drm/i915: fix inconsistent brightness after resume
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_trace.h"
33#include "intel_drv.h"
34#include <linux/oom.h>
35#include <linux/shmem_fs.h>
36#include <linux/slab.h>
37#include <linux/swap.h>
38#include <linux/pci.h>
39#include <linux/dma-buf.h>
40
41static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44static __must_check int
45i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47static void
48i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
64
65static bool cpu_cache_is_coherent(struct drm_device *dev,
66 enum i915_cache_level level)
67{
68 return HAS_LLC(dev) || level != I915_CACHE_NONE;
69}
70
71static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
72{
73 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
74 return true;
75
76 return obj->pin_display;
77}
78
79static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
80{
81 if (obj->tiling_mode)
82 i915_gem_release_mmap(obj);
83
84 /* As we do not have an associated fence register, we will force
85 * a tiling change if we ever need to acquire one.
86 */
87 obj->fence_dirty = false;
88 obj->fence_reg = I915_FENCE_REG_NONE;
89}
90
91/* some bookkeeping */
92static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
93 size_t size)
94{
95 spin_lock(&dev_priv->mm.object_stat_lock);
96 dev_priv->mm.object_count++;
97 dev_priv->mm.object_memory += size;
98 spin_unlock(&dev_priv->mm.object_stat_lock);
99}
100
101static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
102 size_t size)
103{
104 spin_lock(&dev_priv->mm.object_stat_lock);
105 dev_priv->mm.object_count--;
106 dev_priv->mm.object_memory -= size;
107 spin_unlock(&dev_priv->mm.object_stat_lock);
108}
109
110static int
111i915_gem_wait_for_error(struct i915_gpu_error *error)
112{
113 int ret;
114
115#define EXIT_COND (!i915_reset_in_progress(error) || \
116 i915_terminally_wedged(error))
117 if (EXIT_COND)
118 return 0;
119
120 /*
121 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
122 * userspace. If it takes that long something really bad is going on and
123 * we should simply try to bail out and fail as gracefully as possible.
124 */
125 ret = wait_event_interruptible_timeout(error->reset_queue,
126 EXIT_COND,
127 10*HZ);
128 if (ret == 0) {
129 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
130 return -EIO;
131 } else if (ret < 0) {
132 return ret;
133 }
134#undef EXIT_COND
135
136 return 0;
137}
138
139int i915_mutex_lock_interruptible(struct drm_device *dev)
140{
141 struct drm_i915_private *dev_priv = dev->dev_private;
142 int ret;
143
144 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
145 if (ret)
146 return ret;
147
148 ret = mutex_lock_interruptible(&dev->struct_mutex);
149 if (ret)
150 return ret;
151
152 WARN_ON(i915_verify_lists(dev));
153 return 0;
154}
155
156static inline bool
157i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
158{
159 return i915_gem_obj_bound_any(obj) && !obj->active;
160}
161
162int
163i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
164 struct drm_file *file)
165{
166 struct drm_i915_private *dev_priv = dev->dev_private;
167 struct drm_i915_gem_get_aperture *args = data;
168 struct drm_i915_gem_object *obj;
169 size_t pinned;
170
171 pinned = 0;
172 mutex_lock(&dev->struct_mutex);
173 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
174 if (i915_gem_obj_is_pinned(obj))
175 pinned += i915_gem_obj_ggtt_size(obj);
176 mutex_unlock(&dev->struct_mutex);
177
178 args->aper_size = dev_priv->gtt.base.total;
179 args->aper_available_size = args->aper_size - pinned;
180
181 return 0;
182}
183
184static int
185i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
186{
187 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
188 char *vaddr = obj->phys_handle->vaddr;
189 struct sg_table *st;
190 struct scatterlist *sg;
191 int i;
192
193 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
194 return -EINVAL;
195
196 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
197 struct page *page;
198 char *src;
199
200 page = shmem_read_mapping_page(mapping, i);
201 if (IS_ERR(page))
202 return PTR_ERR(page);
203
204 src = kmap_atomic(page);
205 memcpy(vaddr, src, PAGE_SIZE);
206 drm_clflush_virt_range(vaddr, PAGE_SIZE);
207 kunmap_atomic(src);
208
209 page_cache_release(page);
210 vaddr += PAGE_SIZE;
211 }
212
213 i915_gem_chipset_flush(obj->base.dev);
214
215 st = kmalloc(sizeof(*st), GFP_KERNEL);
216 if (st == NULL)
217 return -ENOMEM;
218
219 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
220 kfree(st);
221 return -ENOMEM;
222 }
223
224 sg = st->sgl;
225 sg->offset = 0;
226 sg->length = obj->base.size;
227
228 sg_dma_address(sg) = obj->phys_handle->busaddr;
229 sg_dma_len(sg) = obj->base.size;
230
231 obj->pages = st;
232 obj->has_dma_mapping = true;
233 return 0;
234}
235
236static void
237i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
238{
239 int ret;
240
241 BUG_ON(obj->madv == __I915_MADV_PURGED);
242
243 ret = i915_gem_object_set_to_cpu_domain(obj, true);
244 if (ret) {
245 /* In the event of a disaster, abandon all caches and
246 * hope for the best.
247 */
248 WARN_ON(ret != -EIO);
249 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
250 }
251
252 if (obj->madv == I915_MADV_DONTNEED)
253 obj->dirty = 0;
254
255 if (obj->dirty) {
256 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
257 char *vaddr = obj->phys_handle->vaddr;
258 int i;
259
260 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
261 struct page *page;
262 char *dst;
263
264 page = shmem_read_mapping_page(mapping, i);
265 if (IS_ERR(page))
266 continue;
267
268 dst = kmap_atomic(page);
269 drm_clflush_virt_range(vaddr, PAGE_SIZE);
270 memcpy(dst, vaddr, PAGE_SIZE);
271 kunmap_atomic(dst);
272
273 set_page_dirty(page);
274 if (obj->madv == I915_MADV_WILLNEED)
275 mark_page_accessed(page);
276 page_cache_release(page);
277 vaddr += PAGE_SIZE;
278 }
279 obj->dirty = 0;
280 }
281
282 sg_free_table(obj->pages);
283 kfree(obj->pages);
284
285 obj->has_dma_mapping = false;
286}
287
288static void
289i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
290{
291 drm_pci_free(obj->base.dev, obj->phys_handle);
292}
293
294static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
295 .get_pages = i915_gem_object_get_pages_phys,
296 .put_pages = i915_gem_object_put_pages_phys,
297 .release = i915_gem_object_release_phys,
298};
299
300static int
301drop_pages(struct drm_i915_gem_object *obj)
302{
303 struct i915_vma *vma, *next;
304 int ret;
305
306 drm_gem_object_reference(&obj->base);
307 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
308 if (i915_vma_unbind(vma))
309 break;
310
311 ret = i915_gem_object_put_pages(obj);
312 drm_gem_object_unreference(&obj->base);
313
314 return ret;
315}
316
317int
318i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
319 int align)
320{
321 drm_dma_handle_t *phys;
322 int ret;
323
324 if (obj->phys_handle) {
325 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
326 return -EBUSY;
327
328 return 0;
329 }
330
331 if (obj->madv != I915_MADV_WILLNEED)
332 return -EFAULT;
333
334 if (obj->base.filp == NULL)
335 return -EINVAL;
336
337 ret = drop_pages(obj);
338 if (ret)
339 return ret;
340
341 /* create a new object */
342 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
343 if (!phys)
344 return -ENOMEM;
345
346 obj->phys_handle = phys;
347 obj->ops = &i915_gem_phys_ops;
348
349 return i915_gem_object_get_pages(obj);
350}
351
352static int
353i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
354 struct drm_i915_gem_pwrite *args,
355 struct drm_file *file_priv)
356{
357 struct drm_device *dev = obj->base.dev;
358 void *vaddr = obj->phys_handle->vaddr + args->offset;
359 char __user *user_data = to_user_ptr(args->data_ptr);
360 int ret;
361
362 /* We manually control the domain here and pretend that it
363 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
364 */
365 ret = i915_gem_object_wait_rendering(obj, false);
366 if (ret)
367 return ret;
368
369 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
370 unsigned long unwritten;
371
372 /* The physical object once assigned is fixed for the lifetime
373 * of the obj, so we can safely drop the lock and continue
374 * to access vaddr.
375 */
376 mutex_unlock(&dev->struct_mutex);
377 unwritten = copy_from_user(vaddr, user_data, args->size);
378 mutex_lock(&dev->struct_mutex);
379 if (unwritten)
380 return -EFAULT;
381 }
382
383 drm_clflush_virt_range(vaddr, args->size);
384 i915_gem_chipset_flush(dev);
385 return 0;
386}
387
388void *i915_gem_object_alloc(struct drm_device *dev)
389{
390 struct drm_i915_private *dev_priv = dev->dev_private;
391 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
392}
393
394void i915_gem_object_free(struct drm_i915_gem_object *obj)
395{
396 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
397 kmem_cache_free(dev_priv->slab, obj);
398}
399
400static int
401i915_gem_create(struct drm_file *file,
402 struct drm_device *dev,
403 uint64_t size,
404 uint32_t *handle_p)
405{
406 struct drm_i915_gem_object *obj;
407 int ret;
408 u32 handle;
409
410 size = roundup(size, PAGE_SIZE);
411 if (size == 0)
412 return -EINVAL;
413
414 /* Allocate the new object */
415 obj = i915_gem_alloc_object(dev, size);
416 if (obj == NULL)
417 return -ENOMEM;
418
419 ret = drm_gem_handle_create(file, &obj->base, &handle);
420 /* drop reference from allocate - handle holds it now */
421 drm_gem_object_unreference_unlocked(&obj->base);
422 if (ret)
423 return ret;
424
425 *handle_p = handle;
426 return 0;
427}
428
429int
430i915_gem_dumb_create(struct drm_file *file,
431 struct drm_device *dev,
432 struct drm_mode_create_dumb *args)
433{
434 /* have to work out size/pitch and return them */
435 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
436 args->size = args->pitch * args->height;
437 return i915_gem_create(file, dev,
438 args->size, &args->handle);
439}
440
441/**
442 * Creates a new mm object and returns a handle to it.
443 */
444int
445i915_gem_create_ioctl(struct drm_device *dev, void *data,
446 struct drm_file *file)
447{
448 struct drm_i915_gem_create *args = data;
449
450 return i915_gem_create(file, dev,
451 args->size, &args->handle);
452}
453
454static inline int
455__copy_to_user_swizzled(char __user *cpu_vaddr,
456 const char *gpu_vaddr, int gpu_offset,
457 int length)
458{
459 int ret, cpu_offset = 0;
460
461 while (length > 0) {
462 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463 int this_length = min(cacheline_end - gpu_offset, length);
464 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466 ret = __copy_to_user(cpu_vaddr + cpu_offset,
467 gpu_vaddr + swizzled_gpu_offset,
468 this_length);
469 if (ret)
470 return ret + length;
471
472 cpu_offset += this_length;
473 gpu_offset += this_length;
474 length -= this_length;
475 }
476
477 return 0;
478}
479
480static inline int
481__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
482 const char __user *cpu_vaddr,
483 int length)
484{
485 int ret, cpu_offset = 0;
486
487 while (length > 0) {
488 int cacheline_end = ALIGN(gpu_offset + 1, 64);
489 int this_length = min(cacheline_end - gpu_offset, length);
490 int swizzled_gpu_offset = gpu_offset ^ 64;
491
492 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
493 cpu_vaddr + cpu_offset,
494 this_length);
495 if (ret)
496 return ret + length;
497
498 cpu_offset += this_length;
499 gpu_offset += this_length;
500 length -= this_length;
501 }
502
503 return 0;
504}
505
506/*
507 * Pins the specified object's pages and synchronizes the object with
508 * GPU accesses. Sets needs_clflush to non-zero if the caller should
509 * flush the object from the CPU cache.
510 */
511int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
512 int *needs_clflush)
513{
514 int ret;
515
516 *needs_clflush = 0;
517
518 if (!obj->base.filp)
519 return -EINVAL;
520
521 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
522 /* If we're not in the cpu read domain, set ourself into the gtt
523 * read domain and manually flush cachelines (if required). This
524 * optimizes for the case when the gpu will dirty the data
525 * anyway again before the next pread happens. */
526 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
527 obj->cache_level);
528 ret = i915_gem_object_wait_rendering(obj, true);
529 if (ret)
530 return ret;
531
532 i915_gem_object_retire(obj);
533 }
534
535 ret = i915_gem_object_get_pages(obj);
536 if (ret)
537 return ret;
538
539 i915_gem_object_pin_pages(obj);
540
541 return ret;
542}
543
544/* Per-page copy function for the shmem pread fastpath.
545 * Flushes invalid cachelines before reading the target if
546 * needs_clflush is set. */
547static int
548shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
549 char __user *user_data,
550 bool page_do_bit17_swizzling, bool needs_clflush)
551{
552 char *vaddr;
553 int ret;
554
555 if (unlikely(page_do_bit17_swizzling))
556 return -EINVAL;
557
558 vaddr = kmap_atomic(page);
559 if (needs_clflush)
560 drm_clflush_virt_range(vaddr + shmem_page_offset,
561 page_length);
562 ret = __copy_to_user_inatomic(user_data,
563 vaddr + shmem_page_offset,
564 page_length);
565 kunmap_atomic(vaddr);
566
567 return ret ? -EFAULT : 0;
568}
569
570static void
571shmem_clflush_swizzled_range(char *addr, unsigned long length,
572 bool swizzled)
573{
574 if (unlikely(swizzled)) {
575 unsigned long start = (unsigned long) addr;
576 unsigned long end = (unsigned long) addr + length;
577
578 /* For swizzling simply ensure that we always flush both
579 * channels. Lame, but simple and it works. Swizzled
580 * pwrite/pread is far from a hotpath - current userspace
581 * doesn't use it at all. */
582 start = round_down(start, 128);
583 end = round_up(end, 128);
584
585 drm_clflush_virt_range((void *)start, end - start);
586 } else {
587 drm_clflush_virt_range(addr, length);
588 }
589
590}
591
592/* Only difference to the fast-path function is that this can handle bit17
593 * and uses non-atomic copy and kmap functions. */
594static int
595shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
596 char __user *user_data,
597 bool page_do_bit17_swizzling, bool needs_clflush)
598{
599 char *vaddr;
600 int ret;
601
602 vaddr = kmap(page);
603 if (needs_clflush)
604 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
605 page_length,
606 page_do_bit17_swizzling);
607
608 if (page_do_bit17_swizzling)
609 ret = __copy_to_user_swizzled(user_data,
610 vaddr, shmem_page_offset,
611 page_length);
612 else
613 ret = __copy_to_user(user_data,
614 vaddr + shmem_page_offset,
615 page_length);
616 kunmap(page);
617
618 return ret ? - EFAULT : 0;
619}
620
621static int
622i915_gem_shmem_pread(struct drm_device *dev,
623 struct drm_i915_gem_object *obj,
624 struct drm_i915_gem_pread *args,
625 struct drm_file *file)
626{
627 char __user *user_data;
628 ssize_t remain;
629 loff_t offset;
630 int shmem_page_offset, page_length, ret = 0;
631 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
632 int prefaulted = 0;
633 int needs_clflush = 0;
634 struct sg_page_iter sg_iter;
635
636 user_data = to_user_ptr(args->data_ptr);
637 remain = args->size;
638
639 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
640
641 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
642 if (ret)
643 return ret;
644
645 offset = args->offset;
646
647 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
648 offset >> PAGE_SHIFT) {
649 struct page *page = sg_page_iter_page(&sg_iter);
650
651 if (remain <= 0)
652 break;
653
654 /* Operation in this page
655 *
656 * shmem_page_offset = offset within page in shmem file
657 * page_length = bytes to copy for this page
658 */
659 shmem_page_offset = offset_in_page(offset);
660 page_length = remain;
661 if ((shmem_page_offset + page_length) > PAGE_SIZE)
662 page_length = PAGE_SIZE - shmem_page_offset;
663
664 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
665 (page_to_phys(page) & (1 << 17)) != 0;
666
667 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
668 user_data, page_do_bit17_swizzling,
669 needs_clflush);
670 if (ret == 0)
671 goto next_page;
672
673 mutex_unlock(&dev->struct_mutex);
674
675 if (likely(!i915.prefault_disable) && !prefaulted) {
676 ret = fault_in_multipages_writeable(user_data, remain);
677 /* Userspace is tricking us, but we've already clobbered
678 * its pages with the prefault and promised to write the
679 * data up to the first fault. Hence ignore any errors
680 * and just continue. */
681 (void)ret;
682 prefaulted = 1;
683 }
684
685 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
686 user_data, page_do_bit17_swizzling,
687 needs_clflush);
688
689 mutex_lock(&dev->struct_mutex);
690
691 if (ret)
692 goto out;
693
694next_page:
695 remain -= page_length;
696 user_data += page_length;
697 offset += page_length;
698 }
699
700out:
701 i915_gem_object_unpin_pages(obj);
702
703 return ret;
704}
705
706/**
707 * Reads data from the object referenced by handle.
708 *
709 * On error, the contents of *data are undefined.
710 */
711int
712i915_gem_pread_ioctl(struct drm_device *dev, void *data,
713 struct drm_file *file)
714{
715 struct drm_i915_gem_pread *args = data;
716 struct drm_i915_gem_object *obj;
717 int ret = 0;
718
719 if (args->size == 0)
720 return 0;
721
722 if (!access_ok(VERIFY_WRITE,
723 to_user_ptr(args->data_ptr),
724 args->size))
725 return -EFAULT;
726
727 ret = i915_mutex_lock_interruptible(dev);
728 if (ret)
729 return ret;
730
731 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
732 if (&obj->base == NULL) {
733 ret = -ENOENT;
734 goto unlock;
735 }
736
737 /* Bounds check source. */
738 if (args->offset > obj->base.size ||
739 args->size > obj->base.size - args->offset) {
740 ret = -EINVAL;
741 goto out;
742 }
743
744 /* prime objects have no backing filp to GEM pread/pwrite
745 * pages from.
746 */
747 if (!obj->base.filp) {
748 ret = -EINVAL;
749 goto out;
750 }
751
752 trace_i915_gem_object_pread(obj, args->offset, args->size);
753
754 ret = i915_gem_shmem_pread(dev, obj, args, file);
755
756out:
757 drm_gem_object_unreference(&obj->base);
758unlock:
759 mutex_unlock(&dev->struct_mutex);
760 return ret;
761}
762
763/* This is the fast write path which cannot handle
764 * page faults in the source data
765 */
766
767static inline int
768fast_user_write(struct io_mapping *mapping,
769 loff_t page_base, int page_offset,
770 char __user *user_data,
771 int length)
772{
773 void __iomem *vaddr_atomic;
774 void *vaddr;
775 unsigned long unwritten;
776
777 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
778 /* We can use the cpu mem copy function because this is X86. */
779 vaddr = (void __force*)vaddr_atomic + page_offset;
780 unwritten = __copy_from_user_inatomic_nocache(vaddr,
781 user_data, length);
782 io_mapping_unmap_atomic(vaddr_atomic);
783 return unwritten;
784}
785
786/**
787 * This is the fast pwrite path, where we copy the data directly from the
788 * user into the GTT, uncached.
