rbd: zero return code in rbd_dev_image_id()
[deliverable/linux.git] / drivers / block / rbd.c
... / ...
CommitLineData
1/*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30#include <linux/ceph/libceph.h>
31#include <linux/ceph/osd_client.h>
32#include <linux/ceph/mon_client.h>
33#include <linux/ceph/decode.h>
34#include <linux/parser.h>
35
36#include <linux/kernel.h>
37#include <linux/device.h>
38#include <linux/module.h>
39#include <linux/fs.h>
40#include <linux/blkdev.h>
41
42#include "rbd_types.h"
43
44#define RBD_DEBUG /* Activate rbd_assert() calls */
45
46/*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52#define SECTOR_SHIFT 9
53#define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55/* It might be useful to have this defined elsewhere too */
56
57#define U64_MAX ((u64) (~0ULL))
58
59#define RBD_DRV_NAME "rbd"
60#define RBD_DRV_NAME_LONG "rbd (rados block device)"
61
62#define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
63
64#define RBD_MAX_SNAP_NAME_LEN 32
65#define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
66#define RBD_MAX_OPT_LEN 1024
67
68#define RBD_SNAP_HEAD_NAME "-"
69
70#define RBD_IMAGE_ID_LEN_MAX 64
71#define RBD_OBJ_PREFIX_LEN_MAX 64
72
73/* Feature bits */
74
75#define RBD_FEATURE_LAYERING 1
76
77/* Features supported by this (client software) implementation. */
78
79#define RBD_FEATURES_ALL (0)
80
81/*
82 * An RBD device name will be "rbd#", where the "rbd" comes from
83 * RBD_DRV_NAME above, and # is a unique integer identifier.
84 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
85 * enough to hold all possible device names.
86 */
87#define DEV_NAME_LEN 32
88#define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
89
90#define RBD_READ_ONLY_DEFAULT false
91
92/*
93 * block device image metadata (in-memory version)
94 */
95struct rbd_image_header {
96 /* These four fields never change for a given rbd image */
97 char *object_prefix;
98 u64 features;
99 __u8 obj_order;
100 __u8 crypt_type;
101 __u8 comp_type;
102
103 /* The remaining fields need to be updated occasionally */
104 u64 image_size;
105 struct ceph_snap_context *snapc;
106 char *snap_names;
107 u64 *snap_sizes;
108
109 u64 obj_version;
110};
111
112struct rbd_options {
113 bool read_only;
114};
115
116/*
117 * an instance of the client. multiple devices may share an rbd client.
118 */
119struct rbd_client {
120 struct ceph_client *client;
121 struct kref kref;
122 struct list_head node;
123};
124
125/*
126 * a request completion status
127 */
128struct rbd_req_status {
129 int done;
130 int rc;
131 u64 bytes;
132};
133
134/*
135 * a collection of requests
136 */
137struct rbd_req_coll {
138 int total;
139 int num_done;
140 struct kref kref;
141 struct rbd_req_status status[0];
142};
143
144/*
145 * a single io request
146 */
147struct rbd_request {
148 struct request *rq; /* blk layer request */
149 struct bio *bio; /* cloned bio */
150 struct page **pages; /* list of used pages */
151 u64 len;
152 int coll_index;
153 struct rbd_req_coll *coll;
154};
155
156struct rbd_snap {
157 struct device dev;
158 const char *name;
159 u64 size;
160 struct list_head node;
161 u64 id;
162 u64 features;
163};
164
165struct rbd_mapping {
166 char *snap_name;
167 u64 snap_id;
168 u64 size;
169 u64 features;
170 bool snap_exists;
171 bool read_only;
172};
173
174/*
175 * a single device
176 */
177struct rbd_device {
178 int dev_id; /* blkdev unique id */
179
180 int major; /* blkdev assigned major */
181 struct gendisk *disk; /* blkdev's gendisk and rq */
182
183 u32 image_format; /* Either 1 or 2 */
184 struct rbd_options rbd_opts;
185 struct rbd_client *rbd_client;
186
187 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
188
189 spinlock_t lock; /* queue lock */
190
191 struct rbd_image_header header;
192 char *image_id;
193 size_t image_id_len;
194 char *image_name;
195 size_t image_name_len;
196 char *header_name;
197 char *pool_name;
198 int pool_id;
199
200 struct ceph_osd_event *watch_event;
201 struct ceph_osd_request *watch_request;
202
203 /* protects updating the header */
204 struct rw_semaphore header_rwsem;
205
206 struct rbd_mapping mapping;
207
208 struct list_head node;
209
210 /* list of snapshots */
211 struct list_head snaps;
212
213 /* sysfs related */
214 struct device dev;
215};
216
217static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
218
219static LIST_HEAD(rbd_dev_list); /* devices */
220static DEFINE_SPINLOCK(rbd_dev_list_lock);
221
222static LIST_HEAD(rbd_client_list); /* clients */
223static DEFINE_SPINLOCK(rbd_client_list_lock);
224
225static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
226static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
227
228static void rbd_dev_release(struct device *dev);
229static void __rbd_remove_snap_dev(struct rbd_snap *snap);
230
231static ssize_t rbd_add(struct bus_type *bus, const char *buf,
232 size_t count);
233static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
234 size_t count);
235
236static struct bus_attribute rbd_bus_attrs[] = {
237 __ATTR(add, S_IWUSR, NULL, rbd_add),
238 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
239 __ATTR_NULL
240};
241
242static struct bus_type rbd_bus_type = {
243 .name = "rbd",
244 .bus_attrs = rbd_bus_attrs,
245};
246
247static void rbd_root_dev_release(struct device *dev)
248{
249}
250
251static struct device rbd_root_dev = {
252 .init_name = "rbd",
253 .release = rbd_root_dev_release,
254};
255
256#ifdef RBD_DEBUG
257#define rbd_assert(expr) \
258 if (unlikely(!(expr))) { \
259 printk(KERN_ERR "\nAssertion failure in %s() " \
260 "at line %d:\n\n" \
261 "\trbd_assert(%s);\n\n", \
262 __func__, __LINE__, #expr); \
263 BUG(); \
264 }
265#else /* !RBD_DEBUG */
266# define rbd_assert(expr) ((void) 0)
267#endif /* !RBD_DEBUG */
268
269static struct device *rbd_get_dev(struct rbd_device *rbd_dev)
270{
271 return get_device(&rbd_dev->dev);
272}
273
274static void rbd_put_dev(struct rbd_device *rbd_dev)
275{
276 put_device(&rbd_dev->dev);
277}
278
279static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
280static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
281
282static int rbd_open(struct block_device *bdev, fmode_t mode)
283{
284 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
285
286 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
287 return -EROFS;
288
289 rbd_get_dev(rbd_dev);
290 set_device_ro(bdev, rbd_dev->mapping.read_only);
291
292 return 0;
293}
294
295static int rbd_release(struct gendisk *disk, fmode_t mode)
296{
297 struct rbd_device *rbd_dev = disk->private_data;
298
299 rbd_put_dev(rbd_dev);
300
301 return 0;
302}
303
304static const struct block_device_operations rbd_bd_ops = {
305 .owner = THIS_MODULE,
306 .open = rbd_open,
307 .release = rbd_release,
308};
309
310/*
311 * Initialize an rbd client instance.
312 * We own *ceph_opts.
313 */
314static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
315{
316 struct rbd_client *rbdc;
317 int ret = -ENOMEM;
318
319 dout("rbd_client_create\n");
320 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
321 if (!rbdc)
322 goto out_opt;
323
324 kref_init(&rbdc->kref);
325 INIT_LIST_HEAD(&rbdc->node);
326
327 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
328
329 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
330 if (IS_ERR(rbdc->client))
331 goto out_mutex;
332 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
333
334 ret = ceph_open_session(rbdc->client);
335 if (ret < 0)
336 goto out_err;
337
338 spin_lock(&rbd_client_list_lock);
339 list_add_tail(&rbdc->node, &rbd_client_list);
340 spin_unlock(&rbd_client_list_lock);
341
342 mutex_unlock(&ctl_mutex);
343
344 dout("rbd_client_create created %p\n", rbdc);
345 return rbdc;
346
347out_err:
348 ceph_destroy_client(rbdc->client);
349out_mutex:
350 mutex_unlock(&ctl_mutex);
351 kfree(rbdc);
352out_opt:
353 if (ceph_opts)
354 ceph_destroy_options(ceph_opts);
355 return ERR_PTR(ret);
356}
357
358/*
359 * Find a ceph client with specific addr and configuration. If
360 * found, bump its reference count.
361 */
362static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
363{
364 struct rbd_client *client_node;
365 bool found = false;
366
367 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
368 return NULL;
369
370 spin_lock(&rbd_client_list_lock);
371 list_for_each_entry(client_node, &rbd_client_list, node) {
372 if (!ceph_compare_options(ceph_opts, client_node->client)) {
373 kref_get(&client_node->kref);
374 found = true;
375 break;
376 }
377 }
378 spin_unlock(&rbd_client_list_lock);
379
380 return found ? client_node : NULL;
381}
382
383/*
384 * mount options
385 */
386enum {
387 Opt_last_int,
388 /* int args above */
389 Opt_last_string,
390 /* string args above */
391 Opt_read_only,
392 Opt_read_write,
393 /* Boolean args above */
394 Opt_last_bool,
395};
396
397static match_table_t rbd_opts_tokens = {
398 /* int args above */
399 /* string args above */
400 {Opt_read_only, "mapping.read_only"},
401 {Opt_read_only, "ro"}, /* Alternate spelling */
402 {Opt_read_write, "read_write"},
403 {Opt_read_write, "rw"}, /* Alternate spelling */
404 /* Boolean args above */
405 {-1, NULL}
406};
407
408static int parse_rbd_opts_token(char *c, void *private)
409{
410 struct rbd_options *rbd_opts = private;
411 substring_t argstr[MAX_OPT_ARGS];
412 int token, intval, ret;
413
414 token = match_token(c, rbd_opts_tokens, argstr);
415 if (token < 0)
416 return -EINVAL;
417
418 if (token < Opt_last_int) {
419 ret = match_int(&argstr[0], &intval);
420 if (ret < 0) {
421 pr_err("bad mount option arg (not int) "
422 "at '%s'\n", c);
423 return ret;
424 }
425 dout("got int token %d val %d\n", token, intval);
426 } else if (token > Opt_last_int && token < Opt_last_string) {
427 dout("got string token %d val %s\n", token,
428 argstr[0].from);
429 } else if (token > Opt_last_string && token < Opt_last_bool) {
430 dout("got Boolean token %d\n", token);
431 } else {
432 dout("got token %d\n", token);
433 }
434
435 switch (token) {
436 case Opt_read_only:
437 rbd_opts->read_only = true;
438 break;
439 case Opt_read_write:
440 rbd_opts->read_only = false;
441 break;
442 default:
443 rbd_assert(false);
444 break;
445 }
446 return 0;
447}
448
449/*
450 * Get a ceph client with specific addr and configuration, if one does
451 * not exist create it.
452 */
453static int rbd_get_client(struct rbd_device *rbd_dev, const char *mon_addr,
454 size_t mon_addr_len, char *options)
455{
456 struct rbd_options *rbd_opts = &rbd_dev->rbd_opts;
457 struct ceph_options *ceph_opts;
458 struct rbd_client *rbdc;
459
460 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
461
462 ceph_opts = ceph_parse_options(options, mon_addr,
463 mon_addr + mon_addr_len,
464 parse_rbd_opts_token, rbd_opts);
465 if (IS_ERR(ceph_opts))
466 return PTR_ERR(ceph_opts);
467
468 rbdc = rbd_client_find(ceph_opts);
469 if (rbdc) {
470 /* using an existing client */
471 ceph_destroy_options(ceph_opts);
472 } else {
473 rbdc = rbd_client_create(ceph_opts);
474 if (IS_ERR(rbdc))
475 return PTR_ERR(rbdc);
476 }
477 rbd_dev->rbd_client = rbdc;
478
479 return 0;
480}
481
482/*
483 * Destroy ceph client
484 *
485 * Caller must hold rbd_client_list_lock.
486 */
487static void rbd_client_release(struct kref *kref)
488{
489 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
490
491 dout("rbd_release_client %p\n", rbdc);
492 spin_lock(&rbd_client_list_lock);
493 list_del(&rbdc->node);
494 spin_unlock(&rbd_client_list_lock);
495
496 ceph_destroy_client(rbdc->client);
497 kfree(rbdc);
498}
499
500/*
501 * Drop reference to ceph client node. If it's not referenced anymore, release
502 * it.
