Implement a workaround for GNU mak jobserver
[deliverable/binutils-gdb.git] / bfd / syms.c
... / ...
CommitLineData
1/* Generic symbol-table support for the BFD library.
2 Copyright (C) 1990-2021 Free Software Foundation, Inc.
3 Written by Cygnus Support.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22/*
23SECTION
24 Symbols
25
26 BFD tries to maintain as much symbol information as it can when
27 it moves information from file to file. BFD passes information
28 to applications though the <<asymbol>> structure. When the
29 application requests the symbol table, BFD reads the table in
30 the native form and translates parts of it into the internal
31 format. To maintain more than the information passed to
32 applications, some targets keep some information ``behind the
33 scenes'' in a structure only the particular back end knows
34 about. For example, the coff back end keeps the original
35 symbol table structure as well as the canonical structure when
36 a BFD is read in. On output, the coff back end can reconstruct
37 the output symbol table so that no information is lost, even
38 information unique to coff which BFD doesn't know or
39 understand. If a coff symbol table were read, but were written
40 through an a.out back end, all the coff specific information
41 would be lost. The symbol table of a BFD
42 is not necessarily read in until a canonicalize request is
43 made. Then the BFD back end fills in a table provided by the
44 application with pointers to the canonical information. To
45 output symbols, the application provides BFD with a table of
46 pointers to pointers to <<asymbol>>s. This allows applications
47 like the linker to output a symbol as it was read, since the ``behind
48 the scenes'' information will be still available.
49@menu
50@* Reading Symbols::
51@* Writing Symbols::
52@* Mini Symbols::
53@* typedef asymbol::
54@* symbol handling functions::
55@end menu
56
57INODE
58Reading Symbols, Writing Symbols, Symbols, Symbols
59SUBSECTION
60 Reading symbols
61
62 There are two stages to reading a symbol table from a BFD:
63 allocating storage, and the actual reading process. This is an
64 excerpt from an application which reads the symbol table:
65
66| long storage_needed;
67| asymbol **symbol_table;
68| long number_of_symbols;
69| long i;
70|
71| storage_needed = bfd_get_symtab_upper_bound (abfd);
72|
73| if (storage_needed < 0)
74| FAIL
75|
76| if (storage_needed == 0)
77| return;
78|
79| symbol_table = xmalloc (storage_needed);
80| ...
81| number_of_symbols =
82| bfd_canonicalize_symtab (abfd, symbol_table);
83|
84| if (number_of_symbols < 0)
85| FAIL
86|
87| for (i = 0; i < number_of_symbols; i++)
88| process_symbol (symbol_table[i]);
89
90 All storage for the symbols themselves is in an objalloc
91 connected to the BFD; it is freed when the BFD is closed.
92
93INODE
94Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95SUBSECTION
96 Writing symbols
97
98 Writing of a symbol table is automatic when a BFD open for
99 writing is closed. The application attaches a vector of
100 pointers to pointers to symbols to the BFD being written, and
101 fills in the symbol count. The close and cleanup code reads
102 through the table provided and performs all the necessary
103 operations. The BFD output code must always be provided with an
104 ``owned'' symbol: one which has come from another BFD, or one
105 which has been created using <<bfd_make_empty_symbol>>. Here is an
106 example showing the creation of a symbol table with only one element:
107
108| #include "sysdep.h"
109| #include "bfd.h"
110| int main (void)
111| {
112| bfd *abfd;
113| asymbol *ptrs[2];
114| asymbol *new;
115|
116| abfd = bfd_openw ("foo","a.out-sunos-big");
117| bfd_set_format (abfd, bfd_object);
118| new = bfd_make_empty_symbol (abfd);
119| new->name = "dummy_symbol";
120| new->section = bfd_make_section_old_way (abfd, ".text");
121| new->flags = BSF_GLOBAL;
122| new->value = 0x12345;
123|
124| ptrs[0] = new;
125| ptrs[1] = 0;
126|
127| bfd_set_symtab (abfd, ptrs, 1);
128| bfd_close (abfd);
129| return 0;
130| }
131|
132| ./makesym
133| nm foo
134| 00012345 A dummy_symbol
135
136 Many formats cannot represent arbitrary symbol information; for
137 instance, the <<a.out>> object format does not allow an
138 arbitrary number of sections. A symbol pointing to a section
139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot
140 be described.
141
142INODE
143Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144SUBSECTION
145 Mini Symbols
146
147 Mini symbols provide read-only access to the symbol table.
148 They use less memory space, but require more time to access.
149 They can be useful for tools like nm or objdump, which may
150 have to handle symbol tables of extremely large executables.
151
152 The <<bfd_read_minisymbols>> function will read the symbols
153 into memory in an internal form. It will return a <<void *>>
154 pointer to a block of memory, a symbol count, and the size of
155 each symbol. The pointer is allocated using <<malloc>>, and
156 should be freed by the caller when it is no longer needed.
157
158 The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 to a minisymbol, and a pointer to a structure returned by
160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 The return value may or may not be the same as the value from
162 <<bfd_make_empty_symbol>> which was passed in.
163
164*/
165
166/*
167DOCDD
168INODE
169typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170
171*/
172/*
173SUBSECTION
174 typedef asymbol
175
176 An <<asymbol>> has the form:
177
178*/
179
180/*
181CODE_FRAGMENT
182
183.
184.typedef struct bfd_symbol
185.{
186. {* A pointer to the BFD which owns the symbol. This information
187. is necessary so that a back end can work out what additional
188. information (invisible to the application writer) is carried
189. with the symbol.
190.
191. This field is *almost* redundant, since you can use section->owner
192. instead, except that some symbols point to the global sections
193. bfd_{abs,com,und}_section. This could be fixed by making
194. these globals be per-bfd (or per-target-flavor). FIXME. *}
195. struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *}
196.
