libata: reduce blacklist size (v2)
[deliverable/linux.git] / drivers / ata / libata-core.c
... / ...
CommitLineData
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
57#include <linux/scatterlist.h>
58#include <linux/io.h>
59#include <linux/async.h>
60#include <linux/log2.h>
61#include <linux/slab.h>
62#include <scsi/scsi.h>
63#include <scsi/scsi_cmnd.h>
64#include <scsi/scsi_host.h>
65#include <linux/libata.h>
66#include <asm/byteorder.h>
67#include <linux/cdrom.h>
68#include <linux/ratelimit.h>
69
70#include "libata.h"
71
72
73/* debounce timing parameters in msecs { interval, duration, timeout } */
74const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77
78const struct ata_port_operations ata_base_port_ops = {
79 .prereset = ata_std_prereset,
80 .postreset = ata_std_postreset,
81 .error_handler = ata_std_error_handler,
82};
83
84const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
86
87 .qc_defer = ata_std_qc_defer,
88 .hardreset = sata_std_hardreset,
89};
90
91static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
96static void ata_dev_xfermask(struct ata_device *dev);
97static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
98
99unsigned int ata_print_id = 1;
100
101struct workqueue_struct *ata_aux_wq;
102
103struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
111};
112
113struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
117};
118
119static struct ata_force_ent *ata_force_tbl;
120static int ata_force_tbl_size;
121
122static char ata_force_param_buf[PAGE_SIZE] __initdata;
123/* param_buf is thrown away after initialization, disallow read */
124module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126
127static int atapi_enabled = 1;
128module_param(atapi_enabled, int, 0444);
129MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130
131static int atapi_dmadir = 0;
132module_param(atapi_dmadir, int, 0444);
133MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134
135int atapi_passthru16 = 1;
136module_param(atapi_passthru16, int, 0444);
137MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138
139int libata_fua = 0;
140module_param_named(fua, libata_fua, int, 0444);
141MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142
143static int ata_ignore_hpa;
144module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146
147static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148module_param_named(dma, libata_dma_mask, int, 0444);
149MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150
151static int ata_probe_timeout;
152module_param(ata_probe_timeout, int, 0444);
153MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154
155int libata_noacpi = 0;
156module_param_named(noacpi, libata_noacpi, int, 0444);
157MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158
159int libata_allow_tpm = 0;
160module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162
163static int atapi_an;
164module_param(atapi_an, int, 0444);
165MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
166
167MODULE_AUTHOR("Jeff Garzik");
168MODULE_DESCRIPTION("Library module for ATA devices");
169MODULE_LICENSE("GPL");
170MODULE_VERSION(DRV_VERSION);
171
172
173static bool ata_sstatus_online(u32 sstatus)
174{
175 return (sstatus & 0xf) == 0x3;
176}
177
178/**
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
183 *
184 * LOCKING:
185 * Host lock or EH context.
186 *
187 * RETURNS:
188 * Pointer to the next link.
189 */
190struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
192{
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
195
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
206 }
207
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
221 }
222
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
226
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
230
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
233
234 return NULL;
235}
236
237/**
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
242 *
243 * LOCKING:
244 * Host lock or EH context.
245 *
246 * RETURNS:
247 * Pointer to the next device.
248 */
249struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
251{
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
254
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
266 }
267
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
281 }
282
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
288}
289
290/**
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
293 *
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
297 *
298 * LOCKING:
299 * Don't care.
300 *
301 * RETURNS:
302 * Pointer to the found physical link.
303 */
304struct ata_link *ata_dev_phys_link(struct ata_device *dev)
305{
306 struct ata_port *ap = dev->link->ap;
307
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
313}
314
315/**
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
318 *
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
324 *
325 * LOCKING:
326 * EH context.
327 */
328void ata_force_cbl(struct ata_port *ap)
329{
330 int i;
331
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
334
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
337
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
340
341 ap->cbl = fe->param.cbl;
342 ata_port_printk(ap, KERN_NOTICE,
343 "FORCE: cable set to %s\n", fe->param.name);
344 return;
345 }
346}
347
348/**
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
351 *
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
360 *
361 * LOCKING:
362 * EH context.
363 */
364static void ata_force_link_limits(struct ata_link *link)
365{
366 bool did_spd = false;
367 int linkno = link->pmp;
368 int i;
369
370 if (ata_is_host_link(link))
371 linkno += 15;
372
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
375
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
378
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
381
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_printk(link, KERN_NOTICE,
386 "FORCE: PHY spd limit set to %s\n",
387 fe->param.name);
388 did_spd = true;
389 }
390
391 /* let lflags stack */
392 if (fe->param.lflags) {
393 link->flags |= fe->param.lflags;
394 ata_link_printk(link, KERN_NOTICE,
395 "FORCE: link flag 0x%x forced -> 0x%x\n",
396 fe->param.lflags, link->flags);
397 }
398 }
399}
400
401/**
402 * ata_force_xfermask - force xfermask according to libata.force
403 * @dev: ATA device of interest
404 *
405 * Force xfer_mask according to libata.force and whine about it.
406 * For consistency with link selection, device number 15 selects
407 * the first device connected to the host link.
408 *
409 * LOCKING:
410 * EH context.
411 */
412static void ata_force_xfermask(struct ata_device *dev)
413{
414 int devno = dev->link->pmp + dev->devno;
415 int alt_devno = devno;
416 int i;
417
418 /* allow n.15/16 for devices attached to host port */
419 if (ata_is_host_link(dev->link))
420 alt_devno += 15;
421
422 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
423 const struct ata_force_ent *fe = &ata_force_tbl[i];
424 unsigned long pio_mask, mwdma_mask, udma_mask;
425
426 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
427 continue;
428
429 if (fe->device != -1 && fe->device != devno &&
430 fe->device != alt_devno)
431 continue;
432
433 if (!fe->param.xfer_mask)
434 continue;
435
436 ata_unpack_xfermask(fe->param.xfer_mask,
437 &pio_mask, &mwdma_mask, &udma_mask);
438 if (udma_mask)
439 dev->udma_mask = udma_mask;
440 else if (mwdma_mask) {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = mwdma_mask;
443 } else {
444 dev->udma_mask = 0;
445 dev->mwdma_mask = 0;
446 dev->pio_mask = pio_mask;
447 }
448
449 ata_dev_printk(dev, KERN_NOTICE,
450 "FORCE: xfer_mask set to %s\n", fe->param.name);
451 return;
452 }
453}
454
455/**
456 * ata_force_horkage - force horkage according to libata.force
457 * @dev: ATA device of interest
458 *
459 * Force horkage according to libata.force and whine about it.
460 * For consistency with link selection, device number 15 selects
461 * the first device connected to the host link.
462 *
463 * LOCKING:
464 * EH context.
465 */
466static void ata_force_horkage(struct ata_device *dev)
467{
468 int devno = dev->link->pmp + dev->devno;
469 int alt_devno = devno;
470 int i;
471
472 /* allow n.15/16 for devices attached to host port */
473 if (ata_is_host_link(dev->link))
474 alt_devno += 15;
475
476 for (i = 0; i < ata_force_tbl_size; i++) {
477 const struct ata_force_ent *fe = &ata_force_tbl[i];
478
479 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
480 continue;
481
482 if (fe->device != -1 && fe->device != devno &&
483 fe->device != alt_devno)
484 continue;
485
486 if (!(~dev->horkage & fe->param.horkage_on) &&
487 !(dev->horkage & fe->param.horkage_off))
488 continue;
489
490 dev->horkage |= fe->param.horkage_on;
491 dev->horkage &= ~fe->param.horkage_off;
492
493 ata_dev_printk(dev, KERN_NOTICE,
494 "FORCE: horkage modified (%s)\n", fe->param.name);
495 }
496}
497
498/**
499 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
500 * @opcode: SCSI opcode
501 *
502 * Determine ATAPI command type from @opcode.
503 *
504 * LOCKING:
505 * None.
506 *
507 * RETURNS:
508 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
509 */
510int atapi_cmd_type(u8 opcode)
511{
512 switch (opcode) {
513 case GPCMD_READ_10:
514 case GPCMD_READ_12:
515 return ATAPI_READ;
516
517 case GPCMD_WRITE_10:
518 case GPCMD_WRITE_12:
519 case GPCMD_WRITE_AND_VERIFY_10:
520 return ATAPI_WRITE;
521
522 case GPCMD_READ_CD:
523 case GPCMD_READ_CD_MSF:
524 return ATAPI_READ_CD;
525
526 case ATA_16:
527 case ATA_12:
528 if (atapi_passthru16)
529 return ATAPI_PASS_THRU;
530 /* fall thru */
531 default:
532 return ATAPI_MISC;
533 }
534}
535
536/**
537 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
538 * @tf: Taskfile to convert
539 * @pmp: Port multiplier port
540 * @is_cmd: This FIS is for command
541 * @fis: Buffer into which data will output
542 *
543 * Converts a standard ATA taskfile to a Serial ATA
544 * FIS structure (Register - Host to Device).
545 *
546 * LOCKING:
547 * Inherited from caller.
548 */
549void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
550{
551 fis[0] = 0x27; /* Register - Host to Device FIS */
552 fis[1] = pmp & 0xf; /* Port multiplier number*/
553 if (is_cmd)
554 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
555
556 fis[2] = tf->command;
557 fis[3] = tf->feature;
558
559 fis[4] = tf->lbal;
560 fis[5] = tf->lbam;
561 fis[6] = tf->lbah;
562 fis[7] = tf->device;
563
564 fis[8] = tf->hob_lbal;
565 fis[9] = tf->hob_lbam;
566 fis[10] = tf->hob_lbah;
567 fis[11] = tf->hob_feature;
568
569 fis[12] = tf->nsect;
570 fis[13] = tf->hob_nsect;
571 fis[14] = 0;
572 fis[15] = tf->ctl;
573
574 fis[16] = 0;
575 fis[17] = 0;
576 fis[18] = 0;
577 fis[19] = 0;
578}
579
580/**
581 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
582 * @fis: Buffer from which data will be input
583 * @tf: Taskfile to output
584 *
585 * Converts a serial ATA FIS structure to a standard ATA taskfile.
586 *
587 * LOCKING:
588 * Inherited from caller.
589 */
590
591void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
592{
593 tf->command = fis[2]; /* status */
594 tf->feature = fis[3]; /* error */
595
596 tf->lbal = fis[4];
597 tf->lbam = fis[5];
598 tf->lbah = fis[6];
599 tf->device = fis[7];
600
601 tf->hob_lbal = fis[8];
602 tf->hob_lbam = fis[9];
603 tf->hob_lbah = fis[10];
604
605 tf->nsect = fis[12];
606 tf->hob_nsect = fis[13];
607}
608
609static const u8 ata_rw_cmds[] = {
610 /* pio multi */
611 ATA_CMD_READ_MULTI,
612 ATA_CMD_WRITE_MULTI,
613 ATA_CMD_READ_MULTI_EXT,
614 ATA_CMD_WRITE_MULTI_EXT,
615 0,
616 0,
617 0,
618 ATA_CMD_WRITE_MULTI_FUA_EXT,
619 /* pio */
620 ATA_CMD_PIO_READ,
621 ATA_CMD_PIO_WRITE,
622 ATA_CMD_PIO_READ_EXT,
623 ATA_CMD_PIO_WRITE_EXT,
624 0,
625 0,
626 0,
627 0,
628 /* dma */
629 ATA_CMD_READ,
630 ATA_CMD_WRITE,
631 ATA_CMD_READ_EXT,
632 ATA_CMD_WRITE_EXT,
633 0,
634 0,
635 0,
636 ATA_CMD_WRITE_FUA_EXT
637};
638
639/**
640 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
641 * @tf: command to examine and configure
642 * @dev: device tf belongs to
643 *
644 * Examine the device configuration and tf->flags to calculate
645 * the proper read/write commands and protocol to use.
646 *
647 * LOCKING:
648 * caller.
649 */
650static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
651{
652 u8 cmd;
653
654 int index, fua, lba48, write;
655
656 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
657 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
658 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
659
660 if (dev->flags & ATA_DFLAG_PIO) {
661 tf->protocol = ATA_PROT_PIO;
662 index = dev->multi_count ? 0 : 8;
663 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
664 /* Unable to use DMA due to host limitation */
665 tf->protocol = ATA_PROT_PIO;
666 index = dev->multi_count ? 0 : 8;
667 } else {
668 tf->protocol = ATA_PROT_DMA;
669 index = 16;
670 }
671
672 cmd = ata_rw_cmds[index + fua + lba48 + write];
673 if (cmd) {
674 tf->command = cmd;
675 return 0;
676 }
677 return -1;
678}
679
680/**
681 * ata_tf_read_block - Read block address from ATA taskfile
682 * @tf: ATA taskfile of interest
683 * @dev: ATA device @tf belongs to
684 *
685 * LOCKING:
686 * None.
687 *
688 * Read block address from @tf. This function can handle all
689 * three address formats - LBA, LBA48 and CHS. tf->protocol and
690 * flags select the address format to use.
691 *
692 * RETURNS:
693 * Block address read from @tf.
694 */
695u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
696{
697 u64 block = 0;
698
699 if (tf->flags & ATA_TFLAG_LBA) {
700 if (tf->flags & ATA_TFLAG_LBA48) {
701 block |= (u64)tf->hob_lbah << 40;
702 block |= (u64)tf->hob_lbam << 32;
703 block |= (u64)tf->hob_lbal << 24;
704 } else
705 block |= (tf->device & 0xf) << 24;
706
707 block |= tf->lbah << 16;
708 block |= tf->lbam << 8;
709 block |= tf->lbal;
710 } else {
711 u32 cyl, head, sect;
712
713 cyl = tf->lbam | (tf->lbah << 8);
714 head = tf->device & 0xf;
715 sect = tf->lbal;
716
717 if (!sect) {
718 ata_dev_printk(dev, KERN_WARNING, "device reported "
719 "invalid CHS sector 0\n");
720 sect = 1; /* oh well */
721 }
722
723 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
724 }
725
726 return block;
727}
728
729/**
730 * ata_build_rw_tf - Build ATA taskfile for given read/write request
731 * @tf: Target ATA taskfile
732 * @dev: ATA device @tf belongs to
733 * @block: Block address
734 * @n_block: Number of blocks
735 * @tf_flags: RW/FUA etc...
736 * @tag: tag
737 *
738 * LOCKING:
739 * None.
740 *
741 * Build ATA taskfile @tf for read/write request described by
742 * @block, @n_block, @tf_flags and @tag on @dev.
743 *
744 * RETURNS:
745 *
746 * 0 on success, -ERANGE if the request is too large for @dev,
747 * -EINVAL if the request is invalid.
748 */
749int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
750 u64 block, u32 n_block, unsigned int tf_flags,
751 unsigned int tag)
752{
753 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
754 tf->flags |= tf_flags;
755
756 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
757 /* yay, NCQ */
758 if (!lba_48_ok(block, n_block))
759 return -ERANGE;
760
761 tf->protocol = ATA_PROT_NCQ;
762 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
763
764 if (tf->flags & ATA_TFLAG_WRITE)
765 tf->command = ATA_CMD_FPDMA_WRITE;
766 else
767 tf->command = ATA_CMD_FPDMA_READ;
768
769 tf->nsect = tag << 3;
770 tf->hob_feature = (n_block >> 8) & 0xff;
771 tf->feature = n_block & 0xff;
772
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 tf->lbah = (block >> 16) & 0xff;
777 tf->lbam = (block >> 8) & 0xff;
778 tf->lbal = block & 0xff;
779
780 tf->device = 1 << 6;
781 if (tf->flags & ATA_TFLAG_FUA)
782 tf->device |= 1 << 7;
783 } else if (dev->flags & ATA_DFLAG_LBA) {
784 tf->flags |= ATA_TFLAG_LBA;
785
786 if (lba_28_ok(block, n_block)) {
787 /* use LBA28 */
788 tf->device |= (block >> 24) & 0xf;
789 } else if (lba_48_ok(block, n_block)) {
790 if (!(dev->flags & ATA_DFLAG_LBA48))
791 return -ERANGE;
792
793 /* use LBA48 */
794 tf->flags |= ATA_TFLAG_LBA48;
795
796 tf->hob_nsect = (n_block >> 8) & 0xff;
797
798 tf->hob_lbah = (block >> 40) & 0xff;
799 tf->hob_lbam = (block >> 32) & 0xff;
800 tf->hob_lbal = (block >> 24) & 0xff;
801 } else
802 /* request too large even for LBA48 */
803 return -ERANGE;
804
805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
806 return -EINVAL;
807
808 tf->nsect = n_block & 0xff;
809
810 tf->lbah = (block >> 16) & 0xff;
811 tf->lbam = (block >> 8) & 0xff;
812 tf->lbal = block & 0xff;
813
814 tf->device |= ATA_LBA;
815 } else {
816 /* CHS */
817 u32 sect, head, cyl, track;
818
819 /* The request -may- be too large for CHS addressing. */
820 if (!lba_28_ok(block, n_block))
821 return -ERANGE;
822
823 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
824 return -EINVAL;
825
826 /* Convert LBA to CHS */
827 track = (u32)block / dev->sectors;
828 cyl = track / dev->heads;
829 head = track % dev->heads;
830 sect = (u32)block % dev->sectors + 1;
831
832 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
833 (u32)block, track, cyl, head, sect);
834
835 /* Check whether the converted CHS can fit.
836 Cylinder: 0-65535
837 Head: 0-15
838 Sector: 1-255*/
839 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
840 return -ERANGE;
841
842 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
843 tf->lbal = sect;
844 tf->lbam = cyl;
845 tf->lbah = cyl >> 8;
846 tf->device |= head;
847 }
848
849 return 0;
850}
851
852/**
853 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
854 * @pio_mask: pio_mask
855 * @mwdma_mask: mwdma_mask
856 * @udma_mask: udma_mask
857 *
858 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
859 * unsigned int xfer_mask.
860 *
861 * LOCKING:
862 * None.
863 *
864 * RETURNS:
865 * Packed xfer_mask.
866 */
867unsigned long ata_pack_xfermask(unsigned long pio_mask,
868 unsigned long mwdma_mask,
869 unsigned long udma_mask)
870{
871 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
872 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
873 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
874}
875
876/**
877 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
878 * @xfer_mask: xfer_mask to unpack
879 * @pio_mask: resulting pio_mask
880 * @mwdma_mask: resulting mwdma_mask
881 * @udma_mask: resulting udma_mask
882 *
883 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
884 * Any NULL distination masks will be ignored.
885 */
886void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
887 unsigned long *mwdma_mask, unsigned long *udma_mask)
888{
889 if (pio_mask)
890 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
891 if (mwdma_mask)
892 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
893 if (udma_mask)
894 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
895}
896
897static const struct ata_xfer_ent {
898 int shift, bits;
899 u8 base;
900} ata_xfer_tbl[] = {
901 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
902 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
903 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
904 { -1, },
905};
906
907/**
908 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
909 * @xfer_mask: xfer_mask of interest
910 *
911 * Return matching XFER_* value for @xfer_mask. Only the highest
912 * bit of @xfer_mask is considered.
913 *
914 * LOCKING:
915 * None.
916 *
917 * RETURNS:
918 * Matching XFER_* value, 0xff if no match found.
919 */
920u8 ata_xfer_mask2mode(unsigned long xfer_mask)
921{
922 int highbit = fls(xfer_mask) - 1;
923 const struct ata_xfer_ent *ent;
924
925 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
926 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
927 return ent->base + highbit - ent->shift;
928 return 0xff;
929}
930
931/**
932 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
933 * @xfer_mode: XFER_* of interest
934 *
935 * Return matching xfer_mask for @xfer_mode.
936 *
937 * LOCKING:
938 * None.
939 *
940 * RETURNS:
941 * Matching xfer_mask, 0 if no match found.
942 */
943unsigned long ata_xfer_mode2mask(u8 xfer_mode)
944{
945 const struct ata_xfer_ent *ent;
946
947 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
948 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
949 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
950 & ~((1 << ent->shift) - 1);
951 return 0;
952}
953
954/**
955 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
956 * @xfer_mode: XFER_* of interest
957 *
958 * Return matching xfer_shift for @xfer_mode.
959 *
960 * LOCKING:
961 * None.
962 *
963 * RETURNS:
964 * Matching xfer_shift, -1 if no match found.
965 */
966int ata_xfer_mode2shift(unsigned long xfer_mode)
967{
968 const struct ata_xfer_ent *ent;
969
970 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
971 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
972 return ent->shift;
973 return -1;
974}
975
976/**
977 * ata_mode_string - convert xfer_mask to string
978 * @xfer_mask: mask of bits supported; only highest bit counts.
979 *
980 * Determine string which represents the highest speed
981 * (highest bit in @modemask).
982 *
983 * LOCKING:
984 * None.
985 *
986 * RETURNS:
987 * Constant C string representing highest speed listed in
988 * @mode_mask, or the constant C string "<n/a>".
989 */
990const char *ata_mode_string(unsigned long xfer_mask)
991{
992 static const char * const xfer_mode_str[] = {
993 "PIO0",
994 "PIO1",
995 "PIO2",
996 "PIO3",
997 "PIO4",
998 "PIO5",
999 "PIO6",
1000 "MWDMA0",
1001 "MWDMA1",
1002 "MWDMA2",
1003 "MWDMA3",
1004 "MWDMA4",
1005 "UDMA/16",
1006 "UDMA/25",
1007 "UDMA/33",
1008 "UDMA/44",
1009 "UDMA/66",
1010 "UDMA/100",
1011 "UDMA/133",
1012 "UDMA7",
1013 };
1014 int highbit;
1015
1016 highbit = fls(xfer_mask) - 1;
1017 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1018 return xfer_mode_str[highbit];
1019 return "<n/a>";
1020}
1021
1022static const char *sata_spd_string(unsigned int spd)
1023{
1024 static const char * const spd_str[] = {
1025 "1.5 Gbps",
1026 "3.0 Gbps",
1027 "6.0 Gbps",
1028 };
1029
1030 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1031 return "<unknown>";
1032 return spd_str[spd - 1];
1033}
1034
1035static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1036{
1037 struct ata_link *link = dev->link;
1038 struct ata_port *ap = link->ap;
1039 u32 scontrol;
1040 unsigned int err_mask;
1041 int rc;
1042
1043 /*
1044 * disallow DIPM for drivers which haven't set
1045 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1046 * phy ready will be set in the interrupt status on
1047 * state changes, which will cause some drivers to
1048 * think there are errors - additionally drivers will
1049 * need to disable hot plug.
1050 */
1051 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1052 ap->pm_policy = NOT_AVAILABLE;
1053 return -EINVAL;
1054 }
1055
1056 /*
1057 * For DIPM, we will only enable it for the
1058 * min_power setting.
1059 *
1060 * Why? Because Disks are too stupid to know that
1061 * If the host rejects a request to go to SLUMBER
1062 * they should retry at PARTIAL, and instead it
1063 * just would give up. So, for medium_power to
1064 * work at all, we need to only allow HIPM.
1065 */
1066 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1067 if (rc)
1068 return rc;
1069
1070 switch (policy) {
1071 case MIN_POWER:
1072 /* no restrictions on IPM transitions */
1073 scontrol &= ~(0x3 << 8);
1074 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1075 if (rc)
1076 return rc;
1077
1078 /* enable DIPM */
1079 if (dev->flags & ATA_DFLAG_DIPM)
1080 err_mask = ata_dev_set_feature(dev,
1081 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1082 break;
1083 case MEDIUM_POWER:
1084 /* allow IPM to PARTIAL */
1085 scontrol &= ~(0x1 << 8);
1086 scontrol |= (0x2 << 8);
1087 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1088 if (rc)
1089 return rc;
1090
1091 /*
1092 * we don't have to disable DIPM since IPM flags
1093 * disallow transitions to SLUMBER, which effectively
1094 * disable DIPM if it does not support PARTIAL
1095 */
1096 break;
1097 case NOT_AVAILABLE:
1098 case MAX_PERFORMANCE:
1099 /* disable all IPM transitions */
1100 scontrol |= (0x3 << 8);
1101 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1102 if (rc)
1103 return rc;
1104
1105 /*
1106 * we don't have to disable DIPM since IPM flags
1107 * disallow all transitions which effectively
1108 * disable DIPM anyway.