503 */
504static void rbd_put_client(struct rbd_device *rbd_dev)
505{
506 kref_put(&rbd_dev->rbd_client->kref, rbd_client_release);
507 rbd_dev->rbd_client = NULL;
508}
509
510/*
511 * Destroy requests collection
512 */
513static void rbd_coll_release(struct kref *kref)
514{
515 struct rbd_req_coll *coll =
516 container_of(kref, struct rbd_req_coll, kref);
517
518 dout("rbd_coll_release %p\n", coll);
519 kfree(coll);
520}
521
522static bool rbd_image_format_valid(u32 image_format)
523{
524 return image_format == 1 || image_format == 2;
525}
526
527static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
528{
529 size_t size;
530 u32 snap_count;
531
532 /* The header has to start with the magic rbd header text */
533 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
534 return false;
535
536 /*
537 * The size of a snapshot header has to fit in a size_t, and
538 * that limits the number of snapshots.
539 */
540 snap_count = le32_to_cpu(ondisk->snap_count);
541 size = SIZE_MAX - sizeof (struct ceph_snap_context);
542 if (snap_count > size / sizeof (__le64))
543 return false;
544
545 /*
546 * Not only that, but the size of the entire the snapshot
547 * header must also be representable in a size_t.
548 */
549 size -= snap_count * sizeof (__le64);
550 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
551 return false;
552
553 return true;
554}
555
556/*
557 * Create a new header structure, translate header format from the on-disk
558 * header.
559 */
560static int rbd_header_from_disk(struct rbd_image_header *header,
561 struct rbd_image_header_ondisk *ondisk)
562{
563 u32 snap_count;
564 size_t len;
565 size_t size;
566 u32 i;
567
568 memset(header, 0, sizeof (*header));
569
570 snap_count = le32_to_cpu(ondisk->snap_count);
571
572 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
573 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
574 if (!header->object_prefix)
575 return -ENOMEM;
576 memcpy(header->object_prefix, ondisk->object_prefix, len);
577 header->object_prefix[len] = '\0';
578
579 if (snap_count) {
580 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
581
582 /* Save a copy of the snapshot names */
583
584 if (snap_names_len > (u64) SIZE_MAX)
585 return -EIO;
586 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
587 if (!header->snap_names)
588 goto out_err;
589 /*
590 * Note that rbd_dev_v1_header_read() guarantees
591 * the ondisk buffer we're working with has
592 * snap_names_len bytes beyond the end of the
593 * snapshot id array, this memcpy() is safe.
594 */
595 memcpy(header->snap_names, &ondisk->snaps[snap_count],
596 snap_names_len);
597
598 /* Record each snapshot's size */
599
600 size = snap_count * sizeof (*header->snap_sizes);
601 header->snap_sizes = kmalloc(size, GFP_KERNEL);
602 if (!header->snap_sizes)
603 goto out_err;
604 for (i = 0; i < snap_count; i++)
605 header->snap_sizes[i] =
606 le64_to_cpu(ondisk->snaps[i].image_size);
607 } else {
608 WARN_ON(ondisk->snap_names_len);
609 header->snap_names = NULL;
610 header->snap_sizes = NULL;
611 }
612
613 header->features = 0; /* No features support in v1 images */
614 header->obj_order = ondisk->options.order;
615 header->crypt_type = ondisk->options.crypt_type;
616 header->comp_type = ondisk->options.comp_type;
617
618 /* Allocate and fill in the snapshot context */
619
620 header->image_size = le64_to_cpu(ondisk->image_size);
621 size = sizeof (struct ceph_snap_context);
622 size += snap_count * sizeof (header->snapc->snaps[0]);
623 header->snapc = kzalloc(size, GFP_KERNEL);
624 if (!header->snapc)
625 goto out_err;
626
627 atomic_set(&header->snapc->nref, 1);
628 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
629 header->snapc->num_snaps = snap_count;
630 for (i = 0; i < snap_count; i++)
631 header->snapc->snaps[i] =
632 le64_to_cpu(ondisk->snaps[i].id);
633
634 return 0;
635
636out_err:
637 kfree(header->snap_sizes);
638 header->snap_sizes = NULL;
639 kfree(header->snap_names);
640 header->snap_names = NULL;
641 kfree(header->object_prefix);
642 header->object_prefix = NULL;
643
644 return -ENOMEM;
645}
646
647static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
648{
649
650 struct rbd_snap *snap;
651
652 list_for_each_entry(snap, &rbd_dev->snaps, node) {
653 if (!strcmp(snap_name, snap->name)) {
654 rbd_dev->mapping.snap_id = snap->id;
655 rbd_dev->mapping.size = snap->size;
656 rbd_dev->mapping.features = snap->features;
657
658 return 0;
659 }
660 }
661
662 return -ENOENT;
663}
664
665static int rbd_dev_set_mapping(struct rbd_device *rbd_dev, char *snap_name)
666{
667 int ret;
668
669 if (!memcmp(snap_name, RBD_SNAP_HEAD_NAME,
670 sizeof (RBD_SNAP_HEAD_NAME))) {
671 rbd_dev->mapping.snap_id = CEPH_NOSNAP;
672 rbd_dev->mapping.size = rbd_dev->header.image_size;
673 rbd_dev->mapping.features = rbd_dev->header.features;
674 rbd_dev->mapping.snap_exists = false;
675 rbd_dev->mapping.read_only = rbd_dev->rbd_opts.read_only;
676 ret = 0;
677 } else {
678 ret = snap_by_name(rbd_dev, snap_name);
679 if (ret < 0)
680 goto done;
681 rbd_dev->mapping.snap_exists = true;
682 rbd_dev->mapping.read_only = true;
683 }
684 rbd_dev->mapping.snap_name = snap_name;
685done:
686 return ret;
687}
688
689static void rbd_header_free(struct rbd_image_header *header)
690{
691 kfree(header->object_prefix);
692 header->object_prefix = NULL;
693 kfree(header->snap_sizes);
694 header->snap_sizes = NULL;
695 kfree(header->snap_names);
696 header->snap_names = NULL;
697 ceph_put_snap_context(header->snapc);
698 header->snapc = NULL;
699}
700
701static char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
702{
703 char *name;
704 u64 segment;
705 int ret;
706
707 name = kmalloc(RBD_MAX_SEG_NAME_LEN + 1, GFP_NOIO);
708 if (!name)
709 return NULL;
710 segment = offset >> rbd_dev->header.obj_order;
711 ret = snprintf(name, RBD_MAX_SEG_NAME_LEN, "%s.%012llx",
712 rbd_dev->header.object_prefix, segment);
713 if (ret < 0 || ret >= RBD_MAX_SEG_NAME_LEN) {
714 pr_err("error formatting segment name for #%llu (%d)\n",
715 segment, ret);
716 kfree(name);
717 name = NULL;
718 }
719
720 return name;
721}
722
723static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
724{
725 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
726
727 return offset & (segment_size - 1);
728}
729
730static u64 rbd_segment_length(struct rbd_device *rbd_dev,
731 u64 offset, u64 length)
732{
733 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
734
735 offset &= segment_size - 1;
736
737 rbd_assert(length <= U64_MAX - offset);
738 if (offset + length > segment_size)
739 length = segment_size - offset;
740
741 return length;
742}
743
744static int rbd_get_num_segments(struct rbd_image_header *header,
745 u64 ofs, u64 len)
746{
747 u64 start_seg;
748 u64 end_seg;
749
750 if (!len)
751 return 0;
752 if (len - 1 > U64_MAX - ofs)
753 return -ERANGE;
754
755 start_seg = ofs >> header->obj_order;
756 end_seg = (ofs + len - 1) >> header->obj_order;
757
758 return end_seg - start_seg + 1;
759}
760
761/*
762 * returns the size of an object in the image
763 */
764static u64 rbd_obj_bytes(struct rbd_image_header *header)
765{
766 return 1 << header->obj_order;
767}
768
769/*
770 * bio helpers
771 */
772
773static void bio_chain_put(struct bio *chain)
774{
775 struct bio *tmp;
776
777 while (chain) {
778 tmp = chain;
779 chain = chain->bi_next;
780 bio_put(tmp);
781 }
782}
783
784/*
785 * zeros a bio chain, starting at specific offset
786 */
787static void zero_bio_chain(struct bio *chain, int start_ofs)
788{
789 struct bio_vec *bv;
790 unsigned long flags;
791 void *buf;
792 int i;
793 int pos = 0;
794
795 while (chain) {
796 bio_for_each_segment(bv, chain, i) {
797 if (pos + bv->bv_len > start_ofs) {
798 int remainder = max(start_ofs - pos, 0);
799 buf = bvec_kmap_irq(bv, &flags);
800 memset(buf + remainder, 0,
801 bv->bv_len - remainder);
802 bvec_kunmap_irq(buf, &flags);
803 }
804 pos += bv->bv_len;
805 }
806
807 chain = chain->bi_next;
808 }
809}
810
811/*
812 * bio_chain_clone - clone a chain of bios up to a certain length.
813 * might return a bio_pair that will need to be released.
814 */
815static struct bio *bio_chain_clone(struct bio **old, struct bio **next,
816 struct bio_pair **bp,
817 int len, gfp_t gfpmask)
818{
819 struct bio *old_chain = *old;
820 struct bio *new_chain = NULL;
821 struct bio *tail;
822 int total = 0;
823
824 if (*bp) {
825 bio_pair_release(*bp);
826 *bp = NULL;
827 }
828
829 while (old_chain && (total < len)) {
830 struct bio *tmp;
831
832 tmp = bio_kmalloc(gfpmask, old_chain->bi_max_vecs);
833 if (!tmp)
834 goto err_out;
835 gfpmask &= ~__GFP_WAIT; /* can't wait after the first */
836
837 if (total + old_chain->bi_size > len) {
838 struct bio_pair *bp;
839
840 /*
841 * this split can only happen with a single paged bio,
842 * split_bio will BUG_ON if this is not the case
843 */
844 dout("bio_chain_clone split! total=%d remaining=%d"
845 "bi_size=%u\n",
846 total, len - total, old_chain->bi_size);
847
848 /* split the bio. We'll release it either in the next
849 call, or it will have to be released outside */
850 bp = bio_split(old_chain, (len - total) / SECTOR_SIZE);
851 if (!bp)
852 goto err_out;
853
854 __bio_clone(tmp, &bp->bio1);
855
856 *next = &bp->bio2;
857 } else {
858 __bio_clone(tmp, old_chain);
859 *next = old_chain->bi_next;
860 }
861
862 tmp->bi_bdev = NULL;
863 tmp->bi_next = NULL;
864 if (new_chain)
865 tail->bi_next = tmp;
866 else
867 new_chain = tmp;
868 tail = tmp;
869 old_chain = old_chain->bi_next;
870
871 total += tmp->bi_size;
872 }
873
874 rbd_assert(total == len);
875
876 *old = old_chain;
877
878 return new_chain;
879
880err_out:
881 dout("bio_chain_clone with err\n");
882 bio_chain_put(new_chain);
883 return NULL;
884}
885
886/*
887 * helpers for osd request op vectors.
