
3062 after checking the above conditions, because we may look at a
3063 symbol once, decide not to do anything, and then get called
3064 recursively later after REF_REGULAR is set below. */
3065 h->elf_link_hash_flags |= ELF_LINK_HASH_DYNAMIC_ADJUSTED;
3066
3067 /* If this is a weak definition, and we know a real definition, and
3068 the real symbol is not itself defined by a regular object file,
3069 then get a good value for the real definition. We handle the
3070 real symbol first, for the convenience of the backend routine.
3071
3072 Note that there is a confusing case here. If the real definition
3073 is defined by a regular object file, we don't get the real symbol
3074 from the dynamic object, but we do get the weak symbol. If the
3075 processor backend uses a COPY reloc, then if some routine in the
3076 dynamic object changes the real symbol, we will not see that
3077 change in the corresponding weak symbol. This is the way other
3078 ELF linkers work as well, and seems to be a result of the shared
3079 library model.
3080
3081 I will clarify this issue. Most SVR4 shared libraries define the
3082 variable _timezone and define timezone as a weak synonym. The
3083 tzset call changes _timezone. If you write
3084 extern int timezone;
3085 int _timezone = 5;
3086 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3087 you might expect that, since timezone is a synonym for _timezone,
3088 the same number will print both times. However, if the processor
3089 backend uses a COPY reloc, then actually timezone will be copied
3090 into your process image, and, since you define _timezone
3091 yourself, _timezone will not. Thus timezone and _timezone will
3092 wind up at different memory locations. The tzset call will set
3093 _timezone, leaving timezone unchanged. */
3094
3095 if (h->weakdef != NULL)
3096 {
3097 struct elf_link_hash_entry *weakdef;
3098
3099 BFD_ASSERT (h->root.type == bfd_link_hash_defined
3100 || h->root.type == bfd_link_hash_defweak);
3101 weakdef = h->weakdef;
3102 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
3103 || weakdef->root.type == bfd_link_hash_defweak);
3104 BFD_ASSERT (weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC);
3105 if ((weakdef->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0)
3106 {
3107 /* This symbol is defined by a regular object file, so we
3108 will not do anything special. Clear weakdef for the
3109 convenience of the processor backend. */
3110 h->weakdef = NULL;
3111 }
3112 else
3113 {
3114 /* There is an implicit reference by a regular object file
3115 via the weak symbol. */
3116 weakdef->elf_link_hash_flags |= ELF_LINK_HASH_REF_REGULAR;
3117 if (! elf_adjust_dynamic_symbol (weakdef, (PTR) eif))
3118 return false;
3119 }
3120 }
3121
3122 /* If a symbol has no type and no size and does not require a PLT
3123 entry, then we are probably about to do the wrong thing here: we
3124 are probably going to create a COPY reloc for an empty object.
3125 This case can arise when a shared object is built with assembly
3126 code, and the assembly code fails to set the symbol type. */
3127 if (h->size == 0
3128 && h->type == STT_NOTYPE
3129 && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0)
3130 (*_bfd_error_handler)
3131 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3132 h->root.root.string);
3133
3134 dynobj = elf_hash_table (eif->info)->dynobj;
3135 bed = get_elf_backend_data (dynobj);
3136 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3137 {
3138 eif->failed = true;
3139 return false;
3140 }
3141
3142 return true;
3143}
3144\f
3145/* This routine is used to export all defined symbols into the dynamic
3146 symbol table. It is called via elf_link_hash_traverse. */
3147
3148static boolean
3149elf_export_symbol (h, data)
3150 struct elf_link_hash_entry *h;
3151 PTR data;
3152{
3153 struct elf_info_failed *eif = (struct elf_info_failed *) data;
3154
3155 /* Ignore indirect symbols. These are added by the versioning code. */
3156 if (h->root.type == bfd_link_hash_indirect)
3157 return true;
3158
3159 if (h->dynindx == -1
3160 && (h->elf_link_hash_flags
3161 & (ELF_LINK_HASH_DEF_REGULAR | ELF_LINK_HASH_REF_REGULAR)) != 0)
3162 {
3163 if (! _bfd_elf_link_record_dynamic_symbol (eif->info, h))
3164 {
3165 eif->failed = true;
3166 return false;
3167 }
3168 }
3169
3170 return true;
3171}
3172\f
3173/* Look through the symbols which are defined in other shared
3174 libraries and referenced here. Update the list of version
3175 dependencies. This will be put into the .gnu.version_r section.
3176 This function is called via elf_link_hash_traverse. */
3177
3178static boolean
3179elf_link_find_version_dependencies (h, data)
3180 struct elf_link_hash_entry *h;
3181 PTR data;
3182{
3183 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
3184 Elf_Internal_Verneed *t;
3185 Elf_Internal_Vernaux *a;
3186
3187 /* We only care about symbols defined in shared objects with version
3188 information. */
3189 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
3190 || (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
3191 || h->dynindx == -1
3192 || h->verinfo.verdef == NULL)
3193 return true;
3194
3195 /* See if we already know about this version. */
3196 for (t = elf_tdata (rinfo->output_bfd)->verref; t != NULL; t = t->vn_nextref)
3197 {
3198 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
3199 continue;
3200
3201 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
3202 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
3203 return true;
3204
3205 break;
3206 }
3207
3208 /* This is a new version. Add it to tree we are building. */
3209
3210 if (t == NULL)
3211 {
3212 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->output_bfd, sizeof *t);
3213 if (t == NULL)
3214 {
3215 rinfo->failed = true;
3216 return false;
3217 }
3218
3219 t->vn_bfd = h->verinfo.verdef->vd_bfd;
3220 t->vn_nextref = elf_tdata (rinfo->output_bfd)->verref;
3221 elf_tdata (rinfo->output_bfd)->verref = t;
3222 }
3223
3224 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->output_bfd, sizeof *a);
3225
3226 /* Note that we are copying a string pointer here, and testing it
3227 above. If bfd_elf_string_from_elf_section is ever changed to
3228 discard the string data when low in memory, this will have to be
3229 fixed. */
3230 a->vna_nodename = h->verinfo.verdef->vd_nodename;
3231
3232 a->vna_flags = h->verinfo.verdef->vd_flags;
3233 a->vna_nextptr = t->vn_auxptr;
3234
3235 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
3236 ++rinfo->vers;
3237
3238 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
3239
3240 t->vn_auxptr = a;
3241
3242 return true;
3243}
3244
3245/* Figure out appropriate versions for all the symbols. We may not
3246 have the version number script until we have read all of the input
3247 files, so until that point we don't know which symbols should be
3248 local. This function is called via elf_link_hash_traverse. */
3249
3250static boolean
3251elf_link_assign_sym_version (h, data)
3252 struct elf_link_hash_entry *h;
3253 PTR data;
3254{
3255 struct elf_assign_sym_version_info *sinfo =
3256 (struct elf_assign_sym_version_info *) data;
3257 struct bfd_link_info *info = sinfo->info;
3258 struct elf_info_failed eif;
3259 char *p;
3260
3261 /* Fix the symbol flags. */
3262 eif.failed = false;
3263 eif.info = info;
3264 if (! elf_fix_symbol_flags (h, &eif))
3265 {
3266 if (eif.failed)
3267 sinfo->failed = true;
3268 return false;
3269 }
3270
3271 /* We only need version numbers for symbols defined in regular
3272 objects. */
3273 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
3274 return true;
3275
3276 p = strchr (h->root.root.string, ELF_VER_CHR);
3277 if (p != NULL && h->verinfo.vertree == NULL)
3278 {
3279 struct bfd_elf_version_tree *t;
3280 boolean hidden;
3281
3282 hidden = true;
3283
3284 /* There are two consecutive ELF_VER_CHR characters if this is
3285 not a hidden symbol. */
3286 ++p;
3287 if (*p == ELF_VER_CHR)
3288 {
3289 hidden = false;
3290 ++p;
3291 }
3292
3293 /* If there is no version string, we can just return out. */
3294 if (*p == '\0')
3295 {
3296 if (hidden)
3297 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3298 return true;
3299 }
3300
3301 /* Look for the version. If we find it, it is no longer weak. */
3302 for (t = sinfo->verdefs; t != NULL; t = t->next)
3303 {
3304 if (strcmp (t->name, p) == 0)
3305 {
3306 int len;
3307 char *alc;
3308 struct bfd_elf_version_expr *d;
3309
3310 len = p - h->root.root.string;
3311 alc = bfd_alloc (sinfo->output_bfd, len);
3312 if (alc == NULL)
3313 return false;
3314 strncpy (alc, h->root.root.string, len - 1);
3315 alc[len - 1] = '\0';
3316 if (alc[len - 2] == ELF_VER_CHR)
3317 alc[len - 2] = '\0';
3318
3319 h->verinfo.vertree = t;
3320 t->used = true;
3321 d = NULL;
3322
3323 if (t->globals != NULL)
3324 {
3325 for (d = t->globals; d != NULL; d = d->next)
3326 {
3327 if ((d->match[0] == '*' && d->match[1] == '\0')
3328 || fnmatch (d->match, alc, 0) == 0)
3329 break;
3330 }
3331 }
3332
3333 /* See if there is anything to force this symbol to
3334 local scope. */
3335 if (d == NULL && t->locals != NULL)
3336 {
3337 for (d = t->locals; d != NULL; d = d->next)
3338 {
3339 if ((d->match[0] == '*' && d->match[1] == '\0')
3340 || fnmatch (d->match, alc, 0) == 0)
3341 {
3342 if (h->dynindx != -1
3343 && info->shared
3344 && ! sinfo->export_dynamic)
3345 {
3346 sinfo->removed_dynamic = true;
3347 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3348 h->elf_link_hash_flags &=~
3349 ELF_LINK_HASH_NEEDS_PLT;
3350 h->dynindx = -1;
3351 h->plt.offset = (bfd_vma) -1;
3352 /* FIXME: The name of the symbol has
3353 already been recorded in the dynamic
3354 string table section. */
3355 }
3356
3357 break;
3358 }
3359 }
3360 }
3361
3362 bfd_release (sinfo->output_bfd, alc);
3363 break;
3364 }
3365 }
3366
3367 /* If we are building an application, we need to create a
3368 version node for this version. */
3369 if (t == NULL && ! info->shared)
3370 {
3371 struct bfd_elf_version_tree **pp;
3372 int version_index;
3373
3374 /* If we aren't going to export this symbol, we don't need
3375 to worry about it. */
3376 if (h->dynindx == -1)
3377 return true;
3378
3379 t = ((struct bfd_elf_version_tree *)
3380 bfd_alloc (sinfo->output_bfd, sizeof *t));
3381 if (t == NULL)
3382 {
3383 sinfo->failed = true;
3384 return false;
3385 }
3386
3387 t->next = NULL;
3388 t->name = p;
3389 t->globals = NULL;
3390 t->locals = NULL;
3391 t->deps = NULL;
3392 t->name_indx = (unsigned int) -1;
3393 t->used = true;
3394
3395 version_index = 1;
3396 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
3397 ++version_index;
3398 t->vernum = version_index;
3399
3400 *pp = t;
3401
3402 h->verinfo.vertree = t;
3403 }
3404 else if (t == NULL)
3405 {
3406 /* We could not find the version for a symbol when
3407 generating a shared archive. Return an error. */
3408 (*_bfd_error_handler)
3409 (_("%s: undefined versioned symbol name %s"),
3410 bfd_get_filename (sinfo->output_bfd), h->root.root.string);
3411 bfd_set_error (bfd_error_bad_value);
3412 sinfo->failed = true;
3413 return false;
3414 }
3415
3416 if (hidden)
3417 h->elf_link_hash_flags |= ELF_LINK_HIDDEN;
3418 }
3419
3420 /* If we don't have a version for this symbol, see if we can find
3421 something. */
3422 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
3423 {
3424 struct bfd_elf_version_tree *t;
3425 struct bfd_elf_version_tree *deflt;
3426 struct bfd_elf_version_expr *d;
3427
3428 /* See if can find what version this symbol is in. If the
3429 symbol is supposed to be local, then don't actually register
3430 it. */
3431 deflt = NULL;
3432 for (t = sinfo->verdefs; t != NULL; t = t->next)
3433 {
3434 if (t->globals != NULL)
3435 {
3436 for (d = t->globals; d != NULL; d = d->next)
3437 {
3438 if (fnmatch (d->match, h->root.root.string, 0) == 0)
3439 {
3440 h->verinfo.vertree = t;
3441 break;
3442 }
3443 }
3444
3445 if (d != NULL)
3446 break;
3447 }
3448
3449 if (t->locals != NULL)
3450 {
3451 for (d = t->locals; d != NULL; d = d->next)
3452 {
3453 if (d->match[0] == '*' && d->match[1] == '\0')
3454 deflt = t;
3455 else if (fnmatch (d->match, h->root.root.string, 0) == 0)