1109 */
1110 break;
1111 }
1112
1113 /* FIXME: handle SET FEATURES failure */
1114 (void) err_mask;
1115
1116 return 0;
1117}
1118
1119/**
1120 * ata_dev_enable_pm - enable SATA interface power management
1121 * @dev: device to enable power management
1122 * @policy: the link power management policy
1123 *
1124 * Enable SATA Interface power management. This will enable
1125 * Device Interface Power Management (DIPM) for min_power
1126 * policy, and then call driver specific callbacks for
1127 * enabling Host Initiated Power management.
1128 *
1129 * Locking: Caller.
1130 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1131 */
1132void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1133{
1134 int rc = 0;
1135 struct ata_port *ap = dev->link->ap;
1136
1137 /* set HIPM first, then DIPM */
1138 if (ap->ops->enable_pm)
1139 rc = ap->ops->enable_pm(ap, policy);
1140 if (rc)
1141 goto enable_pm_out;
1142 rc = ata_dev_set_dipm(dev, policy);
1143
1144enable_pm_out:
1145 if (rc)
1146 ap->pm_policy = MAX_PERFORMANCE;
1147 else
1148 ap->pm_policy = policy;
1149 return /* rc */; /* hopefully we can use 'rc' eventually */
1150}
1151
1152#ifdef CONFIG_PM
1153/**
1154 * ata_dev_disable_pm - disable SATA interface power management
1155 * @dev: device to disable power management
1156 *
1157 * Disable SATA Interface power management. This will disable
1158 * Device Interface Power Management (DIPM) without changing
1159 * policy, call driver specific callbacks for disabling Host
1160 * Initiated Power management.
1161 *
1162 * Locking: Caller.
1163 * Returns: void
1164 */
1165static void ata_dev_disable_pm(struct ata_device *dev)
1166{
1167 struct ata_port *ap = dev->link->ap;
1168
1169 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1170 if (ap->ops->disable_pm)
1171 ap->ops->disable_pm(ap);
1172}
1173#endif /* CONFIG_PM */
1174
1175void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1176{
1177 ap->pm_policy = policy;
1178 ap->link.eh_info.action |= ATA_EH_LPM;
1179 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1180 ata_port_schedule_eh(ap);
1181}
1182
1183#ifdef CONFIG_PM
1184static void ata_lpm_enable(struct ata_host *host)
1185{
1186 struct ata_link *link;
1187 struct ata_port *ap;
1188 struct ata_device *dev;
1189 int i;
1190
1191 for (i = 0; i < host->n_ports; i++) {
1192 ap = host->ports[i];
1193 ata_for_each_link(link, ap, EDGE) {
1194 ata_for_each_dev(dev, link, ALL)
1195 ata_dev_disable_pm(dev);
1196 }
1197 }
1198}
1199
1200static void ata_lpm_disable(struct ata_host *host)
1201{
1202 int i;
1203
1204 for (i = 0; i < host->n_ports; i++) {
1205 struct ata_port *ap = host->ports[i];
1206 ata_lpm_schedule(ap, ap->pm_policy);
1207 }
1208}
1209#endif /* CONFIG_PM */
1210
1211/**
1212 * ata_dev_classify - determine device type based on ATA-spec signature
1213 * @tf: ATA taskfile register set for device to be identified
1214 *
1215 * Determine from taskfile register contents whether a device is
1216 * ATA or ATAPI, as per "Signature and persistence" section
1217 * of ATA/PI spec (volume 1, sect 5.14).
1218 *
1219 * LOCKING:
1220 * None.
1221 *
1222 * RETURNS:
1223 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1224 * %ATA_DEV_UNKNOWN the event of failure.
1225 */
1226unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1227{
1228 /* Apple's open source Darwin code hints that some devices only
1229 * put a proper signature into the LBA mid/high registers,
1230 * So, we only check those. It's sufficient for uniqueness.
1231 *
1232 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1233 * signatures for ATA and ATAPI devices attached on SerialATA,
1234 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1235 * spec has never mentioned about using different signatures
1236 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1237 * Multiplier specification began to use 0x69/0x96 to identify
1238 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1239 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1240 * 0x69/0x96 shortly and described them as reserved for
1241 * SerialATA.
1242 *
1243 * We follow the current spec and consider that 0x69/0x96
1244 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1245 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1246 * SEMB signature. This is worked around in
1247 * ata_dev_read_id().
1248 */
1249 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1250 DPRINTK("found ATA device by sig\n");
1251 return ATA_DEV_ATA;
1252 }
1253
1254 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1255 DPRINTK("found ATAPI device by sig\n");
1256 return ATA_DEV_ATAPI;
1257 }
1258
1259 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1260 DPRINTK("found PMP device by sig\n");
1261 return ATA_DEV_PMP;
1262 }
1263
1264 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1265 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1266 return ATA_DEV_SEMB;
1267 }
1268
1269 DPRINTK("unknown device\n");
1270 return ATA_DEV_UNKNOWN;
1271}
1272
1273/**
1274 * ata_id_string - Convert IDENTIFY DEVICE page into string
1275 * @id: IDENTIFY DEVICE results we will examine
1276 * @s: string into which data is output
1277 * @ofs: offset into identify device page
1278 * @len: length of string to return. must be an even number.
1279 *
1280 * The strings in the IDENTIFY DEVICE page are broken up into
1281 * 16-bit chunks. Run through the string, and output each
1282 * 8-bit chunk linearly, regardless of platform.
1283 *
1284 * LOCKING:
1285 * caller.
1286 */
1287
1288void ata_id_string(const u16 *id, unsigned char *s,
1289 unsigned int ofs, unsigned int len)
1290{
1291 unsigned int c;
1292
1293 BUG_ON(len & 1);
1294
1295 while (len > 0) {
1296 c = id[ofs] >> 8;
1297 *s = c;
1298 s++;
1299
1300 c = id[ofs] & 0xff;
1301 *s = c;
1302 s++;
1303
1304 ofs++;
1305 len -= 2;
1306 }
1307}
1308
1309/**
1310 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1311 * @id: IDENTIFY DEVICE results we will examine
1312 * @s: string into which data is output
1313 * @ofs: offset into identify device page
1314 * @len: length of string to return. must be an odd number.
1315 *
1316 * This function is identical to ata_id_string except that it
1317 * trims trailing spaces and terminates the resulting string with
1318 * null. @len must be actual maximum length (even number) + 1.
1319 *
1320 * LOCKING:
1321 * caller.
1322 */
1323void ata_id_c_string(const u16 *id, unsigned char *s,
1324 unsigned int ofs, unsigned int len)
1325{
1326 unsigned char *p;
1327
1328 ata_id_string(id, s, ofs, len - 1);
1329
1330 p = s + strnlen(s, len - 1);
1331 while (p > s && p[-1] == ' ')
1332 p--;
1333 *p = '\0';
1334}
1335
1336static u64 ata_id_n_sectors(const u16 *id)
1337{
1338 if (ata_id_has_lba(id)) {
1339 if (ata_id_has_lba48(id))
1340 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1341 else
1342 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1343 } else {
1344 if (ata_id_current_chs_valid(id))
1345 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1346 id[ATA_ID_CUR_SECTORS];
1347 else
1348 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1349 id[ATA_ID_SECTORS];
1350 }
1351}
1352
1353u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1354{
1355 u64 sectors = 0;
1356
1357 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1358 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1359 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1360 sectors |= (tf->lbah & 0xff) << 16;
1361 sectors |= (tf->lbam & 0xff) << 8;
1362 sectors |= (tf->lbal & 0xff);
1363
1364 return sectors;
1365}
1366
1367u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1368{
1369 u64 sectors = 0;
1370
1371 sectors |= (tf->device & 0x0f) << 24;
1372 sectors |= (tf->lbah & 0xff) << 16;
1373 sectors |= (tf->lbam & 0xff) << 8;
1374 sectors |= (tf->lbal & 0xff);
1375
1376 return sectors;
1377}
1378
1379/**
1380 * ata_read_native_max_address - Read native max address
1381 * @dev: target device
1382 * @max_sectors: out parameter for the result native max address
1383 *
1384 * Perform an LBA48 or LBA28 native size query upon the device in
1385 * question.
1386 *
1387 * RETURNS:
1388 * 0 on success, -EACCES if command is aborted by the drive.
1389 * -EIO on other errors.
1390 */
1391static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1392{
1393 unsigned int err_mask;
1394 struct ata_taskfile tf;
1395 int lba48 = ata_id_has_lba48(dev->id);
1396
1397 ata_tf_init(dev, &tf);
1398
1399 /* always clear all address registers */
1400 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1401
1402 if (lba48) {
1403 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1404 tf.flags |= ATA_TFLAG_LBA48;
1405 } else
1406 tf.command = ATA_CMD_READ_NATIVE_MAX;
1407
1408 tf.protocol |= ATA_PROT_NODATA;
1409 tf.device |= ATA_LBA;
1410
1411 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1412 if (err_mask) {
1413 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1414 "max address (err_mask=0x%x)\n", err_mask);
1415 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1416 return -EACCES;
1417 return -EIO;
1418 }
1419
1420 if (lba48)
1421 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1422 else
1423 *max_sectors = ata_tf_to_lba(&tf) + 1;
1424 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1425 (*max_sectors)--;
1426 return 0;
1427}
1428
1429/**
1430 * ata_set_max_sectors - Set max sectors
1431 * @dev: target device
1432 * @new_sectors: new max sectors value to set for the device
1433 *
1434 * Set max sectors of @dev to @new_sectors.
1435 *
1436 * RETURNS:
1437 * 0 on success, -EACCES if command is aborted or denied (due to
1438 * previous non-volatile SET_MAX) by the drive. -EIO on other
1439 * errors.
1440 */
1441static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1442{
1443 unsigned int err_mask;
1444 struct ata_taskfile tf;
1445 int lba48 = ata_id_has_lba48(dev->id);
1446
1447 new_sectors--;
1448
1449 ata_tf_init(dev, &tf);
1450
1451 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1452
1453 if (lba48) {
1454 tf.command = ATA_CMD_SET_MAX_EXT;
1455 tf.flags |= ATA_TFLAG_LBA48;
1456
1457 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1458 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1459 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1460 } else {
1461 tf.command = ATA_CMD_SET_MAX;
1462
1463 tf.device |= (new_sectors >> 24) & 0xf;
1464 }
1465
1466 tf.protocol |= ATA_PROT_NODATA;
1467 tf.device |= ATA_LBA;
1468
1469 tf.lbal = (new_sectors >> 0) & 0xff;
1470 tf.lbam = (new_sectors >> 8) & 0xff;
1471 tf.lbah = (new_sectors >> 16) & 0xff;
1472
1473 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1474 if (err_mask) {
1475 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1476 "max address (err_mask=0x%x)\n", err_mask);
1477 if (err_mask == AC_ERR_DEV &&
1478 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1479 return -EACCES;
1480 return -EIO;
1481 }
1482
1483 return 0;
1484}
1485
1486/**
1487 * ata_hpa_resize - Resize a device with an HPA set
1488 * @dev: Device to resize
1489 *
1490 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1491 * it if required to the full size of the media. The caller must check
1492 * the drive has the HPA feature set enabled.
1493 *
1494 * RETURNS:
1495 * 0 on success, -errno on failure.
1496 */
1497static int ata_hpa_resize(struct ata_device *dev)
1498{
1499 struct ata_eh_context *ehc = &dev->link->eh_context;
1500 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1501 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1502 u64 sectors = ata_id_n_sectors(dev->id);
1503 u64 native_sectors;
1504 int rc;
1505
1506 /* do we need to do it? */
1507 if (dev->class != ATA_DEV_ATA ||
1508 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1509 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1510 return 0;
1511
1512 /* read native max address */
1513 rc = ata_read_native_max_address(dev, &native_sectors);
1514 if (rc) {
1515 /* If device aborted the command or HPA isn't going to
1516 * be unlocked, skip HPA resizing.
1517 */
1518 if (rc == -EACCES || !unlock_hpa) {
1519 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1520 "broken, skipping HPA handling\n");
1521 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1522
1523 /* we can continue if device aborted the command */
1524 if (rc == -EACCES)
1525 rc = 0;
1526 }
1527
1528 return rc;
1529 }
1530 dev->n_native_sectors = native_sectors;
1531
1532 /* nothing to do? */
1533 if (native_sectors <= sectors || !unlock_hpa) {
1534 if (!print_info || native_sectors == sectors)
1535 return 0;
1536
1537 if (native_sectors > sectors)
1538 ata_dev_printk(dev, KERN_INFO,
1539 "HPA detected: current %llu, native %llu\n",
1540 (unsigned long long)sectors,
1541 (unsigned long long)native_sectors);
1542 else if (native_sectors < sectors)
1543 ata_dev_printk(dev, KERN_WARNING,
1544 "native sectors (%llu) is smaller than "
1545 "sectors (%llu)\n",
1546 (unsigned long long)native_sectors,
1547 (unsigned long long)sectors);
1548 return 0;
1549 }
1550
1551 /* let's unlock HPA */
1552 rc = ata_set_max_sectors(dev, native_sectors);
1553 if (rc == -EACCES) {
1554 /* if device aborted the command, skip HPA resizing */
1555 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1556 "(%llu -> %llu), skipping HPA handling\n",
1557 (unsigned long long)sectors,
1558 (unsigned long long)native_sectors);
1559 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1560 return 0;
1561 } else if (rc)
1562 return rc;
1563
1564 /* re-read IDENTIFY data */
1565 rc = ata_dev_reread_id(dev, 0);
1566 if (rc) {
1567 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1568 "data after HPA resizing\n");
1569 return rc;
1570 }
1571
1572 if (print_info) {
1573 u64 new_sectors = ata_id_n_sectors(dev->id);
1574 ata_dev_printk(dev, KERN_INFO,
1575 "HPA unlocked: %llu -> %llu, native %llu\n",
1576 (unsigned long long)sectors,
1577 (unsigned long long)new_sectors,
1578 (unsigned long long)native_sectors);
1579 }
1580
1581 return 0;
1582}
1583
1584/**
1585 * ata_dump_id - IDENTIFY DEVICE info debugging output
1586 * @id: IDENTIFY DEVICE page to dump
1587 *
1588 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1589 * page.
1590 *
1591 * LOCKING:
1592 * caller.
1593 */
1594
1595static inline void ata_dump_id(const u16 *id)
1596{
1597 DPRINTK("49==0x%04x "
1598 "53==0x%04x "
1599 "63==0x%04x "
1600 "64==0x%04x "
1601 "75==0x%04x \n",
1602 id[49],
1603 id[53],
1604 id[63],
1605 id[64],
1606 id[75]);
1607 DPRINTK("80==0x%04x "
1608 "81==0x%04x "
1609 "82==0x%04x "
1610 "83==0x%04x "
1611 "84==0x%04x \n",
1612 id[80],
1613 id[81],
1614 id[82],
1615 id[83],
1616 id[84]);
1617 DPRINTK("88==0x%04x "
1618 "93==0x%04x\n",
1619 id[88],
1620 id[93]);
1621}
1622
1623/**
1624 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1625 * @id: IDENTIFY data to compute xfer mask from
1626 *
1627 * Compute the xfermask for this device. This is not as trivial
1628 * as it seems if we must consider early devices correctly.
1629 *
1630 * FIXME: pre IDE drive timing (do we care ?).
1631 *
1632 * LOCKING:
1633 * None.
1634 *
1635 * RETURNS:
1636 * Computed xfermask
1637 */
1638unsigned long ata_id_xfermask(const u16 *id)
1639{
1640 unsigned long pio_mask, mwdma_mask, udma_mask;
1641
1642 /* Usual case. Word 53 indicates word 64 is valid */
1643 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1644 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1645 pio_mask <<= 3;
1646 pio_mask |= 0x7;
1647 } else {
1648 /* If word 64 isn't valid then Word 51 high byte holds
1649 * the PIO timing number for the maximum. Turn it into
1650 * a mask.
1651 */
1652 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1653 if (mode < 5) /* Valid PIO range */
1654 pio_mask = (2 << mode) - 1;
1655 else
1656 pio_mask = 1;
1657
1658 /* But wait.. there's more. Design your standards by
1659 * committee and you too can get a free iordy field to
1660 * process. However its the speeds not the modes that
1661 * are supported... Note drivers using the timing API
1662 * will get this right anyway
1663 */
1664 }
1665
1666 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1667
1668 if (ata_id_is_cfa(id)) {
1669 /*
1670 * Process compact flash extended modes
1671 */
1672 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1673 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1674
1675 if (pio)
1676 pio_mask |= (1 << 5);
1677 if (pio > 1)
1678 pio_mask |= (1 << 6);
1679 if (dma)
1680 mwdma_mask |= (1 << 3);
1681 if (dma > 1)
1682 mwdma_mask |= (1 << 4);
1683 }
1684
1685 udma_mask = 0;
1686 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1687 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1688
1689 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1690}
1691
1692static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1693{
1694 struct completion *waiting = qc->private_data;
1695
1696 complete(waiting);
1697}
1698
1699/**
1700 * ata_exec_internal_sg - execute libata internal command
1701 * @dev: Device to which the command is sent
1702 * @tf: Taskfile registers for the command and the result
1703 * @cdb: CDB for packet command
1704 * @dma_dir: Data tranfer direction of the command
1705 * @sgl: sg list for the data buffer of the command
1706 * @n_elem: Number of sg entries
1707 * @timeout: Timeout in msecs (0 for default)
1708 *
1709 * Executes libata internal command with timeout. @tf contains
1710 * command on entry and result on return. Timeout and error
1711 * conditions are reported via return value. No recovery action
1712 * is taken after a command times out. It's caller's duty to
1713 * clean up after timeout.
1714 *
1715 * LOCKING:
1716 * None. Should be called with kernel context, might sleep.
1717 *
1718 * RETURNS:
1719 * Zero on success, AC_ERR_* mask on failure
1720 */
1721unsigned ata_exec_internal_sg(struct ata_device *dev,
1722 struct ata_taskfile *tf, const u8 *cdb,
1723 int dma_dir, struct scatterlist *sgl,
1724 unsigned int n_elem, unsigned long timeout)
1725{
1726 struct ata_link *link = dev->link;
1727 struct ata_port *ap = link->ap;
1728 u8 command = tf->command;
1729 int auto_timeout = 0;
1730 struct ata_queued_cmd *qc;
1731 unsigned int tag, preempted_tag;
1732 u32 preempted_sactive, preempted_qc_active;
1733 int preempted_nr_active_links;
1734 DECLARE_COMPLETION_ONSTACK(wait);
1735 unsigned long flags;
1736 unsigned int err_mask;
1737 int rc;
1738
1739 spin_lock_irqsave(ap->lock, flags);
1740
1741 /* no internal command while frozen */
1742 if (ap->pflags & ATA_PFLAG_FROZEN) {
1743 spin_unlock_irqrestore(ap->lock, flags);
1744 return AC_ERR_SYSTEM;
1745 }
1746
1747 /* initialize internal qc */
1748
1749 /* XXX: Tag 0 is used for drivers with legacy EH as some
1750 * drivers choke if any other tag is given. This breaks
1751 * ata_tag_internal() test for those drivers. Don't use new
1752 * EH stuff without converting to it.
1753 */
1754 if (ap->ops->error_handler)
1755 tag = ATA_TAG_INTERNAL;
1756 else
1757 tag = 0;
1758
1759 if (test_and_set_bit(tag, &ap->qc_allocated))
1760 BUG();
1761 qc = __ata_qc_from_tag(ap, tag);
1762
1763 qc->tag = tag;
1764 qc->scsicmd = NULL;
1765 qc->ap = ap;
1766 qc->dev = dev;
1767 ata_qc_reinit(qc);
1768
1769 preempted_tag = link->active_tag;
1770 preempted_sactive = link->sactive;
1771 preempted_qc_active = ap->qc_active;
1772 preempted_nr_active_links = ap->nr_active_links;
1773 link->active_tag = ATA_TAG_POISON;
1774 link->sactive = 0;
1775 ap->qc_active = 0;
1776 ap->nr_active_links = 0;
1777
1778 /* prepare & issue qc */
1779 qc->tf = *tf;
1780 if (cdb)
1781 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1782 qc->flags |= ATA_QCFLAG_RESULT_TF;
1783 qc->dma_dir = dma_dir;
1784 if (dma_dir != DMA_NONE) {
1785 unsigned int i, buflen = 0;
1786 struct scatterlist *sg;
1787
1788 for_each_sg(sgl, sg, n_elem, i)
1789 buflen += sg->length;
1790
1791 ata_sg_init(qc, sgl, n_elem);
1792 qc->nbytes = buflen;
1793 }
1794
1795 qc->private_data = &wait;
1796 qc->complete_fn = ata_qc_complete_internal;
1797
1798 ata_qc_issue(qc);
1799
1800 spin_unlock_irqrestore(ap->lock, flags);
1801
1802 if (!timeout) {
1803 if (ata_probe_timeout)
1804 timeout = ata_probe_timeout * 1000;
1805 else {
1806 timeout = ata_internal_cmd_timeout(dev, command);
1807 auto_timeout = 1;
1808 }
1809 }
1810
1811 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1812
1813 ata_sff_flush_pio_task(ap);
1814
1815 if (!rc) {
1816 spin_lock_irqsave(ap->lock, flags);
1817
1818 /* We're racing with irq here. If we lose, the
1819 * following test prevents us from completing the qc
1820 * twice. If we win, the port is frozen and will be
1821 * cleaned up by ->post_internal_cmd().
1822 */
1823 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1824 qc->err_mask |= AC_ERR_TIMEOUT;
1825
1826 if (ap->ops->error_handler)
1827 ata_port_freeze(ap);
1828 else
1829 ata_qc_complete(qc);
1830
1831 if (ata_msg_warn(ap))
1832 ata_dev_printk(dev, KERN_WARNING,
1833 "qc timeout (cmd 0x%x)\n", command);
1834 }
1835
1836 spin_unlock_irqrestore(ap->lock, flags);
1837 }
1838
1839 /* do post_internal_cmd */
1840 if (ap->ops->post_internal_cmd)
1841 ap->ops->post_internal_cmd(qc);
1842
1843 /* perform minimal error analysis */
1844 if (qc->flags & ATA_QCFLAG_FAILED) {
1845 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1846 qc->err_mask |= AC_ERR_DEV;
1847
1848 if (!qc->err_mask)
1849 qc->err_mask |= AC_ERR_OTHER;
1850
1851 if (qc->err_mask & ~AC_ERR_OTHER)
1852 qc->err_mask &= ~AC_ERR_OTHER;
1853 }
1854
1855 /* finish up */
1856 spin_lock_irqsave(ap->lock, flags);
1857
1858 *tf = qc->result_tf;
1859 err_mask = qc->err_mask;
1860
1861 ata_qc_free(qc);
1862 link->active_tag = preempted_tag;
1863 link->sactive = preempted_sactive;
1864 ap->qc_active = preempted_qc_active;
1865 ap->nr_active_links = preempted_nr_active_links;
1866
1867 spin_unlock_irqrestore(ap->lock, flags);
1868
1869 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1870 ata_internal_cmd_timed_out(dev, command);
1871
1872 return err_mask;
1873}
1874
1875/**
1876 * ata_exec_internal - execute libata internal command
1877 * @dev: Device to which the command is sent
1878 * @tf: Taskfile registers for the command and the result
1879 * @cdb: CDB for packet command
1880 * @dma_dir: Data tranfer direction of the command
1881 * @buf: Data buffer of the command
1882 * @buflen: Length of data buffer
1883 * @timeout: Timeout in msecs (0 for default)
1884 *
1885 * Wrapper around ata_exec_internal_sg() which takes simple
1886 * buffer instead of sg list.
1887 *
1888 * LOCKING:
1889 * None. Should be called with kernel context, might sleep.