888 */
889static struct ceph_osd_req_op *rbd_create_rw_ops(int num_ops,
890 int opcode, u32 payload_len)
891{
892 struct ceph_osd_req_op *ops;
893
894 ops = kzalloc(sizeof (*ops) * (num_ops + 1), GFP_NOIO);
895 if (!ops)
896 return NULL;
897
898 ops[0].op = opcode;
899
900 /*
901 * op extent offset and length will be set later on
902 * in calc_raw_layout()
903 */
904 ops[0].payload_len = payload_len;
905
906 return ops;
907}
908
909static void rbd_destroy_ops(struct ceph_osd_req_op *ops)
910{
911 kfree(ops);
912}
913
914static void rbd_coll_end_req_index(struct request *rq,
915 struct rbd_req_coll *coll,
916 int index,
917 int ret, u64 len)
918{
919 struct request_queue *q;
920 int min, max, i;
921
922 dout("rbd_coll_end_req_index %p index %d ret %d len %llu\n",
923 coll, index, ret, (unsigned long long) len);
924
925 if (!rq)
926 return;
927
928 if (!coll) {
929 blk_end_request(rq, ret, len);
930 return;
931 }
932
933 q = rq->q;
934
935 spin_lock_irq(q->queue_lock);
936 coll->status[index].done = 1;
937 coll->status[index].rc = ret;
938 coll->status[index].bytes = len;
939 max = min = coll->num_done;
940 while (max < coll->total && coll->status[max].done)
941 max++;
942
943 for (i = min; i<max; i++) {
944 __blk_end_request(rq, coll->status[i].rc,
945 coll->status[i].bytes);
946 coll->num_done++;
947 kref_put(&coll->kref, rbd_coll_release);
948 }
949 spin_unlock_irq(q->queue_lock);
950}
951
952static void rbd_coll_end_req(struct rbd_request *req,
953 int ret, u64 len)
954{
955 rbd_coll_end_req_index(req->rq, req->coll, req->coll_index, ret, len);
956}
957
958/*
959 * Send ceph osd request
960 */
961static int rbd_do_request(struct request *rq,
962 struct rbd_device *rbd_dev,
963 struct ceph_snap_context *snapc,
964 u64 snapid,
965 const char *object_name, u64 ofs, u64 len,
966 struct bio *bio,
967 struct page **pages,
968 int num_pages,
969 int flags,
970 struct ceph_osd_req_op *ops,
971 struct rbd_req_coll *coll,
972 int coll_index,
973 void (*rbd_cb)(struct ceph_osd_request *req,
974 struct ceph_msg *msg),
975 struct ceph_osd_request **linger_req,
976 u64 *ver)
977{
978 struct ceph_osd_request *req;
979 struct ceph_file_layout *layout;
980 int ret;
981 u64 bno;
982 struct timespec mtime = CURRENT_TIME;
983 struct rbd_request *req_data;
984 struct ceph_osd_request_head *reqhead;
985 struct ceph_osd_client *osdc;
986
987 req_data = kzalloc(sizeof(*req_data), GFP_NOIO);
988 if (!req_data) {
989 if (coll)
990 rbd_coll_end_req_index(rq, coll, coll_index,
991 -ENOMEM, len);
992 return -ENOMEM;
993 }
994
995 if (coll) {
996 req_data->coll = coll;
997 req_data->coll_index = coll_index;
998 }
999
1000 dout("rbd_do_request object_name=%s ofs=%llu len=%llu\n", object_name,
1001 (unsigned long long) ofs, (unsigned long long) len);
1002
1003 osdc = &rbd_dev->rbd_client->client->osdc;
1004 req = ceph_osdc_alloc_request(osdc, flags, snapc, ops,
1005 false, GFP_NOIO, pages, bio);
1006 if (!req) {
1007 ret = -ENOMEM;
1008 goto done_pages;
1009 }
1010
1011 req->r_callback = rbd_cb;
1012
1013 req_data->rq = rq;
1014 req_data->bio = bio;
1015 req_data->pages = pages;
1016 req_data->len = len;
1017
1018 req->r_priv = req_data;
1019
1020 reqhead = req->r_request->front.iov_base;
1021 reqhead->snapid = cpu_to_le64(CEPH_NOSNAP);
1022
1023 strncpy(req->r_oid, object_name, sizeof(req->r_oid));
1024 req->r_oid_len = strlen(req->r_oid);
1025
1026 layout = &req->r_file_layout;
1027 memset(layout, 0, sizeof(*layout));
1028 layout->fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
1029 layout->fl_stripe_count = cpu_to_le32(1);
1030 layout->fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
1031 layout->fl_pg_pool = cpu_to_le32(rbd_dev->pool_id);
1032 ret = ceph_calc_raw_layout(osdc, layout, snapid, ofs, &len, &bno,
1033 req, ops);
1034 rbd_assert(ret == 0);
1035
1036 ceph_osdc_build_request(req, ofs, &len,
1037 ops,
1038 snapc,
1039 &mtime,
1040 req->r_oid, req->r_oid_len);
1041
1042 if (linger_req) {
1043 ceph_osdc_set_request_linger(osdc, req);
1044 *linger_req = req;
1045 }
1046
1047 ret = ceph_osdc_start_request(osdc, req, false);
1048 if (ret < 0)
1049 goto done_err;
1050
1051 if (!rbd_cb) {
1052 ret = ceph_osdc_wait_request(osdc, req);
1053 if (ver)
1054 *ver = le64_to_cpu(req->r_reassert_version.version);
1055 dout("reassert_ver=%llu\n",
1056 (unsigned long long)
1057 le64_to_cpu(req->r_reassert_version.version));
1058 ceph_osdc_put_request(req);
1059 }
1060 return ret;
1061
1062done_err:
1063 bio_chain_put(req_data->bio);
1064 ceph_osdc_put_request(req);
1065done_pages:
1066 rbd_coll_end_req(req_data, ret, len);
1067 kfree(req_data);
1068 return ret;
1069}
1070
1071/*
1072 * Ceph osd op callback
1073 */
1074static void rbd_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
1075{
1076 struct rbd_request *req_data = req->r_priv;
1077 struct ceph_osd_reply_head *replyhead;
1078 struct ceph_osd_op *op;
1079 __s32 rc;
1080 u64 bytes;
1081 int read_op;
1082
1083 /* parse reply */
1084 replyhead = msg->front.iov_base;
1085 WARN_ON(le32_to_cpu(replyhead->num_ops) == 0);
1086 op = (void *)(replyhead + 1);
1087 rc = le32_to_cpu(replyhead->result);
1088 bytes = le64_to_cpu(op->extent.length);
1089 read_op = (le16_to_cpu(op->op) == CEPH_OSD_OP_READ);
1090
1091 dout("rbd_req_cb bytes=%llu readop=%d rc=%d\n",
1092 (unsigned long long) bytes, read_op, (int) rc);
1093
1094 if (rc == -ENOENT && read_op) {
1095 zero_bio_chain(req_data->bio, 0);
1096 rc = 0;
1097 } else if (rc == 0 && read_op && bytes < req_data->len) {
1098 zero_bio_chain(req_data->bio, bytes);
1099 bytes = req_data->len;
1100 }
1101
1102 rbd_coll_end_req(req_data, rc, bytes);
1103
1104 if (req_data->bio)
1105 bio_chain_put(req_data->bio);
1106
1107 ceph_osdc_put_request(req);
1108 kfree(req_data);
1109}
1110
1111static void rbd_simple_req_cb(struct ceph_osd_request *req, struct ceph_msg *msg)
1112{
1113 ceph_osdc_put_request(req);
1114}
1115
1116/*
1117 * Do a synchronous ceph osd operation
1118 */
1119static int rbd_req_sync_op(struct rbd_device *rbd_dev,
1120 struct ceph_snap_context *snapc,
1121 u64 snapid,
1122 int flags,
1123 struct ceph_osd_req_op *ops,
1124 const char *object_name,
1125 u64 ofs, u64 inbound_size,
1126 char *inbound,
1127 struct ceph_osd_request **linger_req,
1128 u64 *ver)
1129{
1130 int ret;
1131 struct page **pages;
1132 int num_pages;
1133
1134 rbd_assert(ops != NULL);
1135
1136 num_pages = calc_pages_for(ofs, inbound_size);
1137 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1138 if (IS_ERR(pages))
1139 return PTR_ERR(pages);
1140
1141 ret = rbd_do_request(NULL, rbd_dev, snapc, snapid,
1142 object_name, ofs, inbound_size, NULL,
1143 pages, num_pages,
1144 flags,
1145 ops,
1146 NULL, 0,
1147 NULL,
1148 linger_req, ver);
1149 if (ret < 0)
1150 goto done;
1151
1152 if ((flags & CEPH_OSD_FLAG_READ) && inbound)
1153 ret = ceph_copy_from_page_vector(pages, inbound, ofs, ret);
1154
1155done:
1156 ceph_release_page_vector(pages, num_pages);
1157 return ret;
1158}
1159
1160/*
1161 * Do an asynchronous ceph osd operation
1162 */
1163static int rbd_do_op(struct request *rq,
1164 struct rbd_device *rbd_dev,
1165 struct ceph_snap_context *snapc,
1166 u64 snapid,
1167 int opcode, int flags,
1168 u64 ofs, u64 len,
1169 struct bio *bio,
1170 struct rbd_req_coll *coll,
1171 int coll_index)
1172{
1173 char *seg_name;
1174 u64 seg_ofs;
1175 u64 seg_len;
1176 int ret;
1177 struct ceph_osd_req_op *ops;
1178 u32 payload_len;
1179
1180 seg_name = rbd_segment_name(rbd_dev, ofs);
1181 if (!seg_name)
1182 return -ENOMEM;
1183 seg_len = rbd_segment_length(rbd_dev, ofs, len);
1184 seg_ofs = rbd_segment_offset(rbd_dev, ofs);
1185
1186 payload_len = (flags & CEPH_OSD_FLAG_WRITE ? seg_len : 0);
1187
1188 ret = -ENOMEM;
1189 ops = rbd_create_rw_ops(1, opcode, payload_len);
1190 if (!ops)
1191 goto done;
1192
1193 /* we've taken care of segment sizes earlier when we
1194 cloned the bios. We should never have a segment
1195 truncated at this point */
1196 rbd_assert(seg_len == len);
1197
1198 ret = rbd_do_request(rq, rbd_dev, snapc, snapid,
1199 seg_name, seg_ofs, seg_len,
1200 bio,
1201 NULL, 0,
1202 flags,
1203 ops,
1204 coll, coll_index,
1205 rbd_req_cb, 0, NULL);
1206
1207 rbd_destroy_ops(ops);
1208done:
1209 kfree(seg_name);
1210 return ret;
1211}
1212
1213/*
1214 * Request async osd write
1215 */
1216static int rbd_req_write(struct request *rq,
1217 struct rbd_device *rbd_dev,
1218 struct ceph_snap_context *snapc,
1219 u64 ofs, u64 len,
1220 struct bio *bio,
1221 struct rbd_req_coll *coll,
1222 int coll_index)
1223{
1224 return rbd_do_op(rq, rbd_dev, snapc, CEPH_NOSNAP,
1225 CEPH_OSD_OP_WRITE,
1226 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1227 ofs, len, bio, coll, coll_index);
1228}
1229
1230/*
1231 * Request async osd read
1232 */
1233static int rbd_req_read(struct request *rq,
1234 struct rbd_device *rbd_dev,
1235 u64 snapid,
1236 u64 ofs, u64 len,
1237 struct bio *bio,
1238 struct rbd_req_coll *coll,
1239 int coll_index)
1240{
1241 return rbd_do_op(rq, rbd_dev, NULL,
1242 snapid,
1243 CEPH_OSD_OP_READ,
1244 CEPH_OSD_FLAG_READ,
1245 ofs, len, bio, coll, coll_index);
1246}
1247
1248/*
1249 * Request sync osd read
1250 */
1251static int rbd_req_sync_read(struct rbd_device *rbd_dev,
1252 u64 snapid,
1253 const char *object_name,
1254 u64 ofs, u64 len,
1255 char *buf,
1256 u64 *ver)
1257{
1258 struct ceph_osd_req_op *ops;
1259 int ret;
1260
1261 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_READ, 0);
1262 if (!ops)
1263 return -ENOMEM;
1264
1265 ret = rbd_req_sync_op(rbd_dev, NULL,
1266 snapid,
1267 CEPH_OSD_FLAG_READ,
1268 ops, object_name, ofs, len, buf, NULL, ver);
1269 rbd_destroy_ops(ops);
1270
1271 return ret;
1272}
1273
1274/*
1275 * Request sync osd watch
1276 */
1277static int rbd_req_sync_notify_ack(struct rbd_device *rbd_dev,
1278 u64 ver,
1279 u64 notify_id)
1280{
1281 struct ceph_osd_req_op *ops;
1282 int ret;
1283
1284 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_NOTIFY_ACK, 0);
1285 if (!ops)
1286 return -ENOMEM;
1287
1288 ops[0].watch.ver = cpu_to_le64(ver);
1289 ops[0].watch.cookie = notify_id;
1290 ops[0].watch.flag = 0;
1291
1292 ret = rbd_do_request(NULL, rbd_dev, NULL, CEPH_NOSNAP,
1293 rbd_dev->header_name, 0, 0, NULL,
1294 NULL, 0,
1295 CEPH_OSD_FLAG_READ,
1296 ops,
1297 NULL, 0,
1298 rbd_simple_req_cb, 0, NULL);
1299
1300 rbd_destroy_ops(ops);
1301 return ret;
1302}
1303
1304static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1305{
1306 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1307 u64 hver;
1308 int rc;
1309
1310 if (!rbd_dev)
1311 return;
1312
1313 dout("rbd_watch_cb %s notify_id=%llu opcode=%u\n",
1314 rbd_dev->header_name, (unsigned long long) notify_id,
1315 (unsigned int) opcode);
1316 rc = rbd_dev_refresh(rbd_dev, &hver);
1317 if (rc)
1318 pr_warning(RBD_DRV_NAME "%d got notification but failed to "
1319 " update snaps: %d\n", rbd_dev->major, rc);
1320
1321 rbd_req_sync_notify_ack(rbd_dev, hver, notify_id);
1322}
1323
1324/*
1325 * Request sync osd watch
1326 */
1327static int rbd_req_sync_watch(struct rbd_device *rbd_dev)
1328{
1329 struct ceph_osd_req_op *ops;
1330 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1331 int ret;
1332
1333 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_WATCH, 0);
1334 if (!ops)
1335 return -ENOMEM;
1336
1337 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, 0,
1338 (void *)rbd_dev, &rbd_dev->watch_event);
1339 if (ret < 0)
1340 goto fail;
1341
1342 ops[0].watch.ver = cpu_to_le64(rbd_dev->header.obj_version);
1343 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1344 ops[0].watch.flag = 1;
1345
1346 ret = rbd_req_sync_op(rbd_dev, NULL,
1347 CEPH_NOSNAP,
1348 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1349 ops,
1350 rbd_dev->header_name,
1351 0, 0, NULL,
1352 &rbd_dev->watch_request, NULL);
1353
1354 if (ret < 0)
1355 goto fail_event;
1356
1357 rbd_destroy_ops(ops);
1358 return 0;
1359
1360fail_event:
1361 ceph_osdc_cancel_event(rbd_dev->watch_event);
1362 rbd_dev->watch_event = NULL;
1363fail:
1364 rbd_destroy_ops(ops);
1365 return ret;
1366}
1367
1368/*
1369 * Request sync osd unwatch
1370 */
1371static int rbd_req_sync_unwatch(struct rbd_device *rbd_dev)
1372{
1373 struct ceph_osd_req_op *ops;
1374 int ret;
1375
1376 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_WATCH, 0);
1377 if (!ops)
1378 return -ENOMEM;
1379
1380 ops[0].watch.ver = 0;
1381 ops[0].watch.cookie = cpu_to_le64(rbd_dev->watch_event->cookie);
1382 ops[0].watch.flag = 0;
1383
1384 ret = rbd_req_sync_op(rbd_dev, NULL,
1385 CEPH_NOSNAP,
1386 CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK,
1387 ops,
1388 rbd_dev->header_name,
1389 0, 0, NULL, NULL, NULL);
1390
1391
1392 rbd_destroy_ops(ops);
1393 ceph_osdc_cancel_event(rbd_dev->watch_event);
1394 rbd_dev->watch_event = NULL;
1395 return ret;
1396}
1397
1398/*
1399 * Synchronous osd object method call
1400 */
1401static int rbd_req_sync_exec(struct rbd_device *rbd_dev,
1402 const char *object_name,
1403 const char *class_name,
1404 const char *method_name,
1405 const char *outbound,
1406 size_t outbound_size,
1407 char *inbound,
1408 size_t inbound_size,
1409 int flags,
1410 u64 *ver)
1411{
1412 struct ceph_osd_req_op *ops;
1413 int class_name_len = strlen(class_name);
1414 int method_name_len = strlen(method_name);
1415 int payload_size;
1416 int ret;
1417
1418 /*
1419 * Any input parameters required by the method we're calling
1420 * will be sent along with the class and method names as
1421 * part of the message payload. That data and its size are
1422 * supplied via the indata and indata_len fields (named from
1423 * the perspective of the server side) in the OSD request
1424 * operation.