197. {* The text of the symbol. The name is left alone, and not copied; the
198. application may not alter it. *}
199. const char *name;
200.
201. {* The value of the symbol. This really should be a union of a
202. numeric value with a pointer, since some flags indicate that
203. a pointer to another symbol is stored here. *}
204. symvalue value;
205.
206. {* Attributes of a symbol. *}
207.#define BSF_NO_FLAGS 0
208.
209. {* The symbol has local scope; <<static>> in <<C>>. The value
210. is the offset into the section of the data. *}
211.#define BSF_LOCAL (1 << 0)
212.
213. {* The symbol has global scope; initialized data in <<C>>. The
214. value is the offset into the section of the data. *}
215.#define BSF_GLOBAL (1 << 1)
216.
217. {* The symbol has global scope and is exported. The value is
218. the offset into the section of the data. *}
219.#define BSF_EXPORT BSF_GLOBAL {* No real difference. *}
220.
221. {* A normal C symbol would be one of:
222. <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *}
223.
224. {* The symbol is a debugging record. The value has an arbitrary
225. meaning, unless BSF_DEBUGGING_RELOC is also set. *}
226.#define BSF_DEBUGGING (1 << 2)
227.
228. {* The symbol denotes a function entry point. Used in ELF,
229. perhaps others someday. *}
230.#define BSF_FUNCTION (1 << 3)
231.
232. {* Used by the linker. *}
233.#define BSF_KEEP (1 << 5)
234.
235. {* An ELF common symbol. *}
236.#define BSF_ELF_COMMON (1 << 6)
237.
238. {* A weak global symbol, overridable without warnings by
239. a regular global symbol of the same name. *}
240.#define BSF_WEAK (1 << 7)
241.
242. {* This symbol was created to point to a section, e.g. ELF's
243. STT_SECTION symbols. *}
244.#define BSF_SECTION_SYM (1 << 8)
245.
246. {* The symbol used to be a common symbol, but now it is
247. allocated. *}
248.#define BSF_OLD_COMMON (1 << 9)
249.
250. {* In some files the type of a symbol sometimes alters its
251. location in an output file - ie in coff a <<ISFCN>> symbol
252. which is also <<C_EXT>> symbol appears where it was
253. declared and not at the end of a section. This bit is set
254. by the target BFD part to convey this information. *}
255.#define BSF_NOT_AT_END (1 << 10)
256.
257. {* Signal that the symbol is the label of constructor section. *}
258.#define BSF_CONSTRUCTOR (1 << 11)
259.
260. {* Signal that the symbol is a warning symbol. The name is a
261. warning. The name of the next symbol is the one to warn about;
262. if a reference is made to a symbol with the same name as the next
263. symbol, a warning is issued by the linker. *}
264.#define BSF_WARNING (1 << 12)
265.
266. {* Signal that the symbol is indirect. This symbol is an indirect
267. pointer to the symbol with the same name as the next symbol. *}
268.#define BSF_INDIRECT (1 << 13)
269.
270. {* BSF_FILE marks symbols that contain a file name. This is used
271. for ELF STT_FILE symbols. *}
272.#define BSF_FILE (1 << 14)
273.
274. {* Symbol is from dynamic linking information. *}
275.#define BSF_DYNAMIC (1 << 15)
276.
277. {* The symbol denotes a data object. Used in ELF, and perhaps
278. others someday. *}
279.#define BSF_OBJECT (1 << 16)
280.
281. {* This symbol is a debugging symbol. The value is the offset
282. into the section of the data. BSF_DEBUGGING should be set
283. as well. *}
284.#define BSF_DEBUGGING_RELOC (1 << 17)
285.
286. {* This symbol is thread local. Used in ELF. *}
287.#define BSF_THREAD_LOCAL (1 << 18)
288.
289. {* This symbol represents a complex relocation expression,
290. with the expression tree serialized in the symbol name. *}
291.#define BSF_RELC (1 << 19)
292.
293. {* This symbol represents a signed complex relocation expression,
294. with the expression tree serialized in the symbol name. *}
295.#define BSF_SRELC (1 << 20)
296.
297. {* This symbol was created by bfd_get_synthetic_symtab. *}
298.#define BSF_SYNTHETIC (1 << 21)
299.
300. {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
301. The dynamic linker will compute the value of this symbol by
302. calling the function that it points to. BSF_FUNCTION must
303. also be also set. *}
304.#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305. {* This symbol is a globally unique data object. The dynamic linker
306. will make sure that in the entire process there is just one symbol
307. with this name and type in use. BSF_OBJECT must also be set. *}
308.#define BSF_GNU_UNIQUE (1 << 23)
309.
310. {* This section symbol should be included in the symbol table. *}
311.#define BSF_SECTION_SYM_USED (1 << 24)
312.
313. flagword flags;
314.
315. {* A pointer to the section to which this symbol is
316. relative. This will always be non NULL, there are special
317. sections for undefined and absolute symbols. *}
318. struct bfd_section *section;
319.
320. {* Back end special data. *}
321. union
322. {
323. void *p;
324. bfd_vma i;
325. }
326. udata;
327.}
328.asymbol;
329.
330*/
331
332#include "sysdep.h"
333#include "bfd.h"
334#include "libbfd.h"
335#include "safe-ctype.h"
336#include "bfdlink.h"
337#include "aout/stab_gnu.h"
338
339/*
340DOCDD
341INODE
342symbol handling functions, , typedef asymbol, Symbols
343SUBSECTION
344 Symbol handling functions
345*/
346
347/*
348FUNCTION
349 bfd_get_symtab_upper_bound
350
351DESCRIPTION
352 Return the number of bytes required to store a vector of pointers
353 to <<asymbols>> for all the symbols in the BFD @var{abfd},
354 including a terminal NULL pointer. If there are no symbols in
355 the BFD, then return 0. If an error occurs, return -1.
356
357.#define bfd_get_symtab_upper_bound(abfd) \
358. BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
359.
