Linux 2.6.22
[deliverable/linux.git] / drivers / ata / libata-core.c
... / ...
CommitLineData
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
50#include <linux/jiffies.h>
51#include <linux/scatterlist.h>
52#include <scsi/scsi.h>
53#include <scsi/scsi_cmnd.h>
54#include <scsi/scsi_host.h>
55#include <linux/libata.h>
56#include <asm/io.h>
57#include <asm/semaphore.h>
58#include <asm/byteorder.h>
59
60#include "libata.h"
61
62#define DRV_VERSION "2.21" /* must be exactly four chars */
63
64
65/* debounce timing parameters in msecs { interval, duration, timeout } */
66const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
69
70static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73static void ata_dev_xfermask(struct ata_device *dev);
74
75unsigned int ata_print_id = 1;
76static struct workqueue_struct *ata_wq;
77
78struct workqueue_struct *ata_aux_wq;
79
80int atapi_enabled = 1;
81module_param(atapi_enabled, int, 0444);
82MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
83
84int atapi_dmadir = 0;
85module_param(atapi_dmadir, int, 0444);
86MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
87
88int libata_fua = 0;
89module_param_named(fua, libata_fua, int, 0444);
90MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
91
92static int ata_ignore_hpa = 0;
93module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
94MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
95
96static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
97module_param(ata_probe_timeout, int, 0444);
98MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
99
100int libata_noacpi = 1;
101module_param_named(noacpi, libata_noacpi, int, 0444);
102MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
103
104MODULE_AUTHOR("Jeff Garzik");
105MODULE_DESCRIPTION("Library module for ATA devices");
106MODULE_LICENSE("GPL");
107MODULE_VERSION(DRV_VERSION);
108
109
110/**
111 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
112 * @tf: Taskfile to convert
113 * @fis: Buffer into which data will output
114 * @pmp: Port multiplier port
115 *
116 * Converts a standard ATA taskfile to a Serial ATA
117 * FIS structure (Register - Host to Device).
118 *
119 * LOCKING:
120 * Inherited from caller.
121 */
122
123void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
124{
125 fis[0] = 0x27; /* Register - Host to Device FIS */
126 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
127 bit 7 indicates Command FIS */
128 fis[2] = tf->command;
129 fis[3] = tf->feature;
130
131 fis[4] = tf->lbal;
132 fis[5] = tf->lbam;
133 fis[6] = tf->lbah;
134 fis[7] = tf->device;
135
136 fis[8] = tf->hob_lbal;
137 fis[9] = tf->hob_lbam;
138 fis[10] = tf->hob_lbah;
139 fis[11] = tf->hob_feature;
140
141 fis[12] = tf->nsect;
142 fis[13] = tf->hob_nsect;
143 fis[14] = 0;
144 fis[15] = tf->ctl;
145
146 fis[16] = 0;
147 fis[17] = 0;
148 fis[18] = 0;
149 fis[19] = 0;
150}
151
152/**
153 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
154 * @fis: Buffer from which data will be input
155 * @tf: Taskfile to output
156 *
157 * Converts a serial ATA FIS structure to a standard ATA taskfile.
158 *
159 * LOCKING:
160 * Inherited from caller.
161 */
162
163void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
164{
165 tf->command = fis[2]; /* status */
166 tf->feature = fis[3]; /* error */
167
168 tf->lbal = fis[4];
169 tf->lbam = fis[5];
170 tf->lbah = fis[6];
171 tf->device = fis[7];
172
173 tf->hob_lbal = fis[8];
174 tf->hob_lbam = fis[9];
175 tf->hob_lbah = fis[10];
176
177 tf->nsect = fis[12];
178 tf->hob_nsect = fis[13];
179}
180
181static const u8 ata_rw_cmds[] = {
182 /* pio multi */
183 ATA_CMD_READ_MULTI,
184 ATA_CMD_WRITE_MULTI,
185 ATA_CMD_READ_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_MULTI_FUA_EXT,
191 /* pio */
192 ATA_CMD_PIO_READ,
193 ATA_CMD_PIO_WRITE,
194 ATA_CMD_PIO_READ_EXT,
195 ATA_CMD_PIO_WRITE_EXT,
196 0,
197 0,
198 0,
199 0,
200 /* dma */
201 ATA_CMD_READ,
202 ATA_CMD_WRITE,
203 ATA_CMD_READ_EXT,
204 ATA_CMD_WRITE_EXT,
205 0,
206 0,
207 0,
208 ATA_CMD_WRITE_FUA_EXT
209};
210
211/**
212 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
213 * @tf: command to examine and configure
214 * @dev: device tf belongs to
215 *
216 * Examine the device configuration and tf->flags to calculate
217 * the proper read/write commands and protocol to use.
218 *
219 * LOCKING:
220 * caller.
221 */
222static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
223{
224 u8 cmd;
225
226 int index, fua, lba48, write;
227
228 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
229 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
230 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
231
232 if (dev->flags & ATA_DFLAG_PIO) {
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
236 /* Unable to use DMA due to host limitation */
237 tf->protocol = ATA_PROT_PIO;
238 index = dev->multi_count ? 0 : 8;
239 } else {
240 tf->protocol = ATA_PROT_DMA;
241 index = 16;
242 }
243
244 cmd = ata_rw_cmds[index + fua + lba48 + write];
245 if (cmd) {
246 tf->command = cmd;
247 return 0;
248 }
249 return -1;
250}
251
252/**
253 * ata_tf_read_block - Read block address from ATA taskfile
254 * @tf: ATA taskfile of interest
255 * @dev: ATA device @tf belongs to
256 *
257 * LOCKING:
258 * None.
259 *
260 * Read block address from @tf. This function can handle all
261 * three address formats - LBA, LBA48 and CHS. tf->protocol and
262 * flags select the address format to use.
263 *
264 * RETURNS:
265 * Block address read from @tf.
266 */
267u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
268{
269 u64 block = 0;
270
271 if (tf->flags & ATA_TFLAG_LBA) {
272 if (tf->flags & ATA_TFLAG_LBA48) {
273 block |= (u64)tf->hob_lbah << 40;
274 block |= (u64)tf->hob_lbam << 32;
275 block |= tf->hob_lbal << 24;
276 } else
277 block |= (tf->device & 0xf) << 24;
278
279 block |= tf->lbah << 16;
280 block |= tf->lbam << 8;
281 block |= tf->lbal;
282 } else {
283 u32 cyl, head, sect;
284
285 cyl = tf->lbam | (tf->lbah << 8);
286 head = tf->device & 0xf;
287 sect = tf->lbal;
288
289 block = (cyl * dev->heads + head) * dev->sectors + sect;
290 }
291
292 return block;
293}
294
295/**
296 * ata_build_rw_tf - Build ATA taskfile for given read/write request
297 * @tf: Target ATA taskfile
298 * @dev: ATA device @tf belongs to
299 * @block: Block address
300 * @n_block: Number of blocks
301 * @tf_flags: RW/FUA etc...
302 * @tag: tag
303 *
304 * LOCKING:
305 * None.
306 *
307 * Build ATA taskfile @tf for read/write request described by
308 * @block, @n_block, @tf_flags and @tag on @dev.
309 *
310 * RETURNS:
311 *
312 * 0 on success, -ERANGE if the request is too large for @dev,
313 * -EINVAL if the request is invalid.
314 */
315int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
316 u64 block, u32 n_block, unsigned int tf_flags,
317 unsigned int tag)
318{
319 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
320 tf->flags |= tf_flags;
321
322 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
323 /* yay, NCQ */
324 if (!lba_48_ok(block, n_block))
325 return -ERANGE;
326
327 tf->protocol = ATA_PROT_NCQ;
328 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
329
330 if (tf->flags & ATA_TFLAG_WRITE)
331 tf->command = ATA_CMD_FPDMA_WRITE;
332 else
333 tf->command = ATA_CMD_FPDMA_READ;
334
335 tf->nsect = tag << 3;
336 tf->hob_feature = (n_block >> 8) & 0xff;
337 tf->feature = n_block & 0xff;
338
339 tf->hob_lbah = (block >> 40) & 0xff;
340 tf->hob_lbam = (block >> 32) & 0xff;
341 tf->hob_lbal = (block >> 24) & 0xff;
342 tf->lbah = (block >> 16) & 0xff;
343 tf->lbam = (block >> 8) & 0xff;
344 tf->lbal = block & 0xff;
345
346 tf->device = 1 << 6;
347 if (tf->flags & ATA_TFLAG_FUA)
348 tf->device |= 1 << 7;
349 } else if (dev->flags & ATA_DFLAG_LBA) {
350 tf->flags |= ATA_TFLAG_LBA;
351
352 if (lba_28_ok(block, n_block)) {
353 /* use LBA28 */
354 tf->device |= (block >> 24) & 0xf;
355 } else if (lba_48_ok(block, n_block)) {
356 if (!(dev->flags & ATA_DFLAG_LBA48))
357 return -ERANGE;
358
359 /* use LBA48 */
360 tf->flags |= ATA_TFLAG_LBA48;
361
362 tf->hob_nsect = (n_block >> 8) & 0xff;
363
364 tf->hob_lbah = (block >> 40) & 0xff;
365 tf->hob_lbam = (block >> 32) & 0xff;
366 tf->hob_lbal = (block >> 24) & 0xff;
367 } else
368 /* request too large even for LBA48 */
369 return -ERANGE;
370
371 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
372 return -EINVAL;
373
374 tf->nsect = n_block & 0xff;
375
376 tf->lbah = (block >> 16) & 0xff;
377 tf->lbam = (block >> 8) & 0xff;
378 tf->lbal = block & 0xff;
379
380 tf->device |= ATA_LBA;
381 } else {
382 /* CHS */
383 u32 sect, head, cyl, track;
384
385 /* The request -may- be too large for CHS addressing. */
386 if (!lba_28_ok(block, n_block))
387 return -ERANGE;
388
389 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
390 return -EINVAL;
391
392 /* Convert LBA to CHS */
393 track = (u32)block / dev->sectors;
394 cyl = track / dev->heads;
395 head = track % dev->heads;
396 sect = (u32)block % dev->sectors + 1;
397
398 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
399 (u32)block, track, cyl, head, sect);
400
401 /* Check whether the converted CHS can fit.
402 Cylinder: 0-65535
403 Head: 0-15
404 Sector: 1-255*/
405 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
406 return -ERANGE;
407
408 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
409 tf->lbal = sect;
410 tf->lbam = cyl;
411 tf->lbah = cyl >> 8;
412 tf->device |= head;
413 }
414
415 return 0;
416}
417
418/**
419 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
420 * @pio_mask: pio_mask
421 * @mwdma_mask: mwdma_mask
422 * @udma_mask: udma_mask
423 *
424 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
425 * unsigned int xfer_mask.
426 *
427 * LOCKING:
428 * None.
429 *
430 * RETURNS:
431 * Packed xfer_mask.
432 */
433static unsigned int ata_pack_xfermask(unsigned int pio_mask,
434 unsigned int mwdma_mask,
435 unsigned int udma_mask)
436{
437 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
438 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
439 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
440}
441
442/**
443 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
444 * @xfer_mask: xfer_mask to unpack
445 * @pio_mask: resulting pio_mask
446 * @mwdma_mask: resulting mwdma_mask
447 * @udma_mask: resulting udma_mask
448 *
449 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
450 * Any NULL distination masks will be ignored.
451 */
452static void ata_unpack_xfermask(unsigned int xfer_mask,
453 unsigned int *pio_mask,
454 unsigned int *mwdma_mask,
455 unsigned int *udma_mask)
456{
457 if (pio_mask)
458 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
459 if (mwdma_mask)
460 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
461 if (udma_mask)
462 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463}
464
465static const struct ata_xfer_ent {
466 int shift, bits;
467 u8 base;
468} ata_xfer_tbl[] = {
469 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
470 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
471 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
472 { -1, },
473};
474
475/**
476 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
477 * @xfer_mask: xfer_mask of interest
478 *
479 * Return matching XFER_* value for @xfer_mask. Only the highest
480 * bit of @xfer_mask is considered.
481 *
482 * LOCKING:
483 * None.
484 *
485 * RETURNS:
486 * Matching XFER_* value, 0 if no match found.
487 */
488static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
489{
490 int highbit = fls(xfer_mask) - 1;
491 const struct ata_xfer_ent *ent;
492
493 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
494 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
495 return ent->base + highbit - ent->shift;
496 return 0;
497}
498
499/**
500 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
501 * @xfer_mode: XFER_* of interest
502 *
503 * Return matching xfer_mask for @xfer_mode.
504 *
505 * LOCKING:
506 * None.
507 *
508 * RETURNS:
509 * Matching xfer_mask, 0 if no match found.
510 */
511static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
512{
513 const struct ata_xfer_ent *ent;
514
515 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
516 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
517 return 1 << (ent->shift + xfer_mode - ent->base);
518 return 0;
519}
520
521/**
522 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
523 * @xfer_mode: XFER_* of interest
524 *
525 * Return matching xfer_shift for @xfer_mode.
526 *
527 * LOCKING:
528 * None.
529 *
530 * RETURNS:
531 * Matching xfer_shift, -1 if no match found.
532 */
533static int ata_xfer_mode2shift(unsigned int xfer_mode)
534{
535 const struct ata_xfer_ent *ent;
536
537 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
538 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
539 return ent->shift;
540 return -1;
541}
542
543/**
544 * ata_mode_string - convert xfer_mask to string
545 * @xfer_mask: mask of bits supported; only highest bit counts.
546 *
547 * Determine string which represents the highest speed
548 * (highest bit in @modemask).
549 *
550 * LOCKING:
551 * None.
552 *
553 * RETURNS:
554 * Constant C string representing highest speed listed in
555 * @mode_mask, or the constant C string "<n/a>".
556 */
557static const char *ata_mode_string(unsigned int xfer_mask)
558{
559 static const char * const xfer_mode_str[] = {
560 "PIO0",
561 "PIO1",
562 "PIO2",
563 "PIO3",
564 "PIO4",
565 "PIO5",
566 "PIO6",
567 "MWDMA0",
568 "MWDMA1",
569 "MWDMA2",
570 "MWDMA3",
571 "MWDMA4",
572 "UDMA/16",
573 "UDMA/25",
574 "UDMA/33",
575 "UDMA/44",
576 "UDMA/66",
577 "UDMA/100",
578 "UDMA/133",
579 "UDMA7",
580 };
581 int highbit;
582
583 highbit = fls(xfer_mask) - 1;
584 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
585 return xfer_mode_str[highbit];
586 return "<n/a>";
587}
588
589static const char *sata_spd_string(unsigned int spd)
590{
591 static const char * const spd_str[] = {
592 "1.5 Gbps",
593 "3.0 Gbps",
594 };
595
596 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
597 return "<unknown>";
598 return spd_str[spd - 1];
599}
600
601void ata_dev_disable(struct ata_device *dev)
602{
603 if (ata_dev_enabled(dev)) {
604 if (ata_msg_drv(dev->ap))
605 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
606 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
607 ATA_DNXFER_QUIET);
608 dev->class++;
609 }
610}
611
612/**
613 * ata_devchk - PATA device presence detection
614 * @ap: ATA channel to examine
615 * @device: Device to examine (starting at zero)
616 *
617 * This technique was originally described in
618 * Hale Landis's ATADRVR (www.ata-atapi.com), and
619 * later found its way into the ATA/ATAPI spec.
620 *
621 * Write a pattern to the ATA shadow registers,
622 * and if a device is present, it will respond by
623 * correctly storing and echoing back the
624 * ATA shadow register contents.
625 *
626 * LOCKING:
627 * caller.
628 */
629
630static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
631{
632 struct ata_ioports *ioaddr = &ap->ioaddr;
633 u8 nsect, lbal;
634
635 ap->ops->dev_select(ap, device);
636
637 iowrite8(0x55, ioaddr->nsect_addr);
638 iowrite8(0xaa, ioaddr->lbal_addr);
639
640 iowrite8(0xaa, ioaddr->nsect_addr);
641 iowrite8(0x55, ioaddr->lbal_addr);
642
643 iowrite8(0x55, ioaddr->nsect_addr);
644 iowrite8(0xaa, ioaddr->lbal_addr);
645
646 nsect = ioread8(ioaddr->nsect_addr);
647 lbal = ioread8(ioaddr->lbal_addr);
648
649 if ((nsect == 0x55) && (lbal == 0xaa))
650 return 1; /* we found a device */
651
652 return 0; /* nothing found */
653}
654
655/**
656 * ata_dev_classify - determine device type based on ATA-spec signature
657 * @tf: ATA taskfile register set for device to be identified
658 *
659 * Determine from taskfile register contents whether a device is
660 * ATA or ATAPI, as per "Signature and persistence" section
661 * of ATA/PI spec (volume 1, sect 5.14).
662 *
663 * LOCKING:
664 * None.
665 *
666 * RETURNS:
667 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
668 * the event of failure.
669 */
670
671unsigned int ata_dev_classify(const struct ata_taskfile *tf)
672{
673 /* Apple's open source Darwin code hints that some devices only
674 * put a proper signature into the LBA mid/high registers,
675 * So, we only check those. It's sufficient for uniqueness.
676 */
677
678 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
679 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
680 DPRINTK("found ATA device by sig\n");
681 return ATA_DEV_ATA;
682 }
683
684 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
685 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
686 DPRINTK("found ATAPI device by sig\n");
687 return ATA_DEV_ATAPI;
688 }
689
690 DPRINTK("unknown device\n");
691 return ATA_DEV_UNKNOWN;
692}
693
694/**
695 * ata_dev_try_classify - Parse returned ATA device signature
696 * @ap: ATA channel to examine
697 * @device: Device to examine (starting at zero)
698 * @r_err: Value of error register on completion
699 *
700 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
701 * an ATA/ATAPI-defined set of values is placed in the ATA
702 * shadow registers, indicating the results of device detection
703 * and diagnostics.
704 *
705 * Select the ATA device, and read the values from the ATA shadow
706 * registers. Then parse according to the Error register value,
707 * and the spec-defined values examined by ata_dev_classify().
708 *
709 * LOCKING:
710 * caller.
711 *
712 * RETURNS:
713 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
714 */
715
716unsigned int
717ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
718{
719 struct ata_taskfile tf;
720 unsigned int class;
721 u8 err;
722
723 ap->ops->dev_select(ap, device);
724
725 memset(&tf, 0, sizeof(tf));
726
727 ap->ops->tf_read(ap, &tf);
728 err = tf.feature;
729 if (r_err)
730 *r_err = err;
731
732 /* see if device passed diags: if master then continue and warn later */
733 if (err == 0 && device == 0)
734 /* diagnostic fail : do nothing _YET_ */
735 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
736 else if (err == 1)
737 /* do nothing */ ;
738 else if ((device == 0) && (err == 0x81))
739 /* do nothing */ ;
740 else
741 return ATA_DEV_NONE;
742
743 /* determine if device is ATA or ATAPI */
744 class = ata_dev_classify(&tf);
745
746 if (class == ATA_DEV_UNKNOWN)
747 return ATA_DEV_NONE;
748 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
749 return ATA_DEV_NONE;
750 return class;
751}
752
753/**
754 * ata_id_string - Convert IDENTIFY DEVICE page into string
755 * @id: IDENTIFY DEVICE results we will examine
756 * @s: string into which data is output
757 * @ofs: offset into identify device page
758 * @len: length of string to return. must be an even number.
759 *
760 * The strings in the IDENTIFY DEVICE page are broken up into
761 * 16-bit chunks. Run through the string, and output each
762 * 8-bit chunk linearly, regardless of platform.
763 *
764 * LOCKING:
765 * caller.
766 */
767
768void ata_id_string(const u16 *id, unsigned char *s,
769 unsigned int ofs, unsigned int len)
770{
771 unsigned int c;
772
773 while (len > 0) {
774 c = id[ofs] >> 8;
775 *s = c;
776 s++;
777
778 c = id[ofs] & 0xff;
779 *s = c;
780 s++;
781
782 ofs++;
783 len -= 2;
784 }
785}
786
787/**
788 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
789 * @id: IDENTIFY DEVICE results we will examine
790 * @s: string into which data is output
791 * @ofs: offset into identify device page
792 * @len: length of string to return. must be an odd number.
793 *
794 * This function is identical to ata_id_string except that it
795 * trims trailing spaces and terminates the resulting string with
796 * null. @len must be actual maximum length (even number) + 1.
797 *
798 * LOCKING:
799 * caller.
800 */
801void ata_id_c_string(const u16 *id, unsigned char *s,
802 unsigned int ofs, unsigned int len)
803{
804 unsigned char *p;
805
806 WARN_ON(!(len & 1));
807
808 ata_id_string(id, s, ofs, len - 1);
809
810 p = s + strnlen(s, len - 1);
811 while (p > s && p[-1] == ' ')
812 p--;
813 *p = '\0';
814}
815
816static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
817{
818 u64 sectors = 0;
819
820 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
821 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
822 sectors |= (tf->hob_lbal & 0xff) << 24;
823 sectors |= (tf->lbah & 0xff) << 16;
824 sectors |= (tf->lbam & 0xff) << 8;
825 sectors |= (tf->lbal & 0xff);
826
827 return ++sectors;
828}
829
830static u64 ata_tf_to_lba(struct ata_taskfile *tf)
831{
832 u64 sectors = 0;
833
834 sectors |= (tf->device & 0x0f) << 24;
835 sectors |= (tf->lbah & 0xff) << 16;
836 sectors |= (tf->lbam & 0xff) << 8;
837 sectors |= (tf->lbal & 0xff);
838
839 return ++sectors;
840}
841
842/**
843 * ata_read_native_max_address_ext - LBA48 native max query
844 * @dev: Device to query
845 *
846 * Perform an LBA48 size query upon the device in question. Return the
847 * actual LBA48 size or zero if the command fails.
848 */
849
850static u64 ata_read_native_max_address_ext(struct ata_device *dev)
851{
852 unsigned int err;
853 struct ata_taskfile tf;
854
855 ata_tf_init(dev, &tf);
856
857 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
858 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
859 tf.protocol |= ATA_PROT_NODATA;
860 tf.device |= 0x40;
861
862 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
863 if (err)
864 return 0;
865
866 return ata_tf_to_lba48(&tf);
867}
868
869/**
870 * ata_read_native_max_address - LBA28 native max query
871 * @dev: Device to query
872 *
873 * Performa an LBA28 size query upon the device in question. Return the
874 * actual LBA28 size or zero if the command fails.
875 */
876
877static u64 ata_read_native_max_address(struct ata_device *dev)
878{
879 unsigned int err;
880 struct ata_taskfile tf;
881
882 ata_tf_init(dev, &tf);
883
884 tf.command = ATA_CMD_READ_NATIVE_MAX;
885 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
886 tf.protocol |= ATA_PROT_NODATA;
887 tf.device |= 0x40;
888
889 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
890 if (err)
891 return 0;
892
893 return ata_tf_to_lba(&tf);
894}
895
896/**
897 * ata_set_native_max_address_ext - LBA48 native max set
898 * @dev: Device to query
899 * @new_sectors: new max sectors value to set for the device
900 *
901 * Perform an LBA48 size set max upon the device in question. Return the
902 * actual LBA48 size or zero if the command fails.
903 */
904
905static u64 ata_set_native_max_address_ext(struct ata_device *dev, u64 new_sectors)
906{
907 unsigned int err;
908 struct ata_taskfile tf;
909
910 new_sectors--;
911
912 ata_tf_init(dev, &tf);
913
914 tf.command = ATA_CMD_SET_MAX_EXT;
915 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_LBA48 | ATA_TFLAG_ISADDR;
916 tf.protocol |= ATA_PROT_NODATA;
917 tf.device |= 0x40;
918
919 tf.lbal = (new_sectors >> 0) & 0xff;
920 tf.lbam = (new_sectors >> 8) & 0xff;
921 tf.lbah = (new_sectors >> 16) & 0xff;
922
923 tf.hob_lbal = (new_sectors >> 24) & 0xff;
924 tf.hob_lbam = (new_sectors >> 32) & 0xff;
925 tf.hob_lbah = (new_sectors >> 40) & 0xff;
926
927 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
928 if (err)
929 return 0;
930
931 return ata_tf_to_lba48(&tf);
932}
933
934/**
935 * ata_set_native_max_address - LBA28 native max set
936 * @dev: Device to query
937 * @new_sectors: new max sectors value to set for the device
938 *
939 * Perform an LBA28 size set max upon the device in question. Return the
940 * actual LBA28 size or zero if the command fails.
941 */
942
943static u64 ata_set_native_max_address(struct ata_device *dev, u64 new_sectors)
944{
945 unsigned int err;
946 struct ata_taskfile tf;
947
948 new_sectors--;
949
950 ata_tf_init(dev, &tf);
951
952 tf.command = ATA_CMD_SET_MAX;
953 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
954 tf.protocol |= ATA_PROT_NODATA;
955
956 tf.lbal = (new_sectors >> 0) & 0xff;
957 tf.lbam = (new_sectors >> 8) & 0xff;
958 tf.lbah = (new_sectors >> 16) & 0xff;
959 tf.device |= ((new_sectors >> 24) & 0x0f) | 0x40;
960
961 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
962 if (err)
963 return 0;
964
965 return ata_tf_to_lba(&tf);
966}
967
968/**
969 * ata_hpa_resize - Resize a device with an HPA set
970 * @dev: Device to resize
971 *
972 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
973 * it if required to the full size of the media. The caller must check
974 * the drive has the HPA feature set enabled.
