drm/i915/guc: Revert "drm/i915/guc: enable GuC loading & submission by default"
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_drv.h
... / ...
CommitLineData
1/* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3/*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30#ifndef _I915_DRV_H_
31#define _I915_DRV_H_
32
33#include <uapi/drm/i915_drm.h>
34#include <uapi/drm/drm_fourcc.h>
35
36#include <linux/io-mapping.h>
37#include <linux/i2c.h>
38#include <linux/i2c-algo-bit.h>
39#include <linux/backlight.h>
40#include <linux/hashtable.h>
41#include <linux/intel-iommu.h>
42#include <linux/kref.h>
43#include <linux/pm_qos.h>
44#include <linux/shmem_fs.h>
45
46#include <drm/drmP.h>
47#include <drm/intel-gtt.h>
48#include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49#include <drm/drm_gem.h>
50#include <drm/drm_auth.h>
51
52#include "i915_params.h"
53#include "i915_reg.h"
54
55#include "intel_bios.h"
56#include "intel_dpll_mgr.h"
57#include "intel_guc.h"
58#include "intel_lrc.h"
59#include "intel_ringbuffer.h"
60
61#include "i915_gem.h"
62#include "i915_gem_gtt.h"
63#include "i915_gem_render_state.h"
64
65#include "intel_gvt.h"
66
67/* General customization:
68 */
69
70#define DRIVER_NAME "i915"
71#define DRIVER_DESC "Intel Graphics"
72#define DRIVER_DATE "20160711"
73
74#undef WARN_ON
75/* Many gcc seem to no see through this and fall over :( */
76#if 0
77#define WARN_ON(x) ({ \
78 bool __i915_warn_cond = (x); \
79 if (__builtin_constant_p(__i915_warn_cond)) \
80 BUILD_BUG_ON(__i915_warn_cond); \
81 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
82#else
83#define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
84#endif
85
86#undef WARN_ON_ONCE
87#define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
88
89#define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
90 (long) (x), __func__);
91
92/* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
93 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
94 * which may not necessarily be a user visible problem. This will either
95 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
96 * enable distros and users to tailor their preferred amount of i915 abrt
97 * spam.
98 */
99#define I915_STATE_WARN(condition, format...) ({ \
100 int __ret_warn_on = !!(condition); \
101 if (unlikely(__ret_warn_on)) \
102 if (!WARN(i915.verbose_state_checks, format)) \
103 DRM_ERROR(format); \
104 unlikely(__ret_warn_on); \
105})
106
107#define I915_STATE_WARN_ON(x) \
108 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
109
110bool __i915_inject_load_failure(const char *func, int line);
111#define i915_inject_load_failure() \
112 __i915_inject_load_failure(__func__, __LINE__)
113
114static inline const char *yesno(bool v)
115{
116 return v ? "yes" : "no";
117}
118
119static inline const char *onoff(bool v)
120{
121 return v ? "on" : "off";
122}
123
124enum pipe {
125 INVALID_PIPE = -1,
126 PIPE_A = 0,
127 PIPE_B,
128 PIPE_C,
129 _PIPE_EDP,
130 I915_MAX_PIPES = _PIPE_EDP
131};
132#define pipe_name(p) ((p) + 'A')
133
134enum transcoder {
135 TRANSCODER_A = 0,
136 TRANSCODER_B,
137 TRANSCODER_C,
138 TRANSCODER_EDP,
139 TRANSCODER_DSI_A,
140 TRANSCODER_DSI_C,
141 I915_MAX_TRANSCODERS
142};
143
144static inline const char *transcoder_name(enum transcoder transcoder)
145{
146 switch (transcoder) {
147 case TRANSCODER_A:
148 return "A";
149 case TRANSCODER_B:
150 return "B";
151 case TRANSCODER_C:
152 return "C";
153 case TRANSCODER_EDP:
154 return "EDP";
155 case TRANSCODER_DSI_A:
156 return "DSI A";
157 case TRANSCODER_DSI_C:
158 return "DSI C";
159 default:
160 return "<invalid>";
161 }
162}
163
164static inline bool transcoder_is_dsi(enum transcoder transcoder)
165{
166 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
167}
168
169/*
170 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
171 * number of planes per CRTC. Not all platforms really have this many planes,
172 * which means some arrays of size I915_MAX_PLANES may have unused entries
173 * between the topmost sprite plane and the cursor plane.
174 */
175enum plane {
176 PLANE_A = 0,
177 PLANE_B,
178 PLANE_C,
179 PLANE_CURSOR,
180 I915_MAX_PLANES,
181};
182#define plane_name(p) ((p) + 'A')
183
184#define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
185
186enum port {
187 PORT_A = 0,
188 PORT_B,
189 PORT_C,
190 PORT_D,
191 PORT_E,
192 I915_MAX_PORTS
193};
194#define port_name(p) ((p) + 'A')
195
196#define I915_NUM_PHYS_VLV 2
197
198enum dpio_channel {
199 DPIO_CH0,
200 DPIO_CH1
201};
202
203enum dpio_phy {
204 DPIO_PHY0,
205 DPIO_PHY1
206};
207
208enum intel_display_power_domain {
209 POWER_DOMAIN_PIPE_A,
210 POWER_DOMAIN_PIPE_B,
211 POWER_DOMAIN_PIPE_C,
212 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
213 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
215 POWER_DOMAIN_TRANSCODER_A,
216 POWER_DOMAIN_TRANSCODER_B,
217 POWER_DOMAIN_TRANSCODER_C,
218 POWER_DOMAIN_TRANSCODER_EDP,
219 POWER_DOMAIN_TRANSCODER_DSI_A,
220 POWER_DOMAIN_TRANSCODER_DSI_C,
221 POWER_DOMAIN_PORT_DDI_A_LANES,
222 POWER_DOMAIN_PORT_DDI_B_LANES,
223 POWER_DOMAIN_PORT_DDI_C_LANES,
224 POWER_DOMAIN_PORT_DDI_D_LANES,
225 POWER_DOMAIN_PORT_DDI_E_LANES,
226 POWER_DOMAIN_PORT_DSI,
227 POWER_DOMAIN_PORT_CRT,
228 POWER_DOMAIN_PORT_OTHER,
229 POWER_DOMAIN_VGA,
230 POWER_DOMAIN_AUDIO,
231 POWER_DOMAIN_PLLS,
232 POWER_DOMAIN_AUX_A,
233 POWER_DOMAIN_AUX_B,
234 POWER_DOMAIN_AUX_C,
235 POWER_DOMAIN_AUX_D,
236 POWER_DOMAIN_GMBUS,
237 POWER_DOMAIN_MODESET,
238 POWER_DOMAIN_INIT,
239
240 POWER_DOMAIN_NUM,
241};
242
243#define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
244#define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
245 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
246#define POWER_DOMAIN_TRANSCODER(tran) \
247 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
248 (tran) + POWER_DOMAIN_TRANSCODER_A)
249
250enum hpd_pin {
251 HPD_NONE = 0,
252 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
253 HPD_CRT,
254 HPD_SDVO_B,
255 HPD_SDVO_C,
256 HPD_PORT_A,
257 HPD_PORT_B,
258 HPD_PORT_C,
259 HPD_PORT_D,
260 HPD_PORT_E,
261 HPD_NUM_PINS
262};
263
264#define for_each_hpd_pin(__pin) \
265 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
266
267struct i915_hotplug {
268 struct work_struct hotplug_work;
269
270 struct {
271 unsigned long last_jiffies;
272 int count;
273 enum {
274 HPD_ENABLED = 0,
275 HPD_DISABLED = 1,
276 HPD_MARK_DISABLED = 2
277 } state;
278 } stats[HPD_NUM_PINS];
279 u32 event_bits;
280 struct delayed_work reenable_work;
281
282 struct intel_digital_port *irq_port[I915_MAX_PORTS];
283 u32 long_port_mask;
284 u32 short_port_mask;
285 struct work_struct dig_port_work;
286
287 struct work_struct poll_init_work;
288 bool poll_enabled;
289
290 /*
291 * if we get a HPD irq from DP and a HPD irq from non-DP
292 * the non-DP HPD could block the workqueue on a mode config
293 * mutex getting, that userspace may have taken. However
294 * userspace is waiting on the DP workqueue to run which is
295 * blocked behind the non-DP one.
296 */
297 struct workqueue_struct *dp_wq;
298};
299
300#define I915_GEM_GPU_DOMAINS \
301 (I915_GEM_DOMAIN_RENDER | \
302 I915_GEM_DOMAIN_SAMPLER | \
303 I915_GEM_DOMAIN_COMMAND | \
304 I915_GEM_DOMAIN_INSTRUCTION | \
305 I915_GEM_DOMAIN_VERTEX)
306
307#define for_each_pipe(__dev_priv, __p) \
308 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
309#define for_each_pipe_masked(__dev_priv, __p, __mask) \
310 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
311 for_each_if ((__mask) & (1 << (__p)))
312#define for_each_plane(__dev_priv, __pipe, __p) \
313 for ((__p) = 0; \
314 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
315 (__p)++)
316#define for_each_sprite(__dev_priv, __p, __s) \
317 for ((__s) = 0; \
318 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
319 (__s)++)
320
321#define for_each_port_masked(__port, __ports_mask) \
322 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
323 for_each_if ((__ports_mask) & (1 << (__port)))
324
325#define for_each_crtc(dev, crtc) \
326 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
327
328#define for_each_intel_plane(dev, intel_plane) \
329 list_for_each_entry(intel_plane, \
330 &(dev)->mode_config.plane_list, \
331 base.head)
332
333#define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
334 list_for_each_entry(intel_plane, \
335 &(dev)->mode_config.plane_list, \
336 base.head) \
337 for_each_if ((plane_mask) & \
338 (1 << drm_plane_index(&intel_plane->base)))
339
340#define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
341 list_for_each_entry(intel_plane, \
342 &(dev)->mode_config.plane_list, \
343 base.head) \
344 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
345
346#define for_each_intel_crtc(dev, intel_crtc) \
347 list_for_each_entry(intel_crtc, \
348 &(dev)->mode_config.crtc_list, \
349 base.head)
350
351#define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
352 list_for_each_entry(intel_crtc, \
353 &(dev)->mode_config.crtc_list, \
354 base.head) \
355 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
356
357#define for_each_intel_encoder(dev, intel_encoder) \
358 list_for_each_entry(intel_encoder, \
359 &(dev)->mode_config.encoder_list, \
360 base.head)
361
362#define for_each_intel_connector(dev, intel_connector) \
363 list_for_each_entry(intel_connector, \
364 &(dev)->mode_config.connector_list, \
365 base.head)
366
367#define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
368 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
369 for_each_if ((intel_encoder)->base.crtc == (__crtc))
370
371#define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
372 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
373 for_each_if ((intel_connector)->base.encoder == (__encoder))
374
375#define for_each_power_domain(domain, mask) \
376 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
377 for_each_if ((1 << (domain)) & (mask))
378
379struct drm_i915_private;
380struct i915_mm_struct;
381struct i915_mmu_object;
382
383struct drm_i915_file_private {
384 struct drm_i915_private *dev_priv;
385 struct drm_file *file;
386
387 struct {
388 spinlock_t lock;
389 struct list_head request_list;
390/* 20ms is a fairly arbitrary limit (greater than the average frame time)
391 * chosen to prevent the CPU getting more than a frame ahead of the GPU
392 * (when using lax throttling for the frontbuffer). We also use it to
393 * offer free GPU waitboosts for severely congested workloads.
394 */
395#define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
396 } mm;
397 struct idr context_idr;
398
399 struct intel_rps_client {
400 struct list_head link;
401 unsigned boosts;
402 } rps;
403
404 unsigned int bsd_ring;
405};
406
407/* Used by dp and fdi links */
408struct intel_link_m_n {
409 uint32_t tu;
410 uint32_t gmch_m;
411 uint32_t gmch_n;
412 uint32_t link_m;
413 uint32_t link_n;
414};
415
416void intel_link_compute_m_n(int bpp, int nlanes,
417 int pixel_clock, int link_clock,
418 struct intel_link_m_n *m_n);
419
420/* Interface history:
421 *
422 * 1.1: Original.