789 */
790static int
791i915_gem_gtt_pwrite_fast(struct drm_device *dev,
792 struct drm_i915_gem_object *obj,
793 struct drm_i915_gem_pwrite *args,
794 struct drm_file *file)
795{
796 struct drm_i915_private *dev_priv = dev->dev_private;
797 ssize_t remain;
798 loff_t offset, page_base;
799 char __user *user_data;
800 int page_offset, page_length, ret;
801
802 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
803 if (ret)
804 goto out;
805
806 ret = i915_gem_object_set_to_gtt_domain(obj, true);
807 if (ret)
808 goto out_unpin;
809
810 ret = i915_gem_object_put_fence(obj);
811 if (ret)
812 goto out_unpin;
813
814 user_data = to_user_ptr(args->data_ptr);
815 remain = args->size;
816
817 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
818
819 while (remain > 0) {
820 /* Operation in this page
821 *
822 * page_base = page offset within aperture
823 * page_offset = offset within page
824 * page_length = bytes to copy for this page
825 */
826 page_base = offset & PAGE_MASK;
827 page_offset = offset_in_page(offset);
828 page_length = remain;
829 if ((page_offset + remain) > PAGE_SIZE)
830 page_length = PAGE_SIZE - page_offset;
831
832 /* If we get a fault while copying data, then (presumably) our
833 * source page isn't available. Return the error and we'll
834 * retry in the slow path.
835 */
836 if (fast_user_write(dev_priv->gtt.mappable, page_base,
837 page_offset, user_data, page_length)) {
838 ret = -EFAULT;
839 goto out_unpin;
840 }
841
842 remain -= page_length;
843 user_data += page_length;
844 offset += page_length;
845 }
846
847out_unpin:
848 i915_gem_object_ggtt_unpin(obj);
849out:
850 return ret;
851}
852
853/* Per-page copy function for the shmem pwrite fastpath.
854 * Flushes invalid cachelines before writing to the target if
855 * needs_clflush_before is set and flushes out any written cachelines after
856 * writing if needs_clflush is set. */
857static int
858shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
859 char __user *user_data,
860 bool page_do_bit17_swizzling,
861 bool needs_clflush_before,
862 bool needs_clflush_after)
863{
864 char *vaddr;
865 int ret;
866
867 if (unlikely(page_do_bit17_swizzling))
868 return -EINVAL;
869
870 vaddr = kmap_atomic(page);
871 if (needs_clflush_before)
872 drm_clflush_virt_range(vaddr + shmem_page_offset,
873 page_length);
874 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
875 user_data, page_length);
876 if (needs_clflush_after)
877 drm_clflush_virt_range(vaddr + shmem_page_offset,
878 page_length);
879 kunmap_atomic(vaddr);
880
881 return ret ? -EFAULT : 0;
882}
883
884/* Only difference to the fast-path function is that this can handle bit17
885 * and uses non-atomic copy and kmap functions. */
886static int
887shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
888 char __user *user_data,
889 bool page_do_bit17_swizzling,
890 bool needs_clflush_before,
891 bool needs_clflush_after)
892{
893 char *vaddr;
894 int ret;
895
896 vaddr = kmap(page);
897 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
898 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
899 page_length,
900 page_do_bit17_swizzling);
901 if (page_do_bit17_swizzling)
902 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
903 user_data,
904 page_length);
905 else
906 ret = __copy_from_user(vaddr + shmem_page_offset,
907 user_data,
908 page_length);
909 if (needs_clflush_after)
910 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
911 page_length,
912 page_do_bit17_swizzling);
913 kunmap(page);
914
915 return ret ? -EFAULT : 0;
916}
917
918static int
919i915_gem_shmem_pwrite(struct drm_device *dev,
920 struct drm_i915_gem_object *obj,
921 struct drm_i915_gem_pwrite *args,
922 struct drm_file *file)
923{
924 ssize_t remain;
925 loff_t offset;
926 char __user *user_data;
927 int shmem_page_offset, page_length, ret = 0;
928 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
929 int hit_slowpath = 0;
930 int needs_clflush_after = 0;
931 int needs_clflush_before = 0;
932 struct sg_page_iter sg_iter;
933
934 user_data = to_user_ptr(args->data_ptr);
935 remain = args->size;
936
937 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
938
939 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
940 /* If we're not in the cpu write domain, set ourself into the gtt
941 * write domain and manually flush cachelines (if required). This
942 * optimizes for the case when the gpu will use the data
943 * right away and we therefore have to clflush anyway. */
944 needs_clflush_after = cpu_write_needs_clflush(obj);
945 ret = i915_gem_object_wait_rendering(obj, false);
946 if (ret)
947 return ret;
948
949 i915_gem_object_retire(obj);
950 }
951 /* Same trick applies to invalidate partially written cachelines read
952 * before writing. */
953 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
954 needs_clflush_before =
955 !cpu_cache_is_coherent(dev, obj->cache_level);
956
957 ret = i915_gem_object_get_pages(obj);
958 if (ret)
959 return ret;
960
961 i915_gem_object_pin_pages(obj);
962
963 offset = args->offset;
964 obj->dirty = 1;
965
966 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
967 offset >> PAGE_SHIFT) {
968 struct page *page = sg_page_iter_page(&sg_iter);
969 int partial_cacheline_write;
970
971 if (remain <= 0)
972 break;
973
974 /* Operation in this page
975 *
976 * shmem_page_offset = offset within page in shmem file
977 * page_length = bytes to copy for this page
978 */
979 shmem_page_offset = offset_in_page(offset);
980
981 page_length = remain;
982 if ((shmem_page_offset + page_length) > PAGE_SIZE)
983 page_length = PAGE_SIZE - shmem_page_offset;
984
985 /* If we don't overwrite a cacheline completely we need to be
986 * careful to have up-to-date data by first clflushing. Don't
987 * overcomplicate things and flush the entire patch. */
988 partial_cacheline_write = needs_clflush_before &&
989 ((shmem_page_offset | page_length)
990 & (boot_cpu_data.x86_clflush_size - 1));
991
992 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
993 (page_to_phys(page) & (1 << 17)) != 0;
994
995 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
996 user_data, page_do_bit17_swizzling,
997 partial_cacheline_write,
998 needs_clflush_after);
999 if (ret == 0)
1000 goto next_page;
1001
1002 hit_slowpath = 1;
1003 mutex_unlock(&dev->struct_mutex);
1004 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1005 user_data, page_do_bit17_swizzling,
1006 partial_cacheline_write,
1007 needs_clflush_after);
1008
1009 mutex_lock(&dev->struct_mutex);
1010
1011 if (ret)
1012 goto out;
1013
1014next_page:
1015 remain -= page_length;
1016 user_data += page_length;
1017 offset += page_length;
1018 }
1019
1020out:
1021 i915_gem_object_unpin_pages(obj);
1022
1023 if (hit_slowpath) {
1024 /*
1025 * Fixup: Flush cpu caches in case we didn't flush the dirty
1026 * cachelines in-line while writing and the object moved
1027 * out of the cpu write domain while we've dropped the lock.
1028 */
1029 if (!needs_clflush_after &&
1030 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1031 if (i915_gem_clflush_object(obj, obj->pin_display))
1032 i915_gem_chipset_flush(dev);
1033 }
1034 }
1035
1036 if (needs_clflush_after)
1037 i915_gem_chipset_flush(dev);
1038
1039 return ret;
1040}
1041
1042/**
1043 * Writes data to the object referenced by handle.
1044 *
1045 * On error, the contents of the buffer that were to be modified are undefined.
1046 */
1047int
1048i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1049 struct drm_file *file)
1050{
1051 struct drm_i915_private *dev_priv = dev->dev_private;
1052 struct drm_i915_gem_pwrite *args = data;
1053 struct drm_i915_gem_object *obj;
1054 int ret;
1055
1056 if (args->size == 0)
1057 return 0;
1058
1059 if (!access_ok(VERIFY_READ,
1060 to_user_ptr(args->data_ptr),
1061 args->size))
1062 return -EFAULT;
1063
1064 if (likely(!i915.prefault_disable)) {
1065 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1066 args->size);
1067 if (ret)
1068 return -EFAULT;
1069 }
1070
1071 intel_runtime_pm_get(dev_priv);
1072
1073 ret = i915_mutex_lock_interruptible(dev);
1074 if (ret)
1075 goto put_rpm;
1076
1077 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1078 if (&obj->base == NULL) {
1079 ret = -ENOENT;
1080 goto unlock;
1081 }
1082
1083 /* Bounds check destination. */
1084 if (args->offset > obj->base.size ||
1085 args->size > obj->base.size - args->offset) {
1086 ret = -EINVAL;
1087 goto out;
1088 }
1089
1090 /* prime objects have no backing filp to GEM pread/pwrite
1091 * pages from.
1092 */
1093 if (!obj->base.filp) {
1094 ret = -EINVAL;
1095 goto out;
1096 }
1097
1098 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1099
1100 ret = -EFAULT;
1101 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1102 * it would end up going through the fenced access, and we'll get
1103 * different detiling behavior between reading and writing.
1104 * pread/pwrite currently are reading and writing from the CPU
1105 * perspective, requiring manual detiling by the client.
1106 */
1107 if (obj->tiling_mode == I915_TILING_NONE &&
1108 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1109 cpu_write_needs_clflush(obj)) {
1110 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1111 /* Note that the gtt paths might fail with non-page-backed user
1112 * pointers (e.g. gtt mappings when moving data between
1113 * textures). Fallback to the shmem path in that case. */
1114 }
1115
1116 if (ret == -EFAULT || ret == -ENOSPC) {
1117 if (obj->phys_handle)
1118 ret = i915_gem_phys_pwrite(obj, args, file);
1119 else
1120 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1121 }
1122
1123out:
1124 drm_gem_object_unreference(&obj->base);
1125unlock:
1126 mutex_unlock(&dev->struct_mutex);
1127put_rpm:
1128 intel_runtime_pm_put(dev_priv);
1129
1130 return ret;
1131}
1132
1133int
1134i915_gem_check_wedge(struct i915_gpu_error *error,
1135 bool interruptible)
1136{
1137 if (i915_reset_in_progress(error)) {
1138 /* Non-interruptible callers can't handle -EAGAIN, hence return
1139 * -EIO unconditionally for these. */
1140 if (!interruptible)
1141 return -EIO;
1142
1143 /* Recovery complete, but the reset failed ... */
1144 if (i915_terminally_wedged(error))
1145 return -EIO;
1146
1147 /*
1148 * Check if GPU Reset is in progress - we need intel_ring_begin
1149 * to work properly to reinit the hw state while the gpu is
1150 * still marked as reset-in-progress. Handle this with a flag.
1151 */
1152 if (!error->reload_in_reset)
1153 return -EAGAIN;
1154 }
1155
1156 return 0;
1157}
1158
1159/*
1160 * Compare seqno against outstanding lazy request. Emit a request if they are
1161 * equal.
1162 */
1163int
1164i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1165{
1166 int ret;
1167
1168 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1169
1170 ret = 0;
1171 if (seqno == ring->outstanding_lazy_seqno)
1172 ret = i915_add_request(ring, NULL);
1173
1174 return ret;
1175}
1176
1177static void fake_irq(unsigned long data)
1178{
1179 wake_up_process((struct task_struct *)data);
1180}
1181
1182static bool missed_irq(struct drm_i915_private *dev_priv,
1183 struct intel_engine_cs *ring)
1184{
1185 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1186}
1187
1188static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1189{
1190 if (file_priv == NULL)
1191 return true;
1192
1193 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1194}
1195
1196/**
1197 * __i915_wait_seqno - wait until execution of seqno has finished
1198 * @ring: the ring expected to report seqno
1199 * @seqno: duh!
1200 * @reset_counter: reset sequence associated with the given seqno
1201 * @interruptible: do an interruptible wait (normally yes)
1202 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1203 *
1204 * Note: It is of utmost importance that the passed in seqno and reset_counter
1205 * values have been read by the caller in an smp safe manner. Where read-side
1206 * locks are involved, it is sufficient to read the reset_counter before
1207 * unlocking the lock that protects the seqno. For lockless tricks, the
1208 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1209 * inserted.
1210 *
1211 * Returns 0 if the seqno was found within the alloted time. Else returns the
1212 * errno with remaining time filled in timeout argument.
1213 */
1214int __i915_wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1215 unsigned reset_counter,
1216 bool interruptible,
1217 s64 *timeout,
1218 struct drm_i915_file_private *file_priv)
1219{
1220 struct drm_device *dev = ring->dev;
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 const bool irq_test_in_progress =
1223 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1224 DEFINE_WAIT(wait);
1225 unsigned long timeout_expire;
1226 s64 before, now;
1227 int ret;
1228
1229 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1230
1231 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1232 return 0;
1233
1234 timeout_expire = timeout ?
1235 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1236
1237 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1238 gen6_rps_boost(dev_priv);
1239 if (file_priv)
1240 mod_delayed_work(dev_priv->wq,
1241 &file_priv->mm.idle_work,
1242 msecs_to_jiffies(100));
1243 }
1244
1245 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1246 return -ENODEV;
1247
1248 /* Record current time in case interrupted by signal, or wedged */
1249 trace_i915_gem_request_wait_begin(ring, seqno);
1250 before = ktime_get_raw_ns();
1251 for (;;) {
1252 struct timer_list timer;
1253
1254 prepare_to_wait(&ring->irq_queue, &wait,
1255 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1256
1257 /* We need to check whether any gpu reset happened in between
1258 * the caller grabbing the seqno and now ... */
1259 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1260 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1261 * is truely gone. */
1262 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1263 if (ret == 0)
1264 ret = -EAGAIN;
1265 break;
1266 }
1267
1268 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1269 ret = 0;
1270 break;
1271 }
1272
1273 if (interruptible && signal_pending(current)) {
1274 ret = -ERESTARTSYS;
1275 break;
1276 }
1277
1278 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1279 ret = -ETIME;
1280 break;
1281 }
1282
1283 timer.function = NULL;
1284 if (timeout || missed_irq(dev_priv, ring)) {
1285 unsigned long expire;
1286
1287 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1288 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1289 mod_timer(&timer, expire);
1290 }
1291
1292 io_schedule();
1293
1294 if (timer.function) {
1295 del_singleshot_timer_sync(&timer);
1296 destroy_timer_on_stack(&timer);
1297 }
1298 }
1299 now = ktime_get_raw_ns();
1300 trace_i915_gem_request_wait_end(ring, seqno);
1301
1302 if (!irq_test_in_progress)
1303 ring->irq_put(ring);
1304
1305 finish_wait(&ring->irq_queue, &wait);
1306
1307 if (timeout) {
1308 s64 tres = *timeout - (now - before);
1309
1310 *timeout = tres < 0 ? 0 : tres;
1311
1312 /*
1313 * Apparently ktime isn't accurate enough and occasionally has a
1314 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1315 * things up to make the test happy. We allow up to 1 jiffy.
1316 *
1317 * This is a regrssion from the timespec->ktime conversion.
1318 */
1319 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1320 *timeout = 0;
1321 }
1322
1323 return ret;
1324}
1325
1326/**
1327 * Waits for a sequence number to be signaled, and cleans up the
1328 * request and object lists appropriately for that event.
1329 */
1330int
1331i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1332{
1333 struct drm_device *dev = ring->dev;
1334 struct drm_i915_private *dev_priv = dev->dev_private;
1335 bool interruptible = dev_priv->mm.interruptible;
1336 unsigned reset_counter;
1337 int ret;
1338
1339 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1340 BUG_ON(seqno == 0);
1341
1342 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1343 if (ret)
1344 return ret;
1345
1346 ret = i915_gem_check_olr(ring, seqno);
1347 if (ret)
1348 return ret;
1349
1350 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1351 return __i915_wait_seqno(ring, seqno, reset_counter, interruptible,
1352 NULL, NULL);
1353}
1354
1355static int
1356i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1357{
1358 if (!obj->active)
1359 return 0;
1360
1361 /* Manually manage the write flush as we may have not yet
1362 * retired the buffer.
1363 *
1364 * Note that the last_write_seqno is always the earlier of
1365 * the two (read/write) seqno, so if we haved successfully waited,
1366 * we know we have passed the last write.
1367 */
1368 obj->last_write_seqno = 0;
1369
1370 return 0;
1371}
1372
1373/**
1374 * Ensures that all rendering to the object has completed and the object is
1375 * safe to unbind from the GTT or access from the CPU.
1376 */
1377static __must_check int
1378i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1379 bool readonly)
1380{
1381 struct intel_engine_cs *ring = obj->ring;
1382 u32 seqno;
1383 int ret;
1384
1385 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1386 if (seqno == 0)
1387 return 0;
1388
1389 ret = i915_wait_seqno(ring, seqno);
1390 if (ret)
1391 return ret;
1392
1393 return i915_gem_object_wait_rendering__tail(obj);
1394}
1395
1396/* A nonblocking variant of the above wait. This is a highly dangerous routine
1397 * as the object state may change during this call.
1398 */
1399static __must_check int
1400i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1401 struct drm_i915_file_private *file_priv,
1402 bool readonly)
1403{
1404 struct drm_device *dev = obj->base.dev;
1405 struct drm_i915_private *dev_priv = dev->dev_private;
1406 struct intel_engine_cs *ring = obj->ring;
1407 unsigned reset_counter;
1408 u32 seqno;
1409 int ret;
1410
1411 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1412 BUG_ON(!dev_priv->mm.interruptible);
1413
1414 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1415 if (seqno == 0)
1416 return 0;
1417
1418 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1419 if (ret)
1420 return ret;
1421
1422 ret = i915_gem_check_olr(ring, seqno);
1423 if (ret)
1424 return ret;
1425
1426 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1427 mutex_unlock(&dev->struct_mutex);
1428 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL,
1429 file_priv);
1430 mutex_lock(&dev->struct_mutex);
1431 if (ret)
1432 return ret;
1433
1434 return i915_gem_object_wait_rendering__tail(obj);
1435}
1436
1437/**
1438 * Called when user space prepares to use an object with the CPU, either
1439 * through the mmap ioctl's mapping or a GTT mapping.
1440 */
1441int
1442i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1443 struct drm_file *file)
1444{
1445 struct drm_i915_gem_set_domain *args = data;
1446 struct drm_i915_gem_object *obj;
1447 uint32_t read_domains = args->read_domains;
1448 uint32_t write_domain = args->write_domain;
1449 int ret;
1450
1451 /* Only handle setting domains to types used by the CPU. */
1452 if (write_domain & I915_GEM_GPU_DOMAINS)
1453 return -EINVAL;
1454
1455 if (read_domains & I915_GEM_GPU_DOMAINS)
1456 return -EINVAL;
1457
1458 /* Having something in the write domain implies it's in the read
1459 * domain, and only that read domain. Enforce that in the request.