975 */
976
977static u64 ata_hpa_resize(struct ata_device *dev)
978{
979 u64 sectors = dev->n_sectors;
980 u64 hpa_sectors;
981
982 if (ata_id_has_lba48(dev->id))
983 hpa_sectors = ata_read_native_max_address_ext(dev);
984 else
985 hpa_sectors = ata_read_native_max_address(dev);
986
987 if (hpa_sectors > sectors) {
988 ata_dev_printk(dev, KERN_INFO,
989 "Host Protected Area detected:\n"
990 "\tcurrent size: %lld sectors\n"
991 "\tnative size: %lld sectors\n",
992 (long long)sectors, (long long)hpa_sectors);
993
994 if (ata_ignore_hpa) {
995 if (ata_id_has_lba48(dev->id))
996 hpa_sectors = ata_set_native_max_address_ext(dev, hpa_sectors);
997 else
998 hpa_sectors = ata_set_native_max_address(dev,
999 hpa_sectors);
1000
1001 if (hpa_sectors) {
1002 ata_dev_printk(dev, KERN_INFO, "native size "
1003 "increased to %lld sectors\n",
1004 (long long)hpa_sectors);
1005 return hpa_sectors;
1006 }
1007 }
1008 } else if (hpa_sectors < sectors)
1009 ata_dev_printk(dev, KERN_WARNING, "%s 1: hpa sectors (%lld) "
1010 "is smaller than sectors (%lld)\n", __FUNCTION__,
1011 (long long)hpa_sectors, (long long)sectors);
1012
1013 return sectors;
1014}
1015
1016static u64 ata_id_n_sectors(const u16 *id)
1017{
1018 if (ata_id_has_lba(id)) {
1019 if (ata_id_has_lba48(id))
1020 return ata_id_u64(id, 100);
1021 else
1022 return ata_id_u32(id, 60);
1023 } else {
1024 if (ata_id_current_chs_valid(id))
1025 return ata_id_u32(id, 57);
1026 else
1027 return id[1] * id[3] * id[6];
1028 }
1029}
1030
1031/**
1032 * ata_id_to_dma_mode - Identify DMA mode from id block
1033 * @dev: device to identify
1034 * @unknown: mode to assume if we cannot tell
1035 *
1036 * Set up the timing values for the device based upon the identify
1037 * reported values for the DMA mode. This function is used by drivers
1038 * which rely upon firmware configured modes, but wish to report the
1039 * mode correctly when possible.
1040 *
1041 * In addition we emit similarly formatted messages to the default
1042 * ata_dev_set_mode handler, in order to provide consistency of
1043 * presentation.
1044 */
1045
1046void ata_id_to_dma_mode(struct ata_device *dev, u8 unknown)
1047{
1048 unsigned int mask;
1049 u8 mode;
1050
1051 /* Pack the DMA modes */
1052 mask = ((dev->id[63] >> 8) << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA;
1053 if (dev->id[53] & 0x04)
1054 mask |= ((dev->id[88] >> 8) << ATA_SHIFT_UDMA) & ATA_MASK_UDMA;
1055
1056 /* Select the mode in use */
1057 mode = ata_xfer_mask2mode(mask);
1058
1059 if (mode != 0) {
1060 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
1061 ata_mode_string(mask));
1062 } else {
1063 /* SWDMA perhaps ? */
1064 mode = unknown;
1065 ata_dev_printk(dev, KERN_INFO, "configured for DMA\n");
1066 }
1067
1068 /* Configure the device reporting */
1069 dev->xfer_mode = mode;
1070 dev->xfer_shift = ata_xfer_mode2shift(mode);
1071}
1072
1073/**
1074 * ata_noop_dev_select - Select device 0/1 on ATA bus
1075 * @ap: ATA channel to manipulate
1076 * @device: ATA device (numbered from zero) to select
1077 *
1078 * This function performs no actual function.
1079 *
1080 * May be used as the dev_select() entry in ata_port_operations.
1081 *
1082 * LOCKING:
1083 * caller.
1084 */
1085void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
1086{
1087}
1088
1089
1090/**
1091 * ata_std_dev_select - Select device 0/1 on ATA bus
1092 * @ap: ATA channel to manipulate
1093 * @device: ATA device (numbered from zero) to select
1094 *
1095 * Use the method defined in the ATA specification to
1096 * make either device 0, or device 1, active on the
1097 * ATA channel. Works with both PIO and MMIO.
1098 *
1099 * May be used as the dev_select() entry in ata_port_operations.
1100 *
1101 * LOCKING:
1102 * caller.
1103 */
1104
1105void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1106{
1107 u8 tmp;
1108
1109 if (device == 0)
1110 tmp = ATA_DEVICE_OBS;
1111 else
1112 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1113
1114 iowrite8(tmp, ap->ioaddr.device_addr);
1115 ata_pause(ap); /* needed; also flushes, for mmio */
1116}
1117
1118/**
1119 * ata_dev_select - Select device 0/1 on ATA bus
1120 * @ap: ATA channel to manipulate
1121 * @device: ATA device (numbered from zero) to select
1122 * @wait: non-zero to wait for Status register BSY bit to clear
1123 * @can_sleep: non-zero if context allows sleeping
1124 *
1125 * Use the method defined in the ATA specification to
1126 * make either device 0, or device 1, active on the
1127 * ATA channel.
1128 *
1129 * This is a high-level version of ata_std_dev_select(),
1130 * which additionally provides the services of inserting
1131 * the proper pauses and status polling, where needed.
1132 *
1133 * LOCKING:
1134 * caller.
1135 */
1136
1137void ata_dev_select(struct ata_port *ap, unsigned int device,
1138 unsigned int wait, unsigned int can_sleep)
1139{
1140 if (ata_msg_probe(ap))
1141 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1142 "device %u, wait %u\n", device, wait);
1143
1144 if (wait)
1145 ata_wait_idle(ap);
1146
1147 ap->ops->dev_select(ap, device);
1148
1149 if (wait) {
1150 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1151 msleep(150);
1152 ata_wait_idle(ap);
1153 }
1154}
1155
1156/**
1157 * ata_dump_id - IDENTIFY DEVICE info debugging output
1158 * @id: IDENTIFY DEVICE page to dump
1159 *
1160 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1161 * page.
1162 *
1163 * LOCKING:
1164 * caller.
1165 */
1166
1167static inline void ata_dump_id(const u16 *id)
1168{
1169 DPRINTK("49==0x%04x "
1170 "53==0x%04x "
1171 "63==0x%04x "
1172 "64==0x%04x "
1173 "75==0x%04x \n",
1174 id[49],
1175 id[53],
1176 id[63],
1177 id[64],
1178 id[75]);
1179 DPRINTK("80==0x%04x "
1180 "81==0x%04x "
1181 "82==0x%04x "
1182 "83==0x%04x "
1183 "84==0x%04x \n",
1184 id[80],
1185 id[81],
1186 id[82],
1187 id[83],
1188 id[84]);
1189 DPRINTK("88==0x%04x "
1190 "93==0x%04x\n",
1191 id[88],
1192 id[93]);
1193}
1194
1195/**
1196 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1197 * @id: IDENTIFY data to compute xfer mask from
1198 *
1199 * Compute the xfermask for this device. This is not as trivial
1200 * as it seems if we must consider early devices correctly.
1201 *
1202 * FIXME: pre IDE drive timing (do we care ?).
1203 *
1204 * LOCKING:
1205 * None.
1206 *
1207 * RETURNS:
1208 * Computed xfermask
1209 */
1210static unsigned int ata_id_xfermask(const u16 *id)
1211{
1212 unsigned int pio_mask, mwdma_mask, udma_mask;
1213
1214 /* Usual case. Word 53 indicates word 64 is valid */
1215 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1216 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1217 pio_mask <<= 3;
1218 pio_mask |= 0x7;
1219 } else {
1220 /* If word 64 isn't valid then Word 51 high byte holds
1221 * the PIO timing number for the maximum. Turn it into
1222 * a mask.
1223 */
1224 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1225 if (mode < 5) /* Valid PIO range */
1226 pio_mask = (2 << mode) - 1;
1227 else
1228 pio_mask = 1;
1229
1230 /* But wait.. there's more. Design your standards by
1231 * committee and you too can get a free iordy field to
1232 * process. However its the speeds not the modes that
1233 * are supported... Note drivers using the timing API
1234 * will get this right anyway
1235 */
1236 }
1237
1238 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1239
1240 if (ata_id_is_cfa(id)) {
1241 /*
1242 * Process compact flash extended modes
1243 */
1244 int pio = id[163] & 0x7;
1245 int dma = (id[163] >> 3) & 7;
1246
1247 if (pio)
1248 pio_mask |= (1 << 5);
1249 if (pio > 1)
1250 pio_mask |= (1 << 6);
1251 if (dma)
1252 mwdma_mask |= (1 << 3);
1253 if (dma > 1)
1254 mwdma_mask |= (1 << 4);
1255 }
1256
1257 udma_mask = 0;
1258 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1259 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1260
1261 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1262}
1263
1264/**
1265 * ata_port_queue_task - Queue port_task
1266 * @ap: The ata_port to queue port_task for
1267 * @fn: workqueue function to be scheduled
1268 * @data: data for @fn to use
1269 * @delay: delay time for workqueue function
1270 *
1271 * Schedule @fn(@data) for execution after @delay jiffies using
1272 * port_task. There is one port_task per port and it's the
1273 * user(low level driver)'s responsibility to make sure that only
1274 * one task is active at any given time.
1275 *
1276 * libata core layer takes care of synchronization between
1277 * port_task and EH. ata_port_queue_task() may be ignored for EH
1278 * synchronization.
1279 *
1280 * LOCKING:
1281 * Inherited from caller.
1282 */
1283void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1284 unsigned long delay)
1285{
1286 int rc;
1287
1288 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1289 return;
1290
1291 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1292 ap->port_task_data = data;
1293
1294 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1295
1296 /* rc == 0 means that another user is using port task */
1297 WARN_ON(rc == 0);
1298}
1299
1300/**
1301 * ata_port_flush_task - Flush port_task
1302 * @ap: The ata_port to flush port_task for
1303 *
1304 * After this function completes, port_task is guranteed not to
1305 * be running or scheduled.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 */
1310void ata_port_flush_task(struct ata_port *ap)
1311{
1312 unsigned long flags;
1313
1314 DPRINTK("ENTER\n");
1315
1316 spin_lock_irqsave(ap->lock, flags);
1317 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1318 spin_unlock_irqrestore(ap->lock, flags);
1319
1320 DPRINTK("flush #1\n");
1321 cancel_work_sync(&ap->port_task.work); /* akpm: seems unneeded */
1322
1323 /*
1324 * At this point, if a task is running, it's guaranteed to see
1325 * the FLUSH flag; thus, it will never queue pio tasks again.
1326 * Cancel and flush.
1327 */
1328 if (!cancel_delayed_work(&ap->port_task)) {
1329 if (ata_msg_ctl(ap))
1330 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1331 __FUNCTION__);
1332 cancel_work_sync(&ap->port_task.work);
1333 }
1334
1335 spin_lock_irqsave(ap->lock, flags);
1336 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1337 spin_unlock_irqrestore(ap->lock, flags);
1338
1339 if (ata_msg_ctl(ap))
1340 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1341}
1342
1343static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1344{
1345 struct completion *waiting = qc->private_data;
1346
1347 complete(waiting);
1348}
1349
1350/**
1351 * ata_exec_internal_sg - execute libata internal command
1352 * @dev: Device to which the command is sent
1353 * @tf: Taskfile registers for the command and the result
1354 * @cdb: CDB for packet command
1355 * @dma_dir: Data tranfer direction of the command
1356 * @sg: sg list for the data buffer of the command
1357 * @n_elem: Number of sg entries
1358 *
1359 * Executes libata internal command with timeout. @tf contains
1360 * command on entry and result on return. Timeout and error
1361 * conditions are reported via return value. No recovery action
1362 * is taken after a command times out. It's caller's duty to
1363 * clean up after timeout.
1364 *
1365 * LOCKING:
1366 * None. Should be called with kernel context, might sleep.
1367 *
1368 * RETURNS:
1369 * Zero on success, AC_ERR_* mask on failure
1370 */
1371unsigned ata_exec_internal_sg(struct ata_device *dev,
1372 struct ata_taskfile *tf, const u8 *cdb,
1373 int dma_dir, struct scatterlist *sg,
1374 unsigned int n_elem)
1375{
1376 struct ata_port *ap = dev->ap;
1377 u8 command = tf->command;
1378 struct ata_queued_cmd *qc;
1379 unsigned int tag, preempted_tag;
1380 u32 preempted_sactive, preempted_qc_active;
1381 DECLARE_COMPLETION_ONSTACK(wait);
1382 unsigned long flags;
1383 unsigned int err_mask;
1384 int rc;
1385
1386 spin_lock_irqsave(ap->lock, flags);
1387
1388 /* no internal command while frozen */
1389 if (ap->pflags & ATA_PFLAG_FROZEN) {
1390 spin_unlock_irqrestore(ap->lock, flags);
1391 return AC_ERR_SYSTEM;
1392 }
1393
1394 /* initialize internal qc */
1395
1396 /* XXX: Tag 0 is used for drivers with legacy EH as some
1397 * drivers choke if any other tag is given. This breaks
1398 * ata_tag_internal() test for those drivers. Don't use new
1399 * EH stuff without converting to it.
1400 */
1401 if (ap->ops->error_handler)
1402 tag = ATA_TAG_INTERNAL;
1403 else
1404 tag = 0;
1405
1406 if (test_and_set_bit(tag, &ap->qc_allocated))
1407 BUG();
1408 qc = __ata_qc_from_tag(ap, tag);
1409
1410 qc->tag = tag;
1411 qc->scsicmd = NULL;
1412 qc->ap = ap;
1413 qc->dev = dev;
1414 ata_qc_reinit(qc);
1415
1416 preempted_tag = ap->active_tag;
1417 preempted_sactive = ap->sactive;
1418 preempted_qc_active = ap->qc_active;
1419 ap->active_tag = ATA_TAG_POISON;
1420 ap->sactive = 0;
1421 ap->qc_active = 0;
1422
1423 /* prepare & issue qc */
1424 qc->tf = *tf;
1425 if (cdb)
1426 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1427 qc->flags |= ATA_QCFLAG_RESULT_TF;
1428 qc->dma_dir = dma_dir;
1429 if (dma_dir != DMA_NONE) {
1430 unsigned int i, buflen = 0;
1431
1432 for (i = 0; i < n_elem; i++)
1433 buflen += sg[i].length;
1434
1435 ata_sg_init(qc, sg, n_elem);
1436 qc->nbytes = buflen;
1437 }
1438
1439 qc->private_data = &wait;
1440 qc->complete_fn = ata_qc_complete_internal;
1441
1442 ata_qc_issue(qc);
1443
1444 spin_unlock_irqrestore(ap->lock, flags);
1445
1446 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1447
1448 ata_port_flush_task(ap);
1449
1450 if (!rc) {
1451 spin_lock_irqsave(ap->lock, flags);
1452
1453 /* We're racing with irq here. If we lose, the
1454 * following test prevents us from completing the qc
1455 * twice. If we win, the port is frozen and will be
1456 * cleaned up by ->post_internal_cmd().
1457 */
1458 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1459 qc->err_mask |= AC_ERR_TIMEOUT;
1460
1461 if (ap->ops->error_handler)
1462 ata_port_freeze(ap);
1463 else
1464 ata_qc_complete(qc);
1465
1466 if (ata_msg_warn(ap))
1467 ata_dev_printk(dev, KERN_WARNING,
1468 "qc timeout (cmd 0x%x)\n", command);
1469 }
1470
1471 spin_unlock_irqrestore(ap->lock, flags);
1472 }
1473
1474 /* do post_internal_cmd */
1475 if (ap->ops->post_internal_cmd)
1476 ap->ops->post_internal_cmd(qc);
1477
1478 /* perform minimal error analysis */
1479 if (qc->flags & ATA_QCFLAG_FAILED) {
1480 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1481 qc->err_mask |= AC_ERR_DEV;
1482
1483 if (!qc->err_mask)
1484 qc->err_mask |= AC_ERR_OTHER;
1485
1486 if (qc->err_mask & ~AC_ERR_OTHER)
1487 qc->err_mask &= ~AC_ERR_OTHER;
1488 }
1489
1490 /* finish up */
1491 spin_lock_irqsave(ap->lock, flags);
1492
1493 *tf = qc->result_tf;
1494 err_mask = qc->err_mask;
1495
1496 ata_qc_free(qc);
1497 ap->active_tag = preempted_tag;
1498 ap->sactive = preempted_sactive;
1499 ap->qc_active = preempted_qc_active;
1500
1501 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1502 * Until those drivers are fixed, we detect the condition
1503 * here, fail the command with AC_ERR_SYSTEM and reenable the
1504 * port.
1505 *
1506 * Note that this doesn't change any behavior as internal
1507 * command failure results in disabling the device in the
1508 * higher layer for LLDDs without new reset/EH callbacks.
1509 *
1510 * Kill the following code as soon as those drivers are fixed.
1511 */
1512 if (ap->flags & ATA_FLAG_DISABLED) {
1513 err_mask |= AC_ERR_SYSTEM;
1514 ata_port_probe(ap);
1515 }
1516
1517 spin_unlock_irqrestore(ap->lock, flags);
1518
1519 return err_mask;
1520}
1521
1522/**
1523 * ata_exec_internal - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data tranfer direction of the command
1528 * @buf: Data buffer of the command
1529 * @buflen: Length of data buffer
1530 *
1531 * Wrapper around ata_exec_internal_sg() which takes simple
1532 * buffer instead of sg list.
1533 *
1534 * LOCKING:
1535 * None. Should be called with kernel context, might sleep.
1536 *
1537 * RETURNS:
1538 * Zero on success, AC_ERR_* mask on failure
1539 */
1540unsigned ata_exec_internal(struct ata_device *dev,
1541 struct ata_taskfile *tf, const u8 *cdb,
1542 int dma_dir, void *buf, unsigned int buflen)
1543{
1544 struct scatterlist *psg = NULL, sg;
1545 unsigned int n_elem = 0;
1546
1547 if (dma_dir != DMA_NONE) {
1548 WARN_ON(!buf);
1549 sg_init_one(&sg, buf, buflen);
1550 psg = &sg;
1551 n_elem++;
1552 }
1553
1554 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1555}
1556
1557/**
1558 * ata_do_simple_cmd - execute simple internal command
1559 * @dev: Device to which the command is sent
1560 * @cmd: Opcode to execute
1561 *
1562 * Execute a 'simple' command, that only consists of the opcode
1563 * 'cmd' itself, without filling any other registers
1564 *
1565 * LOCKING:
1566 * Kernel thread context (may sleep).
1567 *
1568 * RETURNS:
1569 * Zero on success, AC_ERR_* mask on failure
1570 */
1571unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1572{
1573 struct ata_taskfile tf;
1574
1575 ata_tf_init(dev, &tf);
1576
1577 tf.command = cmd;
1578 tf.flags |= ATA_TFLAG_DEVICE;
1579 tf.protocol = ATA_PROT_NODATA;
1580
1581 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1582}
1583
1584/**
1585 * ata_pio_need_iordy - check if iordy needed
1586 * @adev: ATA device
1587 *
1588 * Check if the current speed of the device requires IORDY. Used
1589 * by various controllers for chip configuration.
1590 */
1591
1592unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1593{
1594 /* Controller doesn't support IORDY. Probably a pointless check
1595 as the caller should know this */
1596 if (adev->ap->flags & ATA_FLAG_NO_IORDY)
1597 return 0;
1598 /* PIO3 and higher it is mandatory */
1599 if (adev->pio_mode > XFER_PIO_2)
1600 return 1;
1601 /* We turn it on when possible */
1602 if (ata_id_has_iordy(adev->id))
1603 return 1;
1604 return 0;
1605}
1606
1607/**
1608 * ata_pio_mask_no_iordy - Return the non IORDY mask
1609 * @adev: ATA device
1610 *
1611 * Compute the highest mode possible if we are not using iordy. Return
1612 * -1 if no iordy mode is available.
1613 */
1614
1615static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1616{
1617 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1618 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1619 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1620 /* Is the speed faster than the drive allows non IORDY ? */
1621 if (pio) {
1622 /* This is cycle times not frequency - watch the logic! */
1623 if (pio > 240) /* PIO2 is 240nS per cycle */
1624 return 3 << ATA_SHIFT_PIO;
1625 return 7 << ATA_SHIFT_PIO;
1626 }
1627 }
1628 return 3 << ATA_SHIFT_PIO;
1629}
1630
1631/**
1632 * ata_dev_read_id - Read ID data from the specified device
1633 * @dev: target device
1634 * @p_class: pointer to class of the target device (may be changed)
1635 * @flags: ATA_READID_* flags
1636 * @id: buffer to read IDENTIFY data into
1637 *
1638 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1639 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1640 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1641 * for pre-ATA4 drives.
1642 *
1643 * LOCKING:
1644 * Kernel thread context (may sleep)
1645 *
1646 * RETURNS:
1647 * 0 on success, -errno otherwise.
1648 */
1649int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1650 unsigned int flags, u16 *id)
1651{
1652 struct ata_port *ap = dev->ap;
1653 unsigned int class = *p_class;
1654 struct ata_taskfile tf;
1655 unsigned int err_mask = 0;
1656 const char *reason;
1657 int may_fallback = 1, tried_spinup = 0;
1658 int rc;
1659
1660 if (ata_msg_ctl(ap))
1661 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1662
1663 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1664 retry:
1665 ata_tf_init(dev, &tf);
1666
1667 switch (class) {
1668 case ATA_DEV_ATA:
1669 tf.command = ATA_CMD_ID_ATA;
1670 break;
1671 case ATA_DEV_ATAPI:
1672 tf.command = ATA_CMD_ID_ATAPI;
1673 break;
1674 default:
1675 rc = -ENODEV;
1676 reason = "unsupported class";
1677 goto err_out;
1678 }
1679
1680 tf.protocol = ATA_PROT_PIO;
1681
1682 /* Some devices choke if TF registers contain garbage. Make
1683 * sure those are properly initialized.
1684 */
1685 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1686
1687 /* Device presence detection is unreliable on some
1688 * controllers. Always poll IDENTIFY if available.
1689 */
1690 tf.flags |= ATA_TFLAG_POLLING;
1691
1692 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1693 id, sizeof(id[0]) * ATA_ID_WORDS);
1694 if (err_mask) {
1695 if (err_mask & AC_ERR_NODEV_HINT) {
1696 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1697 ap->print_id, dev->devno);
1698 return -ENOENT;
1699 }
1700
1701 /* Device or controller might have reported the wrong
1702 * device class. Give a shot at the other IDENTIFY if
1703 * the current one is aborted by the device.
1704 */
1705 if (may_fallback &&
1706 (err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1707 may_fallback = 0;
1708
1709 if (class == ATA_DEV_ATA)
1710 class = ATA_DEV_ATAPI;
1711 else
1712 class = ATA_DEV_ATA;
1713 goto retry;
1714 }
1715
1716 rc = -EIO;
1717 reason = "I/O error";
1718 goto err_out;
1719 }
1720
1721 /* Falling back doesn't make sense if ID data was read
1722 * successfully at least once.
1723 */
1724 may_fallback = 0;
1725
1726 swap_buf_le16(id, ATA_ID_WORDS);
1727
1728 /* sanity check */
1729 rc = -EINVAL;
1730 reason = "device reports invalid type";
1731
1732 if (class == ATA_DEV_ATA) {
1733 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1734 goto err_out;
1735 } else {
1736 if (ata_id_is_ata(id))
1737 goto err_out;
1738 }
1739
1740 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1741 tried_spinup = 1;
1742 /*
1743 * Drive powered-up in standby mode, and requires a specific
1744 * SET_FEATURES spin-up subcommand before it will accept
1745 * anything other than the original IDENTIFY command.
1746 */
1747 ata_tf_init(dev, &tf);
1748 tf.command = ATA_CMD_SET_FEATURES;
1749 tf.feature = SETFEATURES_SPINUP;
1750 tf.protocol = ATA_PROT_NODATA;
1751 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1752 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1753 if (err_mask) {
1754 rc = -EIO;
1755 reason = "SPINUP failed";
1756 goto err_out;
1757 }
1758 /*
1759 * If the drive initially returned incomplete IDENTIFY info,
1760 * we now must reissue the IDENTIFY command.
1761 */
1762 if (id[2] == 0x37c8)
1763 goto retry;
1764 }
1765
1766 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1767 /*
1768 * The exact sequence expected by certain pre-ATA4 drives is:
1769 * SRST RESET
1770 * IDENTIFY
1771 * INITIALIZE DEVICE PARAMETERS
1772 * anything else..
1773 * Some drives were very specific about that exact sequence.
1774 */
1775 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1776 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1777 if (err_mask) {
1778 rc = -EIO;
1779 reason = "INIT_DEV_PARAMS failed";
1780 goto err_out;
1781 }
1782
1783 /* current CHS translation info (id[53-58]) might be
1784 * changed. reread the identify device info.
1785 */
1786 flags &= ~ATA_READID_POSTRESET;
1787 goto retry;
1788 }
1789 }
1790
1791 *p_class = class;
1792
1793 return 0;
1794
1795 err_out:
1796 if (ata_msg_warn(ap))
1797 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1798 "(%s, err_mask=0x%x)\n", reason, err_mask);
1799 return rc;
1800}
1801
1802static inline u8 ata_dev_knobble(struct ata_device *dev)
1803{
1804 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1805}
1806
1807static void ata_dev_config_ncq(struct ata_device *dev,
1808 char *desc, size_t desc_sz)
1809{
1810 struct ata_port *ap = dev->ap;
1811 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1812
1813 if (!ata_id_has_ncq(dev->id)) {
1814 desc[0] = '\0';
1815 return;
1816 }
1817 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1818 snprintf(desc, desc_sz, "NCQ (not used)");
1819 return;
1820 }
1821 if (ap->flags & ATA_FLAG_NCQ) {
1822 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1823 dev->flags |= ATA_DFLAG_NCQ;
1824 }
1825
1826 if (hdepth >= ddepth)
1827 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1828 else
1829 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1830}
1831
1832/**
1833 * ata_dev_configure - Configure the specified ATA/ATAPI device
1834 * @dev: Target device to configure
1835 *
1836 * Configure @dev according to @dev->id. Generic and low-level
1837 * driver specific fixups are also applied.
