drm/i915: check for oom when allocating private_default_ctx
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_trace.h"
33#include "intel_drv.h"
34#include <linux/shmem_fs.h>
35#include <linux/slab.h>
36#include <linux/swap.h>
37#include <linux/pci.h>
38#include <linux/dma-buf.h>
39
40static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43static __must_check int
44i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46static __must_check int
47i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
48 struct i915_address_space *vm,
49 unsigned alignment,
50 bool map_and_fenceable,
51 bool nonblocking);
52static int i915_gem_phys_pwrite(struct drm_device *dev,
53 struct drm_i915_gem_object *obj,
54 struct drm_i915_gem_pwrite *args,
55 struct drm_file *file);
56
57static void i915_gem_write_fence(struct drm_device *dev, int reg,
58 struct drm_i915_gem_object *obj);
59static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
60 struct drm_i915_fence_reg *fence,
61 bool enable);
62
63static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
64 struct shrink_control *sc);
65static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
66 struct shrink_control *sc);
67static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
68static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
69static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
70
71static bool cpu_cache_is_coherent(struct drm_device *dev,
72 enum i915_cache_level level)
73{
74 return HAS_LLC(dev) || level != I915_CACHE_NONE;
75}
76
77static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
78{
79 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
80 return true;
81
82 return obj->pin_display;
83}
84
85static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
86{
87 if (obj->tiling_mode)
88 i915_gem_release_mmap(obj);
89
90 /* As we do not have an associated fence register, we will force
91 * a tiling change if we ever need to acquire one.
92 */
93 obj->fence_dirty = false;
94 obj->fence_reg = I915_FENCE_REG_NONE;
95}
96
97/* some bookkeeping */
98static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
99 size_t size)
100{
101 spin_lock(&dev_priv->mm.object_stat_lock);
102 dev_priv->mm.object_count++;
103 dev_priv->mm.object_memory += size;
104 spin_unlock(&dev_priv->mm.object_stat_lock);
105}
106
107static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
108 size_t size)
109{
110 spin_lock(&dev_priv->mm.object_stat_lock);
111 dev_priv->mm.object_count--;
112 dev_priv->mm.object_memory -= size;
113 spin_unlock(&dev_priv->mm.object_stat_lock);
114}
115
116static int
117i915_gem_wait_for_error(struct i915_gpu_error *error)
118{
119 int ret;
120
121#define EXIT_COND (!i915_reset_in_progress(error) || \
122 i915_terminally_wedged(error))
123 if (EXIT_COND)
124 return 0;
125
126 /*
127 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
128 * userspace. If it takes that long something really bad is going on and
129 * we should simply try to bail out and fail as gracefully as possible.
130 */
131 ret = wait_event_interruptible_timeout(error->reset_queue,
132 EXIT_COND,
133 10*HZ);
134 if (ret == 0) {
135 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
136 return -EIO;
137 } else if (ret < 0) {
138 return ret;
139 }
140#undef EXIT_COND
141
142 return 0;
143}
144
145int i915_mutex_lock_interruptible(struct drm_device *dev)
146{
147 struct drm_i915_private *dev_priv = dev->dev_private;
148 int ret;
149
150 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
151 if (ret)
152 return ret;
153
154 ret = mutex_lock_interruptible(&dev->struct_mutex);
155 if (ret)
156 return ret;
157
158 WARN_ON(i915_verify_lists(dev));
159 return 0;
160}
161
162static inline bool
163i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
164{
165 return i915_gem_obj_bound_any(obj) && !obj->active;
166}
167
168int
169i915_gem_init_ioctl(struct drm_device *dev, void *data,
170 struct drm_file *file)
171{
172 struct drm_i915_private *dev_priv = dev->dev_private;
173 struct drm_i915_gem_init *args = data;
174
175 if (drm_core_check_feature(dev, DRIVER_MODESET))
176 return -ENODEV;