3456 {
3457 h->verinfo.vertree = t;
3458 if (h->dynindx != -1
3459 && info->shared
3460 && ! sinfo->export_dynamic)
3461 {
3462 sinfo->removed_dynamic = true;
3463 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3464 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3465 h->dynindx = -1;
3466 h->plt.offset = (bfd_vma) -1;
3467 /* FIXME: The name of the symbol has already
3468 been recorded in the dynamic string table
3469 section. */
3470 }
3471 break;
3472 }
3473 }
3474
3475 if (d != NULL)
3476 break;
3477 }
3478 }
3479
3480 if (deflt != NULL && h->verinfo.vertree == NULL)
3481 {
3482 h->verinfo.vertree = deflt;
3483 if (h->dynindx != -1
3484 && info->shared
3485 && ! sinfo->export_dynamic)
3486 {
3487 sinfo->removed_dynamic = true;
3488 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
3489 h->elf_link_hash_flags &=~ ELF_LINK_HASH_NEEDS_PLT;
3490 h->dynindx = -1;
3491 h->plt.offset = (bfd_vma) -1;
3492 /* FIXME: The name of the symbol has already been
3493 recorded in the dynamic string table section. */
3494 }
3495 }
3496 }
3497
3498 return true;
3499}
3500
3501/* This function is used to renumber the dynamic symbols, if some of
3502 them are removed because they are marked as local. This is called
3503 via elf_link_hash_traverse. */
3504
3505static boolean
3506elf_link_renumber_dynsyms (h, data)
3507 struct elf_link_hash_entry *h;
3508 PTR data;
3509{
3510 struct bfd_link_info *info = (struct bfd_link_info *) data;
3511
3512 if (h->dynindx != -1)
3513 {
3514 h->dynindx = elf_hash_table (info)->dynsymcount;
3515 ++elf_hash_table (info)->dynsymcount;
3516 }
3517
3518 return true;
3519}
3520\f
3521/* Final phase of ELF linker. */
3522
3523/* A structure we use to avoid passing large numbers of arguments. */
3524
3525struct elf_final_link_info
3526{
3527 /* General link information. */
3528 struct bfd_link_info *info;
3529 /* Output BFD. */
3530 bfd *output_bfd;
3531 /* Symbol string table. */
3532 struct bfd_strtab_hash *symstrtab;
3533 /* .dynsym section. */
3534 asection *dynsym_sec;
3535 /* .hash section. */
3536 asection *hash_sec;
3537 /* symbol version section (.gnu.version). */
3538 asection *symver_sec;
3539 /* Buffer large enough to hold contents of any section. */
3540 bfd_byte *contents;
3541 /* Buffer large enough to hold external relocs of any section. */
3542 PTR external_relocs;
3543 /* Buffer large enough to hold internal relocs of any section. */
3544 Elf_Internal_Rela *internal_relocs;
3545 /* Buffer large enough to hold external local symbols of any input
3546 BFD. */
3547 Elf_External_Sym *external_syms;
3548 /* Buffer large enough to hold internal local symbols of any input
3549 BFD. */
3550 Elf_Internal_Sym *internal_syms;
3551 /* Array large enough to hold a symbol index for each local symbol
3552 of any input BFD. */
3553 long *indices;
3554 /* Array large enough to hold a section pointer for each local
3555 symbol of any input BFD. */
3556 asection **sections;
3557 /* Buffer to hold swapped out symbols. */
3558 Elf_External_Sym *symbuf;
3559 /* Number of swapped out symbols in buffer. */
3560 size_t symbuf_count;
3561 /* Number of symbols which fit in symbuf. */
3562 size_t symbuf_size;
3563};
3564
3565static boolean elf_link_output_sym
3566 PARAMS ((struct elf_final_link_info *, const char *,
3567 Elf_Internal_Sym *, asection *));
3568static boolean elf_link_flush_output_syms
3569 PARAMS ((struct elf_final_link_info *));
3570static boolean elf_link_output_extsym
3571 PARAMS ((struct elf_link_hash_entry *, PTR));
3572static boolean elf_link_input_bfd
3573 PARAMS ((struct elf_final_link_info *, bfd *));
3574static boolean elf_reloc_link_order
3575 PARAMS ((bfd *, struct bfd_link_info *, asection *,
3576 struct bfd_link_order *));
3577
3578/* This struct is used to pass information to elf_link_output_extsym. */
3579
3580struct elf_outext_info
3581{
3582 boolean failed;
3583 boolean localsyms;
3584 struct elf_final_link_info *finfo;
3585};
3586
3587/* Do the final step of an ELF link. */
3588
3589boolean
3590elf_bfd_final_link (abfd, info)
3591 bfd *abfd;
3592 struct bfd_link_info *info;
3593{
3594 boolean dynamic;
3595 bfd *dynobj;
3596 struct elf_final_link_info finfo;
3597 register asection *o;
3598 register struct bfd_link_order *p;
3599 register bfd *sub;
3600 size_t max_contents_size;
3601 size_t max_external_reloc_size;
3602 size_t max_internal_reloc_count;
3603 size_t max_sym_count;
3604 file_ptr off;
3605 Elf_Internal_Sym elfsym;
3606 unsigned int i;
3607 Elf_Internal_Shdr *symtab_hdr;
3608 Elf_Internal_Shdr *symstrtab_hdr;
3609 struct elf_backend_data *bed = get_elf_backend_data (abfd);
3610 struct elf_outext_info eoinfo;
3611
3612 if (info->shared)
3613 abfd->flags |= DYNAMIC;
3614
3615 dynamic = elf_hash_table (info)->dynamic_sections_created;
3616 dynobj = elf_hash_table (info)->dynobj;
3617
3618 finfo.info = info;
3619 finfo.output_bfd = abfd;
3620 finfo.symstrtab = elf_stringtab_init ();
3621 if (finfo.symstrtab == NULL)
3622 return false;
3623
3624 if (! dynamic)
3625 {
3626 finfo.dynsym_sec = NULL;
3627 finfo.hash_sec = NULL;
3628 finfo.symver_sec = NULL;
3629 }
3630 else
3631 {
3632 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
3633 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
3634 BFD_ASSERT (finfo.dynsym_sec != NULL && finfo.hash_sec != NULL);
3635 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
3636 /* Note that it is OK if symver_sec is NULL. */
3637 }
3638
3639 finfo.contents = NULL;
3640 finfo.external_relocs = NULL;
3641 finfo.internal_relocs = NULL;
3642 finfo.external_syms = NULL;
3643 finfo.internal_syms = NULL;
3644 finfo.indices = NULL;
3645 finfo.sections = NULL;
3646 finfo.symbuf = NULL;
3647 finfo.symbuf_count = 0;
3648
3649 /* Count up the number of relocations we will output for each output
3650 section, so that we know the sizes of the reloc sections. We
3651 also figure out some maximum sizes. */
3652 max_contents_size = 0;
3653 max_external_reloc_size = 0;
3654 max_internal_reloc_count = 0;
3655 max_sym_count = 0;
3656 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
3657 {
3658 o->reloc_count = 0;
3659
3660 for (p = o->link_order_head; p != NULL; p = p->next)
3661 {
3662 if (p->type == bfd_section_reloc_link_order
3663 || p->type == bfd_symbol_reloc_link_order)
3664 ++o->reloc_count;
3665 else if (p->type == bfd_indirect_link_order)
3666 {
3667 asection *sec;
3668
3669 sec = p->u.indirect.section;
3670
3671 /* Mark all sections which are to be included in the
3672 link. This will normally be every section. We need
3673 to do this so that we can identify any sections which
3674 the linker has decided to not include. */
3675 sec->linker_mark = true;
3676
3677 if (info->relocateable)
3678 o->reloc_count += sec->reloc_count;
3679
3680 if (sec->_raw_size > max_contents_size)
3681 max_contents_size = sec->_raw_size;
3682 if (sec->_cooked_size > max_contents_size)
3683 max_contents_size = sec->_cooked_size;
3684
3685 /* We are interested in just local symbols, not all
3686 symbols. */
3687 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
3688 && (sec->owner->flags & DYNAMIC) == 0)
3689 {
3690 size_t sym_count;
3691
3692 if (elf_bad_symtab (sec->owner))
3693 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
3694 / sizeof (Elf_External_Sym));
3695 else
3696 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
3697
3698 if (sym_count > max_sym_count)
3699 max_sym_count = sym_count;
3700
3701 if ((sec->flags & SEC_RELOC) != 0)
3702 {
3703 size_t ext_size;
3704
3705 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
3706 if (ext_size > max_external_reloc_size)
3707 max_external_reloc_size = ext_size;
3708 if (sec->reloc_count > max_internal_reloc_count)
3709 max_internal_reloc_count = sec->reloc_count;
3710 }
3711 }
3712 }
3713 }
3714
3715 if (o->reloc_count > 0)
3716 o->flags |= SEC_RELOC;
3717 else
3718 {
3719 /* Explicitly clear the SEC_RELOC flag. The linker tends to
3720 set it (this is probably a bug) and if it is set
3721 assign_section_numbers will create a reloc section. */
3722 o->flags &=~ SEC_RELOC;
3723 }
3724
3725 /* If the SEC_ALLOC flag is not set, force the section VMA to
3726 zero. This is done in elf_fake_sections as well, but forcing
3727 the VMA to 0 here will ensure that relocs against these
3728 sections are handled correctly. */
3729 if ((o->flags & SEC_ALLOC) == 0
3730 && ! o->user_set_vma)
3731 o->vma = 0;
3732 }
3733
3734 /* Figure out the file positions for everything but the symbol table
3735 and the relocs. We set symcount to force assign_section_numbers
3736 to create a symbol table. */
3737 abfd->symcount = info->strip == strip_all ? 0 : 1;
3738 BFD_ASSERT (! abfd->output_has_begun);
3739 if (! _bfd_elf_compute_section_file_positions (abfd, info))
3740 goto error_return;
3741
3742 /* That created the reloc sections. Set their sizes, and assign
3743 them file positions, and allocate some buffers. */
3744 for (o = abfd->sections; o != NULL; o = o->next)
3745 {
3746 if ((o->flags & SEC_RELOC) != 0)
3747 {
3748 Elf_Internal_Shdr *rel_hdr;
3749 register struct elf_link_hash_entry **p, **pend;
3750
3751 rel_hdr = &elf_section_data (o)->rel_hdr;
3752
3753 rel_hdr->sh_size = rel_hdr->sh_entsize * o->reloc_count;
3754
3755 /* The contents field must last into write_object_contents,
3756 so we allocate it with bfd_alloc rather than malloc. */
3757 rel_hdr->contents = (PTR) bfd_alloc (abfd, rel_hdr->sh_size);
3758 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
3759 goto error_return;
3760
3761 p = ((struct elf_link_hash_entry **)
3762 bfd_malloc (o->reloc_count
3763 * sizeof (struct elf_link_hash_entry *)));
3764 if (p == NULL && o->reloc_count != 0)
3765 goto error_return;
3766 elf_section_data (o)->rel_hashes = p;
3767 pend = p + o->reloc_count;
3768 for (; p < pend; p++)
3769 *p = NULL;
3770
3771 /* Use the reloc_count field as an index when outputting the
3772 relocs. */
3773 o->reloc_count = 0;
3774 }
3775 }
3776
3777 _bfd_elf_assign_file_positions_for_relocs (abfd);
3778
3779 /* We have now assigned file positions for all the sections except
3780 .symtab and .strtab. We start the .symtab section at the current
3781 file position, and write directly to it. We build the .strtab
3782 section in memory. */
3783 abfd->symcount = 0;
3784 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3785 /* sh_name is set in prep_headers. */
3786 symtab_hdr->sh_type = SHT_SYMTAB;
3787 symtab_hdr->sh_flags = 0;
3788 symtab_hdr->sh_addr = 0;
3789 symtab_hdr->sh_size = 0;
3790 symtab_hdr->sh_entsize = sizeof (Elf_External_Sym);
3791 /* sh_link is set in assign_section_numbers. */
3792 /* sh_info is set below. */
3793 /* sh_offset is set just below. */
3794 symtab_hdr->sh_addralign = 4; /* FIXME: system dependent? */
3795
3796 off = elf_tdata (abfd)->next_file_pos;
3797 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true);
3798
3799 /* Note that at this point elf_tdata (abfd)->next_file_pos is
3800 incorrect. We do not yet know the size of the .symtab section.
3801 We correct next_file_pos below, after we do know the size. */
3802
3803 /* Allocate a buffer to hold swapped out symbols. This is to avoid
3804 continuously seeking to the right position in the file. */
3805 if (! info->keep_memory || max_sym_count < 20)
3806 finfo.symbuf_size = 20;
3807 else
3808 finfo.symbuf_size = max_sym_count;
3809 finfo.symbuf = ((Elf_External_Sym *)
3810 bfd_malloc (finfo.symbuf_size * sizeof (Elf_External_Sym)));
3811 if (finfo.symbuf == NULL)
3812 goto error_return;
3813
3814 /* Start writing out the symbol table. The first symbol is always a
3815 dummy symbol. */
3816 if (info->strip != strip_all || info->relocateable)
3817 {
3818 elfsym.st_value = 0;
3819 elfsym.st_size = 0;
3820 elfsym.st_info = 0;
3821 elfsym.st_other = 0;
3822 elfsym.st_shndx = SHN_UNDEF;
3823 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3824 &elfsym, bfd_und_section_ptr))
3825 goto error_return;
3826 }
3827
3828#if 0
3829 /* Some standard ELF linkers do this, but we don't because it causes
3830 bootstrap comparison failures. */
3831 /* Output a file symbol for the output file as the second symbol.