1838 *
1839 * LOCKING:
1840 * Kernel thread context (may sleep)
1841 *
1842 * RETURNS:
1843 * 0 on success, -errno otherwise
1844 */
1845int ata_dev_configure(struct ata_device *dev)
1846{
1847 struct ata_port *ap = dev->ap;
1848 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1849 const u16 *id = dev->id;
1850 unsigned int xfer_mask;
1851 char revbuf[7]; /* XYZ-99\0 */
1852 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1853 char modelbuf[ATA_ID_PROD_LEN+1];
1854 int rc;
1855
1856 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1857 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
1858 __FUNCTION__);
1859 return 0;
1860 }
1861
1862 if (ata_msg_probe(ap))
1863 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __FUNCTION__);
1864
1865 /* set _SDD */
1866 rc = ata_acpi_push_id(dev);
1867 if (rc) {
1868 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1869 rc);
1870 }
1871
1872 /* retrieve and execute the ATA task file of _GTF */
1873 ata_acpi_exec_tfs(ap);
1874
1875 /* print device capabilities */
1876 if (ata_msg_probe(ap))
1877 ata_dev_printk(dev, KERN_DEBUG,
1878 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1879 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1880 __FUNCTION__,
1881 id[49], id[82], id[83], id[84],
1882 id[85], id[86], id[87], id[88]);
1883
1884 /* initialize to-be-configured parameters */
1885 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1886 dev->max_sectors = 0;
1887 dev->cdb_len = 0;
1888 dev->n_sectors = 0;
1889 dev->cylinders = 0;
1890 dev->heads = 0;
1891 dev->sectors = 0;
1892
1893 /*
1894 * common ATA, ATAPI feature tests
1895 */
1896
1897 /* find max transfer mode; for printk only */
1898 xfer_mask = ata_id_xfermask(id);
1899
1900 if (ata_msg_probe(ap))
1901 ata_dump_id(id);
1902
1903 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1904 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1905 sizeof(fwrevbuf));
1906
1907 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1908 sizeof(modelbuf));
1909
1910 /* ATA-specific feature tests */
1911 if (dev->class == ATA_DEV_ATA) {
1912 if (ata_id_is_cfa(id)) {
1913 if (id[162] & 1) /* CPRM may make this media unusable */
1914 ata_dev_printk(dev, KERN_WARNING,
1915 "supports DRM functions and may "
1916 "not be fully accessable.\n");
1917 snprintf(revbuf, 7, "CFA");
1918 }
1919 else
1920 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1921
1922 dev->n_sectors = ata_id_n_sectors(id);
1923
1924 if (dev->id[59] & 0x100)
1925 dev->multi_count = dev->id[59] & 0xff;
1926
1927 if (ata_id_has_lba(id)) {
1928 const char *lba_desc;
1929 char ncq_desc[20];
1930
1931 lba_desc = "LBA";
1932 dev->flags |= ATA_DFLAG_LBA;
1933 if (ata_id_has_lba48(id)) {
1934 dev->flags |= ATA_DFLAG_LBA48;
1935 lba_desc = "LBA48";
1936
1937 if (dev->n_sectors >= (1UL << 28) &&
1938 ata_id_has_flush_ext(id))
1939 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1940 }
1941
1942 if (ata_id_hpa_enabled(dev->id))
1943 dev->n_sectors = ata_hpa_resize(dev);
1944
1945 /* config NCQ */
1946 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1947
1948 /* print device info to dmesg */
1949 if (ata_msg_drv(ap) && print_info) {
1950 ata_dev_printk(dev, KERN_INFO,
1951 "%s: %s, %s, max %s\n",
1952 revbuf, modelbuf, fwrevbuf,
1953 ata_mode_string(xfer_mask));
1954 ata_dev_printk(dev, KERN_INFO,
1955 "%Lu sectors, multi %u: %s %s\n",
1956 (unsigned long long)dev->n_sectors,
1957 dev->multi_count, lba_desc, ncq_desc);
1958 }
1959 } else {
1960 /* CHS */
1961
1962 /* Default translation */
1963 dev->cylinders = id[1];
1964 dev->heads = id[3];
1965 dev->sectors = id[6];
1966
1967 if (ata_id_current_chs_valid(id)) {
1968 /* Current CHS translation is valid. */
1969 dev->cylinders = id[54];
1970 dev->heads = id[55];
1971 dev->sectors = id[56];
1972 }
1973
1974 /* print device info to dmesg */
1975 if (ata_msg_drv(ap) && print_info) {
1976 ata_dev_printk(dev, KERN_INFO,
1977 "%s: %s, %s, max %s\n",
1978 revbuf, modelbuf, fwrevbuf,
1979 ata_mode_string(xfer_mask));
1980 ata_dev_printk(dev, KERN_INFO,
1981 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1982 (unsigned long long)dev->n_sectors,
1983 dev->multi_count, dev->cylinders,
1984 dev->heads, dev->sectors);
1985 }
1986 }
1987
1988 dev->cdb_len = 16;
1989 }
1990
1991 /* ATAPI-specific feature tests */
1992 else if (dev->class == ATA_DEV_ATAPI) {
1993 char *cdb_intr_string = "";
1994
1995 rc = atapi_cdb_len(id);
1996 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1997 if (ata_msg_warn(ap))
1998 ata_dev_printk(dev, KERN_WARNING,
1999 "unsupported CDB len\n");
2000 rc = -EINVAL;
2001 goto err_out_nosup;
2002 }
2003 dev->cdb_len = (unsigned int) rc;
2004
2005 if (ata_id_cdb_intr(dev->id)) {
2006 dev->flags |= ATA_DFLAG_CDB_INTR;
2007 cdb_intr_string = ", CDB intr";
2008 }
2009
2010 /* print device info to dmesg */
2011 if (ata_msg_drv(ap) && print_info)
2012 ata_dev_printk(dev, KERN_INFO,
2013 "ATAPI: %s, %s, max %s%s\n",
2014 modelbuf, fwrevbuf,
2015 ata_mode_string(xfer_mask),
2016 cdb_intr_string);
2017 }
2018
2019 /* determine max_sectors */
2020 dev->max_sectors = ATA_MAX_SECTORS;
2021 if (dev->flags & ATA_DFLAG_LBA48)
2022 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2023
2024 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2025 /* Let the user know. We don't want to disallow opens for
2026 rescue purposes, or in case the vendor is just a blithering
2027 idiot */
2028 if (print_info) {
2029 ata_dev_printk(dev, KERN_WARNING,
2030"Drive reports diagnostics failure. This may indicate a drive\n");
2031 ata_dev_printk(dev, KERN_WARNING,
2032"fault or invalid emulation. Contact drive vendor for information.\n");
2033 }
2034 }
2035
2036 /* limit bridge transfers to udma5, 200 sectors */
2037 if (ata_dev_knobble(dev)) {
2038 if (ata_msg_drv(ap) && print_info)
2039 ata_dev_printk(dev, KERN_INFO,
2040 "applying bridge limits\n");
2041 dev->udma_mask &= ATA_UDMA5;
2042 dev->max_sectors = ATA_MAX_SECTORS;
2043 }
2044
2045 if (ata_device_blacklisted(dev) & ATA_HORKAGE_MAX_SEC_128)
2046 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2047 dev->max_sectors);
2048
2049 if (ap->ops->dev_config)
2050 ap->ops->dev_config(dev);
2051
2052 if (ata_msg_probe(ap))
2053 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2054 __FUNCTION__, ata_chk_status(ap));
2055 return 0;
2056
2057err_out_nosup:
2058 if (ata_msg_probe(ap))
2059 ata_dev_printk(dev, KERN_DEBUG,
2060 "%s: EXIT, err\n", __FUNCTION__);
2061 return rc;
2062}
2063
2064/**
2065 * ata_cable_40wire - return 40 wire cable type
2066 * @ap: port
2067 *
2068 * Helper method for drivers which want to hardwire 40 wire cable
2069 * detection.
2070 */
2071
2072int ata_cable_40wire(struct ata_port *ap)
2073{
2074 return ATA_CBL_PATA40;
2075}
2076
2077/**
2078 * ata_cable_80wire - return 80 wire cable type
2079 * @ap: port
2080 *
2081 * Helper method for drivers which want to hardwire 80 wire cable
2082 * detection.
2083 */
2084
2085int ata_cable_80wire(struct ata_port *ap)
2086{
2087 return ATA_CBL_PATA80;
2088}
2089
2090/**
2091 * ata_cable_unknown - return unknown PATA cable.
2092 * @ap: port
2093 *
2094 * Helper method for drivers which have no PATA cable detection.
2095 */
2096
2097int ata_cable_unknown(struct ata_port *ap)
2098{
2099 return ATA_CBL_PATA_UNK;
2100}
2101
2102/**
2103 * ata_cable_sata - return SATA cable type
2104 * @ap: port
2105 *
2106 * Helper method for drivers which have SATA cables
2107 */
2108
2109int ata_cable_sata(struct ata_port *ap)
2110{
2111 return ATA_CBL_SATA;
2112}
2113
2114/**
2115 * ata_bus_probe - Reset and probe ATA bus
2116 * @ap: Bus to probe
2117 *
2118 * Master ATA bus probing function. Initiates a hardware-dependent
2119 * bus reset, then attempts to identify any devices found on
2120 * the bus.
2121 *
2122 * LOCKING:
2123 * PCI/etc. bus probe sem.
2124 *
2125 * RETURNS:
2126 * Zero on success, negative errno otherwise.
2127 */
2128
2129int ata_bus_probe(struct ata_port *ap)
2130{
2131 unsigned int classes[ATA_MAX_DEVICES];
2132 int tries[ATA_MAX_DEVICES];
2133 int i, rc;
2134 struct ata_device *dev;
2135
2136 ata_port_probe(ap);
2137
2138 for (i = 0; i < ATA_MAX_DEVICES; i++)
2139 tries[i] = ATA_PROBE_MAX_TRIES;
2140
2141 retry:
2142 /* reset and determine device classes */
2143 ap->ops->phy_reset(ap);
2144
2145 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2146 dev = &ap->device[i];
2147
2148 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2149 dev->class != ATA_DEV_UNKNOWN)
2150 classes[dev->devno] = dev->class;
2151 else
2152 classes[dev->devno] = ATA_DEV_NONE;
2153
2154 dev->class = ATA_DEV_UNKNOWN;
2155 }
2156
2157 ata_port_probe(ap);
2158
2159 /* after the reset the device state is PIO 0 and the controller
2160 state is undefined. Record the mode */
2161
2162 for (i = 0; i < ATA_MAX_DEVICES; i++)
2163 ap->device[i].pio_mode = XFER_PIO_0;
2164
2165 /* read IDENTIFY page and configure devices. We have to do the identify
2166 specific sequence bass-ackwards so that PDIAG- is released by
2167 the slave device */
2168
2169 for (i = ATA_MAX_DEVICES - 1; i >= 0; i--) {
2170 dev = &ap->device[i];
2171
2172 if (tries[i])
2173 dev->class = classes[i];
2174
2175 if (!ata_dev_enabled(dev))
2176 continue;
2177
2178 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2179 dev->id);
2180 if (rc)
2181 goto fail;
2182 }
2183
2184 /* Now ask for the cable type as PDIAG- should have been released */
2185 if (ap->ops->cable_detect)
2186 ap->cbl = ap->ops->cable_detect(ap);
2187
2188 /* After the identify sequence we can now set up the devices. We do
2189 this in the normal order so that the user doesn't get confused */
2190
2191 for(i = 0; i < ATA_MAX_DEVICES; i++) {
2192 dev = &ap->device[i];
2193 if (!ata_dev_enabled(dev))
2194 continue;
2195
2196 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
2197 rc = ata_dev_configure(dev);
2198 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2199 if (rc)
2200 goto fail;
2201 }
2202
2203 /* configure transfer mode */
2204 rc = ata_set_mode(ap, &dev);
2205 if (rc)
2206 goto fail;
2207
2208 for (i = 0; i < ATA_MAX_DEVICES; i++)
2209 if (ata_dev_enabled(&ap->device[i]))
2210 return 0;
2211
2212 /* no device present, disable port */
2213 ata_port_disable(ap);
2214 ap->ops->port_disable(ap);
2215 return -ENODEV;
2216
2217 fail:
2218 tries[dev->devno]--;
2219
2220 switch (rc) {
2221 case -EINVAL:
2222 /* eeek, something went very wrong, give up */
2223 tries[dev->devno] = 0;
2224 break;
2225
2226 case -ENODEV:
2227 /* give it just one more chance */
2228 tries[dev->devno] = min(tries[dev->devno], 1);
2229 case -EIO:
2230 if (tries[dev->devno] == 1) {
2231 /* This is the last chance, better to slow
2232 * down than lose it.
2233 */
2234 sata_down_spd_limit(ap);
2235 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2236 }
2237 }
2238
2239 if (!tries[dev->devno])
2240 ata_dev_disable(dev);
2241
2242 goto retry;
2243}
2244
2245/**
2246 * ata_port_probe - Mark port as enabled
2247 * @ap: Port for which we indicate enablement
2248 *
2249 * Modify @ap data structure such that the system
2250 * thinks that the entire port is enabled.
2251 *
2252 * LOCKING: host lock, or some other form of
2253 * serialization.
2254 */
2255
2256void ata_port_probe(struct ata_port *ap)
2257{
2258 ap->flags &= ~ATA_FLAG_DISABLED;
2259}
2260
2261/**
2262 * sata_print_link_status - Print SATA link status
2263 * @ap: SATA port to printk link status about
2264 *
2265 * This function prints link speed and status of a SATA link.
2266 *
2267 * LOCKING:
2268 * None.
2269 */
2270void sata_print_link_status(struct ata_port *ap)
2271{
2272 u32 sstatus, scontrol, tmp;
2273
2274 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
2275 return;
2276 sata_scr_read(ap, SCR_CONTROL, &scontrol);
2277
2278 if (ata_port_online(ap)) {
2279 tmp = (sstatus >> 4) & 0xf;
2280 ata_port_printk(ap, KERN_INFO,
2281 "SATA link up %s (SStatus %X SControl %X)\n",
2282 sata_spd_string(tmp), sstatus, scontrol);
2283 } else {
2284 ata_port_printk(ap, KERN_INFO,
2285 "SATA link down (SStatus %X SControl %X)\n",
2286 sstatus, scontrol);
2287 }
2288}
2289
2290/**
2291 * __sata_phy_reset - Wake/reset a low-level SATA PHY
2292 * @ap: SATA port associated with target SATA PHY.
2293 *
2294 * This function issues commands to standard SATA Sxxx
2295 * PHY registers, to wake up the phy (and device), and
2296 * clear any reset condition.
2297 *
2298 * LOCKING:
2299 * PCI/etc. bus probe sem.
2300 *
2301 */
2302void __sata_phy_reset(struct ata_port *ap)
2303{
2304 u32 sstatus;
2305 unsigned long timeout = jiffies + (HZ * 5);
2306
2307 if (ap->flags & ATA_FLAG_SATA_RESET) {
2308 /* issue phy wake/reset */
2309 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
2310 /* Couldn't find anything in SATA I/II specs, but
2311 * AHCI-1.1 10.4.2 says at least 1 ms. */
2312 mdelay(1);
2313 }
2314 /* phy wake/clear reset */
2315 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
2316
2317 /* wait for phy to become ready, if necessary */
2318 do {
2319 msleep(200);
2320 sata_scr_read(ap, SCR_STATUS, &sstatus);
2321 if ((sstatus & 0xf) != 1)
2322 break;
2323 } while (time_before(jiffies, timeout));
2324
2325 /* print link status */
2326 sata_print_link_status(ap);
2327
2328 /* TODO: phy layer with polling, timeouts, etc. */
2329 if (!ata_port_offline(ap))
2330 ata_port_probe(ap);
2331 else
2332 ata_port_disable(ap);
2333
2334 if (ap->flags & ATA_FLAG_DISABLED)
2335 return;
2336
2337 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2338 ata_port_disable(ap);
2339 return;
2340 }
2341
2342 ap->cbl = ATA_CBL_SATA;
2343}
2344
2345/**
2346 * sata_phy_reset - Reset SATA bus.
2347 * @ap: SATA port associated with target SATA PHY.
2348 *
2349 * This function resets the SATA bus, and then probes
2350 * the bus for devices.
2351 *
2352 * LOCKING:
2353 * PCI/etc. bus probe sem.
2354 *
2355 */
2356void sata_phy_reset(struct ata_port *ap)
2357{
2358 __sata_phy_reset(ap);
2359 if (ap->flags & ATA_FLAG_DISABLED)
2360 return;
2361 ata_bus_reset(ap);
2362}
2363
2364/**
2365 * ata_dev_pair - return other device on cable
2366 * @adev: device
2367 *
2368 * Obtain the other device on the same cable, or if none is
2369 * present NULL is returned
2370 */
2371
2372struct ata_device *ata_dev_pair(struct ata_device *adev)
2373{
2374 struct ata_port *ap = adev->ap;
2375 struct ata_device *pair = &ap->device[1 - adev->devno];
2376 if (!ata_dev_enabled(pair))
2377 return NULL;
2378 return pair;
2379}
2380
2381/**
2382 * ata_port_disable - Disable port.
2383 * @ap: Port to be disabled.
2384 *
2385 * Modify @ap data structure such that the system
2386 * thinks that the entire port is disabled, and should
2387 * never attempt to probe or communicate with devices
2388 * on this port.
2389 *
2390 * LOCKING: host lock, or some other form of
2391 * serialization.
2392 */
2393
2394void ata_port_disable(struct ata_port *ap)
2395{
2396 ap->device[0].class = ATA_DEV_NONE;
2397 ap->device[1].class = ATA_DEV_NONE;
2398 ap->flags |= ATA_FLAG_DISABLED;
2399}
2400
2401/**
2402 * sata_down_spd_limit - adjust SATA spd limit downward
2403 * @ap: Port to adjust SATA spd limit for
2404 *
2405 * Adjust SATA spd limit of @ap downward. Note that this
2406 * function only adjusts the limit. The change must be applied
2407 * using sata_set_spd().
2408 *
2409 * LOCKING:
2410 * Inherited from caller.
2411 *
2412 * RETURNS:
2413 * 0 on success, negative errno on failure
2414 */
2415int sata_down_spd_limit(struct ata_port *ap)
2416{
2417 u32 sstatus, spd, mask;
2418 int rc, highbit;
2419
2420 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2421 if (rc)
2422 return rc;
2423
2424 mask = ap->sata_spd_limit;
2425 if (mask <= 1)
2426 return -EINVAL;
2427 highbit = fls(mask) - 1;
2428 mask &= ~(1 << highbit);
2429
2430 spd = (sstatus >> 4) & 0xf;
2431 if (spd <= 1)
2432 return -EINVAL;
2433 spd--;
2434 mask &= (1 << spd) - 1;
2435 if (!mask)
2436 return -EINVAL;
2437
2438 ap->sata_spd_limit = mask;
2439
2440 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2441 sata_spd_string(fls(mask)));
2442
2443 return 0;
2444}
2445
2446static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2447{
2448 u32 spd, limit;
2449
2450 if (ap->sata_spd_limit == UINT_MAX)
2451 limit = 0;
2452 else
2453 limit = fls(ap->sata_spd_limit);
2454
2455 spd = (*scontrol >> 4) & 0xf;
2456 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2457
2458 return spd != limit;
2459}
2460
2461/**
2462 * sata_set_spd_needed - is SATA spd configuration needed
2463 * @ap: Port in question
2464 *
2465 * Test whether the spd limit in SControl matches
2466 * @ap->sata_spd_limit. This function is used to determine
2467 * whether hardreset is necessary to apply SATA spd
2468 * configuration.
2469 *
2470 * LOCKING:
2471 * Inherited from caller.
2472 *
2473 * RETURNS:
2474 * 1 if SATA spd configuration is needed, 0 otherwise.
2475 */
2476int sata_set_spd_needed(struct ata_port *ap)
2477{
2478 u32 scontrol;
2479
2480 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2481 return 0;
2482
2483 return __sata_set_spd_needed(ap, &scontrol);
2484}
2485
2486/**
2487 * sata_set_spd - set SATA spd according to spd limit
2488 * @ap: Port to set SATA spd for
2489 *
2490 * Set SATA spd of @ap according to sata_spd_limit.
2491 *
2492 * LOCKING:
2493 * Inherited from caller.
2494 *
2495 * RETURNS:
2496 * 0 if spd doesn't need to be changed, 1 if spd has been
2497 * changed. Negative errno if SCR registers are inaccessible.
2498 */
2499int sata_set_spd(struct ata_port *ap)
2500{
2501 u32 scontrol;
2502 int rc;
2503
2504 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 return rc;
2506
2507 if (!__sata_set_spd_needed(ap, &scontrol))
2508 return 0;
2509
2510 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2511 return rc;
2512
2513 return 1;
2514}
2515
2516/*
2517 * This mode timing computation functionality is ported over from
2518 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2519 */
2520/*
2521 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2522 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2523 * for UDMA6, which is currently supported only by Maxtor drives.
2524 *
2525 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2526 */
2527
2528static const struct ata_timing ata_timing[] = {
2529
2530 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2531 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2532 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2533 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2534
2535 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2536 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2537 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2538 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2539 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2540
2541/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2542
2543 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2544 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2545 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2546
2547 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2548 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2549 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2550
2551 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2552 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2553 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2554 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2555
2556 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2557 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2558 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2559
2560/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2561
2562 { 0xFF }
2563};
2564
2565#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2566#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2567
2568static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2569{
2570 q->setup = EZ(t->setup * 1000, T);
2571 q->act8b = EZ(t->act8b * 1000, T);
2572 q->rec8b = EZ(t->rec8b * 1000, T);
2573 q->cyc8b = EZ(t->cyc8b * 1000, T);
2574 q->active = EZ(t->active * 1000, T);
2575 q->recover = EZ(t->recover * 1000, T);
2576 q->cycle = EZ(t->cycle * 1000, T);
2577 q->udma = EZ(t->udma * 1000, UT);
2578}
2579
2580void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2581 struct ata_timing *m, unsigned int what)
2582{
2583 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2584 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2585 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2586 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2587 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2588 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2589 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2590 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2591}
2592
2593static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2594{
2595 const struct ata_timing *t;
2596
2597 for (t = ata_timing; t->mode != speed; t++)
2598 if (t->mode == 0xFF)
2599 return NULL;
2600 return t;
2601}
2602
2603int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2604 struct ata_timing *t, int T, int UT)
2605{
2606 const struct ata_timing *s;
2607 struct ata_timing p;
2608
2609 /*
2610 * Find the mode.
2611 */
2612
2613 if (!(s = ata_timing_find_mode(speed)))
2614 return -EINVAL;
2615
2616 memcpy(t, s, sizeof(*s));
2617
2618 /*
2619 * If the drive is an EIDE drive, it can tell us it needs extended
2620 * PIO/MW_DMA cycle timing.
2621 */
2622
2623 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2624 memset(&p, 0, sizeof(p));
2625 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2626 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2627 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2628 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2629 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2630 }
2631 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2632 }
2633
2634 /*
2635 * Convert the timing to bus clock counts.
2636 */
2637
2638 ata_timing_quantize(t, t, T, UT);
2639
2640 /*
2641 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2642 * S.M.A.R.T * and some other commands. We have to ensure that the
2643 * DMA cycle timing is slower/equal than the fastest PIO timing.
2644 */
2645
2646 if (speed > XFER_PIO_6) {
2647 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2648 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2649 }
2650
2651 /*
2652 * Lengthen active & recovery time so that cycle time is correct.
2653 */
2654
2655 if (t->act8b + t->rec8b < t->cyc8b) {
2656 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2657 t->rec8b = t->cyc8b - t->act8b;
2658 }
2659
2660 if (t->active + t->recover < t->cycle) {
2661 t->active += (t->cycle - (t->active + t->recover)) / 2;
2662 t->recover = t->cycle - t->active;
2663 }
2664
2665 /* In a few cases quantisation may produce enough errors to
2666 leave t->cycle too low for the sum of active and recovery
2667 if so we must correct this */
2668 if (t->active + t->recover > t->cycle)
2669 t->cycle = t->active + t->recover;
2670
2671 return 0;
2672}
2673
2674/**
2675 * ata_down_xfermask_limit - adjust dev xfer masks downward
2676 * @dev: Device to adjust xfer masks
2677 * @sel: ATA_DNXFER_* selector
2678 *
2679 * Adjust xfer masks of @dev downward. Note that this function
2680 * does not apply the change. Invoking ata_set_mode() afterwards
2681 * will apply the limit.
2682 *
2683 * LOCKING:
2684 * Inherited from caller.