177
178 if (args->gtt_start >= args->gtt_end ||
179 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
180 return -EINVAL;
181
182 /* GEM with user mode setting was never supported on ilk and later. */
183 if (INTEL_INFO(dev)->gen >= 5)
184 return -ENODEV;
185
186 mutex_lock(&dev->struct_mutex);
187 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
188 args->gtt_end);
189 dev_priv->gtt.mappable_end = args->gtt_end;
190 mutex_unlock(&dev->struct_mutex);
191
192 return 0;
193}
194
195int
196i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
197 struct drm_file *file)
198{
199 struct drm_i915_private *dev_priv = dev->dev_private;
200 struct drm_i915_gem_get_aperture *args = data;
201 struct drm_i915_gem_object *obj;
202 size_t pinned;
203
204 pinned = 0;
205 mutex_lock(&dev->struct_mutex);
206 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
207 if (i915_gem_obj_is_pinned(obj))
208 pinned += i915_gem_obj_ggtt_size(obj);
209 mutex_unlock(&dev->struct_mutex);
210
211 args->aper_size = dev_priv->gtt.base.total;
212 args->aper_available_size = args->aper_size - pinned;
213
214 return 0;
215}
216
217void *i915_gem_object_alloc(struct drm_device *dev)
218{
219 struct drm_i915_private *dev_priv = dev->dev_private;
220 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
221}
222
223void i915_gem_object_free(struct drm_i915_gem_object *obj)
224{
225 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
226 kmem_cache_free(dev_priv->slab, obj);
227}
228
229static int
230i915_gem_create(struct drm_file *file,
231 struct drm_device *dev,
232 uint64_t size,
233 uint32_t *handle_p)
234{
235 struct drm_i915_gem_object *obj;
236 int ret;
237 u32 handle;
238
239 size = roundup(size, PAGE_SIZE);
240 if (size == 0)
241 return -EINVAL;
242
243 /* Allocate the new object */
244 obj = i915_gem_alloc_object(dev, size);
245 if (obj == NULL)
246 return -ENOMEM;
247
248 ret = drm_gem_handle_create(file, &obj->base, &handle);
249 /* drop reference from allocate - handle holds it now */
250 drm_gem_object_unreference_unlocked(&obj->base);
251 if (ret)
252 return ret;
253
254 *handle_p = handle;
255 return 0;
256}
257
258int
259i915_gem_dumb_create(struct drm_file *file,
260 struct drm_device *dev,
261 struct drm_mode_create_dumb *args)
262{
263 /* have to work out size/pitch and return them */
264 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
265 args->size = args->pitch * args->height;
266 return i915_gem_create(file, dev,
267 args->size, &args->handle);
268}
269
270/**
271 * Creates a new mm object and returns a handle to it.
272 */
273int
274i915_gem_create_ioctl(struct drm_device *dev, void *data,
275 struct drm_file *file)
276{
277 struct drm_i915_gem_create *args = data;
278
279 return i915_gem_create(file, dev,
280 args->size, &args->handle);
281}
282
283static inline int
284__copy_to_user_swizzled(char __user *cpu_vaddr,
285 const char *gpu_vaddr, int gpu_offset,
286 int length)
287{
288 int ret, cpu_offset = 0;
289
290 while (length > 0) {
291 int cacheline_end = ALIGN(gpu_offset + 1, 64);
292 int this_length = min(cacheline_end - gpu_offset, length);
293 int swizzled_gpu_offset = gpu_offset ^ 64;
294
295 ret = __copy_to_user(cpu_vaddr + cpu_offset,
296 gpu_vaddr + swizzled_gpu_offset,
297 this_length);
298 if (ret)
299 return ret + length;
300
301 cpu_offset += this_length;
302 gpu_offset += this_length;
303 length -= this_length;
304 }
305
306 return 0;
307}
308
309static inline int
310__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
311 const char __user *cpu_vaddr,
312 int length)
313{
314 int ret, cpu_offset = 0;
315
316 while (length > 0) {
317 int cacheline_end = ALIGN(gpu_offset + 1, 64);
318 int this_length = min(cacheline_end - gpu_offset, length);
319 int swizzled_gpu_offset = gpu_offset ^ 64;
320
321 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
322 cpu_vaddr + cpu_offset,
323 this_length);
324 if (ret)
325 return ret + length;
326
327 cpu_offset += this_length;
328 gpu_offset += this_length;
329 length -= this_length;
330 }
331
332 return 0;
333}
334
335/* Per-page copy function for the shmem pread fastpath.