423 * 1.2: Add Power Management
424 * 1.3: Add vblank support
425 * 1.4: Fix cmdbuffer path, add heap destroy
426 * 1.5: Add vblank pipe configuration
427 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
428 * - Support vertical blank on secondary display pipe
429 */
430#define DRIVER_MAJOR 1
431#define DRIVER_MINOR 6
432#define DRIVER_PATCHLEVEL 0
433
434#define WATCH_LISTS 0
435
436struct opregion_header;
437struct opregion_acpi;
438struct opregion_swsci;
439struct opregion_asle;
440
441struct intel_opregion {
442 struct opregion_header *header;
443 struct opregion_acpi *acpi;
444 struct opregion_swsci *swsci;
445 u32 swsci_gbda_sub_functions;
446 u32 swsci_sbcb_sub_functions;
447 struct opregion_asle *asle;
448 void *rvda;
449 const void *vbt;
450 u32 vbt_size;
451 u32 *lid_state;
452 struct work_struct asle_work;
453};
454#define OPREGION_SIZE (8*1024)
455
456struct intel_overlay;
457struct intel_overlay_error_state;
458
459#define I915_FENCE_REG_NONE -1
460#define I915_MAX_NUM_FENCES 32
461/* 32 fences + sign bit for FENCE_REG_NONE */
462#define I915_MAX_NUM_FENCE_BITS 6
463
464struct drm_i915_fence_reg {
465 struct list_head lru_list;
466 struct drm_i915_gem_object *obj;
467 int pin_count;
468};
469
470struct sdvo_device_mapping {
471 u8 initialized;
472 u8 dvo_port;
473 u8 slave_addr;
474 u8 dvo_wiring;
475 u8 i2c_pin;
476 u8 ddc_pin;
477};
478
479struct intel_display_error_state;
480
481struct drm_i915_error_state {
482 struct kref ref;
483 struct timeval time;
484
485 char error_msg[128];
486 bool simulated;
487 int iommu;
488 u32 reset_count;
489 u32 suspend_count;
490
491 /* Generic register state */
492 u32 eir;
493 u32 pgtbl_er;
494 u32 ier;
495 u32 gtier[4];
496 u32 ccid;
497 u32 derrmr;
498 u32 forcewake;
499 u32 error; /* gen6+ */
500 u32 err_int; /* gen7 */
501 u32 fault_data0; /* gen8, gen9 */
502 u32 fault_data1; /* gen8, gen9 */
503 u32 done_reg;
504 u32 gac_eco;
505 u32 gam_ecochk;
506 u32 gab_ctl;
507 u32 gfx_mode;
508 u32 extra_instdone[I915_NUM_INSTDONE_REG];
509 u64 fence[I915_MAX_NUM_FENCES];
510 struct intel_overlay_error_state *overlay;
511 struct intel_display_error_state *display;
512 struct drm_i915_error_object *semaphore_obj;
513
514 struct drm_i915_error_ring {
515 bool valid;
516 /* Software tracked state */
517 bool waiting;
518 int num_waiters;
519 int hangcheck_score;
520 enum intel_ring_hangcheck_action hangcheck_action;
521 int num_requests;
522
523 /* our own tracking of ring head and tail */
524 u32 cpu_ring_head;
525 u32 cpu_ring_tail;
526
527 u32 last_seqno;
528 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
529
530 /* Register state */
531 u32 start;
532 u32 tail;
533 u32 head;
534 u32 ctl;
535 u32 hws;
536 u32 ipeir;
537 u32 ipehr;
538 u32 instdone;
539 u32 bbstate;
540 u32 instpm;
541 u32 instps;
542 u32 seqno;
543 u64 bbaddr;
544 u64 acthd;
545 u32 fault_reg;
546 u64 faddr;
547 u32 rc_psmi; /* sleep state */
548 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
549
550 struct drm_i915_error_object {
551 int page_count;
552 u64 gtt_offset;
553 u32 *pages[0];
554 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
555
556 struct drm_i915_error_object *wa_ctx;
557
558 struct drm_i915_error_request {
559 long jiffies;
560 u32 seqno;
561 u32 tail;
562 } *requests;
563
564 struct drm_i915_error_waiter {
565 char comm[TASK_COMM_LEN];
566 pid_t pid;
567 u32 seqno;
568 } *waiters;
569
570 struct {
571 u32 gfx_mode;
572 union {
573 u64 pdp[4];
574 u32 pp_dir_base;
575 };
576 } vm_info;
577
578 pid_t pid;
579 char comm[TASK_COMM_LEN];
580 } ring[I915_NUM_ENGINES];
581
582 struct drm_i915_error_buffer {
583 u32 size;
584 u32 name;
585 u32 rseqno[I915_NUM_ENGINES], wseqno;
586 u64 gtt_offset;
587 u32 read_domains;
588 u32 write_domain;
589 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
590 s32 pinned:2;
591 u32 tiling:2;
592 u32 dirty:1;
593 u32 purgeable:1;
594 u32 userptr:1;
595 s32 ring:4;
596 u32 cache_level:3;
597 } **active_bo, **pinned_bo;
598
599 u32 *active_bo_count, *pinned_bo_count;
600 u32 vm_count;
601};
602
603struct intel_connector;
604struct intel_encoder;
605struct intel_crtc_state;
606struct intel_initial_plane_config;
607struct intel_crtc;
608struct intel_limit;
609struct dpll;
610
611struct drm_i915_display_funcs {
612 int (*get_display_clock_speed)(struct drm_device *dev);
613 int (*get_fifo_size)(struct drm_device *dev, int plane);
614 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
615 int (*compute_intermediate_wm)(struct drm_device *dev,
616 struct intel_crtc *intel_crtc,
617 struct intel_crtc_state *newstate);
618 void (*initial_watermarks)(struct intel_crtc_state *cstate);
619 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
620 int (*compute_global_watermarks)(struct drm_atomic_state *state);
621 void (*update_wm)(struct drm_crtc *crtc);
622 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
623 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
624 /* Returns the active state of the crtc, and if the crtc is active,
625 * fills out the pipe-config with the hw state. */
626 bool (*get_pipe_config)(struct intel_crtc *,
627 struct intel_crtc_state *);
628 void (*get_initial_plane_config)(struct intel_crtc *,
629 struct intel_initial_plane_config *);
630 int (*crtc_compute_clock)(struct intel_crtc *crtc,
631 struct intel_crtc_state *crtc_state);
632 void (*crtc_enable)(struct drm_crtc *crtc);
633 void (*crtc_disable)(struct drm_crtc *crtc);
634 void (*audio_codec_enable)(struct drm_connector *connector,
635 struct intel_encoder *encoder,
636 const struct drm_display_mode *adjusted_mode);
637 void (*audio_codec_disable)(struct intel_encoder *encoder);
638 void (*fdi_link_train)(struct drm_crtc *crtc);
639 void (*init_clock_gating)(struct drm_device *dev);
640 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
641 struct drm_framebuffer *fb,
642 struct drm_i915_gem_object *obj,
643 struct drm_i915_gem_request *req,
644 uint32_t flags);
645 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
646 /* clock updates for mode set */
647 /* cursor updates */
648 /* render clock increase/decrease */
649 /* display clock increase/decrease */
650 /* pll clock increase/decrease */
651
652 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
653 void (*load_luts)(struct drm_crtc_state *crtc_state);
654};
655
656enum forcewake_domain_id {
657 FW_DOMAIN_ID_RENDER = 0,
658 FW_DOMAIN_ID_BLITTER,
659 FW_DOMAIN_ID_MEDIA,
660
661 FW_DOMAIN_ID_COUNT
662};
663
664enum forcewake_domains {
665 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
666 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
667 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
668 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
669 FORCEWAKE_BLITTER |
670 FORCEWAKE_MEDIA)
671};
672
673#define FW_REG_READ (1)
674#define FW_REG_WRITE (2)
675
676enum forcewake_domains
677intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
678 i915_reg_t reg, unsigned int op);
679
680struct intel_uncore_funcs {
681 void (*force_wake_get)(struct drm_i915_private *dev_priv,
682 enum forcewake_domains domains);
683 void (*force_wake_put)(struct drm_i915_private *dev_priv,
684 enum forcewake_domains domains);
685
686 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
687 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
690
691 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
692 uint8_t val, bool trace);
693 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
694 uint16_t val, bool trace);
695 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
696 uint32_t val, bool trace);
697 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
698 uint64_t val, bool trace);
699};
700
701struct intel_uncore {
702 spinlock_t lock; /** lock is also taken in irq contexts. */
703
704 struct intel_uncore_funcs funcs;
705
706 unsigned fifo_count;
707 enum forcewake_domains fw_domains;
708
709 struct intel_uncore_forcewake_domain {
710 struct drm_i915_private *i915;
711 enum forcewake_domain_id id;
712 enum forcewake_domains mask;
713 unsigned wake_count;
714 struct hrtimer timer;
715 i915_reg_t reg_set;
716 u32 val_set;
717 u32 val_clear;
718 i915_reg_t reg_ack;
719 i915_reg_t reg_post;
720 u32 val_reset;
721 } fw_domain[FW_DOMAIN_ID_COUNT];
722
723 int unclaimed_mmio_check;
724};
725
726/* Iterate over initialised fw domains */
727#define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
728 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
729 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
730 (domain__)++) \
731 for_each_if ((mask__) & (domain__)->mask)
732
733#define for_each_fw_domain(domain__, dev_priv__) \
734 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
735
736#define CSR_VERSION(major, minor) ((major) << 16 | (minor))
737#define CSR_VERSION_MAJOR(version) ((version) >> 16)
738#define CSR_VERSION_MINOR(version) ((version) & 0xffff)
739
740struct intel_csr {
741 struct work_struct work;
742 const char *fw_path;
743 uint32_t *dmc_payload;
744 uint32_t dmc_fw_size;
745 uint32_t version;
746 uint32_t mmio_count;
747 i915_reg_t mmioaddr[8];
748 uint32_t mmiodata[8];
749 uint32_t dc_state;
750 uint32_t allowed_dc_mask;
751};
752
753#define DEV_INFO_FOR_EACH_FLAG(func, sep) \
754 func(is_mobile) sep \
755 func(is_i85x) sep \
756 func(is_i915g) sep \
757 func(is_i945gm) sep \
758 func(is_g33) sep \
759 func(need_gfx_hws) sep \
760 func(is_g4x) sep \
761 func(is_pineview) sep \
762 func(is_broadwater) sep \
763 func(is_crestline) sep \
764 func(is_ivybridge) sep \
765 func(is_valleyview) sep \
766 func(is_cherryview) sep \
767 func(is_haswell) sep \
768 func(is_broadwell) sep \
769 func(is_skylake) sep \
770 func(is_broxton) sep \
771 func(is_kabylake) sep \
772 func(is_preliminary) sep \
773 func(has_fbc) sep \
774 func(has_pipe_cxsr) sep \
775 func(has_hotplug) sep \
776 func(cursor_needs_physical) sep \
777 func(has_overlay) sep \
778 func(overlay_needs_physical) sep \
779 func(supports_tv) sep \
780 func(has_llc) sep \
781 func(has_snoop) sep \
782 func(has_ddi) sep \
783 func(has_fpga_dbg) sep \
784 func(has_pooled_eu)
785
786#define DEFINE_FLAG(name) u8 name:1
787#define SEP_SEMICOLON ;
788
789struct intel_device_info {
790 u32 display_mmio_offset;
791 u16 device_id;
792 u8 num_pipes;
793 u8 num_sprites[I915_MAX_PIPES];
794 u8 gen;
795 u16 gen_mask;
796 u8 ring_mask; /* Rings supported by the HW */
797 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
798 /* Register offsets for the various display pipes and transcoders */
799 int pipe_offsets[I915_MAX_TRANSCODERS];
800 int trans_offsets[I915_MAX_TRANSCODERS];
801 int palette_offsets[I915_MAX_PIPES];
802 int cursor_offsets[I915_MAX_PIPES];
803
804 /* Slice/subslice/EU info */
805 u8 slice_total;
806 u8 subslice_total;
807 u8 subslice_per_slice;
808 u8 eu_total;
809 u8 eu_per_subslice;
810 u8 min_eu_in_pool;
811 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
812 u8 subslice_7eu[3];
813 u8 has_slice_pg:1;
814 u8 has_subslice_pg:1;
815 u8 has_eu_pg:1;
816
817 struct color_luts {
818 u16 degamma_lut_size;
819 u16 gamma_lut_size;
820 } color;
821};
822
823#undef DEFINE_FLAG
824#undef SEP_SEMICOLON
825
826enum i915_cache_level {
827 I915_CACHE_NONE = 0,
828 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
829 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
830 caches, eg sampler/render caches, and the
831 large Last-Level-Cache. LLC is coherent with
832 the CPU, but L3 is only visible to the GPU. */
833 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
834};
835
836struct i915_ctx_hang_stats {
837 /* This context had batch pending when hang was declared */
838 unsigned batch_pending;
839
840 /* This context had batch active when hang was declared */
841 unsigned batch_active;
842
843 /* Time when this context was last blamed for a GPU reset */
844 unsigned long guilty_ts;
845
846 /* If the contexts causes a second GPU hang within this time,
847 * it is permanently banned from submitting any more work.
848 */
849 unsigned long ban_period_seconds;
850
851 /* This context is banned to submit more work */
852 bool banned;
853};
854
855/* This must match up with the value previously used for execbuf2.rsvd1. */
856#define DEFAULT_CONTEXT_HANDLE 0
857
858/**
859 * struct i915_gem_context - as the name implies, represents a context.
860 * @ref: reference count.
861 * @user_handle: userspace tracking identity for this context.
862 * @remap_slice: l3 row remapping information.
863 * @flags: context specific flags:
864 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
865 * @file_priv: filp associated with this context (NULL for global default
866 * context).
867 * @hang_stats: information about the role of this context in possible GPU
868 * hangs.
869 * @ppgtt: virtual memory space used by this context.
870 * @legacy_hw_ctx: render context backing object and whether it is correctly
871 * initialized (legacy ring submission mechanism only).
872 * @link: link in the global list of contexts.
873 *
874 * Contexts are memory images used by the hardware to store copies of their
875 * internal state.
876 */
877struct i915_gem_context {
878 struct kref ref;
879 struct drm_i915_private *i915;
880 struct drm_i915_file_private *file_priv;
881 struct i915_hw_ppgtt *ppgtt;
882
883 struct i915_ctx_hang_stats hang_stats;
884
885 /* Unique identifier for this context, used by the hw for tracking */
886 unsigned long flags;
887#define CONTEXT_NO_ZEROMAP BIT(0)
888#define CONTEXT_NO_ERROR_CAPTURE BIT(1)
889 unsigned hw_id;
890 u32 user_handle;
891
892 u32 ggtt_alignment;
893
894 struct intel_context {
895 struct drm_i915_gem_object *state;
896 struct intel_ringbuffer *ringbuf;
897 struct i915_vma *lrc_vma;
898 uint32_t *lrc_reg_state;
899 u64 lrc_desc;
900 int pin_count;
901 bool initialised;
902 } engine[I915_NUM_ENGINES];
903 u32 ring_size;
904 u32 desc_template;
905 struct atomic_notifier_head status_notifier;
906 bool execlists_force_single_submission;
907
908 struct list_head link;
909
910 u8 remap_slice;
911};
912
913enum fb_op_origin {
914 ORIGIN_GTT,
915 ORIGIN_CPU,
916 ORIGIN_CS,
917 ORIGIN_FLIP,
918 ORIGIN_DIRTYFB,
919};
920
921struct intel_fbc {
922 /* This is always the inner lock when overlapping with struct_mutex and
923 * it's the outer lock when overlapping with stolen_lock. */
924 struct mutex lock;
925 unsigned threshold;
926 unsigned int possible_framebuffer_bits;
927 unsigned int busy_bits;
928 unsigned int visible_pipes_mask;
929 struct intel_crtc *crtc;
930
931 struct drm_mm_node compressed_fb;
932 struct drm_mm_node *compressed_llb;
933
934 bool false_color;
935
936 bool enabled;
937 bool active;
938
939 struct intel_fbc_state_cache {
940 struct {
941 unsigned int mode_flags;
942 uint32_t hsw_bdw_pixel_rate;
943 } crtc;
944
945 struct {
946 unsigned int rotation;
947 int src_w;
948 int src_h;
949 bool visible;
950 } plane;
951
952 struct {
953 u64 ilk_ggtt_offset;
954 uint32_t pixel_format;
955 unsigned int stride;
956 int fence_reg;
957 unsigned int tiling_mode;
958 } fb;
959 } state_cache;
960
961 struct intel_fbc_reg_params {
962 struct {
963 enum pipe pipe;
964 enum plane plane;
965 unsigned int fence_y_offset;
966 } crtc;
967
968 struct {
969 u64 ggtt_offset;
970 uint32_t pixel_format;
971 unsigned int stride;
972 int fence_reg;
973 } fb;
974
975 int cfb_size;
976 } params;
977
978 struct intel_fbc_work {
979 bool scheduled;
980 u32 scheduled_vblank;
981 struct work_struct work;
982 } work;
983
984 const char *no_fbc_reason;
985};
986
987/**
988 * HIGH_RR is the highest eDP panel refresh rate read from EDID
989 * LOW_RR is the lowest eDP panel refresh rate found from EDID
990 * parsing for same resolution.