1425 */
1426 payload_size = class_name_len + method_name_len + outbound_size;
1427 ops = rbd_create_rw_ops(1, CEPH_OSD_OP_CALL, payload_size);
1428 if (!ops)
1429 return -ENOMEM;
1430
1431 ops[0].cls.class_name = class_name;
1432 ops[0].cls.class_len = (__u8) class_name_len;
1433 ops[0].cls.method_name = method_name;
1434 ops[0].cls.method_len = (__u8) method_name_len;
1435 ops[0].cls.argc = 0;
1436 ops[0].cls.indata = outbound;
1437 ops[0].cls.indata_len = outbound_size;
1438
1439 ret = rbd_req_sync_op(rbd_dev, NULL,
1440 CEPH_NOSNAP,
1441 flags, ops,
1442 object_name, 0, inbound_size, inbound,
1443 NULL, ver);
1444
1445 rbd_destroy_ops(ops);
1446
1447 dout("cls_exec returned %d\n", ret);
1448 return ret;
1449}
1450
1451static struct rbd_req_coll *rbd_alloc_coll(int num_reqs)
1452{
1453 struct rbd_req_coll *coll =
1454 kzalloc(sizeof(struct rbd_req_coll) +
1455 sizeof(struct rbd_req_status) * num_reqs,
1456 GFP_ATOMIC);
1457
1458 if (!coll)
1459 return NULL;
1460 coll->total = num_reqs;
1461 kref_init(&coll->kref);
1462 return coll;
1463}
1464
1465/*
1466 * block device queue callback
1467 */
1468static void rbd_rq_fn(struct request_queue *q)
1469{
1470 struct rbd_device *rbd_dev = q->queuedata;
1471 struct request *rq;
1472 struct bio_pair *bp = NULL;
1473
1474 while ((rq = blk_fetch_request(q))) {
1475 struct bio *bio;
1476 struct bio *rq_bio, *next_bio = NULL;
1477 bool do_write;
1478 unsigned int size;
1479 u64 op_size = 0;
1480 u64 ofs;
1481 int num_segs, cur_seg = 0;
1482 struct rbd_req_coll *coll;
1483 struct ceph_snap_context *snapc;
1484
1485 dout("fetched request\n");
1486
1487 /* filter out block requests we don't understand */
1488 if ((rq->cmd_type != REQ_TYPE_FS)) {
1489 __blk_end_request_all(rq, 0);
1490 continue;
1491 }
1492
1493 /* deduce our operation (read, write) */
1494 do_write = (rq_data_dir(rq) == WRITE);
1495
1496 size = blk_rq_bytes(rq);
1497 ofs = blk_rq_pos(rq) * SECTOR_SIZE;
1498 rq_bio = rq->bio;
1499 if (do_write && rbd_dev->mapping.read_only) {
1500 __blk_end_request_all(rq, -EROFS);
1501 continue;
1502 }
1503
1504 spin_unlock_irq(q->queue_lock);
1505
1506 down_read(&rbd_dev->header_rwsem);
1507
1508 if (rbd_dev->mapping.snap_id != CEPH_NOSNAP &&
1509 !rbd_dev->mapping.snap_exists) {
1510 up_read(&rbd_dev->header_rwsem);
1511 dout("request for non-existent snapshot");
1512 spin_lock_irq(q->queue_lock);
1513 __blk_end_request_all(rq, -ENXIO);
1514 continue;
1515 }
1516
1517 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1518
1519 up_read(&rbd_dev->header_rwsem);
1520
1521 dout("%s 0x%x bytes at 0x%llx\n",
1522 do_write ? "write" : "read",
1523 size, (unsigned long long) blk_rq_pos(rq) * SECTOR_SIZE);
1524
1525 num_segs = rbd_get_num_segments(&rbd_dev->header, ofs, size);
1526 if (num_segs <= 0) {
1527 spin_lock_irq(q->queue_lock);
1528 __blk_end_request_all(rq, num_segs);
1529 ceph_put_snap_context(snapc);
1530 continue;
1531 }
1532 coll = rbd_alloc_coll(num_segs);
1533 if (!coll) {
1534 spin_lock_irq(q->queue_lock);
1535 __blk_end_request_all(rq, -ENOMEM);
1536 ceph_put_snap_context(snapc);
1537 continue;
1538 }
1539
1540 do {
1541 /* a bio clone to be passed down to OSD req */
1542 dout("rq->bio->bi_vcnt=%hu\n", rq->bio->bi_vcnt);
1543 op_size = rbd_segment_length(rbd_dev, ofs, size);
1544 kref_get(&coll->kref);
1545 bio = bio_chain_clone(&rq_bio, &next_bio, &bp,
1546 op_size, GFP_ATOMIC);
1547 if (!bio) {
1548 rbd_coll_end_req_index(rq, coll, cur_seg,
1549 -ENOMEM, op_size);
1550 goto next_seg;
1551 }
1552
1553
1554 /* init OSD command: write or read */
1555 if (do_write)
1556 rbd_req_write(rq, rbd_dev,
1557 snapc,
1558 ofs,
1559 op_size, bio,
1560 coll, cur_seg);
1561 else
1562 rbd_req_read(rq, rbd_dev,
1563 rbd_dev->mapping.snap_id,
1564 ofs,
1565 op_size, bio,
1566 coll, cur_seg);
1567
1568next_seg:
1569 size -= op_size;
1570 ofs += op_size;
1571
1572 cur_seg++;
1573 rq_bio = next_bio;
1574 } while (size > 0);
1575 kref_put(&coll->kref, rbd_coll_release);
1576
1577 if (bp)
1578 bio_pair_release(bp);
1579 spin_lock_irq(q->queue_lock);
1580
1581 ceph_put_snap_context(snapc);
1582 }
1583}
1584
1585/*
1586 * a queue callback. Makes sure that we don't create a bio that spans across
1587 * multiple osd objects. One exception would be with a single page bios,
1588 * which we handle later at bio_chain_clone
1589 */
1590static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
1591 struct bio_vec *bvec)
1592{
1593 struct rbd_device *rbd_dev = q->queuedata;
1594 unsigned int chunk_sectors;
1595 sector_t sector;
1596 unsigned int bio_sectors;
1597 int max;
1598
1599 chunk_sectors = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
1600 sector = bmd->bi_sector + get_start_sect(bmd->bi_bdev);
1601 bio_sectors = bmd->bi_size >> SECTOR_SHIFT;
1602
1603 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
1604 + bio_sectors)) << SECTOR_SHIFT;
1605 if (max < 0)
1606 max = 0; /* bio_add cannot handle a negative return */
1607 if (max <= bvec->bv_len && bio_sectors == 0)
1608 return bvec->bv_len;
1609 return max;
1610}
1611
1612static void rbd_free_disk(struct rbd_device *rbd_dev)
1613{
1614 struct gendisk *disk = rbd_dev->disk;
1615
1616 if (!disk)
1617 return;
1618
1619 if (disk->flags & GENHD_FL_UP)
1620 del_gendisk(disk);
1621 if (disk->queue)
1622 blk_cleanup_queue(disk->queue);
1623 put_disk(disk);
1624}
1625
1626/*
1627 * Read the complete header for the given rbd device.
1628 *
1629 * Returns a pointer to a dynamically-allocated buffer containing
1630 * the complete and validated header. Caller can pass the address
1631 * of a variable that will be filled in with the version of the
1632 * header object at the time it was read.
1633 *
1634 * Returns a pointer-coded errno if a failure occurs.
1635 */
1636static struct rbd_image_header_ondisk *
1637rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
1638{
1639 struct rbd_image_header_ondisk *ondisk = NULL;
1640 u32 snap_count = 0;
1641 u64 names_size = 0;
1642 u32 want_count;
1643 int ret;
1644
1645 /*
1646 * The complete header will include an array of its 64-bit
1647 * snapshot ids, followed by the names of those snapshots as
1648 * a contiguous block of NUL-terminated strings. Note that
1649 * the number of snapshots could change by the time we read
1650 * it in, in which case we re-read it.