336 * Flushes invalid cachelines before reading the target if
337 * needs_clflush is set. */
338static int
339shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
340 char __user *user_data,
341 bool page_do_bit17_swizzling, bool needs_clflush)
342{
343 char *vaddr;
344 int ret;
345
346 if (unlikely(page_do_bit17_swizzling))
347 return -EINVAL;
348
349 vaddr = kmap_atomic(page);
350 if (needs_clflush)
351 drm_clflush_virt_range(vaddr + shmem_page_offset,
352 page_length);
353 ret = __copy_to_user_inatomic(user_data,
354 vaddr + shmem_page_offset,
355 page_length);
356 kunmap_atomic(vaddr);
357
358 return ret ? -EFAULT : 0;
359}
360
361static void
362shmem_clflush_swizzled_range(char *addr, unsigned long length,
363 bool swizzled)
364{
365 if (unlikely(swizzled)) {
366 unsigned long start = (unsigned long) addr;
367 unsigned long end = (unsigned long) addr + length;
368
369 /* For swizzling simply ensure that we always flush both
370 * channels. Lame, but simple and it works. Swizzled
371 * pwrite/pread is far from a hotpath - current userspace
372 * doesn't use it at all. */
373 start = round_down(start, 128);
374 end = round_up(end, 128);
375
376 drm_clflush_virt_range((void *)start, end - start);
377 } else {
378 drm_clflush_virt_range(addr, length);
379 }
380
381}
382
383/* Only difference to the fast-path function is that this can handle bit17
384 * and uses non-atomic copy and kmap functions. */
385static int
386shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
387 char __user *user_data,
388 bool page_do_bit17_swizzling, bool needs_clflush)
389{
390 char *vaddr;
391 int ret;
392
393 vaddr = kmap(page);
394 if (needs_clflush)
395 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
396 page_length,
397 page_do_bit17_swizzling);
398
399 if (page_do_bit17_swizzling)
400 ret = __copy_to_user_swizzled(user_data,
401 vaddr, shmem_page_offset,
402 page_length);
403 else
404 ret = __copy_to_user(user_data,
405 vaddr + shmem_page_offset,
406 page_length);
407 kunmap(page);
408
409 return ret ? - EFAULT : 0;
410}
411
412static int
413i915_gem_shmem_pread(struct drm_device *dev,
414 struct drm_i915_gem_object *obj,
415 struct drm_i915_gem_pread *args,
416 struct drm_file *file)
417{
418 char __user *user_data;
419 ssize_t remain;
420 loff_t offset;
421 int shmem_page_offset, page_length, ret = 0;
422 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
423 int prefaulted = 0;
424 int needs_clflush = 0;
425 struct sg_page_iter sg_iter;
426
427 user_data = to_user_ptr(args->data_ptr);
428 remain = args->size;
429
430 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
431
432 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
433 /* If we're not in the cpu read domain, set ourself into the gtt
434 * read domain and manually flush cachelines (if required). This
435 * optimizes for the case when the gpu will dirty the data
436 * anyway again before the next pread happens. */
437 needs_clflush = !cpu_cache_is_coherent(dev, obj->cache_level);
438 ret = i915_gem_object_wait_rendering(obj, true);
439 if (ret)
440 return ret;
441 }
442
443 ret = i915_gem_object_get_pages(obj);
444 if (ret)
445 return ret;
446
447 i915_gem_object_pin_pages(obj);
448
449 offset = args->offset;
450
451 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
452 offset >> PAGE_SHIFT) {
453 struct page *page = sg_page_iter_page(&sg_iter);
454
455 if (remain <= 0)
456 break;