991 */
992enum drrs_refresh_rate_type {
993 DRRS_HIGH_RR,
994 DRRS_LOW_RR,
995 DRRS_MAX_RR, /* RR count */
996};
997
998enum drrs_support_type {
999 DRRS_NOT_SUPPORTED = 0,
1000 STATIC_DRRS_SUPPORT = 1,
1001 SEAMLESS_DRRS_SUPPORT = 2
1002};
1003
1004struct intel_dp;
1005struct i915_drrs {
1006 struct mutex mutex;
1007 struct delayed_work work;
1008 struct intel_dp *dp;
1009 unsigned busy_frontbuffer_bits;
1010 enum drrs_refresh_rate_type refresh_rate_type;
1011 enum drrs_support_type type;
1012};
1013
1014struct i915_psr {
1015 struct mutex lock;
1016 bool sink_support;
1017 bool source_ok;
1018 struct intel_dp *enabled;
1019 bool active;
1020 struct delayed_work work;
1021 unsigned busy_frontbuffer_bits;
1022 bool psr2_support;
1023 bool aux_frame_sync;
1024 bool link_standby;
1025};
1026
1027enum intel_pch {
1028 PCH_NONE = 0, /* No PCH present */
1029 PCH_IBX, /* Ibexpeak PCH */
1030 PCH_CPT, /* Cougarpoint PCH */
1031 PCH_LPT, /* Lynxpoint PCH */
1032 PCH_SPT, /* Sunrisepoint PCH */
1033 PCH_KBP, /* Kabypoint PCH */
1034 PCH_NOP,
1035};
1036
1037enum intel_sbi_destination {
1038 SBI_ICLK,
1039 SBI_MPHY,
1040};
1041
1042#define QUIRK_PIPEA_FORCE (1<<0)
1043#define QUIRK_LVDS_SSC_DISABLE (1<<1)
1044#define QUIRK_INVERT_BRIGHTNESS (1<<2)
1045#define QUIRK_BACKLIGHT_PRESENT (1<<3)
1046#define QUIRK_PIPEB_FORCE (1<<4)
1047#define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1048
1049struct intel_fbdev;
1050struct intel_fbc_work;
1051
1052struct intel_gmbus {
1053 struct i2c_adapter adapter;
1054#define GMBUS_FORCE_BIT_RETRY (1U << 31)
1055 u32 force_bit;
1056 u32 reg0;
1057 i915_reg_t gpio_reg;
1058 struct i2c_algo_bit_data bit_algo;
1059 struct drm_i915_private *dev_priv;
1060};
1061
1062struct i915_suspend_saved_registers {
1063 u32 saveDSPARB;
1064 u32 saveLVDS;
1065 u32 savePP_ON_DELAYS;
1066 u32 savePP_OFF_DELAYS;
1067 u32 savePP_ON;
1068 u32 savePP_OFF;
1069 u32 savePP_CONTROL;
1070 u32 savePP_DIVISOR;
1071 u32 saveFBC_CONTROL;
1072 u32 saveCACHE_MODE_0;
1073 u32 saveMI_ARB_STATE;
1074 u32 saveSWF0[16];
1075 u32 saveSWF1[16];
1076 u32 saveSWF3[3];
1077 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1078 u32 savePCH_PORT_HOTPLUG;
1079 u16 saveGCDGMBUS;
1080};
1081
1082struct vlv_s0ix_state {
1083 /* GAM */
1084 u32 wr_watermark;
1085 u32 gfx_prio_ctrl;
1086 u32 arb_mode;
1087 u32 gfx_pend_tlb0;
1088 u32 gfx_pend_tlb1;
1089 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1090 u32 media_max_req_count;
1091 u32 gfx_max_req_count;
1092 u32 render_hwsp;
1093 u32 ecochk;
1094 u32 bsd_hwsp;
1095 u32 blt_hwsp;
1096 u32 tlb_rd_addr;
1097
1098 /* MBC */
1099 u32 g3dctl;
1100 u32 gsckgctl;
1101 u32 mbctl;
1102
1103 /* GCP */
1104 u32 ucgctl1;
1105 u32 ucgctl3;
1106 u32 rcgctl1;
1107 u32 rcgctl2;
1108 u32 rstctl;
1109 u32 misccpctl;
1110
1111 /* GPM */
1112 u32 gfxpause;
1113 u32 rpdeuhwtc;
1114 u32 rpdeuc;
1115 u32 ecobus;
1116 u32 pwrdwnupctl;
1117 u32 rp_down_timeout;
1118 u32 rp_deucsw;
1119 u32 rcubmabdtmr;
1120 u32 rcedata;
1121 u32 spare2gh;
1122
1123 /* Display 1 CZ domain */
1124 u32 gt_imr;
1125 u32 gt_ier;
1126 u32 pm_imr;
1127 u32 pm_ier;
1128 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1129
1130 /* GT SA CZ domain */
1131 u32 tilectl;
1132 u32 gt_fifoctl;
1133 u32 gtlc_wake_ctrl;
1134 u32 gtlc_survive;
1135 u32 pmwgicz;
1136
1137 /* Display 2 CZ domain */
1138 u32 gu_ctl0;
1139 u32 gu_ctl1;
1140 u32 pcbr;
1141 u32 clock_gate_dis2;
1142};
1143
1144struct intel_rps_ei {
1145 u32 cz_clock;
1146 u32 render_c0;
1147 u32 media_c0;
1148};
1149
1150struct intel_gen6_power_mgmt {
1151 /*
1152 * work, interrupts_enabled and pm_iir are protected by
1153 * dev_priv->irq_lock
1154 */
1155 struct work_struct work;
1156 bool interrupts_enabled;
1157 u32 pm_iir;
1158
1159 u32 pm_intr_keep;
1160
1161 /* Frequencies are stored in potentially platform dependent multiples.
1162 * In other words, *_freq needs to be multiplied by X to be interesting.
1163 * Soft limits are those which are used for the dynamic reclocking done
1164 * by the driver (raise frequencies under heavy loads, and lower for
1165 * lighter loads). Hard limits are those imposed by the hardware.
1166 *
1167 * A distinction is made for overclocking, which is never enabled by
1168 * default, and is considered to be above the hard limit if it's
1169 * possible at all.
1170 */
1171 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1172 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1173 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1174 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1175 u8 min_freq; /* AKA RPn. Minimum frequency */
1176 u8 boost_freq; /* Frequency to request when wait boosting */
1177 u8 idle_freq; /* Frequency to request when we are idle */
1178 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1179 u8 rp1_freq; /* "less than" RP0 power/freqency */
1180 u8 rp0_freq; /* Non-overclocked max frequency. */
1181 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1182
1183 u8 up_threshold; /* Current %busy required to uplock */
1184 u8 down_threshold; /* Current %busy required to downclock */
1185
1186 int last_adj;
1187 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1188
1189 spinlock_t client_lock;
1190 struct list_head clients;
1191 bool client_boost;
1192
1193 bool enabled;
1194 struct delayed_work autoenable_work;
1195 unsigned boosts;
1196
1197 struct intel_rps_client semaphores, mmioflips;
1198
1199 /* manual wa residency calculations */
1200 struct intel_rps_ei up_ei, down_ei;
1201
1202 /*
1203 * Protects RPS/RC6 register access and PCU communication.
1204 * Must be taken after struct_mutex if nested. Note that
1205 * this lock may be held for long periods of time when
1206 * talking to hw - so only take it when talking to hw!
1207 */
1208 struct mutex hw_lock;
1209};
1210
1211/* defined intel_pm.c */
1212extern spinlock_t mchdev_lock;
1213
1214struct intel_ilk_power_mgmt {
1215 u8 cur_delay;
1216 u8 min_delay;
1217 u8 max_delay;
1218 u8 fmax;
1219 u8 fstart;
1220
1221 u64 last_count1;
1222 unsigned long last_time1;
1223 unsigned long chipset_power;
1224 u64 last_count2;
1225 u64 last_time2;
1226 unsigned long gfx_power;
1227 u8 corr;
1228
1229 int c_m;
1230 int r_t;
1231};
1232
1233struct drm_i915_private;
1234struct i915_power_well;
1235
1236struct i915_power_well_ops {
1237 /*
1238 * Synchronize the well's hw state to match the current sw state, for
1239 * example enable/disable it based on the current refcount. Called
1240 * during driver init and resume time, possibly after first calling
1241 * the enable/disable handlers.
1242 */
1243 void (*sync_hw)(struct drm_i915_private *dev_priv,
1244 struct i915_power_well *power_well);
1245 /*
1246 * Enable the well and resources that depend on it (for example
1247 * interrupts located on the well). Called after the 0->1 refcount
1248 * transition.
1249 */
1250 void (*enable)(struct drm_i915_private *dev_priv,
1251 struct i915_power_well *power_well);
1252 /*
1253 * Disable the well and resources that depend on it. Called after
1254 * the 1->0 refcount transition.
1255 */
1256 void (*disable)(struct drm_i915_private *dev_priv,
1257 struct i915_power_well *power_well);
1258 /* Returns the hw enabled state. */
1259 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1260 struct i915_power_well *power_well);
1261};
1262
1263/* Power well structure for haswell */
1264struct i915_power_well {
1265 const char *name;
1266 bool always_on;
1267 /* power well enable/disable usage count */
1268 int count;
1269 /* cached hw enabled state */
1270 bool hw_enabled;
1271 unsigned long domains;
1272 unsigned long data;
1273 const struct i915_power_well_ops *ops;
1274};
1275
1276struct i915_power_domains {
1277 /*
1278 * Power wells needed for initialization at driver init and suspend
1279 * time are on. They are kept on until after the first modeset.
1280 */
1281 bool init_power_on;
1282 bool initializing;
1283 int power_well_count;
1284
1285 struct mutex lock;
1286 int domain_use_count[POWER_DOMAIN_NUM];
1287 struct i915_power_well *power_wells;
1288};
1289
1290#define MAX_L3_SLICES 2
1291struct intel_l3_parity {
1292 u32 *remap_info[MAX_L3_SLICES];
1293 struct work_struct error_work;
1294 int which_slice;
1295};
1296
1297struct i915_gem_mm {
1298 /** Memory allocator for GTT stolen memory */
1299 struct drm_mm stolen;
1300 /** Protects the usage of the GTT stolen memory allocator. This is
1301 * always the inner lock when overlapping with struct_mutex. */
1302 struct mutex stolen_lock;
1303
1304 /** List of all objects in gtt_space. Used to restore gtt
1305 * mappings on resume */
1306 struct list_head bound_list;
1307 /**
1308 * List of objects which are not bound to the GTT (thus
1309 * are idle and not used by the GPU) but still have
1310 * (presumably uncached) pages still attached.
1311 */
1312 struct list_head unbound_list;
1313
1314 /** Usable portion of the GTT for GEM */
1315 unsigned long stolen_base; /* limited to low memory (32-bit) */
1316
1317 /** PPGTT used for aliasing the PPGTT with the GTT */
1318 struct i915_hw_ppgtt *aliasing_ppgtt;
1319
1320 struct notifier_block oom_notifier;
1321 struct notifier_block vmap_notifier;
1322 struct shrinker shrinker;
1323 bool shrinker_no_lock_stealing;
1324
1325 /** LRU list of objects with fence regs on them. */
1326 struct list_head fence_list;
1327
1328 /**
1329 * Are we in a non-interruptible section of code like
1330 * modesetting?
1331 */
1332 bool interruptible;
1333
1334 /* the indicator for dispatch video commands on two BSD rings */
1335 unsigned int bsd_ring_dispatch_index;
1336
1337 /** Bit 6 swizzling required for X tiling */
1338 uint32_t bit_6_swizzle_x;
1339 /** Bit 6 swizzling required for Y tiling */
1340 uint32_t bit_6_swizzle_y;
1341
1342 /* accounting, useful for userland debugging */
1343 spinlock_t object_stat_lock;
1344 size_t object_memory;
1345 u32 object_count;
1346};
1347
1348struct drm_i915_error_state_buf {
1349 struct drm_i915_private *i915;
1350 unsigned bytes;
1351 unsigned size;
1352 int err;
1353 u8 *buf;
1354 loff_t start;
1355 loff_t pos;
1356};
1357
1358struct i915_error_state_file_priv {
1359 struct drm_device *dev;
1360 struct drm_i915_error_state *error;
1361};
1362
1363struct i915_gpu_error {
1364 /* For hangcheck timer */
1365#define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1366#define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1367 /* Hang gpu twice in this window and your context gets banned */
1368#define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1369
1370 struct delayed_work hangcheck_work;
1371
1372 /* For reset and error_state handling. */
1373 spinlock_t lock;
1374 /* Protected by the above dev->gpu_error.lock. */
1375 struct drm_i915_error_state *first_error;
1376
1377 unsigned long missed_irq_rings;
1378
1379 /**
1380 * State variable controlling the reset flow and count
1381 *
1382 * This is a counter which gets incremented when reset is triggered,
1383 * and again when reset has been handled. So odd values (lowest bit set)
1384 * means that reset is in progress and even values that
1385 * (reset_counter >> 1):th reset was successfully completed.
1386 *
1387 * If reset is not completed succesfully, the I915_WEDGE bit is
1388 * set meaning that hardware is terminally sour and there is no
1389 * recovery. All waiters on the reset_queue will be woken when
1390 * that happens.
1391 *
1392 * This counter is used by the wait_seqno code to notice that reset
1393 * event happened and it needs to restart the entire ioctl (since most
1394 * likely the seqno it waited for won't ever signal anytime soon).
1395 *
1396 * This is important for lock-free wait paths, where no contended lock
1397 * naturally enforces the correct ordering between the bail-out of the
1398 * waiter and the gpu reset work code.
1399 */
1400 atomic_t reset_counter;
1401
1402#define I915_RESET_IN_PROGRESS_FLAG 1
1403#define I915_WEDGED (1 << 31)
1404
1405 /**
1406 * Waitqueue to signal when a hang is detected. Used to for waiters
1407 * to release the struct_mutex for the reset to procede.
1408 */
1409 wait_queue_head_t wait_queue;
1410
1411 /**
1412 * Waitqueue to signal when the reset has completed. Used by clients
1413 * that wait for dev_priv->mm.wedged to settle.
1414 */
1415 wait_queue_head_t reset_queue;
1416
1417 /* For missed irq/seqno simulation. */
1418 unsigned long test_irq_rings;
1419};
1420
1421enum modeset_restore {
1422 MODESET_ON_LID_OPEN,
1423 MODESET_DONE,
1424 MODESET_SUSPENDED,
1425};
1426
1427#define DP_AUX_A 0x40
1428#define DP_AUX_B 0x10
1429#define DP_AUX_C 0x20
1430#define DP_AUX_D 0x30
1431
1432#define DDC_PIN_B 0x05
1433#define DDC_PIN_C 0x04
1434#define DDC_PIN_D 0x06
1435
1436struct ddi_vbt_port_info {
1437 /*
1438 * This is an index in the HDMI/DVI DDI buffer translation table.
1439 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1440 * populate this field.