360*/
361
362/*
363FUNCTION
364 bfd_is_local_label
365
366SYNOPSIS
367 bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
368
369DESCRIPTION
370 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
371 a compiler generated local label, else return FALSE.
372*/
373
374bfd_boolean
375bfd_is_local_label (bfd *abfd, asymbol *sym)
376{
377 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
378 starts with '.' is local. This would accidentally catch section names
379 if we didn't reject them here. */
380 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
381 return FALSE;
382 if (sym->name == NULL)
383 return FALSE;
384 return bfd_is_local_label_name (abfd, sym->name);
385}
386
387/*
388FUNCTION
389 bfd_is_local_label_name
390
391SYNOPSIS
392 bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
393
394DESCRIPTION
395 Return TRUE if a symbol with the name @var{name} in the BFD
396 @var{abfd} is a compiler generated local label, else return
397 FALSE. This just checks whether the name has the form of a
398 local label.
399
400.#define bfd_is_local_label_name(abfd, name) \
401. BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
402.
403*/
404
405/*
406FUNCTION
407 bfd_is_target_special_symbol
408
409SYNOPSIS
410 bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
411
412DESCRIPTION
413 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
414 special to the particular target represented by the BFD. Such symbols
415 should normally not be mentioned to the user.
416
417.#define bfd_is_target_special_symbol(abfd, sym) \
418. BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
419.
420*/
421
422/*
423FUNCTION
424 bfd_canonicalize_symtab
425
426DESCRIPTION
427 Read the symbols from the BFD @var{abfd}, and fills in
428 the vector @var{location} with pointers to the symbols and
429 a trailing NULL.
430 Return the actual number of symbol pointers, not
431 including the NULL.
432
433.#define bfd_canonicalize_symtab(abfd, location) \
434. BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
435.
436*/
437
438/*
439FUNCTION
440 bfd_set_symtab
441
442SYNOPSIS
443 bfd_boolean bfd_set_symtab
444 (bfd *abfd, asymbol **location, unsigned int count);
445
446DESCRIPTION
447 Arrange that when the output BFD @var{abfd} is closed,
448 the table @var{location} of @var{count} pointers to symbols
449 will be written.
450*/
451
452bfd_boolean
453bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
454{
455 if (abfd->format != bfd_object || bfd_read_p (abfd))
456 {
457 bfd_set_error (bfd_error_invalid_operation);
458 return FALSE;
459 }
460
461 abfd->outsymbols = location;
462 abfd->symcount = symcount;
463 return TRUE;
464}
465
466/*
467FUNCTION
468 bfd_print_symbol_vandf
469
470SYNOPSIS
471 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
472
473DESCRIPTION
474 Print the value and flags of the @var{symbol} supplied to the
475 stream @var{file}.
476*/
477void
478bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
479{
480 FILE *file = (FILE *) arg;
481
482 flagword type = symbol->flags;
483
484 if (symbol->section != NULL)
485 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
486 else
487 bfd_fprintf_vma (abfd, file, symbol->value);
488
489 /* This presumes that a symbol can not be both BSF_DEBUGGING and
490 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
491 BSF_OBJECT. */
492 fprintf (file, " %c%c%c%c%c%c%c",
493 ((type & BSF_LOCAL)
494 ? (type & BSF_GLOBAL) ? '!' : 'l'
495 : (type & BSF_GLOBAL) ? 'g'
496 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
497 (type & BSF_WEAK) ? 'w' : ' ',
498 (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
499 (type & BSF_WARNING) ? 'W' : ' ',
500 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
501 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
502 ((type & BSF_FUNCTION)
503 ? 'F'
504 : ((type & BSF_FILE)
505 ? 'f'
506 : ((type & BSF_OBJECT) ? 'O' : ' '))));
507}
508
509/*
510FUNCTION
511 bfd_make_empty_symbol
512
513DESCRIPTION
514 Create a new <<asymbol>> structure for the BFD @var{abfd}
515 and return a pointer to it.
516
517 This routine is necessary because each back end has private
518 information surrounding the <<asymbol>>. Building your own
519 <<asymbol>> and pointing to it will not create the private
520 information, and will cause problems later on.
521
522.#define bfd_make_empty_symbol(abfd) \
523. BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
524.
525*/
526
527/*
528FUNCTION
529 _bfd_generic_make_empty_symbol
530
531SYNOPSIS
532 asymbol *_bfd_generic_make_empty_symbol (bfd *);
533
534DESCRIPTION
535 Create a new <<asymbol>> structure for the BFD @var{abfd}
536 and return a pointer to it. Used by core file routines,
537 binary back-end and anywhere else where no private info
538 is needed.
539*/
540
541asymbol *
542_bfd_generic_make_empty_symbol (bfd *abfd)
543{
544 size_t amt = sizeof (asymbol);
545 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
546 if (new_symbol)
547 new_symbol->the_bfd = abfd;
548 return new_symbol;
549}
550
551/*
552FUNCTION
553 bfd_make_debug_symbol
554
555DESCRIPTION
556 Create a new <<asymbol>> structure for the BFD @var{abfd},
557 to be used as a debugging symbol. Further details of its use have
558 yet to be worked out.
559
560.#define bfd_make_debug_symbol(abfd,ptr,size) \
561. BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
562.
563*/
564
565struct section_to_type
566{
567 const char *section;
568 char type;
569};
570
571/* Map special section names to POSIX/BSD single-character symbol types.
572 This table is probably incomplete. It is sorted for convenience of
573 adding entries. Since it is so short, a linear search is used. */
574static const struct section_to_type stt[] =
575{
576 {".drectve", 'i'}, /* MSVC's .drective section */
577 {".edata", 'e'}, /* MSVC's .edata (export) section */
578 {".idata", 'i'}, /* MSVC's .idata (import) section */
579 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */
580 {0, 0}
581};
582
583/* Return the single-character symbol type corresponding to
584 section S, or '?' for an unknown COFF section.