3832 We output this even if we are discarding local symbols, although
3833 I'm not sure if this is correct. */
3834 elfsym.st_value = 0;
3835 elfsym.st_size = 0;
3836 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
3837 elfsym.st_other = 0;
3838 elfsym.st_shndx = SHN_ABS;
3839 if (! elf_link_output_sym (&finfo, bfd_get_filename (abfd),
3840 &elfsym, bfd_abs_section_ptr))
3841 goto error_return;
3842#endif
3843
3844 /* Output a symbol for each section. We output these even if we are
3845 discarding local symbols, since they are used for relocs. These
3846 symbols have no names. We store the index of each one in the
3847 index field of the section, so that we can find it again when
3848 outputting relocs. */
3849 if (info->strip != strip_all || info->relocateable)
3850 {
3851 elfsym.st_size = 0;
3852 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
3853 elfsym.st_other = 0;
3854 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
3855 {
3856 o = section_from_elf_index (abfd, i);
3857 if (o != NULL)
3858 o->target_index = abfd->symcount;
3859 elfsym.st_shndx = i;
3860 if (info->relocateable || o == NULL)
3861 elfsym.st_value = 0;
3862 else
3863 elfsym.st_value = o->vma;
3864 if (! elf_link_output_sym (&finfo, (const char *) NULL,
3865 &elfsym, o))
3866 goto error_return;
3867 }
3868 }
3869
3870 /* Allocate some memory to hold information read in from the input
3871 files. */
3872 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
3873 finfo.external_relocs = (PTR) bfd_malloc (max_external_reloc_size);
3874 finfo.internal_relocs = ((Elf_Internal_Rela *)
3875 bfd_malloc (max_internal_reloc_count
3876 * sizeof (Elf_Internal_Rela)));
3877 finfo.external_syms = ((Elf_External_Sym *)
3878 bfd_malloc (max_sym_count
3879 * sizeof (Elf_External_Sym)));
3880 finfo.internal_syms = ((Elf_Internal_Sym *)
3881 bfd_malloc (max_sym_count
3882 * sizeof (Elf_Internal_Sym)));
3883 finfo.indices = (long *) bfd_malloc (max_sym_count * sizeof (long));
3884 finfo.sections = ((asection **)
3885 bfd_malloc (max_sym_count * sizeof (asection *)));
3886 if ((finfo.contents == NULL && max_contents_size != 0)
3887 || (finfo.external_relocs == NULL && max_external_reloc_size != 0)
3888 || (finfo.internal_relocs == NULL && max_internal_reloc_count != 0)
3889 || (finfo.external_syms == NULL && max_sym_count != 0)
3890 || (finfo.internal_syms == NULL && max_sym_count != 0)
3891 || (finfo.indices == NULL && max_sym_count != 0)
3892 || (finfo.sections == NULL && max_sym_count != 0))
3893 goto error_return;
3894
3895 /* Since ELF permits relocations to be against local symbols, we
3896 must have the local symbols available when we do the relocations.
3897 Since we would rather only read the local symbols once, and we
3898 would rather not keep them in memory, we handle all the
3899 relocations for a single input file at the same time.
3900
3901 Unfortunately, there is no way to know the total number of local
3902 symbols until we have seen all of them, and the local symbol
3903 indices precede the global symbol indices. This means that when
3904 we are generating relocateable output, and we see a reloc against
3905 a global symbol, we can not know the symbol index until we have
3906 finished examining all the local symbols to see which ones we are
3907 going to output. To deal with this, we keep the relocations in
3908 memory, and don't output them until the end of the link. This is
3909 an unfortunate waste of memory, but I don't see a good way around
3910 it. Fortunately, it only happens when performing a relocateable
3911 link, which is not the common case. FIXME: If keep_memory is set
3912 we could write the relocs out and then read them again; I don't
3913 know how bad the memory loss will be. */
3914
3915 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
3916 sub->output_has_begun = false;
3917 for (o = abfd->sections; o != NULL; o = o->next)
3918 {
3919 for (p = o->link_order_head; p != NULL; p = p->next)
3920 {
3921 if (p->type == bfd_indirect_link_order
3922 && (bfd_get_flavour (p->u.indirect.section->owner)
3923 == bfd_target_elf_flavour))
3924 {
3925 sub = p->u.indirect.section->owner;
3926 if (! sub->output_has_begun)
3927 {
3928 if (! elf_link_input_bfd (&finfo, sub))
3929 goto error_return;
3930 sub->output_has_begun = true;
3931 }
3932 }
3933 else if (p->type == bfd_section_reloc_link_order
3934 || p->type == bfd_symbol_reloc_link_order)
3935 {
3936 if (! elf_reloc_link_order (abfd, info, o, p))
3937 goto error_return;
3938 }
3939 else
3940 {
3941 if (! _bfd_default_link_order (abfd, info, o, p))
3942 goto error_return;
3943 }
3944 }
3945 }
3946
3947 /* That wrote out all the local symbols. Finish up the symbol table
3948 with the global symbols. */
3949
3950 if (info->strip != strip_all && info->shared)
3951 {
3952 /* Output any global symbols that got converted to local in a
3953 version script. We do this in a separate step since ELF
3954 requires all local symbols to appear prior to any global
3955 symbols. FIXME: We should only do this if some global
3956 symbols were, in fact, converted to become local. FIXME:
3957 Will this work correctly with the Irix 5 linker? */
3958 eoinfo.failed = false;
3959 eoinfo.finfo = &finfo;
3960 eoinfo.localsyms = true;
3961 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3962 (PTR) &eoinfo);
3963 if (eoinfo.failed)
3964 return false;
3965 }
3966
3967 /* The sh_info field records the index of the first non local
3968 symbol. */
3969 symtab_hdr->sh_info = abfd->symcount;
3970 if (dynamic)
3971 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info = 1;
3972
3973 /* We get the global symbols from the hash table. */
3974 eoinfo.failed = false;
3975 eoinfo.localsyms = false;
3976 eoinfo.finfo = &finfo;
3977 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
3978 (PTR) &eoinfo);
3979 if (eoinfo.failed)
3980 return false;
3981
3982 /* Flush all symbols to the file. */
3983 if (! elf_link_flush_output_syms (&finfo))
3984 return false;
3985
3986 /* Now we know the size of the symtab section. */
3987 off += symtab_hdr->sh_size;
3988
3989 /* Finish up and write out the symbol string table (.strtab)
3990 section. */
3991 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
3992 /* sh_name was set in prep_headers. */
3993 symstrtab_hdr->sh_type = SHT_STRTAB;
3994 symstrtab_hdr->sh_flags = 0;
3995 symstrtab_hdr->sh_addr = 0;
3996 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
3997 symstrtab_hdr->sh_entsize = 0;
3998 symstrtab_hdr->sh_link = 0;
3999 symstrtab_hdr->sh_info = 0;
4000 /* sh_offset is set just below. */
4001 symstrtab_hdr->sh_addralign = 1;
4002
4003 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, true);
4004 elf_tdata (abfd)->next_file_pos = off;
4005
4006 if (abfd->symcount > 0)
4007 {
4008 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
4009 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
4010 return false;
4011 }
4012
4013 /* Adjust the relocs to have the correct symbol indices. */
4014 for (o = abfd->sections; o != NULL; o = o->next)
4015 {
4016 struct elf_link_hash_entry **rel_hash;
4017 Elf_Internal_Shdr *rel_hdr;
4018
4019 if ((o->flags & SEC_RELOC) == 0)
4020 continue;
4021
4022 rel_hash = elf_section_data (o)->rel_hashes;
4023 rel_hdr = &elf_section_data (o)->rel_hdr;
4024 for (i = 0; i < o->reloc_count; i++, rel_hash++)
4025 {
4026 if (*rel_hash == NULL)
4027 continue;
4028
4029 BFD_ASSERT ((*rel_hash)->indx >= 0);
4030
4031 if (rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
4032 {
4033 Elf_External_Rel *erel;
4034 Elf_Internal_Rel irel;
4035
4036 erel = (Elf_External_Rel *) rel_hdr->contents + i;
4037 elf_swap_reloc_in (abfd, erel, &irel);
4038 irel.r_info = ELF_R_INFO ((*rel_hash)->indx,
4039 ELF_R_TYPE (irel.r_info));
4040 elf_swap_reloc_out (abfd, &irel, erel);
4041 }
4042 else
4043 {
4044 Elf_External_Rela *erela;
4045 Elf_Internal_Rela irela;
4046
4047 BFD_ASSERT (rel_hdr->sh_entsize
4048 == sizeof (Elf_External_Rela));
4049
4050 erela = (Elf_External_Rela *) rel_hdr->contents + i;
4051 elf_swap_reloca_in (abfd, erela, &irela);
4052 irela.r_info = ELF_R_INFO ((*rel_hash)->indx,
4053 ELF_R_TYPE (irela.r_info));
4054 elf_swap_reloca_out (abfd, &irela, erela);
4055 }
4056 }
4057
4058 /* Set the reloc_count field to 0 to prevent write_relocs from
4059 trying to swap the relocs out itself. */
4060 o->reloc_count = 0;
4061 }
4062
4063 /* If we are linking against a dynamic object, or generating a
4064 shared library, finish up the dynamic linking information. */
4065 if (dynamic)
4066 {
4067 Elf_External_Dyn *dyncon, *dynconend;
4068
4069 /* Fix up .dynamic entries. */
4070 o = bfd_get_section_by_name (dynobj, ".dynamic");
4071 BFD_ASSERT (o != NULL);
4072
4073 dyncon = (Elf_External_Dyn *) o->contents;
4074 dynconend = (Elf_External_Dyn *) (o->contents + o->_raw_size);
4075 for (; dyncon < dynconend; dyncon++)
4076 {
4077 Elf_Internal_Dyn dyn;
4078 const char *name;
4079 unsigned int type;
4080
4081 elf_swap_dyn_in (dynobj, dyncon, &dyn);
4082
4083 switch (dyn.d_tag)
4084 {
4085 default:
4086 break;
4087
4088 /* SVR4 linkers seem to set DT_INIT and DT_FINI based on
4089 magic _init and _fini symbols. This is pretty ugly,
4090 but we are compatible. */
4091 case DT_INIT:
4092 name = "_init";
4093 goto get_sym;
4094 case DT_FINI:
4095 name = "_fini";
4096 get_sym:
4097 {
4098 struct elf_link_hash_entry *h;
4099
4100 h = elf_link_hash_lookup (elf_hash_table (info), name,
4101 false, false, true);
4102 if (h != NULL
4103 && (h->root.type == bfd_link_hash_defined
4104 || h->root.type == bfd_link_hash_defweak))
4105 {
4106 dyn.d_un.d_val = h->root.u.def.value;
4107 o = h->root.u.def.section;
4108 if (o->output_section != NULL)
4109 dyn.d_un.d_val += (o->output_section->vma
4110 + o->output_offset);
4111 else
4112 {
4113 /* The symbol is imported from another shared
4114 library and does not apply to this one. */
4115 dyn.d_un.d_val = 0;
4116 }
4117
4118 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4119 }
4120 }
4121 break;
4122
4123 case DT_HASH:
4124 name = ".hash";
4125 goto get_vma;
4126 case DT_STRTAB:
4127 name = ".dynstr";
4128 goto get_vma;
4129 case DT_SYMTAB:
4130 name = ".dynsym";
4131 goto get_vma;
4132 case DT_VERDEF:
4133 name = ".gnu.version_d";
4134 goto get_vma;
4135 case DT_VERNEED:
4136 name = ".gnu.version_r";
4137 goto get_vma;
4138 case DT_VERSYM:
4139 name = ".gnu.version";
4140 get_vma:
4141 o = bfd_get_section_by_name (abfd, name);
4142 BFD_ASSERT (o != NULL);
4143 dyn.d_un.d_ptr = o->vma;
4144 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4145 break;
4146
4147 case DT_REL:
4148 case DT_RELA:
4149 case DT_RELSZ:
4150 case DT_RELASZ:
4151 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
4152 type = SHT_REL;
4153 else
4154 type = SHT_RELA;
4155 dyn.d_un.d_val = 0;
4156 for (i = 1; i < elf_elfheader (abfd)->e_shnum; i++)
4157 {
4158 Elf_Internal_Shdr *hdr;
4159
4160 hdr = elf_elfsections (abfd)[i];
4161 if (hdr->sh_type == type
4162 && (hdr->sh_flags & SHF_ALLOC) != 0)
4163 {
4164 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
4165 dyn.d_un.d_val += hdr->sh_size;
4166 else
4167 {
4168 if (dyn.d_un.d_val == 0
4169 || hdr->sh_addr < dyn.d_un.d_val)
4170 dyn.d_un.d_val = hdr->sh_addr;
4171 }
4172 }
4173 }
4174 elf_swap_dyn_out (dynobj, &dyn, dyncon);
4175 break;
4176 }
4177 }
4178 }
4179
4180 /* If we have created any dynamic sections, then output them. */
4181 if (dynobj != NULL)
4182 {
4183 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
4184 goto error_return;
4185
4186 for (o = dynobj->sections; o != NULL; o = o->next)
4187 {
4188 if ((o->flags & SEC_HAS_CONTENTS) == 0
4189 || o->_raw_size == 0)
4190 continue;
4191 if ((o->flags & SEC_LINKER_CREATED) == 0)
4192 {
4193 /* At this point, we are only interested in sections
4194 created by elf_link_create_dynamic_sections. */
4195 continue;
4196 }
4197 if ((elf_section_data (o->output_section)->this_hdr.sh_type
4198 != SHT_STRTAB)
4199 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
4200 {
4201 if (! bfd_set_section_contents (abfd, o->output_section,
4202 o->contents, o->output_offset,
4203 o->_raw_size))
4204 goto error_return;
4205 }
4206 else
4207 {
4208 file_ptr off;
4209
4210 /* The contents of the .dynstr section are actually in a
4211 stringtab. */
4212 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
4213 if (bfd_seek (abfd, off, SEEK_SET) != 0
4214 || ! _bfd_stringtab_emit (abfd,
4215 elf_hash_table (info)->dynstr))
4216 goto error_return;
4217 }
4218 }
4219 }
4220
4221 /* If we have optimized stabs strings, output them. */
4222 if (elf_hash_table (info)->stab_info != NULL)
4223 {
4224 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