1441 */
1442#define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1443 uint8_t hdmi_level_shift;
1444
1445 uint8_t supports_dvi:1;
1446 uint8_t supports_hdmi:1;
1447 uint8_t supports_dp:1;
1448
1449 uint8_t alternate_aux_channel;
1450 uint8_t alternate_ddc_pin;
1451
1452 uint8_t dp_boost_level;
1453 uint8_t hdmi_boost_level;
1454};
1455
1456enum psr_lines_to_wait {
1457 PSR_0_LINES_TO_WAIT = 0,
1458 PSR_1_LINE_TO_WAIT,
1459 PSR_4_LINES_TO_WAIT,
1460 PSR_8_LINES_TO_WAIT
1461};
1462
1463struct intel_vbt_data {
1464 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1465 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1466
1467 /* Feature bits */
1468 unsigned int int_tv_support:1;
1469 unsigned int lvds_dither:1;
1470 unsigned int lvds_vbt:1;
1471 unsigned int int_crt_support:1;
1472 unsigned int lvds_use_ssc:1;
1473 unsigned int display_clock_mode:1;
1474 unsigned int fdi_rx_polarity_inverted:1;
1475 unsigned int panel_type:4;
1476 int lvds_ssc_freq;
1477 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1478
1479 enum drrs_support_type drrs_type;
1480
1481 struct {
1482 int rate;
1483 int lanes;
1484 int preemphasis;
1485 int vswing;
1486 bool low_vswing;
1487 bool initialized;
1488 bool support;
1489 int bpp;
1490 struct edp_power_seq pps;
1491 } edp;
1492
1493 struct {
1494 bool full_link;
1495 bool require_aux_wakeup;
1496 int idle_frames;
1497 enum psr_lines_to_wait lines_to_wait;
1498 int tp1_wakeup_time;
1499 int tp2_tp3_wakeup_time;
1500 } psr;
1501
1502 struct {
1503 u16 pwm_freq_hz;
1504 bool present;
1505 bool active_low_pwm;
1506 u8 min_brightness; /* min_brightness/255 of max */
1507 enum intel_backlight_type type;
1508 } backlight;
1509
1510 /* MIPI DSI */
1511 struct {
1512 u16 panel_id;
1513 struct mipi_config *config;
1514 struct mipi_pps_data *pps;
1515 u8 seq_version;
1516 u32 size;
1517 u8 *data;
1518 const u8 *sequence[MIPI_SEQ_MAX];
1519 } dsi;
1520
1521 int crt_ddc_pin;
1522
1523 int child_dev_num;
1524 union child_device_config *child_dev;
1525
1526 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1527 struct sdvo_device_mapping sdvo_mappings[2];
1528};
1529
1530enum intel_ddb_partitioning {
1531 INTEL_DDB_PART_1_2,
1532 INTEL_DDB_PART_5_6, /* IVB+ */
1533};
1534
1535struct intel_wm_level {
1536 bool enable;
1537 uint32_t pri_val;
1538 uint32_t spr_val;
1539 uint32_t cur_val;
1540 uint32_t fbc_val;
1541};
1542
1543struct ilk_wm_values {
1544 uint32_t wm_pipe[3];
1545 uint32_t wm_lp[3];
1546 uint32_t wm_lp_spr[3];
1547 uint32_t wm_linetime[3];
1548 bool enable_fbc_wm;
1549 enum intel_ddb_partitioning partitioning;
1550};
1551
1552struct vlv_pipe_wm {
1553 uint16_t primary;
1554 uint16_t sprite[2];
1555 uint8_t cursor;
1556};
1557
1558struct vlv_sr_wm {
1559 uint16_t plane;
1560 uint8_t cursor;
1561};
1562
1563struct vlv_wm_values {
1564 struct vlv_pipe_wm pipe[3];
1565 struct vlv_sr_wm sr;
1566 struct {
1567 uint8_t cursor;
1568 uint8_t sprite[2];
1569 uint8_t primary;
1570 } ddl[3];
1571 uint8_t level;
1572 bool cxsr;
1573};
1574
1575struct skl_ddb_entry {
1576 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1577};
1578
1579static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1580{
1581 return entry->end - entry->start;
1582}
1583
1584static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1585 const struct skl_ddb_entry *e2)
1586{
1587 if (e1->start == e2->start && e1->end == e2->end)
1588 return true;
1589
1590 return false;
1591}
1592
1593struct skl_ddb_allocation {
1594 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1595 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1596 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1597};
1598
1599struct skl_wm_values {
1600 unsigned dirty_pipes;
1601 struct skl_ddb_allocation ddb;
1602 uint32_t wm_linetime[I915_MAX_PIPES];
1603 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1604 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1605};
1606
1607struct skl_wm_level {
1608 bool plane_en[I915_MAX_PLANES];
1609 uint16_t plane_res_b[I915_MAX_PLANES];
1610 uint8_t plane_res_l[I915_MAX_PLANES];
1611};
1612
1613/*
1614 * This struct helps tracking the state needed for runtime PM, which puts the
1615 * device in PCI D3 state. Notice that when this happens, nothing on the
1616 * graphics device works, even register access, so we don't get interrupts nor
1617 * anything else.
1618 *
1619 * Every piece of our code that needs to actually touch the hardware needs to
1620 * either call intel_runtime_pm_get or call intel_display_power_get with the
1621 * appropriate power domain.
1622 *
1623 * Our driver uses the autosuspend delay feature, which means we'll only really
1624 * suspend if we stay with zero refcount for a certain amount of time. The
1625 * default value is currently very conservative (see intel_runtime_pm_enable), but
1626 * it can be changed with the standard runtime PM files from sysfs.
1627 *
1628 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1629 * goes back to false exactly before we reenable the IRQs. We use this variable
1630 * to check if someone is trying to enable/disable IRQs while they're supposed
1631 * to be disabled. This shouldn't happen and we'll print some error messages in
1632 * case it happens.
1633 *
1634 * For more, read the Documentation/power/runtime_pm.txt.
1635 */
1636struct i915_runtime_pm {
1637 atomic_t wakeref_count;
1638 atomic_t atomic_seq;
1639 bool suspended;
1640 bool irqs_enabled;
1641};
1642
1643enum intel_pipe_crc_source {
1644 INTEL_PIPE_CRC_SOURCE_NONE,
1645 INTEL_PIPE_CRC_SOURCE_PLANE1,
1646 INTEL_PIPE_CRC_SOURCE_PLANE2,
1647 INTEL_PIPE_CRC_SOURCE_PF,
1648 INTEL_PIPE_CRC_SOURCE_PIPE,
1649 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1650 INTEL_PIPE_CRC_SOURCE_TV,
1651 INTEL_PIPE_CRC_SOURCE_DP_B,
1652 INTEL_PIPE_CRC_SOURCE_DP_C,
1653 INTEL_PIPE_CRC_SOURCE_DP_D,
1654 INTEL_PIPE_CRC_SOURCE_AUTO,
1655 INTEL_PIPE_CRC_SOURCE_MAX,
1656};
1657
1658struct intel_pipe_crc_entry {
1659 uint32_t frame;
1660 uint32_t crc[5];
1661};
1662
1663#define INTEL_PIPE_CRC_ENTRIES_NR 128
1664struct intel_pipe_crc {
1665 spinlock_t lock;
1666 bool opened; /* exclusive access to the result file */
1667 struct intel_pipe_crc_entry *entries;
1668 enum intel_pipe_crc_source source;
1669 int head, tail;
1670 wait_queue_head_t wq;
1671};
1672
1673struct i915_frontbuffer_tracking {
1674 struct mutex lock;
1675
1676 /*
1677 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1678 * scheduled flips.
1679 */
1680 unsigned busy_bits;
1681 unsigned flip_bits;
1682};
1683
1684struct i915_wa_reg {
1685 i915_reg_t addr;
1686 u32 value;
1687 /* bitmask representing WA bits */
1688 u32 mask;
1689};
1690
1691/*
1692 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1693 * allowing it for RCS as we don't foresee any requirement of having
1694 * a whitelist for other engines. When it is really required for
1695 * other engines then the limit need to be increased.
1696 */
1697#define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1698
1699struct i915_workarounds {
1700 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1701 u32 count;
1702 u32 hw_whitelist_count[I915_NUM_ENGINES];
1703};
1704
1705struct i915_virtual_gpu {
1706 bool active;
1707};
1708
1709struct i915_execbuffer_params {
1710 struct drm_device *dev;
1711 struct drm_file *file;
1712 uint32_t dispatch_flags;
1713 uint32_t args_batch_start_offset;
1714 uint64_t batch_obj_vm_offset;
1715 struct intel_engine_cs *engine;
1716 struct drm_i915_gem_object *batch_obj;
1717 struct i915_gem_context *ctx;
1718 struct drm_i915_gem_request *request;
1719};
1720
1721/* used in computing the new watermarks state */
1722struct intel_wm_config {
1723 unsigned int num_pipes_active;
1724 bool sprites_enabled;
1725 bool sprites_scaled;
1726};
1727
1728struct drm_i915_private {
1729 struct drm_device drm;
1730
1731 struct kmem_cache *objects;
1732 struct kmem_cache *vmas;
1733 struct kmem_cache *requests;
1734
1735 const struct intel_device_info info;
1736
1737 int relative_constants_mode;
1738
1739 void __iomem *regs;
1740
1741 struct intel_uncore uncore;
1742
1743 struct i915_virtual_gpu vgpu;
1744
1745 struct intel_gvt gvt;
1746
1747 struct intel_guc guc;
1748
1749 struct intel_csr csr;
1750
1751 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1752
1753 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1754 * controller on different i2c buses. */
1755 struct mutex gmbus_mutex;
1756
1757 /**
1758 * Base address of the gmbus and gpio block.
1759 */
1760 uint32_t gpio_mmio_base;
1761
1762 /* MMIO base address for MIPI regs */
1763 uint32_t mipi_mmio_base;
1764
1765 uint32_t psr_mmio_base;
1766
1767 wait_queue_head_t gmbus_wait_queue;
1768
1769 struct pci_dev *bridge_dev;
1770 struct i915_gem_context *kernel_context;
1771 struct intel_engine_cs engine[I915_NUM_ENGINES];
1772 struct drm_i915_gem_object *semaphore_obj;
1773 uint32_t last_seqno, next_seqno;
1774
1775 struct drm_dma_handle *status_page_dmah;
1776 struct resource mch_res;
1777
1778 /* protects the irq masks */
1779 spinlock_t irq_lock;
1780
1781 /* protects the mmio flip data */
1782 spinlock_t mmio_flip_lock;
1783
1784 bool display_irqs_enabled;
1785
1786 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1787 struct pm_qos_request pm_qos;
1788
1789 /* Sideband mailbox protection */
1790 struct mutex sb_lock;
1791
1792 /** Cached value of IMR to avoid reads in updating the bitfield */
1793 union {
1794 u32 irq_mask;
1795 u32 de_irq_mask[I915_MAX_PIPES];
1796 };
1797 u32 gt_irq_mask;
1798 u32 pm_irq_mask;
1799 u32 pm_rps_events;
1800 u32 pipestat_irq_mask[I915_MAX_PIPES];
1801
1802 struct i915_hotplug hotplug;
1803 struct intel_fbc fbc;
1804 struct i915_drrs drrs;
1805 struct intel_opregion opregion;
1806 struct intel_vbt_data vbt;
1807
1808 bool preserve_bios_swizzle;
1809
1810 /* overlay */
1811 struct intel_overlay *overlay;
1812
1813 /* backlight registers and fields in struct intel_panel */
1814 struct mutex backlight_lock;
1815
1816 /* LVDS info */
1817 bool no_aux_handshake;
1818
1819 /* protects panel power sequencer state */
1820 struct mutex pps_mutex;
1821
1822 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1823 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1824
1825 unsigned int fsb_freq, mem_freq, is_ddr3;
1826 unsigned int skl_preferred_vco_freq;
1827 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1828 unsigned int max_dotclk_freq;
1829 unsigned int rawclk_freq;
1830 unsigned int hpll_freq;
1831 unsigned int czclk_freq;
1832
1833 struct {
1834 unsigned int vco, ref;
1835 } cdclk_pll;
1836
1837 /**
1838 * wq - Driver workqueue for GEM.
1839 *
1840 * NOTE: Work items scheduled here are not allowed to grab any modeset
1841 * locks, for otherwise the flushing done in the pageflip code will
1842 * result in deadlocks.
1843 */
1844 struct workqueue_struct *wq;
1845
1846 /* Display functions */
1847 struct drm_i915_display_funcs display;
1848
1849 /* PCH chipset type */
1850 enum intel_pch pch_type;
1851 unsigned short pch_id;
1852
1853 unsigned long quirks;
1854
1855 enum modeset_restore modeset_restore;
1856 struct mutex modeset_restore_lock;
1857 struct drm_atomic_state *modeset_restore_state;
1858
1859 struct list_head vm_list; /* Global list of all address spaces */
1860 struct i915_ggtt ggtt; /* VM representing the global address space */
1861
1862 struct i915_gem_mm mm;
1863 DECLARE_HASHTABLE(mm_structs, 7);
1864 struct mutex mm_lock;
1865
1866 /* The hw wants to have a stable context identifier for the lifetime
1867 * of the context (for OA, PASID, faults, etc). This is limited
1868 * in execlists to 21 bits.
1869 */
1870 struct ida context_hw_ida;
1871#define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1872
1873 /* Kernel Modesetting */
1874
1875 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1876 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1877 wait_queue_head_t pending_flip_queue;
1878
1879#ifdef CONFIG_DEBUG_FS
1880 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1881#endif
1882
1883 /* dpll and cdclk state is protected by connection_mutex */
1884 int num_shared_dpll;
1885 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1886 const struct intel_dpll_mgr *dpll_mgr;
1887
1888 /*
1889 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1890 * Must be global rather than per dpll, because on some platforms
1891 * plls share registers.
1892 */
1893 struct mutex dpll_lock;
1894
1895 unsigned int active_crtcs;
1896 unsigned int min_pixclk[I915_MAX_PIPES];
1897
1898 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1899
1900 struct i915_workarounds workarounds;
1901
1902 struct i915_frontbuffer_tracking fb_tracking;
1903
1904 u16 orig_clock;
1905
1906 bool mchbar_need_disable;
1907
1908 struct intel_l3_parity l3_parity;
1909
1910 /* Cannot be determined by PCIID. You must always read a register. */
1911 u32 edram_cap;
1912
1913 /* gen6+ rps state */
1914 struct intel_gen6_power_mgmt rps;
1915
1916 /* ilk-only ips/rps state. Everything in here is protected by the global
1917 * mchdev_lock in intel_pm.c */
1918 struct intel_ilk_power_mgmt ips;
1919
1920 struct i915_power_domains power_domains;
1921
1922 struct i915_psr psr;
1923
1924 struct i915_gpu_error gpu_error;
1925
1926 struct drm_i915_gem_object *vlv_pctx;
1927
1928#ifdef CONFIG_DRM_FBDEV_EMULATION
1929 /* list of fbdev register on this device */
1930 struct intel_fbdev *fbdev;
1931 struct work_struct fbdev_suspend_work;
1932#endif
1933
1934 struct drm_property *broadcast_rgb_property;
1935 struct drm_property *force_audio_property;
1936
1937 /* hda/i915 audio component */
1938 struct i915_audio_component *audio_component;
1939 bool audio_component_registered;
1940 /**
1941 * av_mutex - mutex for audio/video sync
1942 *
1943 */
1944 struct mutex av_mutex;
1945
1946 uint32_t hw_context_size;
1947 struct list_head context_list;
1948
1949 u32 fdi_rx_config;
1950
1951 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1952 u32 chv_phy_control;
1953 /*
1954 * Shadows for CHV DPLL_MD regs to keep the state
1955 * checker somewhat working in the presence hardware
1956 * crappiness (can't read out DPLL_MD for pipes B & C).