585
586 Check for leading strings which match, followed by a number, '.',
587 or '$' so .idata5 matches the .idata entry. */
588
589static char
590coff_section_type (const char *s)
591{
592 const struct section_to_type *t;
593
594 for (t = &stt[0]; t->section; t++)
595 {
596 size_t len = strlen (t->section);
597 if (strncmp (s, t->section, len) == 0
598 && memchr (".$0123456789", s[len], 13) != 0)
599 return t->type;
600 }
601
602 return '?';
603}
604
605/* Return the single-character symbol type corresponding to section
606 SECTION, or '?' for an unknown section. This uses section flags to
607 identify sections.
608
609 FIXME These types are unhandled: e, i, p. If we handled these also,
610 we could perhaps obsolete coff_section_type. */
611
612static char
613decode_section_type (const struct bfd_section *section)
614{
615 if (section->flags & SEC_CODE)
616 return 't';
617 if (section->flags & SEC_DATA)
618 {
619 if (section->flags & SEC_READONLY)
620 return 'r';
621 else if (section->flags & SEC_SMALL_DATA)
622 return 'g';
623 else
624 return 'd';
625 }
626 if ((section->flags & SEC_HAS_CONTENTS) == 0)
627 {
628 if (section->flags & SEC_SMALL_DATA)
629 return 's';
630 else
631 return 'b';
632 }
633 if (section->flags & SEC_DEBUGGING)
634 return 'N';
635 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
636 return 'n';
637
638 return '?';
639}
640
641/*
642FUNCTION
643 bfd_decode_symclass
644
645DESCRIPTION
646 Return a character corresponding to the symbol
647 class of @var{symbol}, or '?' for an unknown class.
648
649SYNOPSIS
650 int bfd_decode_symclass (asymbol *symbol);
651*/
652int
653bfd_decode_symclass (asymbol *symbol)
654{
655 char c;
656
657 if (symbol->section && bfd_is_com_section (symbol->section))
658 {
659 if (symbol->section->flags & SEC_SMALL_DATA)
660 return 'c';
661 else
662 return 'C';
663 }
664 if (bfd_is_und_section (symbol->section))
665 {
666 if (symbol->flags & BSF_WEAK)
667 {
668 /* If weak, determine if it's specifically an object
669 or non-object weak. */
670 if (symbol->flags & BSF_OBJECT)
671 return 'v';
672 else
673 return 'w';
674 }
675 else
676 return 'U';
677 }
678 if (bfd_is_ind_section (symbol->section))
679 return 'I';
680 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
681 return 'i';
682 if (symbol->flags & BSF_WEAK)
683 {
684 /* If weak, determine if it's specifically an object
685 or non-object weak. */
686 if (symbol->flags & BSF_OBJECT)
687 return 'V';
688 else
689 return 'W';
690 }
691 if (symbol->flags & BSF_GNU_UNIQUE)
692 return 'u';
693 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
694 return '?';
695
696 if (bfd_is_abs_section (symbol->section))
697 c = 'a';
698 else if (symbol->section)
699 {
700 c = coff_section_type (symbol->section->name);
701 if (c == '?')
702 c = decode_section_type (symbol->section);
703 }
704 else
705 return '?';
706 if (symbol->flags & BSF_GLOBAL)
707 c = TOUPPER (c);
708 return c;
709
710 /* We don't have to handle these cases just yet, but we will soon:
711 N_SETV: 'v';
712 N_SETA: 'l';
713 N_SETT: 'x';
714 N_SETD: 'z';
715 N_SETB: 's';
716 N_INDR: 'i';
717 */
718}
719
720/*
721FUNCTION
722 bfd_is_undefined_symclass
723
724DESCRIPTION
725 Returns non-zero if the class symbol returned by
726 bfd_decode_symclass represents an undefined symbol.
727 Returns zero otherwise.
728
729SYNOPSIS
730 bfd_boolean bfd_is_undefined_symclass (int symclass);
731*/
732
733bfd_boolean
734bfd_is_undefined_symclass (int symclass)
735{
736 return symclass == 'U' || symclass == 'w' || symclass == 'v';
737}
738
739/*
740FUNCTION
741 bfd_symbol_info
742
743DESCRIPTION
744 Fill in the basic info about symbol that nm needs.
745 Additional info may be added by the back-ends after
746 calling this function.
747
748SYNOPSIS
749 void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
750*/
751
752void
753bfd_symbol_info (asymbol *symbol, symbol_info *ret)
754{
755 ret->type = bfd_decode_symclass (symbol);
756
757 if (bfd_is_undefined_symclass (ret->type))
758 ret->value = 0;
759 else
760 ret->value = symbol->value + symbol->section->vma;
761
762 ret->name = symbol->name;
763}
764
765/*
766FUNCTION
767 bfd_copy_private_symbol_data
768
769SYNOPSIS
770 bfd_boolean bfd_copy_private_symbol_data
771 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
772
773DESCRIPTION
774 Copy private symbol information from @var{isym} in the BFD
775 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
776 Return <<TRUE>> on success, <<FALSE>> on error. Possible error
777 returns are:
778
779 o <<bfd_error_no_memory>> -
780 Not enough memory exists to create private data for @var{osec}.
781
782.#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
783. BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
784. (ibfd, isymbol, obfd, osymbol))
785.
786*/
787
788/* The generic version of the function which returns mini symbols.