1890 *
1891 * RETURNS:
1892 * Zero on success, AC_ERR_* mask on failure
1893 */
1894unsigned ata_exec_internal(struct ata_device *dev,
1895 struct ata_taskfile *tf, const u8 *cdb,
1896 int dma_dir, void *buf, unsigned int buflen,
1897 unsigned long timeout)
1898{
1899 struct scatterlist *psg = NULL, sg;
1900 unsigned int n_elem = 0;
1901
1902 if (dma_dir != DMA_NONE) {
1903 WARN_ON(!buf);
1904 sg_init_one(&sg, buf, buflen);
1905 psg = &sg;
1906 n_elem++;
1907 }
1908
1909 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1910 timeout);
1911}
1912
1913/**
1914 * ata_do_simple_cmd - execute simple internal command
1915 * @dev: Device to which the command is sent
1916 * @cmd: Opcode to execute
1917 *
1918 * Execute a 'simple' command, that only consists of the opcode
1919 * 'cmd' itself, without filling any other registers
1920 *
1921 * LOCKING:
1922 * Kernel thread context (may sleep).
1923 *
1924 * RETURNS:
1925 * Zero on success, AC_ERR_* mask on failure
1926 */
1927unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1928{
1929 struct ata_taskfile tf;
1930
1931 ata_tf_init(dev, &tf);
1932
1933 tf.command = cmd;
1934 tf.flags |= ATA_TFLAG_DEVICE;
1935 tf.protocol = ATA_PROT_NODATA;
1936
1937 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1938}
1939
1940/**
1941 * ata_pio_need_iordy - check if iordy needed
1942 * @adev: ATA device
1943 *
1944 * Check if the current speed of the device requires IORDY. Used
1945 * by various controllers for chip configuration.
1946 */
1947unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1948{
1949 /* Don't set IORDY if we're preparing for reset. IORDY may
1950 * lead to controller lock up on certain controllers if the
1951 * port is not occupied. See bko#11703 for details.
1952 */
1953 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1954 return 0;
1955 /* Controller doesn't support IORDY. Probably a pointless
1956 * check as the caller should know this.
1957 */
1958 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1959 return 0;
1960 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1961 if (ata_id_is_cfa(adev->id)
1962 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1963 return 0;
1964 /* PIO3 and higher it is mandatory */
1965 if (adev->pio_mode > XFER_PIO_2)
1966 return 1;
1967 /* We turn it on when possible */
1968 if (ata_id_has_iordy(adev->id))
1969 return 1;
1970 return 0;
1971}
1972
1973/**
1974 * ata_pio_mask_no_iordy - Return the non IORDY mask
1975 * @adev: ATA device
1976 *
1977 * Compute the highest mode possible if we are not using iordy. Return
1978 * -1 if no iordy mode is available.
1979 */
1980static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1981{
1982 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1983 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1984 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1985 /* Is the speed faster than the drive allows non IORDY ? */
1986 if (pio) {
1987 /* This is cycle times not frequency - watch the logic! */
1988 if (pio > 240) /* PIO2 is 240nS per cycle */
1989 return 3 << ATA_SHIFT_PIO;
1990 return 7 << ATA_SHIFT_PIO;
1991 }
1992 }
1993 return 3 << ATA_SHIFT_PIO;
1994}
1995
1996/**
1997 * ata_do_dev_read_id - default ID read method
1998 * @dev: device
1999 * @tf: proposed taskfile
2000 * @id: data buffer
2001 *
2002 * Issue the identify taskfile and hand back the buffer containing
2003 * identify data. For some RAID controllers and for pre ATA devices
2004 * this function is wrapped or replaced by the driver
2005 */
2006unsigned int ata_do_dev_read_id(struct ata_device *dev,
2007 struct ata_taskfile *tf, u16 *id)
2008{
2009 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2010 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2011}
2012
2013/**
2014 * ata_dev_read_id - Read ID data from the specified device
2015 * @dev: target device
2016 * @p_class: pointer to class of the target device (may be changed)
2017 * @flags: ATA_READID_* flags
2018 * @id: buffer to read IDENTIFY data into
2019 *
2020 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2021 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2022 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2023 * for pre-ATA4 drives.
2024 *
2025 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2026 * now we abort if we hit that case.
2027 *
2028 * LOCKING:
2029 * Kernel thread context (may sleep)
2030 *
2031 * RETURNS:
2032 * 0 on success, -errno otherwise.
2033 */
2034int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2035 unsigned int flags, u16 *id)
2036{
2037 struct ata_port *ap = dev->link->ap;
2038 unsigned int class = *p_class;
2039 struct ata_taskfile tf;
2040 unsigned int err_mask = 0;
2041 const char *reason;
2042 bool is_semb = class == ATA_DEV_SEMB;
2043 int may_fallback = 1, tried_spinup = 0;
2044 int rc;
2045
2046 if (ata_msg_ctl(ap))
2047 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2048
2049retry:
2050 ata_tf_init(dev, &tf);
2051
2052 switch (class) {
2053 case ATA_DEV_SEMB:
2054 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2055 case ATA_DEV_ATA:
2056 tf.command = ATA_CMD_ID_ATA;
2057 break;
2058 case ATA_DEV_ATAPI:
2059 tf.command = ATA_CMD_ID_ATAPI;
2060 break;
2061 default:
2062 rc = -ENODEV;
2063 reason = "unsupported class";
2064 goto err_out;
2065 }
2066
2067 tf.protocol = ATA_PROT_PIO;
2068
2069 /* Some devices choke if TF registers contain garbage. Make
2070 * sure those are properly initialized.
2071 */
2072 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2073
2074 /* Device presence detection is unreliable on some
2075 * controllers. Always poll IDENTIFY if available.
2076 */
2077 tf.flags |= ATA_TFLAG_POLLING;
2078
2079 if (ap->ops->read_id)
2080 err_mask = ap->ops->read_id(dev, &tf, id);
2081 else
2082 err_mask = ata_do_dev_read_id(dev, &tf, id);
2083
2084 if (err_mask) {
2085 if (err_mask & AC_ERR_NODEV_HINT) {
2086 ata_dev_printk(dev, KERN_DEBUG,
2087 "NODEV after polling detection\n");
2088 return -ENOENT;
2089 }
2090
2091 if (is_semb) {
2092 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2093 "device w/ SEMB sig, disabled\n");
2094 /* SEMB is not supported yet */
2095 *p_class = ATA_DEV_SEMB_UNSUP;
2096 return 0;
2097 }
2098
2099 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2100 /* Device or controller might have reported
2101 * the wrong device class. Give a shot at the
2102 * other IDENTIFY if the current one is
2103 * aborted by the device.
2104 */
2105 if (may_fallback) {
2106 may_fallback = 0;
2107
2108 if (class == ATA_DEV_ATA)
2109 class = ATA_DEV_ATAPI;
2110 else
2111 class = ATA_DEV_ATA;
2112 goto retry;
2113 }
2114
2115 /* Control reaches here iff the device aborted
2116 * both flavors of IDENTIFYs which happens
2117 * sometimes with phantom devices.
2118 */
2119 ata_dev_printk(dev, KERN_DEBUG,
2120 "both IDENTIFYs aborted, assuming NODEV\n");
2121 return -ENOENT;
2122 }
2123
2124 rc = -EIO;
2125 reason = "I/O error";
2126 goto err_out;
2127 }
2128
2129 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
2130 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
2131 "class=%d may_fallback=%d tried_spinup=%d\n",
2132 class, may_fallback, tried_spinup);
2133 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
2134 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
2135 }
2136
2137 /* Falling back doesn't make sense if ID data was read
2138 * successfully at least once.
2139 */
2140 may_fallback = 0;
2141
2142 swap_buf_le16(id, ATA_ID_WORDS);
2143
2144 /* sanity check */
2145 rc = -EINVAL;
2146 reason = "device reports invalid type";
2147
2148 if (class == ATA_DEV_ATA) {
2149 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2150 goto err_out;
2151 } else {
2152 if (ata_id_is_ata(id))
2153 goto err_out;
2154 }
2155
2156 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2157 tried_spinup = 1;
2158 /*
2159 * Drive powered-up in standby mode, and requires a specific
2160 * SET_FEATURES spin-up subcommand before it will accept
2161 * anything other than the original IDENTIFY command.
2162 */
2163 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2164 if (err_mask && id[2] != 0x738c) {
2165 rc = -EIO;
2166 reason = "SPINUP failed";
2167 goto err_out;
2168 }
2169 /*
2170 * If the drive initially returned incomplete IDENTIFY info,
2171 * we now must reissue the IDENTIFY command.
2172 */
2173 if (id[2] == 0x37c8)
2174 goto retry;
2175 }
2176
2177 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2178 /*
2179 * The exact sequence expected by certain pre-ATA4 drives is:
2180 * SRST RESET
2181 * IDENTIFY (optional in early ATA)
2182 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2183 * anything else..
2184 * Some drives were very specific about that exact sequence.
2185 *
2186 * Note that ATA4 says lba is mandatory so the second check
2187 * should never trigger.
2188 */
2189 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2190 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2191 if (err_mask) {
2192 rc = -EIO;
2193 reason = "INIT_DEV_PARAMS failed";
2194 goto err_out;
2195 }
2196
2197 /* current CHS translation info (id[53-58]) might be
2198 * changed. reread the identify device info.
2199 */
2200 flags &= ~ATA_READID_POSTRESET;
2201 goto retry;
2202 }
2203 }
2204
2205 *p_class = class;
2206
2207 return 0;
2208
2209 err_out:
2210 if (ata_msg_warn(ap))
2211 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2212 "(%s, err_mask=0x%x)\n", reason, err_mask);
2213 return rc;
2214}
2215
2216static int ata_do_link_spd_horkage(struct ata_device *dev)
2217{
2218 struct ata_link *plink = ata_dev_phys_link(dev);
2219 u32 target, target_limit;
2220
2221 if (!sata_scr_valid(plink))
2222 return 0;
2223
2224 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2225 target = 1;
2226 else
2227 return 0;
2228
2229 target_limit = (1 << target) - 1;
2230
2231 /* if already on stricter limit, no need to push further */
2232 if (plink->sata_spd_limit <= target_limit)
2233 return 0;
2234
2235 plink->sata_spd_limit = target_limit;
2236
2237 /* Request another EH round by returning -EAGAIN if link is
2238 * going faster than the target speed. Forward progress is
2239 * guaranteed by setting sata_spd_limit to target_limit above.
2240 */
2241 if (plink->sata_spd > target) {
2242 ata_dev_printk(dev, KERN_INFO,
2243 "applying link speed limit horkage to %s\n",
2244 sata_spd_string(target));
2245 return -EAGAIN;
2246 }
2247 return 0;
2248}
2249
2250static inline u8 ata_dev_knobble(struct ata_device *dev)
2251{
2252 struct ata_port *ap = dev->link->ap;
2253
2254 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2255 return 0;
2256
2257 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2258}
2259
2260static int ata_dev_config_ncq(struct ata_device *dev,
2261 char *desc, size_t desc_sz)
2262{
2263 struct ata_port *ap = dev->link->ap;
2264 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2265 unsigned int err_mask;
2266 char *aa_desc = "";
2267
2268 if (!ata_id_has_ncq(dev->id)) {
2269 desc[0] = '\0';
2270 return 0;
2271 }
2272 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2273 snprintf(desc, desc_sz, "NCQ (not used)");
2274 return 0;
2275 }
2276 if (ap->flags & ATA_FLAG_NCQ) {
2277 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2278 dev->flags |= ATA_DFLAG_NCQ;
2279 }
2280
2281 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2282 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2283 ata_id_has_fpdma_aa(dev->id)) {
2284 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2285 SATA_FPDMA_AA);
2286 if (err_mask) {
2287 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2288 "(error_mask=0x%x)\n", err_mask);
2289 if (err_mask != AC_ERR_DEV) {
2290 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2291 return -EIO;
2292 }
2293 } else
2294 aa_desc = ", AA";
2295 }
2296
2297 if (hdepth >= ddepth)
2298 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2299 else
2300 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2301 ddepth, aa_desc);
2302 return 0;
2303}
2304
2305/**
2306 * ata_dev_configure - Configure the specified ATA/ATAPI device
2307 * @dev: Target device to configure
2308 *
2309 * Configure @dev according to @dev->id. Generic and low-level
2310 * driver specific fixups are also applied.
2311 *
2312 * LOCKING:
2313 * Kernel thread context (may sleep)
2314 *
2315 * RETURNS:
2316 * 0 on success, -errno otherwise
2317 */
2318int ata_dev_configure(struct ata_device *dev)
2319{
2320 struct ata_port *ap = dev->link->ap;
2321 struct ata_eh_context *ehc = &dev->link->eh_context;
2322 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2323 const u16 *id = dev->id;
2324 unsigned long xfer_mask;
2325 char revbuf[7]; /* XYZ-99\0 */
2326 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2327 char modelbuf[ATA_ID_PROD_LEN+1];
2328 int rc;
2329
2330 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2331 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2332 __func__);
2333 return 0;
2334 }
2335
2336 if (ata_msg_probe(ap))
2337 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2338
2339 /* set horkage */
2340 dev->horkage |= ata_dev_blacklisted(dev);
2341 ata_force_horkage(dev);
2342
2343 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2344 ata_dev_printk(dev, KERN_INFO,
2345 "unsupported device, disabling\n");
2346 ata_dev_disable(dev);
2347 return 0;
2348 }
2349
2350 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2351 dev->class == ATA_DEV_ATAPI) {
2352 ata_dev_printk(dev, KERN_WARNING,
2353 "WARNING: ATAPI is %s, device ignored.\n",
2354 atapi_enabled ? "not supported with this driver"
2355 : "disabled");
2356 ata_dev_disable(dev);
2357 return 0;
2358 }
2359
2360 rc = ata_do_link_spd_horkage(dev);
2361 if (rc)
2362 return rc;
2363
2364 /* let ACPI work its magic */
2365 rc = ata_acpi_on_devcfg(dev);
2366 if (rc)
2367 return rc;
2368
2369 /* massage HPA, do it early as it might change IDENTIFY data */
2370 rc = ata_hpa_resize(dev);
2371 if (rc)
2372 return rc;
2373
2374 /* print device capabilities */
2375 if (ata_msg_probe(ap))
2376 ata_dev_printk(dev, KERN_DEBUG,
2377 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2378 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2379 __func__,
2380 id[49], id[82], id[83], id[84],
2381 id[85], id[86], id[87], id[88]);
2382
2383 /* initialize to-be-configured parameters */
2384 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2385 dev->max_sectors = 0;
2386 dev->cdb_len = 0;
2387 dev->n_sectors = 0;
2388 dev->cylinders = 0;
2389 dev->heads = 0;
2390 dev->sectors = 0;
2391 dev->multi_count = 0;
2392
2393 /*
2394 * common ATA, ATAPI feature tests
2395 */
2396
2397 /* find max transfer mode; for printk only */
2398 xfer_mask = ata_id_xfermask(id);
2399
2400 if (ata_msg_probe(ap))
2401 ata_dump_id(id);
2402
2403 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2404 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2405 sizeof(fwrevbuf));
2406
2407 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2408 sizeof(modelbuf));
2409
2410 /* ATA-specific feature tests */
2411 if (dev->class == ATA_DEV_ATA) {
2412 if (ata_id_is_cfa(id)) {
2413 /* CPRM may make this media unusable */
2414 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2415 ata_dev_printk(dev, KERN_WARNING,
2416 "supports DRM functions and may "
2417 "not be fully accessable.\n");
2418 snprintf(revbuf, 7, "CFA");
2419 } else {
2420 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2421 /* Warn the user if the device has TPM extensions */
2422 if (ata_id_has_tpm(id))
2423 ata_dev_printk(dev, KERN_WARNING,
2424 "supports DRM functions and may "
2425 "not be fully accessable.\n");
2426 }
2427
2428 dev->n_sectors = ata_id_n_sectors(id);
2429
2430 /* get current R/W Multiple count setting */
2431 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2432 unsigned int max = dev->id[47] & 0xff;
2433 unsigned int cnt = dev->id[59] & 0xff;
2434 /* only recognize/allow powers of two here */
2435 if (is_power_of_2(max) && is_power_of_2(cnt))
2436 if (cnt <= max)
2437 dev->multi_count = cnt;
2438 }
2439
2440 if (ata_id_has_lba(id)) {
2441 const char *lba_desc;
2442 char ncq_desc[24];
2443
2444 lba_desc = "LBA";
2445 dev->flags |= ATA_DFLAG_LBA;
2446 if (ata_id_has_lba48(id)) {
2447 dev->flags |= ATA_DFLAG_LBA48;
2448 lba_desc = "LBA48";
2449
2450 if (dev->n_sectors >= (1UL << 28) &&
2451 ata_id_has_flush_ext(id))
2452 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2453 }
2454
2455 /* config NCQ */
2456 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2457 if (rc)
2458 return rc;
2459
2460 /* print device info to dmesg */
2461 if (ata_msg_drv(ap) && print_info) {
2462 ata_dev_printk(dev, KERN_INFO,
2463 "%s: %s, %s, max %s\n",
2464 revbuf, modelbuf, fwrevbuf,
2465 ata_mode_string(xfer_mask));
2466 ata_dev_printk(dev, KERN_INFO,
2467 "%Lu sectors, multi %u: %s %s\n",
2468 (unsigned long long)dev->n_sectors,
2469 dev->multi_count, lba_desc, ncq_desc);
2470 }
2471 } else {
2472 /* CHS */
2473
2474 /* Default translation */
2475 dev->cylinders = id[1];
2476 dev->heads = id[3];
2477 dev->sectors = id[6];
2478
2479 if (ata_id_current_chs_valid(id)) {
2480 /* Current CHS translation is valid. */
2481 dev->cylinders = id[54];
2482 dev->heads = id[55];
2483 dev->sectors = id[56];
2484 }
2485
2486 /* print device info to dmesg */
2487 if (ata_msg_drv(ap) && print_info) {
2488 ata_dev_printk(dev, KERN_INFO,
2489 "%s: %s, %s, max %s\n",
2490 revbuf, modelbuf, fwrevbuf,
2491 ata_mode_string(xfer_mask));
2492 ata_dev_printk(dev, KERN_INFO,
2493 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2494 (unsigned long long)dev->n_sectors,
2495 dev->multi_count, dev->cylinders,
2496 dev->heads, dev->sectors);
2497 }
2498 }
2499
2500 dev->cdb_len = 16;
2501 }
2502
2503 /* ATAPI-specific feature tests */
2504 else if (dev->class == ATA_DEV_ATAPI) {
2505 const char *cdb_intr_string = "";
2506 const char *atapi_an_string = "";
2507 const char *dma_dir_string = "";
2508 u32 sntf;
2509
2510 rc = atapi_cdb_len(id);
2511 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2512 if (ata_msg_warn(ap))
2513 ata_dev_printk(dev, KERN_WARNING,
2514 "unsupported CDB len\n");
2515 rc = -EINVAL;
2516 goto err_out_nosup;
2517 }
2518 dev->cdb_len = (unsigned int) rc;
2519
2520 /* Enable ATAPI AN if both the host and device have
2521 * the support. If PMP is attached, SNTF is required
2522 * to enable ATAPI AN to discern between PHY status
2523 * changed notifications and ATAPI ANs.
2524 */
2525 if (atapi_an &&
2526 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2527 (!sata_pmp_attached(ap) ||
2528 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2529 unsigned int err_mask;
2530
2531 /* issue SET feature command to turn this on */
2532 err_mask = ata_dev_set_feature(dev,
2533 SETFEATURES_SATA_ENABLE, SATA_AN);
2534 if (err_mask)
2535 ata_dev_printk(dev, KERN_ERR,
2536 "failed to enable ATAPI AN "
2537 "(err_mask=0x%x)\n", err_mask);
2538 else {
2539 dev->flags |= ATA_DFLAG_AN;
2540 atapi_an_string = ", ATAPI AN";
2541 }
2542 }
2543
2544 if (ata_id_cdb_intr(dev->id)) {
2545 dev->flags |= ATA_DFLAG_CDB_INTR;
2546 cdb_intr_string = ", CDB intr";
2547 }
2548
2549 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2550 dev->flags |= ATA_DFLAG_DMADIR;
2551 dma_dir_string = ", DMADIR";
2552 }
2553
2554 /* print device info to dmesg */
2555 if (ata_msg_drv(ap) && print_info)
2556 ata_dev_printk(dev, KERN_INFO,
2557 "ATAPI: %s, %s, max %s%s%s%s\n",
2558 modelbuf, fwrevbuf,
2559 ata_mode_string(xfer_mask),
2560 cdb_intr_string, atapi_an_string,
2561 dma_dir_string);
2562 }
2563
2564 /* determine max_sectors */
2565 dev->max_sectors = ATA_MAX_SECTORS;
2566 if (dev->flags & ATA_DFLAG_LBA48)
2567 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2568
2569 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2570 if (ata_id_has_hipm(dev->id))
2571 dev->flags |= ATA_DFLAG_HIPM;
2572 if (ata_id_has_dipm(dev->id))
2573 dev->flags |= ATA_DFLAG_DIPM;
2574 }
2575
2576 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2577 200 sectors */
2578 if (ata_dev_knobble(dev)) {
2579 if (ata_msg_drv(ap) && print_info)
2580 ata_dev_printk(dev, KERN_INFO,
2581 "applying bridge limits\n");
2582 dev->udma_mask &= ATA_UDMA5;
2583 dev->max_sectors = ATA_MAX_SECTORS;
2584 }
2585
2586 if ((dev->class == ATA_DEV_ATAPI) &&
2587 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2588 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2589 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2590 }
2591
2592 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2593 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2594 dev->max_sectors);
2595
2596 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2597 dev->horkage |= ATA_HORKAGE_IPM;
2598
2599 /* reset link pm_policy for this port to no pm */
2600 ap->pm_policy = MAX_PERFORMANCE;
2601 }
2602
2603 if (ap->ops->dev_config)
2604 ap->ops->dev_config(dev);
2605
2606 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2607 /* Let the user know. We don't want to disallow opens for
2608 rescue purposes, or in case the vendor is just a blithering
2609 idiot. Do this after the dev_config call as some controllers
2610 with buggy firmware may want to avoid reporting false device
2611 bugs */
2612
2613 if (print_info) {
2614 ata_dev_printk(dev, KERN_WARNING,
2615"Drive reports diagnostics failure. This may indicate a drive\n");
2616 ata_dev_printk(dev, KERN_WARNING,
2617"fault or invalid emulation. Contact drive vendor for information.\n");
2618 }
2619 }
2620
2621 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2622 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2623 "firmware update to be fully functional.\n");
2624 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2625 "or visit http://ata.wiki.kernel.org.\n");
2626 }
2627
2628 return 0;
2629
2630err_out_nosup:
2631 if (ata_msg_probe(ap))
2632 ata_dev_printk(dev, KERN_DEBUG,
2633 "%s: EXIT, err\n", __func__);
2634 return rc;
2635}
2636
2637/**
2638 * ata_cable_40wire - return 40 wire cable type
2639 * @ap: port
2640 *
2641 * Helper method for drivers which want to hardwire 40 wire cable
2642 * detection.
2643 */
2644
2645int ata_cable_40wire(struct ata_port *ap)
2646{
2647 return ATA_CBL_PATA40;
2648}
2649
2650/**
2651 * ata_cable_80wire - return 80 wire cable type
2652 * @ap: port
2653 *
2654 * Helper method for drivers which want to hardwire 80 wire cable
2655 * detection.
2656 */
2657
2658int ata_cable_80wire(struct ata_port *ap)
2659{
2660 return ATA_CBL_PATA80;
2661}
2662
2663/**
2664 * ata_cable_unknown - return unknown PATA cable.
2665 * @ap: port
2666 *
2667 * Helper method for drivers which have no PATA cable detection.
2668 */
2669
2670int ata_cable_unknown(struct ata_port *ap)
2671{
2672 return ATA_CBL_PATA_UNK;
2673}
2674
2675/**
2676 * ata_cable_ignore - return ignored PATA cable.