1957 */
1958 u32 chv_dpll_md[I915_MAX_PIPES];
1959 u32 bxt_phy_grc;
1960
1961 u32 suspend_count;
1962 bool suspended_to_idle;
1963 struct i915_suspend_saved_registers regfile;
1964 struct vlv_s0ix_state vlv_s0ix_state;
1965
1966 struct {
1967 /*
1968 * Raw watermark latency values:
1969 * in 0.1us units for WM0,
1970 * in 0.5us units for WM1+.
1971 */
1972 /* primary */
1973 uint16_t pri_latency[5];
1974 /* sprite */
1975 uint16_t spr_latency[5];
1976 /* cursor */
1977 uint16_t cur_latency[5];
1978 /*
1979 * Raw watermark memory latency values
1980 * for SKL for all 8 levels
1981 * in 1us units.
1982 */
1983 uint16_t skl_latency[8];
1984
1985 /*
1986 * The skl_wm_values structure is a bit too big for stack
1987 * allocation, so we keep the staging struct where we store
1988 * intermediate results here instead.
1989 */
1990 struct skl_wm_values skl_results;
1991
1992 /* current hardware state */
1993 union {
1994 struct ilk_wm_values hw;
1995 struct skl_wm_values skl_hw;
1996 struct vlv_wm_values vlv;
1997 };
1998
1999 uint8_t max_level;
2000
2001 /*
2002 * Should be held around atomic WM register writing; also
2003 * protects * intel_crtc->wm.active and
2004 * cstate->wm.need_postvbl_update.
2005 */
2006 struct mutex wm_mutex;
2007
2008 /*
2009 * Set during HW readout of watermarks/DDB. Some platforms
2010 * need to know when we're still using BIOS-provided values
2011 * (which we don't fully trust).
2012 */
2013 bool distrust_bios_wm;
2014 } wm;
2015
2016 struct i915_runtime_pm pm;
2017
2018 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2019 struct {
2020 int (*execbuf_submit)(struct i915_execbuffer_params *params,
2021 struct drm_i915_gem_execbuffer2 *args,
2022 struct list_head *vmas);
2023 void (*cleanup_engine)(struct intel_engine_cs *engine);
2024 void (*stop_engine)(struct intel_engine_cs *engine);
2025
2026 /**
2027 * Is the GPU currently considered idle, or busy executing
2028 * userspace requests? Whilst idle, we allow runtime power
2029 * management to power down the hardware and display clocks.
2030 * In order to reduce the effect on performance, there
2031 * is a slight delay before we do so.
2032 */
2033 unsigned int active_engines;
2034 bool awake;
2035
2036 /**
2037 * We leave the user IRQ off as much as possible,
2038 * but this means that requests will finish and never
2039 * be retired once the system goes idle. Set a timer to
2040 * fire periodically while the ring is running. When it
2041 * fires, go retire requests.
2042 */
2043 struct delayed_work retire_work;
2044
2045 /**
2046 * When we detect an idle GPU, we want to turn on
2047 * powersaving features. So once we see that there
2048 * are no more requests outstanding and no more
2049 * arrive within a small period of time, we fire
2050 * off the idle_work.
2051 */
2052 struct delayed_work idle_work;
2053 } gt;
2054
2055 /* perform PHY state sanity checks? */
2056 bool chv_phy_assert[2];
2057
2058 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2059
2060 /*
2061 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2062 * will be rejected. Instead look for a better place.
2063 */
2064};
2065
2066static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2067{
2068 return container_of(dev, struct drm_i915_private, drm);
2069}
2070
2071static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2072{
2073 return to_i915(dev_get_drvdata(dev));
2074}
2075
2076static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2077{
2078 return container_of(guc, struct drm_i915_private, guc);
2079}
2080
2081/* Simple iterator over all initialised engines */
2082#define for_each_engine(engine__, dev_priv__) \
2083 for ((engine__) = &(dev_priv__)->engine[0]; \
2084 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2085 (engine__)++) \
2086 for_each_if (intel_engine_initialized(engine__))
2087
2088/* Iterator with engine_id */
2089#define for_each_engine_id(engine__, dev_priv__, id__) \
2090 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2091 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2092 (engine__)++) \
2093 for_each_if (((id__) = (engine__)->id, \
2094 intel_engine_initialized(engine__)))
2095
2096/* Iterator over subset of engines selected by mask */
2097#define for_each_engine_masked(engine__, dev_priv__, mask__) \
2098 for ((engine__) = &(dev_priv__)->engine[0]; \
2099 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2100 (engine__)++) \
2101 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2102 intel_engine_initialized(engine__))
2103
2104enum hdmi_force_audio {
2105 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2106 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2107 HDMI_AUDIO_AUTO, /* trust EDID */
2108 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2109};
2110
2111#define I915_GTT_OFFSET_NONE ((u32)-1)
2112
2113struct drm_i915_gem_object_ops {
2114 unsigned int flags;
2115#define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2116
2117 /* Interface between the GEM object and its backing storage.
2118 * get_pages() is called once prior to the use of the associated set
2119 * of pages before to binding them into the GTT, and put_pages() is
2120 * called after we no longer need them. As we expect there to be
2121 * associated cost with migrating pages between the backing storage
2122 * and making them available for the GPU (e.g. clflush), we may hold
2123 * onto the pages after they are no longer referenced by the GPU
2124 * in case they may be used again shortly (for example migrating the
2125 * pages to a different memory domain within the GTT). put_pages()
2126 * will therefore most likely be called when the object itself is
2127 * being released or under memory pressure (where we attempt to
2128 * reap pages for the shrinker).
2129 */
2130 int (*get_pages)(struct drm_i915_gem_object *);
2131 void (*put_pages)(struct drm_i915_gem_object *);
2132
2133 int (*dmabuf_export)(struct drm_i915_gem_object *);
2134 void (*release)(struct drm_i915_gem_object *);
2135};
2136
2137/*
2138 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2139 * considered to be the frontbuffer for the given plane interface-wise. This
2140 * doesn't mean that the hw necessarily already scans it out, but that any
2141 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2142 *
2143 * We have one bit per pipe and per scanout plane type.
2144 */
2145#define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2146#define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2147#define INTEL_FRONTBUFFER_BITS \
2148 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2149#define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2150 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2151#define INTEL_FRONTBUFFER_CURSOR(pipe) \
2152 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2153#define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2154 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2155#define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2156 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2157#define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2158 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2159
2160struct drm_i915_gem_object {
2161 struct drm_gem_object base;
2162
2163 const struct drm_i915_gem_object_ops *ops;
2164
2165 /** List of VMAs backed by this object */
2166 struct list_head vma_list;
2167
2168 /** Stolen memory for this object, instead of being backed by shmem. */
2169 struct drm_mm_node *stolen;
2170 struct list_head global_list;
2171
2172 struct list_head engine_list[I915_NUM_ENGINES];
2173 /** Used in execbuf to temporarily hold a ref */
2174 struct list_head obj_exec_link;
2175
2176 struct list_head batch_pool_link;
2177
2178 /**
2179 * This is set if the object is on the active lists (has pending
2180 * rendering and so a non-zero seqno), and is not set if it i s on
2181 * inactive (ready to be unbound) list.
2182 */
2183 unsigned int active:I915_NUM_ENGINES;
2184
2185 /**
2186 * This is set if the object has been written to since last bound
2187 * to the GTT
2188 */
2189 unsigned int dirty:1;
2190
2191 /**
2192 * Fence register bits (if any) for this object. Will be set
2193 * as needed when mapped into the GTT.
2194 * Protected by dev->struct_mutex.
2195 */
2196 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2197
2198 /**
2199 * Advice: are the backing pages purgeable?
2200 */
2201 unsigned int madv:2;
2202
2203 /**
2204 * Current tiling mode for the object.
2205 */
2206 unsigned int tiling_mode:2;
2207 /**
2208 * Whether the tiling parameters for the currently associated fence
2209 * register have changed. Note that for the purposes of tracking
2210 * tiling changes we also treat the unfenced register, the register
2211 * slot that the object occupies whilst it executes a fenced
2212 * command (such as BLT on gen2/3), as a "fence".
2213 */
2214 unsigned int fence_dirty:1;
2215
2216 /**
2217 * Is the object at the current location in the gtt mappable and
2218 * fenceable? Used to avoid costly recalculations.
2219 */
2220 unsigned int map_and_fenceable:1;
2221
2222 /**
2223 * Whether the current gtt mapping needs to be mappable (and isn't just
2224 * mappable by accident). Track pin and fault separate for a more
2225 * accurate mappable working set.
2226 */
2227 unsigned int fault_mappable:1;
2228
2229 /*
2230 * Is the object to be mapped as read-only to the GPU
2231 * Only honoured if hardware has relevant pte bit
2232 */
2233 unsigned long gt_ro:1;
2234 unsigned int cache_level:3;
2235 unsigned int cache_dirty:1;
2236
2237 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2238
2239 unsigned int has_wc_mmap;
2240 unsigned int pin_display;
2241
2242 struct sg_table *pages;
2243 int pages_pin_count;
2244 struct get_page {
2245 struct scatterlist *sg;
2246 int last;
2247 } get_page;
2248 void *mapping;
2249
2250 /** Breadcrumb of last rendering to the buffer.
2251 * There can only be one writer, but we allow for multiple readers.
2252 * If there is a writer that necessarily implies that all other
2253 * read requests are complete - but we may only be lazily clearing
2254 * the read requests. A read request is naturally the most recent
2255 * request on a ring, so we may have two different write and read
2256 * requests on one ring where the write request is older than the
2257 * read request. This allows for the CPU to read from an active
2258 * buffer by only waiting for the write to complete.
2259 * */
2260 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2261 struct drm_i915_gem_request *last_write_req;
2262 /** Breadcrumb of last fenced GPU access to the buffer. */
2263 struct drm_i915_gem_request *last_fenced_req;
2264
2265 /** Current tiling stride for the object, if it's tiled. */
2266 uint32_t stride;
2267
2268 /** References from framebuffers, locks out tiling changes. */
2269 unsigned long framebuffer_references;
2270
2271 /** Record of address bit 17 of each page at last unbind. */
2272 unsigned long *bit_17;
2273
2274 union {
2275 /** for phy allocated objects */
2276 struct drm_dma_handle *phys_handle;
2277
2278 struct i915_gem_userptr {
2279 uintptr_t ptr;
2280 unsigned read_only :1;
2281 unsigned workers :4;
2282#define I915_GEM_USERPTR_MAX_WORKERS 15
2283
2284 struct i915_mm_struct *mm;
2285 struct i915_mmu_object *mmu_object;
2286 struct work_struct *work;
2287 } userptr;
2288 };
2289};
2290#define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2291
2292static inline bool
2293i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2294{
2295 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2296}
2297
2298/*
2299 * Optimised SGL iterator for GEM objects
2300 */
2301static __always_inline struct sgt_iter {
2302 struct scatterlist *sgp;
2303 union {
2304 unsigned long pfn;
2305 dma_addr_t dma;
2306 };
2307 unsigned int curr;
2308 unsigned int max;
2309} __sgt_iter(struct scatterlist *sgl, bool dma) {
2310 struct sgt_iter s = { .sgp = sgl };
2311
2312 if (s.sgp) {
2313 s.max = s.curr = s.sgp->offset;
2314 s.max += s.sgp->length;
2315 if (dma)
2316 s.dma = sg_dma_address(s.sgp);
2317 else
2318 s.pfn = page_to_pfn(sg_page(s.sgp));
2319 }
2320
2321 return s;
2322}
2323
2324/**
2325 * __sg_next - return the next scatterlist entry in a list
2326 * @sg: The current sg entry
2327 *
2328 * Description:
2329 * If the entry is the last, return NULL; otherwise, step to the next
2330 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2331 * otherwise just return the pointer to the current element.
2332 **/
2333static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2334{
2335#ifdef CONFIG_DEBUG_SG
2336 BUG_ON(sg->sg_magic != SG_MAGIC);
2337#endif
2338 return sg_is_last(sg) ? NULL :
2339 likely(!sg_is_chain(++sg)) ? sg :
2340 sg_chain_ptr(sg);
2341}
2342
2343/**
2344 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2345 * @__dmap: DMA address (output)
2346 * @__iter: 'struct sgt_iter' (iterator state, internal)
2347 * @__sgt: sg_table to iterate over (input)
2348 */
2349#define for_each_sgt_dma(__dmap, __iter, __sgt) \
2350 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2351 ((__dmap) = (__iter).dma + (__iter).curr); \
2352 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2353 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2354
2355/**
2356 * for_each_sgt_page - iterate over the pages of the given sg_table
2357 * @__pp: page pointer (output)
2358 * @__iter: 'struct sgt_iter' (iterator state, internal)
2359 * @__sgt: sg_table to iterate over (input)
2360 */
2361#define for_each_sgt_page(__pp, __iter, __sgt) \
2362 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2363 ((__pp) = (__iter).pfn == 0 ? NULL : \
2364 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2365 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2366 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2367
2368/**
2369 * Request queue structure.
2370 *
2371 * The request queue allows us to note sequence numbers that have been emitted
2372 * and may be associated with active buffers to be retired.
2373 *
2374 * By keeping this list, we can avoid having to do questionable sequence
2375 * number comparisons on buffer last_read|write_seqno. It also allows an
2376 * emission time to be associated with the request for tracking how far ahead
2377 * of the GPU the submission is.
2378 *
2379 * The requests are reference counted, so upon creation they should have an
2380 * initial reference taken using kref_init
2381 */
2382struct drm_i915_gem_request {
2383 struct kref ref;
2384
2385 /** On Which ring this request was generated */
2386 struct drm_i915_private *i915;
2387 struct intel_engine_cs *engine;
2388 struct intel_signal_node signaling;
2389
2390 /** GEM sequence number associated with the previous request,
2391 * when the HWS breadcrumb is equal to this the GPU is processing
2392 * this request.
2393 */
2394 u32 previous_seqno;
2395
2396 /** GEM sequence number associated with this request,
2397 * when the HWS breadcrumb is equal or greater than this the GPU
2398 * has finished processing this request.
2399 */
2400 u32 seqno;
2401
2402 /** Position in the ringbuffer of the start of the request */
2403 u32 head;
2404
2405 /**
2406 * Position in the ringbuffer of the start of the postfix.
2407 * This is required to calculate the maximum available ringbuffer
2408 * space without overwriting the postfix.
2409 */
2410 u32 postfix;
2411
2412 /** Position in the ringbuffer of the end of the whole request */
2413 u32 tail;
2414
2415 /** Preallocate space in the ringbuffer for the emitting the request */
2416 u32 reserved_space;
2417
2418 /**
2419 * Context and ring buffer related to this request
2420 * Contexts are refcounted, so when this request is associated with a
2421 * context, we must increment the context's refcount, to guarantee that
2422 * it persists while any request is linked to it. Requests themselves
2423 * are also refcounted, so the request will only be freed when the last
2424 * reference to it is dismissed, and the code in
2425 * i915_gem_request_free() will then decrement the refcount on the
2426 * context.