4225 goto error_return;
4226 }
4227
4228 if (finfo.symstrtab != NULL)
4229 _bfd_stringtab_free (finfo.symstrtab);
4230 if (finfo.contents != NULL)
4231 free (finfo.contents);
4232 if (finfo.external_relocs != NULL)
4233 free (finfo.external_relocs);
4234 if (finfo.internal_relocs != NULL)
4235 free (finfo.internal_relocs);
4236 if (finfo.external_syms != NULL)
4237 free (finfo.external_syms);
4238 if (finfo.internal_syms != NULL)
4239 free (finfo.internal_syms);
4240 if (finfo.indices != NULL)
4241 free (finfo.indices);
4242 if (finfo.sections != NULL)
4243 free (finfo.sections);
4244 if (finfo.symbuf != NULL)
4245 free (finfo.symbuf);
4246 for (o = abfd->sections; o != NULL; o = o->next)
4247 {
4248 if ((o->flags & SEC_RELOC) != 0
4249 && elf_section_data (o)->rel_hashes != NULL)
4250 free (elf_section_data (o)->rel_hashes);
4251 }
4252
4253 elf_tdata (abfd)->linker = true;
4254
4255 return true;
4256
4257 error_return:
4258 if (finfo.symstrtab != NULL)
4259 _bfd_stringtab_free (finfo.symstrtab);
4260 if (finfo.contents != NULL)
4261 free (finfo.contents);
4262 if (finfo.external_relocs != NULL)
4263 free (finfo.external_relocs);
4264 if (finfo.internal_relocs != NULL)
4265 free (finfo.internal_relocs);
4266 if (finfo.external_syms != NULL)
4267 free (finfo.external_syms);
4268 if (finfo.internal_syms != NULL)
4269 free (finfo.internal_syms);
4270 if (finfo.indices != NULL)
4271 free (finfo.indices);
4272 if (finfo.sections != NULL)
4273 free (finfo.sections);
4274 if (finfo.symbuf != NULL)
4275 free (finfo.symbuf);
4276 for (o = abfd->sections; o != NULL; o = o->next)
4277 {
4278 if ((o->flags & SEC_RELOC) != 0
4279 && elf_section_data (o)->rel_hashes != NULL)
4280 free (elf_section_data (o)->rel_hashes);
4281 }
4282
4283 return false;
4284}
4285
4286/* Add a symbol to the output symbol table. */
4287
4288static boolean
4289elf_link_output_sym (finfo, name, elfsym, input_sec)
4290 struct elf_final_link_info *finfo;
4291 const char *name;
4292 Elf_Internal_Sym *elfsym;
4293 asection *input_sec;
4294{
4295 boolean (*output_symbol_hook) PARAMS ((bfd *,
4296 struct bfd_link_info *info,
4297 const char *,
4298 Elf_Internal_Sym *,
4299 asection *));
4300
4301 output_symbol_hook = get_elf_backend_data (finfo->output_bfd)->
4302 elf_backend_link_output_symbol_hook;
4303 if (output_symbol_hook != NULL)
4304 {
4305 if (! ((*output_symbol_hook)
4306 (finfo->output_bfd, finfo->info, name, elfsym, input_sec)))
4307 return false;
4308 }
4309
4310 if (name == (const char *) NULL || *name == '\0')
4311 elfsym->st_name = 0;
4312 else
4313 {
4314 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
4315 name, true,
4316 false);
4317 if (elfsym->st_name == (unsigned long) -1)
4318 return false;
4319 }
4320
4321 if (finfo->symbuf_count >= finfo->symbuf_size)
4322 {
4323 if (! elf_link_flush_output_syms (finfo))
4324 return false;
4325 }
4326
4327 elf_swap_symbol_out (finfo->output_bfd, elfsym,
4328 (PTR) (finfo->symbuf + finfo->symbuf_count));
4329 ++finfo->symbuf_count;
4330
4331 ++finfo->output_bfd->symcount;
4332
4333 return true;
4334}
4335
4336/* Flush the output symbols to the file. */
4337
4338static boolean
4339elf_link_flush_output_syms (finfo)
4340 struct elf_final_link_info *finfo;
4341{
4342 if (finfo->symbuf_count > 0)
4343 {
4344 Elf_Internal_Shdr *symtab;
4345
4346 symtab = &elf_tdata (finfo->output_bfd)->symtab_hdr;
4347
4348 if (bfd_seek (finfo->output_bfd, symtab->sh_offset + symtab->sh_size,
4349 SEEK_SET) != 0
4350 || (bfd_write ((PTR) finfo->symbuf, finfo->symbuf_count,
4351 sizeof (Elf_External_Sym), finfo->output_bfd)
4352 != finfo->symbuf_count * sizeof (Elf_External_Sym)))
4353 return false;
4354
4355 symtab->sh_size += finfo->symbuf_count * sizeof (Elf_External_Sym);
4356
4357 finfo->symbuf_count = 0;
4358 }
4359
4360 return true;
4361}
4362
4363/* Add an external symbol to the symbol table. This is called from
4364 the hash table traversal routine. When generating a shared object,
4365 we go through the symbol table twice. The first time we output
4366 anything that might have been forced to local scope in a version
4367 script. The second time we output the symbols that are still
4368 global symbols. */
4369
4370static boolean
4371elf_link_output_extsym (h, data)
4372 struct elf_link_hash_entry *h;
4373 PTR data;
4374{
4375 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
4376 struct elf_final_link_info *finfo = eoinfo->finfo;
4377 boolean strip;
4378 Elf_Internal_Sym sym;
4379 asection *input_sec;
4380
4381 /* Decide whether to output this symbol in this pass. */
4382 if (eoinfo->localsyms)
4383 {
4384 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
4385 return true;
4386 }
4387 else
4388 {
4389 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4390 return true;
4391 }
4392
4393 /* If we are not creating a shared library, and this symbol is
4394 referenced by a shared library but is not defined anywhere, then
4395 warn that it is undefined. If we do not do this, the runtime
4396 linker will complain that the symbol is undefined when the
4397 program is run. We don't have to worry about symbols that are
4398 referenced by regular files, because we will already have issued
4399 warnings for them. */
4400 if (! finfo->info->relocateable
4401 && ! finfo->info->shared
4402 && h->root.type == bfd_link_hash_undefined
4403 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0
4404 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4405 {
4406 if (! ((*finfo->info->callbacks->undefined_symbol)
4407 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
4408 (asection *) NULL, 0)))
4409 {
4410 eoinfo->failed = true;
4411 return false;
4412 }
4413 }
4414
4415 /* We don't want to output symbols that have never been mentioned by
4416 a regular file, or that we have been told to strip. However, if
4417 h->indx is set to -2, the symbol is used by a reloc and we must
4418 output it. */
4419 if (h->indx == -2)
4420 strip = false;
4421 else if (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
4422 || (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0)
4423 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0
4424 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0)
4425 strip = true;
4426 else if (finfo->info->strip == strip_all
4427 || (finfo->info->strip == strip_some
4428 && bfd_hash_lookup (finfo->info->keep_hash,
4429 h->root.root.string,
4430 false, false) == NULL))
4431 strip = true;
4432 else
4433 strip = false;
4434
4435 /* If we're stripping it, and it's not a dynamic symbol, there's
4436 nothing else to do. */
4437 if (strip && h->dynindx == -1)
4438 return true;
4439
4440 sym.st_value = 0;
4441 sym.st_size = h->size;
4442 sym.st_other = h->other;
4443 if ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4444 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
4445 else if (h->root.type == bfd_link_hash_undefweak
4446 || h->root.type == bfd_link_hash_defweak)
4447 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
4448 else
4449 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
4450
4451 switch (h->root.type)
4452 {
4453 default:
4454 case bfd_link_hash_new:
4455 abort ();
4456 return false;
4457
4458 case bfd_link_hash_undefined:
4459 input_sec = bfd_und_section_ptr;
4460 sym.st_shndx = SHN_UNDEF;
4461 break;
4462
4463 case bfd_link_hash_undefweak:
4464 input_sec = bfd_und_section_ptr;
4465 sym.st_shndx = SHN_UNDEF;
4466 break;
4467
4468 case bfd_link_hash_defined:
4469 case bfd_link_hash_defweak:
4470 {
4471 input_sec = h->root.u.def.section;
4472 if (input_sec->output_section != NULL)
4473 {
4474 sym.st_shndx =
4475 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
4476 input_sec->output_section);
4477 if (sym.st_shndx == (unsigned short) -1)
4478 {
4479 (*_bfd_error_handler)
4480 (_("%s: could not find output section %s for input section %s"),
4481 bfd_get_filename (finfo->output_bfd),
4482 input_sec->output_section->name,
4483 input_sec->name);
4484 eoinfo->failed = true;
4485 return false;
4486 }
4487
4488 /* ELF symbols in relocateable files are section relative,
4489 but in nonrelocateable files they are virtual
4490 addresses. */
4491 sym.st_value = h->root.u.def.value + input_sec->output_offset;
4492 if (! finfo->info->relocateable)
4493 sym.st_value += input_sec->output_section->vma;
4494 }
4495 else
4496 {
4497 BFD_ASSERT (input_sec->owner == NULL
4498 || (input_sec->owner->flags & DYNAMIC) != 0);
4499 sym.st_shndx = SHN_UNDEF;
4500 input_sec = bfd_und_section_ptr;
4501 }
4502 }
4503 break;
4504
4505 case bfd_link_hash_common:
4506 input_sec = h->root.u.c.p->section;
4507 sym.st_shndx = SHN_COMMON;
4508 sym.st_value = 1 << h->root.u.c.p->alignment_power;
4509 break;
4510
4511 case bfd_link_hash_indirect:
4512 /* These symbols are created by symbol versioning. They point
4513 to the decorated version of the name. For example, if the
4514 symbol foo@@GNU_1.2 is the default, which should be used when
4515 foo is used with no version, then we add an indirect symbol
4516 foo which points to foo@@GNU_1.2. We ignore these symbols,
4517 since the indirected symbol is already in the hash table. If
4518 the indirect symbol is non-ELF, fall through and output it. */
4519 if ((h->elf_link_hash_flags & ELF_LINK_NON_ELF) == 0)
4520 return true;
4521
4522 /* Fall through. */
4523 case bfd_link_hash_warning:
4524 /* We can't represent these symbols in ELF, although a warning
4525 symbol may have come from a .gnu.warning.SYMBOL section. We
4526 just put the target symbol in the hash table. If the target
4527 symbol does not really exist, don't do anything. */
4528 if (h->root.u.i.link->type == bfd_link_hash_new)
4529 return true;
4530 return (elf_link_output_extsym
4531 ((struct elf_link_hash_entry *) h->root.u.i.link, data));
4532 }
4533
4534 /* Give the processor backend a chance to tweak the symbol value,
4535 and also to finish up anything that needs to be done for this
4536 symbol. */
4537 if ((h->dynindx != -1
4538 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0)
4539 && elf_hash_table (finfo->info)->dynamic_sections_created)
4540 {
4541 struct elf_backend_data *bed;
4542
4543 bed = get_elf_backend_data (finfo->output_bfd);
4544 if (! ((*bed->elf_backend_finish_dynamic_symbol)
4545 (finfo->output_bfd, finfo->info, h, &sym)))
4546 {
4547 eoinfo->failed = true;
4548 return false;
4549 }
4550 }
4551
4552 /* If this symbol should be put in the .dynsym section, then put it
4553 there now. We have already know the symbol index. We also fill
4554 in the entry in the .hash section. */
4555 if (h->dynindx != -1
4556 && elf_hash_table (finfo->info)->dynamic_sections_created)
4557 {
4558 size_t bucketcount;
4559 size_t bucket;
4560 bfd_byte *bucketpos;
4561 bfd_vma chain;
4562
4563 sym.st_name = h->dynstr_index;
4564
4565 elf_swap_symbol_out (finfo->output_bfd, &sym,
4566 (PTR) (((Elf_External_Sym *)
4567 finfo->dynsym_sec->contents)
4568 + h->dynindx));
4569
4570 bucketcount = elf_hash_table (finfo->info)->bucketcount;
4571 bucket = h->elf_hash_value % bucketcount;
4572 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
4573 + (bucket + 2) * (ARCH_SIZE / 8));
4574 chain = get_word (finfo->output_bfd, bucketpos);
4575 put_word (finfo->output_bfd, h->dynindx, bucketpos);
4576 put_word (finfo->output_bfd, chain,
4577 ((bfd_byte *) finfo->hash_sec->contents
4578 + (bucketcount + 2 + h->dynindx) * (ARCH_SIZE / 8)));
4579
4580 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
4581 {
4582 Elf_Internal_Versym iversym;
4583
4584 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
4585 {
4586 if (h->verinfo.verdef == NULL)
4587 iversym.vs_vers = 0;
4588 else
4589 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
4590 }
4591 else
4592 {
4593 if (h->verinfo.vertree == NULL)
4594 iversym.vs_vers = 1;
4595 else
4596 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
4597 }
4598
4599 if ((h->elf_link_hash_flags & ELF_LINK_HIDDEN) != 0)
4600 iversym.vs_vers |= VERSYM_HIDDEN;
4601
4602 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym,
4603 (((Elf_External_Versym *)
4604 finfo->symver_sec->contents)
4605 + h->dynindx));
4606 }
4607 }
4608
4609 /* If we're stripping it, then it was just a dynamic symbol, and
4610 there's nothing else to do. */
4611 if (strip)
4612 return true;
4613
4614 h->indx = finfo->output_bfd->symcount;
4615
4616 if (! elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec))
4617 {
4618 eoinfo->failed = true;
4619 return false;
4620 }
4621
4622 return true;
4623}
4624
4625/* Link an input file into the linker output file. This function
4626 handles all the sections and relocations of the input file at once.