1460 */
1461 if (write_domain != 0 && read_domains != write_domain)
1462 return -EINVAL;
1463
1464 ret = i915_mutex_lock_interruptible(dev);
1465 if (ret)
1466 return ret;
1467
1468 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1469 if (&obj->base == NULL) {
1470 ret = -ENOENT;
1471 goto unlock;
1472 }
1473
1474 /* Try to flush the object off the GPU without holding the lock.
1475 * We will repeat the flush holding the lock in the normal manner
1476 * to catch cases where we are gazumped.
1477 */
1478 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1479 file->driver_priv,
1480 !write_domain);
1481 if (ret)
1482 goto unref;
1483
1484 if (read_domains & I915_GEM_DOMAIN_GTT) {
1485 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1486
1487 /* Silently promote "you're not bound, there was nothing to do"
1488 * to success, since the client was just asking us to
1489 * make sure everything was done.
1490 */
1491 if (ret == -EINVAL)
1492 ret = 0;
1493 } else {
1494 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1495 }
1496
1497unref:
1498 drm_gem_object_unreference(&obj->base);
1499unlock:
1500 mutex_unlock(&dev->struct_mutex);
1501 return ret;
1502}
1503
1504/**
1505 * Called when user space has done writes to this buffer
1506 */
1507int
1508i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1509 struct drm_file *file)
1510{
1511 struct drm_i915_gem_sw_finish *args = data;
1512 struct drm_i915_gem_object *obj;
1513 int ret = 0;
1514
1515 ret = i915_mutex_lock_interruptible(dev);
1516 if (ret)
1517 return ret;
1518
1519 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1520 if (&obj->base == NULL) {
1521 ret = -ENOENT;
1522 goto unlock;
1523 }
1524
1525 /* Pinned buffers may be scanout, so flush the cache */
1526 if (obj->pin_display)
1527 i915_gem_object_flush_cpu_write_domain(obj, true);
1528
1529 drm_gem_object_unreference(&obj->base);
1530unlock:
1531 mutex_unlock(&dev->struct_mutex);
1532 return ret;
1533}
1534
1535/**
1536 * Maps the contents of an object, returning the address it is mapped
1537 * into.
1538 *
1539 * While the mapping holds a reference on the contents of the object, it doesn't
1540 * imply a ref on the object itself.
1541 *
1542 * IMPORTANT:
1543 *
1544 * DRM driver writers who look a this function as an example for how to do GEM
1545 * mmap support, please don't implement mmap support like here. The modern way
1546 * to implement DRM mmap support is with an mmap offset ioctl (like
1547 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1548 * That way debug tooling like valgrind will understand what's going on, hiding
1549 * the mmap call in a driver private ioctl will break that. The i915 driver only
1550 * does cpu mmaps this way because we didn't know better.
1551 */
1552int
1553i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1554 struct drm_file *file)
1555{
1556 struct drm_i915_gem_mmap *args = data;
1557 struct drm_gem_object *obj;
1558 unsigned long addr;
1559
1560 obj = drm_gem_object_lookup(dev, file, args->handle);
1561 if (obj == NULL)
1562 return -ENOENT;
1563
1564 /* prime objects have no backing filp to GEM mmap
1565 * pages from.
1566 */
1567 if (!obj->filp) {
1568 drm_gem_object_unreference_unlocked(obj);
1569 return -EINVAL;
1570 }
1571
1572 addr = vm_mmap(obj->filp, 0, args->size,
1573 PROT_READ | PROT_WRITE, MAP_SHARED,
1574 args->offset);
1575 drm_gem_object_unreference_unlocked(obj);
1576 if (IS_ERR((void *)addr))
1577 return addr;
1578
1579 args->addr_ptr = (uint64_t) addr;
1580
1581 return 0;
1582}
1583
1584/**
1585 * i915_gem_fault - fault a page into the GTT
1586 * vma: VMA in question
1587 * vmf: fault info
1588 *
1589 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1590 * from userspace. The fault handler takes care of binding the object to
1591 * the GTT (if needed), allocating and programming a fence register (again,
1592 * only if needed based on whether the old reg is still valid or the object
1593 * is tiled) and inserting a new PTE into the faulting process.
1594 *
1595 * Note that the faulting process may involve evicting existing objects
1596 * from the GTT and/or fence registers to make room. So performance may
1597 * suffer if the GTT working set is large or there are few fence registers
1598 * left.
1599 */
1600int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1601{
1602 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1603 struct drm_device *dev = obj->base.dev;
1604 struct drm_i915_private *dev_priv = dev->dev_private;
1605 pgoff_t page_offset;
1606 unsigned long pfn;
1607 int ret = 0;
1608 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1609
1610 intel_runtime_pm_get(dev_priv);
1611
1612 /* We don't use vmf->pgoff since that has the fake offset */
1613 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1614 PAGE_SHIFT;
1615
1616 ret = i915_mutex_lock_interruptible(dev);
1617 if (ret)
1618 goto out;
1619
1620 trace_i915_gem_object_fault(obj, page_offset, true, write);
1621
1622 /* Try to flush the object off the GPU first without holding the lock.
1623 * Upon reacquiring the lock, we will perform our sanity checks and then
1624 * repeat the flush holding the lock in the normal manner to catch cases
1625 * where we are gazumped.
1626 */
1627 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1628 if (ret)
1629 goto unlock;
1630
1631 /* Access to snoopable pages through the GTT is incoherent. */
1632 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1633 ret = -EFAULT;
1634 goto unlock;
1635 }
1636
1637 /* Now bind it into the GTT if needed */
1638 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1639 if (ret)
1640 goto unlock;
1641
1642 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1643 if (ret)
1644 goto unpin;
1645
1646 ret = i915_gem_object_get_fence(obj);
1647 if (ret)
1648 goto unpin;
1649
1650 /* Finally, remap it using the new GTT offset */
1651 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1652 pfn >>= PAGE_SHIFT;
1653
1654 if (!obj->fault_mappable) {
1655 unsigned long size = min_t(unsigned long,
1656 vma->vm_end - vma->vm_start,
1657 obj->base.size);
1658 int i;
1659
1660 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1661 ret = vm_insert_pfn(vma,
1662 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1663 pfn + i);
1664 if (ret)
1665 break;
1666 }
1667
1668 obj->fault_mappable = true;
1669 } else
1670 ret = vm_insert_pfn(vma,
1671 (unsigned long)vmf->virtual_address,
1672 pfn + page_offset);
1673unpin:
1674 i915_gem_object_ggtt_unpin(obj);
1675unlock:
1676 mutex_unlock(&dev->struct_mutex);
1677out:
1678 switch (ret) {
1679 case -EIO:
1680 /*
1681 * We eat errors when the gpu is terminally wedged to avoid
1682 * userspace unduly crashing (gl has no provisions for mmaps to
1683 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1684 * and so needs to be reported.
1685 */
1686 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1687 ret = VM_FAULT_SIGBUS;
1688 break;
1689 }
1690 case -EAGAIN:
1691 /*
1692 * EAGAIN means the gpu is hung and we'll wait for the error
1693 * handler to reset everything when re-faulting in
1694 * i915_mutex_lock_interruptible.
1695 */
1696 case 0:
1697 case -ERESTARTSYS:
1698 case -EINTR:
1699 case -EBUSY:
1700 /*
1701 * EBUSY is ok: this just means that another thread
1702 * already did the job.
1703 */
1704 ret = VM_FAULT_NOPAGE;
1705 break;
1706 case -ENOMEM:
1707 ret = VM_FAULT_OOM;
1708 break;
1709 case -ENOSPC:
1710 case -EFAULT:
1711 ret = VM_FAULT_SIGBUS;
1712 break;
1713 default:
1714 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1715 ret = VM_FAULT_SIGBUS;
1716 break;
1717 }
1718
1719 intel_runtime_pm_put(dev_priv);
1720 return ret;
1721}
1722
1723/**
1724 * i915_gem_release_mmap - remove physical page mappings
1725 * @obj: obj in question
1726 *
1727 * Preserve the reservation of the mmapping with the DRM core code, but
1728 * relinquish ownership of the pages back to the system.
1729 *
1730 * It is vital that we remove the page mapping if we have mapped a tiled
1731 * object through the GTT and then lose the fence register due to
1732 * resource pressure. Similarly if the object has been moved out of the
1733 * aperture, than pages mapped into userspace must be revoked. Removing the
1734 * mapping will then trigger a page fault on the next user access, allowing
1735 * fixup by i915_gem_fault().
1736 */
1737void
1738i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1739{
1740 if (!obj->fault_mappable)
1741 return;
1742
1743 drm_vma_node_unmap(&obj->base.vma_node,
1744 obj->base.dev->anon_inode->i_mapping);
1745 obj->fault_mappable = false;
1746}
1747
1748void
1749i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1750{
1751 struct drm_i915_gem_object *obj;
1752
1753 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1754 i915_gem_release_mmap(obj);
1755}
1756
1757uint32_t
1758i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1759{
1760 uint32_t gtt_size;
1761
1762 if (INTEL_INFO(dev)->gen >= 4 ||
1763 tiling_mode == I915_TILING_NONE)
1764 return size;
1765
1766 /* Previous chips need a power-of-two fence region when tiling */
1767 if (INTEL_INFO(dev)->gen == 3)
1768 gtt_size = 1024*1024;
1769 else
1770 gtt_size = 512*1024;
1771
1772 while (gtt_size < size)
1773 gtt_size <<= 1;
1774
1775 return gtt_size;
1776}
1777
1778/**
1779 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1780 * @obj: object to check
1781 *
1782 * Return the required GTT alignment for an object, taking into account
1783 * potential fence register mapping.
1784 */
1785uint32_t
1786i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1787 int tiling_mode, bool fenced)
1788{
1789 /*
1790 * Minimum alignment is 4k (GTT page size), but might be greater
1791 * if a fence register is needed for the object.
1792 */
1793 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1794 tiling_mode == I915_TILING_NONE)
1795 return 4096;
1796
1797 /*
1798 * Previous chips need to be aligned to the size of the smallest
1799 * fence register that can contain the object.
1800 */
1801 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1802}
1803
1804static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1805{
1806 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1807 int ret;
1808
1809 if (drm_vma_node_has_offset(&obj->base.vma_node))
1810 return 0;
1811
1812 dev_priv->mm.shrinker_no_lock_stealing = true;
1813
1814 ret = drm_gem_create_mmap_offset(&obj->base);
1815 if (ret != -ENOSPC)
1816 goto out;
1817
1818 /* Badly fragmented mmap space? The only way we can recover
1819 * space is by destroying unwanted objects. We can't randomly release
1820 * mmap_offsets as userspace expects them to be persistent for the
1821 * lifetime of the objects. The closest we can is to release the
1822 * offsets on purgeable objects by truncating it and marking it purged,
1823 * which prevents userspace from ever using that object again.
1824 */
1825 i915_gem_shrink(dev_priv,
1826 obj->base.size >> PAGE_SHIFT,
1827 I915_SHRINK_BOUND |
1828 I915_SHRINK_UNBOUND |
1829 I915_SHRINK_PURGEABLE);
1830 ret = drm_gem_create_mmap_offset(&obj->base);
1831 if (ret != -ENOSPC)
1832 goto out;
1833
1834 i915_gem_shrink_all(dev_priv);
1835 ret = drm_gem_create_mmap_offset(&obj->base);
1836out:
1837 dev_priv->mm.shrinker_no_lock_stealing = false;
1838
1839 return ret;
1840}
1841
1842static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1843{
1844 drm_gem_free_mmap_offset(&obj->base);
1845}
1846
1847int
1848i915_gem_mmap_gtt(struct drm_file *file,
1849 struct drm_device *dev,
1850 uint32_t handle,
1851 uint64_t *offset)
1852{
1853 struct drm_i915_private *dev_priv = dev->dev_private;
1854 struct drm_i915_gem_object *obj;
1855 int ret;
1856
1857 ret = i915_mutex_lock_interruptible(dev);
1858 if (ret)
1859 return ret;
1860
1861 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1862 if (&obj->base == NULL) {
1863 ret = -ENOENT;
1864 goto unlock;
1865 }
1866
1867 if (obj->base.size > dev_priv->gtt.mappable_end) {
1868 ret = -E2BIG;
1869 goto out;
1870 }
1871
1872 if (obj->madv != I915_MADV_WILLNEED) {
1873 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1874 ret = -EFAULT;
1875 goto out;
1876 }
1877
1878 ret = i915_gem_object_create_mmap_offset(obj);
1879 if (ret)
1880 goto out;
1881
1882 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1883
1884out:
1885 drm_gem_object_unreference(&obj->base);
1886unlock:
1887 mutex_unlock(&dev->struct_mutex);
1888 return ret;
1889}
1890
1891/**
1892 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1893 * @dev: DRM device
1894 * @data: GTT mapping ioctl data
1895 * @file: GEM object info
1896 *
1897 * Simply returns the fake offset to userspace so it can mmap it.
1898 * The mmap call will end up in drm_gem_mmap(), which will set things
1899 * up so we can get faults in the handler above.
1900 *
1901 * The fault handler will take care of binding the object into the GTT
1902 * (since it may have been evicted to make room for something), allocating
1903 * a fence register, and mapping the appropriate aperture address into
1904 * userspace.
1905 */
1906int
1907i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1908 struct drm_file *file)
1909{
1910 struct drm_i915_gem_mmap_gtt *args = data;
1911
1912 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1913}
1914
1915static inline int
1916i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1917{
1918 return obj->madv == I915_MADV_DONTNEED;
1919}
1920
1921/* Immediately discard the backing storage */
1922static void
1923i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1924{
1925 i915_gem_object_free_mmap_offset(obj);
1926
1927 if (obj->base.filp == NULL)
1928 return;
1929
1930 /* Our goal here is to return as much of the memory as
1931 * is possible back to the system as we are called from OOM.
1932 * To do this we must instruct the shmfs to drop all of its
1933 * backing pages, *now*.
1934 */
1935 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1936 obj->madv = __I915_MADV_PURGED;
1937}
1938
1939/* Try to discard unwanted pages */
1940static void
1941i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1942{
1943 struct address_space *mapping;
1944
1945 switch (obj->madv) {
1946 case I915_MADV_DONTNEED:
1947 i915_gem_object_truncate(obj);
1948 case __I915_MADV_PURGED:
1949 return;
1950 }
1951
1952 if (obj->base.filp == NULL)
1953 return;
1954
1955 mapping = file_inode(obj->base.filp)->i_mapping,
1956 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1957}
1958
1959static void
1960i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1961{
1962 struct sg_page_iter sg_iter;
1963 int ret;
1964
1965 BUG_ON(obj->madv == __I915_MADV_PURGED);
1966
1967 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1968 if (ret) {
1969 /* In the event of a disaster, abandon all caches and
1970 * hope for the best.
1971 */
1972 WARN_ON(ret != -EIO);
1973 i915_gem_clflush_object(obj, true);
1974 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1975 }
1976
1977 if (i915_gem_object_needs_bit17_swizzle(obj))
1978 i915_gem_object_save_bit_17_swizzle(obj);
1979
1980 if (obj->madv == I915_MADV_DONTNEED)
1981 obj->dirty = 0;
1982
1983 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1984 struct page *page = sg_page_iter_page(&sg_iter);
1985
1986 if (obj->dirty)
1987 set_page_dirty(page);
1988
1989 if (obj->madv == I915_MADV_WILLNEED)
1990 mark_page_accessed(page);
1991
1992 page_cache_release(page);
1993 }
1994 obj->dirty = 0;
1995
1996 sg_free_table(obj->pages);
1997 kfree(obj->pages);
1998}
1999
2000int
2001i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2002{
2003 const struct drm_i915_gem_object_ops *ops = obj->ops;
2004
2005 if (obj->pages == NULL)
2006 return 0;
2007
2008 if (obj->pages_pin_count)
2009 return -EBUSY;
2010
2011 BUG_ON(i915_gem_obj_bound_any(obj));
2012
2013 /* ->put_pages might need to allocate memory for the bit17 swizzle
2014 * array, hence protect them from being reaped by removing them from gtt
2015 * lists early. */
2016 list_del(&obj->global_list);
2017
2018 ops->put_pages(obj);
2019 obj->pages = NULL;
2020
2021 i915_gem_object_invalidate(obj);
2022
2023 return 0;
2024}
2025
2026unsigned long
2027i915_gem_shrink(struct drm_i915_private *dev_priv,
2028 long target, unsigned flags)
2029{
2030 const struct {
2031 struct list_head *list;
2032 unsigned int bit;
2033 } phases[] = {
2034 { &dev_priv->mm.unbound_list, I915_SHRINK_UNBOUND },
2035 { &dev_priv->mm.bound_list, I915_SHRINK_BOUND },
2036 { NULL, 0 },
2037 }, *phase;
2038 unsigned long count = 0;
2039
2040 /*
2041 * As we may completely rewrite the (un)bound list whilst unbinding
2042 * (due to retiring requests) we have to strictly process only
2043 * one element of the list at the time, and recheck the list
2044 * on every iteration.
2045 *
2046 * In particular, we must hold a reference whilst removing the
2047 * object as we may end up waiting for and/or retiring the objects.
2048 * This might release the final reference (held by the active list)
2049 * and result in the object being freed from under us. This is
2050 * similar to the precautions the eviction code must take whilst
2051 * removing objects.
2052 *
2053 * Also note that although these lists do not hold a reference to
2054 * the object we can safely grab one here: The final object
2055 * unreferencing and the bound_list are both protected by the
2056 * dev->struct_mutex and so we won't ever be able to observe an
2057 * object on the bound_list with a reference count equals 0.
2058 */
2059 for (phase = phases; phase->list; phase++) {
2060 struct list_head still_in_list;
2061
2062 if ((flags & phase->bit) == 0)
2063 continue;
2064
2065 INIT_LIST_HEAD(&still_in_list);
2066 while (count < target && !list_empty(phase->list)) {
2067 struct drm_i915_gem_object *obj;
2068 struct i915_vma *vma, *v;
2069
2070 obj = list_first_entry(phase->list,
2071 typeof(*obj), global_list);
2072 list_move_tail(&obj->global_list, &still_in_list);
2073
2074 if (flags & I915_SHRINK_PURGEABLE &&
2075 !i915_gem_object_is_purgeable(obj))
2076 continue;
2077
2078 drm_gem_object_reference(&obj->base);
2079
2080 /* For the unbound phase, this should be a no-op! */
2081 list_for_each_entry_safe(vma, v,
2082 &obj->vma_list, vma_link)
2083 if (i915_vma_unbind(vma))
2084 break;
2085
2086 if (i915_gem_object_put_pages(obj) == 0)
2087 count += obj->base.size >> PAGE_SHIFT;
2088
2089 drm_gem_object_unreference(&obj->base);
2090 }
2091 list_splice(&still_in_list, phase->list);
2092 }
2093
2094 return count;
2095}
2096
2097static unsigned long
2098i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2099{
2100 i915_gem_evict_everything(dev_priv->dev);
2101 return i915_gem_shrink(dev_priv, LONG_MAX,
2102 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND);
2103}
2104
2105static int
2106i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2107{
2108 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2109 int page_count, i;
2110 struct address_space *mapping;
2111 struct sg_table *st;
2112 struct scatterlist *sg;
2113 struct sg_page_iter sg_iter;
2114 struct page *page;
2115 unsigned long last_pfn = 0; /* suppress gcc warning */
2116 gfp_t gfp;
2117
2118 /* Assert that the object is not currently in any GPU domain. As it
2119 * wasn't in the GTT, there shouldn't be any way it could have been in
2120 * a GPU cache
2121 */
2122 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2123 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2124
2125 st = kmalloc(sizeof(*st), GFP_KERNEL);
2126 if (st == NULL)
2127 return -ENOMEM;
2128
2129 page_count = obj->base.size / PAGE_SIZE;
2130 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2131 kfree(st);
2132 return -ENOMEM;
2133 }
2134
2135 /* Get the list of pages out of our struct file. They'll be pinned
2136 * at this point until we release them.