2427 */
2428 struct i915_gem_context *ctx;
2429 struct intel_ringbuffer *ringbuf;
2430
2431 /**
2432 * Context related to the previous request.
2433 * As the contexts are accessed by the hardware until the switch is
2434 * completed to a new context, the hardware may still be writing
2435 * to the context object after the breadcrumb is visible. We must
2436 * not unpin/unbind/prune that object whilst still active and so
2437 * we keep the previous context pinned until the following (this)
2438 * request is retired.
2439 */
2440 struct i915_gem_context *previous_context;
2441
2442 /** Batch buffer related to this request if any (used for
2443 error state dump only) */
2444 struct drm_i915_gem_object *batch_obj;
2445
2446 /** Time at which this request was emitted, in jiffies. */
2447 unsigned long emitted_jiffies;
2448
2449 /** global list entry for this request */
2450 struct list_head list;
2451
2452 struct drm_i915_file_private *file_priv;
2453 /** file_priv list entry for this request */
2454 struct list_head client_list;
2455
2456 /** process identifier submitting this request */
2457 struct pid *pid;
2458
2459 /**
2460 * The ELSP only accepts two elements at a time, so we queue
2461 * context/tail pairs on a given queue (ring->execlist_queue) until the
2462 * hardware is available. The queue serves a double purpose: we also use
2463 * it to keep track of the up to 2 contexts currently in the hardware
2464 * (usually one in execution and the other queued up by the GPU): We
2465 * only remove elements from the head of the queue when the hardware
2466 * informs us that an element has been completed.
2467 *
2468 * All accesses to the queue are mediated by a spinlock
2469 * (ring->execlist_lock).
2470 */
2471
2472 /** Execlist link in the submission queue.*/
2473 struct list_head execlist_link;
2474
2475 /** Execlists no. of times this request has been sent to the ELSP */
2476 int elsp_submitted;
2477
2478 /** Execlists context hardware id. */
2479 unsigned ctx_hw_id;
2480};
2481
2482struct drm_i915_gem_request * __must_check
2483i915_gem_request_alloc(struct intel_engine_cs *engine,
2484 struct i915_gem_context *ctx);
2485void i915_gem_request_free(struct kref *req_ref);
2486int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2487 struct drm_file *file);
2488
2489static inline uint32_t
2490i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2491{
2492 return req ? req->seqno : 0;
2493}
2494
2495static inline struct intel_engine_cs *
2496i915_gem_request_get_engine(struct drm_i915_gem_request *req)
2497{
2498 return req ? req->engine : NULL;
2499}
2500
2501static inline struct drm_i915_gem_request *
2502i915_gem_request_reference(struct drm_i915_gem_request *req)
2503{
2504 if (req)
2505 kref_get(&req->ref);
2506 return req;
2507}
2508
2509static inline void
2510i915_gem_request_unreference(struct drm_i915_gem_request *req)
2511{
2512 kref_put(&req->ref, i915_gem_request_free);
2513}
2514
2515static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2516 struct drm_i915_gem_request *src)
2517{
2518 if (src)
2519 i915_gem_request_reference(src);
2520
2521 if (*pdst)
2522 i915_gem_request_unreference(*pdst);
2523
2524 *pdst = src;
2525}
2526
2527/*
2528 * XXX: i915_gem_request_completed should be here but currently needs the
2529 * definition of i915_seqno_passed() which is below. It will be moved in
2530 * a later patch when the call to i915_seqno_passed() is obsoleted...
2531 */
2532
2533/*
2534 * A command that requires special handling by the command parser.
2535 */
2536struct drm_i915_cmd_descriptor {
2537 /*
2538 * Flags describing how the command parser processes the command.
2539 *
2540 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2541 * a length mask if not set
2542 * CMD_DESC_SKIP: The command is allowed but does not follow the
2543 * standard length encoding for the opcode range in
2544 * which it falls
2545 * CMD_DESC_REJECT: The command is never allowed
2546 * CMD_DESC_REGISTER: The command should be checked against the
2547 * register whitelist for the appropriate ring
2548 * CMD_DESC_MASTER: The command is allowed if the submitting process
2549 * is the DRM master
2550 */
2551 u32 flags;
2552#define CMD_DESC_FIXED (1<<0)
2553#define CMD_DESC_SKIP (1<<1)
2554#define CMD_DESC_REJECT (1<<2)
2555#define CMD_DESC_REGISTER (1<<3)
2556#define CMD_DESC_BITMASK (1<<4)
2557#define CMD_DESC_MASTER (1<<5)
2558
2559 /*
2560 * The command's unique identification bits and the bitmask to get them.
2561 * This isn't strictly the opcode field as defined in the spec and may
2562 * also include type, subtype, and/or subop fields.
2563 */
2564 struct {
2565 u32 value;
2566 u32 mask;
2567 } cmd;
2568
2569 /*
2570 * The command's length. The command is either fixed length (i.e. does
2571 * not include a length field) or has a length field mask. The flag
2572 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2573 * a length mask. All command entries in a command table must include
2574 * length information.
2575 */
2576 union {
2577 u32 fixed;
2578 u32 mask;
2579 } length;
2580
2581 /*
2582 * Describes where to find a register address in the command to check
2583 * against the ring's register whitelist. Only valid if flags has the
2584 * CMD_DESC_REGISTER bit set.
2585 *
2586 * A non-zero step value implies that the command may access multiple
2587 * registers in sequence (e.g. LRI), in that case step gives the
2588 * distance in dwords between individual offset fields.
2589 */
2590 struct {
2591 u32 offset;
2592 u32 mask;
2593 u32 step;
2594 } reg;
2595
2596#define MAX_CMD_DESC_BITMASKS 3
2597 /*
2598 * Describes command checks where a particular dword is masked and
2599 * compared against an expected value. If the command does not match
2600 * the expected value, the parser rejects it. Only valid if flags has
2601 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2602 * are valid.
2603 *
2604 * If the check specifies a non-zero condition_mask then the parser
2605 * only performs the check when the bits specified by condition_mask
2606 * are non-zero.
2607 */
2608 struct {
2609 u32 offset;
2610 u32 mask;
2611 u32 expected;
2612 u32 condition_offset;
2613 u32 condition_mask;
2614 } bits[MAX_CMD_DESC_BITMASKS];
2615};
2616
2617/*
2618 * A table of commands requiring special handling by the command parser.
2619 *
2620 * Each ring has an array of tables. Each table consists of an array of command
2621 * descriptors, which must be sorted with command opcodes in ascending order.
2622 */
2623struct drm_i915_cmd_table {
2624 const struct drm_i915_cmd_descriptor *table;
2625 int count;
2626};
2627
2628/* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2629#define __I915__(p) ({ \
2630 struct drm_i915_private *__p; \
2631 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2632 __p = (struct drm_i915_private *)p; \
2633 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2634 __p = to_i915((struct drm_device *)p); \
2635 else \
2636 BUILD_BUG(); \
2637 __p; \
2638})
2639#define INTEL_INFO(p) (&__I915__(p)->info)
2640#define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2641#define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2642
2643#define REVID_FOREVER 0xff
2644#define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2645
2646#define GEN_FOREVER (0)
2647/*
2648 * Returns true if Gen is in inclusive range [Start, End].
2649 *
2650 * Use GEN_FOREVER for unbound start and or end.
2651 */
2652#define IS_GEN(p, s, e) ({ \
2653 unsigned int __s = (s), __e = (e); \
2654 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2655 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2656 if ((__s) != GEN_FOREVER) \
2657 __s = (s) - 1; \
2658 if ((__e) == GEN_FOREVER) \
2659 __e = BITS_PER_LONG - 1; \
2660 else \
2661 __e = (e) - 1; \
2662 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2663})
2664
2665/*
2666 * Return true if revision is in range [since,until] inclusive.
2667 *
2668 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2669 */
2670#define IS_REVID(p, since, until) \
2671 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2672
2673#define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2674#define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2675#define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2676#define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2677#define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2678#define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2679#define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2680#define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2681#define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2682#define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2683#define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2684#define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2685#define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2686#define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2687#define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2688#define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2689#define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2690#define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2691#define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2692 INTEL_DEVID(dev) == 0x0152 || \
2693 INTEL_DEVID(dev) == 0x015a)
2694#define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2695#define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2696#define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2697#define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2698#define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2699#define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2700#define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2701#define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2702#define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2703 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2704#define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2705 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2706 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2707 (INTEL_DEVID(dev) & 0xf) == 0xe))
2708/* ULX machines are also considered ULT. */
2709#define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2710 (INTEL_DEVID(dev) & 0xf) == 0xe)
2711#define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2712 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2713#define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2714 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2715#define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2716 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2717/* ULX machines are also considered ULT. */
2718#define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2719 INTEL_DEVID(dev) == 0x0A1E)
2720#define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2721 INTEL_DEVID(dev) == 0x1913 || \
2722 INTEL_DEVID(dev) == 0x1916 || \
2723 INTEL_DEVID(dev) == 0x1921 || \
2724 INTEL_DEVID(dev) == 0x1926)
2725#define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2726 INTEL_DEVID(dev) == 0x1915 || \
2727 INTEL_DEVID(dev) == 0x191E)
2728#define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2729 INTEL_DEVID(dev) == 0x5913 || \
2730 INTEL_DEVID(dev) == 0x5916 || \
2731 INTEL_DEVID(dev) == 0x5921 || \
2732 INTEL_DEVID(dev) == 0x5926)
2733#define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2734 INTEL_DEVID(dev) == 0x5915 || \
2735 INTEL_DEVID(dev) == 0x591E)
2736#define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2737 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2738#define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2739 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2740
2741#define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2742
2743#define SKL_REVID_A0 0x0
2744#define SKL_REVID_B0 0x1
2745#define SKL_REVID_C0 0x2
2746#define SKL_REVID_D0 0x3
2747#define SKL_REVID_E0 0x4
2748#define SKL_REVID_F0 0x5
2749
2750#define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2751
2752#define BXT_REVID_A0 0x0
2753#define BXT_REVID_A1 0x1
2754#define BXT_REVID_B0 0x3
2755#define BXT_REVID_C0 0x9
2756
2757#define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2758
2759#define KBL_REVID_A0 0x0
2760#define KBL_REVID_B0 0x1
2761#define KBL_REVID_C0 0x2
2762#define KBL_REVID_D0 0x3
2763#define KBL_REVID_E0 0x4
2764
2765#define IS_KBL_REVID(p, since, until) \
2766 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2767
2768/*
2769 * The genX designation typically refers to the render engine, so render
2770 * capability related checks should use IS_GEN, while display and other checks
2771 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2772 * chips, etc.).
2773 */
2774#define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2775#define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2776#define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2777#define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2778#define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2779#define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2780#define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2781#define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2782
2783#define ENGINE_MASK(id) BIT(id)
2784#define RENDER_RING ENGINE_MASK(RCS)
2785#define BSD_RING ENGINE_MASK(VCS)
2786#define BLT_RING ENGINE_MASK(BCS)
2787#define VEBOX_RING ENGINE_MASK(VECS)
2788#define BSD2_RING ENGINE_MASK(VCS2)
2789#define ALL_ENGINES (~0)
2790
2791#define HAS_ENGINE(dev_priv, id) \
2792 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2793
2794#define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2795#define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2796#define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2797#define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2798
2799#define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2800#define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2801#define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2802#define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2803 HAS_EDRAM(dev))
2804#define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2805
2806#define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2807#define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2808#define USES_PPGTT(dev) (i915.enable_ppgtt)
2809#define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2810#define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2811
2812#define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2813#define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2814
2815/* Early gen2 have a totally busted CS tlb and require pinned batches. */
2816#define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2817
2818/* WaRsDisableCoarsePowerGating:skl,bxt */
2819#define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2820 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2821 IS_SKL_GT3(dev_priv) || \
2822 IS_SKL_GT4(dev_priv))
2823
2824/*
2825 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2826 * even when in MSI mode. This results in spurious interrupt warnings if the
2827 * legacy irq no. is shared with another device. The kernel then disables that
2828 * interrupt source and so prevents the other device from working properly.
2829 */
2830#define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2831#define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2832
2833/* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2834 * rows, which changed the alignment requirements and fence programming.
2835 */
2836#define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2837 IS_I915GM(dev)))
2838#define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2839#define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2840
2841#define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2842#define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2843#define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2844
2845#define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2846
2847#define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2848 INTEL_INFO(dev)->gen >= 9)
2849
2850#define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2851#define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2852#define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2853 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2854 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2855#define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2856 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2857 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2858 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2859#define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2860#define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2861
2862#define HAS_CSR(dev) (IS_GEN9(dev))
2863
2864/*
2865 * For now, anything with a GuC requires uCode loading, and then supports
2866 * command submission once loaded. But these are logically independent
2867 * properties, so we have separate macros to test them.
2868 */
2869#define HAS_GUC(dev) (IS_GEN9(dev))
2870#define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2871#define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2872
2873#define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2874 INTEL_INFO(dev)->gen >= 8)
2875
2876#define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2877 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2878 !IS_BROXTON(dev))
2879
2880#define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2881
2882#define INTEL_PCH_DEVICE_ID_MASK 0xff00
2883#define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2884#define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2885#define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2886#define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2887#define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2888#define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2889#define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2890#define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2891#define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2892#define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2893#define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2894
2895#define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2896#define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2897#define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2898#define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2899#define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2900#define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2901#define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2902#define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2903#define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2904#define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2905
2906#define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2907 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2908
2909/* DPF == dynamic parity feature */
2910#define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2911#define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2912
2913#define GT_FREQUENCY_MULTIPLIER 50
2914#define GEN9_FREQ_SCALER 3
2915
2916#include "i915_trace.h"
2917
2918static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2919{
2920#ifdef CONFIG_INTEL_IOMMU
2921 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2922 return true;
2923#endif
2924 return false;
2925}
2926
2927extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2928extern int i915_resume_switcheroo(struct drm_device *dev);
2929
2930int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2931 int enable_ppgtt);
2932
2933/* i915_drv.c */
2934void __printf(3, 4)
2935__i915_printk(struct drm_i915_private *dev_priv, const char *level,
2936 const char *fmt, ...);
2937
2938#define i915_report_error(dev_priv, fmt, ...) \
2939 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2940
2941#ifdef CONFIG_COMPAT
2942extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2943 unsigned long arg);
2944#endif
2945extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2946extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2947extern int i915_reset(struct drm_i915_private *dev_priv);
2948extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2949extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2950extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2951extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2952extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2953extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2954int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2955
2956/* intel_hotplug.c */
2957void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2958 u32 pin_mask, u32 long_mask);
2959void intel_hpd_init(struct drm_i915_private *dev_priv);
2960void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2961void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2962bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2963bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2964void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2965
2966/* i915_irq.c */
2967static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2968{
2969 unsigned long delay;
2970
2971 if (unlikely(!i915.enable_hangcheck))
2972 return;
2973
2974 /* Don't continually defer the hangcheck so that it is always run at
2975 * least once after work has been scheduled on any ring. Otherwise,
2976 * we will ignore a hung ring if a second ring is kept busy.