2677 * @ap: port
2678 *
2679 * Helper method for drivers which don't use cable type to limit
2680 * transfer mode.
2681 */
2682int ata_cable_ignore(struct ata_port *ap)
2683{
2684 return ATA_CBL_PATA_IGN;
2685}
2686
2687/**
2688 * ata_cable_sata - return SATA cable type
2689 * @ap: port
2690 *
2691 * Helper method for drivers which have SATA cables
2692 */
2693
2694int ata_cable_sata(struct ata_port *ap)
2695{
2696 return ATA_CBL_SATA;
2697}
2698
2699/**
2700 * ata_bus_probe - Reset and probe ATA bus
2701 * @ap: Bus to probe
2702 *
2703 * Master ATA bus probing function. Initiates a hardware-dependent
2704 * bus reset, then attempts to identify any devices found on
2705 * the bus.
2706 *
2707 * LOCKING:
2708 * PCI/etc. bus probe sem.
2709 *
2710 * RETURNS:
2711 * Zero on success, negative errno otherwise.
2712 */
2713
2714int ata_bus_probe(struct ata_port *ap)
2715{
2716 unsigned int classes[ATA_MAX_DEVICES];
2717 int tries[ATA_MAX_DEVICES];
2718 int rc;
2719 struct ata_device *dev;
2720
2721 ata_for_each_dev(dev, &ap->link, ALL)
2722 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2723
2724 retry:
2725 ata_for_each_dev(dev, &ap->link, ALL) {
2726 /* If we issue an SRST then an ATA drive (not ATAPI)
2727 * may change configuration and be in PIO0 timing. If
2728 * we do a hard reset (or are coming from power on)
2729 * this is true for ATA or ATAPI. Until we've set a
2730 * suitable controller mode we should not touch the
2731 * bus as we may be talking too fast.
2732 */
2733 dev->pio_mode = XFER_PIO_0;
2734
2735 /* If the controller has a pio mode setup function
2736 * then use it to set the chipset to rights. Don't
2737 * touch the DMA setup as that will be dealt with when
2738 * configuring devices.
2739 */
2740 if (ap->ops->set_piomode)
2741 ap->ops->set_piomode(ap, dev);
2742 }
2743
2744 /* reset and determine device classes */
2745 ap->ops->phy_reset(ap);
2746
2747 ata_for_each_dev(dev, &ap->link, ALL) {
2748 if (dev->class != ATA_DEV_UNKNOWN)
2749 classes[dev->devno] = dev->class;
2750 else
2751 classes[dev->devno] = ATA_DEV_NONE;
2752
2753 dev->class = ATA_DEV_UNKNOWN;
2754 }
2755
2756 /* read IDENTIFY page and configure devices. We have to do the identify
2757 specific sequence bass-ackwards so that PDIAG- is released by
2758 the slave device */
2759
2760 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2761 if (tries[dev->devno])
2762 dev->class = classes[dev->devno];
2763
2764 if (!ata_dev_enabled(dev))
2765 continue;
2766
2767 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2768 dev->id);
2769 if (rc)
2770 goto fail;
2771 }
2772
2773 /* Now ask for the cable type as PDIAG- should have been released */
2774 if (ap->ops->cable_detect)
2775 ap->cbl = ap->ops->cable_detect(ap);
2776
2777 /* We may have SATA bridge glue hiding here irrespective of
2778 * the reported cable types and sensed types. When SATA
2779 * drives indicate we have a bridge, we don't know which end
2780 * of the link the bridge is which is a problem.
2781 */
2782 ata_for_each_dev(dev, &ap->link, ENABLED)
2783 if (ata_id_is_sata(dev->id))
2784 ap->cbl = ATA_CBL_SATA;
2785
2786 /* After the identify sequence we can now set up the devices. We do
2787 this in the normal order so that the user doesn't get confused */
2788
2789 ata_for_each_dev(dev, &ap->link, ENABLED) {
2790 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2791 rc = ata_dev_configure(dev);
2792 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2793 if (rc)
2794 goto fail;
2795 }
2796
2797 /* configure transfer mode */
2798 rc = ata_set_mode(&ap->link, &dev);
2799 if (rc)
2800 goto fail;
2801
2802 ata_for_each_dev(dev, &ap->link, ENABLED)
2803 return 0;
2804
2805 return -ENODEV;
2806
2807 fail:
2808 tries[dev->devno]--;
2809
2810 switch (rc) {
2811 case -EINVAL:
2812 /* eeek, something went very wrong, give up */
2813 tries[dev->devno] = 0;
2814 break;
2815
2816 case -ENODEV:
2817 /* give it just one more chance */
2818 tries[dev->devno] = min(tries[dev->devno], 1);
2819 case -EIO:
2820 if (tries[dev->devno] == 1) {
2821 /* This is the last chance, better to slow
2822 * down than lose it.
2823 */
2824 sata_down_spd_limit(&ap->link, 0);
2825 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2826 }
2827 }
2828
2829 if (!tries[dev->devno])
2830 ata_dev_disable(dev);
2831
2832 goto retry;
2833}
2834
2835/**
2836 * sata_print_link_status - Print SATA link status
2837 * @link: SATA link to printk link status about
2838 *
2839 * This function prints link speed and status of a SATA link.
2840 *
2841 * LOCKING:
2842 * None.
2843 */
2844static void sata_print_link_status(struct ata_link *link)
2845{
2846 u32 sstatus, scontrol, tmp;
2847
2848 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2849 return;
2850 sata_scr_read(link, SCR_CONTROL, &scontrol);
2851
2852 if (ata_phys_link_online(link)) {
2853 tmp = (sstatus >> 4) & 0xf;
2854 ata_link_printk(link, KERN_INFO,
2855 "SATA link up %s (SStatus %X SControl %X)\n",
2856 sata_spd_string(tmp), sstatus, scontrol);
2857 } else {
2858 ata_link_printk(link, KERN_INFO,
2859 "SATA link down (SStatus %X SControl %X)\n",
2860 sstatus, scontrol);
2861 }
2862}
2863
2864/**
2865 * ata_dev_pair - return other device on cable
2866 * @adev: device
2867 *
2868 * Obtain the other device on the same cable, or if none is
2869 * present NULL is returned
2870 */
2871
2872struct ata_device *ata_dev_pair(struct ata_device *adev)
2873{
2874 struct ata_link *link = adev->link;
2875 struct ata_device *pair = &link->device[1 - adev->devno];
2876 if (!ata_dev_enabled(pair))
2877 return NULL;
2878 return pair;
2879}
2880
2881/**
2882 * sata_down_spd_limit - adjust SATA spd limit downward
2883 * @link: Link to adjust SATA spd limit for
2884 * @spd_limit: Additional limit
2885 *
2886 * Adjust SATA spd limit of @link downward. Note that this
2887 * function only adjusts the limit. The change must be applied
2888 * using sata_set_spd().
2889 *
2890 * If @spd_limit is non-zero, the speed is limited to equal to or
2891 * lower than @spd_limit if such speed is supported. If
2892 * @spd_limit is slower than any supported speed, only the lowest
2893 * supported speed is allowed.
2894 *
2895 * LOCKING:
2896 * Inherited from caller.
2897 *
2898 * RETURNS:
2899 * 0 on success, negative errno on failure
2900 */
2901int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2902{
2903 u32 sstatus, spd, mask;
2904 int rc, bit;
2905
2906 if (!sata_scr_valid(link))
2907 return -EOPNOTSUPP;
2908
2909 /* If SCR can be read, use it to determine the current SPD.
2910 * If not, use cached value in link->sata_spd.
2911 */
2912 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2913 if (rc == 0 && ata_sstatus_online(sstatus))
2914 spd = (sstatus >> 4) & 0xf;
2915 else
2916 spd = link->sata_spd;
2917
2918 mask = link->sata_spd_limit;
2919 if (mask <= 1)
2920 return -EINVAL;
2921
2922 /* unconditionally mask off the highest bit */
2923 bit = fls(mask) - 1;
2924 mask &= ~(1 << bit);
2925
2926 /* Mask off all speeds higher than or equal to the current
2927 * one. Force 1.5Gbps if current SPD is not available.
2928 */
2929 if (spd > 1)
2930 mask &= (1 << (spd - 1)) - 1;
2931 else
2932 mask &= 1;
2933
2934 /* were we already at the bottom? */
2935 if (!mask)
2936 return -EINVAL;
2937
2938 if (spd_limit) {
2939 if (mask & ((1 << spd_limit) - 1))
2940 mask &= (1 << spd_limit) - 1;
2941 else {
2942 bit = ffs(mask) - 1;
2943 mask = 1 << bit;
2944 }
2945 }
2946
2947 link->sata_spd_limit = mask;
2948
2949 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2950 sata_spd_string(fls(mask)));
2951
2952 return 0;
2953}
2954
2955static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2956{
2957 struct ata_link *host_link = &link->ap->link;
2958 u32 limit, target, spd;
2959
2960 limit = link->sata_spd_limit;
2961
2962 /* Don't configure downstream link faster than upstream link.
2963 * It doesn't speed up anything and some PMPs choke on such
2964 * configuration.
2965 */
2966 if (!ata_is_host_link(link) && host_link->sata_spd)
2967 limit &= (1 << host_link->sata_spd) - 1;
2968
2969 if (limit == UINT_MAX)
2970 target = 0;
2971 else
2972 target = fls(limit);
2973
2974 spd = (*scontrol >> 4) & 0xf;
2975 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2976
2977 return spd != target;
2978}
2979
2980/**
2981 * sata_set_spd_needed - is SATA spd configuration needed
2982 * @link: Link in question
2983 *
2984 * Test whether the spd limit in SControl matches
2985 * @link->sata_spd_limit. This function is used to determine
2986 * whether hardreset is necessary to apply SATA spd
2987 * configuration.
2988 *
2989 * LOCKING:
2990 * Inherited from caller.
2991 *
2992 * RETURNS:
2993 * 1 if SATA spd configuration is needed, 0 otherwise.
2994 */
2995static int sata_set_spd_needed(struct ata_link *link)
2996{
2997 u32 scontrol;
2998
2999 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3000 return 1;
3001
3002 return __sata_set_spd_needed(link, &scontrol);
3003}
3004
3005/**
3006 * sata_set_spd - set SATA spd according to spd limit
3007 * @link: Link to set SATA spd for
3008 *
3009 * Set SATA spd of @link according to sata_spd_limit.
3010 *
3011 * LOCKING:
3012 * Inherited from caller.
3013 *
3014 * RETURNS:
3015 * 0 if spd doesn't need to be changed, 1 if spd has been
3016 * changed. Negative errno if SCR registers are inaccessible.
3017 */
3018int sata_set_spd(struct ata_link *link)
3019{
3020 u32 scontrol;
3021 int rc;
3022
3023 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3024 return rc;
3025
3026 if (!__sata_set_spd_needed(link, &scontrol))
3027 return 0;
3028
3029 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3030 return rc;
3031
3032 return 1;
3033}
3034
3035/*
3036 * This mode timing computation functionality is ported over from
3037 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3038 */
3039/*
3040 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3041 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3042 * for UDMA6, which is currently supported only by Maxtor drives.
3043 *
3044 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3045 */
3046
3047static const struct ata_timing ata_timing[] = {
3048/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3049 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3050 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3051 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3052 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3053 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3054 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3055 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3056
3057 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3058 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3059 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3060
3061 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3062 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3063 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3064 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3065 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3066
3067/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3068 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3069 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3070 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3071 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3072 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3073 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3074 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3075
3076 { 0xFF }
3077};
3078
3079#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3080#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3081
3082static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3083{
3084 q->setup = EZ(t->setup * 1000, T);
3085 q->act8b = EZ(t->act8b * 1000, T);
3086 q->rec8b = EZ(t->rec8b * 1000, T);
3087 q->cyc8b = EZ(t->cyc8b * 1000, T);
3088 q->active = EZ(t->active * 1000, T);
3089 q->recover = EZ(t->recover * 1000, T);
3090 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3091 q->cycle = EZ(t->cycle * 1000, T);
3092 q->udma = EZ(t->udma * 1000, UT);
3093}
3094
3095void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3096 struct ata_timing *m, unsigned int what)
3097{
3098 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3099 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3100 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3101 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3102 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3103 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3104 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3105 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3106 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3107}
3108
3109const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3110{
3111 const struct ata_timing *t = ata_timing;
3112
3113 while (xfer_mode > t->mode)
3114 t++;
3115
3116 if (xfer_mode == t->mode)
3117 return t;
3118 return NULL;
3119}
3120
3121int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3122 struct ata_timing *t, int T, int UT)
3123{
3124 const u16 *id = adev->id;
3125 const struct ata_timing *s;
3126 struct ata_timing p;
3127
3128 /*
3129 * Find the mode.
3130 */
3131
3132 if (!(s = ata_timing_find_mode(speed)))
3133 return -EINVAL;
3134
3135 memcpy(t, s, sizeof(*s));
3136
3137 /*
3138 * If the drive is an EIDE drive, it can tell us it needs extended
3139 * PIO/MW_DMA cycle timing.
3140 */
3141
3142 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3143 memset(&p, 0, sizeof(p));
3144
3145 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3146 if (speed <= XFER_PIO_2)
3147 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3148 else if ((speed <= XFER_PIO_4) ||
3149 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3150 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3151 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3152 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3153
3154 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3155 }
3156
3157 /*
3158 * Convert the timing to bus clock counts.
3159 */
3160
3161 ata_timing_quantize(t, t, T, UT);
3162
3163 /*
3164 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3165 * S.M.A.R.T * and some other commands. We have to ensure that the
3166 * DMA cycle timing is slower/equal than the fastest PIO timing.
3167 */
3168
3169 if (speed > XFER_PIO_6) {
3170 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3171 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3172 }
3173
3174 /*
3175 * Lengthen active & recovery time so that cycle time is correct.
3176 */
3177
3178 if (t->act8b + t->rec8b < t->cyc8b) {
3179 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3180 t->rec8b = t->cyc8b - t->act8b;
3181 }
3182
3183 if (t->active + t->recover < t->cycle) {
3184 t->active += (t->cycle - (t->active + t->recover)) / 2;
3185 t->recover = t->cycle - t->active;
3186 }
3187
3188 /* In a few cases quantisation may produce enough errors to
3189 leave t->cycle too low for the sum of active and recovery
3190 if so we must correct this */
3191 if (t->active + t->recover > t->cycle)
3192 t->cycle = t->active + t->recover;
3193
3194 return 0;
3195}
3196
3197/**
3198 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3199 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3200 * @cycle: cycle duration in ns
3201 *
3202 * Return matching xfer mode for @cycle. The returned mode is of
3203 * the transfer type specified by @xfer_shift. If @cycle is too
3204 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3205 * than the fastest known mode, the fasted mode is returned.
3206 *
3207 * LOCKING:
3208 * None.
3209 *
3210 * RETURNS:
3211 * Matching xfer_mode, 0xff if no match found.
3212 */
3213u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3214{
3215 u8 base_mode = 0xff, last_mode = 0xff;
3216 const struct ata_xfer_ent *ent;
3217 const struct ata_timing *t;
3218
3219 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3220 if (ent->shift == xfer_shift)
3221 base_mode = ent->base;
3222
3223 for (t = ata_timing_find_mode(base_mode);
3224 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3225 unsigned short this_cycle;
3226
3227 switch (xfer_shift) {
3228 case ATA_SHIFT_PIO:
3229 case ATA_SHIFT_MWDMA:
3230 this_cycle = t->cycle;
3231 break;
3232 case ATA_SHIFT_UDMA:
3233 this_cycle = t->udma;
3234 break;
3235 default:
3236 return 0xff;
3237 }
3238
3239 if (cycle > this_cycle)
3240 break;
3241
3242 last_mode = t->mode;
3243 }
3244
3245 return last_mode;
3246}
3247
3248/**
3249 * ata_down_xfermask_limit - adjust dev xfer masks downward
3250 * @dev: Device to adjust xfer masks
3251 * @sel: ATA_DNXFER_* selector
3252 *
3253 * Adjust xfer masks of @dev downward. Note that this function
3254 * does not apply the change. Invoking ata_set_mode() afterwards
3255 * will apply the limit.
3256 *
3257 * LOCKING:
3258 * Inherited from caller.
3259 *
3260 * RETURNS:
3261 * 0 on success, negative errno on failure
3262 */
3263int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3264{
3265 char buf[32];
3266 unsigned long orig_mask, xfer_mask;
3267 unsigned long pio_mask, mwdma_mask, udma_mask;
3268 int quiet, highbit;
3269
3270 quiet = !!(sel & ATA_DNXFER_QUIET);
3271 sel &= ~ATA_DNXFER_QUIET;
3272
3273 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3274 dev->mwdma_mask,
3275 dev->udma_mask);
3276 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3277
3278 switch (sel) {
3279 case ATA_DNXFER_PIO:
3280 highbit = fls(pio_mask) - 1;
3281 pio_mask &= ~(1 << highbit);
3282 break;
3283
3284 case ATA_DNXFER_DMA:
3285 if (udma_mask) {
3286 highbit = fls(udma_mask) - 1;
3287 udma_mask &= ~(1 << highbit);
3288 if (!udma_mask)
3289 return -ENOENT;
3290 } else if (mwdma_mask) {
3291 highbit = fls(mwdma_mask) - 1;
3292 mwdma_mask &= ~(1 << highbit);
3293 if (!mwdma_mask)
3294 return -ENOENT;
3295 }
3296 break;
3297
3298 case ATA_DNXFER_40C:
3299 udma_mask &= ATA_UDMA_MASK_40C;
3300 break;
3301
3302 case ATA_DNXFER_FORCE_PIO0:
3303 pio_mask &= 1;
3304 case ATA_DNXFER_FORCE_PIO:
3305 mwdma_mask = 0;
3306 udma_mask = 0;
3307 break;
3308
3309 default:
3310 BUG();
3311 }
3312
3313 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3314
3315 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3316 return -ENOENT;
3317
3318 if (!quiet) {
3319 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3320 snprintf(buf, sizeof(buf), "%s:%s",
3321 ata_mode_string(xfer_mask),
3322 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3323 else
3324 snprintf(buf, sizeof(buf), "%s",
3325 ata_mode_string(xfer_mask));
3326
3327 ata_dev_printk(dev, KERN_WARNING,
3328 "limiting speed to %s\n", buf);
3329 }
3330
3331 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3332 &dev->udma_mask);
3333
3334 return 0;
3335}
3336
3337static int ata_dev_set_mode(struct ata_device *dev)
3338{
3339 struct ata_port *ap = dev->link->ap;
3340 struct ata_eh_context *ehc = &dev->link->eh_context;
3341 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3342 const char *dev_err_whine = "";
3343 int ign_dev_err = 0;
3344 unsigned int err_mask = 0;
3345 int rc;
3346
3347 dev->flags &= ~ATA_DFLAG_PIO;
3348 if (dev->xfer_shift == ATA_SHIFT_PIO)
3349 dev->flags |= ATA_DFLAG_PIO;
3350
3351 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3352 dev_err_whine = " (SET_XFERMODE skipped)";
3353 else {
3354 if (nosetxfer)
3355 ata_dev_printk(dev, KERN_WARNING,
3356 "NOSETXFER but PATA detected - can't "
3357 "skip SETXFER, might malfunction\n");
3358 err_mask = ata_dev_set_xfermode(dev);
3359 }
3360
3361 if (err_mask & ~AC_ERR_DEV)
3362 goto fail;
3363
3364 /* revalidate */
3365 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3366 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3367 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3368 if (rc)
3369 return rc;
3370
3371 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3372 /* Old CFA may refuse this command, which is just fine */
3373 if (ata_id_is_cfa(dev->id))
3374 ign_dev_err = 1;
3375 /* Catch several broken garbage emulations plus some pre
3376 ATA devices */
3377 if (ata_id_major_version(dev->id) == 0 &&
3378 dev->pio_mode <= XFER_PIO_2)
3379 ign_dev_err = 1;
3380 /* Some very old devices and some bad newer ones fail
3381 any kind of SET_XFERMODE request but support PIO0-2
3382 timings and no IORDY */
3383 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3384 ign_dev_err = 1;
3385 }
3386 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3387 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3388 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3389 dev->dma_mode == XFER_MW_DMA_0 &&
3390 (dev->id[63] >> 8) & 1)
3391 ign_dev_err = 1;
3392
3393 /* if the device is actually configured correctly, ignore dev err */
3394 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3395 ign_dev_err = 1;
3396
3397 if (err_mask & AC_ERR_DEV) {
3398 if (!ign_dev_err)
3399 goto fail;
3400 else
3401 dev_err_whine = " (device error ignored)";
3402 }
3403
3404 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3405 dev->xfer_shift, (int)dev->xfer_mode);
3406
3407 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3408 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3409 dev_err_whine);
3410
3411 return 0;
3412
3413 fail:
3414 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3415 "(err_mask=0x%x)\n", err_mask);
3416 return -EIO;
3417}
3418
3419/**
3420 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3421 * @link: link on which timings will be programmed
3422 * @r_failed_dev: out parameter for failed device
3423 *
3424 * Standard implementation of the function used to tune and set
3425 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3426 * ata_dev_set_mode() fails, pointer to the failing device is
3427 * returned in @r_failed_dev.
3428 *
3429 * LOCKING:
3430 * PCI/etc. bus probe sem.
3431 *
3432 * RETURNS:
3433 * 0 on success, negative errno otherwise
3434 */
3435
3436int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3437{
3438 struct ata_port *ap = link->ap;
3439 struct ata_device *dev;
3440 int rc = 0, used_dma = 0, found = 0;
3441
3442 /* step 1: calculate xfer_mask */
3443 ata_for_each_dev(dev, link, ENABLED) {
3444 unsigned long pio_mask, dma_mask;
3445 unsigned int mode_mask;
3446
3447 mode_mask = ATA_DMA_MASK_ATA;
3448 if (dev->class == ATA_DEV_ATAPI)
3449 mode_mask = ATA_DMA_MASK_ATAPI;
3450 else if (ata_id_is_cfa(dev->id))
3451 mode_mask = ATA_DMA_MASK_CFA;
3452
3453 ata_dev_xfermask(dev);
3454 ata_force_xfermask(dev);
3455
3456 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3457 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3458
3459 if (libata_dma_mask & mode_mask)
3460 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3461 else
3462 dma_mask = 0;
3463
3464 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3465 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3466
3467 found = 1;
3468 if (ata_dma_enabled(dev))
3469 used_dma = 1;
3470 }
3471 if (!found)
3472 goto out;
3473
3474 /* step 2: always set host PIO timings */
3475 ata_for_each_dev(dev, link, ENABLED) {
3476 if (dev->pio_mode == 0xff) {
3477 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3478 rc = -EINVAL;
3479 goto out;
3480 }
3481
3482 dev->xfer_mode = dev->pio_mode;
3483 dev->xfer_shift = ATA_SHIFT_PIO;
3484 if (ap->ops->set_piomode)
3485 ap->ops->set_piomode(ap, dev);
3486 }
3487
3488 /* step 3: set host DMA timings */
3489 ata_for_each_dev(dev, link, ENABLED) {
3490 if (!ata_dma_enabled(dev))
3491 continue;
3492
3493 dev->xfer_mode = dev->dma_mode;
3494 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3495 if (ap->ops->set_dmamode)
3496 ap->ops->set_dmamode(ap, dev);
3497 }
3498
3499 /* step 4: update devices' xfer mode */
3500 ata_for_each_dev(dev, link, ENABLED) {
3501 rc = ata_dev_set_mode(dev);
3502 if (rc)
3503 goto out;
3504 }
3505
3506 /* Record simplex status. If we selected DMA then the other
3507 * host channels are not permitted to do so.
3508 */
3509 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3510 ap->host->simplex_claimed = ap;
3511
3512 out:
3513 if (rc)
3514 *r_failed_dev = dev;
3515 return rc;
3516}
3517
3518/**
3519 * ata_wait_ready - wait for link to become ready
3520 * @link: link to be waited on
3521 * @deadline: deadline jiffies for the operation
3522 * @check_ready: callback to check link readiness
3523 *
3524 * Wait for @link to become ready. @check_ready should return
3525 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3526 * link doesn't seem to be occupied, other errno for other error
3527 * conditions.