1651 */
1652 do {
1653 size_t size;
1654
1655 kfree(ondisk);
1656
1657 size = sizeof (*ondisk);
1658 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
1659 size += names_size;
1660 ondisk = kmalloc(size, GFP_KERNEL);
1661 if (!ondisk)
1662 return ERR_PTR(-ENOMEM);
1663
1664 ret = rbd_req_sync_read(rbd_dev, CEPH_NOSNAP,
1665 rbd_dev->header_name,
1666 0, size,
1667 (char *) ondisk, version);
1668
1669 if (ret < 0)
1670 goto out_err;
1671 if (WARN_ON((size_t) ret < size)) {
1672 ret = -ENXIO;
1673 pr_warning("short header read for image %s"
1674 " (want %zd got %d)\n",
1675 rbd_dev->image_name, size, ret);
1676 goto out_err;
1677 }
1678 if (!rbd_dev_ondisk_valid(ondisk)) {
1679 ret = -ENXIO;
1680 pr_warning("invalid header for image %s\n",
1681 rbd_dev->image_name);
1682 goto out_err;
1683 }
1684
1685 names_size = le64_to_cpu(ondisk->snap_names_len);
1686 want_count = snap_count;
1687 snap_count = le32_to_cpu(ondisk->snap_count);
1688 } while (snap_count != want_count);
1689
1690 return ondisk;
1691
1692out_err:
1693 kfree(ondisk);
1694
1695 return ERR_PTR(ret);
1696}
1697
1698/*
1699 * reload the ondisk the header
1700 */
1701static int rbd_read_header(struct rbd_device *rbd_dev,
1702 struct rbd_image_header *header)
1703{
1704 struct rbd_image_header_ondisk *ondisk;
1705 u64 ver = 0;
1706 int ret;
1707
1708 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
1709 if (IS_ERR(ondisk))
1710 return PTR_ERR(ondisk);
1711 ret = rbd_header_from_disk(header, ondisk);
1712 if (ret >= 0)
1713 header->obj_version = ver;
1714 kfree(ondisk);
1715
1716 return ret;
1717}
1718
1719static void __rbd_remove_all_snaps(struct rbd_device *rbd_dev)
1720{
1721 struct rbd_snap *snap;
1722 struct rbd_snap *next;
1723
1724 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
1725 __rbd_remove_snap_dev(snap);
1726}
1727
1728static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
1729{
1730 sector_t size;
1731
1732 if (rbd_dev->mapping.snap_id != CEPH_NOSNAP)
1733 return;
1734
1735 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
1736 dout("setting size to %llu sectors", (unsigned long long) size);
1737 rbd_dev->mapping.size = (u64) size;
1738 set_capacity(rbd_dev->disk, size);
1739}
1740
1741/*
1742 * only read the first part of the ondisk header, without the snaps info
1743 */
1744static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
1745{
1746 int ret;
1747 struct rbd_image_header h;
1748
1749 ret = rbd_read_header(rbd_dev, &h);
1750 if (ret < 0)
1751 return ret;
1752
1753 down_write(&rbd_dev->header_rwsem);
1754
1755 /* Update image size, and check for resize of mapped image */
1756 rbd_dev->header.image_size = h.image_size;
1757 rbd_update_mapping_size(rbd_dev);
1758
1759 /* rbd_dev->header.object_prefix shouldn't change */
1760 kfree(rbd_dev->header.snap_sizes);
1761 kfree(rbd_dev->header.snap_names);
1762 /* osd requests may still refer to snapc */
1763 ceph_put_snap_context(rbd_dev->header.snapc);
1764
1765 if (hver)
1766 *hver = h.obj_version;
1767 rbd_dev->header.obj_version = h.obj_version;
1768 rbd_dev->header.image_size = h.image_size;
1769 rbd_dev->header.snapc = h.snapc;
1770 rbd_dev->header.snap_names = h.snap_names;
1771 rbd_dev->header.snap_sizes = h.snap_sizes;
1772 /* Free the extra copy of the object prefix */
1773 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
1774 kfree(h.object_prefix);
1775
1776 ret = rbd_dev_snaps_update(rbd_dev);
1777 if (!ret)
1778 ret = rbd_dev_snaps_register(rbd_dev);
1779
1780 up_write(&rbd_dev->header_rwsem);
1781
1782 return ret;
1783}
1784
1785static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
1786{
1787 int ret;
1788
1789 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1790 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
1791 if (rbd_dev->image_format == 1)
1792 ret = rbd_dev_v1_refresh(rbd_dev, hver);
1793 else
1794 ret = rbd_dev_v2_refresh(rbd_dev, hver);
1795 mutex_unlock(&ctl_mutex);
1796
1797 return ret;
1798}
1799
1800static int rbd_init_disk(struct rbd_device *rbd_dev)
1801{
1802 struct gendisk *disk;
1803 struct request_queue *q;
1804 u64 segment_size;
1805
1806 /* create gendisk info */
1807 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
1808 if (!disk)
1809 return -ENOMEM;
1810
1811 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
1812 rbd_dev->dev_id);
1813 disk->major = rbd_dev->major;
1814 disk->first_minor = 0;
1815 disk->fops = &rbd_bd_ops;
1816 disk->private_data = rbd_dev;
1817
1818 /* init rq */
1819 q = blk_init_queue(rbd_rq_fn, &rbd_dev->lock);
1820 if (!q)
1821 goto out_disk;
1822
1823 /* We use the default size, but let's be explicit about it. */
1824 blk_queue_physical_block_size(q, SECTOR_SIZE);
1825
1826 /* set io sizes to object size */
1827 segment_size = rbd_obj_bytes(&rbd_dev->header);
1828 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
1829 blk_queue_max_segment_size(q, segment_size);
1830 blk_queue_io_min(q, segment_size);
1831 blk_queue_io_opt(q, segment_size);
1832
1833 blk_queue_merge_bvec(q, rbd_merge_bvec);
1834 disk->queue = q;
1835
1836 q->queuedata = rbd_dev;
1837
1838 rbd_dev->disk = disk;
1839
1840 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
1841
1842 return 0;
1843out_disk:
1844 put_disk(disk);
1845
1846 return -ENOMEM;
1847}
1848
1849/*
1850 sysfs
1851*/
1852
1853static struct rbd_device *dev_to_rbd_dev(struct device *dev)
1854{
1855 return container_of(dev, struct rbd_device, dev);
1856}
1857
1858static ssize_t rbd_size_show(struct device *dev,
1859 struct device_attribute *attr, char *buf)
1860{
1861 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1862 sector_t size;
1863
1864 down_read(&rbd_dev->header_rwsem);
1865 size = get_capacity(rbd_dev->disk);
1866 up_read(&rbd_dev->header_rwsem);
1867
1868 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
1869}
1870
1871/*
1872 * Note this shows the features for whatever's mapped, which is not
1873 * necessarily the base image.
1874 */
1875static ssize_t rbd_features_show(struct device *dev,
1876 struct device_attribute *attr, char *buf)
1877{
1878 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1879
1880 return sprintf(buf, "0x%016llx\n",
1881 (unsigned long long) rbd_dev->mapping.features);
1882}
1883
1884static ssize_t rbd_major_show(struct device *dev,
1885 struct device_attribute *attr, char *buf)
1886{
1887 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1888
1889 return sprintf(buf, "%d\n", rbd_dev->major);
1890}
1891
1892static ssize_t rbd_client_id_show(struct device *dev,
1893 struct device_attribute *attr, char *buf)
1894{
1895 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1896
1897 return sprintf(buf, "client%lld\n",
1898 ceph_client_id(rbd_dev->rbd_client->client));
1899}
1900
1901static ssize_t rbd_pool_show(struct device *dev,
1902 struct device_attribute *attr, char *buf)
1903{
1904 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1905
1906 return sprintf(buf, "%s\n", rbd_dev->pool_name);
1907}
1908
1909static ssize_t rbd_pool_id_show(struct device *dev,
1910 struct device_attribute *attr, char *buf)
1911{
1912 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1913
1914 return sprintf(buf, "%d\n", rbd_dev->pool_id);
1915}
1916
1917static ssize_t rbd_name_show(struct device *dev,
1918 struct device_attribute *attr, char *buf)
1919{
1920 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1921
1922 return sprintf(buf, "%s\n", rbd_dev->image_name);
1923}
1924
1925static ssize_t rbd_image_id_show(struct device *dev,
1926 struct device_attribute *attr, char *buf)
1927{
1928 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1929
1930 return sprintf(buf, "%s\n", rbd_dev->image_id);
1931}
1932
1933/*
1934 * Shows the name of the currently-mapped snapshot (or
1935 * RBD_SNAP_HEAD_NAME for the base image).
1936 */
1937static ssize_t rbd_snap_show(struct device *dev,
1938 struct device_attribute *attr,
1939 char *buf)
1940{
1941 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1942
1943 return sprintf(buf, "%s\n", rbd_dev->mapping.snap_name);
1944}
1945
1946static ssize_t rbd_image_refresh(struct device *dev,
1947 struct device_attribute *attr,
1948 const char *buf,
1949 size_t size)
1950{
1951 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
1952 int ret;
1953
1954 ret = rbd_dev_refresh(rbd_dev, NULL);
1955
1956 return ret < 0 ? ret : size;
1957}
1958
1959static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
1960static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
1961static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
1962static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
1963static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
1964static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
1965static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
1966static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
1967static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
1968static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
1969
1970static struct attribute *rbd_attrs[] = {
1971 &dev_attr_size.attr,
1972 &dev_attr_features.attr,
1973 &dev_attr_major.attr,
1974 &dev_attr_client_id.attr,
1975 &dev_attr_pool.attr,
1976 &dev_attr_pool_id.attr,
1977 &dev_attr_name.attr,
1978 &dev_attr_image_id.attr,
1979 &dev_attr_current_snap.attr,
1980 &dev_attr_refresh.attr,
1981 NULL
1982};
1983
1984static struct attribute_group rbd_attr_group = {
1985 .attrs = rbd_attrs,
1986};
1987
1988static const struct attribute_group *rbd_attr_groups[] = {
1989 &rbd_attr_group,
1990 NULL
1991};
1992
1993static void rbd_sysfs_dev_release(struct device *dev)
1994{
1995}
1996
1997static struct device_type rbd_device_type = {
1998 .name = "rbd",
1999 .groups = rbd_attr_groups,
2000 .release = rbd_sysfs_dev_release,
2001};
2002
2003
2004/*
2005 sysfs - snapshots
2006*/
2007
2008static ssize_t rbd_snap_size_show(struct device *dev,
2009 struct device_attribute *attr,
2010 char *buf)
2011{
2012 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2013
2014 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2015}
2016
2017static ssize_t rbd_snap_id_show(struct device *dev,
2018 struct device_attribute *attr,
2019 char *buf)
2020{
2021 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2022
2023 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2024}
2025
2026static ssize_t rbd_snap_features_show(struct device *dev,
2027 struct device_attribute *attr,
2028 char *buf)
2029{
2030 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2031
2032 return sprintf(buf, "0x%016llx\n",
2033 (unsigned long long) snap->features);
2034}
2035
2036static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2037static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2038static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2039
2040static struct attribute *rbd_snap_attrs[] = {
2041 &dev_attr_snap_size.attr,
2042 &dev_attr_snap_id.attr,
2043 &dev_attr_snap_features.attr,
2044 NULL,
2045};
2046
2047static struct attribute_group rbd_snap_attr_group = {
2048 .attrs = rbd_snap_attrs,
2049};
2050
2051static void rbd_snap_dev_release(struct device *dev)
2052{
2053 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2054 kfree(snap->name);
2055 kfree(snap);
2056}
2057
2058static const struct attribute_group *rbd_snap_attr_groups[] = {
2059 &rbd_snap_attr_group,
2060 NULL
2061};
2062
2063static struct device_type rbd_snap_device_type = {
2064 .groups = rbd_snap_attr_groups,
2065 .release = rbd_snap_dev_release,
2066};
2067
2068static bool rbd_snap_registered(struct rbd_snap *snap)
2069{
2070 bool ret = snap->dev.type == &rbd_snap_device_type;
2071 bool reg = device_is_registered(&snap->dev);
2072
2073 rbd_assert(!ret ^ reg);
2074
2075 return ret;
2076}
2077
2078static void __rbd_remove_snap_dev(struct rbd_snap *snap)
2079{
2080 list_del(&snap->node);
2081 if (device_is_registered(&snap->dev))
2082 device_unregister(&snap->dev);
2083}
2084
2085static int rbd_register_snap_dev(struct rbd_snap *snap,
2086 struct device *parent)
2087{
2088 struct device *dev = &snap->dev;
2089 int ret;
2090
2091 dev->type = &rbd_snap_device_type;
2092 dev->parent = parent;
2093 dev->release = rbd_snap_dev_release;
2094 dev_set_name(dev, "snap_%s", snap->name);
2095 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2096
2097 ret = device_register(dev);
2098
2099 return ret;
2100}
2101
2102static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2103 const char *snap_name,
2104 u64 snap_id, u64 snap_size,
2105 u64 snap_features)
2106{
2107 struct rbd_snap *snap;
2108 int ret;
2109
2110 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2111 if (!snap)
2112 return ERR_PTR(-ENOMEM);
2113
2114 ret = -ENOMEM;
2115 snap->name = kstrdup(snap_name, GFP_KERNEL);
2116 if (!snap->name)
2117 goto err;
2118
2119 snap->id = snap_id;
2120 snap->size = snap_size;
2121 snap->features = snap_features;
2122
2123 return snap;
2124
2125err:
2126 kfree(snap->name);
2127 kfree(snap);
2128
2129 return ERR_PTR(ret);
2130}
2131
2132static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2133 u64 *snap_size, u64 *snap_features)
2134{
2135 char *snap_name;
2136
2137 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2138
2139 *snap_size = rbd_dev->header.snap_sizes[which];
2140 *snap_features = 0; /* No features for v1 */
2141
2142 /* Skip over names until we find the one we are looking for */
2143
2144 snap_name = rbd_dev->header.snap_names;
2145 while (which--)
2146 snap_name += strlen(snap_name) + 1;
2147
2148 return snap_name;
2149}
2150
2151/*
2152 * Get the size and object order for an image snapshot, or if
2153 * snap_id is CEPH_NOSNAP, gets this information for the base
2154 * image.