789 This is used when the backend does not provide a more efficient
790 version. It just uses BFD asymbol structures as mini symbols. */
791
792long
793_bfd_generic_read_minisymbols (bfd *abfd,
794 bfd_boolean dynamic,
795 void **minisymsp,
796 unsigned int *sizep)
797{
798 long storage;
799 asymbol **syms = NULL;
800 long symcount;
801
802 if (dynamic)
803 storage = bfd_get_dynamic_symtab_upper_bound (abfd);
804 else
805 storage = bfd_get_symtab_upper_bound (abfd);
806 if (storage < 0)
807 goto error_return;
808 if (storage == 0)
809 return 0;
810
811 syms = (asymbol **) bfd_malloc (storage);
812 if (syms == NULL)
813 goto error_return;
814
815 if (dynamic)
816 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
817 else
818 symcount = bfd_canonicalize_symtab (abfd, syms);
819 if (symcount < 0)
820 goto error_return;
821
822 if (symcount == 0)
823 /* We return 0 above when storage is 0. Exit in the same state
824 here, so as to not complicate callers with having to deal with
825 freeing memory for zero symcount. */
826 free (syms);
827 else
828 {
829 *minisymsp = syms;
830 *sizep = sizeof (asymbol *);
831 }
832 return symcount;
833
834 error_return:
835 bfd_set_error (bfd_error_no_symbols);
836 free (syms);
837 return -1;
838}
839
840/* The generic version of the function which converts a minisymbol to
841 an asymbol. We don't worry about the sym argument we are passed;
842 we just return the asymbol the minisymbol points to. */
843
844asymbol *
845_bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
846 bfd_boolean dynamic ATTRIBUTE_UNUSED,
847 const void *minisym,
848 asymbol *sym ATTRIBUTE_UNUSED)
849{
850 return *(asymbol **) minisym;
851}
852
853/* Look through stabs debugging information in .stab and .stabstr
854 sections to find the source file and line closest to a desired
855 location. This is used by COFF and ELF targets. It sets *pfound
856 to TRUE if it finds some information. The *pinfo field is used to
857 pass cached information in and out of this routine; this first time
858 the routine is called for a BFD, *pinfo should be NULL. The value
859 placed in *pinfo should be saved with the BFD, and passed back each
860 time this function is called. */
861
862/* We use a cache by default. */
863
864#define ENABLE_CACHING
865
866/* We keep an array of indexentry structures to record where in the
867 stabs section we should look to find line number information for a
868 particular address. */
869
870struct indexentry
871{
872 bfd_vma val;
873 bfd_byte *stab;
874 bfd_byte *str;
875 char *directory_name;
876 char *file_name;
877 char *function_name;
878 int idx;
879};
880
881/* Compare two indexentry structures. This is called via qsort. */
882
883static int
884cmpindexentry (const void *a, const void *b)
885{
886 const struct indexentry *contestantA = (const struct indexentry *) a;
887 const struct indexentry *contestantB = (const struct indexentry *) b;
888
889 if (contestantA->val < contestantB->val)
890 return -1;
891 if (contestantA->val > contestantB->val)
892 return 1;
893 return contestantA->idx - contestantB->idx;
894}
895
896/* A pointer to this structure is stored in *pinfo. */
897
898struct stab_find_info
899{
900 /* The .stab section. */
901 asection *stabsec;
902 /* The .stabstr section. */
903 asection *strsec;
904 /* The contents of the .stab section. */
905 bfd_byte *stabs;
906 /* The contents of the .stabstr section. */
907 bfd_byte *strs;
908
909 /* A table that indexes stabs by memory address. */
910 struct indexentry *indextable;
911 /* The number of entries in indextable. */
912 int indextablesize;
913
914#ifdef ENABLE_CACHING
915 /* Cached values to restart quickly. */
916 struct indexentry *cached_indexentry;
917 bfd_vma cached_offset;
918 bfd_byte *cached_stab;
919 char *cached_file_name;
920#endif
921
922 /* Saved ptr to malloc'ed filename. */
923 char *filename;
924};
925
926bfd_boolean
927_bfd_stab_section_find_nearest_line (bfd *abfd,
928 asymbol **symbols,
929 asection *section,
930 bfd_vma offset,
931 bfd_boolean *pfound,
932 const char **pfilename,
933 const char **pfnname,
934 unsigned int *pline,
935 void **pinfo)
936{
937 struct stab_find_info *info;
938 bfd_size_type stabsize, strsize;
939 bfd_byte *stab, *str;
940 bfd_byte *nul_fun, *nul_str;
941 bfd_size_type stroff;
942 struct indexentry *indexentry;
943 char *file_name;
944 char *directory_name;
945 bfd_boolean saw_line, saw_func;
946
947 *pfound = FALSE;
948 *pfilename = bfd_get_filename (abfd);
949 *pfnname = NULL;
950 *pline = 0;
951
952 /* Stabs entries use a 12 byte format:
953 4 byte string table index
954 1 byte stab type
955 1 byte stab other field
956 2 byte stab desc field
957 4 byte stab value
958 FIXME: This will have to change for a 64 bit object format.
959
960 The stabs symbols are divided into compilation units. For the
961 first entry in each unit, the type of 0, the value is the length
962 of the string table for this unit, and the desc field is the
963 number of stabs symbols for this unit. */
964
965#define STRDXOFF (0)
966#define TYPEOFF (4)
967#define OTHEROFF (5)
968#define DESCOFF (6)
969#define VALOFF (8)
970#define STABSIZE (12)
971
972 info = (struct stab_find_info *) *pinfo;
973 if (info != NULL)
974 {
975 if (info->stabsec == NULL || info->strsec == NULL)
976 {
977 /* No stabs debugging information. */
978 return TRUE;
979 }
980
981 stabsize = (info->stabsec->rawsize
982 ? info->stabsec->rawsize
983 : info->stabsec->size);
984 strsize = (info->strsec->rawsize
985 ? info->strsec->rawsize
986 : info->strsec->size);
987 }
988 else
989 {
990 long reloc_size, reloc_count;
991 arelent **reloc_vector;
992 int i;
993 char *function_name;
994 bfd_size_type amt = sizeof *info;
995
996 info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
997 if (info == NULL)
998 return FALSE;
999
1000 /* FIXME: When using the linker --split-by-file or
1001 --split-by-reloc options, it is possible for the .stab and
1002 .stabstr sections to be split. We should handle that. */
1003
1004 info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1005 info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1006
1007 if (info->stabsec == NULL || info->strsec == NULL)
1008 {
1009 /* Try SOM section names. */
1010 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1011 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1012
1013 if (info->stabsec == NULL || info->strsec == NULL)
1014 {
1015 /* No stabs debugging information. Set *pinfo so that we
1016 can return quickly in the info != NULL case above. */
1017 *pinfo = info;
1018 return TRUE;
1019 }
1020 }
1021
1022 stabsize = (info->stabsec->rawsize
1023 ? info->stabsec->rawsize
1024 : info->stabsec->size);
1025 stabsize = (stabsize / STABSIZE) * STABSIZE;
1026 strsize = (info->strsec->rawsize
1027 ? info->strsec->rawsize
1028 : info->strsec->size);
1029
1030 info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1031 info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1032 if (info->stabs == NULL || info->strs == NULL)
1033 return FALSE;
1034
1035 if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1036 0, stabsize)
1037 || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1038 0, strsize))
1039 return FALSE;
1040
1041 /* Stab strings ought to be nul terminated. Ensure the last one
1042 is, to prevent running off the end of the buffer. */
1043 info->strs[strsize - 1] = 0;
1044
1045 /* If this is a relocatable object file, we have to relocate
1046 the entries in .stab. This should always be simple 32 bit
1047 relocations against symbols defined in this object file, so
1048 this should be no big deal. */
1049 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1050 if (reloc_size < 0)
1051 return FALSE;
1052 reloc_vector = (arelent **) bfd_malloc (reloc_size);
1053 if (reloc_vector == NULL && reloc_size != 0)
1054 return FALSE;
1055 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1056 symbols);
1057 if (reloc_count < 0)
1058 {
1059 free (reloc_vector);
1060 return FALSE;
1061 }
1062 if (reloc_count > 0)
1063 {
1064 arelent **pr;
1065
1066 for (pr = reloc_vector; *pr != NULL; pr++)
1067 {
1068 arelent *r;
1069 unsigned long val;
1070 asymbol *sym;
1071 bfd_size_type octets;
1072
1073 r = *pr;
1074 /* Ignore R_*_NONE relocs. */
1075 if (r->howto->dst_mask == 0)
1076 continue;
1077
1078 octets = r->address * bfd_octets_per_byte (abfd, NULL);
1079 if (r->howto->rightshift != 0
1080 || r->howto->size != 2
1081 || r->howto->bitsize != 32
1082 || r->howto->pc_relative
1083 || r->howto->bitpos != 0
1084 || r->howto->dst_mask != 0xffffffff
1085 || octets + 4 > stabsize)
1086 {
1087 _bfd_error_handler
1088 (_("unsupported .stab relocation"));
1089 bfd_set_error (bfd_error_invalid_operation);
1090 free (reloc_vector);
1091 return FALSE;
1092 }
1093
1094 val = bfd_get_32 (abfd, info->stabs + octets);
1095 val &= r->howto->src_mask;
1096 sym = *r->sym_ptr_ptr;
1097 val += sym->value + sym->section->vma + r->addend;
1098 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets);
1099 }
1100 }
1101
1102 free (reloc_vector);
1103
1104 /* First time through this function, build a table matching
1105 function VM addresses to stabs, then sort based on starting
1106 VM address. Do this in two passes: once to count how many
1107 table entries we'll need, and a second to actually build the
1108 table. */
1109
1110 info->indextablesize = 0;
1111 nul_fun = NULL;
1112 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1113 {
1114 if (stab[TYPEOFF] == (bfd_byte) N_SO)
1115 {
1116 /* if we did not see a function def, leave space for one. */
1117 if (nul_fun != NULL)
1118 ++info->indextablesize;
1119
1120 /* N_SO with null name indicates EOF */
1121 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1122 nul_fun = NULL;
1123 else
1124 {
1125 nul_fun = stab;
1126
1127 /* two N_SO's in a row is a filename and directory. Skip */
1128 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1129 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1130 stab += STABSIZE;
1131 }
1132 }
1133 else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1134 && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1135 {
1136 nul_fun = NULL;
1137 ++info->indextablesize;
1138 }
1139 }
1140
1141 if (nul_fun != NULL)
1142 ++info->indextablesize;
1143
1144 if (info->indextablesize == 0)
1145 return TRUE;
1146 ++info->indextablesize;
1147
1148 amt = info->indextablesize;
1149 amt *= sizeof (struct indexentry);
1150 info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1151 if (info->indextable == NULL)
1152 return FALSE;
1153
1154 file_name = NULL;
1155 directory_name = NULL;
1156 nul_fun = NULL;
1157 stroff = 0;
1158
1159 for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1160 i < info->indextablesize && stab < info->stabs + stabsize;
1161 stab += STABSIZE)
1162 {
1163 switch (stab[TYPEOFF])
1164 {
1165 case 0:
1166 /* This is the first entry in a compilation unit. */
1167 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1168 break;
1169 str += stroff;
1170 stroff = bfd_get_32 (abfd, stab + VALOFF);
1171 break;
1172
1173 case N_SO:
1174 /* The main file name. */
1175
1176 /* The following code creates a new indextable entry with
1177 a NULL function name if there were no N_FUNs in a file.