3528 *
3529 * Transient -ENODEV conditions are allowed for
3530 * ATA_TMOUT_FF_WAIT.
3531 *
3532 * LOCKING:
3533 * EH context.
3534 *
3535 * RETURNS:
3536 * 0 if @linke is ready before @deadline; otherwise, -errno.
3537 */
3538int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3539 int (*check_ready)(struct ata_link *link))
3540{
3541 unsigned long start = jiffies;
3542 unsigned long nodev_deadline;
3543 int warned = 0;
3544
3545 /* choose which 0xff timeout to use, read comment in libata.h */
3546 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3548 else
3549 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3550
3551 /* Slave readiness can't be tested separately from master. On
3552 * M/S emulation configuration, this function should be called
3553 * only on the master and it will handle both master and slave.
3554 */
3555 WARN_ON(link == link->ap->slave_link);
3556
3557 if (time_after(nodev_deadline, deadline))
3558 nodev_deadline = deadline;
3559
3560 while (1) {
3561 unsigned long now = jiffies;
3562 int ready, tmp;
3563
3564 ready = tmp = check_ready(link);
3565 if (ready > 0)
3566 return 0;
3567
3568 /*
3569 * -ENODEV could be transient. Ignore -ENODEV if link
3570 * is online. Also, some SATA devices take a long
3571 * time to clear 0xff after reset. Wait for
3572 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3573 * offline.
3574 *
3575 * Note that some PATA controllers (pata_ali) explode
3576 * if status register is read more than once when
3577 * there's no device attached.
3578 */
3579 if (ready == -ENODEV) {
3580 if (ata_link_online(link))
3581 ready = 0;
3582 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3583 !ata_link_offline(link) &&
3584 time_before(now, nodev_deadline))
3585 ready = 0;
3586 }
3587
3588 if (ready)
3589 return ready;
3590 if (time_after(now, deadline))
3591 return -EBUSY;
3592
3593 if (!warned && time_after(now, start + 5 * HZ) &&
3594 (deadline - now > 3 * HZ)) {
3595 ata_link_printk(link, KERN_WARNING,
3596 "link is slow to respond, please be patient "
3597 "(ready=%d)\n", tmp);
3598 warned = 1;
3599 }
3600
3601 msleep(50);
3602 }
3603}
3604
3605/**
3606 * ata_wait_after_reset - wait for link to become ready after reset
3607 * @link: link to be waited on
3608 * @deadline: deadline jiffies for the operation
3609 * @check_ready: callback to check link readiness
3610 *
3611 * Wait for @link to become ready after reset.
3612 *
3613 * LOCKING:
3614 * EH context.
3615 *
3616 * RETURNS:
3617 * 0 if @linke is ready before @deadline; otherwise, -errno.
3618 */
3619int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3620 int (*check_ready)(struct ata_link *link))
3621{
3622 msleep(ATA_WAIT_AFTER_RESET);
3623
3624 return ata_wait_ready(link, deadline, check_ready);
3625}
3626
3627/**
3628 * sata_link_debounce - debounce SATA phy status
3629 * @link: ATA link to debounce SATA phy status for
3630 * @params: timing parameters { interval, duratinon, timeout } in msec
3631 * @deadline: deadline jiffies for the operation
3632 *
3633* Make sure SStatus of @link reaches stable state, determined by
3634 * holding the same value where DET is not 1 for @duration polled
3635 * every @interval, before @timeout. Timeout constraints the
3636 * beginning of the stable state. Because DET gets stuck at 1 on
3637 * some controllers after hot unplugging, this functions waits
3638 * until timeout then returns 0 if DET is stable at 1.
3639 *
3640 * @timeout is further limited by @deadline. The sooner of the
3641 * two is used.
3642 *
3643 * LOCKING:
3644 * Kernel thread context (may sleep)
3645 *
3646 * RETURNS:
3647 * 0 on success, -errno on failure.
3648 */
3649int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3650 unsigned long deadline)
3651{
3652 unsigned long interval = params[0];
3653 unsigned long duration = params[1];
3654 unsigned long last_jiffies, t;
3655 u32 last, cur;
3656 int rc;
3657
3658 t = ata_deadline(jiffies, params[2]);
3659 if (time_before(t, deadline))
3660 deadline = t;
3661
3662 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3663 return rc;
3664 cur &= 0xf;
3665
3666 last = cur;
3667 last_jiffies = jiffies;
3668
3669 while (1) {
3670 msleep(interval);
3671 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3672 return rc;
3673 cur &= 0xf;
3674
3675 /* DET stable? */
3676 if (cur == last) {
3677 if (cur == 1 && time_before(jiffies, deadline))
3678 continue;
3679 if (time_after(jiffies,
3680 ata_deadline(last_jiffies, duration)))
3681 return 0;
3682 continue;
3683 }
3684
3685 /* unstable, start over */
3686 last = cur;
3687 last_jiffies = jiffies;
3688
3689 /* Check deadline. If debouncing failed, return
3690 * -EPIPE to tell upper layer to lower link speed.
3691 */
3692 if (time_after(jiffies, deadline))
3693 return -EPIPE;
3694 }
3695}
3696
3697/**
3698 * sata_link_resume - resume SATA link
3699 * @link: ATA link to resume SATA
3700 * @params: timing parameters { interval, duratinon, timeout } in msec
3701 * @deadline: deadline jiffies for the operation
3702 *
3703 * Resume SATA phy @link and debounce it.
3704 *
3705 * LOCKING:
3706 * Kernel thread context (may sleep)
3707 *
3708 * RETURNS:
3709 * 0 on success, -errno on failure.
3710 */
3711int sata_link_resume(struct ata_link *link, const unsigned long *params,
3712 unsigned long deadline)
3713{
3714 int tries = ATA_LINK_RESUME_TRIES;
3715 u32 scontrol, serror;
3716 int rc;
3717
3718 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3719 return rc;
3720
3721 /*
3722 * Writes to SControl sometimes get ignored under certain
3723 * controllers (ata_piix SIDPR). Make sure DET actually is
3724 * cleared.
3725 */
3726 do {
3727 scontrol = (scontrol & 0x0f0) | 0x300;
3728 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3729 return rc;
3730 /*
3731 * Some PHYs react badly if SStatus is pounded
3732 * immediately after resuming. Delay 200ms before
3733 * debouncing.
3734 */
3735 msleep(200);
3736
3737 /* is SControl restored correctly? */
3738 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3739 return rc;
3740 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3741
3742 if ((scontrol & 0xf0f) != 0x300) {
3743 ata_link_printk(link, KERN_ERR,
3744 "failed to resume link (SControl %X)\n",
3745 scontrol);
3746 return 0;
3747 }
3748
3749 if (tries < ATA_LINK_RESUME_TRIES)
3750 ata_link_printk(link, KERN_WARNING,
3751 "link resume succeeded after %d retries\n",
3752 ATA_LINK_RESUME_TRIES - tries);
3753
3754 if ((rc = sata_link_debounce(link, params, deadline)))
3755 return rc;
3756
3757 /* clear SError, some PHYs require this even for SRST to work */
3758 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3759 rc = sata_scr_write(link, SCR_ERROR, serror);
3760
3761 return rc != -EINVAL ? rc : 0;
3762}
3763
3764/**
3765 * ata_std_prereset - prepare for reset
3766 * @link: ATA link to be reset
3767 * @deadline: deadline jiffies for the operation
3768 *
3769 * @link is about to be reset. Initialize it. Failure from
3770 * prereset makes libata abort whole reset sequence and give up
3771 * that port, so prereset should be best-effort. It does its
3772 * best to prepare for reset sequence but if things go wrong, it
3773 * should just whine, not fail.
3774 *
3775 * LOCKING:
3776 * Kernel thread context (may sleep)
3777 *
3778 * RETURNS:
3779 * 0 on success, -errno otherwise.
3780 */
3781int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3782{
3783 struct ata_port *ap = link->ap;
3784 struct ata_eh_context *ehc = &link->eh_context;
3785 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3786 int rc;
3787
3788 /* if we're about to do hardreset, nothing more to do */
3789 if (ehc->i.action & ATA_EH_HARDRESET)
3790 return 0;
3791
3792 /* if SATA, resume link */
3793 if (ap->flags & ATA_FLAG_SATA) {
3794 rc = sata_link_resume(link, timing, deadline);
3795 /* whine about phy resume failure but proceed */
3796 if (rc && rc != -EOPNOTSUPP)
3797 ata_link_printk(link, KERN_WARNING, "failed to resume "
3798 "link for reset (errno=%d)\n", rc);
3799 }
3800
3801 /* no point in trying softreset on offline link */
3802 if (ata_phys_link_offline(link))
3803 ehc->i.action &= ~ATA_EH_SOFTRESET;
3804
3805 return 0;
3806}
3807
3808/**
3809 * sata_link_hardreset - reset link via SATA phy reset
3810 * @link: link to reset
3811 * @timing: timing parameters { interval, duratinon, timeout } in msec
3812 * @deadline: deadline jiffies for the operation
3813 * @online: optional out parameter indicating link onlineness
3814 * @check_ready: optional callback to check link readiness
3815 *
3816 * SATA phy-reset @link using DET bits of SControl register.
3817 * After hardreset, link readiness is waited upon using
3818 * ata_wait_ready() if @check_ready is specified. LLDs are
3819 * allowed to not specify @check_ready and wait itself after this
3820 * function returns. Device classification is LLD's
3821 * responsibility.
3822 *
3823 * *@online is set to one iff reset succeeded and @link is online
3824 * after reset.
3825 *
3826 * LOCKING:
3827 * Kernel thread context (may sleep)
3828 *
3829 * RETURNS:
3830 * 0 on success, -errno otherwise.
3831 */
3832int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3833 unsigned long deadline,
3834 bool *online, int (*check_ready)(struct ata_link *))
3835{
3836 u32 scontrol;
3837 int rc;
3838
3839 DPRINTK("ENTER\n");
3840
3841 if (online)
3842 *online = false;
3843
3844 if (sata_set_spd_needed(link)) {
3845 /* SATA spec says nothing about how to reconfigure
3846 * spd. To be on the safe side, turn off phy during
3847 * reconfiguration. This works for at least ICH7 AHCI
3848 * and Sil3124.
3849 */
3850 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3851 goto out;
3852
3853 scontrol = (scontrol & 0x0f0) | 0x304;
3854
3855 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3856 goto out;
3857
3858 sata_set_spd(link);
3859 }
3860
3861 /* issue phy wake/reset */
3862 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3863 goto out;
3864
3865 scontrol = (scontrol & 0x0f0) | 0x301;
3866
3867 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3868 goto out;
3869
3870 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3871 * 10.4.2 says at least 1 ms.
3872 */
3873 msleep(1);
3874
3875 /* bring link back */
3876 rc = sata_link_resume(link, timing, deadline);
3877 if (rc)
3878 goto out;
3879 /* if link is offline nothing more to do */
3880 if (ata_phys_link_offline(link))
3881 goto out;
3882
3883 /* Link is online. From this point, -ENODEV too is an error. */
3884 if (online)
3885 *online = true;
3886
3887 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3888 /* If PMP is supported, we have to do follow-up SRST.
3889 * Some PMPs don't send D2H Reg FIS after hardreset if
3890 * the first port is empty. Wait only for
3891 * ATA_TMOUT_PMP_SRST_WAIT.
3892 */
3893 if (check_ready) {
3894 unsigned long pmp_deadline;
3895
3896 pmp_deadline = ata_deadline(jiffies,
3897 ATA_TMOUT_PMP_SRST_WAIT);
3898 if (time_after(pmp_deadline, deadline))
3899 pmp_deadline = deadline;
3900 ata_wait_ready(link, pmp_deadline, check_ready);
3901 }
3902 rc = -EAGAIN;
3903 goto out;
3904 }
3905
3906 rc = 0;
3907 if (check_ready)
3908 rc = ata_wait_ready(link, deadline, check_ready);
3909 out:
3910 if (rc && rc != -EAGAIN) {
3911 /* online is set iff link is online && reset succeeded */
3912 if (online)
3913 *online = false;
3914 ata_link_printk(link, KERN_ERR,
3915 "COMRESET failed (errno=%d)\n", rc);
3916 }
3917 DPRINTK("EXIT, rc=%d\n", rc);
3918 return rc;
3919}
3920
3921/**
3922 * sata_std_hardreset - COMRESET w/o waiting or classification
3923 * @link: link to reset
3924 * @class: resulting class of attached device
3925 * @deadline: deadline jiffies for the operation
3926 *
3927 * Standard SATA COMRESET w/o waiting or classification.
3928 *
3929 * LOCKING:
3930 * Kernel thread context (may sleep)
3931 *
3932 * RETURNS:
3933 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3934 */
3935int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3936 unsigned long deadline)
3937{
3938 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3939 bool online;
3940 int rc;
3941
3942 /* do hardreset */
3943 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3944 return online ? -EAGAIN : rc;
3945}
3946
3947/**
3948 * ata_std_postreset - standard postreset callback
3949 * @link: the target ata_link
3950 * @classes: classes of attached devices
3951 *
3952 * This function is invoked after a successful reset. Note that
3953 * the device might have been reset more than once using
3954 * different reset methods before postreset is invoked.
3955 *
3956 * LOCKING:
3957 * Kernel thread context (may sleep)
3958 */
3959void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3960{
3961 u32 serror;
3962
3963 DPRINTK("ENTER\n");
3964
3965 /* reset complete, clear SError */
3966 if (!sata_scr_read(link, SCR_ERROR, &serror))
3967 sata_scr_write(link, SCR_ERROR, serror);
3968
3969 /* print link status */
3970 sata_print_link_status(link);
3971
3972 DPRINTK("EXIT\n");
3973}
3974
3975/**
3976 * ata_dev_same_device - Determine whether new ID matches configured device
3977 * @dev: device to compare against
3978 * @new_class: class of the new device
3979 * @new_id: IDENTIFY page of the new device
3980 *
3981 * Compare @new_class and @new_id against @dev and determine
3982 * whether @dev is the device indicated by @new_class and
3983 * @new_id.
3984 *
3985 * LOCKING:
3986 * None.
3987 *
3988 * RETURNS:
3989 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3990 */
3991static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3992 const u16 *new_id)
3993{
3994 const u16 *old_id = dev->id;
3995 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3996 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3997
3998 if (dev->class != new_class) {
3999 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4000 dev->class, new_class);
4001 return 0;
4002 }
4003
4004 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4005 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4006 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4007 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4008
4009 if (strcmp(model[0], model[1])) {
4010 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4011 "'%s' != '%s'\n", model[0], model[1]);
4012 return 0;
4013 }
4014
4015 if (strcmp(serial[0], serial[1])) {
4016 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4017 "'%s' != '%s'\n", serial[0], serial[1]);
4018 return 0;
4019 }
4020
4021 return 1;
4022}
4023
4024/**
4025 * ata_dev_reread_id - Re-read IDENTIFY data
4026 * @dev: target ATA device
4027 * @readid_flags: read ID flags
4028 *
4029 * Re-read IDENTIFY page and make sure @dev is still attached to
4030 * the port.
4031 *
4032 * LOCKING:
4033 * Kernel thread context (may sleep)
4034 *
4035 * RETURNS:
4036 * 0 on success, negative errno otherwise
4037 */
4038int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4039{
4040 unsigned int class = dev->class;
4041 u16 *id = (void *)dev->link->ap->sector_buf;
4042 int rc;
4043
4044 /* read ID data */
4045 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4046 if (rc)
4047 return rc;
4048
4049 /* is the device still there? */
4050 if (!ata_dev_same_device(dev, class, id))
4051 return -ENODEV;
4052
4053 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4054 return 0;
4055}
4056
4057/**
4058 * ata_dev_revalidate - Revalidate ATA device
4059 * @dev: device to revalidate
4060 * @new_class: new class code
4061 * @readid_flags: read ID flags
4062 *
4063 * Re-read IDENTIFY page, make sure @dev is still attached to the
4064 * port and reconfigure it according to the new IDENTIFY page.
4065 *
4066 * LOCKING:
4067 * Kernel thread context (may sleep)
4068 *
4069 * RETURNS:
4070 * 0 on success, negative errno otherwise
4071 */
4072int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4073 unsigned int readid_flags)
4074{
4075 u64 n_sectors = dev->n_sectors;
4076 u64 n_native_sectors = dev->n_native_sectors;
4077 int rc;
4078
4079 if (!ata_dev_enabled(dev))
4080 return -ENODEV;
4081
4082 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4083 if (ata_class_enabled(new_class) &&
4084 new_class != ATA_DEV_ATA &&
4085 new_class != ATA_DEV_ATAPI &&
4086 new_class != ATA_DEV_SEMB) {
4087 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4088 dev->class, new_class);
4089 rc = -ENODEV;
4090 goto fail;
4091 }
4092
4093 /* re-read ID */
4094 rc = ata_dev_reread_id(dev, readid_flags);
4095 if (rc)
4096 goto fail;
4097
4098 /* configure device according to the new ID */
4099 rc = ata_dev_configure(dev);
4100 if (rc)
4101 goto fail;
4102
4103 /* verify n_sectors hasn't changed */
4104 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4105 dev->n_sectors == n_sectors)
4106 return 0;
4107
4108 /* n_sectors has changed */
4109 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4110 (unsigned long long)n_sectors,
4111 (unsigned long long)dev->n_sectors);
4112
4113 /*
4114 * Something could have caused HPA to be unlocked
4115 * involuntarily. If n_native_sectors hasn't changed and the
4116 * new size matches it, keep the device.
4117 */
4118 if (dev->n_native_sectors == n_native_sectors &&
4119 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4120 ata_dev_printk(dev, KERN_WARNING,
4121 "new n_sectors matches native, probably "
4122 "late HPA unlock, n_sectors updated\n");
4123 /* use the larger n_sectors */
4124 return 0;
4125 }
4126
4127 /*
4128 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4129 * unlocking HPA in those cases.
4130 *
4131 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4132 */
4133 if (dev->n_native_sectors == n_native_sectors &&
4134 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4135 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4136 ata_dev_printk(dev, KERN_WARNING,
4137 "old n_sectors matches native, probably "
4138 "late HPA lock, will try to unlock HPA\n");
4139 /* try unlocking HPA */
4140 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4141 rc = -EIO;
4142 } else
4143 rc = -ENODEV;
4144
4145 /* restore original n_[native_]sectors and fail */
4146 dev->n_native_sectors = n_native_sectors;
4147 dev->n_sectors = n_sectors;
4148 fail:
4149 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4150 return rc;
4151}
4152
4153struct ata_blacklist_entry {
4154 const char *model_num;
4155 const char *model_rev;
4156 unsigned long horkage;
4157};
4158
4159static const struct ata_blacklist_entry ata_device_blacklist [] = {
4160 /* Devices with DMA related problems under Linux */
4161 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4162 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4163 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4164 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4165 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4166 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4167 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4168 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4169 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4170 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4171 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4172 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4173 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4174 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4175 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4176 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4177 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4178 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4179 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4180 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4181 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4182 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4183 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4184 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4185 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4186 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4187 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4188 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4189 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4190 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4191 /* Odd clown on sil3726/4726 PMPs */
4192 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4193
4194 /* Weird ATAPI devices */
4195 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4196 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4197
4198 /* Devices we expect to fail diagnostics */
4199
4200 /* Devices where NCQ should be avoided */
4201 /* NCQ is slow */
4202 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4203 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4204 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4205 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4206 /* NCQ is broken */
4207 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4208 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4209 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4210 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4211 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4212
4213 /* Seagate NCQ + FLUSH CACHE firmware bug */
4214 { "ST31500341AS", "SD1[56789]", ATA_HORKAGE_NONCQ |
4215 ATA_HORKAGE_FIRMWARE_WARN },
4216
4217 { "ST31000333AS", "SD1[56789]", ATA_HORKAGE_NONCQ |
4218 ATA_HORKAGE_FIRMWARE_WARN },
4219
4220 { "ST3640623AS", "SD1[56789]", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222
4223 { "ST3640323AS", "SD1[56789]", ATA_HORKAGE_NONCQ |
4224 ATA_HORKAGE_FIRMWARE_WARN },
4225
4226 { "ST3320813AS", "SD1[56789]", ATA_HORKAGE_NONCQ |
4227 ATA_HORKAGE_FIRMWARE_WARN },
4228
4229 { "ST3320613AS", "SD1[56789]", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231
4232 /* Blacklist entries taken from Silicon Image 3124/3132
4233 Windows driver .inf file - also several Linux problem reports */
4234 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4235 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4236 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4237
4238 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4239 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4240
4241 /* devices which puke on READ_NATIVE_MAX */
4242 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4243 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4244 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4245 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4246
4247 /* this one allows HPA unlocking but fails IOs on the area */
4248 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4249
4250 /* Devices which report 1 sector over size HPA */
4251 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4252 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4253 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4254
4255 /* Devices which get the IVB wrong */
4256 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4257 /* Maybe we should just blacklist TSSTcorp... */
4258 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4259 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4260 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4261 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4262 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4263 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4264
4265 /* Devices that do not need bridging limits applied */
4266 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4267
4268 /* Devices which aren't very happy with higher link speeds */
4269 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4270
4271 /*
4272 * Devices which choke on SETXFER. Applies only if both the
4273 * device and controller are SATA.
4274 */
4275 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4276
4277 /* End Marker */
4278 { }
4279};
4280
4281/**
4282 * glob_match - match a text string against a glob-style pattern
4283 * @text: the string to be examined
4284 * @pattern: the glob-style pattern to be matched against
4285 *
4286 * Either/both of text and pattern can be empty strings.
4287 *
4288 * Match text against a glob-style pattern, with wildcards and simple sets:
4289 *
4290 * ? matches any single character.
4291 * * matches any run of characters.
4292 * [xyz] matches a single character from the set: x, y, or z.
4293 *
4294 * Note: hyphenated ranges [0-9] are _not_ supported here.
4295 * The special characters ?, [, or *, can be matched using a set, eg. [*]
4296 *
4297 * Example patterns: "SD1?", "SD1[012345]", "*R0", SD*1?[012]*xx"
4298 *
4299 * This function uses one level of recursion per '*' in pattern.
4300 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4301 * this will not cause stack problems for any reasonable use here.
4302 *
4303 * RETURNS:
4304 * 0 on match, 1 otherwise.
4305 */
4306static int glob_match (const char *text, const char *pattern)
4307{
4308 do {
4309 /* Match single character or a '?' wildcard */
4310 if (*text == *pattern || *pattern == '?') {
4311 if (!*pattern++)
4312 return 0; /* End of both strings: match */
4313 } else {
4314 /* Match single char against a '[' bracketed ']' pattern set */
4315 if (!*text || *pattern != '[')
4316 break; /* Not a pattern set */
4317 while (*++pattern && *pattern != ']' && *text != *pattern);
4318 if (!*pattern || *pattern == ']')
4319 return 1; /* No match */
4320 while (*pattern && *pattern++ != ']');
4321 }
4322 } while (*++text && *pattern);
4323
4324 /* Match any run of chars against a '*' wildcard */
4325 if (*pattern == '*') {
4326 if (!*++pattern)
4327 return 0; /* Match: avoid recursion at end of pattern */
4328 /* Loop to handle additional pattern chars after the wildcard */
4329 while (*text) {
4330 if (glob_match(text, pattern) == 0)
4331 return 0; /* Remainder matched */
4332 ++text; /* Absorb (match) this char and try again */
4333 }
4334 }
4335 if (!*text && !*pattern)
4336 return 0; /* End of both strings: match */
4337 return 1; /* No match */
4338}
4339
4340static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4341{
4342 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4343 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4344 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4345
4346 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4347 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4348
4349 while (ad->model_num) {
4350 if (!glob_match(model_num, ad->model_num)) {
4351 if (ad->model_rev == NULL)
4352 return ad->horkage;
4353 if (!glob_match(model_rev, ad->model_rev))
4354 return ad->horkage;
4355 }
4356 ad++;
4357 }
4358 return 0;
4359}
4360
4361static int ata_dma_blacklisted(const struct ata_device *dev)
4362{
4363 /* We don't support polling DMA.