2977 */
2978
2979 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2980 queue_delayed_work(system_long_wq,
2981 &dev_priv->gpu_error.hangcheck_work, delay);
2982}
2983
2984__printf(3, 4)
2985void i915_handle_error(struct drm_i915_private *dev_priv,
2986 u32 engine_mask,
2987 const char *fmt, ...);
2988
2989extern void intel_irq_init(struct drm_i915_private *dev_priv);
2990int intel_irq_install(struct drm_i915_private *dev_priv);
2991void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2992
2993extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2994extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2995 bool restore_forcewake);
2996extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2997extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2998extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2999extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
3000extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
3001 bool restore);
3002const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
3003void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3004 enum forcewake_domains domains);
3005void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3006 enum forcewake_domains domains);
3007/* Like above but the caller must manage the uncore.lock itself.
3008 * Must be used with I915_READ_FW and friends.
3009 */
3010void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3011 enum forcewake_domains domains);
3012void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3013 enum forcewake_domains domains);
3014u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3015
3016void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3017
3018int intel_wait_for_register(struct drm_i915_private *dev_priv,
3019 i915_reg_t reg,
3020 const u32 mask,
3021 const u32 value,
3022 const unsigned long timeout_ms);
3023int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3024 i915_reg_t reg,
3025 const u32 mask,
3026 const u32 value,
3027 const unsigned long timeout_ms);
3028
3029static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3030{
3031 return dev_priv->gvt.initialized;
3032}
3033
3034static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3035{
3036 return dev_priv->vgpu.active;
3037}
3038
3039void
3040i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3041 u32 status_mask);
3042
3043void
3044i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3045 u32 status_mask);
3046
3047void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3048void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3049void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3050 uint32_t mask,
3051 uint32_t bits);
3052void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3053 uint32_t interrupt_mask,
3054 uint32_t enabled_irq_mask);
3055static inline void
3056ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3057{
3058 ilk_update_display_irq(dev_priv, bits, bits);
3059}
3060static inline void
3061ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3062{
3063 ilk_update_display_irq(dev_priv, bits, 0);
3064}
3065void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3066 enum pipe pipe,
3067 uint32_t interrupt_mask,
3068 uint32_t enabled_irq_mask);
3069static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3070 enum pipe pipe, uint32_t bits)
3071{
3072 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3073}
3074static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3075 enum pipe pipe, uint32_t bits)
3076{
3077 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3078}
3079void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3080 uint32_t interrupt_mask,
3081 uint32_t enabled_irq_mask);
3082static inline void
3083ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3084{
3085 ibx_display_interrupt_update(dev_priv, bits, bits);
3086}
3087static inline void
3088ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3089{
3090 ibx_display_interrupt_update(dev_priv, bits, 0);
3091}
3092
3093/* i915_gem.c */
3094int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3095 struct drm_file *file_priv);
3096int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3097 struct drm_file *file_priv);
3098int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3099 struct drm_file *file_priv);
3100int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3101 struct drm_file *file_priv);
3102int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3103 struct drm_file *file_priv);
3104int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3105 struct drm_file *file_priv);
3106int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3107 struct drm_file *file_priv);
3108void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
3109 struct drm_i915_gem_request *req);
3110int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
3111 struct drm_i915_gem_execbuffer2 *args,
3112 struct list_head *vmas);
3113int i915_gem_execbuffer(struct drm_device *dev, void *data,
3114 struct drm_file *file_priv);
3115int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3116 struct drm_file *file_priv);
3117int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3118 struct drm_file *file_priv);
3119int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3120 struct drm_file *file);
3121int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3122 struct drm_file *file);
3123int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3124 struct drm_file *file_priv);
3125int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3126 struct drm_file *file_priv);
3127int i915_gem_set_tiling(struct drm_device *dev, void *data,
3128 struct drm_file *file_priv);
3129int i915_gem_get_tiling(struct drm_device *dev, void *data,
3130 struct drm_file *file_priv);
3131void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3132int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3133 struct drm_file *file);
3134int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3135 struct drm_file *file_priv);
3136int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3137 struct drm_file *file_priv);
3138void i915_gem_load_init(struct drm_device *dev);
3139void i915_gem_load_cleanup(struct drm_device *dev);
3140void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3141int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3142
3143void *i915_gem_object_alloc(struct drm_device *dev);
3144void i915_gem_object_free(struct drm_i915_gem_object *obj);
3145void i915_gem_object_init(struct drm_i915_gem_object *obj,
3146 const struct drm_i915_gem_object_ops *ops);
3147struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3148 size_t size);
3149struct drm_i915_gem_object *i915_gem_object_create_from_data(
3150 struct drm_device *dev, const void *data, size_t size);
3151void i915_gem_free_object(struct drm_gem_object *obj);
3152void i915_gem_vma_destroy(struct i915_vma *vma);
3153
3154/* Flags used by pin/bind&friends. */
3155#define PIN_MAPPABLE (1<<0)
3156#define PIN_NONBLOCK (1<<1)
3157#define PIN_GLOBAL (1<<2)
3158#define PIN_OFFSET_BIAS (1<<3)
3159#define PIN_USER (1<<4)
3160#define PIN_UPDATE (1<<5)
3161#define PIN_ZONE_4G (1<<6)
3162#define PIN_HIGH (1<<7)
3163#define PIN_OFFSET_FIXED (1<<8)
3164#define PIN_OFFSET_MASK (~4095)
3165int __must_check
3166i915_gem_object_pin(struct drm_i915_gem_object *obj,
3167 struct i915_address_space *vm,
3168 uint32_t alignment,
3169 uint64_t flags);
3170int __must_check
3171i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3172 const struct i915_ggtt_view *view,
3173 uint32_t alignment,
3174 uint64_t flags);
3175
3176int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3177 u32 flags);
3178void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3179int __must_check i915_vma_unbind(struct i915_vma *vma);
3180/*
3181 * BEWARE: Do not use the function below unless you can _absolutely_
3182 * _guarantee_ VMA in question is _not in use_ anywhere.
3183 */
3184int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3185int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3186void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3187void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3188
3189int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3190 int *needs_clflush);
3191
3192int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3193
3194static inline int __sg_page_count(struct scatterlist *sg)
3195{
3196 return sg->length >> PAGE_SHIFT;
3197}
3198
3199struct page *
3200i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3201
3202static inline dma_addr_t
3203i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3204{
3205 if (n < obj->get_page.last) {
3206 obj->get_page.sg = obj->pages->sgl;
3207 obj->get_page.last = 0;
3208 }
3209
3210 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3211 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3212 if (unlikely(sg_is_chain(obj->get_page.sg)))
3213 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3214 }
3215
3216 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3217}
3218
3219static inline struct page *
3220i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3221{
3222 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3223 return NULL;
3224
3225 if (n < obj->get_page.last) {
3226 obj->get_page.sg = obj->pages->sgl;
3227 obj->get_page.last = 0;
3228 }
3229
3230 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3231 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3232 if (unlikely(sg_is_chain(obj->get_page.sg)))
3233 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3234 }
3235
3236 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3237}
3238
3239static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3240{
3241 BUG_ON(obj->pages == NULL);
3242 obj->pages_pin_count++;
3243}
3244
3245static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3246{
3247 BUG_ON(obj->pages_pin_count == 0);
3248 obj->pages_pin_count--;
3249}
3250
3251/**
3252 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3253 * @obj - the object to map into kernel address space
3254 *
3255 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3256 * pages and then returns a contiguous mapping of the backing storage into
3257 * the kernel address space.
3258 *
3259 * The caller must hold the struct_mutex, and is responsible for calling
3260 * i915_gem_object_unpin_map() when the mapping is no longer required.
3261 *
3262 * Returns the pointer through which to access the mapped object, or an
3263 * ERR_PTR() on error.
3264 */
3265void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3266
3267/**
3268 * i915_gem_object_unpin_map - releases an earlier mapping
3269 * @obj - the object to unmap
3270 *
3271 * After pinning the object and mapping its pages, once you are finished
3272 * with your access, call i915_gem_object_unpin_map() to release the pin
3273 * upon the mapping. Once the pin count reaches zero, that mapping may be
3274 * removed.
3275 *
3276 * The caller must hold the struct_mutex.
3277 */
3278static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3279{
3280 lockdep_assert_held(&obj->base.dev->struct_mutex);
3281 i915_gem_object_unpin_pages(obj);
3282}
3283
3284int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3285int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3286 struct intel_engine_cs *to,
3287 struct drm_i915_gem_request **to_req);
3288void i915_vma_move_to_active(struct i915_vma *vma,
3289 struct drm_i915_gem_request *req);
3290int i915_gem_dumb_create(struct drm_file *file_priv,
3291 struct drm_device *dev,
3292 struct drm_mode_create_dumb *args);
3293int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3294 uint32_t handle, uint64_t *offset);
3295
3296void i915_gem_track_fb(struct drm_i915_gem_object *old,
3297 struct drm_i915_gem_object *new,
3298 unsigned frontbuffer_bits);
3299
3300/**
3301 * Returns true if seq1 is later than seq2.
3302 */
3303static inline bool
3304i915_seqno_passed(uint32_t seq1, uint32_t seq2)
3305{
3306 return (int32_t)(seq1 - seq2) >= 0;
3307}
3308
3309static inline bool i915_gem_request_started(const struct drm_i915_gem_request *req)
3310{
3311 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3312 req->previous_seqno);
3313}
3314
3315static inline bool i915_gem_request_completed(const struct drm_i915_gem_request *req)
3316{
3317 return i915_seqno_passed(intel_engine_get_seqno(req->engine),
3318 req->seqno);
3319}
3320
3321bool __i915_spin_request(const struct drm_i915_gem_request *request,
3322 int state, unsigned long timeout_us);
3323static inline bool i915_spin_request(const struct drm_i915_gem_request *request,
3324 int state, unsigned long timeout_us)
3325{
3326 return (i915_gem_request_started(request) &&
3327 __i915_spin_request(request, state, timeout_us));
3328}
3329
3330int __must_check i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno);
3331int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3332
3333struct drm_i915_gem_request *
3334i915_gem_find_active_request(struct intel_engine_cs *engine);
3335
3336void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3337void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3338
3339static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3340{
3341 return atomic_read(&error->reset_counter);
3342}
3343
3344static inline bool __i915_reset_in_progress(u32 reset)
3345{
3346 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3347}
3348
3349static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3350{
3351 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3352}
3353
3354static inline bool __i915_terminally_wedged(u32 reset)
3355{
3356 return unlikely(reset & I915_WEDGED);
3357}
3358
3359static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3360{
3361 return __i915_reset_in_progress(i915_reset_counter(error));
3362}
3363
3364static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3365{
3366 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3367}
3368
3369static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3370{
3371 return __i915_terminally_wedged(i915_reset_counter(error));
3372}
3373
3374static inline u32 i915_reset_count(struct i915_gpu_error *error)
3375{
3376 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3377}
3378
3379void i915_gem_reset(struct drm_device *dev);
3380bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3381int __must_check i915_gem_init(struct drm_device *dev);
3382int __must_check i915_gem_init_hw(struct drm_device *dev);
3383void i915_gem_init_swizzling(struct drm_device *dev);
3384void i915_gem_cleanup_engines(struct drm_device *dev);
3385int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3386int __must_check i915_gem_suspend(struct drm_device *dev);
3387void i915_gem_resume(struct drm_device *dev);
3388void __i915_add_request(struct drm_i915_gem_request *req,
3389 struct drm_i915_gem_object *batch_obj,
3390 bool flush_caches);
3391#define i915_add_request(req) \
3392 __i915_add_request(req, NULL, true)
3393#define i915_add_request_no_flush(req) \
3394 __i915_add_request(req, NULL, false)
3395int __i915_wait_request(struct drm_i915_gem_request *req,
3396 bool interruptible,
3397 s64 *timeout,
3398 struct intel_rps_client *rps);
3399int __must_check i915_wait_request(struct drm_i915_gem_request *req);
3400int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3401int __must_check
3402i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3403 bool readonly);
3404int __must_check
3405i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3406 bool write);
3407int __must_check
3408i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3409int __must_check
3410i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3411 u32 alignment,
3412 const struct i915_ggtt_view *view);
3413void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3414 const struct i915_ggtt_view *view);
3415int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3416 int align);
3417int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3418void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3419
3420uint32_t
3421i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3422uint32_t
3423i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3424 int tiling_mode, bool fenced);
3425
3426int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3427 enum i915_cache_level cache_level);
3428
3429struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3430 struct dma_buf *dma_buf);
3431
3432struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3433 struct drm_gem_object *gem_obj, int flags);
3434
3435u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3436 const struct i915_ggtt_view *view);
3437u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3438 struct i915_address_space *vm);
3439static inline u64
3440i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3441{
3442 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3443}
3444
3445bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3446bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3447 const struct i915_ggtt_view *view);
3448bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3449 struct i915_address_space *vm);
3450
3451struct i915_vma *
3452i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3453 struct i915_address_space *vm);
3454struct i915_vma *
3455i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3456 const struct i915_ggtt_view *view);
3457
3458struct i915_vma *
3459i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3460 struct i915_address_space *vm);
3461struct i915_vma *
3462i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3463 const struct i915_ggtt_view *view);
3464
3465static inline struct i915_vma *
3466i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3467{
3468 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3469}
3470bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3471
3472/* Some GGTT VM helpers */
3473static inline struct i915_hw_ppgtt *
3474i915_vm_to_ppgtt(struct i915_address_space *vm)
3475{
3476 return container_of(vm, struct i915_hw_ppgtt, base);
3477}
3478
3479
3480static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3481{
3482 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3483}
3484
3485unsigned long
3486i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3487
3488static inline int __must_check
3489i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3490 uint32_t alignment,
3491 unsigned flags)
3492{
3493 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3494 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3495
3496 return i915_gem_object_pin(obj, &ggtt->base,
3497 alignment, flags | PIN_GLOBAL);
3498}
3499
3500void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3501 const struct i915_ggtt_view *view);
3502static inline void
3503i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3504{
3505 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3506}
3507
3508/* i915_gem_fence.c */
3509int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3510int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3511
3512bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3513void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3514
3515void i915_gem_restore_fences(struct drm_device *dev);
3516
3517void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3518void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3519void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3520
3521/* i915_gem_context.c */
3522int __must_check i915_gem_context_init(struct drm_device *dev);
3523void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3524void i915_gem_context_fini(struct drm_device *dev);
3525void i915_gem_context_reset(struct drm_device *dev);
3526int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3527void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3528int i915_switch_context(struct drm_i915_gem_request *req);
3529int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3530void i915_gem_context_free(struct kref *ctx_ref);
3531struct drm_i915_gem_object *
3532i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3533struct i915_gem_context *
3534i915_gem_context_create_gvt(struct drm_device *dev);
3535
3536static inline struct i915_gem_context *
3537i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3538{
3539 struct i915_gem_context *ctx;
3540
3541 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3542