2137 *
2138 * Fail silently without starting the shrinker
2139 */
2140 mapping = file_inode(obj->base.filp)->i_mapping;
2141 gfp = mapping_gfp_mask(mapping);
2142 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2143 gfp &= ~(__GFP_IO | __GFP_WAIT);
2144 sg = st->sgl;
2145 st->nents = 0;
2146 for (i = 0; i < page_count; i++) {
2147 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2148 if (IS_ERR(page)) {
2149 i915_gem_shrink(dev_priv,
2150 page_count,
2151 I915_SHRINK_BOUND |
2152 I915_SHRINK_UNBOUND |
2153 I915_SHRINK_PURGEABLE);
2154 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2155 }
2156 if (IS_ERR(page)) {
2157 /* We've tried hard to allocate the memory by reaping
2158 * our own buffer, now let the real VM do its job and
2159 * go down in flames if truly OOM.
2160 */
2161 i915_gem_shrink_all(dev_priv);
2162 page = shmem_read_mapping_page(mapping, i);
2163 if (IS_ERR(page))
2164 goto err_pages;
2165 }
2166#ifdef CONFIG_SWIOTLB
2167 if (swiotlb_nr_tbl()) {
2168 st->nents++;
2169 sg_set_page(sg, page, PAGE_SIZE, 0);
2170 sg = sg_next(sg);
2171 continue;
2172 }
2173#endif
2174 if (!i || page_to_pfn(page) != last_pfn + 1) {
2175 if (i)
2176 sg = sg_next(sg);
2177 st->nents++;
2178 sg_set_page(sg, page, PAGE_SIZE, 0);
2179 } else {
2180 sg->length += PAGE_SIZE;
2181 }
2182 last_pfn = page_to_pfn(page);
2183
2184 /* Check that the i965g/gm workaround works. */
2185 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2186 }
2187#ifdef CONFIG_SWIOTLB
2188 if (!swiotlb_nr_tbl())
2189#endif
2190 sg_mark_end(sg);
2191 obj->pages = st;
2192
2193 if (i915_gem_object_needs_bit17_swizzle(obj))
2194 i915_gem_object_do_bit_17_swizzle(obj);
2195
2196 if (obj->tiling_mode != I915_TILING_NONE &&
2197 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2198 i915_gem_object_pin_pages(obj);
2199
2200 return 0;
2201
2202err_pages:
2203 sg_mark_end(sg);
2204 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2205 page_cache_release(sg_page_iter_page(&sg_iter));
2206 sg_free_table(st);
2207 kfree(st);
2208
2209 /* shmemfs first checks if there is enough memory to allocate the page
2210 * and reports ENOSPC should there be insufficient, along with the usual
2211 * ENOMEM for a genuine allocation failure.
2212 *
2213 * We use ENOSPC in our driver to mean that we have run out of aperture
2214 * space and so want to translate the error from shmemfs back to our
2215 * usual understanding of ENOMEM.
2216 */
2217 if (PTR_ERR(page) == -ENOSPC)
2218 return -ENOMEM;
2219 else
2220 return PTR_ERR(page);
2221}
2222
2223/* Ensure that the associated pages are gathered from the backing storage
2224 * and pinned into our object. i915_gem_object_get_pages() may be called
2225 * multiple times before they are released by a single call to
2226 * i915_gem_object_put_pages() - once the pages are no longer referenced
2227 * either as a result of memory pressure (reaping pages under the shrinker)
2228 * or as the object is itself released.
2229 */
2230int
2231i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2232{
2233 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2234 const struct drm_i915_gem_object_ops *ops = obj->ops;
2235 int ret;
2236
2237 if (obj->pages)
2238 return 0;
2239
2240 if (obj->madv != I915_MADV_WILLNEED) {
2241 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2242 return -EFAULT;
2243 }
2244
2245 BUG_ON(obj->pages_pin_count);
2246
2247 ret = ops->get_pages(obj);
2248 if (ret)
2249 return ret;
2250
2251 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2252 return 0;
2253}
2254
2255static void
2256i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2257 struct intel_engine_cs *ring)
2258{
2259 u32 seqno = intel_ring_get_seqno(ring);
2260
2261 BUG_ON(ring == NULL);
2262 if (obj->ring != ring && obj->last_write_seqno) {
2263 /* Keep the seqno relative to the current ring */
2264 obj->last_write_seqno = seqno;
2265 }
2266 obj->ring = ring;
2267
2268 /* Add a reference if we're newly entering the active list. */
2269 if (!obj->active) {
2270 drm_gem_object_reference(&obj->base);
2271 obj->active = 1;
2272 }
2273
2274 list_move_tail(&obj->ring_list, &ring->active_list);
2275
2276 obj->last_read_seqno = seqno;
2277}
2278
2279void i915_vma_move_to_active(struct i915_vma *vma,
2280 struct intel_engine_cs *ring)
2281{
2282 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2283 return i915_gem_object_move_to_active(vma->obj, ring);
2284}
2285
2286static void
2287i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2288{
2289 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2290 struct i915_address_space *vm;
2291 struct i915_vma *vma;
2292
2293 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2294 BUG_ON(!obj->active);
2295
2296 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2297 vma = i915_gem_obj_to_vma(obj, vm);
2298 if (vma && !list_empty(&vma->mm_list))
2299 list_move_tail(&vma->mm_list, &vm->inactive_list);
2300 }
2301
2302 intel_fb_obj_flush(obj, true);
2303
2304 list_del_init(&obj->ring_list);
2305 obj->ring = NULL;
2306
2307 obj->last_read_seqno = 0;
2308 obj->last_write_seqno = 0;
2309 obj->base.write_domain = 0;
2310
2311 obj->last_fenced_seqno = 0;
2312
2313 obj->active = 0;
2314 drm_gem_object_unreference(&obj->base);
2315
2316 WARN_ON(i915_verify_lists(dev));
2317}
2318
2319static void
2320i915_gem_object_retire(struct drm_i915_gem_object *obj)
2321{
2322 struct intel_engine_cs *ring = obj->ring;
2323
2324 if (ring == NULL)
2325 return;
2326
2327 if (i915_seqno_passed(ring->get_seqno(ring, true),
2328 obj->last_read_seqno))
2329 i915_gem_object_move_to_inactive(obj);
2330}
2331
2332static int
2333i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2334{
2335 struct drm_i915_private *dev_priv = dev->dev_private;
2336 struct intel_engine_cs *ring;
2337 int ret, i, j;
2338
2339 /* Carefully retire all requests without writing to the rings */
2340 for_each_ring(ring, dev_priv, i) {
2341 ret = intel_ring_idle(ring);
2342 if (ret)
2343 return ret;
2344 }
2345 i915_gem_retire_requests(dev);
2346
2347 /* Finally reset hw state */
2348 for_each_ring(ring, dev_priv, i) {
2349 intel_ring_init_seqno(ring, seqno);
2350
2351 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2352 ring->semaphore.sync_seqno[j] = 0;
2353 }
2354
2355 return 0;
2356}
2357
2358int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2359{
2360 struct drm_i915_private *dev_priv = dev->dev_private;
2361 int ret;
2362
2363 if (seqno == 0)
2364 return -EINVAL;
2365
2366 /* HWS page needs to be set less than what we
2367 * will inject to ring
2368 */
2369 ret = i915_gem_init_seqno(dev, seqno - 1);
2370 if (ret)
2371 return ret;
2372
2373 /* Carefully set the last_seqno value so that wrap
2374 * detection still works
2375 */
2376 dev_priv->next_seqno = seqno;
2377 dev_priv->last_seqno = seqno - 1;
2378 if (dev_priv->last_seqno == 0)
2379 dev_priv->last_seqno--;
2380
2381 return 0;
2382}
2383
2384int
2385i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2386{
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388
2389 /* reserve 0 for non-seqno */
2390 if (dev_priv->next_seqno == 0) {
2391 int ret = i915_gem_init_seqno(dev, 0);
2392 if (ret)
2393 return ret;
2394
2395 dev_priv->next_seqno = 1;
2396 }
2397
2398 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2399 return 0;
2400}
2401
2402int __i915_add_request(struct intel_engine_cs *ring,
2403 struct drm_file *file,
2404 struct drm_i915_gem_object *obj,
2405 u32 *out_seqno)
2406{
2407 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2408 struct drm_i915_gem_request *request;
2409 struct intel_ringbuffer *ringbuf;
2410 u32 request_ring_position, request_start;
2411 int ret;
2412
2413 request = ring->preallocated_lazy_request;
2414 if (WARN_ON(request == NULL))
2415 return -ENOMEM;
2416
2417 if (i915.enable_execlists) {
2418 struct intel_context *ctx = request->ctx;
2419 ringbuf = ctx->engine[ring->id].ringbuf;
2420 } else
2421 ringbuf = ring->buffer;
2422
2423 request_start = intel_ring_get_tail(ringbuf);
2424 /*
2425 * Emit any outstanding flushes - execbuf can fail to emit the flush
2426 * after having emitted the batchbuffer command. Hence we need to fix
2427 * things up similar to emitting the lazy request. The difference here
2428 * is that the flush _must_ happen before the next request, no matter
2429 * what.
2430 */
2431 if (i915.enable_execlists) {
2432 ret = logical_ring_flush_all_caches(ringbuf);
2433 if (ret)
2434 return ret;
2435 } else {
2436 ret = intel_ring_flush_all_caches(ring);
2437 if (ret)
2438 return ret;
2439 }
2440
2441 /* Record the position of the start of the request so that
2442 * should we detect the updated seqno part-way through the
2443 * GPU processing the request, we never over-estimate the
2444 * position of the head.
2445 */
2446 request_ring_position = intel_ring_get_tail(ringbuf);
2447
2448 if (i915.enable_execlists) {
2449 ret = ring->emit_request(ringbuf);
2450 if (ret)
2451 return ret;
2452 } else {
2453 ret = ring->add_request(ring);
2454 if (ret)
2455 return ret;
2456 }
2457
2458 request->seqno = intel_ring_get_seqno(ring);
2459 request->ring = ring;
2460 request->head = request_start;
2461 request->tail = request_ring_position;
2462
2463 /* Whilst this request exists, batch_obj will be on the
2464 * active_list, and so will hold the active reference. Only when this
2465 * request is retired will the the batch_obj be moved onto the
2466 * inactive_list and lose its active reference. Hence we do not need
2467 * to explicitly hold another reference here.
2468 */
2469 request->batch_obj = obj;
2470
2471 if (!i915.enable_execlists) {
2472 /* Hold a reference to the current context so that we can inspect
2473 * it later in case a hangcheck error event fires.
2474 */
2475 request->ctx = ring->last_context;
2476 if (request->ctx)
2477 i915_gem_context_reference(request->ctx);
2478 }
2479
2480 request->emitted_jiffies = jiffies;
2481 list_add_tail(&request->list, &ring->request_list);
2482 request->file_priv = NULL;
2483
2484 if (file) {
2485 struct drm_i915_file_private *file_priv = file->driver_priv;
2486
2487 spin_lock(&file_priv->mm.lock);
2488 request->file_priv = file_priv;
2489 list_add_tail(&request->client_list,
2490 &file_priv->mm.request_list);
2491 spin_unlock(&file_priv->mm.lock);
2492 }
2493
2494 trace_i915_gem_request_add(ring, request->seqno);
2495 ring->outstanding_lazy_seqno = 0;
2496 ring->preallocated_lazy_request = NULL;
2497
2498 i915_queue_hangcheck(ring->dev);
2499
2500 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2501 queue_delayed_work(dev_priv->wq,
2502 &dev_priv->mm.retire_work,
2503 round_jiffies_up_relative(HZ));
2504 intel_mark_busy(dev_priv->dev);
2505
2506 if (out_seqno)
2507 *out_seqno = request->seqno;
2508 return 0;
2509}
2510
2511static inline void
2512i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2513{
2514 struct drm_i915_file_private *file_priv = request->file_priv;
2515
2516 if (!file_priv)
2517 return;
2518
2519 spin_lock(&file_priv->mm.lock);
2520 list_del(&request->client_list);
2521 request->file_priv = NULL;
2522 spin_unlock(&file_priv->mm.lock);
2523}
2524
2525static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2526 const struct intel_context *ctx)
2527{
2528 unsigned long elapsed;
2529
2530 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2531
2532 if (ctx->hang_stats.banned)
2533 return true;
2534
2535 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2536 if (!i915_gem_context_is_default(ctx)) {
2537 DRM_DEBUG("context hanging too fast, banning!\n");
2538 return true;
2539 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2540 if (i915_stop_ring_allow_warn(dev_priv))
2541 DRM_ERROR("gpu hanging too fast, banning!\n");
2542 return true;
2543 }
2544 }
2545
2546 return false;
2547}
2548
2549static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2550 struct intel_context *ctx,
2551 const bool guilty)
2552{
2553 struct i915_ctx_hang_stats *hs;
2554
2555 if (WARN_ON(!ctx))
2556 return;
2557
2558 hs = &ctx->hang_stats;
2559
2560 if (guilty) {
2561 hs->banned = i915_context_is_banned(dev_priv, ctx);
2562 hs->batch_active++;
2563 hs->guilty_ts = get_seconds();
2564 } else {
2565 hs->batch_pending++;
2566 }
2567}
2568
2569static void i915_gem_free_request(struct drm_i915_gem_request *request)
2570{
2571 struct intel_context *ctx = request->ctx;
2572
2573 list_del(&request->list);
2574 i915_gem_request_remove_from_client(request);
2575
2576 if (ctx) {
2577 if (i915.enable_execlists) {
2578 struct intel_engine_cs *ring = request->ring;
2579
2580 if (ctx != ring->default_context)
2581 intel_lr_context_unpin(ring, ctx);
2582 }
2583 i915_gem_context_unreference(ctx);
2584 }
2585 kfree(request);
2586}
2587
2588struct drm_i915_gem_request *
2589i915_gem_find_active_request(struct intel_engine_cs *ring)
2590{
2591 struct drm_i915_gem_request *request;
2592 u32 completed_seqno;
2593
2594 completed_seqno = ring->get_seqno(ring, false);
2595
2596 list_for_each_entry(request, &ring->request_list, list) {
2597 if (i915_seqno_passed(completed_seqno, request->seqno))
2598 continue;
2599
2600 return request;
2601 }
2602
2603 return NULL;
2604}
2605
2606static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2607 struct intel_engine_cs *ring)
2608{
2609 struct drm_i915_gem_request *request;
2610 bool ring_hung;
2611
2612 request = i915_gem_find_active_request(ring);
2613
2614 if (request == NULL)
2615 return;
2616
2617 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2618
2619 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2620
2621 list_for_each_entry_continue(request, &ring->request_list, list)
2622 i915_set_reset_status(dev_priv, request->ctx, false);
2623}
2624
2625static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2626 struct intel_engine_cs *ring)
2627{
2628 while (!list_empty(&ring->active_list)) {
2629 struct drm_i915_gem_object *obj;
2630
2631 obj = list_first_entry(&ring->active_list,
2632 struct drm_i915_gem_object,
2633 ring_list);
2634
2635 i915_gem_object_move_to_inactive(obj);
2636 }
2637
2638 /*
2639 * Clear the execlists queue up before freeing the requests, as those
2640 * are the ones that keep the context and ringbuffer backing objects
2641 * pinned in place.
2642 */
2643 while (!list_empty(&ring->execlist_queue)) {
2644 struct intel_ctx_submit_request *submit_req;
2645
2646 submit_req = list_first_entry(&ring->execlist_queue,
2647 struct intel_ctx_submit_request,
2648 execlist_link);
2649 list_del(&submit_req->execlist_link);
2650 intel_runtime_pm_put(dev_priv);
2651 i915_gem_context_unreference(submit_req->ctx);
2652 kfree(submit_req);
2653 }
2654
2655 /*
2656 * We must free the requests after all the corresponding objects have
2657 * been moved off active lists. Which is the same order as the normal
2658 * retire_requests function does. This is important if object hold
2659 * implicit references on things like e.g. ppgtt address spaces through
2660 * the request.
2661 */
2662 while (!list_empty(&ring->request_list)) {
2663 struct drm_i915_gem_request *request;
2664
2665 request = list_first_entry(&ring->request_list,
2666 struct drm_i915_gem_request,
2667 list);
2668
2669 i915_gem_free_request(request);
2670 }
2671
2672 /* These may not have been flush before the reset, do so now */
2673 kfree(ring->preallocated_lazy_request);
2674 ring->preallocated_lazy_request = NULL;
2675 ring->outstanding_lazy_seqno = 0;
2676}
2677
2678void i915_gem_restore_fences(struct drm_device *dev)
2679{
2680 struct drm_i915_private *dev_priv = dev->dev_private;
2681 int i;
2682
2683 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2684 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2685
2686 /*
2687 * Commit delayed tiling changes if we have an object still
2688 * attached to the fence, otherwise just clear the fence.
2689 */
2690 if (reg->obj) {
2691 i915_gem_object_update_fence(reg->obj, reg,
2692 reg->obj->tiling_mode);
2693 } else {
2694 i915_gem_write_fence(dev, i, NULL);
2695 }
2696 }
2697}
2698
2699void i915_gem_reset(struct drm_device *dev)
2700{
2701 struct drm_i915_private *dev_priv = dev->dev_private;
2702 struct intel_engine_cs *ring;
2703 int i;
2704
2705 /*
2706 * Before we free the objects from the requests, we need to inspect
2707 * them for finding the guilty party. As the requests only borrow
2708 * their reference to the objects, the inspection must be done first.
2709 */
2710 for_each_ring(ring, dev_priv, i)
2711 i915_gem_reset_ring_status(dev_priv, ring);
2712
2713 for_each_ring(ring, dev_priv, i)
2714 i915_gem_reset_ring_cleanup(dev_priv, ring);
2715
2716 i915_gem_context_reset(dev);
2717
2718 i915_gem_restore_fences(dev);
2719}
2720
2721/**
2722 * This function clears the request list as sequence numbers are passed.