457
458 /* Operation in this page
459 *
460 * shmem_page_offset = offset within page in shmem file
461 * page_length = bytes to copy for this page
462 */
463 shmem_page_offset = offset_in_page(offset);
464 page_length = remain;
465 if ((shmem_page_offset + page_length) > PAGE_SIZE)
466 page_length = PAGE_SIZE - shmem_page_offset;
467
468 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
469 (page_to_phys(page) & (1 << 17)) != 0;
470
471 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
472 user_data, page_do_bit17_swizzling,
473 needs_clflush);
474 if (ret == 0)
475 goto next_page;
476
477 mutex_unlock(&dev->struct_mutex);
478
479 if (likely(!i915.prefault_disable) && !prefaulted) {
480 ret = fault_in_multipages_writeable(user_data, remain);
481 /* Userspace is tricking us, but we've already clobbered
482 * its pages with the prefault and promised to write the
483 * data up to the first fault. Hence ignore any errors
484 * and just continue. */
485 (void)ret;
486 prefaulted = 1;
487 }
488
489 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492
493 mutex_lock(&dev->struct_mutex);
494
495next_page:
496 mark_page_accessed(page);
497
498 if (ret)
499 goto out;
500
501 remain -= page_length;
502 user_data += page_length;
503 offset += page_length;
504 }
505
506out:
507 i915_gem_object_unpin_pages(obj);
508
509 return ret;
510}
511
512/**
513 * Reads data from the object referenced by handle.
514 *
515 * On error, the contents of *data are undefined.
516 */
517int
518i915_gem_pread_ioctl(struct drm_device *dev, void *data,
519 struct drm_file *file)
520{
521 struct drm_i915_gem_pread *args = data;
522 struct drm_i915_gem_object *obj;
523 int ret = 0;
524
525 if (args->size == 0)
526 return 0;
527
528 if (!access_ok(VERIFY_WRITE,
529 to_user_ptr(args->data_ptr),
530 args->size))
531 return -EFAULT;
532
533 ret = i915_mutex_lock_interruptible(dev);
534 if (ret)
535 return ret;
536
537 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
538 if (&obj->base == NULL) {
539 ret = -ENOENT;
540 goto unlock;
541 }
542
543 /* Bounds check source. */
544 if (args->offset > obj->base.size ||
545 args->size > obj->base.size - args->offset) {
546 ret = -EINVAL;
547 goto out;
548 }
549
550 /* prime objects have no backing filp to GEM pread/pwrite
551 * pages from.
552 */
553 if (!obj->base.filp) {
554 ret = -EINVAL;
555 goto out;
556 }
557
558 trace_i915_gem_object_pread(obj, args->offset, args->size);
559
560 ret = i915_gem_shmem_pread(dev, obj, args, file);
561
562out:
563 drm_gem_object_unreference(&obj->base);
564unlock:
565 mutex_unlock(&dev->struct_mutex);
566 return ret;
567}
568
569/* This is the fast write path which cannot handle
570 * page faults in the source data
571 */
572
573static inline int
574fast_user_write(struct io_mapping *mapping,
575 loff_t page_base, int page_offset,
576 char __user *user_data,
577 int length)
578{
579 void __iomem *vaddr_atomic;
580 void *vaddr;
581 unsigned long unwritten;
582
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 /* We can use the cpu mem copy function because this is X86. */
585 vaddr = (void __force*)vaddr_atomic + page_offset;
586 unwritten = __copy_from_user_inatomic_nocache(vaddr,
587 user_data, length);
588 io_mapping_unmap_atomic(vaddr_atomic);
589 return unwritten;
590}
591
592/**
593 * This is the fast pwrite path, where we copy the data directly from the
594 * user into the GTT, uncached.