2685 *
2686 * RETURNS:
2687 * 0 on success, negative errno on failure
2688 */
2689int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2690{
2691 char buf[32];
2692 unsigned int orig_mask, xfer_mask;
2693 unsigned int pio_mask, mwdma_mask, udma_mask;
2694 int quiet, highbit;
2695
2696 quiet = !!(sel & ATA_DNXFER_QUIET);
2697 sel &= ~ATA_DNXFER_QUIET;
2698
2699 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2700 dev->mwdma_mask,
2701 dev->udma_mask);
2702 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2703
2704 switch (sel) {
2705 case ATA_DNXFER_PIO:
2706 highbit = fls(pio_mask) - 1;
2707 pio_mask &= ~(1 << highbit);
2708 break;
2709
2710 case ATA_DNXFER_DMA:
2711 if (udma_mask) {
2712 highbit = fls(udma_mask) - 1;
2713 udma_mask &= ~(1 << highbit);
2714 if (!udma_mask)
2715 return -ENOENT;
2716 } else if (mwdma_mask) {
2717 highbit = fls(mwdma_mask) - 1;
2718 mwdma_mask &= ~(1 << highbit);
2719 if (!mwdma_mask)
2720 return -ENOENT;
2721 }
2722 break;
2723
2724 case ATA_DNXFER_40C:
2725 udma_mask &= ATA_UDMA_MASK_40C;
2726 break;
2727
2728 case ATA_DNXFER_FORCE_PIO0:
2729 pio_mask &= 1;
2730 case ATA_DNXFER_FORCE_PIO:
2731 mwdma_mask = 0;
2732 udma_mask = 0;
2733 break;
2734
2735 default:
2736 BUG();
2737 }
2738
2739 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2740
2741 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2742 return -ENOENT;
2743
2744 if (!quiet) {
2745 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2746 snprintf(buf, sizeof(buf), "%s:%s",
2747 ata_mode_string(xfer_mask),
2748 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2749 else
2750 snprintf(buf, sizeof(buf), "%s",
2751 ata_mode_string(xfer_mask));
2752
2753 ata_dev_printk(dev, KERN_WARNING,
2754 "limiting speed to %s\n", buf);
2755 }
2756
2757 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2758 &dev->udma_mask);
2759
2760 return 0;
2761}
2762
2763static int ata_dev_set_mode(struct ata_device *dev)
2764{
2765 struct ata_eh_context *ehc = &dev->ap->eh_context;
2766 unsigned int err_mask;
2767 int rc;
2768
2769 dev->flags &= ~ATA_DFLAG_PIO;
2770 if (dev->xfer_shift == ATA_SHIFT_PIO)
2771 dev->flags |= ATA_DFLAG_PIO;
2772
2773 err_mask = ata_dev_set_xfermode(dev);
2774 /* Old CFA may refuse this command, which is just fine */
2775 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2776 err_mask &= ~AC_ERR_DEV;
2777
2778 if (err_mask) {
2779 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2780 "(err_mask=0x%x)\n", err_mask);
2781 return -EIO;
2782 }
2783
2784 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2785 rc = ata_dev_revalidate(dev, 0);
2786 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2787 if (rc)
2788 return rc;
2789
2790 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2791 dev->xfer_shift, (int)dev->xfer_mode);
2792
2793 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2794 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2795 return 0;
2796}
2797
2798/**
2799 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
2800 * @ap: port on which timings will be programmed
2801 * @r_failed_dev: out paramter for failed device
2802 *
2803 * Standard implementation of the function used to tune and set
2804 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2805 * ata_dev_set_mode() fails, pointer to the failing device is
2806 * returned in @r_failed_dev.
2807 *
2808 * LOCKING:
2809 * PCI/etc. bus probe sem.
2810 *
2811 * RETURNS:
2812 * 0 on success, negative errno otherwise
2813 */
2814
2815int ata_do_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2816{
2817 struct ata_device *dev;
2818 int i, rc = 0, used_dma = 0, found = 0;
2819
2820
2821 /* step 1: calculate xfer_mask */
2822 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2823 unsigned int pio_mask, dma_mask;
2824
2825 dev = &ap->device[i];
2826
2827 if (!ata_dev_enabled(dev))
2828 continue;
2829
2830 ata_dev_xfermask(dev);
2831
2832 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2833 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2834 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2835 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2836
2837 found = 1;
2838 if (dev->dma_mode)
2839 used_dma = 1;
2840 }
2841 if (!found)
2842 goto out;
2843
2844 /* step 2: always set host PIO timings */
2845 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2846 dev = &ap->device[i];
2847 if (!ata_dev_enabled(dev))
2848 continue;
2849
2850 if (!dev->pio_mode) {
2851 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2852 rc = -EINVAL;
2853 goto out;
2854 }
2855
2856 dev->xfer_mode = dev->pio_mode;
2857 dev->xfer_shift = ATA_SHIFT_PIO;
2858 if (ap->ops->set_piomode)
2859 ap->ops->set_piomode(ap, dev);
2860 }
2861
2862 /* step 3: set host DMA timings */
2863 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2864 dev = &ap->device[i];
2865
2866 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2867 continue;
2868
2869 dev->xfer_mode = dev->dma_mode;
2870 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2871 if (ap->ops->set_dmamode)
2872 ap->ops->set_dmamode(ap, dev);
2873 }
2874
2875 /* step 4: update devices' xfer mode */
2876 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2877 dev = &ap->device[i];
2878
2879 /* don't update suspended devices' xfer mode */
2880 if (!ata_dev_enabled(dev))
2881 continue;
2882
2883 rc = ata_dev_set_mode(dev);
2884 if (rc)
2885 goto out;
2886 }
2887
2888 /* Record simplex status. If we selected DMA then the other
2889 * host channels are not permitted to do so.
2890 */
2891 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2892 ap->host->simplex_claimed = ap;
2893
2894 out:
2895 if (rc)
2896 *r_failed_dev = dev;
2897 return rc;
2898}
2899
2900/**
2901 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2902 * @ap: port on which timings will be programmed
2903 * @r_failed_dev: out paramter for failed device
2904 *
2905 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2906 * ata_set_mode() fails, pointer to the failing device is
2907 * returned in @r_failed_dev.
2908 *
2909 * LOCKING:
2910 * PCI/etc. bus probe sem.
2911 *
2912 * RETURNS:
2913 * 0 on success, negative errno otherwise
2914 */
2915int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2916{
2917 /* has private set_mode? */
2918 if (ap->ops->set_mode)
2919 return ap->ops->set_mode(ap, r_failed_dev);
2920 return ata_do_set_mode(ap, r_failed_dev);
2921}
2922
2923/**
2924 * ata_tf_to_host - issue ATA taskfile to host controller
2925 * @ap: port to which command is being issued
2926 * @tf: ATA taskfile register set
2927 *
2928 * Issues ATA taskfile register set to ATA host controller,
2929 * with proper synchronization with interrupt handler and
2930 * other threads.
2931 *
2932 * LOCKING:
2933 * spin_lock_irqsave(host lock)
2934 */
2935
2936static inline void ata_tf_to_host(struct ata_port *ap,
2937 const struct ata_taskfile *tf)
2938{
2939 ap->ops->tf_load(ap, tf);
2940 ap->ops->exec_command(ap, tf);
2941}
2942
2943/**
2944 * ata_busy_sleep - sleep until BSY clears, or timeout
2945 * @ap: port containing status register to be polled
2946 * @tmout_pat: impatience timeout
2947 * @tmout: overall timeout
2948 *
2949 * Sleep until ATA Status register bit BSY clears,
2950 * or a timeout occurs.
2951 *
2952 * LOCKING:
2953 * Kernel thread context (may sleep).
2954 *
2955 * RETURNS:
2956 * 0 on success, -errno otherwise.
2957 */
2958int ata_busy_sleep(struct ata_port *ap,
2959 unsigned long tmout_pat, unsigned long tmout)
2960{
2961 unsigned long timer_start, timeout;
2962 u8 status;
2963
2964 status = ata_busy_wait(ap, ATA_BUSY, 300);
2965 timer_start = jiffies;
2966 timeout = timer_start + tmout_pat;
2967 while (status != 0xff && (status & ATA_BUSY) &&
2968 time_before(jiffies, timeout)) {
2969 msleep(50);
2970 status = ata_busy_wait(ap, ATA_BUSY, 3);
2971 }
2972
2973 if (status != 0xff && (status & ATA_BUSY))
2974 ata_port_printk(ap, KERN_WARNING,
2975 "port is slow to respond, please be patient "
2976 "(Status 0x%x)\n", status);
2977
2978 timeout = timer_start + tmout;
2979 while (status != 0xff && (status & ATA_BUSY) &&
2980 time_before(jiffies, timeout)) {
2981 msleep(50);
2982 status = ata_chk_status(ap);
2983 }
2984
2985 if (status == 0xff)
2986 return -ENODEV;
2987
2988 if (status & ATA_BUSY) {
2989 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2990 "(%lu secs, Status 0x%x)\n",
2991 tmout / HZ, status);
2992 return -EBUSY;
2993 }
2994
2995 return 0;
2996}
2997
2998/**
2999 * ata_wait_ready - sleep until BSY clears, or timeout
3000 * @ap: port containing status register to be polled
3001 * @deadline: deadline jiffies for the operation
3002 *
3003 * Sleep until ATA Status register bit BSY clears, or timeout
3004 * occurs.
3005 *
3006 * LOCKING:
3007 * Kernel thread context (may sleep).
3008 *
3009 * RETURNS:
3010 * 0 on success, -errno otherwise.
3011 */
3012int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3013{
3014 unsigned long start = jiffies;
3015 int warned = 0;
3016
3017 while (1) {
3018 u8 status = ata_chk_status(ap);
3019 unsigned long now = jiffies;
3020
3021 if (!(status & ATA_BUSY))
3022 return 0;
3023 if (!ata_port_online(ap) && status == 0xff)
3024 return -ENODEV;
3025 if (time_after(now, deadline))
3026 return -EBUSY;
3027
3028 if (!warned && time_after(now, start + 5 * HZ) &&
3029 (deadline - now > 3 * HZ)) {
3030 ata_port_printk(ap, KERN_WARNING,
3031 "port is slow to respond, please be patient "
3032 "(Status 0x%x)\n", status);
3033 warned = 1;
3034 }
3035
3036 msleep(50);
3037 }
3038}
3039
3040static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3041 unsigned long deadline)
3042{
3043 struct ata_ioports *ioaddr = &ap->ioaddr;
3044 unsigned int dev0 = devmask & (1 << 0);
3045 unsigned int dev1 = devmask & (1 << 1);
3046 int rc, ret = 0;
3047
3048 /* if device 0 was found in ata_devchk, wait for its
3049 * BSY bit to clear
3050 */
3051 if (dev0) {
3052 rc = ata_wait_ready(ap, deadline);
3053 if (rc) {
3054 if (rc != -ENODEV)
3055 return rc;
3056 ret = rc;
3057 }
3058 }
3059
3060 /* if device 1 was found in ata_devchk, wait for register
3061 * access briefly, then wait for BSY to clear.
3062 */
3063 if (dev1) {
3064 int i;
3065
3066 ap->ops->dev_select(ap, 1);
3067
3068 /* Wait for register access. Some ATAPI devices fail
3069 * to set nsect/lbal after reset, so don't waste too
3070 * much time on it. We're gonna wait for !BSY anyway.
3071 */
3072 for (i = 0; i < 2; i++) {
3073 u8 nsect, lbal;
3074
3075 nsect = ioread8(ioaddr->nsect_addr);
3076 lbal = ioread8(ioaddr->lbal_addr);
3077 if ((nsect == 1) && (lbal == 1))
3078 break;
3079 msleep(50); /* give drive a breather */
3080 }
3081
3082 rc = ata_wait_ready(ap, deadline);
3083 if (rc) {
3084 if (rc != -ENODEV)
3085 return rc;
3086 ret = rc;
3087 }
3088 }
3089
3090 /* is all this really necessary? */
3091 ap->ops->dev_select(ap, 0);
3092 if (dev1)
3093 ap->ops->dev_select(ap, 1);
3094 if (dev0)
3095 ap->ops->dev_select(ap, 0);
3096
3097 return ret;
3098}
3099
3100static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3101 unsigned long deadline)
3102{
3103 struct ata_ioports *ioaddr = &ap->ioaddr;
3104
3105 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3106
3107 /* software reset. causes dev0 to be selected */
3108 iowrite8(ap->ctl, ioaddr->ctl_addr);
3109 udelay(20); /* FIXME: flush */
3110 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3111 udelay(20); /* FIXME: flush */
3112 iowrite8(ap->ctl, ioaddr->ctl_addr);
3113
3114 /* spec mandates ">= 2ms" before checking status.
3115 * We wait 150ms, because that was the magic delay used for
3116 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
3117 * between when the ATA command register is written, and then
3118 * status is checked. Because waiting for "a while" before
3119 * checking status is fine, post SRST, we perform this magic
3120 * delay here as well.
3121 *
3122 * Old drivers/ide uses the 2mS rule and then waits for ready
3123 */
3124 msleep(150);
3125
3126 /* Before we perform post reset processing we want to see if
3127 * the bus shows 0xFF because the odd clown forgets the D7
3128 * pulldown resistor.
3129 */
3130 if (ata_check_status(ap) == 0xFF)
3131 return -ENODEV;
3132
3133 return ata_bus_post_reset(ap, devmask, deadline);
3134}
3135
3136/**
3137 * ata_bus_reset - reset host port and associated ATA channel
3138 * @ap: port to reset
3139 *
3140 * This is typically the first time we actually start issuing
3141 * commands to the ATA channel. We wait for BSY to clear, then
3142 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3143 * result. Determine what devices, if any, are on the channel
3144 * by looking at the device 0/1 error register. Look at the signature
3145 * stored in each device's taskfile registers, to determine if
3146 * the device is ATA or ATAPI.
3147 *
3148 * LOCKING:
3149 * PCI/etc. bus probe sem.
3150 * Obtains host lock.
3151 *
3152 * SIDE EFFECTS:
3153 * Sets ATA_FLAG_DISABLED if bus reset fails.
3154 */
3155
3156void ata_bus_reset(struct ata_port *ap)
3157{
3158 struct ata_ioports *ioaddr = &ap->ioaddr;
3159 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3160 u8 err;
3161 unsigned int dev0, dev1 = 0, devmask = 0;
3162 int rc;
3163
3164 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3165
3166 /* determine if device 0/1 are present */
3167 if (ap->flags & ATA_FLAG_SATA_RESET)
3168 dev0 = 1;
3169 else {
3170 dev0 = ata_devchk(ap, 0);
3171 if (slave_possible)
3172 dev1 = ata_devchk(ap, 1);
3173 }
3174
3175 if (dev0)
3176 devmask |= (1 << 0);
3177 if (dev1)
3178 devmask |= (1 << 1);
3179
3180 /* select device 0 again */
3181 ap->ops->dev_select(ap, 0);
3182
3183 /* issue bus reset */
3184 if (ap->flags & ATA_FLAG_SRST) {
3185 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3186 if (rc && rc != -ENODEV)
3187 goto err_out;
3188 }
3189
3190 /*
3191 * determine by signature whether we have ATA or ATAPI devices
3192 */
3193 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
3194 if ((slave_possible) && (err != 0x81))
3195 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
3196
3197 /* re-enable interrupts */
3198 ap->ops->irq_on(ap);
3199
3200 /* is double-select really necessary? */
3201 if (ap->device[1].class != ATA_DEV_NONE)
3202 ap->ops->dev_select(ap, 1);
3203 if (ap->device[0].class != ATA_DEV_NONE)
3204 ap->ops->dev_select(ap, 0);
3205
3206 /* if no devices were detected, disable this port */
3207 if ((ap->device[0].class == ATA_DEV_NONE) &&
3208 (ap->device[1].class == ATA_DEV_NONE))
3209 goto err_out;
3210
3211 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3212 /* set up device control for ATA_FLAG_SATA_RESET */
3213 iowrite8(ap->ctl, ioaddr->ctl_addr);
3214 }
3215
3216 DPRINTK("EXIT\n");
3217 return;
3218
3219err_out:
3220 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3221 ap->ops->port_disable(ap);
3222
3223 DPRINTK("EXIT\n");
3224}
3225
3226/**
3227 * sata_phy_debounce - debounce SATA phy status
3228 * @ap: ATA port to debounce SATA phy status for
3229 * @params: timing parameters { interval, duratinon, timeout } in msec
3230 * @deadline: deadline jiffies for the operation
3231 *
3232 * Make sure SStatus of @ap reaches stable state, determined by
3233 * holding the same value where DET is not 1 for @duration polled
3234 * every @interval, before @timeout. Timeout constraints the
3235 * beginning of the stable state. Because DET gets stuck at 1 on
3236 * some controllers after hot unplugging, this functions waits
3237 * until timeout then returns 0 if DET is stable at 1.
3238 *
3239 * @timeout is further limited by @deadline. The sooner of the
3240 * two is used.
3241 *
3242 * LOCKING:
3243 * Kernel thread context (may sleep)
3244 *
3245 * RETURNS:
3246 * 0 on success, -errno on failure.
3247 */
3248int sata_phy_debounce(struct ata_port *ap, const unsigned long *params,
3249 unsigned long deadline)
3250{
3251 unsigned long interval_msec = params[0];
3252 unsigned long duration = msecs_to_jiffies(params[1]);
3253 unsigned long last_jiffies, t;
3254 u32 last, cur;
3255 int rc;
3256
3257 t = jiffies + msecs_to_jiffies(params[2]);
3258 if (time_before(t, deadline))
3259 deadline = t;
3260
3261 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3262 return rc;
3263 cur &= 0xf;
3264
3265 last = cur;
3266 last_jiffies = jiffies;
3267
3268 while (1) {
3269 msleep(interval_msec);
3270 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
3271 return rc;
3272 cur &= 0xf;
3273
3274 /* DET stable? */
3275 if (cur == last) {
3276 if (cur == 1 && time_before(jiffies, deadline))
3277 continue;
3278 if (time_after(jiffies, last_jiffies + duration))
3279 return 0;
3280 continue;
3281 }
3282
3283 /* unstable, start over */
3284 last = cur;
3285 last_jiffies = jiffies;
3286
3287 /* check deadline */
3288 if (time_after(jiffies, deadline))
3289 return -EBUSY;
3290 }
3291}
3292
3293/**
3294 * sata_phy_resume - resume SATA phy
3295 * @ap: ATA port to resume SATA phy for
3296 * @params: timing parameters { interval, duratinon, timeout } in msec
3297 * @deadline: deadline jiffies for the operation
3298 *
3299 * Resume SATA phy of @ap and debounce it.
3300 *
3301 * LOCKING:
3302 * Kernel thread context (may sleep)
3303 *
3304 * RETURNS:
3305 * 0 on success, -errno on failure.
3306 */
3307int sata_phy_resume(struct ata_port *ap, const unsigned long *params,
3308 unsigned long deadline)
3309{
3310 u32 scontrol;
3311 int rc;
3312
3313 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3314 return rc;
3315
3316 scontrol = (scontrol & 0x0f0) | 0x300;
3317
3318 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3319 return rc;
3320
3321 /* Some PHYs react badly if SStatus is pounded immediately
3322 * after resuming. Delay 200ms before debouncing.
3323 */
3324 msleep(200);
3325
3326 return sata_phy_debounce(ap, params, deadline);
3327}
3328
3329/**
3330 * ata_std_prereset - prepare for reset
3331 * @ap: ATA port to be reset
3332 * @deadline: deadline jiffies for the operation
3333 *
3334 * @ap is about to be reset. Initialize it. Failure from
3335 * prereset makes libata abort whole reset sequence and give up
3336 * that port, so prereset should be best-effort. It does its
3337 * best to prepare for reset sequence but if things go wrong, it
3338 * should just whine, not fail.
3339 *
3340 * LOCKING:
3341 * Kernel thread context (may sleep)
3342 *
3343 * RETURNS:
3344 * 0 on success, -errno otherwise.
3345 */
3346int ata_std_prereset(struct ata_port *ap, unsigned long deadline)
3347{
3348 struct ata_eh_context *ehc = &ap->eh_context;
3349 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3350 int rc;
3351
3352 /* handle link resume */
3353 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3354 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
3355 ehc->i.action |= ATA_EH_HARDRESET;
3356
3357 /* if we're about to do hardreset, nothing more to do */
3358 if (ehc->i.action & ATA_EH_HARDRESET)
3359 return 0;
3360
3361 /* if SATA, resume phy */
3362 if (ap->cbl == ATA_CBL_SATA) {
3363 rc = sata_phy_resume(ap, timing, deadline);
3364 /* whine about phy resume failure but proceed */
3365 if (rc && rc != -EOPNOTSUPP)
3366 ata_port_printk(ap, KERN_WARNING, "failed to resume "
3367 "link for reset (errno=%d)\n", rc);
3368 }
3369
3370 /* Wait for !BSY if the controller can wait for the first D2H
3371 * Reg FIS and we don't know that no device is attached.
3372 */
3373 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap)) {
3374 rc = ata_wait_ready(ap, deadline);
3375 if (rc && rc != -ENODEV) {
3376 ata_port_printk(ap, KERN_WARNING, "device not ready "
3377 "(errno=%d), forcing hardreset\n", rc);
3378 ehc->i.action |= ATA_EH_HARDRESET;
3379 }
3380 }
3381
3382 return 0;
3383}
3384
3385/**
3386 * ata_std_softreset - reset host port via ATA SRST
3387 * @ap: port to reset
3388 * @classes: resulting classes of attached devices
3389 * @deadline: deadline jiffies for the operation
3390 *
3391 * Reset host port using ATA SRST.
3392 *
3393 * LOCKING:
3394 * Kernel thread context (may sleep)
3395 *
3396 * RETURNS:
3397 * 0 on success, -errno otherwise.
3398 */
3399int ata_std_softreset(struct ata_port *ap, unsigned int *classes,
3400 unsigned long deadline)
3401{
3402 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3403 unsigned int devmask = 0;
3404 int rc;
3405 u8 err;
3406
3407 DPRINTK("ENTER\n");
3408
3409 if (ata_port_offline(ap)) {
3410 classes[0] = ATA_DEV_NONE;
3411 goto out;
3412 }
3413
3414 /* determine if device 0/1 are present */
3415 if (ata_devchk(ap, 0))
3416 devmask |= (1 << 0);
3417 if (slave_possible && ata_devchk(ap, 1))
3418 devmask |= (1 << 1);
3419
3420 /* select device 0 again */
3421 ap->ops->dev_select(ap, 0);
3422
3423 /* issue bus reset */
3424 DPRINTK("about to softreset, devmask=%x\n", devmask);
3425 rc = ata_bus_softreset(ap, devmask, deadline);
3426 /* if link is occupied, -ENODEV too is an error */
3427 if (rc && (rc != -ENODEV || sata_scr_valid(ap))) {
3428 ata_port_printk(ap, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3429 return rc;
3430 }
3431
3432 /* determine by signature whether we have ATA or ATAPI devices */
3433 classes[0] = ata_dev_try_classify(ap, 0, &err);
3434 if (slave_possible && err != 0x81)
3435 classes[1] = ata_dev_try_classify(ap, 1, &err);
3436
3437 out:
3438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3439 return 0;
3440}
3441
3442/**
3443 * sata_port_hardreset - reset port via SATA phy reset
3444 * @ap: port to reset
3445 * @timing: timing parameters { interval, duratinon, timeout } in msec
3446 * @deadline: deadline jiffies for the operation
3447 *
3448 * SATA phy-reset host port using DET bits of SControl register.
3449 *
3450 * LOCKING:
3451 * Kernel thread context (may sleep)
3452 *
3453 * RETURNS:
3454 * 0 on success, -errno otherwise.
3455 */
3456int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing,
3457 unsigned long deadline)
3458{
3459 u32 scontrol;
3460 int rc;
3461
3462 DPRINTK("ENTER\n");
3463
3464 if (sata_set_spd_needed(ap)) {
3465 /* SATA spec says nothing about how to reconfigure
3466 * spd. To be on the safe side, turn off phy during
3467 * reconfiguration. This works for at least ICH7 AHCI
3468 * and Sil3124.
3469 */
3470 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3471 goto out;
3472
3473 scontrol = (scontrol & 0x0f0) | 0x304;
3474
3475 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3476 goto out;
3477
3478 sata_set_spd(ap);
3479 }
3480
3481 /* issue phy wake/reset */
3482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3483 goto out;
3484
3485 scontrol = (scontrol & 0x0f0) | 0x301;
3486
3487 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3488 goto out;
3489
3490 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3491 * 10.4.2 says at least 1 ms.
3492 */
3493 msleep(1);
3494
3495 /* bring phy back */
3496 rc = sata_phy_resume(ap, timing, deadline);
3497 out:
3498 DPRINTK("EXIT, rc=%d\n", rc);
3499 return rc;
3500}
3501
3502/**
3503 * sata_std_hardreset - reset host port via SATA phy reset
3504 * @ap: port to reset
3505 * @class: resulting class of attached device
3506 * @deadline: deadline jiffies for the operation
3507 *
3508 * SATA phy-reset host port using DET bits of SControl register,
3509 * wait for !BSY and classify the attached device.
3510 *
3511 * LOCKING:
3512 * Kernel thread context (may sleep)
3513 *
3514 * RETURNS:
3515 * 0 on success, -errno otherwise.