2155 */
2156static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2157 u8 *order, u64 *snap_size)
2158{
2159 __le64 snapid = cpu_to_le64(snap_id);
2160 int ret;
2161 struct {
2162 u8 order;
2163 __le64 size;
2164 } __attribute__ ((packed)) size_buf = { 0 };
2165
2166 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2167 "rbd", "get_size",
2168 (char *) &snapid, sizeof (snapid),
2169 (char *) &size_buf, sizeof (size_buf),
2170 CEPH_OSD_FLAG_READ, NULL);
2171 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2172 if (ret < 0)
2173 return ret;
2174
2175 *order = size_buf.order;
2176 *snap_size = le64_to_cpu(size_buf.size);
2177
2178 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
2179 (unsigned long long) snap_id, (unsigned int) *order,
2180 (unsigned long long) *snap_size);
2181
2182 return 0;
2183}
2184
2185static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2186{
2187 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2188 &rbd_dev->header.obj_order,
2189 &rbd_dev->header.image_size);
2190}
2191
2192static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2193{
2194 void *reply_buf;
2195 int ret;
2196 void *p;
2197
2198 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2199 if (!reply_buf)
2200 return -ENOMEM;
2201
2202 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2203 "rbd", "get_object_prefix",
2204 NULL, 0,
2205 reply_buf, RBD_OBJ_PREFIX_LEN_MAX,
2206 CEPH_OSD_FLAG_READ, NULL);
2207 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2208 if (ret < 0)
2209 goto out;
2210 ret = 0; /* rbd_req_sync_exec() can return positive */
2211
2212 p = reply_buf;
2213 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2214 p + RBD_OBJ_PREFIX_LEN_MAX,
2215 NULL, GFP_NOIO);
2216
2217 if (IS_ERR(rbd_dev->header.object_prefix)) {
2218 ret = PTR_ERR(rbd_dev->header.object_prefix);
2219 rbd_dev->header.object_prefix = NULL;
2220 } else {
2221 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
2222 }
2223
2224out:
2225 kfree(reply_buf);
2226
2227 return ret;
2228}
2229
2230static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2231 u64 *snap_features)
2232{
2233 __le64 snapid = cpu_to_le64(snap_id);
2234 struct {
2235 __le64 features;
2236 __le64 incompat;
2237 } features_buf = { 0 };
2238 u64 incompat;
2239 int ret;
2240
2241 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2242 "rbd", "get_features",
2243 (char *) &snapid, sizeof (snapid),
2244 (char *) &features_buf, sizeof (features_buf),
2245 CEPH_OSD_FLAG_READ, NULL);
2246 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2247 if (ret < 0)
2248 return ret;
2249
2250 incompat = le64_to_cpu(features_buf.incompat);
2251 if (incompat & ~RBD_FEATURES_ALL)
2252 return -ENOTSUPP;
2253
2254 *snap_features = le64_to_cpu(features_buf.features);
2255
2256 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2257 (unsigned long long) snap_id,
2258 (unsigned long long) *snap_features,
2259 (unsigned long long) le64_to_cpu(features_buf.incompat));
2260
2261 return 0;
2262}
2263
2264static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2265{
2266 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2267 &rbd_dev->header.features);
2268}
2269
2270static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
2271{
2272 size_t size;
2273 int ret;
2274 void *reply_buf;
2275 void *p;
2276 void *end;
2277 u64 seq;
2278 u32 snap_count;
2279 struct ceph_snap_context *snapc;
2280 u32 i;
2281
2282 /*
2283 * We'll need room for the seq value (maximum snapshot id),
2284 * snapshot count, and array of that many snapshot ids.
2285 * For now we have a fixed upper limit on the number we're
2286 * prepared to receive.
2287 */
2288 size = sizeof (__le64) + sizeof (__le32) +
2289 RBD_MAX_SNAP_COUNT * sizeof (__le64);
2290 reply_buf = kzalloc(size, GFP_KERNEL);
2291 if (!reply_buf)
2292 return -ENOMEM;
2293
2294 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2295 "rbd", "get_snapcontext",
2296 NULL, 0,
2297 reply_buf, size,
2298 CEPH_OSD_FLAG_READ, ver);
2299 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2300 if (ret < 0)
2301 goto out;
2302
2303 ret = -ERANGE;
2304 p = reply_buf;
2305 end = (char *) reply_buf + size;
2306 ceph_decode_64_safe(&p, end, seq, out);
2307 ceph_decode_32_safe(&p, end, snap_count, out);
2308
2309 /*
2310 * Make sure the reported number of snapshot ids wouldn't go
2311 * beyond the end of our buffer. But before checking that,
2312 * make sure the computed size of the snapshot context we
2313 * allocate is representable in a size_t.
2314 */
2315 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
2316 / sizeof (u64)) {
2317 ret = -EINVAL;
2318 goto out;
2319 }
2320 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
2321 goto out;
2322
2323 size = sizeof (struct ceph_snap_context) +
2324 snap_count * sizeof (snapc->snaps[0]);
2325 snapc = kmalloc(size, GFP_KERNEL);
2326 if (!snapc) {
2327 ret = -ENOMEM;
2328 goto out;
2329 }
2330
2331 atomic_set(&snapc->nref, 1);
2332 snapc->seq = seq;
2333 snapc->num_snaps = snap_count;
2334 for (i = 0; i < snap_count; i++)
2335 snapc->snaps[i] = ceph_decode_64(&p);
2336
2337 rbd_dev->header.snapc = snapc;
2338
2339 dout(" snap context seq = %llu, snap_count = %u\n",
2340 (unsigned long long) seq, (unsigned int) snap_count);
2341
2342out:
2343 kfree(reply_buf);
2344
2345 return 0;
2346}
2347
2348static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
2349{
2350 size_t size;
2351 void *reply_buf;
2352 __le64 snap_id;
2353 int ret;
2354 void *p;
2355 void *end;
2356 size_t snap_name_len;
2357 char *snap_name;
2358
2359 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
2360 reply_buf = kmalloc(size, GFP_KERNEL);
2361 if (!reply_buf)
2362 return ERR_PTR(-ENOMEM);
2363
2364 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
2365 ret = rbd_req_sync_exec(rbd_dev, rbd_dev->header_name,
2366 "rbd", "get_snapshot_name",
2367 (char *) &snap_id, sizeof (snap_id),
2368 reply_buf, size,
2369 CEPH_OSD_FLAG_READ, NULL);
2370 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2371 if (ret < 0)
2372 goto out;
2373
2374 p = reply_buf;
2375 end = (char *) reply_buf + size;
2376 snap_name_len = 0;
2377 snap_name = ceph_extract_encoded_string(&p, end, &snap_name_len,
2378 GFP_KERNEL);
2379 if (IS_ERR(snap_name)) {
2380 ret = PTR_ERR(snap_name);
2381 goto out;
2382 } else {
2383 dout(" snap_id 0x%016llx snap_name = %s\n",
2384 (unsigned long long) le64_to_cpu(snap_id), snap_name);
2385 }
2386 kfree(reply_buf);
2387
2388 return snap_name;
2389out:
2390 kfree(reply_buf);
2391
2392 return ERR_PTR(ret);
2393}
2394
2395static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
2396 u64 *snap_size, u64 *snap_features)
2397{
2398 __le64 snap_id;
2399 u8 order;
2400 int ret;
2401
2402 snap_id = rbd_dev->header.snapc->snaps[which];
2403 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
2404 if (ret)
2405 return ERR_PTR(ret);
2406 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
2407 if (ret)
2408 return ERR_PTR(ret);
2409
2410 return rbd_dev_v2_snap_name(rbd_dev, which);
2411}
2412
2413static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
2414 u64 *snap_size, u64 *snap_features)
2415{
2416 if (rbd_dev->image_format == 1)
2417 return rbd_dev_v1_snap_info(rbd_dev, which,
2418 snap_size, snap_features);
2419 if (rbd_dev->image_format == 2)
2420 return rbd_dev_v2_snap_info(rbd_dev, which,
2421 snap_size, snap_features);
2422 return ERR_PTR(-EINVAL);
2423}
2424
2425static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
2426{
2427 int ret;
2428 __u8 obj_order;
2429
2430 down_write(&rbd_dev->header_rwsem);
2431
2432 /* Grab old order first, to see if it changes */
2433
2434 obj_order = rbd_dev->header.obj_order,
2435 ret = rbd_dev_v2_image_size(rbd_dev);
2436 if (ret)
2437 goto out;
2438 if (rbd_dev->header.obj_order != obj_order) {
2439 ret = -EIO;
2440 goto out;
2441 }
2442 rbd_update_mapping_size(rbd_dev);
2443
2444 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
2445 dout("rbd_dev_v2_snap_context returned %d\n", ret);
2446 if (ret)
2447 goto out;
2448 ret = rbd_dev_snaps_update(rbd_dev);
2449 dout("rbd_dev_snaps_update returned %d\n", ret);
2450 if (ret)
2451 goto out;
2452 ret = rbd_dev_snaps_register(rbd_dev);
2453 dout("rbd_dev_snaps_register returned %d\n", ret);
2454out:
2455 up_write(&rbd_dev->header_rwsem);
2456
2457 return ret;
2458}
2459
2460/*
2461 * Scan the rbd device's current snapshot list and compare it to the
2462 * newly-received snapshot context. Remove any existing snapshots
2463 * not present in the new snapshot context. Add a new snapshot for
2464 * any snaphots in the snapshot context not in the current list.
2465 * And verify there are no changes to snapshots we already know
2466 * about.
2467 *
2468 * Assumes the snapshots in the snapshot context are sorted by
2469 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
2470 * are also maintained in that order.)
2471 */
2472static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
2473{
2474 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
2475 const u32 snap_count = snapc->num_snaps;
2476 struct list_head *head = &rbd_dev->snaps;
2477 struct list_head *links = head->next;
2478 u32 index = 0;
2479
2480 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
2481 while (index < snap_count || links != head) {
2482 u64 snap_id;
2483 struct rbd_snap *snap;
2484 char *snap_name;
2485 u64 snap_size = 0;
2486 u64 snap_features = 0;
2487
2488 snap_id = index < snap_count ? snapc->snaps[index]
2489 : CEPH_NOSNAP;
2490 snap = links != head ? list_entry(links, struct rbd_snap, node)
2491 : NULL;
2492 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
2493
2494 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
2495 struct list_head *next = links->next;
2496
2497 /* Existing snapshot not in the new snap context */
2498
2499 if (rbd_dev->mapping.snap_id == snap->id)
2500 rbd_dev->mapping.snap_exists = false;
2501 __rbd_remove_snap_dev(snap);
2502 dout("%ssnap id %llu has been removed\n",
2503 rbd_dev->mapping.snap_id == snap->id ?
2504 "mapped " : "",
2505 (unsigned long long) snap->id);
2506
2507 /* Done with this list entry; advance */
2508
2509 links = next;
2510 continue;
2511 }
2512
2513 snap_name = rbd_dev_snap_info(rbd_dev, index,
2514 &snap_size, &snap_features);
2515 if (IS_ERR(snap_name))
2516 return PTR_ERR(snap_name);
2517
2518 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
2519 (unsigned long long) snap_id);
2520 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
2521 struct rbd_snap *new_snap;
2522
2523 /* We haven't seen this snapshot before */
2524
2525 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
2526 snap_id, snap_size, snap_features);
2527 if (IS_ERR(new_snap)) {
2528 int err = PTR_ERR(new_snap);
2529
2530 dout(" failed to add dev, error %d\n", err);
2531
2532 return err;
2533 }
2534
2535 /* New goes before existing, or at end of list */
2536
2537 dout(" added dev%s\n", snap ? "" : " at end\n");
2538 if (snap)
2539 list_add_tail(&new_snap->node, &snap->node);
2540 else
2541 list_add_tail(&new_snap->node, head);
2542 } else {
2543 /* Already have this one */
2544
2545 dout(" already present\n");
2546
2547 rbd_assert(snap->size == snap_size);
2548 rbd_assert(!strcmp(snap->name, snap_name));
2549 rbd_assert(snap->features == snap_features);
2550
2551 /* Done with this list entry; advance */
2552
2553 links = links->next;
2554 }
2555
2556 /* Advance to the next entry in the snapshot context */
2557
2558 index++;
2559 }
2560 dout("%s: done\n", __func__);
2561
2562 return 0;
2563}
2564
2565/*
2566 * Scan the list of snapshots and register the devices for any that
2567 * have not already been registered.