4364 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4365 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4366 */
4367 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4368 (dev->flags & ATA_DFLAG_CDB_INTR))
4369 return 1;
4370 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4371}
4372
4373/**
4374 * ata_is_40wire - check drive side detection
4375 * @dev: device
4376 *
4377 * Perform drive side detection decoding, allowing for device vendors
4378 * who can't follow the documentation.
4379 */
4380
4381static int ata_is_40wire(struct ata_device *dev)
4382{
4383 if (dev->horkage & ATA_HORKAGE_IVB)
4384 return ata_drive_40wire_relaxed(dev->id);
4385 return ata_drive_40wire(dev->id);
4386}
4387
4388/**
4389 * cable_is_40wire - 40/80/SATA decider
4390 * @ap: port to consider
4391 *
4392 * This function encapsulates the policy for speed management
4393 * in one place. At the moment we don't cache the result but
4394 * there is a good case for setting ap->cbl to the result when
4395 * we are called with unknown cables (and figuring out if it
4396 * impacts hotplug at all).
4397 *
4398 * Return 1 if the cable appears to be 40 wire.
4399 */
4400
4401static int cable_is_40wire(struct ata_port *ap)
4402{
4403 struct ata_link *link;
4404 struct ata_device *dev;
4405
4406 /* If the controller thinks we are 40 wire, we are. */
4407 if (ap->cbl == ATA_CBL_PATA40)
4408 return 1;
4409
4410 /* If the controller thinks we are 80 wire, we are. */
4411 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4412 return 0;
4413
4414 /* If the system is known to be 40 wire short cable (eg
4415 * laptop), then we allow 80 wire modes even if the drive
4416 * isn't sure.
4417 */
4418 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4419 return 0;
4420
4421 /* If the controller doesn't know, we scan.
4422 *
4423 * Note: We look for all 40 wire detects at this point. Any
4424 * 80 wire detect is taken to be 80 wire cable because
4425 * - in many setups only the one drive (slave if present) will
4426 * give a valid detect
4427 * - if you have a non detect capable drive you don't want it
4428 * to colour the choice
4429 */
4430 ata_for_each_link(link, ap, EDGE) {
4431 ata_for_each_dev(dev, link, ENABLED) {
4432 if (!ata_is_40wire(dev))
4433 return 0;
4434 }
4435 }
4436 return 1;
4437}
4438
4439/**
4440 * ata_dev_xfermask - Compute supported xfermask of the given device
4441 * @dev: Device to compute xfermask for
4442 *
4443 * Compute supported xfermask of @dev and store it in
4444 * dev->*_mask. This function is responsible for applying all
4445 * known limits including host controller limits, device
4446 * blacklist, etc...
4447 *
4448 * LOCKING:
4449 * None.
4450 */
4451static void ata_dev_xfermask(struct ata_device *dev)
4452{
4453 struct ata_link *link = dev->link;
4454 struct ata_port *ap = link->ap;
4455 struct ata_host *host = ap->host;
4456 unsigned long xfer_mask;
4457
4458 /* controller modes available */
4459 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4460 ap->mwdma_mask, ap->udma_mask);
4461
4462 /* drive modes available */
4463 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4464 dev->mwdma_mask, dev->udma_mask);
4465 xfer_mask &= ata_id_xfermask(dev->id);
4466
4467 /*
4468 * CFA Advanced TrueIDE timings are not allowed on a shared
4469 * cable
4470 */
4471 if (ata_dev_pair(dev)) {
4472 /* No PIO5 or PIO6 */
4473 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4474 /* No MWDMA3 or MWDMA 4 */
4475 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4476 }
4477
4478 if (ata_dma_blacklisted(dev)) {
4479 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4480 ata_dev_printk(dev, KERN_WARNING,
4481 "device is on DMA blacklist, disabling DMA\n");
4482 }
4483
4484 if ((host->flags & ATA_HOST_SIMPLEX) &&
4485 host->simplex_claimed && host->simplex_claimed != ap) {
4486 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4487 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4488 "other device, disabling DMA\n");
4489 }
4490
4491 if (ap->flags & ATA_FLAG_NO_IORDY)
4492 xfer_mask &= ata_pio_mask_no_iordy(dev);
4493
4494 if (ap->ops->mode_filter)
4495 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4496
4497 /* Apply cable rule here. Don't apply it early because when
4498 * we handle hot plug the cable type can itself change.
4499 * Check this last so that we know if the transfer rate was
4500 * solely limited by the cable.
4501 * Unknown or 80 wire cables reported host side are checked
4502 * drive side as well. Cases where we know a 40wire cable
4503 * is used safely for 80 are not checked here.
4504 */
4505 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4506 /* UDMA/44 or higher would be available */
4507 if (cable_is_40wire(ap)) {
4508 ata_dev_printk(dev, KERN_WARNING,
4509 "limited to UDMA/33 due to 40-wire cable\n");
4510 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4511 }
4512
4513 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4514 &dev->mwdma_mask, &dev->udma_mask);
4515}
4516
4517/**
4518 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4519 * @dev: Device to which command will be sent
4520 *
4521 * Issue SET FEATURES - XFER MODE command to device @dev
4522 * on port @ap.
4523 *
4524 * LOCKING:
4525 * PCI/etc. bus probe sem.
4526 *
4527 * RETURNS:
4528 * 0 on success, AC_ERR_* mask otherwise.
4529 */
4530
4531static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4532{
4533 struct ata_taskfile tf;
4534 unsigned int err_mask;
4535
4536 /* set up set-features taskfile */
4537 DPRINTK("set features - xfer mode\n");
4538
4539 /* Some controllers and ATAPI devices show flaky interrupt
4540 * behavior after setting xfer mode. Use polling instead.
4541 */
4542 ata_tf_init(dev, &tf);
4543 tf.command = ATA_CMD_SET_FEATURES;
4544 tf.feature = SETFEATURES_XFER;
4545 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4546 tf.protocol = ATA_PROT_NODATA;
4547 /* If we are using IORDY we must send the mode setting command */
4548 if (ata_pio_need_iordy(dev))
4549 tf.nsect = dev->xfer_mode;
4550 /* If the device has IORDY and the controller does not - turn it off */
4551 else if (ata_id_has_iordy(dev->id))
4552 tf.nsect = 0x01;
4553 else /* In the ancient relic department - skip all of this */
4554 return 0;
4555
4556 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4557
4558 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4559 return err_mask;
4560}
4561/**
4562 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4563 * @dev: Device to which command will be sent
4564 * @enable: Whether to enable or disable the feature
4565 * @feature: The sector count represents the feature to set
4566 *
4567 * Issue SET FEATURES - SATA FEATURES command to device @dev
4568 * on port @ap with sector count
4569 *
4570 * LOCKING:
4571 * PCI/etc. bus probe sem.
4572 *
4573 * RETURNS:
4574 * 0 on success, AC_ERR_* mask otherwise.
4575 */
4576static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4577 u8 feature)
4578{
4579 struct ata_taskfile tf;
4580 unsigned int err_mask;
4581
4582 /* set up set-features taskfile */
4583 DPRINTK("set features - SATA features\n");
4584
4585 ata_tf_init(dev, &tf);
4586 tf.command = ATA_CMD_SET_FEATURES;
4587 tf.feature = enable;
4588 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4589 tf.protocol = ATA_PROT_NODATA;
4590 tf.nsect = feature;
4591
4592 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4593
4594 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4595 return err_mask;
4596}
4597
4598/**
4599 * ata_dev_init_params - Issue INIT DEV PARAMS command
4600 * @dev: Device to which command will be sent
4601 * @heads: Number of heads (taskfile parameter)
4602 * @sectors: Number of sectors (taskfile parameter)
4603 *
4604 * LOCKING:
4605 * Kernel thread context (may sleep)
4606 *
4607 * RETURNS:
4608 * 0 on success, AC_ERR_* mask otherwise.
4609 */
4610static unsigned int ata_dev_init_params(struct ata_device *dev,
4611 u16 heads, u16 sectors)
4612{
4613 struct ata_taskfile tf;
4614 unsigned int err_mask;
4615
4616 /* Number of sectors per track 1-255. Number of heads 1-16 */
4617 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4618 return AC_ERR_INVALID;
4619
4620 /* set up init dev params taskfile */
4621 DPRINTK("init dev params \n");
4622
4623 ata_tf_init(dev, &tf);
4624 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4625 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4626 tf.protocol = ATA_PROT_NODATA;
4627 tf.nsect = sectors;
4628 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4629
4630 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4631 /* A clean abort indicates an original or just out of spec drive
4632 and we should continue as we issue the setup based on the
4633 drive reported working geometry */
4634 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4635 err_mask = 0;
4636
4637 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4638 return err_mask;
4639}
4640
4641/**
4642 * ata_sg_clean - Unmap DMA memory associated with command
4643 * @qc: Command containing DMA memory to be released
4644 *
4645 * Unmap all mapped DMA memory associated with this command.
4646 *
4647 * LOCKING:
4648 * spin_lock_irqsave(host lock)
4649 */
4650void ata_sg_clean(struct ata_queued_cmd *qc)
4651{
4652 struct ata_port *ap = qc->ap;
4653 struct scatterlist *sg = qc->sg;
4654 int dir = qc->dma_dir;
4655
4656 WARN_ON_ONCE(sg == NULL);
4657
4658 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4659
4660 if (qc->n_elem)
4661 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4662
4663 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4664 qc->sg = NULL;
4665}
4666
4667/**
4668 * atapi_check_dma - Check whether ATAPI DMA can be supported
4669 * @qc: Metadata associated with taskfile to check
4670 *
4671 * Allow low-level driver to filter ATA PACKET commands, returning
4672 * a status indicating whether or not it is OK to use DMA for the
4673 * supplied PACKET command.
4674 *
4675 * LOCKING:
4676 * spin_lock_irqsave(host lock)
4677 *
4678 * RETURNS: 0 when ATAPI DMA can be used
4679 * nonzero otherwise
4680 */
4681int atapi_check_dma(struct ata_queued_cmd *qc)
4682{
4683 struct ata_port *ap = qc->ap;
4684
4685 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4686 * few ATAPI devices choke on such DMA requests.
4687 */
4688 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4689 unlikely(qc->nbytes & 15))
4690 return 1;
4691
4692 if (ap->ops->check_atapi_dma)
4693 return ap->ops->check_atapi_dma(qc);
4694
4695 return 0;
4696}
4697
4698/**
4699 * ata_std_qc_defer - Check whether a qc needs to be deferred
4700 * @qc: ATA command in question
4701 *
4702 * Non-NCQ commands cannot run with any other command, NCQ or
4703 * not. As upper layer only knows the queue depth, we are
4704 * responsible for maintaining exclusion. This function checks
4705 * whether a new command @qc can be issued.
4706 *
4707 * LOCKING:
4708 * spin_lock_irqsave(host lock)
4709 *
4710 * RETURNS:
4711 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4712 */
4713int ata_std_qc_defer(struct ata_queued_cmd *qc)
4714{
4715 struct ata_link *link = qc->dev->link;
4716
4717 if (qc->tf.protocol == ATA_PROT_NCQ) {
4718 if (!ata_tag_valid(link->active_tag))
4719 return 0;
4720 } else {
4721 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4722 return 0;
4723 }
4724
4725 return ATA_DEFER_LINK;
4726}
4727
4728void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4729
4730/**
4731 * ata_sg_init - Associate command with scatter-gather table.
4732 * @qc: Command to be associated
4733 * @sg: Scatter-gather table.
4734 * @n_elem: Number of elements in s/g table.
4735 *
4736 * Initialize the data-related elements of queued_cmd @qc
4737 * to point to a scatter-gather table @sg, containing @n_elem
4738 * elements.
4739 *
4740 * LOCKING:
4741 * spin_lock_irqsave(host lock)
4742 */
4743void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4744 unsigned int n_elem)
4745{
4746 qc->sg = sg;
4747 qc->n_elem = n_elem;
4748 qc->cursg = qc->sg;
4749}
4750
4751/**
4752 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4753 * @qc: Command with scatter-gather table to be mapped.
4754 *
4755 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4756 *
4757 * LOCKING:
4758 * spin_lock_irqsave(host lock)
4759 *
4760 * RETURNS:
4761 * Zero on success, negative on error.
4762 *
4763 */
4764static int ata_sg_setup(struct ata_queued_cmd *qc)
4765{
4766 struct ata_port *ap = qc->ap;
4767 unsigned int n_elem;
4768
4769 VPRINTK("ENTER, ata%u\n", ap->print_id);
4770
4771 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4772 if (n_elem < 1)
4773 return -1;
4774
4775 DPRINTK("%d sg elements mapped\n", n_elem);
4776 qc->orig_n_elem = qc->n_elem;
4777 qc->n_elem = n_elem;
4778 qc->flags |= ATA_QCFLAG_DMAMAP;
4779
4780 return 0;
4781}
4782
4783/**
4784 * swap_buf_le16 - swap halves of 16-bit words in place
4785 * @buf: Buffer to swap
4786 * @buf_words: Number of 16-bit words in buffer.
4787 *
4788 * Swap halves of 16-bit words if needed to convert from
4789 * little-endian byte order to native cpu byte order, or
4790 * vice-versa.
4791 *
4792 * LOCKING:
4793 * Inherited from caller.
4794 */
4795void swap_buf_le16(u16 *buf, unsigned int buf_words)
4796{
4797#ifdef __BIG_ENDIAN
4798 unsigned int i;
4799
4800 for (i = 0; i < buf_words; i++)
4801 buf[i] = le16_to_cpu(buf[i]);
4802#endif /* __BIG_ENDIAN */
4803}
4804
4805/**
4806 * ata_qc_new - Request an available ATA command, for queueing
4807 * @ap: target port
4808 *
4809 * LOCKING:
4810 * None.
4811 */
4812
4813static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4814{
4815 struct ata_queued_cmd *qc = NULL;
4816 unsigned int i;
4817
4818 /* no command while frozen */
4819 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4820 return NULL;
4821
4822 /* the last tag is reserved for internal command. */
4823 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4824 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4825 qc = __ata_qc_from_tag(ap, i);
4826 break;
4827 }
4828
4829 if (qc)
4830 qc->tag = i;
4831
4832 return qc;
4833}
4834
4835/**
4836 * ata_qc_new_init - Request an available ATA command, and initialize it
4837 * @dev: Device from whom we request an available command structure
4838 *
4839 * LOCKING:
4840 * None.
4841 */
4842
4843struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4844{
4845 struct ata_port *ap = dev->link->ap;
4846 struct ata_queued_cmd *qc;
4847
4848 qc = ata_qc_new(ap);
4849 if (qc) {
4850 qc->scsicmd = NULL;
4851 qc->ap = ap;
4852 qc->dev = dev;
4853
4854 ata_qc_reinit(qc);
4855 }
4856
4857 return qc;
4858}
4859
4860/**
4861 * ata_qc_free - free unused ata_queued_cmd
4862 * @qc: Command to complete
4863 *
4864 * Designed to free unused ata_queued_cmd object
4865 * in case something prevents using it.
4866 *
4867 * LOCKING:
4868 * spin_lock_irqsave(host lock)
4869 */
4870void ata_qc_free(struct ata_queued_cmd *qc)
4871{
4872 struct ata_port *ap;
4873 unsigned int tag;
4874
4875 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4876 ap = qc->ap;
4877
4878 qc->flags = 0;
4879 tag = qc->tag;
4880 if (likely(ata_tag_valid(tag))) {
4881 qc->tag = ATA_TAG_POISON;
4882 clear_bit(tag, &ap->qc_allocated);
4883 }
4884}
4885
4886void __ata_qc_complete(struct ata_queued_cmd *qc)
4887{
4888 struct ata_port *ap;
4889 struct ata_link *link;
4890
4891 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4892 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4893 ap = qc->ap;
4894 link = qc->dev->link;
4895
4896 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4897 ata_sg_clean(qc);
4898
4899 /* command should be marked inactive atomically with qc completion */
4900 if (qc->tf.protocol == ATA_PROT_NCQ) {
4901 link->sactive &= ~(1 << qc->tag);
4902 if (!link->sactive)
4903 ap->nr_active_links--;
4904 } else {
4905 link->active_tag = ATA_TAG_POISON;
4906 ap->nr_active_links--;
4907 }
4908
4909 /* clear exclusive status */
4910 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4911 ap->excl_link == link))
4912 ap->excl_link = NULL;
4913
4914 /* atapi: mark qc as inactive to prevent the interrupt handler
4915 * from completing the command twice later, before the error handler
4916 * is called. (when rc != 0 and atapi request sense is needed)
4917 */
4918 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4919 ap->qc_active &= ~(1 << qc->tag);
4920
4921 /* call completion callback */
4922 qc->complete_fn(qc);
4923}
4924
4925static void fill_result_tf(struct ata_queued_cmd *qc)
4926{
4927 struct ata_port *ap = qc->ap;
4928
4929 qc->result_tf.flags = qc->tf.flags;
4930 ap->ops->qc_fill_rtf(qc);
4931}
4932
4933static void ata_verify_xfer(struct ata_queued_cmd *qc)
4934{
4935 struct ata_device *dev = qc->dev;
4936
4937 if (ata_tag_internal(qc->tag))
4938 return;
4939
4940 if (ata_is_nodata(qc->tf.protocol))
4941 return;
4942
4943 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4944 return;
4945
4946 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4947}
4948
4949/**
4950 * ata_qc_complete - Complete an active ATA command
4951 * @qc: Command to complete
4952 *
4953 * Indicate to the mid and upper layers that an ATA
4954 * command has completed, with either an ok or not-ok status.
4955 *
4956 * LOCKING:
4957 * spin_lock_irqsave(host lock)
4958 */
4959void ata_qc_complete(struct ata_queued_cmd *qc)
4960{
4961 struct ata_port *ap = qc->ap;
4962
4963 /* XXX: New EH and old EH use different mechanisms to
4964 * synchronize EH with regular execution path.
4965 *
4966 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4967 * Normal execution path is responsible for not accessing a
4968 * failed qc. libata core enforces the rule by returning NULL
4969 * from ata_qc_from_tag() for failed qcs.
4970 *
4971 * Old EH depends on ata_qc_complete() nullifying completion
4972 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4973 * not synchronize with interrupt handler. Only PIO task is
4974 * taken care of.
4975 */
4976 if (ap->ops->error_handler) {
4977 struct ata_device *dev = qc->dev;
4978 struct ata_eh_info *ehi = &dev->link->eh_info;
4979
4980 if (unlikely(qc->err_mask))
4981 qc->flags |= ATA_QCFLAG_FAILED;
4982
4983 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4984 /* always fill result TF for failed qc */
4985 fill_result_tf(qc);
4986
4987 if (!ata_tag_internal(qc->tag))
4988 ata_qc_schedule_eh(qc);
4989 else
4990 __ata_qc_complete(qc);
4991 return;
4992 }
4993
4994 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4995
4996 /* read result TF if requested */
4997 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4998 fill_result_tf(qc);
4999
5000 /* Some commands need post-processing after successful
5001 * completion.
5002 */
5003 switch (qc->tf.command) {
5004 case ATA_CMD_SET_FEATURES:
5005 if (qc->tf.feature != SETFEATURES_WC_ON &&
5006 qc->tf.feature != SETFEATURES_WC_OFF)
5007 break;
5008 /* fall through */
5009 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5010 case ATA_CMD_SET_MULTI: /* multi_count changed */
5011 /* revalidate device */
5012 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5013 ata_port_schedule_eh(ap);
5014 break;
5015
5016 case ATA_CMD_SLEEP:
5017 dev->flags |= ATA_DFLAG_SLEEPING;
5018 break;
5019 }
5020
5021 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5022 ata_verify_xfer(qc);
5023
5024 __ata_qc_complete(qc);
5025 } else {
5026 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5027 return;
5028
5029 /* read result TF if failed or requested */
5030 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5031 fill_result_tf(qc);
5032
5033 __ata_qc_complete(qc);
5034 }
5035}
5036
5037/**
5038 * ata_qc_complete_multiple - Complete multiple qcs successfully
5039 * @ap: port in question
5040 * @qc_active: new qc_active mask
5041 *
5042 * Complete in-flight commands. This functions is meant to be
5043 * called from low-level driver's interrupt routine to complete
5044 * requests normally. ap->qc_active and @qc_active is compared
5045 * and commands are completed accordingly.
5046 *
5047 * LOCKING:
5048 * spin_lock_irqsave(host lock)
5049 *
5050 * RETURNS:
5051 * Number of completed commands on success, -errno otherwise.
5052 */
5053int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5054{
5055 int nr_done = 0;
5056 u32 done_mask;
5057
5058 done_mask = ap->qc_active ^ qc_active;
5059
5060 if (unlikely(done_mask & qc_active)) {
5061 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5062 "(%08x->%08x)\n", ap->qc_active, qc_active);
5063 return -EINVAL;
5064 }
5065
5066 while (done_mask) {
5067 struct ata_queued_cmd *qc;
5068 unsigned int tag = __ffs(done_mask);
5069
5070 qc = ata_qc_from_tag(ap, tag);
5071 if (qc) {
5072 ata_qc_complete(qc);
5073 nr_done++;
5074 }
5075 done_mask &= ~(1 << tag);
5076 }
5077
5078 return nr_done;
5079}
5080
5081/**
5082 * ata_qc_issue - issue taskfile to device
5083 * @qc: command to issue to device
5084 *
5085 * Prepare an ATA command to submission to device.
5086 * This includes mapping the data into a DMA-able
5087 * area, filling in the S/G table, and finally
5088 * writing the taskfile to hardware, starting the command.
5089 *
5090 * LOCKING:
5091 * spin_lock_irqsave(host lock)
5092 */
5093void ata_qc_issue(struct ata_queued_cmd *qc)
5094{
5095 struct ata_port *ap = qc->ap;
5096 struct ata_link *link = qc->dev->link;
5097 u8 prot = qc->tf.protocol;
5098
5099 /* Make sure only one non-NCQ command is outstanding. The
5100 * check is skipped for old EH because it reuses active qc to
5101 * request ATAPI sense.
5102 */
5103 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5104
5105 if (ata_is_ncq(prot)) {
5106 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5107
5108 if (!link->sactive)
5109 ap->nr_active_links++;
5110 link->sactive |= 1 << qc->tag;
5111 } else {
5112 WARN_ON_ONCE(link->sactive);
5113
5114 ap->nr_active_links++;
5115 link->active_tag = qc->tag;
5116 }
5117
5118 qc->flags |= ATA_QCFLAG_ACTIVE;
5119 ap->qc_active |= 1 << qc->tag;
5120
5121 /* We guarantee to LLDs that they will have at least one
5122 * non-zero sg if the command is a data command.
5123 */
5124 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5125
5126 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5127 (ap->flags & ATA_FLAG_PIO_DMA)))
5128 if (ata_sg_setup(qc))
5129 goto sg_err;
5130
5131 /* if device is sleeping, schedule reset and abort the link */
5132 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5133 link->eh_info.action |= ATA_EH_RESET;
5134 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5135 ata_link_abort(link);
5136 return;
5137 }
5138
5139 ap->ops->qc_prep(qc);
5140
5141 qc->err_mask |= ap->ops->qc_issue(qc);
5142 if (unlikely(qc->err_mask))
5143 goto err;
5144 return;
5145
5146sg_err:
5147 qc->err_mask |= AC_ERR_SYSTEM;
5148err:
5149 ata_qc_complete(qc);
5150}
5151
5152/**
5153 * sata_scr_valid - test whether SCRs are accessible
5154 * @link: ATA link to test SCR accessibility for
5155 *
5156 * Test whether SCRs are accessible for @link.
5157 *
5158 * LOCKING:
5159 * None.
5160 *
5161 * RETURNS:
5162 * 1 if SCRs are accessible, 0 otherwise.