3516 */
3517int sata_std_hardreset(struct ata_port *ap, unsigned int *class,
3518 unsigned long deadline)
3519{
3520 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3521 int rc;
3522
3523 DPRINTK("ENTER\n");
3524
3525 /* do hardreset */
3526 rc = sata_port_hardreset(ap, timing, deadline);
3527 if (rc) {
3528 ata_port_printk(ap, KERN_ERR,
3529 "COMRESET failed (errno=%d)\n", rc);
3530 return rc;
3531 }
3532
3533 /* TODO: phy layer with polling, timeouts, etc. */
3534 if (ata_port_offline(ap)) {
3535 *class = ATA_DEV_NONE;
3536 DPRINTK("EXIT, link offline\n");
3537 return 0;
3538 }
3539
3540 /* wait a while before checking status, see SRST for more info */
3541 msleep(150);
3542
3543 rc = ata_wait_ready(ap, deadline);
3544 /* link occupied, -ENODEV too is an error */
3545 if (rc) {
3546 ata_port_printk(ap, KERN_ERR,
3547 "COMRESET failed (errno=%d)\n", rc);
3548 return rc;
3549 }
3550
3551 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3552
3553 *class = ata_dev_try_classify(ap, 0, NULL);
3554
3555 DPRINTK("EXIT, class=%u\n", *class);
3556 return 0;
3557}
3558
3559/**
3560 * ata_std_postreset - standard postreset callback
3561 * @ap: the target ata_port
3562 * @classes: classes of attached devices
3563 *
3564 * This function is invoked after a successful reset. Note that
3565 * the device might have been reset more than once using
3566 * different reset methods before postreset is invoked.
3567 *
3568 * LOCKING:
3569 * Kernel thread context (may sleep)
3570 */
3571void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3572{
3573 u32 serror;
3574
3575 DPRINTK("ENTER\n");
3576
3577 /* print link status */
3578 sata_print_link_status(ap);
3579
3580 /* clear SError */
3581 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3582 sata_scr_write(ap, SCR_ERROR, serror);
3583
3584 /* re-enable interrupts */
3585 if (!ap->ops->error_handler)
3586 ap->ops->irq_on(ap);
3587
3588 /* is double-select really necessary? */
3589 if (classes[0] != ATA_DEV_NONE)
3590 ap->ops->dev_select(ap, 1);
3591 if (classes[1] != ATA_DEV_NONE)
3592 ap->ops->dev_select(ap, 0);
3593
3594 /* bail out if no device is present */
3595 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3596 DPRINTK("EXIT, no device\n");
3597 return;
3598 }
3599
3600 /* set up device control */
3601 if (ap->ioaddr.ctl_addr)
3602 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3603
3604 DPRINTK("EXIT\n");
3605}
3606
3607/**
3608 * ata_dev_same_device - Determine whether new ID matches configured device
3609 * @dev: device to compare against
3610 * @new_class: class of the new device
3611 * @new_id: IDENTIFY page of the new device
3612 *
3613 * Compare @new_class and @new_id against @dev and determine
3614 * whether @dev is the device indicated by @new_class and
3615 * @new_id.
3616 *
3617 * LOCKING:
3618 * None.
3619 *
3620 * RETURNS:
3621 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3622 */
3623static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3624 const u16 *new_id)
3625{
3626 const u16 *old_id = dev->id;
3627 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3628 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3629
3630 if (dev->class != new_class) {
3631 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3632 dev->class, new_class);
3633 return 0;
3634 }
3635
3636 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3637 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3638 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3639 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3640
3641 if (strcmp(model[0], model[1])) {
3642 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3643 "'%s' != '%s'\n", model[0], model[1]);
3644 return 0;
3645 }
3646
3647 if (strcmp(serial[0], serial[1])) {
3648 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3649 "'%s' != '%s'\n", serial[0], serial[1]);
3650 return 0;
3651 }
3652
3653 return 1;
3654}
3655
3656/**
3657 * ata_dev_reread_id - Re-read IDENTIFY data
3658 * @dev: target ATA device
3659 * @readid_flags: read ID flags
3660 *
3661 * Re-read IDENTIFY page and make sure @dev is still attached to
3662 * the port.
3663 *
3664 * LOCKING:
3665 * Kernel thread context (may sleep)
3666 *
3667 * RETURNS:
3668 * 0 on success, negative errno otherwise
3669 */
3670int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3671{
3672 unsigned int class = dev->class;
3673 u16 *id = (void *)dev->ap->sector_buf;
3674 int rc;
3675
3676 /* read ID data */
3677 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3678 if (rc)
3679 return rc;
3680
3681 /* is the device still there? */
3682 if (!ata_dev_same_device(dev, class, id))
3683 return -ENODEV;
3684
3685 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3686 return 0;
3687}
3688
3689/**
3690 * ata_dev_revalidate - Revalidate ATA device
3691 * @dev: device to revalidate
3692 * @readid_flags: read ID flags
3693 *
3694 * Re-read IDENTIFY page, make sure @dev is still attached to the
3695 * port and reconfigure it according to the new IDENTIFY page.
3696 *
3697 * LOCKING:
3698 * Kernel thread context (may sleep)
3699 *
3700 * RETURNS:
3701 * 0 on success, negative errno otherwise
3702 */
3703int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3704{
3705 u64 n_sectors = dev->n_sectors;
3706 int rc;
3707
3708 if (!ata_dev_enabled(dev))
3709 return -ENODEV;
3710
3711 /* re-read ID */
3712 rc = ata_dev_reread_id(dev, readid_flags);
3713 if (rc)
3714 goto fail;
3715
3716 /* configure device according to the new ID */
3717 rc = ata_dev_configure(dev);
3718 if (rc)
3719 goto fail;
3720
3721 /* verify n_sectors hasn't changed */
3722 if (dev->class == ATA_DEV_ATA && dev->n_sectors != n_sectors) {
3723 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3724 "%llu != %llu\n",
3725 (unsigned long long)n_sectors,
3726 (unsigned long long)dev->n_sectors);
3727 rc = -ENODEV;
3728 goto fail;
3729 }
3730
3731 return 0;
3732
3733 fail:
3734 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3735 return rc;
3736}
3737
3738struct ata_blacklist_entry {
3739 const char *model_num;
3740 const char *model_rev;
3741 unsigned long horkage;
3742};
3743
3744static const struct ata_blacklist_entry ata_device_blacklist [] = {
3745 /* Devices with DMA related problems under Linux */
3746 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3747 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3748 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3749 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3750 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3751 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3752 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3753 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3754 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3755 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3756 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3757 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3758 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3759 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3760 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3761 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3762 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3763 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3764 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3765 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3766 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3767 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3768 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3769 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3770 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3771 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3772 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3773 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3774 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3775 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
3776 { "IOMEGA ZIP 250 ATAPI", NULL, ATA_HORKAGE_NODMA }, /* temporary fix */
3777
3778 /* Weird ATAPI devices */
3779 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
3780
3781 /* Devices we expect to fail diagnostics */
3782
3783 /* Devices where NCQ should be avoided */
3784 /* NCQ is slow */
3785 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3786 /* http://thread.gmane.org/gmane.linux.ide/14907 */
3787 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
3788 /* NCQ is broken */
3789 { "Maxtor 6L250S0", "BANC1G10", ATA_HORKAGE_NONCQ },
3790 { "Maxtor 6B200M0", "BANC1B10", ATA_HORKAGE_NONCQ },
3791 /* NCQ hard hangs device under heavier load, needs hard power cycle */
3792 { "Maxtor 6B250S0", "BANC1B70", ATA_HORKAGE_NONCQ },
3793 /* Blacklist entries taken from Silicon Image 3124/3132
3794 Windows driver .inf file - also several Linux problem reports */
3795 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
3796 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
3797 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
3798 /* Drives which do spurious command completion */
3799 { "HTS541680J9SA00", "SB2IC7EP", ATA_HORKAGE_NONCQ, },
3800 { "HTS541612J9SA00", "SBDIC7JP", ATA_HORKAGE_NONCQ, },
3801 { "Hitachi HTS541616J9SA00", "SB4OC70P", ATA_HORKAGE_NONCQ, },
3802 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
3803
3804 /* Devices with NCQ limits */
3805
3806 /* End Marker */
3807 { }
3808};
3809
3810unsigned long ata_device_blacklisted(const struct ata_device *dev)
3811{
3812 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3813 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3814 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3815
3816 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3817 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3818
3819 while (ad->model_num) {
3820 if (!strcmp(ad->model_num, model_num)) {
3821 if (ad->model_rev == NULL)
3822 return ad->horkage;
3823 if (!strcmp(ad->model_rev, model_rev))
3824 return ad->horkage;
3825 }
3826 ad++;
3827 }
3828 return 0;
3829}
3830
3831static int ata_dma_blacklisted(const struct ata_device *dev)
3832{
3833 /* We don't support polling DMA.
3834 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3835 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3836 */
3837 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3838 (dev->flags & ATA_DFLAG_CDB_INTR))
3839 return 1;
3840 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3841}
3842
3843/**
3844 * ata_dev_xfermask - Compute supported xfermask of the given device
3845 * @dev: Device to compute xfermask for
3846 *
3847 * Compute supported xfermask of @dev and store it in
3848 * dev->*_mask. This function is responsible for applying all
3849 * known limits including host controller limits, device
3850 * blacklist, etc...
3851 *
3852 * LOCKING:
3853 * None.
3854 */
3855static void ata_dev_xfermask(struct ata_device *dev)
3856{
3857 struct ata_port *ap = dev->ap;
3858 struct ata_host *host = ap->host;
3859 unsigned long xfer_mask;
3860
3861 /* controller modes available */
3862 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3863 ap->mwdma_mask, ap->udma_mask);
3864
3865 /* drive modes available */
3866 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3867 dev->mwdma_mask, dev->udma_mask);
3868 xfer_mask &= ata_id_xfermask(dev->id);
3869
3870 /*
3871 * CFA Advanced TrueIDE timings are not allowed on a shared
3872 * cable
3873 */
3874 if (ata_dev_pair(dev)) {
3875 /* No PIO5 or PIO6 */
3876 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3877 /* No MWDMA3 or MWDMA 4 */
3878 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3879 }
3880
3881 if (ata_dma_blacklisted(dev)) {
3882 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3883 ata_dev_printk(dev, KERN_WARNING,
3884 "device is on DMA blacklist, disabling DMA\n");
3885 }
3886
3887 if ((host->flags & ATA_HOST_SIMPLEX) &&
3888 host->simplex_claimed && host->simplex_claimed != ap) {
3889 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3890 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3891 "other device, disabling DMA\n");
3892 }
3893
3894 if (ap->flags & ATA_FLAG_NO_IORDY)
3895 xfer_mask &= ata_pio_mask_no_iordy(dev);
3896
3897 if (ap->ops->mode_filter)
3898 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
3899
3900 /* Apply cable rule here. Don't apply it early because when
3901 * we handle hot plug the cable type can itself change.
3902 * Check this last so that we know if the transfer rate was
3903 * solely limited by the cable.
3904 * Unknown or 80 wire cables reported host side are checked
3905 * drive side as well. Cases where we know a 40wire cable
3906 * is used safely for 80 are not checked here.
3907 */
3908 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
3909 /* UDMA/44 or higher would be available */
3910 if((ap->cbl == ATA_CBL_PATA40) ||
3911 (ata_drive_40wire(dev->id) &&
3912 (ap->cbl == ATA_CBL_PATA_UNK ||
3913 ap->cbl == ATA_CBL_PATA80))) {
3914 ata_dev_printk(dev, KERN_WARNING,
3915 "limited to UDMA/33 due to 40-wire cable\n");
3916 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3917 }
3918
3919 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3920 &dev->mwdma_mask, &dev->udma_mask);
3921}
3922
3923/**
3924 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3925 * @dev: Device to which command will be sent
3926 *
3927 * Issue SET FEATURES - XFER MODE command to device @dev
3928 * on port @ap.
3929 *
3930 * LOCKING:
3931 * PCI/etc. bus probe sem.
3932 *
3933 * RETURNS:
3934 * 0 on success, AC_ERR_* mask otherwise.
3935 */
3936
3937static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3938{
3939 struct ata_taskfile tf;
3940 unsigned int err_mask;
3941
3942 /* set up set-features taskfile */
3943 DPRINTK("set features - xfer mode\n");
3944
3945 /* Some controllers and ATAPI devices show flaky interrupt
3946 * behavior after setting xfer mode. Use polling instead.
3947 */
3948 ata_tf_init(dev, &tf);
3949 tf.command = ATA_CMD_SET_FEATURES;
3950 tf.feature = SETFEATURES_XFER;
3951 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
3952 tf.protocol = ATA_PROT_NODATA;
3953 tf.nsect = dev->xfer_mode;
3954
3955 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3956
3957 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3958 return err_mask;
3959}
3960
3961/**
3962 * ata_dev_init_params - Issue INIT DEV PARAMS command
3963 * @dev: Device to which command will be sent
3964 * @heads: Number of heads (taskfile parameter)
3965 * @sectors: Number of sectors (taskfile parameter)
3966 *
3967 * LOCKING:
3968 * Kernel thread context (may sleep)
3969 *
3970 * RETURNS:
3971 * 0 on success, AC_ERR_* mask otherwise.
3972 */
3973static unsigned int ata_dev_init_params(struct ata_device *dev,
3974 u16 heads, u16 sectors)
3975{
3976 struct ata_taskfile tf;
3977 unsigned int err_mask;
3978
3979 /* Number of sectors per track 1-255. Number of heads 1-16 */
3980 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3981 return AC_ERR_INVALID;
3982
3983 /* set up init dev params taskfile */
3984 DPRINTK("init dev params \n");
3985
3986 ata_tf_init(dev, &tf);
3987 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3988 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3989 tf.protocol = ATA_PROT_NODATA;
3990 tf.nsect = sectors;
3991 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3992
3993 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3994
3995 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3996 return err_mask;
3997}
3998
3999/**
4000 * ata_sg_clean - Unmap DMA memory associated with command
4001 * @qc: Command containing DMA memory to be released
4002 *
4003 * Unmap all mapped DMA memory associated with this command.
4004 *
4005 * LOCKING:
4006 * spin_lock_irqsave(host lock)
4007 */
4008void ata_sg_clean(struct ata_queued_cmd *qc)
4009{
4010 struct ata_port *ap = qc->ap;
4011 struct scatterlist *sg = qc->__sg;
4012 int dir = qc->dma_dir;
4013 void *pad_buf = NULL;
4014
4015 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
4016 WARN_ON(sg == NULL);
4017
4018 if (qc->flags & ATA_QCFLAG_SINGLE)
4019 WARN_ON(qc->n_elem > 1);
4020
4021 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4022
4023 /* if we padded the buffer out to 32-bit bound, and data
4024 * xfer direction is from-device, we must copy from the
4025 * pad buffer back into the supplied buffer
4026 */
4027 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
4028 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4029
4030 if (qc->flags & ATA_QCFLAG_SG) {
4031 if (qc->n_elem)
4032 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4033 /* restore last sg */
4034 sg[qc->orig_n_elem - 1].length += qc->pad_len;
4035 if (pad_buf) {
4036 struct scatterlist *psg = &qc->pad_sgent;
4037 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4038 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
4039 kunmap_atomic(addr, KM_IRQ0);
4040 }
4041 } else {
4042 if (qc->n_elem)
4043 dma_unmap_single(ap->dev,
4044 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
4045 dir);
4046 /* restore sg */
4047 sg->length += qc->pad_len;
4048 if (pad_buf)
4049 memcpy(qc->buf_virt + sg->length - qc->pad_len,
4050 pad_buf, qc->pad_len);
4051 }
4052
4053 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4054 qc->__sg = NULL;
4055}
4056
4057/**
4058 * ata_fill_sg - Fill PCI IDE PRD table
4059 * @qc: Metadata associated with taskfile to be transferred
4060 *
4061 * Fill PCI IDE PRD (scatter-gather) table with segments
4062 * associated with the current disk command.
4063 *
4064 * LOCKING:
4065 * spin_lock_irqsave(host lock)
4066 *
4067 */
4068static void ata_fill_sg(struct ata_queued_cmd *qc)
4069{
4070 struct ata_port *ap = qc->ap;
4071 struct scatterlist *sg;
4072 unsigned int idx;
4073
4074 WARN_ON(qc->__sg == NULL);
4075 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
4076
4077 idx = 0;
4078 ata_for_each_sg(sg, qc) {
4079 u32 addr, offset;
4080 u32 sg_len, len;
4081
4082 /* determine if physical DMA addr spans 64K boundary.
4083 * Note h/w doesn't support 64-bit, so we unconditionally
4084 * truncate dma_addr_t to u32.
4085 */
4086 addr = (u32) sg_dma_address(sg);
4087 sg_len = sg_dma_len(sg);
4088
4089 while (sg_len) {
4090 offset = addr & 0xffff;
4091 len = sg_len;
4092 if ((offset + sg_len) > 0x10000)
4093 len = 0x10000 - offset;
4094
4095 ap->prd[idx].addr = cpu_to_le32(addr);
4096 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
4097 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
4098
4099 idx++;
4100 sg_len -= len;
4101 addr += len;
4102 }
4103 }
4104
4105 if (idx)
4106 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4107}
4108
4109/**
4110 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4111 * @qc: Metadata associated with taskfile to check
4112 *
4113 * Allow low-level driver to filter ATA PACKET commands, returning
4114 * a status indicating whether or not it is OK to use DMA for the
4115 * supplied PACKET command.
4116 *
4117 * LOCKING:
4118 * spin_lock_irqsave(host lock)
4119 *
4120 * RETURNS: 0 when ATAPI DMA can be used
4121 * nonzero otherwise
4122 */
4123int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4124{
4125 struct ata_port *ap = qc->ap;
4126
4127 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4128 * few ATAPI devices choke on such DMA requests.
4129 */
4130 if (unlikely(qc->nbytes & 15))
4131 return 1;
4132
4133 if (ap->ops->check_atapi_dma)
4134 return ap->ops->check_atapi_dma(qc);
4135
4136 return 0;
4137}
4138
4139/**
4140 * ata_qc_prep - Prepare taskfile for submission
4141 * @qc: Metadata associated with taskfile to be prepared
4142 *
4143 * Prepare ATA taskfile for submission.
4144 *
4145 * LOCKING:
4146 * spin_lock_irqsave(host lock)
4147 */
4148void ata_qc_prep(struct ata_queued_cmd *qc)
4149{
4150 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4151 return;
4152
4153 ata_fill_sg(qc);
4154}
4155
4156void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4157
4158/**
4159 * ata_sg_init_one - Associate command with memory buffer
4160 * @qc: Command to be associated
4161 * @buf: Memory buffer
4162 * @buflen: Length of memory buffer, in bytes.
4163 *
4164 * Initialize the data-related elements of queued_cmd @qc
4165 * to point to a single memory buffer, @buf of byte length @buflen.
4166 *
4167 * LOCKING:
4168 * spin_lock_irqsave(host lock)
4169 */
4170
4171void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
4172{
4173 qc->flags |= ATA_QCFLAG_SINGLE;
4174
4175 qc->__sg = &qc->sgent;
4176 qc->n_elem = 1;
4177 qc->orig_n_elem = 1;
4178 qc->buf_virt = buf;
4179 qc->nbytes = buflen;
4180
4181 sg_init_one(&qc->sgent, buf, buflen);
4182}
4183
4184/**
4185 * ata_sg_init - Associate command with scatter-gather table.
4186 * @qc: Command to be associated
4187 * @sg: Scatter-gather table.
4188 * @n_elem: Number of elements in s/g table.
4189 *
4190 * Initialize the data-related elements of queued_cmd @qc
4191 * to point to a scatter-gather table @sg, containing @n_elem
4192 * elements.
4193 *
4194 * LOCKING:
4195 * spin_lock_irqsave(host lock)
4196 */
4197
4198void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4199 unsigned int n_elem)
4200{
4201 qc->flags |= ATA_QCFLAG_SG;
4202 qc->__sg = sg;
4203 qc->n_elem = n_elem;
4204 qc->orig_n_elem = n_elem;
4205}
4206
4207/**
4208 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
4209 * @qc: Command with memory buffer to be mapped.
4210 *
4211 * DMA-map the memory buffer associated with queued_cmd @qc.
4212 *
4213 * LOCKING:
4214 * spin_lock_irqsave(host lock)
4215 *
4216 * RETURNS:
4217 * Zero on success, negative on error.
4218 */
4219
4220static int ata_sg_setup_one(struct ata_queued_cmd *qc)
4221{
4222 struct ata_port *ap = qc->ap;
4223 int dir = qc->dma_dir;
4224 struct scatterlist *sg = qc->__sg;
4225 dma_addr_t dma_address;
4226 int trim_sg = 0;
4227
4228 /* we must lengthen transfers to end on a 32-bit boundary */
4229 qc->pad_len = sg->length & 3;
4230 if (qc->pad_len) {
4231 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4232 struct scatterlist *psg = &qc->pad_sgent;
4233
4234 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4235
4236 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4237
4238 if (qc->tf.flags & ATA_TFLAG_WRITE)
4239 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
4240 qc->pad_len);
4241
4242 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4243 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4244 /* trim sg */
4245 sg->length -= qc->pad_len;
4246 if (sg->length == 0)
4247 trim_sg = 1;
4248
4249 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
4250 sg->length, qc->pad_len);
4251 }
4252
4253 if (trim_sg) {
4254 qc->n_elem--;
4255 goto skip_map;
4256 }
4257
4258 dma_address = dma_map_single(ap->dev, qc->buf_virt,
4259 sg->length, dir);
4260 if (dma_mapping_error(dma_address)) {
4261 /* restore sg */
4262 sg->length += qc->pad_len;
4263 return -1;
4264 }
4265
4266 sg_dma_address(sg) = dma_address;
4267 sg_dma_len(sg) = sg->length;
4268
4269skip_map:
4270 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
4271 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4272
4273 return 0;
4274}
4275
4276/**
4277 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4278 * @qc: Command with scatter-gather table to be mapped.
4279 *
4280 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4281 *
4282 * LOCKING:
4283 * spin_lock_irqsave(host lock)
4284 *
4285 * RETURNS:
4286 * Zero on success, negative on error.
4287 *
4288 */
4289
4290static int ata_sg_setup(struct ata_queued_cmd *qc)
4291{
4292 struct ata_port *ap = qc->ap;
4293 struct scatterlist *sg = qc->__sg;
4294 struct scatterlist *lsg = &sg[qc->n_elem - 1];
4295 int n_elem, pre_n_elem, dir, trim_sg = 0;
4296
4297 VPRINTK("ENTER, ata%u\n", ap->print_id);
4298 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
4299
4300 /* we must lengthen transfers to end on a 32-bit boundary */
4301 qc->pad_len = lsg->length & 3;
4302 if (qc->pad_len) {
4303 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
4304 struct scatterlist *psg = &qc->pad_sgent;
4305 unsigned int offset;
4306
4307 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
4308
4309 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
4310
4311 /*
4312 * psg->page/offset are used to copy to-be-written
4313 * data in this function or read data in ata_sg_clean.
4314 */
4315 offset = lsg->offset + lsg->length - qc->pad_len;
4316 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
4317 psg->offset = offset_in_page(offset);
4318
4319 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4320 void *addr = kmap_atomic(psg->page, KM_IRQ0);
4321 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
4322 kunmap_atomic(addr, KM_IRQ0);
4323 }
4324
4325 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
4326 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
4327 /* trim last sg */
4328 lsg->length -= qc->pad_len;
4329 if (lsg->length == 0)
4330 trim_sg = 1;
4331
4332 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
4333 qc->n_elem - 1, lsg->length, qc->pad_len);
4334 }
4335
4336 pre_n_elem = qc->n_elem;
4337 if (trim_sg && pre_n_elem)
4338 pre_n_elem--;
4339
4340 if (!pre_n_elem) {
4341 n_elem = 0;
4342 goto skip_map;
4343 }
4344
4345 dir = qc->dma_dir;
4346 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
4347 if (n_elem < 1) {
4348 /* restore last sg */
4349 lsg->length += qc->pad_len;
4350 return -1;
4351 }
4352
4353 DPRINTK("%d sg elements mapped\n", n_elem);
4354
4355skip_map:
4356 qc->n_elem = n_elem;
4357
4358 return 0;
4359}
4360
4361/**
4362 * swap_buf_le16 - swap halves of 16-bit words in place
4363 * @buf: Buffer to swap
4364 * @buf_words: Number of 16-bit words in buffer.
4365 *
4366 * Swap halves of 16-bit words if needed to convert from
4367 * little-endian byte order to native cpu byte order, or
4368 * vice-versa.
4369 *
4370 * LOCKING:
4371 * Inherited from caller.
4372 */
4373void swap_buf_le16(u16 *buf, unsigned int buf_words)
4374{
4375#ifdef __BIG_ENDIAN
4376 unsigned int i;
4377
4378 for (i = 0; i < buf_words; i++)
4379 buf[i] = le16_to_cpu(buf[i]);
4380#endif /* __BIG_ENDIAN */
4381}
4382
4383/**
4384 * ata_data_xfer - Transfer data by PIO
4385 * @adev: device to target
4386 * @buf: data buffer
4387 * @buflen: buffer length
4388 * @write_data: read/write
4389 *
4390 * Transfer data from/to the device data register by PIO.
4391 *
4392 * LOCKING:
4393 * Inherited from caller.
4394 */
4395void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
4396 unsigned int buflen, int write_data)
4397{
4398 struct ata_port *ap = adev->ap;
4399 unsigned int words = buflen >> 1;
4400
4401 /* Transfer multiple of 2 bytes */
4402 if (write_data)
4403 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
4404 else
4405 ioread16_rep(ap->ioaddr.data_addr, buf, words);
4406
4407 /* Transfer trailing 1 byte, if any. */
4408 if (unlikely(buflen & 0x01)) {
4409 u16 align_buf[1] = { 0 };
4410 unsigned char *trailing_buf = buf + buflen - 1;
4411
4412 if (write_data) {
4413 memcpy(align_buf, trailing_buf, 1);
4414 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
4415 } else {
4416 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
4417 memcpy(trailing_buf, align_buf, 1);
4418 }
4419 }
4420}
4421
4422/**
4423 * ata_data_xfer_noirq - Transfer data by PIO
4424 * @adev: device to target
4425 * @buf: data buffer
4426 * @buflen: buffer length
4427 * @write_data: read/write
4428 *
4429 * Transfer data from/to the device data register by PIO. Do the
4430 * transfer with interrupts disabled.