1178 Note that a N_SO without a file name is an EOF and
1179 there could be 2 N_SO following it with the new filename
1180 and directory. */
1181 if (nul_fun != NULL)
1182 {
1183 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1184 info->indextable[i].stab = nul_fun;
1185 info->indextable[i].str = nul_str;
1186 info->indextable[i].directory_name = directory_name;
1187 info->indextable[i].file_name = file_name;
1188 info->indextable[i].function_name = NULL;
1189 info->indextable[i].idx = i;
1190 ++i;
1191 }
1192
1193 directory_name = NULL;
1194 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1195 if (file_name == (char *) str)
1196 {
1197 file_name = NULL;
1198 nul_fun = NULL;
1199 }
1200 else
1201 {
1202 nul_fun = stab;
1203 nul_str = str;
1204 if (file_name >= (char *) info->strs + strsize
1205 || file_name < (char *) str)
1206 file_name = NULL;
1207 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1208 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1209 {
1210 /* Two consecutive N_SOs are a directory and a
1211 file name. */
1212 stab += STABSIZE;
1213 directory_name = file_name;
1214 file_name = ((char *) str
1215 + bfd_get_32 (abfd, stab + STRDXOFF));
1216 if (file_name >= (char *) info->strs + strsize
1217 || file_name < (char *) str)
1218 file_name = NULL;
1219 }
1220 }
1221 break;
1222
1223 case N_SOL:
1224 /* The name of an include file. */
1225 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1226 /* PR 17512: file: 0c680a1f. */
1227 /* PR 17512: file: 5da8aec4. */
1228 if (file_name >= (char *) info->strs + strsize
1229 || file_name < (char *) str)
1230 file_name = NULL;
1231 break;
1232
1233 case N_FUN:
1234 /* A function name. */
1235 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1236 if (function_name == (char *) str)
1237 continue;
1238 if (function_name >= (char *) info->strs + strsize
1239 || function_name < (char *) str)
1240 function_name = NULL;
1241
1242 nul_fun = NULL;
1243 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1244 info->indextable[i].stab = stab;
1245 info->indextable[i].str = str;
1246 info->indextable[i].directory_name = directory_name;
1247 info->indextable[i].file_name = file_name;
1248 info->indextable[i].function_name = function_name;
1249 info->indextable[i].idx = i;
1250 ++i;
1251 break;
1252 }
1253 }
1254
1255 if (nul_fun != NULL)
1256 {
1257 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1258 info->indextable[i].stab = nul_fun;
1259 info->indextable[i].str = nul_str;
1260 info->indextable[i].directory_name = directory_name;
1261 info->indextable[i].file_name = file_name;
1262 info->indextable[i].function_name = NULL;
1263 info->indextable[i].idx = i;
1264 ++i;
1265 }
1266
1267 info->indextable[i].val = (bfd_vma) -1;
1268 info->indextable[i].stab = info->stabs + stabsize;
1269 info->indextable[i].str = str;
1270 info->indextable[i].directory_name = NULL;
1271 info->indextable[i].file_name = NULL;
1272 info->indextable[i].function_name = NULL;
1273 info->indextable[i].idx = i;
1274 ++i;
1275
1276 info->indextablesize = i;
1277 qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1278 cmpindexentry);
1279
1280 *pinfo = info;
1281 }
1282
1283 /* We are passed a section relative offset. The offsets in the
1284 stabs information are absolute. */
1285 offset += bfd_section_vma (section);
1286
1287#ifdef ENABLE_CACHING
1288 if (info->cached_indexentry != NULL
1289 && offset >= info->cached_offset
1290 && offset < (info->cached_indexentry + 1)->val)
1291 {
1292 stab = info->cached_stab;
1293 indexentry = info->cached_indexentry;
1294 file_name = info->cached_file_name;
1295 }
1296 else
1297#endif
1298 {
1299 long low, high;
1300 long mid = -1;
1301
1302 /* Cache non-existent or invalid. Do binary search on
1303 indextable. */
1304 indexentry = NULL;
1305
1306 low = 0;
1307 high = info->indextablesize - 1;
1308 while (low != high)
1309 {
1310 mid = (high + low) / 2;
1311 if (offset >= info->indextable[mid].val
1312 && offset < info->indextable[mid + 1].val)
1313 {
1314 indexentry = &info->indextable[mid];
1315 break;
1316 }
1317
1318 if (info->indextable[mid].val > offset)
1319 high = mid;
1320 else
1321 low = mid + 1;
1322 }
1323
1324 if (indexentry == NULL)
1325 return TRUE;
1326
1327 stab = indexentry->stab + STABSIZE;
1328 file_name = indexentry->file_name;
1329 }
1330
1331 directory_name = indexentry->directory_name;
1332 str = indexentry->str;
1333
1334 saw_line = FALSE;
1335 saw_func = FALSE;
1336 for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1337 {
1338 bfd_boolean done;
1339 bfd_vma val;
1340
1341 done = FALSE;
1342
1343 switch (stab[TYPEOFF])
1344 {
1345 case N_SOL:
1346 /* The name of an include file. */
1347 val = bfd_get_32 (abfd, stab + VALOFF);
1348 if (val <= offset)
1349 {
1350 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1351 if (file_name >= (char *) info->strs + strsize
1352 || file_name < (char *) str)
1353 file_name = NULL;
1354 *pline = 0;
1355 }
1356 break;
1357
1358 case N_SLINE:
1359 case N_DSLINE:
1360 case N_BSLINE:
1361 /* A line number. If the function was specified, then the value
1362 is relative to the start of the function. Otherwise, the
1363 value is an absolute address. */
1364 val = ((indexentry->function_name ? indexentry->val : 0)
1365 + bfd_get_32 (abfd, stab + VALOFF));