5163 */
5164int sata_scr_valid(struct ata_link *link)
5165{
5166 struct ata_port *ap = link->ap;
5167
5168 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5169}
5170
5171/**
5172 * sata_scr_read - read SCR register of the specified port
5173 * @link: ATA link to read SCR for
5174 * @reg: SCR to read
5175 * @val: Place to store read value
5176 *
5177 * Read SCR register @reg of @link into *@val. This function is
5178 * guaranteed to succeed if @link is ap->link, the cable type of
5179 * the port is SATA and the port implements ->scr_read.
5180 *
5181 * LOCKING:
5182 * None if @link is ap->link. Kernel thread context otherwise.
5183 *
5184 * RETURNS:
5185 * 0 on success, negative errno on failure.
5186 */
5187int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5188{
5189 if (ata_is_host_link(link)) {
5190 if (sata_scr_valid(link))
5191 return link->ap->ops->scr_read(link, reg, val);
5192 return -EOPNOTSUPP;
5193 }
5194
5195 return sata_pmp_scr_read(link, reg, val);
5196}
5197
5198/**
5199 * sata_scr_write - write SCR register of the specified port
5200 * @link: ATA link to write SCR for
5201 * @reg: SCR to write
5202 * @val: value to write
5203 *
5204 * Write @val to SCR register @reg of @link. This function is
5205 * guaranteed to succeed if @link is ap->link, the cable type of
5206 * the port is SATA and the port implements ->scr_read.
5207 *
5208 * LOCKING:
5209 * None if @link is ap->link. Kernel thread context otherwise.
5210 *
5211 * RETURNS:
5212 * 0 on success, negative errno on failure.
5213 */
5214int sata_scr_write(struct ata_link *link, int reg, u32 val)
5215{
5216 if (ata_is_host_link(link)) {
5217 if (sata_scr_valid(link))
5218 return link->ap->ops->scr_write(link, reg, val);
5219 return -EOPNOTSUPP;
5220 }
5221
5222 return sata_pmp_scr_write(link, reg, val);
5223}
5224
5225/**
5226 * sata_scr_write_flush - write SCR register of the specified port and flush
5227 * @link: ATA link to write SCR for
5228 * @reg: SCR to write
5229 * @val: value to write
5230 *
5231 * This function is identical to sata_scr_write() except that this
5232 * function performs flush after writing to the register.
5233 *
5234 * LOCKING:
5235 * None if @link is ap->link. Kernel thread context otherwise.
5236 *
5237 * RETURNS:
5238 * 0 on success, negative errno on failure.
5239 */
5240int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5241{
5242 if (ata_is_host_link(link)) {
5243 int rc;
5244
5245 if (sata_scr_valid(link)) {
5246 rc = link->ap->ops->scr_write(link, reg, val);
5247 if (rc == 0)
5248 rc = link->ap->ops->scr_read(link, reg, &val);
5249 return rc;
5250 }
5251 return -EOPNOTSUPP;
5252 }
5253
5254 return sata_pmp_scr_write(link, reg, val);
5255}
5256
5257/**
5258 * ata_phys_link_online - test whether the given link is online
5259 * @link: ATA link to test
5260 *
5261 * Test whether @link is online. Note that this function returns
5262 * 0 if online status of @link cannot be obtained, so
5263 * ata_link_online(link) != !ata_link_offline(link).
5264 *
5265 * LOCKING:
5266 * None.
5267 *
5268 * RETURNS:
5269 * True if the port online status is available and online.
5270 */
5271bool ata_phys_link_online(struct ata_link *link)
5272{
5273 u32 sstatus;
5274
5275 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5276 ata_sstatus_online(sstatus))
5277 return true;
5278 return false;
5279}
5280
5281/**
5282 * ata_phys_link_offline - test whether the given link is offline
5283 * @link: ATA link to test
5284 *
5285 * Test whether @link is offline. Note that this function
5286 * returns 0 if offline status of @link cannot be obtained, so
5287 * ata_link_online(link) != !ata_link_offline(link).
5288 *
5289 * LOCKING:
5290 * None.
5291 *
5292 * RETURNS:
5293 * True if the port offline status is available and offline.
5294 */
5295bool ata_phys_link_offline(struct ata_link *link)
5296{
5297 u32 sstatus;
5298
5299 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5300 !ata_sstatus_online(sstatus))
5301 return true;
5302 return false;
5303}
5304
5305/**
5306 * ata_link_online - test whether the given link is online
5307 * @link: ATA link to test
5308 *
5309 * Test whether @link is online. This is identical to
5310 * ata_phys_link_online() when there's no slave link. When
5311 * there's a slave link, this function should only be called on
5312 * the master link and will return true if any of M/S links is
5313 * online.
5314 *
5315 * LOCKING:
5316 * None.
5317 *
5318 * RETURNS:
5319 * True if the port online status is available and online.
5320 */
5321bool ata_link_online(struct ata_link *link)
5322{
5323 struct ata_link *slave = link->ap->slave_link;
5324
5325 WARN_ON(link == slave); /* shouldn't be called on slave link */
5326
5327 return ata_phys_link_online(link) ||
5328 (slave && ata_phys_link_online(slave));
5329}
5330
5331/**
5332 * ata_link_offline - test whether the given link is offline
5333 * @link: ATA link to test
5334 *
5335 * Test whether @link is offline. This is identical to
5336 * ata_phys_link_offline() when there's no slave link. When
5337 * there's a slave link, this function should only be called on
5338 * the master link and will return true if both M/S links are
5339 * offline.
5340 *
5341 * LOCKING:
5342 * None.
5343 *
5344 * RETURNS:
5345 * True if the port offline status is available and offline.
5346 */
5347bool ata_link_offline(struct ata_link *link)
5348{
5349 struct ata_link *slave = link->ap->slave_link;
5350
5351 WARN_ON(link == slave); /* shouldn't be called on slave link */
5352
5353 return ata_phys_link_offline(link) &&
5354 (!slave || ata_phys_link_offline(slave));
5355}
5356
5357#ifdef CONFIG_PM
5358static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5359 unsigned int action, unsigned int ehi_flags,
5360 int wait)
5361{
5362 unsigned long flags;
5363 int i, rc;
5364
5365 for (i = 0; i < host->n_ports; i++) {
5366 struct ata_port *ap = host->ports[i];
5367 struct ata_link *link;
5368
5369 /* Previous resume operation might still be in
5370 * progress. Wait for PM_PENDING to clear.
5371 */
5372 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5373 ata_port_wait_eh(ap);
5374 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5375 }
5376
5377 /* request PM ops to EH */
5378 spin_lock_irqsave(ap->lock, flags);
5379
5380 ap->pm_mesg = mesg;
5381 if (wait) {
5382 rc = 0;
5383 ap->pm_result = &rc;
5384 }
5385
5386 ap->pflags |= ATA_PFLAG_PM_PENDING;
5387 ata_for_each_link(link, ap, HOST_FIRST) {
5388 link->eh_info.action |= action;
5389 link->eh_info.flags |= ehi_flags;
5390 }
5391
5392 ata_port_schedule_eh(ap);
5393
5394 spin_unlock_irqrestore(ap->lock, flags);
5395
5396 /* wait and check result */
5397 if (wait) {
5398 ata_port_wait_eh(ap);
5399 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5400 if (rc)
5401 return rc;
5402 }
5403 }
5404
5405 return 0;
5406}
5407
5408/**
5409 * ata_host_suspend - suspend host
5410 * @host: host to suspend
5411 * @mesg: PM message
5412 *
5413 * Suspend @host. Actual operation is performed by EH. This
5414 * function requests EH to perform PM operations and waits for EH
5415 * to finish.
5416 *
5417 * LOCKING:
5418 * Kernel thread context (may sleep).
5419 *
5420 * RETURNS:
5421 * 0 on success, -errno on failure.
5422 */
5423int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5424{
5425 int rc;
5426
5427 /*
5428 * disable link pm on all ports before requesting
5429 * any pm activity
5430 */
5431 ata_lpm_enable(host);
5432
5433 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5434 if (rc == 0)
5435 host->dev->power.power_state = mesg;
5436 return rc;
5437}
5438
5439/**
5440 * ata_host_resume - resume host
5441 * @host: host to resume
5442 *
5443 * Resume @host. Actual operation is performed by EH. This
5444 * function requests EH to perform PM operations and returns.
5445 * Note that all resume operations are performed parallely.
5446 *
5447 * LOCKING:
5448 * Kernel thread context (may sleep).
5449 */
5450void ata_host_resume(struct ata_host *host)
5451{
5452 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5453 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5454 host->dev->power.power_state = PMSG_ON;
5455
5456 /* reenable link pm */
5457 ata_lpm_disable(host);
5458}
5459#endif
5460
5461/**
5462 * ata_dev_init - Initialize an ata_device structure
5463 * @dev: Device structure to initialize
5464 *
5465 * Initialize @dev in preparation for probing.
5466 *
5467 * LOCKING:
5468 * Inherited from caller.
5469 */
5470void ata_dev_init(struct ata_device *dev)
5471{
5472 struct ata_link *link = ata_dev_phys_link(dev);
5473 struct ata_port *ap = link->ap;
5474 unsigned long flags;
5475
5476 /* SATA spd limit is bound to the attached device, reset together */
5477 link->sata_spd_limit = link->hw_sata_spd_limit;
5478 link->sata_spd = 0;
5479
5480 /* High bits of dev->flags are used to record warm plug
5481 * requests which occur asynchronously. Synchronize using
5482 * host lock.
5483 */
5484 spin_lock_irqsave(ap->lock, flags);
5485 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5486 dev->horkage = 0;
5487 spin_unlock_irqrestore(ap->lock, flags);
5488
5489 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5490 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5491 dev->pio_mask = UINT_MAX;
5492 dev->mwdma_mask = UINT_MAX;
5493 dev->udma_mask = UINT_MAX;
5494}
5495
5496/**
5497 * ata_link_init - Initialize an ata_link structure
5498 * @ap: ATA port link is attached to
5499 * @link: Link structure to initialize
5500 * @pmp: Port multiplier port number
5501 *
5502 * Initialize @link.
5503 *
5504 * LOCKING:
5505 * Kernel thread context (may sleep)
5506 */
5507void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5508{
5509 int i;
5510
5511 /* clear everything except for devices */
5512 memset(link, 0, offsetof(struct ata_link, device[0]));
5513
5514 link->ap = ap;
5515 link->pmp = pmp;
5516 link->active_tag = ATA_TAG_POISON;
5517 link->hw_sata_spd_limit = UINT_MAX;
5518
5519 /* can't use iterator, ap isn't initialized yet */
5520 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5521 struct ata_device *dev = &link->device[i];
5522
5523 dev->link = link;
5524 dev->devno = dev - link->device;
5525#ifdef CONFIG_ATA_ACPI
5526 dev->gtf_filter = ata_acpi_gtf_filter;
5527#endif
5528 ata_dev_init(dev);
5529 }
5530}
5531
5532/**
5533 * sata_link_init_spd - Initialize link->sata_spd_limit
5534 * @link: Link to configure sata_spd_limit for
5535 *
5536 * Initialize @link->[hw_]sata_spd_limit to the currently
5537 * configured value.
5538 *
5539 * LOCKING:
5540 * Kernel thread context (may sleep).
5541 *
5542 * RETURNS:
5543 * 0 on success, -errno on failure.
5544 */
5545int sata_link_init_spd(struct ata_link *link)
5546{
5547 u8 spd;
5548 int rc;
5549
5550 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5551 if (rc)
5552 return rc;
5553
5554 spd = (link->saved_scontrol >> 4) & 0xf;
5555 if (spd)
5556 link->hw_sata_spd_limit &= (1 << spd) - 1;
5557
5558 ata_force_link_limits(link);
5559
5560 link->sata_spd_limit = link->hw_sata_spd_limit;
5561
5562 return 0;
5563}
5564
5565/**
5566 * ata_port_alloc - allocate and initialize basic ATA port resources
5567 * @host: ATA host this allocated port belongs to
5568 *
5569 * Allocate and initialize basic ATA port resources.
5570 *
5571 * RETURNS:
5572 * Allocate ATA port on success, NULL on failure.
5573 *
5574 * LOCKING:
5575 * Inherited from calling layer (may sleep).
5576 */
5577struct ata_port *ata_port_alloc(struct ata_host *host)
5578{
5579 struct ata_port *ap;
5580
5581 DPRINTK("ENTER\n");
5582
5583 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5584 if (!ap)
5585 return NULL;
5586
5587 ap->pflags |= ATA_PFLAG_INITIALIZING;
5588 ap->lock = &host->lock;
5589 ap->print_id = -1;
5590 ap->host = host;
5591 ap->dev = host->dev;
5592
5593#if defined(ATA_VERBOSE_DEBUG)
5594 /* turn on all debugging levels */
5595 ap->msg_enable = 0x00FF;
5596#elif defined(ATA_DEBUG)
5597 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5598#else
5599 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5600#endif
5601
5602 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5603 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5604 INIT_LIST_HEAD(&ap->eh_done_q);
5605 init_waitqueue_head(&ap->eh_wait_q);
5606 init_completion(&ap->park_req_pending);
5607 init_timer_deferrable(&ap->fastdrain_timer);
5608 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5609 ap->fastdrain_timer.data = (unsigned long)ap;
5610
5611 ap->cbl = ATA_CBL_NONE;
5612
5613 ata_link_init(ap, &ap->link, 0);
5614
5615#ifdef ATA_IRQ_TRAP
5616 ap->stats.unhandled_irq = 1;
5617 ap->stats.idle_irq = 1;
5618#endif
5619 ata_sff_port_init(ap);
5620
5621 return ap;
5622}
5623
5624static void ata_host_release(struct device *gendev, void *res)
5625{
5626 struct ata_host *host = dev_get_drvdata(gendev);
5627 int i;
5628
5629 for (i = 0; i < host->n_ports; i++) {
5630 struct ata_port *ap = host->ports[i];
5631
5632 if (!ap)
5633 continue;
5634
5635 if (ap->scsi_host)
5636 scsi_host_put(ap->scsi_host);
5637
5638 kfree(ap->pmp_link);
5639 kfree(ap->slave_link);
5640 kfree(ap);
5641 host->ports[i] = NULL;
5642 }
5643
5644 dev_set_drvdata(gendev, NULL);
5645}
5646
5647/**
5648 * ata_host_alloc - allocate and init basic ATA host resources
5649 * @dev: generic device this host is associated with
5650 * @max_ports: maximum number of ATA ports associated with this host
5651 *
5652 * Allocate and initialize basic ATA host resources. LLD calls
5653 * this function to allocate a host, initializes it fully and
5654 * attaches it using ata_host_register().
5655 *
5656 * @max_ports ports are allocated and host->n_ports is
5657 * initialized to @max_ports. The caller is allowed to decrease
5658 * host->n_ports before calling ata_host_register(). The unused
5659 * ports will be automatically freed on registration.
5660 *
5661 * RETURNS:
5662 * Allocate ATA host on success, NULL on failure.
5663 *
5664 * LOCKING:
5665 * Inherited from calling layer (may sleep).
5666 */
5667struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5668{
5669 struct ata_host *host;
5670 size_t sz;
5671 int i;
5672
5673 DPRINTK("ENTER\n");
5674
5675 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5676 return NULL;
5677
5678 /* alloc a container for our list of ATA ports (buses) */
5679 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5680 /* alloc a container for our list of ATA ports (buses) */
5681 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5682 if (!host)
5683 goto err_out;
5684
5685 devres_add(dev, host);
5686 dev_set_drvdata(dev, host);
5687
5688 spin_lock_init(&host->lock);
5689 host->dev = dev;
5690 host->n_ports = max_ports;
5691
5692 /* allocate ports bound to this host */
5693 for (i = 0; i < max_ports; i++) {
5694 struct ata_port *ap;
5695
5696 ap = ata_port_alloc(host);
5697 if (!ap)
5698 goto err_out;
5699
5700 ap->port_no = i;
5701 host->ports[i] = ap;
5702 }
5703
5704 devres_remove_group(dev, NULL);
5705 return host;
5706
5707 err_out:
5708 devres_release_group(dev, NULL);
5709 return NULL;
5710}
5711
5712/**
5713 * ata_host_alloc_pinfo - alloc host and init with port_info array
5714 * @dev: generic device this host is associated with
5715 * @ppi: array of ATA port_info to initialize host with
5716 * @n_ports: number of ATA ports attached to this host
5717 *
5718 * Allocate ATA host and initialize with info from @ppi. If NULL
5719 * terminated, @ppi may contain fewer entries than @n_ports. The
5720 * last entry will be used for the remaining ports.
5721 *
5722 * RETURNS:
5723 * Allocate ATA host on success, NULL on failure.
5724 *
5725 * LOCKING:
5726 * Inherited from calling layer (may sleep).
5727 */
5728struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5729 const struct ata_port_info * const * ppi,
5730 int n_ports)
5731{
5732 const struct ata_port_info *pi;
5733 struct ata_host *host;
5734 int i, j;
5735
5736 host = ata_host_alloc(dev, n_ports);
5737 if (!host)
5738 return NULL;
5739
5740 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5741 struct ata_port *ap = host->ports[i];
5742
5743 if (ppi[j])
5744 pi = ppi[j++];
5745
5746 ap->pio_mask = pi->pio_mask;
5747 ap->mwdma_mask = pi->mwdma_mask;
5748 ap->udma_mask = pi->udma_mask;
5749 ap->flags |= pi->flags;
5750 ap->link.flags |= pi->link_flags;
5751 ap->ops = pi->port_ops;
5752
5753 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5754 host->ops = pi->port_ops;
5755 }
5756
5757 return host;
5758}
5759
5760/**
5761 * ata_slave_link_init - initialize slave link
5762 * @ap: port to initialize slave link for
5763 *
5764 * Create and initialize slave link for @ap. This enables slave
5765 * link handling on the port.
5766 *
5767 * In libata, a port contains links and a link contains devices.
5768 * There is single host link but if a PMP is attached to it,
5769 * there can be multiple fan-out links. On SATA, there's usually
5770 * a single device connected to a link but PATA and SATA
5771 * controllers emulating TF based interface can have two - master
5772 * and slave.
5773 *
5774 * However, there are a few controllers which don't fit into this
5775 * abstraction too well - SATA controllers which emulate TF
5776 * interface with both master and slave devices but also have
5777 * separate SCR register sets for each device. These controllers
5778 * need separate links for physical link handling
5779 * (e.g. onlineness, link speed) but should be treated like a
5780 * traditional M/S controller for everything else (e.g. command
5781 * issue, softreset).
5782 *
5783 * slave_link is libata's way of handling this class of
5784 * controllers without impacting core layer too much. For
5785 * anything other than physical link handling, the default host
5786 * link is used for both master and slave. For physical link
5787 * handling, separate @ap->slave_link is used. All dirty details
5788 * are implemented inside libata core layer. From LLD's POV, the
5789 * only difference is that prereset, hardreset and postreset are
5790 * called once more for the slave link, so the reset sequence
5791 * looks like the following.
5792 *
5793 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5794 * softreset(M) -> postreset(M) -> postreset(S)
5795 *
5796 * Note that softreset is called only for the master. Softreset
5797 * resets both M/S by definition, so SRST on master should handle
5798 * both (the standard method will work just fine).
5799 *
5800 * LOCKING:
5801 * Should be called before host is registered.
5802 *
5803 * RETURNS:
5804 * 0 on success, -errno on failure.
5805 */
5806int ata_slave_link_init(struct ata_port *ap)
5807{
5808 struct ata_link *link;
5809
5810 WARN_ON(ap->slave_link);
5811 WARN_ON(ap->flags & ATA_FLAG_PMP);
5812
5813 link = kzalloc(sizeof(*link), GFP_KERNEL);
5814 if (!link)
5815 return -ENOMEM;
5816
5817 ata_link_init(ap, link, 1);
5818 ap->slave_link = link;
5819 return 0;
5820}
5821
5822static void ata_host_stop(struct device *gendev, void *res)
5823{
5824 struct ata_host *host = dev_get_drvdata(gendev);
5825 int i;
5826
5827 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5828
5829 for (i = 0; i < host->n_ports; i++) {
5830 struct ata_port *ap = host->ports[i];
5831
5832 if (ap->ops->port_stop)
5833 ap->ops->port_stop(ap);
5834 }
5835
5836 if (host->ops->host_stop)
5837 host->ops->host_stop(host);
5838}
5839
5840/**
5841 * ata_finalize_port_ops - finalize ata_port_operations
5842 * @ops: ata_port_operations to finalize
5843 *
5844 * An ata_port_operations can inherit from another ops and that
5845 * ops can again inherit from another. This can go on as many
5846 * times as necessary as long as there is no loop in the
5847 * inheritance chain.
5848 *
5849 * Ops tables are finalized when the host is started. NULL or
5850 * unspecified entries are inherited from the closet ancestor
5851 * which has the method and the entry is populated with it.
5852 * After finalization, the ops table directly points to all the
5853 * methods and ->inherits is no longer necessary and cleared.
5854 *
5855 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5856 *
5857 * LOCKING:
5858 * None.
5859 */
5860static void ata_finalize_port_ops(struct ata_port_operations *ops)
5861{
5862 static DEFINE_SPINLOCK(lock);
5863 const struct ata_port_operations *cur;
5864 void **begin = (void **)ops;
5865 void **end = (void **)&ops->inherits;
5866 void **pp;
5867
5868 if (!ops || !ops->inherits)
5869 return;
5870
5871 spin_lock(&lock);
5872
5873 for (cur = ops->inherits; cur; cur = cur->inherits) {
5874 void **inherit = (void **)cur;
5875
5876 for (pp = begin; pp < end; pp++, inherit++)
5877 if (!*pp)
5878 *pp = *inherit;
5879 }
5880
5881 for (pp = begin; pp < end; pp++)
5882 if (IS_ERR(*pp))
5883 *pp = NULL;
5884
5885 ops->inherits = NULL;
5886
5887 spin_unlock(&lock);
5888}
5889
5890/**
5891 * ata_host_start - start and freeze ports of an ATA host
5892 * @host: ATA host to start ports for
5893 *
5894 * Start and then freeze ports of @host. Started status is
5895 * recorded in host->flags, so this function can be called
5896 * multiple times. Ports are guaranteed to get started only
5897 * once. If host->ops isn't initialized yet, its set to the
5898 * first non-dummy port ops.
5899 *
5900 * LOCKING:
5901 * Inherited from calling layer (may sleep).
5902 *
5903 * RETURNS:
5904 * 0 if all ports are started successfully, -errno otherwise.
5905 */
5906int ata_host_start(struct ata_host *host)
5907{
5908 int have_stop = 0;
5909 void *start_dr = NULL;
5910 int i, rc;
5911
5912 if (host->flags & ATA_HOST_STARTED)
5913 return 0;
5914
5915 ata_finalize_port_ops(host->ops);
5916
5917 for (i = 0; i < host->n_ports; i++) {
5918 struct ata_port *ap = host->ports[i];
5919
5920 ata_finalize_port_ops(ap->ops);
5921
5922 if (!host->ops && !ata_port_is_dummy(ap))
5923 host->ops = ap->ops;
5924
5925 if (ap->ops->port_stop)
5926 have_stop = 1;
5927 }
5928
5929 if (host->ops->host_stop)
5930 have_stop = 1;
5931
5932 if (have_stop) {
5933 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5934 if (!start_dr)
5935 return -ENOMEM;
5936 }
5937
5938 for (i = 0; i < host->n_ports; i++) {
5939 struct ata_port *ap = host->ports[i];
5940
5941 if (ap->ops->port_start) {
5942 rc = ap->ops->port_start(ap);
5943 if (rc) {
5944 if (rc != -ENODEV)
5945 dev_printk(KERN_ERR, host->dev,
5946 "failed to start port %d "
5947 "(errno=%d)\n", i, rc);
5948 goto err_out;
5949 }
5950 }
5951 ata_eh_freeze_port(ap);
5952 }
5953
5954 if (start_dr)
5955 devres_add(host->dev, start_dr);
5956 host->flags |= ATA_HOST_STARTED;
5957 return 0;
5958
5959 err_out:
5960 while (--i >= 0) {
5961 struct ata_port *ap = host->ports[i];
5962
5963 if (ap->ops->port_stop)
5964 ap->ops->port_stop(ap);
5965 }
5966 devres_free(start_dr);
5967 return rc;
5968}
5969
5970/**
5971 * ata_sas_host_init - Initialize a host struct
5972 * @host: host to initialize
5973 * @dev: device host is attached to
5974 * @flags: host flags
5975 * @ops: port_ops
5976 *
5977 * LOCKING:
5978 * PCI/etc. bus probe sem.