2723 */
2724void
2725i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2726{
2727 uint32_t seqno;
2728
2729 if (list_empty(&ring->request_list))
2730 return;
2731
2732 WARN_ON(i915_verify_lists(ring->dev));
2733
2734 seqno = ring->get_seqno(ring, true);
2735
2736 /* Move any buffers on the active list that are no longer referenced
2737 * by the ringbuffer to the flushing/inactive lists as appropriate,
2738 * before we free the context associated with the requests.
2739 */
2740 while (!list_empty(&ring->active_list)) {
2741 struct drm_i915_gem_object *obj;
2742
2743 obj = list_first_entry(&ring->active_list,
2744 struct drm_i915_gem_object,
2745 ring_list);
2746
2747 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2748 break;
2749
2750 i915_gem_object_move_to_inactive(obj);
2751 }
2752
2753
2754 while (!list_empty(&ring->request_list)) {
2755 struct drm_i915_gem_request *request;
2756 struct intel_ringbuffer *ringbuf;
2757
2758 request = list_first_entry(&ring->request_list,
2759 struct drm_i915_gem_request,
2760 list);
2761
2762 if (!i915_seqno_passed(seqno, request->seqno))
2763 break;
2764
2765 trace_i915_gem_request_retire(ring, request->seqno);
2766
2767 /* This is one of the few common intersection points
2768 * between legacy ringbuffer submission and execlists:
2769 * we need to tell them apart in order to find the correct
2770 * ringbuffer to which the request belongs to.
2771 */
2772 if (i915.enable_execlists) {
2773 struct intel_context *ctx = request->ctx;
2774 ringbuf = ctx->engine[ring->id].ringbuf;
2775 } else
2776 ringbuf = ring->buffer;
2777
2778 /* We know the GPU must have read the request to have
2779 * sent us the seqno + interrupt, so use the position
2780 * of tail of the request to update the last known position
2781 * of the GPU head.
2782 */
2783 ringbuf->last_retired_head = request->tail;
2784
2785 i915_gem_free_request(request);
2786 }
2787
2788 if (unlikely(ring->trace_irq_seqno &&
2789 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2790 ring->irq_put(ring);
2791 ring->trace_irq_seqno = 0;
2792 }
2793
2794 WARN_ON(i915_verify_lists(ring->dev));
2795}
2796
2797bool
2798i915_gem_retire_requests(struct drm_device *dev)
2799{
2800 struct drm_i915_private *dev_priv = dev->dev_private;
2801 struct intel_engine_cs *ring;
2802 bool idle = true;
2803 int i;
2804
2805 for_each_ring(ring, dev_priv, i) {
2806 i915_gem_retire_requests_ring(ring);
2807 idle &= list_empty(&ring->request_list);
2808 if (i915.enable_execlists) {
2809 unsigned long flags;
2810
2811 spin_lock_irqsave(&ring->execlist_lock, flags);
2812 idle &= list_empty(&ring->execlist_queue);
2813 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2814
2815 intel_execlists_retire_requests(ring);
2816 }
2817 }
2818
2819 if (idle)
2820 mod_delayed_work(dev_priv->wq,
2821 &dev_priv->mm.idle_work,
2822 msecs_to_jiffies(100));
2823
2824 return idle;
2825}
2826
2827static void
2828i915_gem_retire_work_handler(struct work_struct *work)
2829{
2830 struct drm_i915_private *dev_priv =
2831 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2832 struct drm_device *dev = dev_priv->dev;
2833 bool idle;
2834
2835 /* Come back later if the device is busy... */
2836 idle = false;
2837 if (mutex_trylock(&dev->struct_mutex)) {
2838 idle = i915_gem_retire_requests(dev);
2839 mutex_unlock(&dev->struct_mutex);
2840 }
2841 if (!idle)
2842 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2843 round_jiffies_up_relative(HZ));
2844}
2845
2846static void
2847i915_gem_idle_work_handler(struct work_struct *work)
2848{
2849 struct drm_i915_private *dev_priv =
2850 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2851
2852 intel_mark_idle(dev_priv->dev);
2853}
2854
2855/**
2856 * Ensures that an object will eventually get non-busy by flushing any required
2857 * write domains, emitting any outstanding lazy request and retiring and
2858 * completed requests.
2859 */
2860static int
2861i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2862{
2863 int ret;
2864
2865 if (obj->active) {
2866 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2867 if (ret)
2868 return ret;
2869
2870 i915_gem_retire_requests_ring(obj->ring);
2871 }
2872
2873 return 0;
2874}
2875
2876/**
2877 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2878 * @DRM_IOCTL_ARGS: standard ioctl arguments
2879 *
2880 * Returns 0 if successful, else an error is returned with the remaining time in
2881 * the timeout parameter.
2882 * -ETIME: object is still busy after timeout
2883 * -ERESTARTSYS: signal interrupted the wait
2884 * -ENONENT: object doesn't exist
2885 * Also possible, but rare:
2886 * -EAGAIN: GPU wedged
2887 * -ENOMEM: damn
2888 * -ENODEV: Internal IRQ fail
2889 * -E?: The add request failed
2890 *
2891 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2892 * non-zero timeout parameter the wait ioctl will wait for the given number of
2893 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2894 * without holding struct_mutex the object may become re-busied before this
2895 * function completes. A similar but shorter * race condition exists in the busy
2896 * ioctl
2897 */
2898int
2899i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2900{
2901 struct drm_i915_private *dev_priv = dev->dev_private;
2902 struct drm_i915_gem_wait *args = data;
2903 struct drm_i915_gem_object *obj;
2904 struct intel_engine_cs *ring = NULL;
2905 unsigned reset_counter;
2906 u32 seqno = 0;
2907 int ret = 0;
2908
2909 if (args->flags != 0)
2910 return -EINVAL;
2911
2912 ret = i915_mutex_lock_interruptible(dev);
2913 if (ret)
2914 return ret;
2915
2916 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2917 if (&obj->base == NULL) {
2918 mutex_unlock(&dev->struct_mutex);
2919 return -ENOENT;
2920 }
2921
2922 /* Need to make sure the object gets inactive eventually. */
2923 ret = i915_gem_object_flush_active(obj);
2924 if (ret)
2925 goto out;
2926
2927 if (obj->active) {
2928 seqno = obj->last_read_seqno;
2929 ring = obj->ring;
2930 }
2931
2932 if (seqno == 0)
2933 goto out;
2934
2935 /* Do this after OLR check to make sure we make forward progress polling
2936 * on this IOCTL with a timeout <=0 (like busy ioctl)
2937 */
2938 if (args->timeout_ns <= 0) {
2939 ret = -ETIME;
2940 goto out;
2941 }
2942
2943 drm_gem_object_unreference(&obj->base);
2944 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2945 mutex_unlock(&dev->struct_mutex);
2946
2947 return __i915_wait_seqno(ring, seqno, reset_counter, true,
2948 &args->timeout_ns, file->driver_priv);
2949
2950out:
2951 drm_gem_object_unreference(&obj->base);
2952 mutex_unlock(&dev->struct_mutex);
2953 return ret;
2954}
2955
2956/**
2957 * i915_gem_object_sync - sync an object to a ring.
2958 *
2959 * @obj: object which may be in use on another ring.
2960 * @to: ring we wish to use the object on. May be NULL.
2961 *
2962 * This code is meant to abstract object synchronization with the GPU.
2963 * Calling with NULL implies synchronizing the object with the CPU
2964 * rather than a particular GPU ring.
2965 *
2966 * Returns 0 if successful, else propagates up the lower layer error.
2967 */
2968int
2969i915_gem_object_sync(struct drm_i915_gem_object *obj,
2970 struct intel_engine_cs *to)
2971{
2972 struct intel_engine_cs *from = obj->ring;
2973 u32 seqno;
2974 int ret, idx;
2975
2976 if (from == NULL || to == from)
2977 return 0;
2978
2979 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2980 return i915_gem_object_wait_rendering(obj, false);
2981
2982 idx = intel_ring_sync_index(from, to);
2983
2984 seqno = obj->last_read_seqno;
2985 /* Optimization: Avoid semaphore sync when we are sure we already
2986 * waited for an object with higher seqno */
2987 if (seqno <= from->semaphore.sync_seqno[idx])
2988 return 0;
2989
2990 ret = i915_gem_check_olr(obj->ring, seqno);
2991 if (ret)
2992 return ret;
2993
2994 trace_i915_gem_ring_sync_to(from, to, seqno);
2995 ret = to->semaphore.sync_to(to, from, seqno);
2996 if (!ret)
2997 /* We use last_read_seqno because sync_to()
2998 * might have just caused seqno wrap under
2999 * the radar.
3000 */
3001 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
3002
3003 return ret;
3004}
3005
3006static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3007{
3008 u32 old_write_domain, old_read_domains;
3009
3010 /* Force a pagefault for domain tracking on next user access */
3011 i915_gem_release_mmap(obj);
3012
3013 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3014 return;
3015
3016 /* Wait for any direct GTT access to complete */
3017 mb();
3018
3019 old_read_domains = obj->base.read_domains;
3020 old_write_domain = obj->base.write_domain;
3021
3022 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3023 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3024
3025 trace_i915_gem_object_change_domain(obj,
3026 old_read_domains,
3027 old_write_domain);
3028}
3029
3030int i915_vma_unbind(struct i915_vma *vma)
3031{
3032 struct drm_i915_gem_object *obj = vma->obj;
3033 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3034 int ret;
3035
3036 if (list_empty(&vma->vma_link))
3037 return 0;
3038
3039 if (!drm_mm_node_allocated(&vma->node)) {
3040 i915_gem_vma_destroy(vma);
3041 return 0;
3042 }
3043
3044 if (vma->pin_count)
3045 return -EBUSY;
3046
3047 BUG_ON(obj->pages == NULL);
3048
3049 ret = i915_gem_object_finish_gpu(obj);
3050 if (ret)
3051 return ret;
3052 /* Continue on if we fail due to EIO, the GPU is hung so we
3053 * should be safe and we need to cleanup or else we might
3054 * cause memory corruption through use-after-free.
3055 */
3056
3057 /* Throw away the active reference before moving to the unbound list */
3058 i915_gem_object_retire(obj);
3059
3060 if (i915_is_ggtt(vma->vm)) {
3061 i915_gem_object_finish_gtt(obj);
3062
3063 /* release the fence reg _after_ flushing */
3064 ret = i915_gem_object_put_fence(obj);
3065 if (ret)
3066 return ret;
3067 }
3068
3069 trace_i915_vma_unbind(vma);
3070
3071 vma->unbind_vma(vma);
3072
3073 list_del_init(&vma->mm_list);
3074 if (i915_is_ggtt(vma->vm))
3075 obj->map_and_fenceable = false;
3076
3077 drm_mm_remove_node(&vma->node);
3078 i915_gem_vma_destroy(vma);
3079
3080 /* Since the unbound list is global, only move to that list if
3081 * no more VMAs exist. */
3082 if (list_empty(&obj->vma_list)) {
3083 i915_gem_gtt_finish_object(obj);
3084 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3085 }
3086
3087 /* And finally now the object is completely decoupled from this vma,
3088 * we can drop its hold on the backing storage and allow it to be
3089 * reaped by the shrinker.
3090 */
3091 i915_gem_object_unpin_pages(obj);
3092
3093 return 0;
3094}
3095
3096int i915_gpu_idle(struct drm_device *dev)
3097{
3098 struct drm_i915_private *dev_priv = dev->dev_private;
3099 struct intel_engine_cs *ring;
3100 int ret, i;
3101
3102 /* Flush everything onto the inactive list. */
3103 for_each_ring(ring, dev_priv, i) {
3104 if (!i915.enable_execlists) {
3105 ret = i915_switch_context(ring, ring->default_context);
3106 if (ret)
3107 return ret;
3108 }
3109
3110 ret = intel_ring_idle(ring);
3111 if (ret)
3112 return ret;
3113 }
3114
3115 return 0;
3116}
3117
3118static void i965_write_fence_reg(struct drm_device *dev, int reg,
3119 struct drm_i915_gem_object *obj)
3120{
3121 struct drm_i915_private *dev_priv = dev->dev_private;
3122 int fence_reg;
3123 int fence_pitch_shift;
3124
3125 if (INTEL_INFO(dev)->gen >= 6) {
3126 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3127 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3128 } else {
3129 fence_reg = FENCE_REG_965_0;
3130 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3131 }
3132
3133 fence_reg += reg * 8;
3134
3135 /* To w/a incoherency with non-atomic 64-bit register updates,
3136 * we split the 64-bit update into two 32-bit writes. In order
3137 * for a partial fence not to be evaluated between writes, we
3138 * precede the update with write to turn off the fence register,
3139 * and only enable the fence as the last step.
3140 *
3141 * For extra levels of paranoia, we make sure each step lands
3142 * before applying the next step.
3143 */
3144 I915_WRITE(fence_reg, 0);
3145 POSTING_READ(fence_reg);
3146
3147 if (obj) {
3148 u32 size = i915_gem_obj_ggtt_size(obj);
3149 uint64_t val;
3150
3151 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3152 0xfffff000) << 32;
3153 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3154 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3155 if (obj->tiling_mode == I915_TILING_Y)
3156 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3157 val |= I965_FENCE_REG_VALID;
3158
3159 I915_WRITE(fence_reg + 4, val >> 32);
3160 POSTING_READ(fence_reg + 4);
3161
3162 I915_WRITE(fence_reg + 0, val);
3163 POSTING_READ(fence_reg);
3164 } else {
3165 I915_WRITE(fence_reg + 4, 0);
3166 POSTING_READ(fence_reg + 4);
3167 }
3168}
3169
3170static void i915_write_fence_reg(struct drm_device *dev, int reg,
3171 struct drm_i915_gem_object *obj)
3172{
3173 struct drm_i915_private *dev_priv = dev->dev_private;
3174 u32 val;
3175
3176 if (obj) {
3177 u32 size = i915_gem_obj_ggtt_size(obj);
3178 int pitch_val;
3179 int tile_width;
3180
3181 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3182 (size & -size) != size ||
3183 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3184 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3185 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3186
3187 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3188 tile_width = 128;
3189 else
3190 tile_width = 512;
3191
3192 /* Note: pitch better be a power of two tile widths */
3193 pitch_val = obj->stride / tile_width;
3194 pitch_val = ffs(pitch_val) - 1;
3195
3196 val = i915_gem_obj_ggtt_offset(obj);
3197 if (obj->tiling_mode == I915_TILING_Y)
3198 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3199 val |= I915_FENCE_SIZE_BITS(size);
3200 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3201 val |= I830_FENCE_REG_VALID;
3202 } else
3203 val = 0;
3204
3205 if (reg < 8)
3206 reg = FENCE_REG_830_0 + reg * 4;
3207 else
3208 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3209
3210 I915_WRITE(reg, val);
3211 POSTING_READ(reg);
3212}
3213
3214static void i830_write_fence_reg(struct drm_device *dev, int reg,
3215 struct drm_i915_gem_object *obj)
3216{
3217 struct drm_i915_private *dev_priv = dev->dev_private;
3218 uint32_t val;
3219
3220 if (obj) {
3221 u32 size = i915_gem_obj_ggtt_size(obj);
3222 uint32_t pitch_val;
3223
3224 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3225 (size & -size) != size ||
3226 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3227 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3228 i915_gem_obj_ggtt_offset(obj), size);
3229
3230 pitch_val = obj->stride / 128;
3231 pitch_val = ffs(pitch_val) - 1;
3232
3233 val = i915_gem_obj_ggtt_offset(obj);
3234 if (obj->tiling_mode == I915_TILING_Y)
3235 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3236 val |= I830_FENCE_SIZE_BITS(size);
3237 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3238 val |= I830_FENCE_REG_VALID;
3239 } else
3240 val = 0;
3241
3242 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3243 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3244}
3245
3246inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3247{
3248 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3249}
3250
3251static void i915_gem_write_fence(struct drm_device *dev, int reg,
3252 struct drm_i915_gem_object *obj)
3253{
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255
3256 /* Ensure that all CPU reads are completed before installing a fence
3257 * and all writes before removing the fence.
3258 */
3259 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3260 mb();
3261
3262 WARN(obj && (!obj->stride || !obj->tiling_mode),
3263 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3264 obj->stride, obj->tiling_mode);
3265
3266 switch (INTEL_INFO(dev)->gen) {
3267 case 9:
3268 case 8:
3269 case 7:
3270 case 6:
3271 case 5:
3272 case 4: i965_write_fence_reg(dev, reg, obj); break;
3273 case 3: i915_write_fence_reg(dev, reg, obj); break;
3274 case 2: i830_write_fence_reg(dev, reg, obj); break;
3275 default: BUG();
3276 }
3277
3278 /* And similarly be paranoid that no direct access to this region
3279 * is reordered to before the fence is installed.
3280 */
3281 if (i915_gem_object_needs_mb(obj))
3282 mb();
3283}
3284
3285static inline int fence_number(struct drm_i915_private *dev_priv,
3286 struct drm_i915_fence_reg *fence)
3287{
3288 return fence - dev_priv->fence_regs;
3289}
3290
3291static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3292 struct drm_i915_fence_reg *fence,
3293 bool enable)
3294{
3295 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3296 int reg = fence_number(dev_priv, fence);
3297
3298 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3299
3300 if (enable) {
3301 obj->fence_reg = reg;
3302 fence->obj = obj;
3303 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3304 } else {
3305 obj->fence_reg = I915_FENCE_REG_NONE;
3306 fence->obj = NULL;
3307 list_del_init(&fence->lru_list);
3308 }
3309 obj->fence_dirty = false;
3310}
3311
3312static int
3313i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3314{
3315 if (obj->last_fenced_seqno) {
3316 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3317 if (ret)
3318 return ret;
3319
3320 obj->last_fenced_seqno = 0;
3321 }
3322
3323 return 0;
3324}
3325
3326int
3327i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3328{
3329 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3330 struct drm_i915_fence_reg *fence;
3331 int ret;
3332
3333 ret = i915_gem_object_wait_fence(obj);
3334 if (ret)
3335 return ret;
3336
3337 if (obj->fence_reg == I915_FENCE_REG_NONE)
3338 return 0;
3339
3340 fence = &dev_priv->fence_regs[obj->fence_reg];
3341
3342 if (WARN_ON(fence->pin_count))
3343 return -EBUSY;
3344
3345 i915_gem_object_fence_lost(obj);
3346 i915_gem_object_update_fence(obj, fence, false);
3347
3348 return 0;
3349}
3350
3351static struct drm_i915_fence_reg *
3352i915_find_fence_reg(struct drm_device *dev)
3353{
3354 struct drm_i915_private *dev_priv = dev->dev_private;
3355 struct drm_i915_fence_reg *reg, *avail;
3356 int i;
3357
3358 /* First try to find a free reg */
3359 avail = NULL;
3360 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3361 reg = &dev_priv->fence_regs[i];
3362 if (!reg->obj)
3363 return reg;
3364
3365 if (!reg->pin_count)
3366 avail = reg;
3367 }
3368
3369 if (avail == NULL)
3370 goto deadlock;
3371
3372 /* None available, try to steal one or wait for a user to finish */
3373 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3374 if (reg->pin_count)
3375 continue;
3376
3377 return reg;
3378 }
3379
3380deadlock:
3381 /* Wait for completion of pending flips which consume fences */
3382 if (intel_has_pending_fb_unpin(dev))
3383 return ERR_PTR(-EAGAIN);
3384
3385 return ERR_PTR(-EDEADLK);
3386}
3387
3388/**
3389 * i915_gem_object_get_fence - set up fencing for an object
3390 * @obj: object to map through a fence reg
3391 *
3392 * When mapping objects through the GTT, userspace wants to be able to write
3393 * to them without having to worry about swizzling if the object is tiled.