4627 This is so that we only have to read the local symbols once, and
4628 don't have to keep them in memory. */
4629
4630static boolean
4631elf_link_input_bfd (finfo, input_bfd)
4632 struct elf_final_link_info *finfo;
4633 bfd *input_bfd;
4634{
4635 boolean (*relocate_section) PARAMS ((bfd *, struct bfd_link_info *,
4636 bfd *, asection *, bfd_byte *,
4637 Elf_Internal_Rela *,
4638 Elf_Internal_Sym *, asection **));
4639 bfd *output_bfd;
4640 Elf_Internal_Shdr *symtab_hdr;
4641 size_t locsymcount;
4642 size_t extsymoff;
4643 Elf_External_Sym *external_syms;
4644 Elf_External_Sym *esym;
4645 Elf_External_Sym *esymend;
4646 Elf_Internal_Sym *isym;
4647 long *pindex;
4648 asection **ppsection;
4649 asection *o;
4650
4651 output_bfd = finfo->output_bfd;
4652 relocate_section =
4653 get_elf_backend_data (output_bfd)->elf_backend_relocate_section;
4654
4655 /* If this is a dynamic object, we don't want to do anything here:
4656 we don't want the local symbols, and we don't want the section
4657 contents. */
4658 if ((input_bfd->flags & DYNAMIC) != 0)
4659 return true;
4660
4661 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4662 if (elf_bad_symtab (input_bfd))
4663 {
4664 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
4665 extsymoff = 0;
4666 }
4667 else
4668 {
4669 locsymcount = symtab_hdr->sh_info;
4670 extsymoff = symtab_hdr->sh_info;
4671 }
4672
4673 /* Read the local symbols. */
4674 if (symtab_hdr->contents != NULL)
4675 external_syms = (Elf_External_Sym *) symtab_hdr->contents;
4676 else if (locsymcount == 0)
4677 external_syms = NULL;
4678 else
4679 {
4680 external_syms = finfo->external_syms;
4681 if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
4682 || (bfd_read (external_syms, sizeof (Elf_External_Sym),
4683 locsymcount, input_bfd)
4684 != locsymcount * sizeof (Elf_External_Sym)))
4685 return false;
4686 }
4687
4688 /* Swap in the local symbols and write out the ones which we know
4689 are going into the output file. */
4690 esym = external_syms;
4691 esymend = esym + locsymcount;
4692 isym = finfo->internal_syms;
4693 pindex = finfo->indices;
4694 ppsection = finfo->sections;
4695 for (; esym < esymend; esym++, isym++, pindex++, ppsection++)
4696 {
4697 asection *isec;
4698 const char *name;
4699 Elf_Internal_Sym osym;
4700
4701 elf_swap_symbol_in (input_bfd, esym, isym);
4702 *pindex = -1;
4703
4704 if (elf_bad_symtab (input_bfd))
4705 {
4706 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
4707 {
4708 *ppsection = NULL;
4709 continue;
4710 }
4711 }
4712
4713 if (isym->st_shndx == SHN_UNDEF)
4714 isec = bfd_und_section_ptr;
4715 else if (isym->st_shndx > 0 && isym->st_shndx < SHN_LORESERVE)
4716 isec = section_from_elf_index (input_bfd, isym->st_shndx);
4717 else if (isym->st_shndx == SHN_ABS)
4718 isec = bfd_abs_section_ptr;
4719 else if (isym->st_shndx == SHN_COMMON)
4720 isec = bfd_com_section_ptr;
4721 else
4722 {
4723 /* Who knows? */
4724 isec = NULL;
4725 }
4726
4727 *ppsection = isec;
4728
4729 /* Don't output the first, undefined, symbol. */
4730 if (esym == external_syms)
4731 continue;
4732
4733 /* If we are stripping all symbols, we don't want to output this
4734 one. */
4735 if (finfo->info->strip == strip_all)
4736 continue;
4737
4738 /* We never output section symbols. Instead, we use the section
4739 symbol of the corresponding section in the output file. */
4740 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4741 continue;
4742
4743 /* If we are discarding all local symbols, we don't want to
4744 output this one. If we are generating a relocateable output
4745 file, then some of the local symbols may be required by
4746 relocs; we output them below as we discover that they are
4747 needed. */
4748 if (finfo->info->discard == discard_all)
4749 continue;
4750
4751 /* If this symbol is defined in a section which we are
4752 discarding, we don't need to keep it, but note that
4753 linker_mark is only reliable for sections that have contents.
4754 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
4755 as well as linker_mark. */
4756 if (isym->st_shndx > 0
4757 && isym->st_shndx < SHN_LORESERVE
4758 && isec != NULL
4759 && ((! isec->linker_mark && (isec->flags & SEC_HAS_CONTENTS) != 0)
4760 || (! finfo->info->relocateable
4761 && (isec->flags & SEC_EXCLUDE) != 0)))
4762 continue;
4763
4764 /* Get the name of the symbol. */
4765 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
4766 isym->st_name);
4767 if (name == NULL)
4768 return false;
4769
4770 /* See if we are discarding symbols with this name. */
4771 if ((finfo->info->strip == strip_some
4772 && (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
4773 == NULL))
4774 || (finfo->info->discard == discard_l
4775 && bfd_is_local_label_name (input_bfd, name)))
4776 continue;
4777
4778 /* If we get here, we are going to output this symbol. */
4779
4780 osym = *isym;
4781
4782 /* Adjust the section index for the output file. */
4783 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
4784 isec->output_section);
4785 if (osym.st_shndx == (unsigned short) -1)
4786 return false;
4787
4788 *pindex = output_bfd->symcount;
4789
4790 /* ELF symbols in relocateable files are section relative, but
4791 in executable files they are virtual addresses. Note that
4792 this code assumes that all ELF sections have an associated
4793 BFD section with a reasonable value for output_offset; below
4794 we assume that they also have a reasonable value for
4795 output_section. Any special sections must be set up to meet
4796 these requirements. */
4797 osym.st_value += isec->output_offset;
4798 if (! finfo->info->relocateable)
4799 osym.st_value += isec->output_section->vma;
4800
4801 if (! elf_link_output_sym (finfo, name, &osym, isec))
4802 return false;
4803 }
4804
4805 /* Relocate the contents of each section. */
4806 for (o = input_bfd->sections; o != NULL; o = o->next)
4807 {
4808 bfd_byte *contents;
4809
4810 if (! o->linker_mark)
4811 {
4812 /* This section was omitted from the link. */
4813 continue;
4814 }
4815
4816 if ((o->flags & SEC_HAS_CONTENTS) == 0
4817 || (o->_raw_size == 0 && (o->flags & SEC_RELOC) == 0))
4818 continue;
4819
4820 if ((o->flags & SEC_LINKER_CREATED) != 0)
4821 {
4822 /* Section was created by elf_link_create_dynamic_sections
4823 or somesuch. */
4824 continue;
4825 }
4826
4827 /* Get the contents of the section. They have been cached by a
4828 relaxation routine. Note that o is a section in an input
4829 file, so the contents field will not have been set by any of
4830 the routines which work on output files. */
4831 if (elf_section_data (o)->this_hdr.contents != NULL)
4832 contents = elf_section_data (o)->this_hdr.contents;
4833 else
4834 {
4835 contents = finfo->contents;
4836 if (! bfd_get_section_contents (input_bfd, o, contents,
4837 (file_ptr) 0, o->_raw_size))
4838 return false;
4839 }
4840
4841 if ((o->flags & SEC_RELOC) != 0)
4842 {
4843 Elf_Internal_Rela *internal_relocs;
4844
4845 /* Get the swapped relocs. */
4846 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
4847 (input_bfd, o, finfo->external_relocs,
4848 finfo->internal_relocs, false));
4849 if (internal_relocs == NULL
4850 && o->reloc_count > 0)
4851 return false;
4852
4853 /* Relocate the section by invoking a back end routine.
4854
4855 The back end routine is responsible for adjusting the
4856 section contents as necessary, and (if using Rela relocs
4857 and generating a relocateable output file) adjusting the
4858 reloc addend as necessary.
4859
4860 The back end routine does not have to worry about setting
4861 the reloc address or the reloc symbol index.
4862
4863 The back end routine is given a pointer to the swapped in
4864 internal symbols, and can access the hash table entries
4865 for the external symbols via elf_sym_hashes (input_bfd).