4431 *
4432 * LOCKING:
4433 * Inherited from caller.
4434 */
4435void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
4436 unsigned int buflen, int write_data)
4437{
4438 unsigned long flags;
4439 local_irq_save(flags);
4440 ata_data_xfer(adev, buf, buflen, write_data);
4441 local_irq_restore(flags);
4442}
4443
4444
4445/**
4446 * ata_pio_sector - Transfer a sector of data.
4447 * @qc: Command on going
4448 *
4449 * Transfer qc->sect_size bytes of data from/to the ATA device.
4450 *
4451 * LOCKING:
4452 * Inherited from caller.
4453 */
4454
4455static void ata_pio_sector(struct ata_queued_cmd *qc)
4456{
4457 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4458 struct scatterlist *sg = qc->__sg;
4459 struct ata_port *ap = qc->ap;
4460 struct page *page;
4461 unsigned int offset;
4462 unsigned char *buf;
4463
4464 if (qc->curbytes == qc->nbytes - qc->sect_size)
4465 ap->hsm_task_state = HSM_ST_LAST;
4466
4467 page = sg[qc->cursg].page;
4468 offset = sg[qc->cursg].offset + qc->cursg_ofs;
4469
4470 /* get the current page and offset */
4471 page = nth_page(page, (offset >> PAGE_SHIFT));
4472 offset %= PAGE_SIZE;
4473
4474 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4475
4476 if (PageHighMem(page)) {
4477 unsigned long flags;
4478
4479 /* FIXME: use a bounce buffer */
4480 local_irq_save(flags);
4481 buf = kmap_atomic(page, KM_IRQ0);
4482
4483 /* do the actual data transfer */
4484 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4485
4486 kunmap_atomic(buf, KM_IRQ0);
4487 local_irq_restore(flags);
4488 } else {
4489 buf = page_address(page);
4490 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
4491 }
4492
4493 qc->curbytes += qc->sect_size;
4494 qc->cursg_ofs += qc->sect_size;
4495
4496 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
4497 qc->cursg++;
4498 qc->cursg_ofs = 0;
4499 }
4500}
4501
4502/**
4503 * ata_pio_sectors - Transfer one or many sectors.
4504 * @qc: Command on going
4505 *
4506 * Transfer one or many sectors of data from/to the
4507 * ATA device for the DRQ request.
4508 *
4509 * LOCKING:
4510 * Inherited from caller.
4511 */
4512
4513static void ata_pio_sectors(struct ata_queued_cmd *qc)
4514{
4515 if (is_multi_taskfile(&qc->tf)) {
4516 /* READ/WRITE MULTIPLE */
4517 unsigned int nsect;
4518
4519 WARN_ON(qc->dev->multi_count == 0);
4520
4521 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
4522 qc->dev->multi_count);
4523 while (nsect--)
4524 ata_pio_sector(qc);
4525 } else
4526 ata_pio_sector(qc);
4527}
4528
4529/**
4530 * atapi_send_cdb - Write CDB bytes to hardware
4531 * @ap: Port to which ATAPI device is attached.
4532 * @qc: Taskfile currently active
4533 *
4534 * When device has indicated its readiness to accept
4535 * a CDB, this function is called. Send the CDB.
4536 *
4537 * LOCKING:
4538 * caller.
4539 */
4540
4541static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4542{
4543 /* send SCSI cdb */
4544 DPRINTK("send cdb\n");
4545 WARN_ON(qc->dev->cdb_len < 12);
4546
4547 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4548 ata_altstatus(ap); /* flush */
4549
4550 switch (qc->tf.protocol) {
4551 case ATA_PROT_ATAPI:
4552 ap->hsm_task_state = HSM_ST;
4553 break;
4554 case ATA_PROT_ATAPI_NODATA:
4555 ap->hsm_task_state = HSM_ST_LAST;
4556 break;
4557 case ATA_PROT_ATAPI_DMA:
4558 ap->hsm_task_state = HSM_ST_LAST;
4559 /* initiate bmdma */
4560 ap->ops->bmdma_start(qc);
4561 break;
4562 }
4563}
4564
4565/**
4566 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4567 * @qc: Command on going
4568 * @bytes: number of bytes
4569 *
4570 * Transfer Transfer data from/to the ATAPI device.
4571 *
4572 * LOCKING:
4573 * Inherited from caller.
4574 *
4575 */
4576
4577static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4578{
4579 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4580 struct scatterlist *sg = qc->__sg;
4581 struct ata_port *ap = qc->ap;
4582 struct page *page;
4583 unsigned char *buf;
4584 unsigned int offset, count;
4585
4586 if (qc->curbytes + bytes >= qc->nbytes)
4587 ap->hsm_task_state = HSM_ST_LAST;
4588
4589next_sg:
4590 if (unlikely(qc->cursg >= qc->n_elem)) {
4591 /*
4592 * The end of qc->sg is reached and the device expects
4593 * more data to transfer. In order not to overrun qc->sg
4594 * and fulfill length specified in the byte count register,
4595 * - for read case, discard trailing data from the device
4596 * - for write case, padding zero data to the device
4597 */
4598 u16 pad_buf[1] = { 0 };
4599 unsigned int words = bytes >> 1;
4600 unsigned int i;
4601
4602 if (words) /* warning if bytes > 1 */
4603 ata_dev_printk(qc->dev, KERN_WARNING,
4604 "%u bytes trailing data\n", bytes);
4605
4606 for (i = 0; i < words; i++)
4607 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4608
4609 ap->hsm_task_state = HSM_ST_LAST;
4610 return;
4611 }
4612
4613 sg = &qc->__sg[qc->cursg];
4614
4615 page = sg->page;
4616 offset = sg->offset + qc->cursg_ofs;
4617
4618 /* get the current page and offset */
4619 page = nth_page(page, (offset >> PAGE_SHIFT));
4620 offset %= PAGE_SIZE;
4621
4622 /* don't overrun current sg */
4623 count = min(sg->length - qc->cursg_ofs, bytes);
4624
4625 /* don't cross page boundaries */
4626 count = min(count, (unsigned int)PAGE_SIZE - offset);
4627
4628 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4629
4630 if (PageHighMem(page)) {
4631 unsigned long flags;
4632
4633 /* FIXME: use bounce buffer */
4634 local_irq_save(flags);
4635 buf = kmap_atomic(page, KM_IRQ0);
4636
4637 /* do the actual data transfer */
4638 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4639
4640 kunmap_atomic(buf, KM_IRQ0);
4641 local_irq_restore(flags);
4642 } else {
4643 buf = page_address(page);
4644 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4645 }
4646
4647 bytes -= count;
4648 qc->curbytes += count;
4649 qc->cursg_ofs += count;
4650
4651 if (qc->cursg_ofs == sg->length) {
4652 qc->cursg++;
4653 qc->cursg_ofs = 0;
4654 }
4655
4656 if (bytes)
4657 goto next_sg;
4658}
4659
4660/**
4661 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4662 * @qc: Command on going
4663 *
4664 * Transfer Transfer data from/to the ATAPI device.
4665 *
4666 * LOCKING:
4667 * Inherited from caller.
4668 */
4669
4670static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4671{
4672 struct ata_port *ap = qc->ap;
4673 struct ata_device *dev = qc->dev;
4674 unsigned int ireason, bc_lo, bc_hi, bytes;
4675 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4676
4677 /* Abuse qc->result_tf for temp storage of intermediate TF
4678 * here to save some kernel stack usage.
4679 * For normal completion, qc->result_tf is not relevant. For
4680 * error, qc->result_tf is later overwritten by ata_qc_complete().
4681 * So, the correctness of qc->result_tf is not affected.
4682 */
4683 ap->ops->tf_read(ap, &qc->result_tf);
4684 ireason = qc->result_tf.nsect;
4685 bc_lo = qc->result_tf.lbam;
4686 bc_hi = qc->result_tf.lbah;
4687 bytes = (bc_hi << 8) | bc_lo;
4688
4689 /* shall be cleared to zero, indicating xfer of data */
4690 if (ireason & (1 << 0))
4691 goto err_out;
4692
4693 /* make sure transfer direction matches expected */
4694 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4695 if (do_write != i_write)
4696 goto err_out;
4697
4698 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
4699
4700 __atapi_pio_bytes(qc, bytes);
4701
4702 return;
4703
4704err_out:
4705 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4706 qc->err_mask |= AC_ERR_HSM;
4707 ap->hsm_task_state = HSM_ST_ERR;
4708}
4709
4710/**
4711 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4712 * @ap: the target ata_port
4713 * @qc: qc on going
4714 *
4715 * RETURNS:
4716 * 1 if ok in workqueue, 0 otherwise.
4717 */
4718
4719static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4720{
4721 if (qc->tf.flags & ATA_TFLAG_POLLING)
4722 return 1;
4723
4724 if (ap->hsm_task_state == HSM_ST_FIRST) {
4725 if (qc->tf.protocol == ATA_PROT_PIO &&
4726 (qc->tf.flags & ATA_TFLAG_WRITE))
4727 return 1;
4728
4729 if (is_atapi_taskfile(&qc->tf) &&
4730 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4731 return 1;
4732 }
4733
4734 return 0;
4735}
4736
4737/**
4738 * ata_hsm_qc_complete - finish a qc running on standard HSM
4739 * @qc: Command to complete
4740 * @in_wq: 1 if called from workqueue, 0 otherwise
4741 *
4742 * Finish @qc which is running on standard HSM.
4743 *
4744 * LOCKING:
4745 * If @in_wq is zero, spin_lock_irqsave(host lock).
4746 * Otherwise, none on entry and grabs host lock.
4747 */
4748static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4749{
4750 struct ata_port *ap = qc->ap;
4751 unsigned long flags;
4752
4753 if (ap->ops->error_handler) {
4754 if (in_wq) {
4755 spin_lock_irqsave(ap->lock, flags);
4756
4757 /* EH might have kicked in while host lock is
4758 * released.
4759 */
4760 qc = ata_qc_from_tag(ap, qc->tag);
4761 if (qc) {
4762 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4763 ap->ops->irq_on(ap);
4764 ata_qc_complete(qc);
4765 } else
4766 ata_port_freeze(ap);
4767 }
4768
4769 spin_unlock_irqrestore(ap->lock, flags);
4770 } else {
4771 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4772 ata_qc_complete(qc);
4773 else
4774 ata_port_freeze(ap);
4775 }
4776 } else {
4777 if (in_wq) {
4778 spin_lock_irqsave(ap->lock, flags);
4779 ap->ops->irq_on(ap);
4780 ata_qc_complete(qc);
4781 spin_unlock_irqrestore(ap->lock, flags);
4782 } else
4783 ata_qc_complete(qc);
4784 }
4785}
4786
4787/**
4788 * ata_hsm_move - move the HSM to the next state.
4789 * @ap: the target ata_port
4790 * @qc: qc on going
4791 * @status: current device status
4792 * @in_wq: 1 if called from workqueue, 0 otherwise
4793 *
4794 * RETURNS:
4795 * 1 when poll next status needed, 0 otherwise.
4796 */
4797int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4798 u8 status, int in_wq)
4799{
4800 unsigned long flags = 0;
4801 int poll_next;
4802
4803 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4804
4805 /* Make sure ata_qc_issue_prot() does not throw things
4806 * like DMA polling into the workqueue. Notice that
4807 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4808 */
4809 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4810
4811fsm_start:
4812 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4813 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
4814
4815 switch (ap->hsm_task_state) {
4816 case HSM_ST_FIRST:
4817 /* Send first data block or PACKET CDB */
4818
4819 /* If polling, we will stay in the work queue after
4820 * sending the data. Otherwise, interrupt handler
4821 * takes over after sending the data.
4822 */
4823 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4824
4825 /* check device status */
4826 if (unlikely((status & ATA_DRQ) == 0)) {
4827 /* handle BSY=0, DRQ=0 as error */
4828 if (likely(status & (ATA_ERR | ATA_DF)))
4829 /* device stops HSM for abort/error */
4830 qc->err_mask |= AC_ERR_DEV;
4831 else
4832 /* HSM violation. Let EH handle this */
4833 qc->err_mask |= AC_ERR_HSM;
4834
4835 ap->hsm_task_state = HSM_ST_ERR;
4836 goto fsm_start;
4837 }
4838
4839 /* Device should not ask for data transfer (DRQ=1)
4840 * when it finds something wrong.
4841 * We ignore DRQ here and stop the HSM by
4842 * changing hsm_task_state to HSM_ST_ERR and
4843 * let the EH abort the command or reset the device.
4844 */
4845 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4846 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with device "
4847 "error, dev_stat 0x%X\n", status);
4848 qc->err_mask |= AC_ERR_HSM;
4849 ap->hsm_task_state = HSM_ST_ERR;
4850 goto fsm_start;
4851 }
4852
4853 /* Send the CDB (atapi) or the first data block (ata pio out).
4854 * During the state transition, interrupt handler shouldn't
4855 * be invoked before the data transfer is complete and
4856 * hsm_task_state is changed. Hence, the following locking.
4857 */
4858 if (in_wq)
4859 spin_lock_irqsave(ap->lock, flags);
4860
4861 if (qc->tf.protocol == ATA_PROT_PIO) {
4862 /* PIO data out protocol.
4863 * send first data block.
4864 */
4865
4866 /* ata_pio_sectors() might change the state
4867 * to HSM_ST_LAST. so, the state is changed here
4868 * before ata_pio_sectors().
4869 */
4870 ap->hsm_task_state = HSM_ST;
4871 ata_pio_sectors(qc);
4872 ata_altstatus(ap); /* flush */
4873 } else
4874 /* send CDB */
4875 atapi_send_cdb(ap, qc);
4876
4877 if (in_wq)
4878 spin_unlock_irqrestore(ap->lock, flags);
4879
4880 /* if polling, ata_pio_task() handles the rest.
4881 * otherwise, interrupt handler takes over from here.
4882 */
4883 break;
4884
4885 case HSM_ST:
4886 /* complete command or read/write the data register */
4887 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4888 /* ATAPI PIO protocol */
4889 if ((status & ATA_DRQ) == 0) {
4890 /* No more data to transfer or device error.
4891 * Device error will be tagged in HSM_ST_LAST.
4892 */
4893 ap->hsm_task_state = HSM_ST_LAST;
4894 goto fsm_start;
4895 }
4896
4897 /* Device should not ask for data transfer (DRQ=1)
4898 * when it finds something wrong.
4899 * We ignore DRQ here and stop the HSM by
4900 * changing hsm_task_state to HSM_ST_ERR and
4901 * let the EH abort the command or reset the device.
4902 */
4903 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4904 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
4905 "device error, dev_stat 0x%X\n",
4906 status);
4907 qc->err_mask |= AC_ERR_HSM;
4908 ap->hsm_task_state = HSM_ST_ERR;
4909 goto fsm_start;
4910 }
4911
4912 atapi_pio_bytes(qc);
4913
4914 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4915 /* bad ireason reported by device */
4916 goto fsm_start;
4917
4918 } else {
4919 /* ATA PIO protocol */
4920 if (unlikely((status & ATA_DRQ) == 0)) {
4921 /* handle BSY=0, DRQ=0 as error */
4922 if (likely(status & (ATA_ERR | ATA_DF)))
4923 /* device stops HSM for abort/error */
4924 qc->err_mask |= AC_ERR_DEV;
4925 else
4926 /* HSM violation. Let EH handle this.
4927 * Phantom devices also trigger this
4928 * condition. Mark hint.
4929 */
4930 qc->err_mask |= AC_ERR_HSM |
4931 AC_ERR_NODEV_HINT;
4932
4933 ap->hsm_task_state = HSM_ST_ERR;
4934 goto fsm_start;
4935 }
4936
4937 /* For PIO reads, some devices may ask for
4938 * data transfer (DRQ=1) alone with ERR=1.
4939 * We respect DRQ here and transfer one
4940 * block of junk data before changing the
4941 * hsm_task_state to HSM_ST_ERR.
4942 *
4943 * For PIO writes, ERR=1 DRQ=1 doesn't make
4944 * sense since the data block has been
4945 * transferred to the device.
4946 */
4947 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4948 /* data might be corrputed */
4949 qc->err_mask |= AC_ERR_DEV;
4950
4951 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4952 ata_pio_sectors(qc);
4953 ata_altstatus(ap);
4954 status = ata_wait_idle(ap);
4955 }
4956
4957 if (status & (ATA_BUSY | ATA_DRQ))
4958 qc->err_mask |= AC_ERR_HSM;
4959
4960 /* ata_pio_sectors() might change the
4961 * state to HSM_ST_LAST. so, the state
4962 * is changed after ata_pio_sectors().
4963 */
4964 ap->hsm_task_state = HSM_ST_ERR;
4965 goto fsm_start;
4966 }
4967
4968 ata_pio_sectors(qc);
4969
4970 if (ap->hsm_task_state == HSM_ST_LAST &&
4971 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4972 /* all data read */
4973 ata_altstatus(ap);
4974 status = ata_wait_idle(ap);
4975 goto fsm_start;
4976 }
4977 }
4978
4979 ata_altstatus(ap); /* flush */
4980 poll_next = 1;
4981 break;
4982
4983 case HSM_ST_LAST:
4984 if (unlikely(!ata_ok(status))) {
4985 qc->err_mask |= __ac_err_mask(status);
4986 ap->hsm_task_state = HSM_ST_ERR;
4987 goto fsm_start;
4988 }
4989
4990 /* no more data to transfer */
4991 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4992 ap->print_id, qc->dev->devno, status);
4993
4994 WARN_ON(qc->err_mask);
4995
4996 ap->hsm_task_state = HSM_ST_IDLE;
4997
4998 /* complete taskfile transaction */
4999 ata_hsm_qc_complete(qc, in_wq);
5000
5001 poll_next = 0;
5002 break;
5003
5004 case HSM_ST_ERR:
5005 /* make sure qc->err_mask is available to
5006 * know what's wrong and recover
5007 */
5008 WARN_ON(qc->err_mask == 0);
5009
5010 ap->hsm_task_state = HSM_ST_IDLE;
5011
5012 /* complete taskfile transaction */
5013 ata_hsm_qc_complete(qc, in_wq);
5014
5015 poll_next = 0;
5016 break;
5017 default:
5018 poll_next = 0;
5019 BUG();
5020 }
5021
5022 return poll_next;
5023}
5024
5025static void ata_pio_task(struct work_struct *work)
5026{
5027 struct ata_port *ap =
5028 container_of(work, struct ata_port, port_task.work);
5029 struct ata_queued_cmd *qc = ap->port_task_data;
5030 u8 status;
5031 int poll_next;
5032
5033fsm_start:
5034 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5035
5036 /*
5037 * This is purely heuristic. This is a fast path.
5038 * Sometimes when we enter, BSY will be cleared in
5039 * a chk-status or two. If not, the drive is probably seeking
5040 * or something. Snooze for a couple msecs, then
5041 * chk-status again. If still busy, queue delayed work.
5042 */
5043 status = ata_busy_wait(ap, ATA_BUSY, 5);
5044 if (status & ATA_BUSY) {
5045 msleep(2);
5046 status = ata_busy_wait(ap, ATA_BUSY, 10);
5047 if (status & ATA_BUSY) {
5048 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
5049 return;
5050 }
5051 }
5052
5053 /* move the HSM */
5054 poll_next = ata_hsm_move(ap, qc, status, 1);
5055
5056 /* another command or interrupt handler
5057 * may be running at this point.
5058 */
5059 if (poll_next)
5060 goto fsm_start;
5061}
5062
5063/**
5064 * ata_qc_new - Request an available ATA command, for queueing
5065 * @ap: Port associated with device @dev
5066 * @dev: Device from whom we request an available command structure
5067 *
5068 * LOCKING:
5069 * None.
5070 */
5071
5072static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5073{
5074 struct ata_queued_cmd *qc = NULL;
5075 unsigned int i;
5076
5077 /* no command while frozen */
5078 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5079 return NULL;
5080
5081 /* the last tag is reserved for internal command. */
5082 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5083 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5084 qc = __ata_qc_from_tag(ap, i);
5085 break;
5086 }
5087
5088 if (qc)
5089 qc->tag = i;
5090
5091 return qc;
5092}
5093
5094/**
5095 * ata_qc_new_init - Request an available ATA command, and initialize it
5096 * @dev: Device from whom we request an available command structure
5097 *
5098 * LOCKING:
5099 * None.
5100 */
5101
5102struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5103{
5104 struct ata_port *ap = dev->ap;
5105 struct ata_queued_cmd *qc;
5106
5107 qc = ata_qc_new(ap);
5108 if (qc) {
5109 qc->scsicmd = NULL;
5110 qc->ap = ap;
5111 qc->dev = dev;
5112
5113 ata_qc_reinit(qc);
5114 }
5115
5116 return qc;
5117}
5118
5119/**
5120 * ata_qc_free - free unused ata_queued_cmd
5121 * @qc: Command to complete
5122 *
5123 * Designed to free unused ata_queued_cmd object
5124 * in case something prevents using it.
5125 *
5126 * LOCKING:
5127 * spin_lock_irqsave(host lock)
5128 */
5129void ata_qc_free(struct ata_queued_cmd *qc)
5130{
5131 struct ata_port *ap = qc->ap;
5132 unsigned int tag;
5133
5134 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5135
5136 qc->flags = 0;
5137 tag = qc->tag;
5138 if (likely(ata_tag_valid(tag))) {
5139 qc->tag = ATA_TAG_POISON;
5140 clear_bit(tag, &ap->qc_allocated);
5141 }
5142}
5143
5144void __ata_qc_complete(struct ata_queued_cmd *qc)
5145{
5146 struct ata_port *ap = qc->ap;
5147
5148 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5149 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5150
5151 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5152 ata_sg_clean(qc);
5153
5154 /* command should be marked inactive atomically with qc completion */
5155 if (qc->tf.protocol == ATA_PROT_NCQ)
5156 ap->sactive &= ~(1 << qc->tag);
5157 else
5158 ap->active_tag = ATA_TAG_POISON;
5159
5160 /* atapi: mark qc as inactive to prevent the interrupt handler
5161 * from completing the command twice later, before the error handler
5162 * is called. (when rc != 0 and atapi request sense is needed)
5163 */
5164 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5165 ap->qc_active &= ~(1 << qc->tag);
5166
5167 /* call completion callback */
5168 qc->complete_fn(qc);
5169}
5170
5171static void fill_result_tf(struct ata_queued_cmd *qc)
5172{
5173 struct ata_port *ap = qc->ap;
5174
5175 qc->result_tf.flags = qc->tf.flags;
5176 ap->ops->tf_read(ap, &qc->result_tf);
5177}
5178
5179/**
5180 * ata_qc_complete - Complete an active ATA command
5181 * @qc: Command to complete
5182 * @err_mask: ATA Status register contents
5183 *
5184 * Indicate to the mid and upper layers that an ATA
5185 * command has completed, with either an ok or not-ok status.
5186 *
5187 * LOCKING:
5188 * spin_lock_irqsave(host lock)
5189 */
5190void ata_qc_complete(struct ata_queued_cmd *qc)
5191{
5192 struct ata_port *ap = qc->ap;
5193
5194 /* XXX: New EH and old EH use different mechanisms to
5195 * synchronize EH with regular execution path.
5196 *
5197 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5198 * Normal execution path is responsible for not accessing a
5199 * failed qc. libata core enforces the rule by returning NULL
5200 * from ata_qc_from_tag() for failed qcs.
5201 *
5202 * Old EH depends on ata_qc_complete() nullifying completion
5203 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5204 * not synchronize with interrupt handler. Only PIO task is
5205 * taken care of.
5206 */
5207 if (ap->ops->error_handler) {
5208 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5209
5210 if (unlikely(qc->err_mask))
5211 qc->flags |= ATA_QCFLAG_FAILED;
5212
5213 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5214 if (!ata_tag_internal(qc->tag)) {
5215 /* always fill result TF for failed qc */
5216 fill_result_tf(qc);
5217 ata_qc_schedule_eh(qc);
5218 return;
5219 }
5220 }
5221
5222 /* read result TF if requested */
5223 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5224 fill_result_tf(qc);
5225
5226 __ata_qc_complete(qc);
5227 } else {
5228 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5229 return;
5230
5231 /* read result TF if failed or requested */
5232 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5233 fill_result_tf(qc);
5234
5235 __ata_qc_complete(qc);
5236 }
5237}
5238
5239/**
5240 * ata_qc_complete_multiple - Complete multiple qcs successfully
5241 * @ap: port in question
5242 * @qc_active: new qc_active mask
5243 * @finish_qc: LLDD callback invoked before completing a qc
5244 *
5245 * Complete in-flight commands. This functions is meant to be
5246 * called from low-level driver's interrupt routine to complete
5247 * requests normally. ap->qc_active and @qc_active is compared
5248 * and commands are completed accordingly.
5249 *
5250 * LOCKING:
5251 * spin_lock_irqsave(host lock)
5252 *
5253 * RETURNS:
5254 * Number of completed commands on success, -errno otherwise.