3394 * This function walks the fence regs looking for a free one for @obj,
3395 * stealing one if it can't find any.
3396 *
3397 * It then sets up the reg based on the object's properties: address, pitch
3398 * and tiling format.
3399 *
3400 * For an untiled surface, this removes any existing fence.
3401 */
3402int
3403i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3404{
3405 struct drm_device *dev = obj->base.dev;
3406 struct drm_i915_private *dev_priv = dev->dev_private;
3407 bool enable = obj->tiling_mode != I915_TILING_NONE;
3408 struct drm_i915_fence_reg *reg;
3409 int ret;
3410
3411 /* Have we updated the tiling parameters upon the object and so
3412 * will need to serialise the write to the associated fence register?
3413 */
3414 if (obj->fence_dirty) {
3415 ret = i915_gem_object_wait_fence(obj);
3416 if (ret)
3417 return ret;
3418 }
3419
3420 /* Just update our place in the LRU if our fence is getting reused. */
3421 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3422 reg = &dev_priv->fence_regs[obj->fence_reg];
3423 if (!obj->fence_dirty) {
3424 list_move_tail(&reg->lru_list,
3425 &dev_priv->mm.fence_list);
3426 return 0;
3427 }
3428 } else if (enable) {
3429 if (WARN_ON(!obj->map_and_fenceable))
3430 return -EINVAL;
3431
3432 reg = i915_find_fence_reg(dev);
3433 if (IS_ERR(reg))
3434 return PTR_ERR(reg);
3435
3436 if (reg->obj) {
3437 struct drm_i915_gem_object *old = reg->obj;
3438
3439 ret = i915_gem_object_wait_fence(old);
3440 if (ret)
3441 return ret;
3442
3443 i915_gem_object_fence_lost(old);
3444 }
3445 } else
3446 return 0;
3447
3448 i915_gem_object_update_fence(obj, reg, enable);
3449
3450 return 0;
3451}
3452
3453static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3454 unsigned long cache_level)
3455{
3456 struct drm_mm_node *gtt_space = &vma->node;
3457 struct drm_mm_node *other;
3458
3459 /*
3460 * On some machines we have to be careful when putting differing types
3461 * of snoopable memory together to avoid the prefetcher crossing memory
3462 * domains and dying. During vm initialisation, we decide whether or not
3463 * these constraints apply and set the drm_mm.color_adjust
3464 * appropriately.
3465 */
3466 if (vma->vm->mm.color_adjust == NULL)
3467 return true;
3468
3469 if (!drm_mm_node_allocated(gtt_space))
3470 return true;
3471
3472 if (list_empty(&gtt_space->node_list))
3473 return true;
3474
3475 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3476 if (other->allocated && !other->hole_follows && other->color != cache_level)
3477 return false;
3478
3479 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3480 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3481 return false;
3482
3483 return true;
3484}
3485
3486/**
3487 * Finds free space in the GTT aperture and binds the object there.
3488 */
3489static struct i915_vma *
3490i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3491 struct i915_address_space *vm,
3492 unsigned alignment,
3493 uint64_t flags)
3494{
3495 struct drm_device *dev = obj->base.dev;
3496 struct drm_i915_private *dev_priv = dev->dev_private;
3497 u32 size, fence_size, fence_alignment, unfenced_alignment;
3498 unsigned long start =
3499 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3500 unsigned long end =
3501 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3502 struct i915_vma *vma;
3503 int ret;
3504
3505 fence_size = i915_gem_get_gtt_size(dev,
3506 obj->base.size,
3507 obj->tiling_mode);
3508 fence_alignment = i915_gem_get_gtt_alignment(dev,
3509 obj->base.size,
3510 obj->tiling_mode, true);
3511 unfenced_alignment =
3512 i915_gem_get_gtt_alignment(dev,
3513 obj->base.size,
3514 obj->tiling_mode, false);
3515
3516 if (alignment == 0)
3517 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3518 unfenced_alignment;
3519 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3520 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3521 return ERR_PTR(-EINVAL);
3522 }
3523
3524 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3525
3526 /* If the object is bigger than the entire aperture, reject it early
3527 * before evicting everything in a vain attempt to find space.
3528 */
3529 if (obj->base.size > end) {
3530 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3531 obj->base.size,
3532 flags & PIN_MAPPABLE ? "mappable" : "total",
3533 end);
3534 return ERR_PTR(-E2BIG);
3535 }
3536
3537 ret = i915_gem_object_get_pages(obj);
3538 if (ret)
3539 return ERR_PTR(ret);
3540
3541 i915_gem_object_pin_pages(obj);
3542
3543 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3544 if (IS_ERR(vma))
3545 goto err_unpin;
3546
3547search_free:
3548 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3549 size, alignment,
3550 obj->cache_level,
3551 start, end,
3552 DRM_MM_SEARCH_DEFAULT,
3553 DRM_MM_CREATE_DEFAULT);
3554 if (ret) {
3555 ret = i915_gem_evict_something(dev, vm, size, alignment,
3556 obj->cache_level,
3557 start, end,
3558 flags);
3559 if (ret == 0)
3560 goto search_free;
3561
3562 goto err_free_vma;
3563 }
3564 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3565 ret = -EINVAL;
3566 goto err_remove_node;
3567 }
3568
3569 ret = i915_gem_gtt_prepare_object(obj);
3570 if (ret)
3571 goto err_remove_node;
3572
3573 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3574 list_add_tail(&vma->mm_list, &vm->inactive_list);
3575
3576 trace_i915_vma_bind(vma, flags);
3577 vma->bind_vma(vma, obj->cache_level,
3578 flags & PIN_GLOBAL ? GLOBAL_BIND : 0);
3579
3580 return vma;
3581
3582err_remove_node:
3583 drm_mm_remove_node(&vma->node);
3584err_free_vma:
3585 i915_gem_vma_destroy(vma);
3586 vma = ERR_PTR(ret);
3587err_unpin:
3588 i915_gem_object_unpin_pages(obj);
3589 return vma;
3590}
3591
3592bool
3593i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3594 bool force)
3595{
3596 /* If we don't have a page list set up, then we're not pinned
3597 * to GPU, and we can ignore the cache flush because it'll happen
3598 * again at bind time.
3599 */
3600 if (obj->pages == NULL)
3601 return false;
3602
3603 /*
3604 * Stolen memory is always coherent with the GPU as it is explicitly
3605 * marked as wc by the system, or the system is cache-coherent.
3606 */
3607 if (obj->stolen || obj->phys_handle)
3608 return false;
3609
3610 /* If the GPU is snooping the contents of the CPU cache,
3611 * we do not need to manually clear the CPU cache lines. However,
3612 * the caches are only snooped when the render cache is
3613 * flushed/invalidated. As we always have to emit invalidations
3614 * and flushes when moving into and out of the RENDER domain, correct
3615 * snooping behaviour occurs naturally as the result of our domain
3616 * tracking.
3617 */
3618 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3619 return false;
3620
3621 trace_i915_gem_object_clflush(obj);
3622 drm_clflush_sg(obj->pages);
3623
3624 return true;
3625}
3626
3627/** Flushes the GTT write domain for the object if it's dirty. */
3628static void
3629i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3630{
3631 uint32_t old_write_domain;
3632
3633 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3634 return;
3635
3636 /* No actual flushing is required for the GTT write domain. Writes
3637 * to it immediately go to main memory as far as we know, so there's
3638 * no chipset flush. It also doesn't land in render cache.
3639 *
3640 * However, we do have to enforce the order so that all writes through
3641 * the GTT land before any writes to the device, such as updates to
3642 * the GATT itself.
3643 */
3644 wmb();
3645
3646 old_write_domain = obj->base.write_domain;
3647 obj->base.write_domain = 0;
3648
3649 intel_fb_obj_flush(obj, false);
3650
3651 trace_i915_gem_object_change_domain(obj,
3652 obj->base.read_domains,
3653 old_write_domain);
3654}
3655
3656/** Flushes the CPU write domain for the object if it's dirty. */
3657static void
3658i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3659 bool force)
3660{
3661 uint32_t old_write_domain;
3662
3663 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3664 return;
3665
3666 if (i915_gem_clflush_object(obj, force))
3667 i915_gem_chipset_flush(obj->base.dev);
3668
3669 old_write_domain = obj->base.write_domain;
3670 obj->base.write_domain = 0;
3671
3672 intel_fb_obj_flush(obj, false);
3673
3674 trace_i915_gem_object_change_domain(obj,
3675 obj->base.read_domains,
3676 old_write_domain);
3677}
3678
3679/**
3680 * Moves a single object to the GTT read, and possibly write domain.
3681 *
3682 * This function returns when the move is complete, including waiting on
3683 * flushes to occur.
3684 */
3685int
3686i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3687{
3688 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3689 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3690 uint32_t old_write_domain, old_read_domains;
3691 int ret;
3692
3693 /* Not valid to be called on unbound objects. */
3694 if (vma == NULL)
3695 return -EINVAL;
3696
3697 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3698 return 0;
3699
3700 ret = i915_gem_object_wait_rendering(obj, !write);
3701 if (ret)
3702 return ret;
3703
3704 i915_gem_object_retire(obj);
3705 i915_gem_object_flush_cpu_write_domain(obj, false);
3706
3707 /* Serialise direct access to this object with the barriers for
3708 * coherent writes from the GPU, by effectively invalidating the
3709 * GTT domain upon first access.
3710 */
3711 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3712 mb();
3713
3714 old_write_domain = obj->base.write_domain;
3715 old_read_domains = obj->base.read_domains;
3716
3717 /* It should now be out of any other write domains, and we can update
3718 * the domain values for our changes.
3719 */
3720 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3721 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3722 if (write) {
3723 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3724 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3725 obj->dirty = 1;
3726 }
3727
3728 if (write)
3729 intel_fb_obj_invalidate(obj, NULL);
3730
3731 trace_i915_gem_object_change_domain(obj,
3732 old_read_domains,
3733 old_write_domain);
3734
3735 /* And bump the LRU for this access */
3736 if (i915_gem_object_is_inactive(obj))
3737 list_move_tail(&vma->mm_list,
3738 &dev_priv->gtt.base.inactive_list);
3739
3740 return 0;
3741}
3742
3743int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3744 enum i915_cache_level cache_level)
3745{
3746 struct drm_device *dev = obj->base.dev;
3747 struct i915_vma *vma, *next;
3748 int ret;
3749
3750 if (obj->cache_level == cache_level)
3751 return 0;
3752
3753 if (i915_gem_obj_is_pinned(obj)) {
3754 DRM_DEBUG("can not change the cache level of pinned objects\n");
3755 return -EBUSY;
3756 }
3757
3758 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3759 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3760 ret = i915_vma_unbind(vma);
3761 if (ret)
3762 return ret;
3763 }
3764 }
3765
3766 if (i915_gem_obj_bound_any(obj)) {
3767 ret = i915_gem_object_finish_gpu(obj);
3768 if (ret)
3769 return ret;
3770
3771 i915_gem_object_finish_gtt(obj);
3772
3773 /* Before SandyBridge, you could not use tiling or fence
3774 * registers with snooped memory, so relinquish any fences
3775 * currently pointing to our region in the aperture.
3776 */
3777 if (INTEL_INFO(dev)->gen < 6) {
3778 ret = i915_gem_object_put_fence(obj);
3779 if (ret)
3780 return ret;
3781 }
3782
3783 list_for_each_entry(vma, &obj->vma_list, vma_link)
3784 if (drm_mm_node_allocated(&vma->node))
3785 vma->bind_vma(vma, cache_level,
3786 vma->bound & GLOBAL_BIND);
3787 }
3788
3789 list_for_each_entry(vma, &obj->vma_list, vma_link)
3790 vma->node.color = cache_level;
3791 obj->cache_level = cache_level;
3792
3793 if (cpu_write_needs_clflush(obj)) {
3794 u32 old_read_domains, old_write_domain;
3795
3796 /* If we're coming from LLC cached, then we haven't
3797 * actually been tracking whether the data is in the
3798 * CPU cache or not, since we only allow one bit set
3799 * in obj->write_domain and have been skipping the clflushes.
3800 * Just set it to the CPU cache for now.
3801 */
3802 i915_gem_object_retire(obj);
3803 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3804
3805 old_read_domains = obj->base.read_domains;
3806 old_write_domain = obj->base.write_domain;
3807
3808 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3809 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3810
3811 trace_i915_gem_object_change_domain(obj,
3812 old_read_domains,
3813 old_write_domain);
3814 }
3815
3816 return 0;
3817}
3818
3819int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3820 struct drm_file *file)
3821{
3822 struct drm_i915_gem_caching *args = data;
3823 struct drm_i915_gem_object *obj;
3824 int ret;
3825
3826 ret = i915_mutex_lock_interruptible(dev);
3827 if (ret)
3828 return ret;
3829
3830 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3831 if (&obj->base == NULL) {
3832 ret = -ENOENT;
3833 goto unlock;
3834 }
3835
3836 switch (obj->cache_level) {
3837 case I915_CACHE_LLC:
3838 case I915_CACHE_L3_LLC:
3839 args->caching = I915_CACHING_CACHED;
3840 break;
3841
3842 case I915_CACHE_WT:
3843 args->caching = I915_CACHING_DISPLAY;
3844 break;
3845
3846 default:
3847 args->caching = I915_CACHING_NONE;
3848 break;
3849 }
3850
3851 drm_gem_object_unreference(&obj->base);
3852unlock:
3853 mutex_unlock(&dev->struct_mutex);
3854 return ret;
3855}
3856
3857int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3858 struct drm_file *file)
3859{
3860 struct drm_i915_gem_caching *args = data;
3861 struct drm_i915_gem_object *obj;
3862 enum i915_cache_level level;
3863 int ret;
3864
3865 switch (args->caching) {
3866 case I915_CACHING_NONE:
3867 level = I915_CACHE_NONE;
3868 break;
3869 case I915_CACHING_CACHED:
3870 level = I915_CACHE_LLC;
3871 break;
3872 case I915_CACHING_DISPLAY:
3873 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3874 break;
3875 default:
3876 return -EINVAL;
3877 }
3878
3879 ret = i915_mutex_lock_interruptible(dev);
3880 if (ret)
3881 return ret;
3882
3883 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3884 if (&obj->base == NULL) {
3885 ret = -ENOENT;
3886 goto unlock;
3887 }
3888
3889 ret = i915_gem_object_set_cache_level(obj, level);
3890
3891 drm_gem_object_unreference(&obj->base);
3892unlock:
3893 mutex_unlock(&dev->struct_mutex);
3894 return ret;
3895}
3896
3897static bool is_pin_display(struct drm_i915_gem_object *obj)
3898{
3899 struct i915_vma *vma;
3900
3901 vma = i915_gem_obj_to_ggtt(obj);
3902 if (!vma)
3903 return false;
3904
3905 /* There are 3 sources that pin objects:
3906 * 1. The display engine (scanouts, sprites, cursors);
3907 * 2. Reservations for execbuffer;
3908 * 3. The user.
3909 *
3910 * We can ignore reservations as we hold the struct_mutex and
3911 * are only called outside of the reservation path. The user
3912 * can only increment pin_count once, and so if after
3913 * subtracting the potential reference by the user, any pin_count
3914 * remains, it must be due to another use by the display engine.
3915 */
3916 return vma->pin_count - !!obj->user_pin_count;
3917}
3918
3919/*
3920 * Prepare buffer for display plane (scanout, cursors, etc).
3921 * Can be called from an uninterruptible phase (modesetting) and allows
3922 * any flushes to be pipelined (for pageflips).
3923 */
3924int
3925i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3926 u32 alignment,
3927 struct intel_engine_cs *pipelined)
3928{
3929 u32 old_read_domains, old_write_domain;
3930 bool was_pin_display;
3931 int ret;
3932
3933 if (pipelined != obj->ring) {
3934 ret = i915_gem_object_sync(obj, pipelined);
3935 if (ret)
3936 return ret;
3937 }
3938
3939 /* Mark the pin_display early so that we account for the
3940 * display coherency whilst setting up the cache domains.
3941 */
3942 was_pin_display = obj->pin_display;
3943 obj->pin_display = true;
3944
3945 /* The display engine is not coherent with the LLC cache on gen6. As
3946 * a result, we make sure that the pinning that is about to occur is
3947 * done with uncached PTEs. This is lowest common denominator for all
3948 * chipsets.
3949 *
3950 * However for gen6+, we could do better by using the GFDT bit instead
3951 * of uncaching, which would allow us to flush all the LLC-cached data
3952 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3953 */
3954 ret = i915_gem_object_set_cache_level(obj,
3955 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3956 if (ret)
3957 goto err_unpin_display;
3958
3959 /* As the user may map the buffer once pinned in the display plane
3960 * (e.g. libkms for the bootup splash), we have to ensure that we
3961 * always use map_and_fenceable for all scanout buffers.
3962 */
3963 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3964 if (ret)
3965 goto err_unpin_display;
3966
3967 i915_gem_object_flush_cpu_write_domain(obj, true);
3968
3969 old_write_domain = obj->base.write_domain;
3970 old_read_domains = obj->base.read_domains;
3971
3972 /* It should now be out of any other write domains, and we can update
3973 * the domain values for our changes.
3974 */
3975 obj->base.write_domain = 0;
3976 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3977
3978 trace_i915_gem_object_change_domain(obj,
3979 old_read_domains,
3980 old_write_domain);
3981
3982 return 0;
3983
3984err_unpin_display:
3985 WARN_ON(was_pin_display != is_pin_display(obj));
3986 obj->pin_display = was_pin_display;
3987 return ret;
3988}
3989
3990void
3991i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3992{
3993 i915_gem_object_ggtt_unpin(obj);
3994 obj->pin_display = is_pin_display(obj);
3995}
3996
3997int
3998i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3999{
4000 int ret;
4001
4002 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4003 return 0;
4004
4005 ret = i915_gem_object_wait_rendering(obj, false);
4006 if (ret)
4007 return ret;
4008
4009 /* Ensure that we invalidate the GPU's caches and TLBs. */
4010 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4011 return 0;
4012}
4013
4014/**
4015 * Moves a single object to the CPU read, and possibly write domain.
4016 *
4017 * This function returns when the move is complete, including waiting on
4018 * flushes to occur.