5979 *
5980 */
5981/* KILLME - the only user left is ipr */
5982void ata_host_init(struct ata_host *host, struct device *dev,
5983 unsigned long flags, struct ata_port_operations *ops)
5984{
5985 spin_lock_init(&host->lock);
5986 host->dev = dev;
5987 host->flags = flags;
5988 host->ops = ops;
5989}
5990
5991
5992static void async_port_probe(void *data, async_cookie_t cookie)
5993{
5994 int rc;
5995 struct ata_port *ap = data;
5996
5997 /*
5998 * If we're not allowed to scan this host in parallel,
5999 * we need to wait until all previous scans have completed
6000 * before going further.
6001 * Jeff Garzik says this is only within a controller, so we
6002 * don't need to wait for port 0, only for later ports.
6003 */
6004 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6005 async_synchronize_cookie(cookie);
6006
6007 /* probe */
6008 if (ap->ops->error_handler) {
6009 struct ata_eh_info *ehi = &ap->link.eh_info;
6010 unsigned long flags;
6011
6012 /* kick EH for boot probing */
6013 spin_lock_irqsave(ap->lock, flags);
6014
6015 ehi->probe_mask |= ATA_ALL_DEVICES;
6016 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6017 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6018
6019 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6020 ap->pflags |= ATA_PFLAG_LOADING;
6021 ata_port_schedule_eh(ap);
6022
6023 spin_unlock_irqrestore(ap->lock, flags);
6024
6025 /* wait for EH to finish */
6026 ata_port_wait_eh(ap);
6027 } else {
6028 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6029 rc = ata_bus_probe(ap);
6030 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6031
6032 if (rc) {
6033 /* FIXME: do something useful here?
6034 * Current libata behavior will
6035 * tear down everything when
6036 * the module is removed
6037 * or the h/w is unplugged.
6038 */
6039 }
6040 }
6041
6042 /* in order to keep device order, we need to synchronize at this point */
6043 async_synchronize_cookie(cookie);
6044
6045 ata_scsi_scan_host(ap, 1);
6046
6047}
6048/**
6049 * ata_host_register - register initialized ATA host
6050 * @host: ATA host to register
6051 * @sht: template for SCSI host
6052 *
6053 * Register initialized ATA host. @host is allocated using
6054 * ata_host_alloc() and fully initialized by LLD. This function
6055 * starts ports, registers @host with ATA and SCSI layers and
6056 * probe registered devices.
6057 *
6058 * LOCKING:
6059 * Inherited from calling layer (may sleep).
6060 *
6061 * RETURNS:
6062 * 0 on success, -errno otherwise.
6063 */
6064int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6065{
6066 int i, rc;
6067
6068 /* host must have been started */
6069 if (!(host->flags & ATA_HOST_STARTED)) {
6070 dev_printk(KERN_ERR, host->dev,
6071 "BUG: trying to register unstarted host\n");
6072 WARN_ON(1);
6073 return -EINVAL;
6074 }
6075
6076 /* Blow away unused ports. This happens when LLD can't
6077 * determine the exact number of ports to allocate at
6078 * allocation time.
6079 */
6080 for (i = host->n_ports; host->ports[i]; i++)
6081 kfree(host->ports[i]);
6082
6083 /* give ports names and add SCSI hosts */
6084 for (i = 0; i < host->n_ports; i++)
6085 host->ports[i]->print_id = ata_print_id++;
6086
6087 rc = ata_scsi_add_hosts(host, sht);
6088 if (rc)
6089 return rc;
6090
6091 /* associate with ACPI nodes */
6092 ata_acpi_associate(host);
6093
6094 /* set cable, sata_spd_limit and report */
6095 for (i = 0; i < host->n_ports; i++) {
6096 struct ata_port *ap = host->ports[i];
6097 unsigned long xfer_mask;
6098
6099 /* set SATA cable type if still unset */
6100 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6101 ap->cbl = ATA_CBL_SATA;
6102
6103 /* init sata_spd_limit to the current value */
6104 sata_link_init_spd(&ap->link);
6105 if (ap->slave_link)
6106 sata_link_init_spd(ap->slave_link);
6107
6108 /* print per-port info to dmesg */
6109 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6110 ap->udma_mask);
6111
6112 if (!ata_port_is_dummy(ap)) {
6113 ata_port_printk(ap, KERN_INFO,
6114 "%cATA max %s %s\n",
6115 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6116 ata_mode_string(xfer_mask),
6117 ap->link.eh_info.desc);
6118 ata_ehi_clear_desc(&ap->link.eh_info);
6119 } else
6120 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6121 }
6122
6123 /* perform each probe asynchronously */
6124 for (i = 0; i < host->n_ports; i++) {
6125 struct ata_port *ap = host->ports[i];
6126 async_schedule(async_port_probe, ap);
6127 }
6128
6129 return 0;
6130}
6131
6132/**
6133 * ata_host_activate - start host, request IRQ and register it
6134 * @host: target ATA host
6135 * @irq: IRQ to request
6136 * @irq_handler: irq_handler used when requesting IRQ
6137 * @irq_flags: irq_flags used when requesting IRQ
6138 * @sht: scsi_host_template to use when registering the host
6139 *
6140 * After allocating an ATA host and initializing it, most libata
6141 * LLDs perform three steps to activate the host - start host,
6142 * request IRQ and register it. This helper takes necessasry
6143 * arguments and performs the three steps in one go.
6144 *
6145 * An invalid IRQ skips the IRQ registration and expects the host to
6146 * have set polling mode on the port. In this case, @irq_handler
6147 * should be NULL.
6148 *
6149 * LOCKING:
6150 * Inherited from calling layer (may sleep).
6151 *
6152 * RETURNS:
6153 * 0 on success, -errno otherwise.
6154 */
6155int ata_host_activate(struct ata_host *host, int irq,
6156 irq_handler_t irq_handler, unsigned long irq_flags,
6157 struct scsi_host_template *sht)
6158{
6159 int i, rc;
6160
6161 rc = ata_host_start(host);
6162 if (rc)
6163 return rc;
6164
6165 /* Special case for polling mode */
6166 if (!irq) {
6167 WARN_ON(irq_handler);
6168 return ata_host_register(host, sht);
6169 }
6170
6171 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6172 dev_driver_string(host->dev), host);
6173 if (rc)
6174 return rc;
6175
6176 for (i = 0; i < host->n_ports; i++)
6177 ata_port_desc(host->ports[i], "irq %d", irq);
6178
6179 rc = ata_host_register(host, sht);
6180 /* if failed, just free the IRQ and leave ports alone */
6181 if (rc)
6182 devm_free_irq(host->dev, irq, host);
6183
6184 return rc;
6185}
6186
6187/**
6188 * ata_port_detach - Detach ATA port in prepration of device removal
6189 * @ap: ATA port to be detached
6190 *
6191 * Detach all ATA devices and the associated SCSI devices of @ap;
6192 * then, remove the associated SCSI host. @ap is guaranteed to
6193 * be quiescent on return from this function.
6194 *
6195 * LOCKING:
6196 * Kernel thread context (may sleep).
6197 */
6198static void ata_port_detach(struct ata_port *ap)
6199{
6200 unsigned long flags;
6201
6202 if (!ap->ops->error_handler)
6203 goto skip_eh;
6204
6205 /* tell EH we're leaving & flush EH */
6206 spin_lock_irqsave(ap->lock, flags);
6207 ap->pflags |= ATA_PFLAG_UNLOADING;
6208 ata_port_schedule_eh(ap);
6209 spin_unlock_irqrestore(ap->lock, flags);
6210
6211 /* wait till EH commits suicide */
6212 ata_port_wait_eh(ap);
6213
6214 /* it better be dead now */
6215 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6216
6217 cancel_rearming_delayed_work(&ap->hotplug_task);
6218
6219 skip_eh:
6220 /* remove the associated SCSI host */
6221 scsi_remove_host(ap->scsi_host);
6222}
6223
6224/**
6225 * ata_host_detach - Detach all ports of an ATA host
6226 * @host: Host to detach
6227 *
6228 * Detach all ports of @host.
6229 *
6230 * LOCKING:
6231 * Kernel thread context (may sleep).
6232 */
6233void ata_host_detach(struct ata_host *host)
6234{
6235 int i;
6236
6237 for (i = 0; i < host->n_ports; i++)
6238 ata_port_detach(host->ports[i]);
6239
6240 /* the host is dead now, dissociate ACPI */
6241 ata_acpi_dissociate(host);
6242}
6243
6244#ifdef CONFIG_PCI
6245
6246/**
6247 * ata_pci_remove_one - PCI layer callback for device removal
6248 * @pdev: PCI device that was removed
6249 *
6250 * PCI layer indicates to libata via this hook that hot-unplug or
6251 * module unload event has occurred. Detach all ports. Resource
6252 * release is handled via devres.
6253 *
6254 * LOCKING:
6255 * Inherited from PCI layer (may sleep).
6256 */
6257void ata_pci_remove_one(struct pci_dev *pdev)
6258{
6259 struct device *dev = &pdev->dev;
6260 struct ata_host *host = dev_get_drvdata(dev);
6261
6262 ata_host_detach(host);
6263}
6264
6265/* move to PCI subsystem */
6266int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6267{
6268 unsigned long tmp = 0;
6269
6270 switch (bits->width) {
6271 case 1: {
6272 u8 tmp8 = 0;
6273 pci_read_config_byte(pdev, bits->reg, &tmp8);
6274 tmp = tmp8;
6275 break;
6276 }
6277 case 2: {
6278 u16 tmp16 = 0;
6279 pci_read_config_word(pdev, bits->reg, &tmp16);
6280 tmp = tmp16;
6281 break;
6282 }
6283 case 4: {
6284 u32 tmp32 = 0;
6285 pci_read_config_dword(pdev, bits->reg, &tmp32);
6286 tmp = tmp32;
6287 break;
6288 }
6289
6290 default:
6291 return -EINVAL;
6292 }
6293
6294 tmp &= bits->mask;
6295
6296 return (tmp == bits->val) ? 1 : 0;
6297}
6298
6299#ifdef CONFIG_PM
6300void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6301{
6302 pci_save_state(pdev);
6303 pci_disable_device(pdev);
6304
6305 if (mesg.event & PM_EVENT_SLEEP)
6306 pci_set_power_state(pdev, PCI_D3hot);
6307}
6308
6309int ata_pci_device_do_resume(struct pci_dev *pdev)
6310{
6311 int rc;
6312
6313 pci_set_power_state(pdev, PCI_D0);
6314 pci_restore_state(pdev);
6315
6316 rc = pcim_enable_device(pdev);
6317 if (rc) {
6318 dev_printk(KERN_ERR, &pdev->dev,
6319 "failed to enable device after resume (%d)\n", rc);
6320 return rc;
6321 }
6322
6323 pci_set_master(pdev);
6324 return 0;
6325}
6326
6327int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6328{
6329 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6330 int rc = 0;
6331
6332 rc = ata_host_suspend(host, mesg);
6333 if (rc)
6334 return rc;
6335
6336 ata_pci_device_do_suspend(pdev, mesg);
6337
6338 return 0;
6339}
6340
6341int ata_pci_device_resume(struct pci_dev *pdev)
6342{
6343 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6344 int rc;
6345
6346 rc = ata_pci_device_do_resume(pdev);
6347 if (rc == 0)
6348 ata_host_resume(host);
6349 return rc;
6350}
6351#endif /* CONFIG_PM */
6352
6353#endif /* CONFIG_PCI */
6354
6355static int __init ata_parse_force_one(char **cur,
6356 struct ata_force_ent *force_ent,
6357 const char **reason)
6358{
6359 /* FIXME: Currently, there's no way to tag init const data and
6360 * using __initdata causes build failure on some versions of
6361 * gcc. Once __initdataconst is implemented, add const to the
6362 * following structure.
6363 */
6364 static struct ata_force_param force_tbl[] __initdata = {
6365 { "40c", .cbl = ATA_CBL_PATA40 },
6366 { "80c", .cbl = ATA_CBL_PATA80 },
6367 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6368 { "unk", .cbl = ATA_CBL_PATA_UNK },
6369 { "ign", .cbl = ATA_CBL_PATA_IGN },
6370 { "sata", .cbl = ATA_CBL_SATA },
6371 { "1.5Gbps", .spd_limit = 1 },
6372 { "3.0Gbps", .spd_limit = 2 },
6373 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6374 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6375 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6376 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6377 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6378 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6379 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6380 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6381 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6382 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6383 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6384 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6385 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6386 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6387 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6388 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6389 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6390 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6391 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6392 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6393 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6394 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6395 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6396 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6397 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6398 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6399 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6400 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6401 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6402 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6403 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6404 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6405 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6406 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6407 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6408 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6409 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6410 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6411 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6412 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6413 };
6414 char *start = *cur, *p = *cur;
6415 char *id, *val, *endp;
6416 const struct ata_force_param *match_fp = NULL;
6417 int nr_matches = 0, i;
6418
6419 /* find where this param ends and update *cur */
6420 while (*p != '\0' && *p != ',')
6421 p++;
6422
6423 if (*p == '\0')
6424 *cur = p;
6425 else
6426 *cur = p + 1;
6427
6428 *p = '\0';
6429
6430 /* parse */
6431 p = strchr(start, ':');
6432 if (!p) {
6433 val = strstrip(start);
6434 goto parse_val;
6435 }
6436 *p = '\0';
6437
6438 id = strstrip(start);
6439 val = strstrip(p + 1);
6440
6441 /* parse id */
6442 p = strchr(id, '.');
6443 if (p) {
6444 *p++ = '\0';
6445 force_ent->device = simple_strtoul(p, &endp, 10);
6446 if (p == endp || *endp != '\0') {
6447 *reason = "invalid device";
6448 return -EINVAL;
6449 }
6450 }
6451
6452 force_ent->port = simple_strtoul(id, &endp, 10);
6453 if (p == endp || *endp != '\0') {
6454 *reason = "invalid port/link";
6455 return -EINVAL;
6456 }
6457
6458 parse_val:
6459 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6460 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6461 const struct ata_force_param *fp = &force_tbl[i];
6462
6463 if (strncasecmp(val, fp->name, strlen(val)))
6464 continue;
6465
6466 nr_matches++;
6467 match_fp = fp;
6468
6469 if (strcasecmp(val, fp->name) == 0) {
6470 nr_matches = 1;
6471 break;
6472 }
6473 }
6474
6475 if (!nr_matches) {
6476 *reason = "unknown value";
6477 return -EINVAL;
6478 }
6479 if (nr_matches > 1) {
6480 *reason = "ambigious value";
6481 return -EINVAL;
6482 }
6483
6484 force_ent->param = *match_fp;
6485
6486 return 0;
6487}
6488
6489static void __init ata_parse_force_param(void)
6490{
6491 int idx = 0, size = 1;
6492 int last_port = -1, last_device = -1;
6493 char *p, *cur, *next;
6494
6495 /* calculate maximum number of params and allocate force_tbl */
6496 for (p = ata_force_param_buf; *p; p++)
6497 if (*p == ',')
6498 size++;
6499
6500 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6501 if (!ata_force_tbl) {
6502 printk(KERN_WARNING "ata: failed to extend force table, "
6503 "libata.force ignored\n");
6504 return;
6505 }
6506
6507 /* parse and populate the table */
6508 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6509 const char *reason = "";
6510 struct ata_force_ent te = { .port = -1, .device = -1 };
6511
6512 next = cur;
6513 if (ata_parse_force_one(&next, &te, &reason)) {
6514 printk(KERN_WARNING "ata: failed to parse force "
6515 "parameter \"%s\" (%s)\n",
6516 cur, reason);
6517 continue;
6518 }
6519
6520 if (te.port == -1) {
6521 te.port = last_port;
6522 te.device = last_device;
6523 }
6524
6525 ata_force_tbl[idx++] = te;
6526
6527 last_port = te.port;
6528 last_device = te.device;
6529 }
6530
6531 ata_force_tbl_size = idx;
6532}
6533
6534static int __init ata_init(void)
6535{
6536 int rc = -ENOMEM;
6537
6538 ata_parse_force_param();
6539
6540 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6541 if (!ata_aux_wq)
6542 goto fail;
6543
6544 rc = ata_sff_init();
6545 if (rc)
6546 goto fail;
6547
6548 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6549 return 0;
6550
6551fail:
6552 kfree(ata_force_tbl);
6553 if (ata_aux_wq)
6554 destroy_workqueue(ata_aux_wq);
6555 return rc;
6556}
6557
6558static void __exit ata_exit(void)
6559{
6560 ata_sff_exit();
6561 kfree(ata_force_tbl);
6562 destroy_workqueue(ata_aux_wq);
6563}
6564
6565subsys_initcall(ata_init);
6566module_exit(ata_exit);
6567
6568static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6569
6570int ata_ratelimit(void)
6571{
6572 return __ratelimit(&ratelimit);
6573}
6574
6575/**
6576 * ata_wait_register - wait until register value changes
6577 * @reg: IO-mapped register
6578 * @mask: Mask to apply to read register value
6579 * @val: Wait condition
6580 * @interval: polling interval in milliseconds
6581 * @timeout: timeout in milliseconds
6582 *
6583 * Waiting for some bits of register to change is a common
6584 * operation for ATA controllers. This function reads 32bit LE
6585 * IO-mapped register @reg and tests for the following condition.
6586 *
6587 * (*@reg & mask) != val
6588 *
6589 * If the condition is met, it returns; otherwise, the process is
6590 * repeated after @interval_msec until timeout.
6591 *
6592 * LOCKING:
6593 * Kernel thread context (may sleep)
6594 *
6595 * RETURNS:
6596 * The final register value.
6597 */
6598u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6599 unsigned long interval, unsigned long timeout)
6600{
6601 unsigned long deadline;
6602 u32 tmp;
6603
6604 tmp = ioread32(reg);
6605
6606 /* Calculate timeout _after_ the first read to make sure
6607 * preceding writes reach the controller before starting to
6608 * eat away the timeout.
6609 */
6610 deadline = ata_deadline(jiffies, timeout);
6611
6612 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6613 msleep(interval);
6614 tmp = ioread32(reg);
6615 }
6616
6617 return tmp;
6618}
6619
6620/*
6621 * Dummy port_ops
6622 */
6623static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6624{
6625 return AC_ERR_SYSTEM;
6626}
6627
6628static void ata_dummy_error_handler(struct ata_port *ap)
6629{
6630 /* truly dummy */
6631}
6632
6633struct ata_port_operations ata_dummy_port_ops = {
6634 .qc_prep = ata_noop_qc_prep,
6635 .qc_issue = ata_dummy_qc_issue,
6636 .error_handler = ata_dummy_error_handler,
6637};
6638
6639const struct ata_port_info ata_dummy_port_info = {
6640 .port_ops = &ata_dummy_port_ops,
6641};
6642
6643/*
6644 * libata is essentially a library of internal helper functions for
6645 * low-level ATA host controller drivers. As such, the API/ABI is
6646 * likely to change as new drivers are added and updated.
6647 * Do not depend on ABI/API stability.
6648 */
6649EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6650EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6651EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6652EXPORT_SYMBOL_GPL(ata_base_port_ops);
6653EXPORT_SYMBOL_GPL(sata_port_ops);
6654EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6655EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6656EXPORT_SYMBOL_GPL(ata_link_next);
6657EXPORT_SYMBOL_GPL(ata_dev_next);
6658EXPORT_SYMBOL_GPL(ata_std_bios_param);
6659EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6660EXPORT_SYMBOL_GPL(ata_host_init);
6661EXPORT_SYMBOL_GPL(ata_host_alloc);
6662EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6663EXPORT_SYMBOL_GPL(ata_slave_link_init);
6664EXPORT_SYMBOL_GPL(ata_host_start);
6665EXPORT_SYMBOL_GPL(ata_host_register);
6666EXPORT_SYMBOL_GPL(ata_host_activate);
6667EXPORT_SYMBOL_GPL(ata_host_detach);
6668EXPORT_SYMBOL_GPL(ata_sg_init);
6669EXPORT_SYMBOL_GPL(ata_qc_complete);
6670EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6671EXPORT_SYMBOL_GPL(atapi_cmd_type);
6672EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6673EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6674EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6675EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6676EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6677EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6678EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6679EXPORT_SYMBOL_GPL(ata_mode_string);
6680EXPORT_SYMBOL_GPL(ata_id_xfermask);
6681EXPORT_SYMBOL_GPL(ata_do_set_mode);
6682EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6683EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6684EXPORT_SYMBOL_GPL(ata_dev_disable);
6685EXPORT_SYMBOL_GPL(sata_set_spd);
6686EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6687EXPORT_SYMBOL_GPL(sata_link_debounce);
6688EXPORT_SYMBOL_GPL(sata_link_resume);
6689EXPORT_SYMBOL_GPL(ata_std_prereset);
6690EXPORT_SYMBOL_GPL(sata_link_hardreset);
6691EXPORT_SYMBOL_GPL(sata_std_hardreset);
6692EXPORT_SYMBOL_GPL(ata_std_postreset);
6693EXPORT_SYMBOL_GPL(ata_dev_classify);
6694EXPORT_SYMBOL_GPL(ata_dev_pair);
6695EXPORT_SYMBOL_GPL(ata_ratelimit);
6696EXPORT_SYMBOL_GPL(ata_wait_register);
6697EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6698EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6699EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6700EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6701EXPORT_SYMBOL_GPL(sata_scr_valid);
6702EXPORT_SYMBOL_GPL(sata_scr_read);
6703EXPORT_SYMBOL_GPL(sata_scr_write);
6704EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6705EXPORT_SYMBOL_GPL(ata_link_online);
6706EXPORT_SYMBOL_GPL(ata_link_offline);
6707#ifdef CONFIG_PM
6708EXPORT_SYMBOL_GPL(ata_host_suspend);
6709EXPORT_SYMBOL_GPL(ata_host_resume);
6710#endif /* CONFIG_PM */
6711EXPORT_SYMBOL_GPL(ata_id_string);
6712EXPORT_SYMBOL_GPL(ata_id_c_string);
6713EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6714EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6715
6716EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6717EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6718EXPORT_SYMBOL_GPL(ata_timing_compute);
6719EXPORT_SYMBOL_GPL(ata_timing_merge);
6720EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6721
6722#ifdef CONFIG_PCI
6723EXPORT_SYMBOL_GPL(pci_test_config_bits);
6724EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6725#ifdef CONFIG_PM
6726EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6727EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6728EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6729EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6730#endif /* CONFIG_PM */
6731#endif /* CONFIG_PCI */
6732
6733EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6734EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6735EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6736EXPORT_SYMBOL_GPL(ata_port_desc);
6737#ifdef CONFIG_PCI
6738EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6739#endif /* CONFIG_PCI */
6740EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6741EXPORT_SYMBOL_GPL(ata_link_abort);
6742EXPORT_SYMBOL_GPL(ata_port_abort);
6743EXPORT_SYMBOL_GPL(ata_port_freeze);
6744EXPORT_SYMBOL_GPL(sata_async_notification);
6745EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6746EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6747EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6748EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6749EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6750EXPORT_SYMBOL_GPL(ata_do_eh);
6751EXPORT_SYMBOL_GPL(ata_std_error_handler);
6752
6753EXPORT_SYMBOL_GPL(ata_cable_40wire);
6754EXPORT_SYMBOL_GPL(ata_cable_80wire);
6755EXPORT_SYMBOL_GPL(ata_cable_unknown);
6756EXPORT_SYMBOL_GPL(ata_cable_ignore);
6757EXPORT_SYMBOL_GPL(ata_cable_sata);
This page took 0.048833 seconds and 5 git commands to generate.