5255 */
5256int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5257 void (*finish_qc)(struct ata_queued_cmd *))
5258{
5259 int nr_done = 0;
5260 u32 done_mask;
5261 int i;
5262
5263 done_mask = ap->qc_active ^ qc_active;
5264
5265 if (unlikely(done_mask & qc_active)) {
5266 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5267 "(%08x->%08x)\n", ap->qc_active, qc_active);
5268 return -EINVAL;
5269 }
5270
5271 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5272 struct ata_queued_cmd *qc;
5273
5274 if (!(done_mask & (1 << i)))
5275 continue;
5276
5277 if ((qc = ata_qc_from_tag(ap, i))) {
5278 if (finish_qc)
5279 finish_qc(qc);
5280 ata_qc_complete(qc);
5281 nr_done++;
5282 }
5283 }
5284
5285 return nr_done;
5286}
5287
5288static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
5289{
5290 struct ata_port *ap = qc->ap;
5291
5292 switch (qc->tf.protocol) {
5293 case ATA_PROT_NCQ:
5294 case ATA_PROT_DMA:
5295 case ATA_PROT_ATAPI_DMA:
5296 return 1;
5297
5298 case ATA_PROT_ATAPI:
5299 case ATA_PROT_PIO:
5300 if (ap->flags & ATA_FLAG_PIO_DMA)
5301 return 1;
5302
5303 /* fall through */
5304
5305 default:
5306 return 0;
5307 }
5308
5309 /* never reached */
5310}
5311
5312/**
5313 * ata_qc_issue - issue taskfile to device
5314 * @qc: command to issue to device
5315 *
5316 * Prepare an ATA command to submission to device.
5317 * This includes mapping the data into a DMA-able
5318 * area, filling in the S/G table, and finally
5319 * writing the taskfile to hardware, starting the command.
5320 *
5321 * LOCKING:
5322 * spin_lock_irqsave(host lock)
5323 */
5324void ata_qc_issue(struct ata_queued_cmd *qc)
5325{
5326 struct ata_port *ap = qc->ap;
5327
5328 /* Make sure only one non-NCQ command is outstanding. The
5329 * check is skipped for old EH because it reuses active qc to
5330 * request ATAPI sense.
5331 */
5332 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
5333
5334 if (qc->tf.protocol == ATA_PROT_NCQ) {
5335 WARN_ON(ap->sactive & (1 << qc->tag));
5336 ap->sactive |= 1 << qc->tag;
5337 } else {
5338 WARN_ON(ap->sactive);
5339 ap->active_tag = qc->tag;
5340 }
5341
5342 qc->flags |= ATA_QCFLAG_ACTIVE;
5343 ap->qc_active |= 1 << qc->tag;
5344
5345 if (ata_should_dma_map(qc)) {
5346 if (qc->flags & ATA_QCFLAG_SG) {
5347 if (ata_sg_setup(qc))
5348 goto sg_err;
5349 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
5350 if (ata_sg_setup_one(qc))
5351 goto sg_err;
5352 }
5353 } else {
5354 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5355 }
5356
5357 ap->ops->qc_prep(qc);
5358
5359 qc->err_mask |= ap->ops->qc_issue(qc);
5360 if (unlikely(qc->err_mask))
5361 goto err;
5362 return;
5363
5364sg_err:
5365 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5366 qc->err_mask |= AC_ERR_SYSTEM;
5367err:
5368 ata_qc_complete(qc);
5369}
5370
5371/**
5372 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
5373 * @qc: command to issue to device
5374 *
5375 * Using various libata functions and hooks, this function
5376 * starts an ATA command. ATA commands are grouped into
5377 * classes called "protocols", and issuing each type of protocol
5378 * is slightly different.
5379 *
5380 * May be used as the qc_issue() entry in ata_port_operations.
5381 *
5382 * LOCKING:
5383 * spin_lock_irqsave(host lock)
5384 *
5385 * RETURNS:
5386 * Zero on success, AC_ERR_* mask on failure
5387 */
5388
5389unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
5390{
5391 struct ata_port *ap = qc->ap;
5392
5393 /* Use polling pio if the LLD doesn't handle
5394 * interrupt driven pio and atapi CDB interrupt.
5395 */
5396 if (ap->flags & ATA_FLAG_PIO_POLLING) {
5397 switch (qc->tf.protocol) {
5398 case ATA_PROT_PIO:
5399 case ATA_PROT_NODATA:
5400 case ATA_PROT_ATAPI:
5401 case ATA_PROT_ATAPI_NODATA:
5402 qc->tf.flags |= ATA_TFLAG_POLLING;
5403 break;
5404 case ATA_PROT_ATAPI_DMA:
5405 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
5406 /* see ata_dma_blacklisted() */
5407 BUG();
5408 break;
5409 default:
5410 break;
5411 }
5412 }
5413
5414 /* select the device */
5415 ata_dev_select(ap, qc->dev->devno, 1, 0);
5416
5417 /* start the command */
5418 switch (qc->tf.protocol) {
5419 case ATA_PROT_NODATA:
5420 if (qc->tf.flags & ATA_TFLAG_POLLING)
5421 ata_qc_set_polling(qc);
5422
5423 ata_tf_to_host(ap, &qc->tf);
5424 ap->hsm_task_state = HSM_ST_LAST;
5425
5426 if (qc->tf.flags & ATA_TFLAG_POLLING)
5427 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5428
5429 break;
5430
5431 case ATA_PROT_DMA:
5432 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5433
5434 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5435 ap->ops->bmdma_setup(qc); /* set up bmdma */
5436 ap->ops->bmdma_start(qc); /* initiate bmdma */
5437 ap->hsm_task_state = HSM_ST_LAST;
5438 break;
5439
5440 case ATA_PROT_PIO:
5441 if (qc->tf.flags & ATA_TFLAG_POLLING)
5442 ata_qc_set_polling(qc);
5443
5444 ata_tf_to_host(ap, &qc->tf);
5445
5446 if (qc->tf.flags & ATA_TFLAG_WRITE) {
5447 /* PIO data out protocol */
5448 ap->hsm_task_state = HSM_ST_FIRST;
5449 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5450
5451 /* always send first data block using
5452 * the ata_pio_task() codepath.
5453 */
5454 } else {
5455 /* PIO data in protocol */
5456 ap->hsm_task_state = HSM_ST;
5457
5458 if (qc->tf.flags & ATA_TFLAG_POLLING)
5459 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5460
5461 /* if polling, ata_pio_task() handles the rest.
5462 * otherwise, interrupt handler takes over from here.
5463 */
5464 }
5465
5466 break;
5467
5468 case ATA_PROT_ATAPI:
5469 case ATA_PROT_ATAPI_NODATA:
5470 if (qc->tf.flags & ATA_TFLAG_POLLING)
5471 ata_qc_set_polling(qc);
5472
5473 ata_tf_to_host(ap, &qc->tf);
5474
5475 ap->hsm_task_state = HSM_ST_FIRST;
5476
5477 /* send cdb by polling if no cdb interrupt */
5478 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
5479 (qc->tf.flags & ATA_TFLAG_POLLING))
5480 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5481 break;
5482
5483 case ATA_PROT_ATAPI_DMA:
5484 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
5485
5486 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
5487 ap->ops->bmdma_setup(qc); /* set up bmdma */
5488 ap->hsm_task_state = HSM_ST_FIRST;
5489
5490 /* send cdb by polling if no cdb interrupt */
5491 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5492 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5493 break;
5494
5495 default:
5496 WARN_ON(1);
5497 return AC_ERR_SYSTEM;
5498 }
5499
5500 return 0;
5501}
5502
5503/**
5504 * ata_host_intr - Handle host interrupt for given (port, task)
5505 * @ap: Port on which interrupt arrived (possibly...)
5506 * @qc: Taskfile currently active in engine
5507 *
5508 * Handle host interrupt for given queued command. Currently,
5509 * only DMA interrupts are handled. All other commands are
5510 * handled via polling with interrupts disabled (nIEN bit).
5511 *
5512 * LOCKING:
5513 * spin_lock_irqsave(host lock)
5514 *
5515 * RETURNS:
5516 * One if interrupt was handled, zero if not (shared irq).
5517 */
5518
5519inline unsigned int ata_host_intr (struct ata_port *ap,
5520 struct ata_queued_cmd *qc)
5521{
5522 struct ata_eh_info *ehi = &ap->eh_info;
5523 u8 status, host_stat = 0;
5524
5525 VPRINTK("ata%u: protocol %d task_state %d\n",
5526 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
5527
5528 /* Check whether we are expecting interrupt in this state */
5529 switch (ap->hsm_task_state) {
5530 case HSM_ST_FIRST:
5531 /* Some pre-ATAPI-4 devices assert INTRQ
5532 * at this state when ready to receive CDB.
5533 */
5534
5535 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5536 * The flag was turned on only for atapi devices.
5537 * No need to check is_atapi_taskfile(&qc->tf) again.
5538 */
5539 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5540 goto idle_irq;
5541 break;
5542 case HSM_ST_LAST:
5543 if (qc->tf.protocol == ATA_PROT_DMA ||
5544 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5545 /* check status of DMA engine */
5546 host_stat = ap->ops->bmdma_status(ap);
5547 VPRINTK("ata%u: host_stat 0x%X\n",
5548 ap->print_id, host_stat);
5549
5550 /* if it's not our irq... */
5551 if (!(host_stat & ATA_DMA_INTR))
5552 goto idle_irq;
5553
5554 /* before we do anything else, clear DMA-Start bit */
5555 ap->ops->bmdma_stop(qc);
5556
5557 if (unlikely(host_stat & ATA_DMA_ERR)) {
5558 /* error when transfering data to/from memory */
5559 qc->err_mask |= AC_ERR_HOST_BUS;
5560 ap->hsm_task_state = HSM_ST_ERR;
5561 }
5562 }
5563 break;
5564 case HSM_ST:
5565 break;
5566 default:
5567 goto idle_irq;
5568 }
5569
5570 /* check altstatus */
5571 status = ata_altstatus(ap);
5572 if (status & ATA_BUSY)
5573 goto idle_irq;
5574
5575 /* check main status, clearing INTRQ */
5576 status = ata_chk_status(ap);
5577 if (unlikely(status & ATA_BUSY))
5578 goto idle_irq;
5579
5580 /* ack bmdma irq events */
5581 ap->ops->irq_clear(ap);
5582
5583 ata_hsm_move(ap, qc, status, 0);
5584
5585 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5586 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5587 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5588
5589 return 1; /* irq handled */
5590
5591idle_irq:
5592 ap->stats.idle_irq++;
5593
5594#ifdef ATA_IRQ_TRAP
5595 if ((ap->stats.idle_irq % 1000) == 0) {
5596 ap->ops->irq_ack(ap, 0); /* debug trap */
5597 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5598 return 1;
5599 }
5600#endif
5601 return 0; /* irq not handled */
5602}
5603
5604/**
5605 * ata_interrupt - Default ATA host interrupt handler
5606 * @irq: irq line (unused)
5607 * @dev_instance: pointer to our ata_host information structure
5608 *
5609 * Default interrupt handler for PCI IDE devices. Calls
5610 * ata_host_intr() for each port that is not disabled.
5611 *
5612 * LOCKING:
5613 * Obtains host lock during operation.
5614 *
5615 * RETURNS:
5616 * IRQ_NONE or IRQ_HANDLED.
5617 */
5618
5619irqreturn_t ata_interrupt (int irq, void *dev_instance)
5620{
5621 struct ata_host *host = dev_instance;
5622 unsigned int i;
5623 unsigned int handled = 0;
5624 unsigned long flags;
5625
5626 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5627 spin_lock_irqsave(&host->lock, flags);
5628
5629 for (i = 0; i < host->n_ports; i++) {
5630 struct ata_port *ap;
5631
5632 ap = host->ports[i];
5633 if (ap &&
5634 !(ap->flags & ATA_FLAG_DISABLED)) {
5635 struct ata_queued_cmd *qc;
5636
5637 qc = ata_qc_from_tag(ap, ap->active_tag);
5638 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5639 (qc->flags & ATA_QCFLAG_ACTIVE))
5640 handled |= ata_host_intr(ap, qc);
5641 }
5642 }
5643
5644 spin_unlock_irqrestore(&host->lock, flags);
5645
5646 return IRQ_RETVAL(handled);
5647}
5648
5649/**
5650 * sata_scr_valid - test whether SCRs are accessible
5651 * @ap: ATA port to test SCR accessibility for
5652 *
5653 * Test whether SCRs are accessible for @ap.
5654 *
5655 * LOCKING:
5656 * None.
5657 *
5658 * RETURNS:
5659 * 1 if SCRs are accessible, 0 otherwise.
5660 */
5661int sata_scr_valid(struct ata_port *ap)
5662{
5663 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5664}
5665
5666/**
5667 * sata_scr_read - read SCR register of the specified port
5668 * @ap: ATA port to read SCR for
5669 * @reg: SCR to read
5670 * @val: Place to store read value
5671 *
5672 * Read SCR register @reg of @ap into *@val. This function is
5673 * guaranteed to succeed if the cable type of the port is SATA
5674 * and the port implements ->scr_read.
5675 *
5676 * LOCKING:
5677 * None.
5678 *
5679 * RETURNS:
5680 * 0 on success, negative errno on failure.
5681 */
5682int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5683{
5684 if (sata_scr_valid(ap)) {
5685 *val = ap->ops->scr_read(ap, reg);
5686 return 0;
5687 }
5688 return -EOPNOTSUPP;
5689}
5690
5691/**
5692 * sata_scr_write - write SCR register of the specified port
5693 * @ap: ATA port to write SCR for
5694 * @reg: SCR to write
5695 * @val: value to write
5696 *
5697 * Write @val to SCR register @reg of @ap. This function is
5698 * guaranteed to succeed if the cable type of the port is SATA
5699 * and the port implements ->scr_read.
5700 *
5701 * LOCKING:
5702 * None.
5703 *
5704 * RETURNS:
5705 * 0 on success, negative errno on failure.
5706 */
5707int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5708{
5709 if (sata_scr_valid(ap)) {
5710 ap->ops->scr_write(ap, reg, val);
5711 return 0;
5712 }
5713 return -EOPNOTSUPP;
5714}
5715
5716/**
5717 * sata_scr_write_flush - write SCR register of the specified port and flush
5718 * @ap: ATA port to write SCR for
5719 * @reg: SCR to write
5720 * @val: value to write
5721 *
5722 * This function is identical to sata_scr_write() except that this
5723 * function performs flush after writing to the register.
5724 *
5725 * LOCKING:
5726 * None.
5727 *
5728 * RETURNS:
5729 * 0 on success, negative errno on failure.
5730 */
5731int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5732{
5733 if (sata_scr_valid(ap)) {
5734 ap->ops->scr_write(ap, reg, val);
5735 ap->ops->scr_read(ap, reg);
5736 return 0;
5737 }
5738 return -EOPNOTSUPP;
5739}
5740
5741/**
5742 * ata_port_online - test whether the given port is online
5743 * @ap: ATA port to test
5744 *
5745 * Test whether @ap is online. Note that this function returns 0
5746 * if online status of @ap cannot be obtained, so
5747 * ata_port_online(ap) != !ata_port_offline(ap).
5748 *
5749 * LOCKING:
5750 * None.
5751 *
5752 * RETURNS:
5753 * 1 if the port online status is available and online.
5754 */
5755int ata_port_online(struct ata_port *ap)
5756{
5757 u32 sstatus;
5758
5759 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5760 return 1;
5761 return 0;
5762}
5763
5764/**
5765 * ata_port_offline - test whether the given port is offline
5766 * @ap: ATA port to test
5767 *
5768 * Test whether @ap is offline. Note that this function returns
5769 * 0 if offline status of @ap cannot be obtained, so
5770 * ata_port_online(ap) != !ata_port_offline(ap).
5771 *
5772 * LOCKING:
5773 * None.
5774 *
5775 * RETURNS:
5776 * 1 if the port offline status is available and offline.
5777 */
5778int ata_port_offline(struct ata_port *ap)
5779{
5780 u32 sstatus;
5781
5782 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5783 return 1;
5784 return 0;
5785}
5786
5787int ata_flush_cache(struct ata_device *dev)
5788{
5789 unsigned int err_mask;
5790 u8 cmd;
5791
5792 if (!ata_try_flush_cache(dev))
5793 return 0;
5794
5795 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5796 cmd = ATA_CMD_FLUSH_EXT;
5797 else
5798 cmd = ATA_CMD_FLUSH;
5799
5800 err_mask = ata_do_simple_cmd(dev, cmd);
5801 if (err_mask) {
5802 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5803 return -EIO;
5804 }
5805
5806 return 0;
5807}
5808
5809#ifdef CONFIG_PM
5810static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5811 unsigned int action, unsigned int ehi_flags,
5812 int wait)
5813{
5814 unsigned long flags;
5815 int i, rc;
5816
5817 for (i = 0; i < host->n_ports; i++) {
5818 struct ata_port *ap = host->ports[i];
5819
5820 /* Previous resume operation might still be in
5821 * progress. Wait for PM_PENDING to clear.
5822 */
5823 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5824 ata_port_wait_eh(ap);
5825 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5826 }
5827
5828 /* request PM ops to EH */
5829 spin_lock_irqsave(ap->lock, flags);
5830
5831 ap->pm_mesg = mesg;
5832 if (wait) {
5833 rc = 0;
5834 ap->pm_result = &rc;
5835 }
5836
5837 ap->pflags |= ATA_PFLAG_PM_PENDING;
5838 ap->eh_info.action |= action;
5839 ap->eh_info.flags |= ehi_flags;
5840
5841 ata_port_schedule_eh(ap);
5842
5843 spin_unlock_irqrestore(ap->lock, flags);
5844
5845 /* wait and check result */
5846 if (wait) {
5847 ata_port_wait_eh(ap);
5848 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5849 if (rc)
5850 return rc;
5851 }
5852 }
5853
5854 return 0;
5855}
5856
5857/**
5858 * ata_host_suspend - suspend host
5859 * @host: host to suspend
5860 * @mesg: PM message
5861 *
5862 * Suspend @host. Actual operation is performed by EH. This
5863 * function requests EH to perform PM operations and waits for EH
5864 * to finish.
5865 *
5866 * LOCKING:
5867 * Kernel thread context (may sleep).
5868 *
5869 * RETURNS:
5870 * 0 on success, -errno on failure.
5871 */
5872int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5873{
5874 int rc;
5875
5876 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5877 if (rc == 0)
5878 host->dev->power.power_state = mesg;
5879 return rc;
5880}
5881
5882/**
5883 * ata_host_resume - resume host
5884 * @host: host to resume
5885 *
5886 * Resume @host. Actual operation is performed by EH. This
5887 * function requests EH to perform PM operations and returns.
5888 * Note that all resume operations are performed parallely.
5889 *
5890 * LOCKING:
5891 * Kernel thread context (may sleep).
5892 */
5893void ata_host_resume(struct ata_host *host)
5894{
5895 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5896 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5897 host->dev->power.power_state = PMSG_ON;
5898}
5899#endif
5900
5901/**
5902 * ata_port_start - Set port up for dma.
5903 * @ap: Port to initialize
5904 *
5905 * Called just after data structures for each port are
5906 * initialized. Allocates space for PRD table.
5907 *
5908 * May be used as the port_start() entry in ata_port_operations.
5909 *
5910 * LOCKING:
5911 * Inherited from caller.
5912 */
5913int ata_port_start(struct ata_port *ap)
5914{
5915 struct device *dev = ap->dev;
5916 int rc;
5917
5918 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5919 GFP_KERNEL);
5920 if (!ap->prd)
5921 return -ENOMEM;
5922
5923 rc = ata_pad_alloc(ap, dev);
5924 if (rc)
5925 return rc;
5926
5927 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5928 (unsigned long long)ap->prd_dma);
5929 return 0;
5930}
5931
5932/**
5933 * ata_dev_init - Initialize an ata_device structure
5934 * @dev: Device structure to initialize
5935 *
5936 * Initialize @dev in preparation for probing.
5937 *
5938 * LOCKING:
5939 * Inherited from caller.
5940 */
5941void ata_dev_init(struct ata_device *dev)
5942{
5943 struct ata_port *ap = dev->ap;
5944 unsigned long flags;
5945
5946 /* SATA spd limit is bound to the first device */
5947 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5948
5949 /* High bits of dev->flags are used to record warm plug
5950 * requests which occur asynchronously. Synchronize using
5951 * host lock.
5952 */
5953 spin_lock_irqsave(ap->lock, flags);
5954 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5955 spin_unlock_irqrestore(ap->lock, flags);
5956
5957 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5958 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5959 dev->pio_mask = UINT_MAX;
5960 dev->mwdma_mask = UINT_MAX;
5961 dev->udma_mask = UINT_MAX;
5962}
5963
5964/**
5965 * ata_port_alloc - allocate and initialize basic ATA port resources
5966 * @host: ATA host this allocated port belongs to
5967 *
5968 * Allocate and initialize basic ATA port resources.
5969 *
5970 * RETURNS:
5971 * Allocate ATA port on success, NULL on failure.
5972 *
5973 * LOCKING:
5974 * Inherited from calling layer (may sleep).
5975 */
5976struct ata_port *ata_port_alloc(struct ata_host *host)
5977{
5978 struct ata_port *ap;
5979 unsigned int i;
5980
5981 DPRINTK("ENTER\n");
5982
5983 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5984 if (!ap)
5985 return NULL;
5986
5987 ap->pflags |= ATA_PFLAG_INITIALIZING;
5988 ap->lock = &host->lock;
5989 ap->flags = ATA_FLAG_DISABLED;
5990 ap->print_id = -1;
5991 ap->ctl = ATA_DEVCTL_OBS;
5992 ap->host = host;
5993 ap->dev = host->dev;
5994
5995 ap->hw_sata_spd_limit = UINT_MAX;
5996 ap->active_tag = ATA_TAG_POISON;
5997 ap->last_ctl = 0xFF;
5998
5999#if defined(ATA_VERBOSE_DEBUG)
6000 /* turn on all debugging levels */
6001 ap->msg_enable = 0x00FF;
6002#elif defined(ATA_DEBUG)
6003 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6004#else
6005 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6006#endif
6007
6008 INIT_DELAYED_WORK(&ap->port_task, NULL);
6009 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6010 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6011 INIT_LIST_HEAD(&ap->eh_done_q);
6012 init_waitqueue_head(&ap->eh_wait_q);
6013
6014 ap->cbl = ATA_CBL_NONE;
6015
6016 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6017 struct ata_device *dev = &ap->device[i];
6018 dev->ap = ap;
6019 dev->devno = i;
6020 ata_dev_init(dev);
6021 }
6022
6023#ifdef ATA_IRQ_TRAP
6024 ap->stats.unhandled_irq = 1;
6025 ap->stats.idle_irq = 1;
6026#endif
6027 return ap;
6028}
6029
6030static void ata_host_release(struct device *gendev, void *res)
6031{
6032 struct ata_host *host = dev_get_drvdata(gendev);
6033 int i;
6034
6035 for (i = 0; i < host->n_ports; i++) {
6036 struct ata_port *ap = host->ports[i];
6037
6038 if (!ap)
6039 continue;
6040
6041 if ((host->flags & ATA_HOST_STARTED) && ap->ops->port_stop)
6042 ap->ops->port_stop(ap);
6043 }
6044
6045 if ((host->flags & ATA_HOST_STARTED) && host->ops->host_stop)
6046 host->ops->host_stop(host);
6047
6048 for (i = 0; i < host->n_ports; i++) {
6049 struct ata_port *ap = host->ports[i];
6050
6051 if (!ap)
6052 continue;
6053
6054 if (ap->scsi_host)
6055 scsi_host_put(ap->scsi_host);
6056
6057 kfree(ap);
6058 host->ports[i] = NULL;
6059 }
6060
6061 dev_set_drvdata(gendev, NULL);
6062}
6063
6064/**
6065 * ata_host_alloc - allocate and init basic ATA host resources
6066 * @dev: generic device this host is associated with
6067 * @max_ports: maximum number of ATA ports associated with this host
6068 *
6069 * Allocate and initialize basic ATA host resources. LLD calls
6070 * this function to allocate a host, initializes it fully and
6071 * attaches it using ata_host_register().
6072 *
6073 * @max_ports ports are allocated and host->n_ports is
6074 * initialized to @max_ports. The caller is allowed to decrease
6075 * host->n_ports before calling ata_host_register(). The unused
6076 * ports will be automatically freed on registration.
6077 *
6078 * RETURNS:
6079 * Allocate ATA host on success, NULL on failure.
6080 *
6081 * LOCKING:
6082 * Inherited from calling layer (may sleep).
6083 */
6084struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6085{
6086 struct ata_host *host;
6087 size_t sz;
6088 int i;
6089
6090 DPRINTK("ENTER\n");
6091
6092 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6093 return NULL;
6094
6095 /* alloc a container for our list of ATA ports (buses) */
6096 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6097 /* alloc a container for our list of ATA ports (buses) */
6098 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6099 if (!host)
6100 goto err_out;
6101
6102 devres_add(dev, host);
6103 dev_set_drvdata(dev, host);
6104
6105 spin_lock_init(&host->lock);
6106 host->dev = dev;
6107 host->n_ports = max_ports;
6108
6109 /* allocate ports bound to this host */
6110 for (i = 0; i < max_ports; i++) {
6111 struct ata_port *ap;
6112
6113 ap = ata_port_alloc(host);
6114 if (!ap)
6115 goto err_out;
6116
6117 ap->port_no = i;
6118 host->ports[i] = ap;
6119 }
6120
6121 devres_remove_group(dev, NULL);
6122 return host;
6123
6124 err_out:
6125 devres_release_group(dev, NULL);
6126 return NULL;
6127}
6128
6129/**
6130 * ata_host_alloc_pinfo - alloc host and init with port_info array
6131 * @dev: generic device this host is associated with
6132 * @ppi: array of ATA port_info to initialize host with
6133 * @n_ports: number of ATA ports attached to this host
6134 *
6135 * Allocate ATA host and initialize with info from @ppi. If NULL
6136 * terminated, @ppi may contain fewer entries than @n_ports. The
6137 * last entry will be used for the remaining ports.