4866
4867 When generating relocateable output, the back end routine
4868 must handle STB_LOCAL/STT_SECTION symbols specially. The
4869 output symbol is going to be a section symbol
4870 corresponding to the output section, which will require
4871 the addend to be adjusted. */
4872
4873 if (! (*relocate_section) (output_bfd, finfo->info,
4874 input_bfd, o, contents,
4875 internal_relocs,
4876 finfo->internal_syms,
4877 finfo->sections))
4878 return false;
4879
4880 if (finfo->info->relocateable)
4881 {
4882 Elf_Internal_Rela *irela;
4883 Elf_Internal_Rela *irelaend;
4884 struct elf_link_hash_entry **rel_hash;
4885 Elf_Internal_Shdr *input_rel_hdr;
4886 Elf_Internal_Shdr *output_rel_hdr;
4887
4888 /* Adjust the reloc addresses and symbol indices. */
4889
4890 irela = internal_relocs;
4891 irelaend = irela + o->reloc_count;
4892 rel_hash = (elf_section_data (o->output_section)->rel_hashes
4893 + o->output_section->reloc_count);
4894 for (; irela < irelaend; irela++, rel_hash++)
4895 {
4896 unsigned long r_symndx;
4897 Elf_Internal_Sym *isym;
4898 asection *sec;
4899
4900 irela->r_offset += o->output_offset;
4901
4902 r_symndx = ELF_R_SYM (irela->r_info);
4903
4904 if (r_symndx == 0)
4905 continue;
4906
4907 if (r_symndx >= locsymcount
4908 || (elf_bad_symtab (input_bfd)
4909 && finfo->sections[r_symndx] == NULL))
4910 {
4911 struct elf_link_hash_entry *rh;
4912 long indx;
4913
4914 /* This is a reloc against a global symbol. We
4915 have not yet output all the local symbols, so
4916 we do not know the symbol index of any global
4917 symbol. We set the rel_hash entry for this
4918 reloc to point to the global hash table entry
4919 for this symbol. The symbol index is then
4920 set at the end of elf_bfd_final_link. */
4921 indx = r_symndx - extsymoff;
4922 rh = elf_sym_hashes (input_bfd)[indx];
4923 while (rh->root.type == bfd_link_hash_indirect
4924 || rh->root.type == bfd_link_hash_warning)
4925 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
4926
4927 /* Setting the index to -2 tells
4928 elf_link_output_extsym that this symbol is
4929 used by a reloc. */
4930 BFD_ASSERT (rh->indx < 0);
4931 rh->indx = -2;
4932
4933 *rel_hash = rh;
4934
4935 continue;
4936 }
4937
4938 /* This is a reloc against a local symbol. */
4939
4940 *rel_hash = NULL;
4941 isym = finfo->internal_syms + r_symndx;
4942 sec = finfo->sections[r_symndx];
4943 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4944 {
4945 /* I suppose the backend ought to fill in the
4946 section of any STT_SECTION symbol against a
4947 processor specific section. If we have
4948 discarded a section, the output_section will
4949 be the absolute section. */
4950 if (sec != NULL
4951 && (bfd_is_abs_section (sec)
4952 || (sec->output_section != NULL
4953 && bfd_is_abs_section (sec->output_section))))
4954 r_symndx = 0;
4955 else if (sec == NULL || sec->owner == NULL)
4956 {
4957 bfd_set_error (bfd_error_bad_value);
4958 return false;
4959 }
4960 else
4961 {
4962 r_symndx = sec->output_section->target_index;
4963 BFD_ASSERT (r_symndx != 0);
4964 }
4965 }
4966 else
4967 {
4968 if (finfo->indices[r_symndx] == -1)
4969 {
4970 unsigned long link;
4971 const char *name;
4972 asection *osec;
4973
4974 if (finfo->info->strip == strip_all)
4975 {
4976 /* You can't do ld -r -s. */
4977 bfd_set_error (bfd_error_invalid_operation);
4978 return false;
4979 }
4980
4981 /* This symbol was skipped earlier, but
4982 since it is needed by a reloc, we
4983 must output it now. */
4984 link = symtab_hdr->sh_link;
4985 name = bfd_elf_string_from_elf_section (input_bfd,
4986 link,
4987 isym->st_name);
4988 if (name == NULL)
4989 return false;
4990
4991 osec = sec->output_section;
4992 isym->st_shndx =
4993 _bfd_elf_section_from_bfd_section (output_bfd,
4994 osec);
4995 if (isym->st_shndx == (unsigned short) -1)
4996 return false;
4997
4998 isym->st_value += sec->output_offset;
4999 if (! finfo->info->relocateable)
5000 isym->st_value += osec->vma;
5001
5002 finfo->indices[r_symndx] = output_bfd->symcount;
5003
5004 if (! elf_link_output_sym (finfo, name, isym, sec))
5005 return false;
5006 }
5007
5008 r_symndx = finfo->indices[r_symndx];
5009 }
5010
5011 irela->r_info = ELF_R_INFO (r_symndx,
5012 ELF_R_TYPE (irela->r_info));
5013 }
5014
5015 /* Swap out the relocs. */
5016 input_rel_hdr = &elf_section_data (o)->rel_hdr;
5017 output_rel_hdr = &elf_section_data (o->output_section)->rel_hdr;
5018 BFD_ASSERT (output_rel_hdr->sh_entsize
5019 == input_rel_hdr->sh_entsize);
5020 irela = internal_relocs;
5021 irelaend = irela + o->reloc_count;
5022 if (input_rel_hdr->sh_entsize == sizeof (Elf_External_Rel))
5023 {
5024 Elf_External_Rel *erel;
5025
5026 erel = ((Elf_External_Rel *) output_rel_hdr->contents
5027 + o->output_section->reloc_count);
5028 for (; irela < irelaend; irela++, erel++)
5029 {
5030 Elf_Internal_Rel irel;
5031
5032 irel.r_offset = irela->r_offset;
5033 irel.r_info = irela->r_info;
5034 BFD_ASSERT (irela->r_addend == 0);
5035 elf_swap_reloc_out (output_bfd, &irel, erel);
5036 }
5037 }
5038 else
5039 {
5040 Elf_External_Rela *erela;
5041
5042 BFD_ASSERT (input_rel_hdr->sh_entsize
5043 == sizeof (Elf_External_Rela));
5044 erela = ((Elf_External_Rela *) output_rel_hdr->contents
5045 + o->output_section->reloc_count);
5046 for (; irela < irelaend; irela++, erela++)
5047 elf_swap_reloca_out (output_bfd, irela, erela);
5048 }
5049
5050 o->output_section->reloc_count += o->reloc_count;
5051 }
5052 }
5053
5054 /* Write out the modified section contents. */
5055 if (elf_section_data (o)->stab_info == NULL)
5056 {
5057 if (! (o->flags & SEC_EXCLUDE) &&
5058 ! bfd_set_section_contents (output_bfd, o->output_section,
5059 contents, o->output_offset,
5060 (o->_cooked_size != 0
5061 ? o->_cooked_size
5062 : o->_raw_size)))
5063 return false;
5064 }
5065 else
5066 {
5067 if (! (_bfd_write_section_stabs
5068 (output_bfd, &elf_hash_table (finfo->info)->stab_info,
5069 o, &elf_section_data (o)->stab_info, contents)))
5070 return false;
5071 }
5072 }
5073
5074 return true;
5075}
5076
5077/* Generate a reloc when linking an ELF file. This is a reloc
5078 requested by the linker, and does come from any input file. This
5079 is used to build constructor and destructor tables when linking
5080 with -Ur. */
5081
5082static boolean
5083elf_reloc_link_order (output_bfd, info, output_section, link_order)
5084 bfd *output_bfd;
5085 struct bfd_link_info *info;
5086 asection *output_section;
5087 struct bfd_link_order *link_order;
5088{
5089 reloc_howto_type *howto;
5090 long indx;
5091 bfd_vma offset;
5092 bfd_vma addend;
5093 struct elf_link_hash_entry **rel_hash_ptr;
5094 Elf_Internal_Shdr *rel_hdr;
5095
5096 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
5097 if (howto == NULL)
5098 {
5099 bfd_set_error (bfd_error_bad_value);
5100 return false;
5101 }
5102
5103 addend = link_order->u.reloc.p->addend;
5104
5105 /* Figure out the symbol index. */
5106 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
5107 + output_section->reloc_count);
5108 if (link_order->type == bfd_section_reloc_link_order)
5109 {
5110 indx = link_order->u.reloc.p->u.section->target_index;
5111 BFD_ASSERT (indx != 0);
5112 *rel_hash_ptr = NULL;
5113 }
5114 else
5115 {
5116 struct elf_link_hash_entry *h;
5117
5118 /* Treat a reloc against a defined symbol as though it were
5119 actually against the section. */
5120 h = ((struct elf_link_hash_entry *)
5121 bfd_wrapped_link_hash_lookup (output_bfd, info,
5122 link_order->u.reloc.p->u.name,
5123 false, false, true));
5124 if (h != NULL
5125 && (h->root.type == bfd_link_hash_defined
5126 || h->root.type == bfd_link_hash_defweak))
5127 {
5128 asection *section;
5129
5130 section = h->root.u.def.section;
5131 indx = section->output_section->target_index;
5132 *rel_hash_ptr = NULL;
5133 /* It seems that we ought to add the symbol value to the
5134 addend here, but in practice it has already been added
5135 because it was passed to constructor_callback. */
5136 addend += section->output_section->vma + section->output_offset;
5137 }
5138 else if (h != NULL)
5139 {
5140 /* Setting the index to -2 tells elf_link_output_extsym that
5141 this symbol is used by a reloc. */
5142 h->indx = -2;
5143 *rel_hash_ptr = h;
5144 indx = 0;
5145 }
5146 else
5147 {
5148 if (! ((*info->callbacks->unattached_reloc)
5149 (info, link_order->u.reloc.p->u.name, (bfd *) NULL,
5150 (asection *) NULL, (bfd_vma) 0)))
5151 return false;
5152 indx = 0;
5153 }
5154 }
5155
5156 /* If this is an inplace reloc, we must write the addend into the
5157 object file. */
5158 if (howto->partial_inplace && addend != 0)
5159 {
5160 bfd_size_type size;
5161 bfd_reloc_status_type rstat;
5162 bfd_byte *buf;
5163 boolean ok;
5164
5165 size = bfd_get_reloc_size (howto);
5166 buf = (bfd_byte *) bfd_zmalloc (size);
5167 if (buf == (bfd_byte *) NULL)
5168 return false;
5169 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
5170 switch (rstat)
5171 {
5172 case bfd_reloc_ok:
5173 break;
5174 default:
5175 case bfd_reloc_outofrange:
5176 abort ();
5177 case bfd_reloc_overflow:
5178 if (! ((*info->callbacks->reloc_overflow)
5179 (info,
5180 (link_order->type == bfd_section_reloc_link_order
5181 ? bfd_section_name (output_bfd,
5182 link_order->u.reloc.p->u.section)
5183 : link_order->u.reloc.p->u.name),
5184 howto->name, addend, (bfd *) NULL, (asection *) NULL,
5185 (bfd_vma) 0)))
5186 {
5187 free (buf);
5188 return false;
5189 }
5190 break;
5191 }
5192 ok = bfd_set_section_contents (output_bfd, output_section, (PTR) buf,
5193 (file_ptr) link_order->offset, size);
5194 free (buf);
5195 if (! ok)
5196 return false;
5197 }
5198
5199 /* The address of a reloc is relative to the section in a
5200 relocateable file, and is a virtual address in an executable
5201 file. */
5202 offset = link_order->offset;
5203 if (! info->relocateable)
5204 offset += output_section->vma;
5205
5206 rel_hdr = &elf_section_data (output_section)->rel_hdr;
5207
5208 if (rel_hdr->sh_type == SHT_REL)
5209 {
5210 Elf_Internal_Rel irel;
5211 Elf_External_Rel *erel;
5212
5213 irel.r_offset = offset;
5214 irel.r_info = ELF_R_INFO (indx, howto->type);
5215 erel = ((Elf_External_Rel *) rel_hdr->contents
5216 + output_section->reloc_count);
5217 elf_swap_reloc_out (output_bfd, &irel, erel);
5218 }
5219 else
5220 {
5221 Elf_Internal_Rela irela;
5222 Elf_External_Rela *erela;
5223
5224 irela.r_offset = offset;
5225 irela.r_info = ELF_R_INFO (indx, howto->type);
5226 irela.r_addend = addend;
5227 erela = ((Elf_External_Rela *) rel_hdr->contents
5228 + output_section->reloc_count);
5229 elf_swap_reloca_out (output_bfd, &irela, erela);
5230 }
5231
5232 ++output_section->reloc_count;
5233
5234 return true;
5235}
5236
5237\f
5238/* Allocate a pointer to live in a linker created section. */
5239
5240boolean
5241elf_create_pointer_linker_section (abfd, info, lsect, h, rel)
5242 bfd *abfd;
5243 struct bfd_link_info *info;
5244 elf_linker_section_t *lsect;
5245 struct elf_link_hash_entry *h;
5246 const Elf_Internal_Rela *rel;
5247{
5248 elf_linker_section_pointers_t **ptr_linker_section_ptr = NULL;
5249 elf_linker_section_pointers_t *linker_section_ptr;
5250 unsigned long r_symndx = ELF_R_SYM (rel->r_info);;
5251
5252 BFD_ASSERT (lsect != NULL);
5253
5254 /* Is this a global symbol? */
5255 if (h != NULL)
5256 {
5257 /* Has this symbol already been allocated, if so, our work is done */
5258 if (_bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5259 rel->r_addend,
5260 lsect->which))
5261 return true;
5262
5263 ptr_linker_section_ptr = &h->linker_section_pointer;
5264 /* Make sure this symbol is output as a dynamic symbol. */
5265 if (h->dynindx == -1)
5266 {
5267 if (! elf_link_record_dynamic_symbol (info, h))
5268 return false;
5269 }
5270
5271 if (lsect->rel_section)
5272 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5273 }
5274
5275 else /* Allocation of a pointer to a local symbol */
5276 {
5277 elf_linker_section_pointers_t **ptr = elf_local_ptr_offsets (abfd);
5278
5279 /* Allocate a table to hold the local symbols if first time */
5280 if (!ptr)
5281 {
5282 unsigned int num_symbols = elf_tdata (abfd)->symtab_hdr.sh_info;
5283 register unsigned int i;
5284
5285 ptr = (elf_linker_section_pointers_t **)
5286 bfd_alloc (abfd, num_symbols * sizeof (elf_linker_section_pointers_t *));
5287
5288 if (!ptr)
5289 return false;
5290
5291 elf_local_ptr_offsets (abfd) = ptr;
5292 for (i = 0; i < num_symbols; i++)
5293 ptr[i] = (elf_linker_section_pointers_t *)0;
5294 }
5295
5296 /* Has this symbol already been allocated, if so, our work is done */
5297 if (_bfd_elf_find_pointer_linker_section (ptr[r_symndx],
5298 rel->r_addend,
5299 lsect->which))
5300 return true;
5301
5302 ptr_linker_section_ptr = &ptr[r_symndx];
5303
5304 if (info->shared)
5305 {
5306 /* If we are generating a shared object, we need to
5307 output a R_<xxx>_RELATIVE reloc so that the
5308 dynamic linker can adjust this GOT entry. */
5309 BFD_ASSERT (lsect->rel_section != NULL);
5310 lsect->rel_section->_raw_size += sizeof (Elf_External_Rela);
5311 }
5312 }
5313
5314 /* Allocate space for a pointer in the linker section, and allocate a new pointer record
5315 from internal memory. */
5316 BFD_ASSERT (ptr_linker_section_ptr != NULL);
5317 linker_section_ptr = (elf_linker_section_pointers_t *)
5318 bfd_alloc (abfd, sizeof (elf_linker_section_pointers_t));
5319
5320 if (!linker_section_ptr)
5321 return false;
5322
5323 linker_section_ptr->next = *ptr_linker_section_ptr;
5324 linker_section_ptr->addend = rel->r_addend;
5325 linker_section_ptr->which = lsect->which;
5326 linker_section_ptr->written_address_p = false;
5327 *ptr_linker_section_ptr = linker_section_ptr;
5328
5329#if 0
5330 if (lsect->hole_size && lsect->hole_offset < lsect->max_hole_offset)
5331 {
5332 linker_section_ptr->offset = lsect->section->_raw_size - lsect->hole_size + (ARCH_SIZE / 8);
5333 lsect->hole_offset += ARCH_SIZE / 8;
5334 lsect->sym_offset += ARCH_SIZE / 8;
5335 if (lsect->sym_hash) /* Bump up symbol value if needed */
5336 {
5337 lsect->sym_hash->root.u.def.value += ARCH_SIZE / 8;
5338#ifdef DEBUG
5339 fprintf (stderr, "Bump up %s by %ld, current value = %ld\n",
5340 lsect->sym_hash->root.root.string,
5341 (long)ARCH_SIZE / 8,
5342 (long)lsect->sym_hash->root.u.def.value);
5343#endif
5344 }
5345 }
5346 else
5347#endif
5348 linker_section_ptr->offset = lsect->section->_raw_size;
5349
5350 lsect->section->_raw_size += ARCH_SIZE / 8;
5351
5352#ifdef DEBUG
5353 fprintf (stderr, "Create pointer in linker section %s, offset = %ld, section size = %ld\n",
5354 lsect->name, (long)linker_section_ptr->offset, (long)lsect->section->_raw_size);
5355#endif
5356
5357 return true;
5358}
5359
5360\f
5361#if ARCH_SIZE==64
5362#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_64 (BFD, VAL, ADDR)
5363#endif
5364#if ARCH_SIZE==32
5365#define bfd_put_ptr(BFD,VAL,ADDR) bfd_put_32 (BFD, VAL, ADDR)
5366#endif
5367
5368/* Fill in the address for a pointer generated in alinker section. */
5369
5370bfd_vma
5371elf_finish_pointer_linker_section (output_bfd, input_bfd, info, lsect, h, relocation, rel, relative_reloc)
5372 bfd *output_bfd;
5373 bfd *input_bfd;
5374 struct bfd_link_info *info;
5375 elf_linker_section_t *lsect;
5376 struct elf_link_hash_entry *h;
5377 bfd_vma relocation;
5378 const Elf_Internal_Rela *rel;
5379 int relative_reloc;
5380{
5381 elf_linker_section_pointers_t *linker_section_ptr;
5382
5383 BFD_ASSERT (lsect != NULL);
5384
5385 if (h != NULL) /* global symbol */
5386 {
5387 linker_section_ptr = _bfd_elf_find_pointer_linker_section (h->linker_section_pointer,
5388 rel->r_addend,
5389 lsect->which);
5390
5391 BFD_ASSERT (linker_section_ptr != NULL);
5392
5393 if (! elf_hash_table (info)->dynamic_sections_created
5394 || (info->shared
5395 && info->symbolic
5396 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
5397 {
5398 /* This is actually a static link, or it is a
5399 -Bsymbolic link and the symbol is defined
5400 locally. We must initialize this entry in the
5401 global section.