4019 */
4020int
4021i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4022{
4023 uint32_t old_write_domain, old_read_domains;
4024 int ret;
4025
4026 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4027 return 0;
4028
4029 ret = i915_gem_object_wait_rendering(obj, !write);
4030 if (ret)
4031 return ret;
4032
4033 i915_gem_object_retire(obj);
4034 i915_gem_object_flush_gtt_write_domain(obj);
4035
4036 old_write_domain = obj->base.write_domain;
4037 old_read_domains = obj->base.read_domains;
4038
4039 /* Flush the CPU cache if it's still invalid. */
4040 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4041 i915_gem_clflush_object(obj, false);
4042
4043 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4044 }
4045
4046 /* It should now be out of any other write domains, and we can update
4047 * the domain values for our changes.
4048 */
4049 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4050
4051 /* If we're writing through the CPU, then the GPU read domains will
4052 * need to be invalidated at next use.
4053 */
4054 if (write) {
4055 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4056 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4057 }
4058
4059 if (write)
4060 intel_fb_obj_invalidate(obj, NULL);
4061
4062 trace_i915_gem_object_change_domain(obj,
4063 old_read_domains,
4064 old_write_domain);
4065
4066 return 0;
4067}
4068
4069/* Throttle our rendering by waiting until the ring has completed our requests
4070 * emitted over 20 msec ago.
4071 *
4072 * Note that if we were to use the current jiffies each time around the loop,
4073 * we wouldn't escape the function with any frames outstanding if the time to
4074 * render a frame was over 20ms.
4075 *
4076 * This should get us reasonable parallelism between CPU and GPU but also
4077 * relatively low latency when blocking on a particular request to finish.
4078 */
4079static int
4080i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4081{
4082 struct drm_i915_private *dev_priv = dev->dev_private;
4083 struct drm_i915_file_private *file_priv = file->driver_priv;
4084 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4085 struct drm_i915_gem_request *request;
4086 struct intel_engine_cs *ring = NULL;
4087 unsigned reset_counter;
4088 u32 seqno = 0;
4089 int ret;
4090
4091 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4092 if (ret)
4093 return ret;
4094
4095 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4096 if (ret)
4097 return ret;
4098
4099 spin_lock(&file_priv->mm.lock);
4100 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4101 if (time_after_eq(request->emitted_jiffies, recent_enough))
4102 break;
4103
4104 ring = request->ring;
4105 seqno = request->seqno;
4106 }
4107 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4108 spin_unlock(&file_priv->mm.lock);
4109
4110 if (seqno == 0)
4111 return 0;
4112
4113 ret = __i915_wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4114 if (ret == 0)
4115 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4116
4117 return ret;
4118}
4119
4120static bool
4121i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4122{
4123 struct drm_i915_gem_object *obj = vma->obj;
4124
4125 if (alignment &&
4126 vma->node.start & (alignment - 1))
4127 return true;
4128
4129 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4130 return true;
4131
4132 if (flags & PIN_OFFSET_BIAS &&
4133 vma->node.start < (flags & PIN_OFFSET_MASK))
4134 return true;
4135
4136 return false;
4137}
4138
4139int
4140i915_gem_object_pin(struct drm_i915_gem_object *obj,
4141 struct i915_address_space *vm,
4142 uint32_t alignment,
4143 uint64_t flags)
4144{
4145 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4146 struct i915_vma *vma;
4147 unsigned bound;
4148 int ret;
4149
4150 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4151 return -ENODEV;
4152
4153 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4154 return -EINVAL;
4155
4156 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4157 return -EINVAL;
4158
4159 vma = i915_gem_obj_to_vma(obj, vm);
4160 if (vma) {
4161 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4162 return -EBUSY;
4163
4164 if (i915_vma_misplaced(vma, alignment, flags)) {
4165 WARN(vma->pin_count,
4166 "bo is already pinned with incorrect alignment:"
4167 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4168 " obj->map_and_fenceable=%d\n",
4169 i915_gem_obj_offset(obj, vm), alignment,
4170 !!(flags & PIN_MAPPABLE),
4171 obj->map_and_fenceable);
4172 ret = i915_vma_unbind(vma);
4173 if (ret)
4174 return ret;
4175
4176 vma = NULL;
4177 }
4178 }
4179
4180 bound = vma ? vma->bound : 0;
4181 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4182 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4183 if (IS_ERR(vma))
4184 return PTR_ERR(vma);
4185 }
4186
4187 if (flags & PIN_GLOBAL && !(vma->bound & GLOBAL_BIND))
4188 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4189
4190 if ((bound ^ vma->bound) & GLOBAL_BIND) {
4191 bool mappable, fenceable;
4192 u32 fence_size, fence_alignment;
4193
4194 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4195 obj->base.size,
4196 obj->tiling_mode);
4197 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4198 obj->base.size,
4199 obj->tiling_mode,
4200 true);
4201
4202 fenceable = (vma->node.size == fence_size &&
4203 (vma->node.start & (fence_alignment - 1)) == 0);
4204
4205 mappable = (vma->node.start + obj->base.size <=
4206 dev_priv->gtt.mappable_end);
4207
4208 obj->map_and_fenceable = mappable && fenceable;
4209 }
4210
4211 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4212
4213 vma->pin_count++;
4214 if (flags & PIN_MAPPABLE)
4215 obj->pin_mappable |= true;
4216
4217 return 0;
4218}
4219
4220void
4221i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4222{
4223 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4224
4225 BUG_ON(!vma);
4226 BUG_ON(vma->pin_count == 0);
4227 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4228
4229 if (--vma->pin_count == 0)
4230 obj->pin_mappable = false;
4231}
4232
4233bool
4234i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4235{
4236 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4237 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4238 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4239
4240 WARN_ON(!ggtt_vma ||
4241 dev_priv->fence_regs[obj->fence_reg].pin_count >
4242 ggtt_vma->pin_count);
4243 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4244 return true;
4245 } else
4246 return false;
4247}
4248
4249void
4250i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4251{
4252 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4253 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4254 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4255 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4256 }
4257}
4258
4259int
4260i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4261 struct drm_file *file)
4262{
4263 struct drm_i915_gem_pin *args = data;
4264 struct drm_i915_gem_object *obj;
4265 int ret;
4266
4267 if (drm_core_check_feature(dev, DRIVER_MODESET))
4268 return -ENODEV;
4269
4270 ret = i915_mutex_lock_interruptible(dev);
4271 if (ret)
4272 return ret;
4273
4274 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4275 if (&obj->base == NULL) {
4276 ret = -ENOENT;
4277 goto unlock;
4278 }
4279
4280 if (obj->madv != I915_MADV_WILLNEED) {
4281 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4282 ret = -EFAULT;
4283 goto out;
4284 }
4285
4286 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4287 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4288 args->handle);
4289 ret = -EINVAL;
4290 goto out;
4291 }
4292
4293 if (obj->user_pin_count == ULONG_MAX) {
4294 ret = -EBUSY;
4295 goto out;
4296 }
4297
4298 if (obj->user_pin_count == 0) {
4299 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4300 if (ret)
4301 goto out;
4302 }
4303
4304 obj->user_pin_count++;
4305 obj->pin_filp = file;
4306
4307 args->offset = i915_gem_obj_ggtt_offset(obj);
4308out:
4309 drm_gem_object_unreference(&obj->base);
4310unlock:
4311 mutex_unlock(&dev->struct_mutex);
4312 return ret;
4313}
4314
4315int
4316i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4317 struct drm_file *file)
4318{
4319 struct drm_i915_gem_pin *args = data;
4320 struct drm_i915_gem_object *obj;
4321 int ret;
4322
4323 if (drm_core_check_feature(dev, DRIVER_MODESET))
4324 return -ENODEV;
4325
4326 ret = i915_mutex_lock_interruptible(dev);
4327 if (ret)
4328 return ret;
4329
4330 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4331 if (&obj->base == NULL) {
4332 ret = -ENOENT;
4333 goto unlock;
4334 }
4335
4336 if (obj->pin_filp != file) {
4337 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4338 args->handle);
4339 ret = -EINVAL;
4340 goto out;
4341 }
4342 obj->user_pin_count--;
4343 if (obj->user_pin_count == 0) {
4344 obj->pin_filp = NULL;
4345 i915_gem_object_ggtt_unpin(obj);
4346 }
4347
4348out:
4349 drm_gem_object_unreference(&obj->base);
4350unlock:
4351 mutex_unlock(&dev->struct_mutex);
4352 return ret;
4353}
4354
4355int
4356i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4357 struct drm_file *file)
4358{
4359 struct drm_i915_gem_busy *args = data;
4360 struct drm_i915_gem_object *obj;
4361 int ret;
4362
4363 ret = i915_mutex_lock_interruptible(dev);
4364 if (ret)
4365 return ret;
4366
4367 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4368 if (&obj->base == NULL) {
4369 ret = -ENOENT;
4370 goto unlock;
4371 }
4372
4373 /* Count all active objects as busy, even if they are currently not used
4374 * by the gpu. Users of this interface expect objects to eventually
4375 * become non-busy without any further actions, therefore emit any
4376 * necessary flushes here.
4377 */
4378 ret = i915_gem_object_flush_active(obj);
4379
4380 args->busy = obj->active;
4381 if (obj->ring) {
4382 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4383 args->busy |= intel_ring_flag(obj->ring) << 16;
4384 }
4385
4386 drm_gem_object_unreference(&obj->base);
4387unlock:
4388 mutex_unlock(&dev->struct_mutex);
4389 return ret;
4390}
4391
4392int
4393i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4394 struct drm_file *file_priv)
4395{
4396 return i915_gem_ring_throttle(dev, file_priv);
4397}
4398
4399int
4400i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4401 struct drm_file *file_priv)
4402{
4403 struct drm_i915_private *dev_priv = dev->dev_private;
4404 struct drm_i915_gem_madvise *args = data;
4405 struct drm_i915_gem_object *obj;
4406 int ret;
4407
4408 switch (args->madv) {
4409 case I915_MADV_DONTNEED:
4410 case I915_MADV_WILLNEED:
4411 break;
4412 default:
4413 return -EINVAL;
4414 }
4415
4416 ret = i915_mutex_lock_interruptible(dev);
4417 if (ret)
4418 return ret;
4419
4420 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4421 if (&obj->base == NULL) {
4422 ret = -ENOENT;
4423 goto unlock;
4424 }
4425
4426 if (i915_gem_obj_is_pinned(obj)) {
4427 ret = -EINVAL;
4428 goto out;
4429 }
4430
4431 if (obj->pages &&
4432 obj->tiling_mode != I915_TILING_NONE &&
4433 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4434 if (obj->madv == I915_MADV_WILLNEED)
4435 i915_gem_object_unpin_pages(obj);
4436 if (args->madv == I915_MADV_WILLNEED)
4437 i915_gem_object_pin_pages(obj);
4438 }
4439
4440 if (obj->madv != __I915_MADV_PURGED)
4441 obj->madv = args->madv;
4442
4443 /* if the object is no longer attached, discard its backing storage */
4444 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4445 i915_gem_object_truncate(obj);
4446
4447 args->retained = obj->madv != __I915_MADV_PURGED;
4448
4449out:
4450 drm_gem_object_unreference(&obj->base);
4451unlock:
4452 mutex_unlock(&dev->struct_mutex);
4453 return ret;
4454}
4455
4456void i915_gem_object_init(struct drm_i915_gem_object *obj,
4457 const struct drm_i915_gem_object_ops *ops)
4458{
4459 INIT_LIST_HEAD(&obj->global_list);
4460 INIT_LIST_HEAD(&obj->ring_list);
4461 INIT_LIST_HEAD(&obj->obj_exec_link);
4462 INIT_LIST_HEAD(&obj->vma_list);
4463
4464 obj->ops = ops;
4465
4466 obj->fence_reg = I915_FENCE_REG_NONE;
4467 obj->madv = I915_MADV_WILLNEED;
4468
4469 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4470}
4471
4472static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4473 .get_pages = i915_gem_object_get_pages_gtt,
4474 .put_pages = i915_gem_object_put_pages_gtt,
4475};
4476
4477struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4478 size_t size)
4479{
4480 struct drm_i915_gem_object *obj;
4481 struct address_space *mapping;
4482 gfp_t mask;
4483
4484 obj = i915_gem_object_alloc(dev);
4485 if (obj == NULL)
4486 return NULL;
4487
4488 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4489 i915_gem_object_free(obj);
4490 return NULL;
4491 }
4492
4493 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4494 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4495 /* 965gm cannot relocate objects above 4GiB. */
4496 mask &= ~__GFP_HIGHMEM;
4497 mask |= __GFP_DMA32;
4498 }
4499
4500 mapping = file_inode(obj->base.filp)->i_mapping;
4501 mapping_set_gfp_mask(mapping, mask);
4502
4503 i915_gem_object_init(obj, &i915_gem_object_ops);
4504
4505 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4506 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4507
4508 if (HAS_LLC(dev)) {
4509 /* On some devices, we can have the GPU use the LLC (the CPU
4510 * cache) for about a 10% performance improvement
4511 * compared to uncached. Graphics requests other than
4512 * display scanout are coherent with the CPU in
4513 * accessing this cache. This means in this mode we
4514 * don't need to clflush on the CPU side, and on the
4515 * GPU side we only need to flush internal caches to
4516 * get data visible to the CPU.
4517 *
4518 * However, we maintain the display planes as UC, and so
4519 * need to rebind when first used as such.
4520 */
4521 obj->cache_level = I915_CACHE_LLC;
4522 } else
4523 obj->cache_level = I915_CACHE_NONE;
4524
4525 trace_i915_gem_object_create(obj);
4526
4527 return obj;
4528}
4529
4530static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4531{
4532 /* If we are the last user of the backing storage (be it shmemfs
4533 * pages or stolen etc), we know that the pages are going to be
4534 * immediately released. In this case, we can then skip copying
4535 * back the contents from the GPU.
4536 */
4537
4538 if (obj->madv != I915_MADV_WILLNEED)
4539 return false;
4540
4541 if (obj->base.filp == NULL)
4542 return true;
4543
4544 /* At first glance, this looks racy, but then again so would be
4545 * userspace racing mmap against close. However, the first external
4546 * reference to the filp can only be obtained through the
4547 * i915_gem_mmap_ioctl() which safeguards us against the user
4548 * acquiring such a reference whilst we are in the middle of
4549 * freeing the object.
4550 */
4551 return atomic_long_read(&obj->base.filp->f_count) == 1;
4552}
4553
4554void i915_gem_free_object(struct drm_gem_object *gem_obj)
4555{
4556 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4557 struct drm_device *dev = obj->base.dev;
4558 struct drm_i915_private *dev_priv = dev->dev_private;
4559 struct i915_vma *vma, *next;
4560
4561 intel_runtime_pm_get(dev_priv);
4562
4563 trace_i915_gem_object_destroy(obj);
4564
4565 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4566 int ret;
4567
4568 vma->pin_count = 0;
4569 ret = i915_vma_unbind(vma);
4570 if (WARN_ON(ret == -ERESTARTSYS)) {
4571 bool was_interruptible;
4572
4573 was_interruptible = dev_priv->mm.interruptible;
4574 dev_priv->mm.interruptible = false;
4575
4576 WARN_ON(i915_vma_unbind(vma));
4577
4578 dev_priv->mm.interruptible = was_interruptible;
4579 }
4580 }
4581
4582 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4583 * before progressing. */
4584 if (obj->stolen)
4585 i915_gem_object_unpin_pages(obj);
4586
4587 WARN_ON(obj->frontbuffer_bits);
4588
4589 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4590 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4591 obj->tiling_mode != I915_TILING_NONE)
4592 i915_gem_object_unpin_pages(obj);
4593
4594 if (WARN_ON(obj->pages_pin_count))
4595 obj->pages_pin_count = 0;
4596 if (discard_backing_storage(obj))
4597 obj->madv = I915_MADV_DONTNEED;
4598 i915_gem_object_put_pages(obj);
4599 i915_gem_object_free_mmap_offset(obj);
4600
4601 BUG_ON(obj->pages);
4602
4603 if (obj->base.import_attach)
4604 drm_prime_gem_destroy(&obj->base, NULL);
4605
4606 if (obj->ops->release)
4607 obj->ops->release(obj);
4608
4609 drm_gem_object_release(&obj->base);
4610 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4611
4612 kfree(obj->bit_17);
4613 i915_gem_object_free(obj);
4614
4615 intel_runtime_pm_put(dev_priv);
4616}
4617
4618struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4619 struct i915_address_space *vm)
4620{
4621 struct i915_vma *vma;
4622 list_for_each_entry(vma, &obj->vma_list, vma_link)
4623 if (vma->vm == vm)
4624 return vma;
4625
4626 return NULL;
4627}
4628
4629void i915_gem_vma_destroy(struct i915_vma *vma)
4630{
4631 struct i915_address_space *vm = NULL;
4632 WARN_ON(vma->node.allocated);
4633
4634 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4635 if (!list_empty(&vma->exec_list))
4636 return;
4637
4638 vm = vma->vm;
4639
4640 if (!i915_is_ggtt(vm))
4641 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4642
4643 list_del(&vma->vma_link);
4644
4645 kfree(vma);
4646}
4647
4648static void
4649i915_gem_stop_ringbuffers(struct drm_device *dev)
4650{
4651 struct drm_i915_private *dev_priv = dev->dev_private;
4652 struct intel_engine_cs *ring;
4653 int i;
4654
4655 for_each_ring(ring, dev_priv, i)
4656 dev_priv->gt.stop_ring(ring);
4657}
4658
4659int
4660i915_gem_suspend(struct drm_device *dev)
4661{
4662 struct drm_i915_private *dev_priv = dev->dev_private;
4663 int ret = 0;
4664
4665 mutex_lock(&dev->struct_mutex);
4666 ret = i915_gpu_idle(dev);
4667 if (ret)
4668 goto err;
4669
4670 i915_gem_retire_requests(dev);
4671
4672 /* Under UMS, be paranoid and evict. */
4673 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4674 i915_gem_evict_everything(dev);
4675
4676 i915_gem_stop_ringbuffers(dev);
4677 mutex_unlock(&dev->struct_mutex);
4678
4679 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4680 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4681 flush_delayed_work(&dev_priv->mm.idle_work);
4682
4683 return 0;
4684
4685err:
4686 mutex_unlock(&dev->struct_mutex);
4687 return ret;
4688}
4689
4690int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4691{
4692 struct drm_device *dev = ring->dev;
4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4695 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4696 int i, ret;
4697
4698 if (!HAS_L3_DPF(dev) || !remap_info)
4699 return 0;
4700
4701 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4702 if (ret)
4703 return ret;
4704
4705 /*
4706 * Note: We do not worry about the concurrent register cacheline hang
4707 * here because no other code should access these registers other than
4708 * at initialization time.