2568 */
2569static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
2570{
2571 struct rbd_snap *snap;
2572 int ret = 0;
2573
2574 dout("%s called\n", __func__);
2575 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
2576 return -EIO;
2577
2578 list_for_each_entry(snap, &rbd_dev->snaps, node) {
2579 if (!rbd_snap_registered(snap)) {
2580 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
2581 if (ret < 0)
2582 break;
2583 }
2584 }
2585 dout("%s: returning %d\n", __func__, ret);
2586
2587 return ret;
2588}
2589
2590static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
2591{
2592 struct device *dev;
2593 int ret;
2594
2595 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2596
2597 dev = &rbd_dev->dev;
2598 dev->bus = &rbd_bus_type;
2599 dev->type = &rbd_device_type;
2600 dev->parent = &rbd_root_dev;
2601 dev->release = rbd_dev_release;
2602 dev_set_name(dev, "%d", rbd_dev->dev_id);
2603 ret = device_register(dev);
2604
2605 mutex_unlock(&ctl_mutex);
2606
2607 return ret;
2608}
2609
2610static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
2611{
2612 device_unregister(&rbd_dev->dev);
2613}
2614
2615static int rbd_init_watch_dev(struct rbd_device *rbd_dev)
2616{
2617 int ret, rc;
2618
2619 do {
2620 ret = rbd_req_sync_watch(rbd_dev);
2621 if (ret == -ERANGE) {
2622 rc = rbd_dev_refresh(rbd_dev, NULL);
2623 if (rc < 0)
2624 return rc;
2625 }
2626 } while (ret == -ERANGE);
2627
2628 return ret;
2629}
2630
2631static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
2632
2633/*
2634 * Get a unique rbd identifier for the given new rbd_dev, and add
2635 * the rbd_dev to the global list. The minimum rbd id is 1.
2636 */
2637static void rbd_dev_id_get(struct rbd_device *rbd_dev)
2638{
2639 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
2640
2641 spin_lock(&rbd_dev_list_lock);
2642 list_add_tail(&rbd_dev->node, &rbd_dev_list);
2643 spin_unlock(&rbd_dev_list_lock);
2644 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
2645 (unsigned long long) rbd_dev->dev_id);
2646}
2647
2648/*
2649 * Remove an rbd_dev from the global list, and record that its
2650 * identifier is no longer in use.
2651 */
2652static void rbd_dev_id_put(struct rbd_device *rbd_dev)
2653{
2654 struct list_head *tmp;
2655 int rbd_id = rbd_dev->dev_id;
2656 int max_id;
2657
2658 rbd_assert(rbd_id > 0);
2659
2660 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
2661 (unsigned long long) rbd_dev->dev_id);
2662 spin_lock(&rbd_dev_list_lock);
2663 list_del_init(&rbd_dev->node);
2664
2665 /*
2666 * If the id being "put" is not the current maximum, there
2667 * is nothing special we need to do.
2668 */
2669 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
2670 spin_unlock(&rbd_dev_list_lock);
2671 return;
2672 }
2673
2674 /*
2675 * We need to update the current maximum id. Search the
2676 * list to find out what it is. We're more likely to find
2677 * the maximum at the end, so search the list backward.
2678 */
2679 max_id = 0;
2680 list_for_each_prev(tmp, &rbd_dev_list) {
2681 struct rbd_device *rbd_dev;
2682
2683 rbd_dev = list_entry(tmp, struct rbd_device, node);
2684 if (rbd_dev->dev_id > max_id)
2685 max_id = rbd_dev->dev_id;
2686 }
2687 spin_unlock(&rbd_dev_list_lock);
2688
2689 /*
2690 * The max id could have been updated by rbd_dev_id_get(), in
2691 * which case it now accurately reflects the new maximum.
2692 * Be careful not to overwrite the maximum value in that
2693 * case.
2694 */
2695 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
2696 dout(" max dev id has been reset\n");
2697}
2698
2699/*
2700 * Skips over white space at *buf, and updates *buf to point to the
2701 * first found non-space character (if any). Returns the length of
2702 * the token (string of non-white space characters) found. Note
2703 * that *buf must be terminated with '\0'.
2704 */
2705static inline size_t next_token(const char **buf)
2706{
2707 /*
2708 * These are the characters that produce nonzero for
2709 * isspace() in the "C" and "POSIX" locales.
2710 */
2711 const char *spaces = " \f\n\r\t\v";
2712
2713 *buf += strspn(*buf, spaces); /* Find start of token */
2714
2715 return strcspn(*buf, spaces); /* Return token length */
2716}
2717
2718/*
2719 * Finds the next token in *buf, and if the provided token buffer is
2720 * big enough, copies the found token into it. The result, if
2721 * copied, is guaranteed to be terminated with '\0'. Note that *buf
2722 * must be terminated with '\0' on entry.
2723 *
2724 * Returns the length of the token found (not including the '\0').
2725 * Return value will be 0 if no token is found, and it will be >=
2726 * token_size if the token would not fit.
2727 *
2728 * The *buf pointer will be updated to point beyond the end of the
2729 * found token. Note that this occurs even if the token buffer is
2730 * too small to hold it.
2731 */
2732static inline size_t copy_token(const char **buf,
2733 char *token,
2734 size_t token_size)
2735{
2736 size_t len;
2737
2738 len = next_token(buf);
2739 if (len < token_size) {
2740 memcpy(token, *buf, len);
2741 *(token + len) = '\0';
2742 }
2743 *buf += len;
2744
2745 return len;
2746}
2747
2748/*
2749 * Finds the next token in *buf, dynamically allocates a buffer big
2750 * enough to hold a copy of it, and copies the token into the new
2751 * buffer. The copy is guaranteed to be terminated with '\0'. Note
2752 * that a duplicate buffer is created even for a zero-length token.
2753 *
2754 * Returns a pointer to the newly-allocated duplicate, or a null
2755 * pointer if memory for the duplicate was not available. If
2756 * the lenp argument is a non-null pointer, the length of the token
2757 * (not including the '\0') is returned in *lenp.
2758 *
2759 * If successful, the *buf pointer will be updated to point beyond
2760 * the end of the found token.
2761 *
2762 * Note: uses GFP_KERNEL for allocation.
2763 */
2764static inline char *dup_token(const char **buf, size_t *lenp)
2765{
2766 char *dup;
2767 size_t len;
2768
2769 len = next_token(buf);
2770 dup = kmalloc(len + 1, GFP_KERNEL);
2771 if (!dup)
2772 return NULL;
2773
2774 memcpy(dup, *buf, len);
2775 *(dup + len) = '\0';
2776 *buf += len;
2777
2778 if (lenp)
2779 *lenp = len;
2780
2781 return dup;
2782}
2783
2784/*
2785 * This fills in the pool_name, image_name, image_name_len, rbd_dev,
2786 * rbd_md_name, and name fields of the given rbd_dev, based on the
2787 * list of monitor addresses and other options provided via
2788 * /sys/bus/rbd/add. Returns a pointer to a dynamically-allocated
2789 * copy of the snapshot name to map if successful, or a
2790 * pointer-coded error otherwise.
2791 *
2792 * Note: rbd_dev is assumed to have been initially zero-filled.
2793 */
2794static char *rbd_add_parse_args(struct rbd_device *rbd_dev,
2795 const char *buf,
2796 const char **mon_addrs,
2797 size_t *mon_addrs_size,
2798 char *options,
2799 size_t options_size)
2800{
2801 size_t len;
2802 char *err_ptr = ERR_PTR(-EINVAL);
2803 char *snap_name;
2804
2805 /* The first four tokens are required */
2806
2807 len = next_token(&buf);
2808 if (!len)
2809 return err_ptr;
2810 *mon_addrs_size = len + 1;
2811 *mon_addrs = buf;
2812
2813 buf += len;
2814
2815 len = copy_token(&buf, options, options_size);
2816 if (!len || len >= options_size)
2817 return err_ptr;
2818
2819 err_ptr = ERR_PTR(-ENOMEM);
2820 rbd_dev->pool_name = dup_token(&buf, NULL);
2821 if (!rbd_dev->pool_name)
2822 goto out_err;
2823
2824 rbd_dev->image_name = dup_token(&buf, &rbd_dev->image_name_len);
2825 if (!rbd_dev->image_name)
2826 goto out_err;
2827
2828 /* Snapshot name is optional */
2829 len = next_token(&buf);
2830 if (!len) {
2831 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
2832 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
2833 }
2834 snap_name = kmalloc(len + 1, GFP_KERNEL);
2835 if (!snap_name)
2836 goto out_err;
2837 memcpy(snap_name, buf, len);
2838 *(snap_name + len) = '\0';
2839
2840dout(" SNAP_NAME is <%s>, len is %zd\n", snap_name, len);
2841
2842 return snap_name;
2843
2844out_err:
2845 kfree(rbd_dev->image_name);
2846 rbd_dev->image_name = NULL;
2847 rbd_dev->image_name_len = 0;
2848 kfree(rbd_dev->pool_name);
2849 rbd_dev->pool_name = NULL;
2850
2851 return err_ptr;
2852}
2853
2854/*
2855 * An rbd format 2 image has a unique identifier, distinct from the
2856 * name given to it by the user. Internally, that identifier is
2857 * what's used to specify the names of objects related to the image.
2858 *
2859 * A special "rbd id" object is used to map an rbd image name to its
2860 * id. If that object doesn't exist, then there is no v2 rbd image
2861 * with the supplied name.
2862 *
2863 * This function will record the given rbd_dev's image_id field if
2864 * it can be determined, and in that case will return 0. If any
2865 * errors occur a negative errno will be returned and the rbd_dev's
2866 * image_id field will be unchanged (and should be NULL).
2867 */
2868static int rbd_dev_image_id(struct rbd_device *rbd_dev)
2869{
2870 int ret;
2871 size_t size;
2872 char *object_name;
2873 void *response;
2874 void *p;
2875
2876 /*
2877 * First, see if the format 2 image id file exists, and if
2878 * so, get the image's persistent id from it.
2879 */
2880 size = sizeof (RBD_ID_PREFIX) + rbd_dev->image_name_len;
2881 object_name = kmalloc(size, GFP_NOIO);
2882 if (!object_name)
2883 return -ENOMEM;
2884 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->image_name);
2885 dout("rbd id object name is %s\n", object_name);
2886
2887 /* Response will be an encoded string, which includes a length */
2888
2889 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
2890 response = kzalloc(size, GFP_NOIO);
2891 if (!response) {
2892 ret = -ENOMEM;
2893 goto out;
2894 }
2895
2896 ret = rbd_req_sync_exec(rbd_dev, object_name,
2897 "rbd", "get_id",
2898 NULL, 0,
2899 response, RBD_IMAGE_ID_LEN_MAX,
2900 CEPH_OSD_FLAG_READ, NULL);
2901 dout("%s: rbd_req_sync_exec returned %d\n", __func__, ret);
2902 if (ret < 0)
2903 goto out;
2904 ret = 0; /* rbd_req_sync_exec() can return positive */
2905
2906 p = response;
2907 rbd_dev->image_id = ceph_extract_encoded_string(&p,
2908 p + RBD_IMAGE_ID_LEN_MAX,
2909 &rbd_dev->image_id_len,
2910 GFP_NOIO);
2911 if (IS_ERR(rbd_dev->image_id)) {
2912 ret = PTR_ERR(rbd_dev->image_id);
2913 rbd_dev->image_id = NULL;
2914 } else {
2915 dout("image_id is %s\n", rbd_dev->image_id);
2916 }
2917out:
2918 kfree(response);
2919 kfree(object_name);
2920
2921 return ret;
2922}
2923
2924static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
2925{
2926 int ret;
2927 size_t size;
2928
2929 /* Version 1 images have no id; empty string is used */
2930
2931 rbd_dev->image_id = kstrdup("", GFP_KERNEL);
2932 if (!rbd_dev->image_id)
2933 return -ENOMEM;
2934 rbd_dev->image_id_len = 0;
2935
2936 /* Record the header object name for this rbd image. */
2937
2938 size = rbd_dev->image_name_len + sizeof (RBD_SUFFIX);
2939 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
2940 if (!rbd_dev->header_name) {
2941 ret = -ENOMEM;
2942 goto out_err;
2943 }
2944 sprintf(rbd_dev->header_name, "%s%s", rbd_dev->image_name, RBD_SUFFIX);
2945
2946 /* Populate rbd image metadata */
2947
2948 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
2949 if (ret < 0)
2950 goto out_err;
2951 rbd_dev->image_format = 1;
2952
2953 dout("discovered version 1 image, header name is %s\n",
2954 rbd_dev->header_name);
2955
2956 return 0;
2957
2958out_err:
2959 kfree(rbd_dev->header_name);
2960 rbd_dev->header_name = NULL;
2961 kfree(rbd_dev->image_id);
2962 rbd_dev->image_id = NULL;
2963
2964 return ret;
2965}
2966
2967static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
2968{
2969 size_t size;
2970 int ret;
2971 u64 ver = 0;
2972
2973 /*
2974 * Image id was filled in by the caller. Record the header
2975 * object name for this rbd image.