5402
5403 When doing a dynamic link, we create a .rela.<xxx>
5404 relocation entry to initialize the value. This
5405 is done in the finish_dynamic_symbol routine. */
5406 if (!linker_section_ptr->written_address_p)
5407 {
5408 linker_section_ptr->written_address_p = true;
5409 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5410 lsect->section->contents + linker_section_ptr->offset);
5411 }
5412 }
5413 }
5414 else /* local symbol */
5415 {
5416 unsigned long r_symndx = ELF_R_SYM (rel->r_info);
5417 BFD_ASSERT (elf_local_ptr_offsets (input_bfd) != NULL);
5418 BFD_ASSERT (elf_local_ptr_offsets (input_bfd)[r_symndx] != NULL);
5419 linker_section_ptr = _bfd_elf_find_pointer_linker_section (elf_local_ptr_offsets (input_bfd)[r_symndx],
5420 rel->r_addend,
5421 lsect->which);
5422
5423 BFD_ASSERT (linker_section_ptr != NULL);
5424
5425 /* Write out pointer if it hasn't been rewritten out before */
5426 if (!linker_section_ptr->written_address_p)
5427 {
5428 linker_section_ptr->written_address_p = true;
5429 bfd_put_ptr (output_bfd, relocation + linker_section_ptr->addend,
5430 lsect->section->contents + linker_section_ptr->offset);
5431
5432 if (info->shared)
5433 {
5434 asection *srel = lsect->rel_section;
5435 Elf_Internal_Rela outrel;
5436
5437 /* We need to generate a relative reloc for the dynamic linker. */
5438 if (!srel)
5439 lsect->rel_section = srel = bfd_get_section_by_name (elf_hash_table (info)->dynobj,
5440 lsect->rel_name);
5441
5442 BFD_ASSERT (srel != NULL);
5443
5444 outrel.r_offset = (lsect->section->output_section->vma
5445 + lsect->section->output_offset
5446 + linker_section_ptr->offset);
5447 outrel.r_info = ELF_R_INFO (0, relative_reloc);
5448 outrel.r_addend = 0;
5449 elf_swap_reloca_out (output_bfd, &outrel,
5450 (((Elf_External_Rela *)
5451 lsect->section->contents)
5452 + lsect->section->reloc_count));
5453 ++lsect->section->reloc_count;
5454 }
5455 }
5456 }
5457
5458 relocation = (lsect->section->output_offset
5459 + linker_section_ptr->offset
5460 - lsect->hole_offset
5461 - lsect->sym_offset);
5462
5463#ifdef DEBUG
5464 fprintf (stderr, "Finish pointer in linker section %s, offset = %ld (0x%lx)\n",
5465 lsect->name, (long)relocation, (long)relocation);
5466#endif
5467
5468 /* Subtract out the addend, because it will get added back in by the normal
5469 processing. */
5470 return relocation - linker_section_ptr->addend;
5471}
5472\f
5473/* Garbage collect unused sections. */
5474
5475static boolean elf_gc_mark
5476 PARAMS ((struct bfd_link_info *info, asection *sec,
5477 asection * (*gc_mark_hook)
5478 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5479 struct elf_link_hash_entry *, Elf_Internal_Sym *))));
5480
5481static boolean elf_gc_sweep
5482 PARAMS ((struct bfd_link_info *info,
5483 boolean (*gc_sweep_hook)
5484 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5485 const Elf_Internal_Rela *relocs))));
5486
5487static boolean elf_gc_sweep_symbol
5488 PARAMS ((struct elf_link_hash_entry *h, PTR idxptr));
5489
5490static boolean elf_gc_allocate_got_offsets
5491 PARAMS ((struct elf_link_hash_entry *h, PTR offarg));
5492
5493static boolean elf_gc_propagate_vtable_entries_used
5494 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5495
5496static boolean elf_gc_smash_unused_vtentry_relocs
5497 PARAMS ((struct elf_link_hash_entry *h, PTR dummy));
5498
5499/* The mark phase of garbage collection. For a given section, mark
5500 it, and all the sections which define symbols to which it refers. */
5501
5502static boolean
5503elf_gc_mark (info, sec, gc_mark_hook)
5504 struct bfd_link_info *info;
5505 asection *sec;
5506 asection * (*gc_mark_hook)
5507 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Rela *,
5508 struct elf_link_hash_entry *, Elf_Internal_Sym *));
5509{
5510 boolean ret = true;
5511
5512 sec->gc_mark = 1;
5513
5514 /* Look through the section relocs. */
5515
5516 if ((sec->flags & SEC_RELOC) != 0 && sec->reloc_count > 0)
5517 {
5518 Elf_Internal_Rela *relstart, *rel, *relend;
5519 Elf_Internal_Shdr *symtab_hdr;
5520 struct elf_link_hash_entry **sym_hashes;
5521 size_t nlocsyms;
5522 size_t extsymoff;
5523 Elf_External_Sym *locsyms, *freesyms = NULL;
5524 bfd *input_bfd = sec->owner;
5525
5526 /* GCFIXME: how to arrange so that relocs and symbols are not
5527 reread continually? */
5528
5529 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5530 sym_hashes = elf_sym_hashes (input_bfd);
5531
5532 /* Read the local symbols. */
5533 if (elf_bad_symtab (input_bfd))
5534 {
5535 nlocsyms = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
5536 extsymoff = 0;
5537 }
5538 else
5539 extsymoff = nlocsyms = symtab_hdr->sh_info;
5540 if (symtab_hdr->contents)
5541 locsyms = (Elf_External_Sym *) symtab_hdr->contents;
5542 else if (nlocsyms == 0)
5543 locsyms = NULL;
5544 else
5545 {
5546 locsyms = freesyms =
5547 bfd_malloc (nlocsyms * sizeof (Elf_External_Sym));
5548 if (freesyms == NULL
5549 || bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
5550 || (bfd_read (locsyms, sizeof (Elf_External_Sym),
5551 nlocsyms, input_bfd)
5552 != nlocsyms * sizeof (Elf_External_Sym)))
5553 {
5554 ret = false;
5555 goto out1;
5556 }
5557 }
5558
5559 /* Read the relocations. */
5560 relstart = (NAME(_bfd_elf,link_read_relocs)
5561 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL,
5562 info->keep_memory));
5563 if (relstart == NULL)
5564 {
5565 ret = false;
5566 goto out1;
5567 }
5568 relend = relstart + sec->reloc_count;
5569
5570 for (rel = relstart; rel < relend; rel++)
5571 {
5572 unsigned long r_symndx;
5573 asection *rsec;
5574 struct elf_link_hash_entry *h;
5575 Elf_Internal_Sym s;
5576
5577 r_symndx = ELF_R_SYM (rel->r_info);
5578 if (r_symndx == 0)
5579 continue;
5580
5581 if (elf_bad_symtab (sec->owner))
5582 {
5583 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5584 if (ELF_ST_BIND (s.st_info) == STB_LOCAL)
5585 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5586 else
5587 {
5588 h = sym_hashes[r_symndx - extsymoff];
5589 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5590 }
5591 }
5592 else if (r_symndx >= nlocsyms)
5593 {
5594 h = sym_hashes[r_symndx - extsymoff];
5595 rsec = (*gc_mark_hook)(sec->owner, info, rel, h, NULL);
5596 }
5597 else
5598 {
5599 elf_swap_symbol_in (input_bfd, &locsyms[r_symndx], &s);
5600 rsec = (*gc_mark_hook)(sec->owner, info, rel, NULL, &s);
5601 }
5602
5603 if (rsec && !rsec->gc_mark)
5604 if (!elf_gc_mark (info, rsec, gc_mark_hook))
5605 {
5606 ret = false;
5607 goto out2;
5608 }
5609 }
5610
5611 out2:
5612 if (!info->keep_memory)
5613 free (relstart);
5614 out1:
5615 if (freesyms)
5616 free (freesyms);
5617 }
5618
5619 return ret;
5620}
5621
5622/* The sweep phase of garbage collection. Remove all garbage sections. */
5623
5624static boolean
5625elf_gc_sweep (info, gc_sweep_hook)
5626 struct bfd_link_info *info;
5627 boolean (*gc_sweep_hook)
5628 PARAMS ((bfd *abfd, struct bfd_link_info *info, asection *o,
5629 const Elf_Internal_Rela *relocs));
5630{
5631 bfd *sub;
5632
5633 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5634 {
5635 asection *o;
5636
5637 for (o = sub->sections; o != NULL; o = o->next)
5638 {
5639 /* Keep special sections. Keep .debug sections. */
5640 if ((o->flags & SEC_LINKER_CREATED)
5641 || (o->flags & SEC_DEBUGGING))
5642 o->gc_mark = 1;
5643
5644 if (o->gc_mark)
5645 continue;
5646
5647 /* Skip sweeping sections already excluded. */
5648 if (o->flags & SEC_EXCLUDE)
5649 continue;
5650
5651 /* Since this is early in the link process, it is simple
5652 to remove a section from the output. */
5653 o->flags |= SEC_EXCLUDE;
5654
5655 /* But we also have to update some of the relocation
5656 info we collected before. */
5657 if (gc_sweep_hook
5658 && (o->flags & SEC_RELOC) && o->reloc_count > 0)
5659 {
5660 Elf_Internal_Rela *internal_relocs;
5661 boolean r;
5662
5663 internal_relocs = (NAME(_bfd_elf,link_read_relocs)
5664 (o->owner, o, NULL, NULL, info->keep_memory));
5665 if (internal_relocs == NULL)
5666 return false;
5667
5668 r = (*gc_sweep_hook)(o->owner, info, o, internal_relocs);
5669
5670 if (!info->keep_memory)
5671 free (internal_relocs);
5672
5673 if (!r)
5674 return false;
5675 }
5676 }
5677 }
5678
5679 /* Remove the symbols that were in the swept sections from the dynamic
5680 symbol table. GCFIXME: Anyone know how to get them out of the
5681 static symbol table as well? */
5682 {
5683 int i = 0;
5684
5685 elf_link_hash_traverse (elf_hash_table (info),
5686 elf_gc_sweep_symbol,
5687 (PTR) &i);
5688
5689 elf_hash_table (info)->dynsymcount = i;
5690 }
5691
5692 return true;
5693}
5694
5695/* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5696
5697static boolean
5698elf_gc_sweep_symbol (h, idxptr)
5699 struct elf_link_hash_entry *h;
5700 PTR idxptr;
5701{
5702 int *idx = (int *) idxptr;
5703
5704 if (h->dynindx != -1
5705 && ((h->root.type != bfd_link_hash_defined
5706 && h->root.type != bfd_link_hash_defweak)
5707 || h->root.u.def.section->gc_mark))
5708 h->dynindx = (*idx)++;
5709
5710 return true;
5711}
5712
5713/* Propogate collected vtable information. This is called through
5714 elf_link_hash_traverse. */
5715
5716static boolean
5717elf_gc_propagate_vtable_entries_used (h, okp)
5718 struct elf_link_hash_entry *h;
5719 PTR okp;
5720{
5721 /* Those that are not vtables. */
5722 if (h->vtable_parent == NULL)
5723 return true;
5724
5725 /* Those vtables that do not have parents, we cannot merge. */
5726 if (h->vtable_parent == (struct elf_link_hash_entry *) -1)
5727 return true;
5728
5729 /* If we've already been done, exit. */
5730 if (h->vtable_entries_used && h->vtable_entries_used[-1])
5731 return true;
5732
5733 /* Make sure the parent's table is up to date. */
5734 elf_gc_propagate_vtable_entries_used (h->vtable_parent, okp);
5735
5736 if (h->vtable_entries_used == NULL)
5737 {
5738 /* None of this table's entries were referenced. Re-use the
5739 parent's table. */
5740 h->vtable_entries_used = h->vtable_parent->vtable_entries_used;
5741 h->vtable_entries_size = h->vtable_parent->vtable_entries_size;
5742 }
5743 else
5744 {
5745 size_t n;
5746 boolean *cu, *pu;
5747
5748 /* Or the parent's entries into ours. */