4709 */
4710 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4711 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4712 intel_ring_emit(ring, reg_base + i);
4713 intel_ring_emit(ring, remap_info[i/4]);
4714 }
4715
4716 intel_ring_advance(ring);
4717
4718 return ret;
4719}
4720
4721void i915_gem_init_swizzling(struct drm_device *dev)
4722{
4723 struct drm_i915_private *dev_priv = dev->dev_private;
4724
4725 if (INTEL_INFO(dev)->gen < 5 ||
4726 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4727 return;
4728
4729 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4730 DISP_TILE_SURFACE_SWIZZLING);
4731
4732 if (IS_GEN5(dev))
4733 return;
4734
4735 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4736 if (IS_GEN6(dev))
4737 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4738 else if (IS_GEN7(dev))
4739 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4740 else if (IS_GEN8(dev))
4741 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4742 else
4743 BUG();
4744}
4745
4746static bool
4747intel_enable_blt(struct drm_device *dev)
4748{
4749 if (!HAS_BLT(dev))
4750 return false;
4751
4752 /* The blitter was dysfunctional on early prototypes */
4753 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4754 DRM_INFO("BLT not supported on this pre-production hardware;"
4755 " graphics performance will be degraded.\n");
4756 return false;
4757 }
4758
4759 return true;
4760}
4761
4762static void init_unused_ring(struct drm_device *dev, u32 base)
4763{
4764 struct drm_i915_private *dev_priv = dev->dev_private;
4765
4766 I915_WRITE(RING_CTL(base), 0);
4767 I915_WRITE(RING_HEAD(base), 0);
4768 I915_WRITE(RING_TAIL(base), 0);
4769 I915_WRITE(RING_START(base), 0);
4770}
4771
4772static void init_unused_rings(struct drm_device *dev)
4773{
4774 if (IS_I830(dev)) {
4775 init_unused_ring(dev, PRB1_BASE);
4776 init_unused_ring(dev, SRB0_BASE);
4777 init_unused_ring(dev, SRB1_BASE);
4778 init_unused_ring(dev, SRB2_BASE);
4779 init_unused_ring(dev, SRB3_BASE);
4780 } else if (IS_GEN2(dev)) {
4781 init_unused_ring(dev, SRB0_BASE);
4782 init_unused_ring(dev, SRB1_BASE);
4783 } else if (IS_GEN3(dev)) {
4784 init_unused_ring(dev, PRB1_BASE);
4785 init_unused_ring(dev, PRB2_BASE);
4786 }
4787}
4788
4789int i915_gem_init_rings(struct drm_device *dev)
4790{
4791 struct drm_i915_private *dev_priv = dev->dev_private;
4792 int ret;
4793
4794 /*
4795 * At least 830 can leave some of the unused rings
4796 * "active" (ie. head != tail) after resume which
4797 * will prevent c3 entry. Makes sure all unused rings
4798 * are totally idle.
4799 */
4800 init_unused_rings(dev);
4801
4802 ret = intel_init_render_ring_buffer(dev);
4803 if (ret)
4804 return ret;
4805
4806 if (HAS_BSD(dev)) {
4807 ret = intel_init_bsd_ring_buffer(dev);
4808 if (ret)
4809 goto cleanup_render_ring;
4810 }
4811
4812 if (intel_enable_blt(dev)) {
4813 ret = intel_init_blt_ring_buffer(dev);
4814 if (ret)
4815 goto cleanup_bsd_ring;
4816 }
4817
4818 if (HAS_VEBOX(dev)) {
4819 ret = intel_init_vebox_ring_buffer(dev);
4820 if (ret)
4821 goto cleanup_blt_ring;
4822 }
4823
4824 if (HAS_BSD2(dev)) {
4825 ret = intel_init_bsd2_ring_buffer(dev);
4826 if (ret)
4827 goto cleanup_vebox_ring;
4828 }
4829
4830 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4831 if (ret)
4832 goto cleanup_bsd2_ring;
4833
4834 return 0;
4835
4836cleanup_bsd2_ring:
4837 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4838cleanup_vebox_ring:
4839 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4840cleanup_blt_ring:
4841 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4842cleanup_bsd_ring:
4843 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4844cleanup_render_ring:
4845 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4846
4847 return ret;
4848}
4849
4850int
4851i915_gem_init_hw(struct drm_device *dev)
4852{
4853 struct drm_i915_private *dev_priv = dev->dev_private;
4854 int ret, i;
4855
4856 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4857 return -EIO;
4858
4859 if (dev_priv->ellc_size)
4860 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4861
4862 if (IS_HASWELL(dev))
4863 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4864 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4865
4866 if (HAS_PCH_NOP(dev)) {
4867 if (IS_IVYBRIDGE(dev)) {
4868 u32 temp = I915_READ(GEN7_MSG_CTL);
4869 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4870 I915_WRITE(GEN7_MSG_CTL, temp);
4871 } else if (INTEL_INFO(dev)->gen >= 7) {
4872 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4873 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4874 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4875 }
4876 }
4877
4878 i915_gem_init_swizzling(dev);
4879
4880 ret = dev_priv->gt.init_rings(dev);
4881 if (ret)
4882 return ret;
4883
4884 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4885 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4886
4887 ret = i915_ppgtt_init_hw(dev);
4888 if (ret && ret != -EIO) {
4889 DRM_ERROR("PPGTT enable failed %d\n", ret);
4890 i915_gem_cleanup_ringbuffer(dev);
4891 }
4892
4893 ret = i915_gem_context_enable(dev_priv);
4894 if (ret && ret != -EIO) {
4895 DRM_ERROR("Context enable failed %d\n", ret);
4896 i915_gem_cleanup_ringbuffer(dev);
4897
4898 return ret;
4899 }
4900
4901 return ret;
4902}
4903
4904int i915_gem_init(struct drm_device *dev)
4905{
4906 struct drm_i915_private *dev_priv = dev->dev_private;
4907 int ret;
4908
4909 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4910 i915.enable_execlists);
4911
4912 mutex_lock(&dev->struct_mutex);
4913
4914 if (IS_VALLEYVIEW(dev)) {
4915 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4916 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4917 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4918 VLV_GTLC_ALLOWWAKEACK), 10))
4919 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4920 }
4921
4922 if (!i915.enable_execlists) {
4923 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4924 dev_priv->gt.init_rings = i915_gem_init_rings;
4925 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4926 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4927 } else {
4928 dev_priv->gt.do_execbuf = intel_execlists_submission;
4929 dev_priv->gt.init_rings = intel_logical_rings_init;
4930 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4931 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4932 }
4933
4934 ret = i915_gem_init_userptr(dev);
4935 if (ret) {
4936 mutex_unlock(&dev->struct_mutex);
4937 return ret;
4938 }
4939
4940 i915_gem_init_global_gtt(dev);
4941
4942 ret = i915_gem_context_init(dev);
4943 if (ret) {
4944 mutex_unlock(&dev->struct_mutex);
4945 return ret;
4946 }
4947
4948 ret = i915_gem_init_hw(dev);
4949 if (ret == -EIO) {
4950 /* Allow ring initialisation to fail by marking the GPU as
4951 * wedged. But we only want to do this where the GPU is angry,
4952 * for all other failure, such as an allocation failure, bail.
4953 */
4954 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4955 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4956 ret = 0;
4957 }
4958 mutex_unlock(&dev->struct_mutex);
4959
4960 return ret;
4961}
4962
4963void
4964i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4965{
4966 struct drm_i915_private *dev_priv = dev->dev_private;
4967 struct intel_engine_cs *ring;
4968 int i;
4969
4970 for_each_ring(ring, dev_priv, i)
4971 dev_priv->gt.cleanup_ring(ring);
4972}
4973
4974static void
4975init_ring_lists(struct intel_engine_cs *ring)
4976{
4977 INIT_LIST_HEAD(&ring->active_list);
4978 INIT_LIST_HEAD(&ring->request_list);
4979}
4980
4981void i915_init_vm(struct drm_i915_private *dev_priv,
4982 struct i915_address_space *vm)
4983{
4984 if (!i915_is_ggtt(vm))
4985 drm_mm_init(&vm->mm, vm->start, vm->total);
4986 vm->dev = dev_priv->dev;
4987 INIT_LIST_HEAD(&vm->active_list);
4988 INIT_LIST_HEAD(&vm->inactive_list);
4989 INIT_LIST_HEAD(&vm->global_link);
4990 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4991}
4992
4993void
4994i915_gem_load(struct drm_device *dev)
4995{
4996 struct drm_i915_private *dev_priv = dev->dev_private;
4997 int i;
4998
4999 dev_priv->slab =
5000 kmem_cache_create("i915_gem_object",
5001 sizeof(struct drm_i915_gem_object), 0,
5002 SLAB_HWCACHE_ALIGN,
5003 NULL);
5004
5005 INIT_LIST_HEAD(&dev_priv->vm_list);
5006 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5007
5008 INIT_LIST_HEAD(&dev_priv->context_list);
5009 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5010 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5011 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5012 for (i = 0; i < I915_NUM_RINGS; i++)
5013 init_ring_lists(&dev_priv->ring[i]);
5014 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5015 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5016 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5017 i915_gem_retire_work_handler);
5018 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5019 i915_gem_idle_work_handler);
5020 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5021
5022 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
5023 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
5024 I915_WRITE(MI_ARB_STATE,
5025 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
5026 }
5027
5028 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5029
5030 /* Old X drivers will take 0-2 for front, back, depth buffers */
5031 if (!drm_core_check_feature(dev, DRIVER_MODESET))
5032 dev_priv->fence_reg_start = 3;
5033
5034 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5035 dev_priv->num_fence_regs = 32;
5036 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5037 dev_priv->num_fence_regs = 16;
5038 else
5039 dev_priv->num_fence_regs = 8;
5040
5041 /* Initialize fence registers to zero */
5042 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5043 i915_gem_restore_fences(dev);
5044
5045 i915_gem_detect_bit_6_swizzle(dev);
5046 init_waitqueue_head(&dev_priv->pending_flip_queue);
5047
5048 dev_priv->mm.interruptible = true;
5049
5050 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
5051 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
5052 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
5053 register_shrinker(&dev_priv->mm.shrinker);
5054
5055 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
5056 register_oom_notifier(&dev_priv->mm.oom_notifier);
5057
5058 mutex_init(&dev_priv->fb_tracking.lock);
5059}
5060
5061void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5062{
5063 struct drm_i915_file_private *file_priv = file->driver_priv;
5064
5065 cancel_delayed_work_sync(&file_priv->mm.idle_work);
5066
5067 /* Clean up our request list when the client is going away, so that
5068 * later retire_requests won't dereference our soon-to-be-gone
5069 * file_priv.
5070 */
5071 spin_lock(&file_priv->mm.lock);
5072 while (!list_empty(&file_priv->mm.request_list)) {
5073 struct drm_i915_gem_request *request;
5074
5075 request = list_first_entry(&file_priv->mm.request_list,
5076 struct drm_i915_gem_request,
5077 client_list);
5078 list_del(&request->client_list);
5079 request->file_priv = NULL;
5080 }
5081 spin_unlock(&file_priv->mm.lock);
5082}
5083
5084static void
5085i915_gem_file_idle_work_handler(struct work_struct *work)
5086{
5087 struct drm_i915_file_private *file_priv =
5088 container_of(work, typeof(*file_priv), mm.idle_work.work);
5089
5090 atomic_set(&file_priv->rps_wait_boost, false);
5091}
5092
5093int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5094{
5095 struct drm_i915_file_private *file_priv;
5096 int ret;
5097
5098 DRM_DEBUG_DRIVER("\n");
5099
5100 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5101 if (!file_priv)
5102 return -ENOMEM;
5103
5104 file->driver_priv = file_priv;
5105 file_priv->dev_priv = dev->dev_private;
5106 file_priv->file = file;
5107
5108 spin_lock_init(&file_priv->mm.lock);
5109 INIT_LIST_HEAD(&file_priv->mm.request_list);
5110 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5111 i915_gem_file_idle_work_handler);
5112
5113 ret = i915_gem_context_open(dev, file);
5114 if (ret)
5115 kfree(file_priv);
5116
5117 return ret;
5118}
5119
5120/**
5121 * i915_gem_track_fb - update frontbuffer tracking
5122 * old: current GEM buffer for the frontbuffer slots
5123 * new: new GEM buffer for the frontbuffer slots
5124 * frontbuffer_bits: bitmask of frontbuffer slots
5125 *
5126 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5127 * from @old and setting them in @new. Both @old and @new can be NULL.
5128 */
5129void i915_gem_track_fb(struct drm_i915_gem_object *old,
5130 struct drm_i915_gem_object *new,
5131 unsigned frontbuffer_bits)
5132{
5133 if (old) {
5134 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5135 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5136 old->frontbuffer_bits &= ~frontbuffer_bits;
5137 }
5138
5139 if (new) {
5140 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5141 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5142 new->frontbuffer_bits |= frontbuffer_bits;
5143 }
5144}
5145
5146static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5147{
5148 if (!mutex_is_locked(mutex))
5149 return false;
5150
5151#if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5152 return mutex->owner == task;
5153#else
5154 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5155 return false;
5156#endif
5157}
5158
5159static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5160{
5161 if (!mutex_trylock(&dev->struct_mutex)) {
5162 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5163 return false;
5164
5165 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5166 return false;
5167
5168 *unlock = false;
5169 } else
5170 *unlock = true;
5171
5172 return true;
5173}
5174
5175static int num_vma_bound(struct drm_i915_gem_object *obj)
5176{
5177 struct i915_vma *vma;
5178 int count = 0;
5179
5180 list_for_each_entry(vma, &obj->vma_list, vma_link)
5181 if (drm_mm_node_allocated(&vma->node))
5182 count++;
5183
5184 return count;
5185}
5186
5187static unsigned long
5188i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5189{
5190 struct drm_i915_private *dev_priv =
5191 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5192 struct drm_device *dev = dev_priv->dev;
5193 struct drm_i915_gem_object *obj;
5194 unsigned long count;
5195 bool unlock;
5196
5197 if (!i915_gem_shrinker_lock(dev, &unlock))
5198 return 0;
5199
5200 count = 0;
5201 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5202 if (obj->pages_pin_count == 0)
5203 count += obj->base.size >> PAGE_SHIFT;
5204
5205 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5206 if (!i915_gem_obj_is_pinned(obj) &&
5207 obj->pages_pin_count == num_vma_bound(obj))
5208 count += obj->base.size >> PAGE_SHIFT;
5209 }
5210
5211 if (unlock)
5212 mutex_unlock(&dev->struct_mutex);
5213
5214 return count;
5215}
5216
5217/* All the new VM stuff */
5218unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5219 struct i915_address_space *vm)
5220{
5221 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5222 struct i915_vma *vma;
5223
5224 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5225
5226 list_for_each_entry(vma, &o->vma_list, vma_link) {
5227 if (vma->vm == vm)
5228 return vma->node.start;
5229
5230 }
5231 WARN(1, "%s vma for this object not found.\n",
5232 i915_is_ggtt(vm) ? "global" : "ppgtt");
5233 return -1;
5234}
5235
5236bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5237 struct i915_address_space *vm)
5238{
5239 struct i915_vma *vma;
5240
5241 list_for_each_entry(vma, &o->vma_list, vma_link)
5242 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5243 return true;
5244
5245 return false;
5246}
5247
5248bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5249{
5250 struct i915_vma *vma;
5251
5252 list_for_each_entry(vma, &o->vma_list, vma_link)
5253 if (drm_mm_node_allocated(&vma->node))
5254 return true;
5255
5256 return false;
5257}
5258
5259unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5260 struct i915_address_space *vm)
5261{
5262 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5263 struct i915_vma *vma;
5264
5265 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5266
5267 BUG_ON(list_empty(&o->vma_list));
5268
5269 list_for_each_entry(vma, &o->vma_list, vma_link)
5270 if (vma->vm == vm)
5271 return vma->node.size;
5272
5273 return 0;
5274}
5275
5276static unsigned long
5277i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5278{
5279 struct drm_i915_private *dev_priv =
5280 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5281 struct drm_device *dev = dev_priv->dev;
5282 unsigned long freed;
5283 bool unlock;
5284
5285 if (!i915_gem_shrinker_lock(dev, &unlock))
5286 return SHRINK_STOP;
5287
5288 freed = i915_gem_shrink(dev_priv,
5289 sc->nr_to_scan,
5290 I915_SHRINK_BOUND |
5291 I915_SHRINK_UNBOUND |
5292 I915_SHRINK_PURGEABLE);
5293 if (freed < sc->nr_to_scan)
5294 freed += i915_gem_shrink(dev_priv,
5295 sc->nr_to_scan - freed,
5296 I915_SHRINK_BOUND |
5297 I915_SHRINK_UNBOUND);
5298 if (unlock)
5299 mutex_unlock(&dev->struct_mutex);
5300
5301 return freed;
5302}
5303
5304static int
5305i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5306{
5307 struct drm_i915_private *dev_priv =
5308 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5309 struct drm_device *dev = dev_priv->dev;
5310 struct drm_i915_gem_object *obj;
5311 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5312 unsigned long pinned, bound, unbound, freed_pages;
5313 bool was_interruptible;
5314 bool unlock;
5315
5316 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5317 schedule_timeout_killable(1);
5318 if (fatal_signal_pending(current))
5319 return NOTIFY_DONE;
5320 }
5321 if (timeout == 0) {
5322 pr_err("Unable to purge GPU memory due lock contention.\n");
5323 return NOTIFY_DONE;
5324 }
5325
5326 was_interruptible = dev_priv->mm.interruptible;
5327 dev_priv->mm.interruptible = false;
5328
5329 freed_pages = i915_gem_shrink_all(dev_priv);
5330
5331 dev_priv->mm.interruptible = was_interruptible;
5332
5333 /* Because we may be allocating inside our own driver, we cannot
5334 * assert that there are no objects with pinned pages that are not
5335 * being pointed to by hardware.
5336 */
5337 unbound = bound = pinned = 0;
5338 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5339 if (!obj->base.filp) /* not backed by a freeable object */
5340 continue;
5341
5342 if (obj->pages_pin_count)
5343 pinned += obj->base.size;
5344 else
5345 unbound += obj->base.size;
5346 }
5347 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5348 if (!obj->base.filp)
5349 continue;
5350
5351 if (obj->pages_pin_count)
5352 pinned += obj->base.size;
5353 else
5354 bound += obj->base.size;
5355 }
5356
5357 if (unlock)
5358 mutex_unlock(&dev->struct_mutex);
5359
5360 if (freed_pages || unbound || bound)
5361 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5362 freed_pages << PAGE_SHIFT, pinned);
5363 if (unbound || bound)
5364 pr_err("%lu and %lu bytes still available in the "
5365 "bound and unbound GPU page lists.\n",
5366 bound, unbound);
5367
5368 *(unsigned long *)ptr += freed_pages;
5369 return NOTIFY_DONE;
5370}
5371
5372struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5373{
5374 struct i915_vma *vma;
5375
5376 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5377 if (vma->vm != i915_obj_to_ggtt(obj))
5378 return NULL;
5379
5380 return vma;
5381}
This page took 0.044016 seconds and 5 git commands to generate.