595 */
596static int
597i915_gem_gtt_pwrite_fast(struct drm_device *dev,
598 struct drm_i915_gem_object *obj,
599 struct drm_i915_gem_pwrite *args,
600 struct drm_file *file)
601{
602 drm_i915_private_t *dev_priv = dev->dev_private;
603 ssize_t remain;
604 loff_t offset, page_base;
605 char __user *user_data;
606 int page_offset, page_length, ret;
607
608 ret = i915_gem_obj_ggtt_pin(obj, 0, true, true);
609 if (ret)
610 goto out;
611
612 ret = i915_gem_object_set_to_gtt_domain(obj, true);
613 if (ret)
614 goto out_unpin;
615
616 ret = i915_gem_object_put_fence(obj);
617 if (ret)
618 goto out_unpin;
619
620 user_data = to_user_ptr(args->data_ptr);
621 remain = args->size;
622
623 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
624
625 while (remain > 0) {
626 /* Operation in this page
627 *
628 * page_base = page offset within aperture
629 * page_offset = offset within page
630 * page_length = bytes to copy for this page
631 */
632 page_base = offset & PAGE_MASK;
633 page_offset = offset_in_page(offset);
634 page_length = remain;
635 if ((page_offset + remain) > PAGE_SIZE)
636 page_length = PAGE_SIZE - page_offset;
637
638 /* If we get a fault while copying data, then (presumably) our
639 * source page isn't available. Return the error and we'll
640 * retry in the slow path.
641 */
642 if (fast_user_write(dev_priv->gtt.mappable, page_base,
643 page_offset, user_data, page_length)) {
644 ret = -EFAULT;
645 goto out_unpin;
646 }
647
648 remain -= page_length;
649 user_data += page_length;
650 offset += page_length;
651 }
652
653out_unpin:
654 i915_gem_object_ggtt_unpin(obj);
655out:
656 return ret;
657}
658
659/* Per-page copy function for the shmem pwrite fastpath.
660 * Flushes invalid cachelines before writing to the target if
661 * needs_clflush_before is set and flushes out any written cachelines after
662 * writing if needs_clflush is set. */
663static int
664shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
665 char __user *user_data,
666 bool page_do_bit17_swizzling,
667 bool needs_clflush_before,
668 bool needs_clflush_after)
669{
670 char *vaddr;
671 int ret;
672
673 if (unlikely(page_do_bit17_swizzling))
674 return -EINVAL;
675
676 vaddr = kmap_atomic(page);
677 if (needs_clflush_before)
678 drm_clflush_virt_range(vaddr + shmem_page_offset,
679 page_length);
680 ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
681 user_data,
682 page_length);
683 if (needs_clflush_after)
684 drm_clflush_virt_range(vaddr + shmem_page_offset,
685 page_length);
686 kunmap_atomic(vaddr);
687
688 return ret ? -EFAULT : 0;
689}
690
691/* Only difference to the fast-path function is that this can handle bit17
692 * and uses non-atomic copy and kmap functions. */
693static int
694shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
695 char __user *user_data,
696 bool page_do_bit17_swizzling,
697 bool needs_clflush_before,
698 bool needs_clflush_after)
699{
700 char *vaddr;
701 int ret;
702
703 vaddr = kmap(page);
704 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
705 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
706 page_length,
707 page_do_bit17_swizzling);
708 if (page_do_bit17_swizzling)
709 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
710 user_data,
711 page_length);
712 else
713 ret = __copy_from_user(vaddr + shmem_page_offset,
714 user_data,
715 page_length);
716 if (needs_clflush_after)
717 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
718 page_length,
719 page_do_bit17_swizzling);
720 kunmap(page);
721
722 return ret ? -EFAULT : 0;
723}
724
725static int
726i915_gem_shmem_pwrite(struct drm_device *dev,
727 struct drm_i915_gem_object *obj,
728 struct drm_i915_gem_pwrite *args,
729 struct drm_file *file)
730{
731 ssize_t remain;
732 loff_t offset;
733 char __user *user_data;
734 int shmem_page_offset, page_length, ret = 0;
735 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
736 int hit_slowpath = 0;
737 int needs_clflush_after = 0;
738 int needs_clflush_before = 0;
739 struct sg_page_iter sg_iter;
740