3543 ctx = idr_find(&file_priv->context_idr, id);
3544 if (!ctx)
3545 return ERR_PTR(-ENOENT);
3546
3547 return ctx;
3548}
3549
3550static inline void i915_gem_context_reference(struct i915_gem_context *ctx)
3551{
3552 kref_get(&ctx->ref);
3553}
3554
3555static inline void i915_gem_context_unreference(struct i915_gem_context *ctx)
3556{
3557 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3558 kref_put(&ctx->ref, i915_gem_context_free);
3559}
3560
3561static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3562{
3563 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3564}
3565
3566int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3567 struct drm_file *file);
3568int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3569 struct drm_file *file);
3570int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3571 struct drm_file *file_priv);
3572int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3573 struct drm_file *file_priv);
3574int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3575 struct drm_file *file);
3576
3577/* i915_gem_evict.c */
3578int __must_check i915_gem_evict_something(struct drm_device *dev,
3579 struct i915_address_space *vm,
3580 int min_size,
3581 unsigned alignment,
3582 unsigned cache_level,
3583 unsigned long start,
3584 unsigned long end,
3585 unsigned flags);
3586int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3587int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3588
3589/* belongs in i915_gem_gtt.h */
3590static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3591{
3592 if (INTEL_GEN(dev_priv) < 6)
3593 intel_gtt_chipset_flush();
3594}
3595
3596/* i915_gem_stolen.c */
3597int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3598 struct drm_mm_node *node, u64 size,
3599 unsigned alignment);
3600int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3601 struct drm_mm_node *node, u64 size,
3602 unsigned alignment, u64 start,
3603 u64 end);
3604void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3605 struct drm_mm_node *node);
3606int i915_gem_init_stolen(struct drm_device *dev);
3607void i915_gem_cleanup_stolen(struct drm_device *dev);
3608struct drm_i915_gem_object *
3609i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3610struct drm_i915_gem_object *
3611i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3612 u32 stolen_offset,
3613 u32 gtt_offset,
3614 u32 size);
3615
3616/* i915_gem_shrinker.c */
3617unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3618 unsigned long target,
3619 unsigned flags);
3620#define I915_SHRINK_PURGEABLE 0x1
3621#define I915_SHRINK_UNBOUND 0x2
3622#define I915_SHRINK_BOUND 0x4
3623#define I915_SHRINK_ACTIVE 0x8
3624#define I915_SHRINK_VMAPS 0x10
3625unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3626void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3627void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3628
3629
3630/* i915_gem_tiling.c */
3631static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3632{
3633 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3634
3635 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3636 obj->tiling_mode != I915_TILING_NONE;
3637}
3638
3639/* i915_gem_debug.c */
3640#if WATCH_LISTS
3641int i915_verify_lists(struct drm_device *dev);
3642#else
3643#define i915_verify_lists(dev) 0
3644#endif
3645
3646/* i915_debugfs.c */
3647#ifdef CONFIG_DEBUG_FS
3648int i915_debugfs_register(struct drm_i915_private *dev_priv);
3649void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3650int i915_debugfs_connector_add(struct drm_connector *connector);
3651void intel_display_crc_init(struct drm_device *dev);
3652#else
3653static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3654static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3655static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3656{ return 0; }
3657static inline void intel_display_crc_init(struct drm_device *dev) {}
3658#endif
3659
3660/* i915_gpu_error.c */
3661__printf(2, 3)
3662void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3663int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3664 const struct i915_error_state_file_priv *error);
3665int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3666 struct drm_i915_private *i915,
3667 size_t count, loff_t pos);
3668static inline void i915_error_state_buf_release(
3669 struct drm_i915_error_state_buf *eb)
3670{
3671 kfree(eb->buf);
3672}
3673void i915_capture_error_state(struct drm_i915_private *dev_priv,
3674 u32 engine_mask,
3675 const char *error_msg);
3676void i915_error_state_get(struct drm_device *dev,
3677 struct i915_error_state_file_priv *error_priv);
3678void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3679void i915_destroy_error_state(struct drm_device *dev);
3680
3681void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3682const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3683
3684/* i915_cmd_parser.c */
3685int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3686int i915_cmd_parser_init_ring(struct intel_engine_cs *engine);
3687void i915_cmd_parser_fini_ring(struct intel_engine_cs *engine);
3688bool i915_needs_cmd_parser(struct intel_engine_cs *engine);
3689int i915_parse_cmds(struct intel_engine_cs *engine,
3690 struct drm_i915_gem_object *batch_obj,
3691 struct drm_i915_gem_object *shadow_batch_obj,
3692 u32 batch_start_offset,
3693 u32 batch_len,
3694 bool is_master);
3695
3696/* i915_suspend.c */
3697extern int i915_save_state(struct drm_device *dev);
3698extern int i915_restore_state(struct drm_device *dev);
3699
3700/* i915_sysfs.c */
3701void i915_setup_sysfs(struct drm_device *dev_priv);
3702void i915_teardown_sysfs(struct drm_device *dev_priv);
3703
3704/* intel_i2c.c */
3705extern int intel_setup_gmbus(struct drm_device *dev);
3706extern void intel_teardown_gmbus(struct drm_device *dev);
3707extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3708 unsigned int pin);
3709
3710extern struct i2c_adapter *
3711intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3712extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3713extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3714static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3715{
3716 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3717}
3718extern void intel_i2c_reset(struct drm_device *dev);
3719
3720/* intel_bios.c */
3721int intel_bios_init(struct drm_i915_private *dev_priv);
3722bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3723bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3724bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3725bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3726bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3727bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3728bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3729bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3730 enum port port);
3731
3732/* intel_opregion.c */
3733#ifdef CONFIG_ACPI
3734extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3735extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3736extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3737extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3738extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3739 bool enable);
3740extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3741 pci_power_t state);
3742extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3743#else
3744static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3745static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3746static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3747static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3748{
3749}
3750static inline int
3751intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3752{
3753 return 0;
3754}
3755static inline int
3756intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3757{
3758 return 0;
3759}
3760static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3761{
3762 return -ENODEV;
3763}
3764#endif
3765
3766/* intel_acpi.c */
3767#ifdef CONFIG_ACPI
3768extern void intel_register_dsm_handler(void);
3769extern void intel_unregister_dsm_handler(void);
3770#else
3771static inline void intel_register_dsm_handler(void) { return; }
3772static inline void intel_unregister_dsm_handler(void) { return; }
3773#endif /* CONFIG_ACPI */
3774
3775/* intel_device_info.c */
3776static inline struct intel_device_info *
3777mkwrite_device_info(struct drm_i915_private *dev_priv)
3778{
3779 return (struct intel_device_info *)&dev_priv->info;
3780}
3781
3782void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3783void intel_device_info_dump(struct drm_i915_private *dev_priv);
3784
3785/* modesetting */
3786extern void intel_modeset_init_hw(struct drm_device *dev);
3787extern void intel_modeset_init(struct drm_device *dev);
3788extern void intel_modeset_gem_init(struct drm_device *dev);
3789extern void intel_modeset_cleanup(struct drm_device *dev);
3790extern int intel_connector_register(struct drm_connector *);
3791extern void intel_connector_unregister(struct drm_connector *);
3792extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3793extern void intel_display_resume(struct drm_device *dev);
3794extern void i915_redisable_vga(struct drm_device *dev);
3795extern void i915_redisable_vga_power_on(struct drm_device *dev);
3796extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3797extern void intel_init_pch_refclk(struct drm_device *dev);
3798extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3799extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3800 bool enable);
3801
3802extern bool i915_semaphore_is_enabled(struct drm_i915_private *dev_priv);
3803int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3804 struct drm_file *file);
3805
3806/* overlay */
3807extern struct intel_overlay_error_state *
3808intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3809extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3810 struct intel_overlay_error_state *error);
3811
3812extern struct intel_display_error_state *
3813intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3814extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3815 struct drm_device *dev,
3816 struct intel_display_error_state *error);
3817
3818int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3819int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3820
3821/* intel_sideband.c */
3822u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3823void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3824u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3825u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3826void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3827u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3828void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3829u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3830void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3831u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3832void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3833u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3834void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3835u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3836 enum intel_sbi_destination destination);
3837void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3838 enum intel_sbi_destination destination);
3839u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3840void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3841
3842/* intel_dpio_phy.c */
3843void chv_set_phy_signal_level(struct intel_encoder *encoder,
3844 u32 deemph_reg_value, u32 margin_reg_value,
3845 bool uniq_trans_scale);
3846void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3847 bool reset);
3848void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3849void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3850void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3851void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3852
3853void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3854 u32 demph_reg_value, u32 preemph_reg_value,
3855 u32 uniqtranscale_reg_value, u32 tx3_demph);
3856void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3857void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3858void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3859
3860int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3861int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3862
3863#define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3864#define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3865
3866#define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3867#define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3868#define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3869#define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3870
3871#define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3872#define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3873#define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3874#define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3875
3876/* Be very careful with read/write 64-bit values. On 32-bit machines, they
3877 * will be implemented using 2 32-bit writes in an arbitrary order with
3878 * an arbitrary delay between them. This can cause the hardware to
3879 * act upon the intermediate value, possibly leading to corruption and
3880 * machine death. You have been warned.
3881 */
3882#define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3883#define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3884
3885#define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3886 u32 upper, lower, old_upper, loop = 0; \
3887 upper = I915_READ(upper_reg); \
3888 do { \
3889 old_upper = upper; \
3890 lower = I915_READ(lower_reg); \
3891 upper = I915_READ(upper_reg); \
3892 } while (upper != old_upper && loop++ < 2); \
3893 (u64)upper << 32 | lower; })
3894
3895#define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3896#define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3897
3898#define __raw_read(x, s) \
3899static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3900 i915_reg_t reg) \
3901{ \
3902 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3903}
3904
3905#define __raw_write(x, s) \
3906static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3907 i915_reg_t reg, uint##x##_t val) \
3908{ \
3909 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3910}
3911__raw_read(8, b)
3912__raw_read(16, w)
3913__raw_read(32, l)
3914__raw_read(64, q)
3915
3916__raw_write(8, b)
3917__raw_write(16, w)
3918__raw_write(32, l)
3919__raw_write(64, q)
3920
3921#undef __raw_read
3922#undef __raw_write
3923
3924/* These are untraced mmio-accessors that are only valid to be used inside
3925 * criticial sections inside IRQ handlers where forcewake is explicitly
3926 * controlled.
3927 * Think twice, and think again, before using these.
3928 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3929 * intel_uncore_forcewake_irqunlock().
3930 */
3931#define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3932#define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3933#define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3934#define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3935
3936/* "Broadcast RGB" property */
3937#define INTEL_BROADCAST_RGB_AUTO 0
3938#define INTEL_BROADCAST_RGB_FULL 1
3939#define INTEL_BROADCAST_RGB_LIMITED 2
3940
3941static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3942{
3943 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3944 return VLV_VGACNTRL;
3945 else if (INTEL_INFO(dev)->gen >= 5)
3946 return CPU_VGACNTRL;
3947 else
3948 return VGACNTRL;
3949}
3950
3951static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3952{
3953 unsigned long j = msecs_to_jiffies(m);
3954
3955 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3956}
3957
3958static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3959{
3960 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3961}
3962
3963static inline unsigned long
3964timespec_to_jiffies_timeout(const struct timespec *value)
3965{
3966 unsigned long j = timespec_to_jiffies(value);
3967
3968 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3969}
3970
3971/*
3972 * If you need to wait X milliseconds between events A and B, but event B
3973 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3974 * when event A happened, then just before event B you call this function and
3975 * pass the timestamp as the first argument, and X as the second argument.
3976 */
3977static inline void
3978wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3979{
3980 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3981
3982 /*
3983 * Don't re-read the value of "jiffies" every time since it may change
3984 * behind our back and break the math.
3985 */
3986 tmp_jiffies = jiffies;
3987 target_jiffies = timestamp_jiffies +
3988 msecs_to_jiffies_timeout(to_wait_ms);
3989
3990 if (time_after(target_jiffies, tmp_jiffies)) {
3991 remaining_jiffies = target_jiffies - tmp_jiffies;
3992 while (remaining_jiffies)
3993 remaining_jiffies =
3994 schedule_timeout_uninterruptible(remaining_jiffies);
3995 }
3996}
3997static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3998{
3999 struct intel_engine_cs *engine = req->engine;
4000
4001 /* Before we do the heavier coherent read of the seqno,
4002 * check the value (hopefully) in the CPU cacheline.
4003 */
4004 if (i915_gem_request_completed(req))
4005 return true;
4006
4007 /* Ensure our read of the seqno is coherent so that we
4008 * do not "miss an interrupt" (i.e. if this is the last
4009 * request and the seqno write from the GPU is not visible
4010 * by the time the interrupt fires, we will see that the
4011 * request is incomplete and go back to sleep awaiting
4012 * another interrupt that will never come.)
4013 *
4014 * Strictly, we only need to do this once after an interrupt,
4015 * but it is easier and safer to do it every time the waiter
4016 * is woken.
4017 */
4018 if (engine->irq_seqno_barrier &&
4019 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current &&
4020 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
4021 struct task_struct *tsk;
4022
4023 /* The ordering of irq_posted versus applying the barrier
4024 * is crucial. The clearing of the current irq_posted must
4025 * be visible before we perform the barrier operation,
4026 * such that if a subsequent interrupt arrives, irq_posted
4027 * is reasserted and our task rewoken (which causes us to
4028 * do another __i915_request_irq_complete() immediately
4029 * and reapply the barrier). Conversely, if the clear
4030 * occurs after the barrier, then an interrupt that arrived
4031 * whilst we waited on the barrier would not trigger a
4032 * barrier on the next pass, and the read may not see the
4033 * seqno update.
4034 */
4035 engine->irq_seqno_barrier(engine);
4036
4037 /* If we consume the irq, but we are no longer the bottom-half,
4038 * the real bottom-half may not have serialised their own
4039 * seqno check with the irq-barrier (i.e. may have inspected
4040 * the seqno before we believe it coherent since they see
4041 * irq_posted == false but we are still running).
4042 */
4043 rcu_read_lock();
4044 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
4045 if (tsk && tsk != current)
4046 /* Note that if the bottom-half is changed as we
4047 * are sending the wake-up, the new bottom-half will
4048 * be woken by whomever made the change. We only have
4049 * to worry about when we steal the irq-posted for
4050 * ourself.
4051 */
4052 wake_up_process(tsk);
4053 rcu_read_unlock();
4054
4055 if (i915_gem_request_completed(req))
4056 return true;
4057 }
4058
4059 /* We need to check whether any gpu reset happened in between
4060 * the request being submitted and now. If a reset has occurred,
4061 * the seqno will have been advance past ours and our request
4062 * is complete. If we are in the process of handling a reset,
4063 * the request is effectively complete as the rendering will
4064 * be discarded, but we need to return in order to drop the
4065 * struct_mutex.
4066 */
4067 if (i915_reset_in_progress(&req->i915->gpu_error))
4068 return true;
4069
4070 return false;
4071}
4072
4073#endif
This page took 0.042466 seconds and 5 git commands to generate.