1366 /* If this line starts before our desired offset, or if it's
1367 the first line we've been able to find, use it. The
1368 !saw_line check works around a bug in GCC 2.95.3, which emits
1369 the first N_SLINE late. */
1370 if (!saw_line || val <= offset)
1371 {
1372 *pline = bfd_get_16 (abfd, stab + DESCOFF);
1373
1374#ifdef ENABLE_CACHING
1375 info->cached_stab = stab;
1376 info->cached_offset = val;
1377 info->cached_file_name = file_name;
1378 info->cached_indexentry = indexentry;
1379#endif
1380 }
1381 if (val > offset)
1382 done = TRUE;
1383 saw_line = TRUE;
1384 break;
1385
1386 case N_FUN:
1387 case N_SO:
1388 if (saw_func || saw_line)
1389 done = TRUE;
1390 saw_func = TRUE;
1391 break;
1392 }
1393
1394 if (done)
1395 break;
1396 }
1397
1398 *pfound = TRUE;
1399
1400 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1401 || directory_name == NULL)
1402 *pfilename = file_name;
1403 else
1404 {
1405 size_t dirlen;
1406
1407 dirlen = strlen (directory_name);
1408 if (info->filename == NULL
1409 || filename_ncmp (info->filename, directory_name, dirlen) != 0
1410 || filename_cmp (info->filename + dirlen, file_name) != 0)
1411 {
1412 size_t len;
1413
1414 /* Don't free info->filename here. objdump and other
1415 apps keep a copy of a previously returned file name
1416 pointer. */
1417 len = strlen (file_name) + 1;
1418 info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1419 if (info->filename == NULL)
1420 return FALSE;
1421 memcpy (info->filename, directory_name, dirlen);
1422 memcpy (info->filename + dirlen, file_name, len);
1423 }
1424
1425 *pfilename = info->filename;
1426 }
1427
1428 if (indexentry->function_name != NULL)
1429 {
1430 char *s;
1431
1432 /* This will typically be something like main:F(0,1), so we want
1433 to clobber the colon. It's OK to change the name, since the
1434 string is in our own local storage anyhow. */
1435 s = strchr (indexentry->function_name, ':');
1436 if (s != NULL)
1437 *s = '\0';
1438
1439 *pfnname = indexentry->function_name;
1440 }
1441
1442 return TRUE;
1443}
1444
1445long
1446_bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED,
1447 asymbol **location ATTRIBUTE_UNUSED)
1448{
1449 return 0;
1450}
1451
1452void
1453_bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED,
1454 void *afile ATTRIBUTE_UNUSED,
1455 asymbol *symbol ATTRIBUTE_UNUSED,
1456 bfd_print_symbol_type how ATTRIBUTE_UNUSED)
1457{
1458}
1459
1460void
1461_bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
1462 asymbol *sym ATTRIBUTE_UNUSED,
1463 symbol_info *ret ATTRIBUTE_UNUSED)
1464{
1465}
1466
1467const char *
1468_bfd_nosymbols_get_symbol_version_string (bfd *abfd,
1469 asymbol *symbol ATTRIBUTE_UNUSED,
1470 bfd_boolean base_p ATTRIBUTE_UNUSED,
1471 bfd_boolean *hidden ATTRIBUTE_UNUSED)
1472{
1473 return (const char *) _bfd_ptr_bfd_null_error (abfd);
1474}
1475
1476bfd_boolean
1477_bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1478 const char *name ATTRIBUTE_UNUSED)
1479{
1480 return FALSE;
1481}
1482
1483alent *
1484_bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED)
1485{
1486 return (alent *) _bfd_ptr_bfd_null_error (abfd);
1487}
1488
1489bfd_boolean
1490_bfd_nosymbols_find_nearest_line
1491 (bfd *abfd,
1492 asymbol **symbols ATTRIBUTE_UNUSED,
1493 asection *section ATTRIBUTE_UNUSED,
1494 bfd_vma offset ATTRIBUTE_UNUSED,
1495 const char **filename_ptr ATTRIBUTE_UNUSED,
1496 const char **functionname_ptr ATTRIBUTE_UNUSED,
1497 unsigned int *line_ptr ATTRIBUTE_UNUSED,
1498 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED)
1499{
1500 return _bfd_bool_bfd_false_error (abfd);
1501}
1502
1503bfd_boolean
1504_bfd_nosymbols_find_line (bfd *abfd,
1505 asymbol **symbols ATTRIBUTE_UNUSED,
1506 asymbol *symbol ATTRIBUTE_UNUSED,
1507 const char **filename_ptr ATTRIBUTE_UNUSED,
1508 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1509{
1510 return _bfd_bool_bfd_false_error (abfd);
1511}
1512
1513bfd_boolean
1514_bfd_nosymbols_find_inliner_info
1515 (bfd *abfd,
1516 const char **filename_ptr ATTRIBUTE_UNUSED,
1517 const char **functionname_ptr ATTRIBUTE_UNUSED,
1518 unsigned int *line_ptr ATTRIBUTE_UNUSED)
1519{
1520 return _bfd_bool_bfd_false_error (abfd);
1521}
1522
1523asymbol *
1524_bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd,
1525 void *ptr ATTRIBUTE_UNUSED,
1526 unsigned long sz ATTRIBUTE_UNUSED)
1527{
1528 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1529}
1530
1531long
1532_bfd_nosymbols_read_minisymbols (bfd *abfd,
1533 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1534 void **minisymsp ATTRIBUTE_UNUSED,
1535 unsigned int *sizep ATTRIBUTE_UNUSED)
1536{
1537 return _bfd_long_bfd_n1_error (abfd);
1538}
1539
1540asymbol *
1541_bfd_nosymbols_minisymbol_to_symbol (bfd *abfd,
1542 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1543 const void *minisym ATTRIBUTE_UNUSED,
1544 asymbol *sym ATTRIBUTE_UNUSED)
1545{
1546 return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1547}
1548
1549long
1550_bfd_nodynamic_get_synthetic_symtab (bfd *abfd,
1551 long symcount ATTRIBUTE_UNUSED,
1552 asymbol **syms ATTRIBUTE_UNUSED,
1553 long dynsymcount ATTRIBUTE_UNUSED,
1554 asymbol **dynsyms ATTRIBUTE_UNUSED,
1555 asymbol **ret ATTRIBUTE_UNUSED)
1556{
1557 return _bfd_long_bfd_n1_error (abfd);
1558}
This page took 0.028088 seconds and 4 git commands to generate.