2976 */
2977 size = sizeof (RBD_HEADER_PREFIX) + rbd_dev->image_id_len;
2978 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
2979 if (!rbd_dev->header_name)
2980 return -ENOMEM;
2981 sprintf(rbd_dev->header_name, "%s%s",
2982 RBD_HEADER_PREFIX, rbd_dev->image_id);
2983
2984 /* Get the size and object order for the image */
2985
2986 ret = rbd_dev_v2_image_size(rbd_dev);
2987 if (ret < 0)
2988 goto out_err;
2989
2990 /* Get the object prefix (a.k.a. block_name) for the image */
2991
2992 ret = rbd_dev_v2_object_prefix(rbd_dev);
2993 if (ret < 0)
2994 goto out_err;
2995
2996 /* Get the and check features for the image */
2997
2998 ret = rbd_dev_v2_features(rbd_dev);
2999 if (ret < 0)
3000 goto out_err;
3001
3002 /* crypto and compression type aren't (yet) supported for v2 images */
3003
3004 rbd_dev->header.crypt_type = 0;
3005 rbd_dev->header.comp_type = 0;
3006
3007 /* Get the snapshot context, plus the header version */
3008
3009 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3010 if (ret)
3011 goto out_err;
3012 rbd_dev->header.obj_version = ver;
3013
3014 rbd_dev->image_format = 2;
3015
3016 dout("discovered version 2 image, header name is %s\n",
3017 rbd_dev->header_name);
3018
3019 return 0;
3020out_err:
3021 kfree(rbd_dev->header_name);
3022 rbd_dev->header_name = NULL;
3023 kfree(rbd_dev->header.object_prefix);
3024 rbd_dev->header.object_prefix = NULL;
3025
3026 return ret;
3027}
3028
3029/*
3030 * Probe for the existence of the header object for the given rbd
3031 * device. For format 2 images this includes determining the image
3032 * id.
3033 */
3034static int rbd_dev_probe(struct rbd_device *rbd_dev)
3035{
3036 int ret;
3037
3038 /*
3039 * Get the id from the image id object. If it's not a
3040 * format 2 image, we'll get ENOENT back, and we'll assume
3041 * it's a format 1 image.
3042 */
3043 ret = rbd_dev_image_id(rbd_dev);
3044 if (ret)
3045 ret = rbd_dev_v1_probe(rbd_dev);
3046 else
3047 ret = rbd_dev_v2_probe(rbd_dev);
3048 if (ret)
3049 dout("probe failed, returning %d\n", ret);
3050
3051 return ret;
3052}
3053
3054static ssize_t rbd_add(struct bus_type *bus,
3055 const char *buf,
3056 size_t count)
3057{
3058 char *options;
3059 struct rbd_device *rbd_dev = NULL;
3060 const char *mon_addrs = NULL;
3061 size_t mon_addrs_size = 0;
3062 struct ceph_osd_client *osdc;
3063 int rc = -ENOMEM;
3064 char *snap_name;
3065
3066 if (!try_module_get(THIS_MODULE))
3067 return -ENODEV;
3068
3069 options = kmalloc(count, GFP_KERNEL);
3070 if (!options)
3071 goto err_out_mem;
3072 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
3073 if (!rbd_dev)
3074 goto err_out_mem;
3075
3076 /* static rbd_device initialization */
3077 spin_lock_init(&rbd_dev->lock);
3078 INIT_LIST_HEAD(&rbd_dev->node);
3079 INIT_LIST_HEAD(&rbd_dev->snaps);
3080 init_rwsem(&rbd_dev->header_rwsem);
3081
3082 /* parse add command */
3083 snap_name = rbd_add_parse_args(rbd_dev, buf,
3084 &mon_addrs, &mon_addrs_size, options, count);
3085 if (IS_ERR(snap_name)) {
3086 rc = PTR_ERR(snap_name);
3087 goto err_out_mem;
3088 }
3089
3090 rc = rbd_get_client(rbd_dev, mon_addrs, mon_addrs_size - 1, options);
3091 if (rc < 0)
3092 goto err_out_args;
3093
3094 /* pick the pool */
3095 osdc = &rbd_dev->rbd_client->client->osdc;
3096 rc = ceph_pg_poolid_by_name(osdc->osdmap, rbd_dev->pool_name);
3097 if (rc < 0)
3098 goto err_out_client;
3099 rbd_dev->pool_id = rc;
3100
3101 rc = rbd_dev_probe(rbd_dev);
3102 if (rc < 0)
3103 goto err_out_client;
3104
3105 /* no need to lock here, as rbd_dev is not registered yet */
3106 rc = rbd_dev_snaps_update(rbd_dev);
3107 if (rc)
3108 goto err_out_header;
3109
3110 rc = rbd_dev_set_mapping(rbd_dev, snap_name);
3111 if (rc)
3112 goto err_out_header;
3113
3114 /* generate unique id: find highest unique id, add one */
3115 rbd_dev_id_get(rbd_dev);
3116
3117 /* Fill in the device name, now that we have its id. */
3118 BUILD_BUG_ON(DEV_NAME_LEN
3119 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3120 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3121
3122 /* Get our block major device number. */
3123
3124 rc = register_blkdev(0, rbd_dev->name);
3125 if (rc < 0)
3126 goto err_out_id;
3127 rbd_dev->major = rc;
3128
3129 /* Set up the blkdev mapping. */
3130
3131 rc = rbd_init_disk(rbd_dev);
3132 if (rc)
3133 goto err_out_blkdev;
3134
3135 rc = rbd_bus_add_dev(rbd_dev);
3136 if (rc)
3137 goto err_out_disk;
3138
3139 /*
3140 * At this point cleanup in the event of an error is the job
3141 * of the sysfs code (initiated by rbd_bus_del_dev()).
3142 */
3143
3144 down_write(&rbd_dev->header_rwsem);
3145 rc = rbd_dev_snaps_register(rbd_dev);
3146 up_write(&rbd_dev->header_rwsem);
3147 if (rc)
3148 goto err_out_bus;
3149
3150 rc = rbd_init_watch_dev(rbd_dev);
3151 if (rc)
3152 goto err_out_bus;
3153
3154 /* Everything's ready. Announce the disk to the world. */
3155
3156 add_disk(rbd_dev->disk);
3157
3158 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
3159 (unsigned long long) rbd_dev->mapping.size);
3160
3161 return count;
3162
3163err_out_bus:
3164 /* this will also clean up rest of rbd_dev stuff */
3165
3166 rbd_bus_del_dev(rbd_dev);
3167 kfree(options);
3168 return rc;
3169
3170err_out_disk:
3171 rbd_free_disk(rbd_dev);
3172err_out_blkdev:
3173 unregister_blkdev(rbd_dev->major, rbd_dev->name);
3174err_out_id:
3175 rbd_dev_id_put(rbd_dev);
3176err_out_header:
3177 rbd_header_free(&rbd_dev->header);
3178err_out_client:
3179 kfree(rbd_dev->header_name);
3180 rbd_put_client(rbd_dev);
3181 kfree(rbd_dev->image_id);
3182err_out_args:
3183 kfree(rbd_dev->mapping.snap_name);
3184 kfree(rbd_dev->image_name);
3185 kfree(rbd_dev->pool_name);
3186err_out_mem:
3187 kfree(rbd_dev);
3188 kfree(options);
3189
3190 dout("Error adding device %s\n", buf);
3191 module_put(THIS_MODULE);
3192
3193 return (ssize_t) rc;
3194}
3195
3196static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
3197{
3198 struct list_head *tmp;
3199 struct rbd_device *rbd_dev;
3200
3201 spin_lock(&rbd_dev_list_lock);
3202 list_for_each(tmp, &rbd_dev_list) {
3203 rbd_dev = list_entry(tmp, struct rbd_device, node);
3204 if (rbd_dev->dev_id == dev_id) {
3205 spin_unlock(&rbd_dev_list_lock);
3206 return rbd_dev;
3207 }
3208 }
3209 spin_unlock(&rbd_dev_list_lock);
3210 return NULL;
3211}
3212
3213static void rbd_dev_release(struct device *dev)
3214{
3215 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3216
3217 if (rbd_dev->watch_request) {
3218 struct ceph_client *client = rbd_dev->rbd_client->client;
3219
3220 ceph_osdc_unregister_linger_request(&client->osdc,
3221 rbd_dev->watch_request);
3222 }
3223 if (rbd_dev->watch_event)
3224 rbd_req_sync_unwatch(rbd_dev);
3225
3226 rbd_put_client(rbd_dev);
3227
3228 /* clean up and free blkdev */
3229 rbd_free_disk(rbd_dev);
3230 unregister_blkdev(rbd_dev->major, rbd_dev->name);
3231
3232 /* release allocated disk header fields */
3233 rbd_header_free(&rbd_dev->header);
3234
3235 /* done with the id, and with the rbd_dev */
3236 kfree(rbd_dev->mapping.snap_name);
3237 kfree(rbd_dev->image_id);
3238 kfree(rbd_dev->header_name);
3239 kfree(rbd_dev->pool_name);
3240 kfree(rbd_dev->image_name);
3241 rbd_dev_id_put(rbd_dev);
3242 kfree(rbd_dev);
3243
3244 /* release module ref */
3245 module_put(THIS_MODULE);
3246}
3247
3248static ssize_t rbd_remove(struct bus_type *bus,
3249 const char *buf,
3250 size_t count)
3251{
3252 struct rbd_device *rbd_dev = NULL;
3253 int target_id, rc;
3254 unsigned long ul;
3255 int ret = count;
3256
3257 rc = strict_strtoul(buf, 10, &ul);
3258 if (rc)
3259 return rc;
3260
3261 /* convert to int; abort if we lost anything in the conversion */
3262 target_id = (int) ul;
3263 if (target_id != ul)
3264 return -EINVAL;
3265
3266 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3267
3268 rbd_dev = __rbd_get_dev(target_id);
3269 if (!rbd_dev) {
3270 ret = -ENOENT;
3271 goto done;
3272 }
3273
3274 __rbd_remove_all_snaps(rbd_dev);
3275 rbd_bus_del_dev(rbd_dev);
3276
3277done:
3278 mutex_unlock(&ctl_mutex);
3279
3280 return ret;
3281}
3282
3283/*
3284 * create control files in sysfs
3285 * /sys/bus/rbd/...
3286 */
3287static int rbd_sysfs_init(void)
3288{
3289 int ret;
3290
3291 ret = device_register(&rbd_root_dev);
3292 if (ret < 0)
3293 return ret;
3294
3295 ret = bus_register(&rbd_bus_type);
3296 if (ret < 0)
3297 device_unregister(&rbd_root_dev);
3298
3299 return ret;
3300}
3301
3302static void rbd_sysfs_cleanup(void)
3303{
3304 bus_unregister(&rbd_bus_type);
3305 device_unregister(&rbd_root_dev);
3306}
3307
3308int __init rbd_init(void)
3309{
3310 int rc;
3311
3312 rc = rbd_sysfs_init();
3313 if (rc)
3314 return rc;
3315 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
3316 return 0;
3317}
3318
3319void __exit rbd_exit(void)
3320{
3321 rbd_sysfs_cleanup();
3322}
3323
3324module_init(rbd_init);
3325module_exit(rbd_exit);
3326
3327MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
3328MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
3329MODULE_DESCRIPTION("rados block device");
3330
3331/* following authorship retained from original osdblk.c */
3332MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
3333
3334MODULE_LICENSE("GPL");
This page took 0.037228 seconds and 5 git commands to generate.