6138 *
6139 * RETURNS:
6140 * Allocate ATA host on success, NULL on failure.
6141 *
6142 * LOCKING:
6143 * Inherited from calling layer (may sleep).
6144 */
6145struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6146 const struct ata_port_info * const * ppi,
6147 int n_ports)
6148{
6149 const struct ata_port_info *pi;
6150 struct ata_host *host;
6151 int i, j;
6152
6153 host = ata_host_alloc(dev, n_ports);
6154 if (!host)
6155 return NULL;
6156
6157 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6158 struct ata_port *ap = host->ports[i];
6159
6160 if (ppi[j])
6161 pi = ppi[j++];
6162
6163 ap->pio_mask = pi->pio_mask;
6164 ap->mwdma_mask = pi->mwdma_mask;
6165 ap->udma_mask = pi->udma_mask;
6166 ap->flags |= pi->flags;
6167 ap->ops = pi->port_ops;
6168
6169 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6170 host->ops = pi->port_ops;
6171 if (!host->private_data && pi->private_data)
6172 host->private_data = pi->private_data;
6173 }
6174
6175 return host;
6176}
6177
6178/**
6179 * ata_host_start - start and freeze ports of an ATA host
6180 * @host: ATA host to start ports for
6181 *
6182 * Start and then freeze ports of @host. Started status is
6183 * recorded in host->flags, so this function can be called
6184 * multiple times. Ports are guaranteed to get started only
6185 * once. If host->ops isn't initialized yet, its set to the
6186 * first non-dummy port ops.
6187 *
6188 * LOCKING:
6189 * Inherited from calling layer (may sleep).
6190 *
6191 * RETURNS:
6192 * 0 if all ports are started successfully, -errno otherwise.
6193 */
6194int ata_host_start(struct ata_host *host)
6195{
6196 int i, rc;
6197
6198 if (host->flags & ATA_HOST_STARTED)
6199 return 0;
6200
6201 for (i = 0; i < host->n_ports; i++) {
6202 struct ata_port *ap = host->ports[i];
6203
6204 if (!host->ops && !ata_port_is_dummy(ap))
6205 host->ops = ap->ops;
6206
6207 if (ap->ops->port_start) {
6208 rc = ap->ops->port_start(ap);
6209 if (rc) {
6210 ata_port_printk(ap, KERN_ERR, "failed to "
6211 "start port (errno=%d)\n", rc);
6212 goto err_out;
6213 }
6214 }
6215
6216 ata_eh_freeze_port(ap);
6217 }
6218
6219 host->flags |= ATA_HOST_STARTED;
6220 return 0;
6221
6222 err_out:
6223 while (--i >= 0) {
6224 struct ata_port *ap = host->ports[i];
6225
6226 if (ap->ops->port_stop)
6227 ap->ops->port_stop(ap);
6228 }
6229 return rc;
6230}
6231
6232/**
6233 * ata_sas_host_init - Initialize a host struct
6234 * @host: host to initialize
6235 * @dev: device host is attached to
6236 * @flags: host flags
6237 * @ops: port_ops
6238 *
6239 * LOCKING:
6240 * PCI/etc. bus probe sem.
6241 *
6242 */
6243/* KILLME - the only user left is ipr */
6244void ata_host_init(struct ata_host *host, struct device *dev,
6245 unsigned long flags, const struct ata_port_operations *ops)
6246{
6247 spin_lock_init(&host->lock);
6248 host->dev = dev;
6249 host->flags = flags;
6250 host->ops = ops;
6251}
6252
6253/**
6254 * ata_host_register - register initialized ATA host
6255 * @host: ATA host to register
6256 * @sht: template for SCSI host
6257 *
6258 * Register initialized ATA host. @host is allocated using
6259 * ata_host_alloc() and fully initialized by LLD. This function
6260 * starts ports, registers @host with ATA and SCSI layers and
6261 * probe registered devices.
6262 *
6263 * LOCKING:
6264 * Inherited from calling layer (may sleep).
6265 *
6266 * RETURNS:
6267 * 0 on success, -errno otherwise.
6268 */
6269int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6270{
6271 int i, rc;
6272
6273 /* host must have been started */
6274 if (!(host->flags & ATA_HOST_STARTED)) {
6275 dev_printk(KERN_ERR, host->dev,
6276 "BUG: trying to register unstarted host\n");
6277 WARN_ON(1);
6278 return -EINVAL;
6279 }
6280
6281 /* Blow away unused ports. This happens when LLD can't
6282 * determine the exact number of ports to allocate at
6283 * allocation time.
6284 */
6285 for (i = host->n_ports; host->ports[i]; i++)
6286 kfree(host->ports[i]);
6287
6288 /* give ports names and add SCSI hosts */
6289 for (i = 0; i < host->n_ports; i++)
6290 host->ports[i]->print_id = ata_print_id++;
6291
6292 rc = ata_scsi_add_hosts(host, sht);
6293 if (rc)
6294 return rc;
6295
6296 /* set cable, sata_spd_limit and report */
6297 for (i = 0; i < host->n_ports; i++) {
6298 struct ata_port *ap = host->ports[i];
6299 int irq_line;
6300 u32 scontrol;
6301 unsigned long xfer_mask;
6302
6303 /* set SATA cable type if still unset */
6304 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6305 ap->cbl = ATA_CBL_SATA;
6306
6307 /* init sata_spd_limit to the current value */
6308 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
6309 int spd = (scontrol >> 4) & 0xf;
6310 if (spd)
6311 ap->hw_sata_spd_limit &= (1 << spd) - 1;
6312 }
6313 ap->sata_spd_limit = ap->hw_sata_spd_limit;
6314
6315 /* report the secondary IRQ for second channel legacy */
6316 irq_line = host->irq;
6317 if (i == 1 && host->irq2)
6318 irq_line = host->irq2;
6319
6320 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6321 ap->udma_mask);
6322
6323 /* print per-port info to dmesg */
6324 if (!ata_port_is_dummy(ap))
6325 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
6326 "ctl 0x%p bmdma 0x%p irq %d\n",
6327 ap->cbl == ATA_CBL_SATA ? 'S' : 'P',
6328 ata_mode_string(xfer_mask),
6329 ap->ioaddr.cmd_addr,
6330 ap->ioaddr.ctl_addr,
6331 ap->ioaddr.bmdma_addr,
6332 irq_line);
6333 else
6334 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6335 }
6336
6337 /* perform each probe synchronously */
6338 DPRINTK("probe begin\n");
6339 for (i = 0; i < host->n_ports; i++) {
6340 struct ata_port *ap = host->ports[i];
6341 int rc;
6342
6343 /* probe */
6344 if (ap->ops->error_handler) {
6345 struct ata_eh_info *ehi = &ap->eh_info;
6346 unsigned long flags;
6347
6348 ata_port_probe(ap);
6349
6350 /* kick EH for boot probing */
6351 spin_lock_irqsave(ap->lock, flags);
6352
6353 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
6354 ehi->action |= ATA_EH_SOFTRESET;
6355 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6356
6357 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6358 ap->pflags |= ATA_PFLAG_LOADING;
6359 ata_port_schedule_eh(ap);
6360
6361 spin_unlock_irqrestore(ap->lock, flags);
6362
6363 /* wait for EH to finish */
6364 ata_port_wait_eh(ap);
6365 } else {
6366 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6367 rc = ata_bus_probe(ap);
6368 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6369
6370 if (rc) {
6371 /* FIXME: do something useful here?
6372 * Current libata behavior will
6373 * tear down everything when
6374 * the module is removed
6375 * or the h/w is unplugged.
6376 */
6377 }
6378 }
6379 }
6380
6381 /* probes are done, now scan each port's disk(s) */
6382 DPRINTK("host probe begin\n");
6383 for (i = 0; i < host->n_ports; i++) {
6384 struct ata_port *ap = host->ports[i];
6385
6386 ata_scsi_scan_host(ap);
6387 }
6388
6389 return 0;
6390}
6391
6392/**
6393 * ata_host_activate - start host, request IRQ and register it
6394 * @host: target ATA host
6395 * @irq: IRQ to request
6396 * @irq_handler: irq_handler used when requesting IRQ
6397 * @irq_flags: irq_flags used when requesting IRQ
6398 * @sht: scsi_host_template to use when registering the host
6399 *
6400 * After allocating an ATA host and initializing it, most libata
6401 * LLDs perform three steps to activate the host - start host,
6402 * request IRQ and register it. This helper takes necessasry
6403 * arguments and performs the three steps in one go.
6404 *
6405 * LOCKING:
6406 * Inherited from calling layer (may sleep).
6407 *
6408 * RETURNS:
6409 * 0 on success, -errno otherwise.
6410 */
6411int ata_host_activate(struct ata_host *host, int irq,
6412 irq_handler_t irq_handler, unsigned long irq_flags,
6413 struct scsi_host_template *sht)
6414{
6415 int rc;
6416
6417 rc = ata_host_start(host);
6418 if (rc)
6419 return rc;
6420
6421 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6422 dev_driver_string(host->dev), host);
6423 if (rc)
6424 return rc;
6425
6426 /* Used to print device info at probe */
6427 host->irq = irq;
6428
6429 rc = ata_host_register(host, sht);
6430 /* if failed, just free the IRQ and leave ports alone */
6431 if (rc)
6432 devm_free_irq(host->dev, irq, host);
6433
6434 return rc;
6435}
6436
6437/**
6438 * ata_port_detach - Detach ATA port in prepration of device removal
6439 * @ap: ATA port to be detached
6440 *
6441 * Detach all ATA devices and the associated SCSI devices of @ap;
6442 * then, remove the associated SCSI host. @ap is guaranteed to
6443 * be quiescent on return from this function.
6444 *
6445 * LOCKING:
6446 * Kernel thread context (may sleep).
6447 */
6448void ata_port_detach(struct ata_port *ap)
6449{
6450 unsigned long flags;
6451 int i;
6452
6453 if (!ap->ops->error_handler)
6454 goto skip_eh;
6455
6456 /* tell EH we're leaving & flush EH */
6457 spin_lock_irqsave(ap->lock, flags);
6458 ap->pflags |= ATA_PFLAG_UNLOADING;
6459 spin_unlock_irqrestore(ap->lock, flags);
6460
6461 ata_port_wait_eh(ap);
6462
6463 /* EH is now guaranteed to see UNLOADING, so no new device
6464 * will be attached. Disable all existing devices.
6465 */
6466 spin_lock_irqsave(ap->lock, flags);
6467
6468 for (i = 0; i < ATA_MAX_DEVICES; i++)
6469 ata_dev_disable(&ap->device[i]);
6470
6471 spin_unlock_irqrestore(ap->lock, flags);
6472
6473 /* Final freeze & EH. All in-flight commands are aborted. EH
6474 * will be skipped and retrials will be terminated with bad
6475 * target.
6476 */
6477 spin_lock_irqsave(ap->lock, flags);
6478 ata_port_freeze(ap); /* won't be thawed */
6479 spin_unlock_irqrestore(ap->lock, flags);
6480
6481 ata_port_wait_eh(ap);
6482
6483 /* Flush hotplug task. The sequence is similar to
6484 * ata_port_flush_task().
6485 */
6486 cancel_work_sync(&ap->hotplug_task.work); /* akpm: why? */
6487 cancel_delayed_work(&ap->hotplug_task);
6488 cancel_work_sync(&ap->hotplug_task.work);
6489
6490 skip_eh:
6491 /* remove the associated SCSI host */
6492 scsi_remove_host(ap->scsi_host);
6493}
6494
6495/**
6496 * ata_host_detach - Detach all ports of an ATA host
6497 * @host: Host to detach
6498 *
6499 * Detach all ports of @host.
6500 *
6501 * LOCKING:
6502 * Kernel thread context (may sleep).
6503 */
6504void ata_host_detach(struct ata_host *host)
6505{
6506 int i;
6507
6508 for (i = 0; i < host->n_ports; i++)
6509 ata_port_detach(host->ports[i]);
6510}
6511
6512/**
6513 * ata_std_ports - initialize ioaddr with standard port offsets.
6514 * @ioaddr: IO address structure to be initialized
6515 *
6516 * Utility function which initializes data_addr, error_addr,
6517 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
6518 * device_addr, status_addr, and command_addr to standard offsets
6519 * relative to cmd_addr.
6520 *
6521 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
6522 */
6523
6524void ata_std_ports(struct ata_ioports *ioaddr)
6525{
6526 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6527 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6528 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6529 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6530 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6531 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6532 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6533 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6534 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6535 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6536}
6537
6538
6539#ifdef CONFIG_PCI
6540
6541/**
6542 * ata_pci_remove_one - PCI layer callback for device removal
6543 * @pdev: PCI device that was removed
6544 *
6545 * PCI layer indicates to libata via this hook that hot-unplug or
6546 * module unload event has occurred. Detach all ports. Resource
6547 * release is handled via devres.
6548 *
6549 * LOCKING:
6550 * Inherited from PCI layer (may sleep).
6551 */
6552void ata_pci_remove_one(struct pci_dev *pdev)
6553{
6554 struct device *dev = pci_dev_to_dev(pdev);
6555 struct ata_host *host = dev_get_drvdata(dev);
6556
6557 ata_host_detach(host);
6558}
6559
6560/* move to PCI subsystem */
6561int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6562{
6563 unsigned long tmp = 0;
6564
6565 switch (bits->width) {
6566 case 1: {
6567 u8 tmp8 = 0;
6568 pci_read_config_byte(pdev, bits->reg, &tmp8);
6569 tmp = tmp8;
6570 break;
6571 }
6572 case 2: {
6573 u16 tmp16 = 0;
6574 pci_read_config_word(pdev, bits->reg, &tmp16);
6575 tmp = tmp16;
6576 break;
6577 }
6578 case 4: {
6579 u32 tmp32 = 0;
6580 pci_read_config_dword(pdev, bits->reg, &tmp32);
6581 tmp = tmp32;
6582 break;
6583 }
6584
6585 default:
6586 return -EINVAL;
6587 }
6588
6589 tmp &= bits->mask;
6590
6591 return (tmp == bits->val) ? 1 : 0;
6592}
6593
6594#ifdef CONFIG_PM
6595void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6596{
6597 pci_save_state(pdev);
6598 pci_disable_device(pdev);
6599
6600 if (mesg.event == PM_EVENT_SUSPEND)
6601 pci_set_power_state(pdev, PCI_D3hot);
6602}
6603
6604int ata_pci_device_do_resume(struct pci_dev *pdev)
6605{
6606 int rc;
6607
6608 pci_set_power_state(pdev, PCI_D0);
6609 pci_restore_state(pdev);
6610
6611 rc = pcim_enable_device(pdev);
6612 if (rc) {
6613 dev_printk(KERN_ERR, &pdev->dev,
6614 "failed to enable device after resume (%d)\n", rc);
6615 return rc;
6616 }
6617
6618 pci_set_master(pdev);
6619 return 0;
6620}
6621
6622int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6623{
6624 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6625 int rc = 0;
6626
6627 rc = ata_host_suspend(host, mesg);
6628 if (rc)
6629 return rc;
6630
6631 ata_pci_device_do_suspend(pdev, mesg);
6632
6633 return 0;
6634}
6635
6636int ata_pci_device_resume(struct pci_dev *pdev)
6637{
6638 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6639 int rc;
6640
6641 rc = ata_pci_device_do_resume(pdev);
6642 if (rc == 0)
6643 ata_host_resume(host);
6644 return rc;
6645}
6646#endif /* CONFIG_PM */
6647
6648#endif /* CONFIG_PCI */
6649
6650
6651static int __init ata_init(void)
6652{
6653 ata_probe_timeout *= HZ;
6654 ata_wq = create_workqueue("ata");
6655 if (!ata_wq)
6656 return -ENOMEM;
6657
6658 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6659 if (!ata_aux_wq) {
6660 destroy_workqueue(ata_wq);
6661 return -ENOMEM;
6662 }
6663
6664 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6665 return 0;
6666}
6667
6668static void __exit ata_exit(void)
6669{
6670 destroy_workqueue(ata_wq);
6671 destroy_workqueue(ata_aux_wq);
6672}
6673
6674subsys_initcall(ata_init);
6675module_exit(ata_exit);
6676
6677static unsigned long ratelimit_time;
6678static DEFINE_SPINLOCK(ata_ratelimit_lock);
6679
6680int ata_ratelimit(void)
6681{
6682 int rc;
6683 unsigned long flags;
6684
6685 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6686
6687 if (time_after(jiffies, ratelimit_time)) {
6688 rc = 1;
6689 ratelimit_time = jiffies + (HZ/5);
6690 } else
6691 rc = 0;
6692
6693 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6694
6695 return rc;
6696}
6697
6698/**
6699 * ata_wait_register - wait until register value changes
6700 * @reg: IO-mapped register
6701 * @mask: Mask to apply to read register value
6702 * @val: Wait condition
6703 * @interval_msec: polling interval in milliseconds
6704 * @timeout_msec: timeout in milliseconds
6705 *
6706 * Waiting for some bits of register to change is a common
6707 * operation for ATA controllers. This function reads 32bit LE
6708 * IO-mapped register @reg and tests for the following condition.
6709 *
6710 * (*@reg & mask) != val
6711 *
6712 * If the condition is met, it returns; otherwise, the process is
6713 * repeated after @interval_msec until timeout.
6714 *
6715 * LOCKING:
6716 * Kernel thread context (may sleep)
6717 *
6718 * RETURNS:
6719 * The final register value.
6720 */
6721u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6722 unsigned long interval_msec,
6723 unsigned long timeout_msec)
6724{
6725 unsigned long timeout;
6726 u32 tmp;
6727
6728 tmp = ioread32(reg);
6729
6730 /* Calculate timeout _after_ the first read to make sure
6731 * preceding writes reach the controller before starting to
6732 * eat away the timeout.
6733 */
6734 timeout = jiffies + (timeout_msec * HZ) / 1000;
6735
6736 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6737 msleep(interval_msec);
6738 tmp = ioread32(reg);
6739 }
6740
6741 return tmp;
6742}
6743
6744/*
6745 * Dummy port_ops
6746 */
6747static void ata_dummy_noret(struct ata_port *ap) { }
6748static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6749static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6750
6751static u8 ata_dummy_check_status(struct ata_port *ap)
6752{
6753 return ATA_DRDY;
6754}
6755
6756static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6757{
6758 return AC_ERR_SYSTEM;
6759}
6760
6761const struct ata_port_operations ata_dummy_port_ops = {
6762 .port_disable = ata_port_disable,
6763 .check_status = ata_dummy_check_status,
6764 .check_altstatus = ata_dummy_check_status,
6765 .dev_select = ata_noop_dev_select,
6766 .qc_prep = ata_noop_qc_prep,
6767 .qc_issue = ata_dummy_qc_issue,
6768 .freeze = ata_dummy_noret,
6769 .thaw = ata_dummy_noret,
6770 .error_handler = ata_dummy_noret,
6771 .post_internal_cmd = ata_dummy_qc_noret,
6772 .irq_clear = ata_dummy_noret,
6773 .port_start = ata_dummy_ret0,
6774 .port_stop = ata_dummy_noret,
6775};
6776
6777const struct ata_port_info ata_dummy_port_info = {
6778 .port_ops = &ata_dummy_port_ops,
6779};
6780
6781/*
6782 * libata is essentially a library of internal helper functions for
6783 * low-level ATA host controller drivers. As such, the API/ABI is
6784 * likely to change as new drivers are added and updated.
6785 * Do not depend on ABI/API stability.
6786 */
6787
6788EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6789EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6790EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6791EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6792EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6793EXPORT_SYMBOL_GPL(ata_std_bios_param);
6794EXPORT_SYMBOL_GPL(ata_std_ports);
6795EXPORT_SYMBOL_GPL(ata_host_init);
6796EXPORT_SYMBOL_GPL(ata_host_alloc);
6797EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6798EXPORT_SYMBOL_GPL(ata_host_start);
6799EXPORT_SYMBOL_GPL(ata_host_register);
6800EXPORT_SYMBOL_GPL(ata_host_activate);
6801EXPORT_SYMBOL_GPL(ata_host_detach);
6802EXPORT_SYMBOL_GPL(ata_sg_init);
6803EXPORT_SYMBOL_GPL(ata_sg_init_one);
6804EXPORT_SYMBOL_GPL(ata_hsm_move);
6805EXPORT_SYMBOL_GPL(ata_qc_complete);
6806EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6807EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6808EXPORT_SYMBOL_GPL(ata_tf_load);
6809EXPORT_SYMBOL_GPL(ata_tf_read);
6810EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6811EXPORT_SYMBOL_GPL(ata_std_dev_select);
6812EXPORT_SYMBOL_GPL(sata_print_link_status);
6813EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6814EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6815EXPORT_SYMBOL_GPL(ata_check_status);
6816EXPORT_SYMBOL_GPL(ata_altstatus);
6817EXPORT_SYMBOL_GPL(ata_exec_command);
6818EXPORT_SYMBOL_GPL(ata_port_start);
6819EXPORT_SYMBOL_GPL(ata_sff_port_start);
6820EXPORT_SYMBOL_GPL(ata_interrupt);
6821EXPORT_SYMBOL_GPL(ata_do_set_mode);
6822EXPORT_SYMBOL_GPL(ata_data_xfer);
6823EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6824EXPORT_SYMBOL_GPL(ata_qc_prep);
6825EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6826EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6827EXPORT_SYMBOL_GPL(ata_bmdma_start);
6828EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6829EXPORT_SYMBOL_GPL(ata_bmdma_status);
6830EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6831EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6832EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6833EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6834EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6835EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6836EXPORT_SYMBOL_GPL(ata_port_probe);
6837EXPORT_SYMBOL_GPL(ata_dev_disable);
6838EXPORT_SYMBOL_GPL(sata_set_spd);
6839EXPORT_SYMBOL_GPL(sata_phy_debounce);
6840EXPORT_SYMBOL_GPL(sata_phy_resume);
6841EXPORT_SYMBOL_GPL(sata_phy_reset);
6842EXPORT_SYMBOL_GPL(__sata_phy_reset);
6843EXPORT_SYMBOL_GPL(ata_bus_reset);
6844EXPORT_SYMBOL_GPL(ata_std_prereset);
6845EXPORT_SYMBOL_GPL(ata_std_softreset);
6846EXPORT_SYMBOL_GPL(sata_port_hardreset);
6847EXPORT_SYMBOL_GPL(sata_std_hardreset);
6848EXPORT_SYMBOL_GPL(ata_std_postreset);
6849EXPORT_SYMBOL_GPL(ata_dev_classify);
6850EXPORT_SYMBOL_GPL(ata_dev_pair);
6851EXPORT_SYMBOL_GPL(ata_port_disable);
6852EXPORT_SYMBOL_GPL(ata_ratelimit);
6853EXPORT_SYMBOL_GPL(ata_wait_register);
6854EXPORT_SYMBOL_GPL(ata_busy_sleep);
6855EXPORT_SYMBOL_GPL(ata_wait_ready);
6856EXPORT_SYMBOL_GPL(ata_port_queue_task);
6857EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6858EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6859EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6860EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6861EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6862EXPORT_SYMBOL_GPL(ata_host_intr);
6863EXPORT_SYMBOL_GPL(sata_scr_valid);
6864EXPORT_SYMBOL_GPL(sata_scr_read);
6865EXPORT_SYMBOL_GPL(sata_scr_write);
6866EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6867EXPORT_SYMBOL_GPL(ata_port_online);
6868EXPORT_SYMBOL_GPL(ata_port_offline);
6869#ifdef CONFIG_PM
6870EXPORT_SYMBOL_GPL(ata_host_suspend);
6871EXPORT_SYMBOL_GPL(ata_host_resume);
6872#endif /* CONFIG_PM */
6873EXPORT_SYMBOL_GPL(ata_id_string);
6874EXPORT_SYMBOL_GPL(ata_id_c_string);
6875EXPORT_SYMBOL_GPL(ata_id_to_dma_mode);
6876EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6877EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6878
6879EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6880EXPORT_SYMBOL_GPL(ata_timing_compute);
6881EXPORT_SYMBOL_GPL(ata_timing_merge);
6882
6883#ifdef CONFIG_PCI
6884EXPORT_SYMBOL_GPL(pci_test_config_bits);
6885EXPORT_SYMBOL_GPL(ata_pci_init_native_host);
6886EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
6887EXPORT_SYMBOL_GPL(ata_pci_prepare_native_host);
6888EXPORT_SYMBOL_GPL(ata_pci_init_one);
6889EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6890#ifdef CONFIG_PM
6891EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6892EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6893EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6894EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6895#endif /* CONFIG_PM */
6896EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6897EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6898#endif /* CONFIG_PCI */
6899
6900EXPORT_SYMBOL_GPL(ata_eng_timeout);
6901EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6902EXPORT_SYMBOL_GPL(ata_port_abort);
6903EXPORT_SYMBOL_GPL(ata_port_freeze);
6904EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6905EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6906EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6907EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6908EXPORT_SYMBOL_GPL(ata_do_eh);
6909EXPORT_SYMBOL_GPL(ata_irq_on);
6910EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6911EXPORT_SYMBOL_GPL(ata_irq_ack);
6912EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6913EXPORT_SYMBOL_GPL(ata_dev_try_classify);
6914
6915EXPORT_SYMBOL_GPL(ata_cable_40wire);
6916EXPORT_SYMBOL_GPL(ata_cable_80wire);
6917EXPORT_SYMBOL_GPL(ata_cable_unknown);
6918EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.047242 seconds and 5 git commands to generate.