5749 cu = h->vtable_entries_used;
5750 cu[-1] = true;
5751 pu = h->vtable_parent->vtable_entries_used;
5752 if (pu != NULL)
5753 {
5754 n = h->vtable_parent->vtable_entries_size / FILE_ALIGN;
5755 while (--n != 0)
5756 {
5757 if (*pu) *cu = true;
5758 pu++, cu++;
5759 }
5760 }
5761 }
5762
5763 return true;
5764}
5765
5766static boolean
5767elf_gc_smash_unused_vtentry_relocs (h, okp)
5768 struct elf_link_hash_entry *h;
5769 PTR okp;
5770{
5771 asection *sec;
5772 bfd_vma hstart, hend;
5773 Elf_Internal_Rela *relstart, *relend, *rel;
5774
5775 /* Take care of both those symbols that do not describe vtables as
5776 well as those that are not loaded. */
5777 if (h->vtable_parent == NULL)
5778 return true;
5779
5780 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5781 || h->root.type == bfd_link_hash_defweak);
5782
5783 sec = h->root.u.def.section;
5784 hstart = h->root.u.def.value;
5785 hend = hstart + h->size;
5786
5787 relstart = (NAME(_bfd_elf,link_read_relocs)
5788 (sec->owner, sec, NULL, (Elf_Internal_Rela *) NULL, true));
5789 if (!relstart)
5790 return *(boolean *)okp = false;
5791 relend = relstart + sec->reloc_count;
5792
5793 for (rel = relstart; rel < relend; ++rel)
5794 if (rel->r_offset >= hstart && rel->r_offset < hend)
5795 {
5796 /* If the entry is in use, do nothing. */
5797 if (h->vtable_entries_used
5798 && (rel->r_offset - hstart) < h->vtable_entries_size)
5799 {
5800 bfd_vma entry = (rel->r_offset - hstart) / FILE_ALIGN;
5801 if (h->vtable_entries_used[entry])
5802 continue;
5803 }
5804 /* Otherwise, kill it. */
5805 rel->r_offset = rel->r_info = rel->r_addend = 0;
5806 }
5807
5808 return true;
5809}
5810
5811/* Do mark and sweep of unused sections. */
5812
5813boolean
5814elf_gc_sections (abfd, info)
5815 bfd *abfd;
5816 struct bfd_link_info *info;
5817{
5818 boolean ok = true;
5819 bfd *sub;
5820 asection * (*gc_mark_hook)
5821 PARAMS ((bfd *abfd, struct bfd_link_info *, Elf_Internal_Rela *,
5822 struct elf_link_hash_entry *h, Elf_Internal_Sym *));
5823
5824 if (!get_elf_backend_data (abfd)->can_gc_sections
5825 || info->relocateable
5826 || elf_hash_table (info)->dynamic_sections_created)
5827 return true;
5828
5829 /* Apply transitive closure to the vtable entry usage info. */
5830 elf_link_hash_traverse (elf_hash_table (info),
5831 elf_gc_propagate_vtable_entries_used,
5832 (PTR) &ok);
5833 if (!ok)
5834 return false;
5835
5836 /* Kill the vtable relocations that were not used. */
5837 elf_link_hash_traverse (elf_hash_table (info),
5838 elf_gc_smash_unused_vtentry_relocs,
5839 (PTR) &ok);
5840 if (!ok)
5841 return false;
5842
5843 /* Grovel through relocs to find out who stays ... */
5844
5845 gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
5846 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
5847 {
5848 asection *o;
5849 for (o = sub->sections; o != NULL; o = o->next)
5850 {
5851 if (o->flags & SEC_KEEP)
5852 if (!elf_gc_mark (info, o, gc_mark_hook))
5853 return false;
5854 }
5855 }
5856
5857 /* ... and mark SEC_EXCLUDE for those that go. */
5858 if (!elf_gc_sweep(info, get_elf_backend_data (abfd)->gc_sweep_hook))
5859 return false;
5860
5861 return true;
5862}
5863\f
5864/* Called from check_relocs to record the existance of a VTINHERIT reloc. */
5865
5866boolean
5867elf_gc_record_vtinherit (abfd, sec, h, offset)
5868 bfd *abfd;
5869 asection *sec;
5870 struct elf_link_hash_entry *h;
5871 bfd_vma offset;
5872{
5873 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
5874 struct elf_link_hash_entry **search, *child;
5875 bfd_size_type extsymcount;
5876
5877 /* The sh_info field of the symtab header tells us where the
5878 external symbols start. We don't care about the local symbols at
5879 this point. */
5880 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size/sizeof (Elf_External_Sym);
5881 if (!elf_bad_symtab (abfd))
5882 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
5883
5884 sym_hashes = elf_sym_hashes (abfd);
5885 sym_hashes_end = sym_hashes + extsymcount;
5886
5887 /* Hunt down the child symbol, which is in this section at the same
5888 offset as the relocation. */
5889 for (search = sym_hashes; search != sym_hashes_end; ++search)
5890 {
5891 if ((child = *search) != NULL
5892 && (child->root.type == bfd_link_hash_defined
5893 || child->root.type == bfd_link_hash_defweak)
5894 && child->root.u.def.section == sec
5895 && child->root.u.def.value == offset)
5896 goto win;
5897 }
5898
5899 (*_bfd_error_handler) ("%s: %s+%lu: No symbol found for INHERIT",
5900 bfd_get_filename (abfd), sec->name,
5901 (unsigned long)offset);
5902 bfd_set_error (bfd_error_invalid_operation);
5903 return false;
5904
5905win:
5906 if (!h)
5907 {
5908 /* This *should* only be the absolute section. It could potentially
5909 be that someone has defined a non-global vtable though, which
5910 would be bad. It isn't worth paging in the local symbols to be
5911 sure though; that case should simply be handled by the assembler. */
5912
5913 child->vtable_parent = (struct elf_link_hash_entry *) -1;
5914 }
5915 else
5916 child->vtable_parent = h;
5917
5918 return true;
5919}
5920
5921/* Called from check_relocs to record the existance of a VTENTRY reloc. */
5922
5923boolean
5924elf_gc_record_vtentry (abfd, sec, h, addend)
5925 bfd *abfd;
5926 asection *sec;
5927 struct elf_link_hash_entry *h;
5928 bfd_vma addend;
5929{
5930 if (addend >= h->vtable_entries_size)
5931 {
5932 size_t size, bytes;
5933 boolean *ptr = h->vtable_entries_used;
5934
5935 /* While the symbol is undefined, we have to be prepared to handle
5936 a zero size. */
5937 if (h->root.type == bfd_link_hash_undefined)
5938 size = addend;
5939 else
5940 {
5941 size = h->size;
5942 if (size < addend)
5943 {
5944 /* Oops! We've got a reference past the defined end of
5945 the table. This is probably a bug -- shall we warn? */
5946 size = addend;
5947 }
5948 }
5949
5950 /* Allocate one extra entry for use as a "done" flag for the
5951 consolidation pass. */
5952 bytes = (size / FILE_ALIGN + 1) * sizeof(boolean);
5953
5954 if (ptr)
5955 {
5956 size_t oldbytes;
5957
5958 ptr = realloc (ptr-1, bytes);
5959 if (ptr == NULL)
5960 return false;
5961
5962 oldbytes = (h->vtable_entries_size/FILE_ALIGN + 1) * sizeof(boolean);
5963 memset (ptr + oldbytes, 0, bytes - oldbytes);
5964 }
5965 else
5966 {
5967 ptr = calloc (1, bytes);
5968 if (ptr == NULL)
5969 return false;
5970 }
5971
5972 /* And arrange for that done flag to be at index -1. */
5973 h->vtable_entries_used = ptr+1;
5974 h->vtable_entries_size = size;
5975 }
5976 h->vtable_entries_used[addend / FILE_ALIGN] = true;
5977
5978 return true;
5979}
5980
5981/* And an accompanying bit to work out final got entry offsets once
5982 we're done. Should be called from final_link. */
5983
5984boolean
5985elf_gc_common_finalize_got_offsets (abfd, info)
5986 bfd *abfd;
5987 struct bfd_link_info *info;
5988{
5989 bfd *i;
5990 struct elf_backend_data *bed = get_elf_backend_data (abfd);
5991 bfd_vma gotoff;
5992
5993 /* The GOT offset is relative to the .got section, but the GOT header is
5994 put into the .got.plt section, if the backend uses it. */
5995 if (bed->want_got_plt)
5996 gotoff = 0;
5997 else
5998 gotoff = bed->got_header_size;
5999
6000 /* Do the local .got entries first. */
6001 for (i = info->input_bfds; i; i = i->link_next)
6002 {
6003 bfd_signed_vma *local_got = elf_local_got_refcounts (i);
6004 bfd_size_type j, locsymcount;
6005 Elf_Internal_Shdr *symtab_hdr;
6006
6007 if (!local_got)
6008 continue;
6009
6010 symtab_hdr = &elf_tdata (i)->symtab_hdr;
6011 if (elf_bad_symtab (i))
6012 locsymcount = symtab_hdr->sh_size / sizeof (Elf_External_Sym);
6013 else
6014 locsymcount = symtab_hdr->sh_info;
6015
6016 for (j = 0; j < locsymcount; ++j)
6017 {
6018 if (local_got[j] > 0)
6019 {
6020 local_got[j] = gotoff;
6021 gotoff += ARCH_SIZE / 8;
6022 }
6023 else
6024 local_got[j] = (bfd_vma) -1;
6025 }
6026 }
6027
6028 /* Then the global .got and .plt entries. */
6029 elf_link_hash_traverse (elf_hash_table (info),
6030 elf_gc_allocate_got_offsets,
6031 (PTR) &gotoff);
6032 return true;
6033}
6034
6035/* We need a special top-level link routine to convert got reference counts
6036 to real got offsets. */
6037
6038static boolean
6039elf_gc_allocate_got_offsets (h, offarg)
6040 struct elf_link_hash_entry *h;
6041 PTR offarg;
6042{
6043 bfd_vma *off = (bfd_vma *) offarg;
6044
6045 if (h->got.refcount > 0)
6046 {
6047 h->got.offset = off[0];
6048 off[0] += ARCH_SIZE / 8;
6049 }
6050 else
6051 h->got.offset = (bfd_vma) -1;
6052
6053 return true;
6054}
6055
6056/* Many folk need no more in the way of final link than this, once
6057 got entry reference counting is enabled. */
6058
6059boolean
6060elf_gc_common_final_link (abfd, info)
6061 bfd *abfd;
6062 struct bfd_link_info *info;
6063{
6064 if (!elf_gc_common_finalize_got_offsets (abfd, info))
6065 return false;
6066
6067 /* Invoke the regular ELF backend linker to do all the work. */
6068 return elf_bfd_final_link (abfd, info);
6069}
6070
6071/* This function will be called though elf_link_hash_traverse to store
6072 all hash value of the exported symbols in an array. */
6073
6074static boolean
6075elf_collect_hash_codes (h, data)
6076 struct elf_link_hash_entry *h;
6077 PTR data;
6078{
6079 unsigned long **valuep = (unsigned long **) data;
6080 const char *name;
6081 char *p;
6082 unsigned long ha;
6083 char *alc = NULL;
6084
6085 /* Ignore indirect symbols. These are added by the versioning code. */
6086 if (h->dynindx == -1)
6087 return true;
6088
6089 name = h->root.root.string;
6090 p = strchr (name, ELF_VER_CHR);
6091 if (p != NULL)
6092 {
6093 alc = bfd_malloc (p - name + 1);
6094 memcpy (alc, name, p - name);
6095 alc[p - name] = '\0';
6096 name = alc;
6097 }
6098
6099 /* Compute the hash value. */
6100 ha = bfd_elf_hash (name);
6101
6102 /* Store the found hash value in the array given as the argument. */
6103 *(*valuep)++ = ha;
6104
6105 /* And store it in the struct so that we can put it in the hash table
6106 later. */
6107 h->elf_hash_value = ha;
6108
6109 if (alc != NULL)
6110 free (alc);
6111
6112 return true;
6113}
This page took 0.042877 seconds and 4 git commands to generate.