741 user_data = to_user_ptr(args->data_ptr);
742 remain = args->size;
743
744 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
745
746 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
747 /* If we're not in the cpu write domain, set ourself into the gtt
748 * write domain and manually flush cachelines (if required). This
749 * optimizes for the case when the gpu will use the data
750 * right away and we therefore have to clflush anyway. */
751 needs_clflush_after = cpu_write_needs_clflush(obj);
752 ret = i915_gem_object_wait_rendering(obj, false);
753 if (ret)
754 return ret;
755 }
756 /* Same trick applies to invalidate partially written cachelines read
757 * before writing. */
758 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
759 needs_clflush_before =
760 !cpu_cache_is_coherent(dev, obj->cache_level);
761
762 ret = i915_gem_object_get_pages(obj);
763 if (ret)
764 return ret;
765
766 i915_gem_object_pin_pages(obj);
767
768 offset = args->offset;
769 obj->dirty = 1;
770
771 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
772 offset >> PAGE_SHIFT) {
773 struct page *page = sg_page_iter_page(&sg_iter);
774 int partial_cacheline_write;
775
776 if (remain <= 0)
777 break;
778
779 /* Operation in this page
780 *
781 * shmem_page_offset = offset within page in shmem file
782 * page_length = bytes to copy for this page
783 */
784 shmem_page_offset = offset_in_page(offset);
785
786 page_length = remain;
787 if ((shmem_page_offset + page_length) > PAGE_SIZE)
788 page_length = PAGE_SIZE - shmem_page_offset;
789
790 /* If we don't overwrite a cacheline completely we need to be
791 * careful to have up-to-date data by first clflushing. Don't
792 * overcomplicate things and flush the entire patch. */
793 partial_cacheline_write = needs_clflush_before &&
794 ((shmem_page_offset | page_length)
795 & (boot_cpu_data.x86_clflush_size - 1));
796
797 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
798 (page_to_phys(page) & (1 << 17)) != 0;
799
800 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
801 user_data, page_do_bit17_swizzling,
802 partial_cacheline_write,
803 needs_clflush_after);
804 if (ret == 0)
805 goto next_page;
806
807 hit_slowpath = 1;
808 mutex_unlock(&dev->struct_mutex);
809 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
810 user_data, page_do_bit17_swizzling,
811 partial_cacheline_write,
812 needs_clflush_after);
813
814 mutex_lock(&dev->struct_mutex);
815
816next_page:
817 set_page_dirty(page);
818 mark_page_accessed(page);
819
820 if (ret)
821 goto out;
822
823 remain -= page_length;
824 user_data += page_length;
825 offset += page_length;
826 }
827
828out:
829 i915_gem_object_unpin_pages(obj);
830
831 if (hit_slowpath) {
832 /*
833 * Fixup: Flush cpu caches in case we didn't flush the dirty
834 * cachelines in-line while writing and the object moved
835 * out of the cpu write domain while we've dropped the lock.
836 */
837 if (!needs_clflush_after &&
838 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
839 if (i915_gem_clflush_object(obj, obj->pin_display))
840 i915_gem_chipset_flush(dev);
841 }
842 }
843
844 if (needs_clflush_after)
845 i915_gem_chipset_flush(dev);
846
847 return ret;
848}
849
850/**
851 * Writes data to the object referenced by handle.
852 *
853 * On error, the contents of the buffer that were to be modified are undefined.
854 */
855int
856i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
857 struct drm_file *file)
858{
859 struct drm_i915_gem_pwrite *args = data;
860 struct drm_i915_gem_object *obj;
861 int ret;
862
863 if (args->size == 0)
864 return 0;
865
866 if (!access_ok(VERIFY_READ,
867 to_user_ptr(args->data_ptr),
868 args->size))
869 return -EFAULT;
870
871 if (likely(!i915.prefault_disable)) {
872 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
873 args->size);
874 if (ret)
875 return -EFAULT;
876 }
877
878 ret = i915_mutex_lock_interruptible(dev);
879 if (ret)
880 return ret;
881
882 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
883 if (&obj->base == NULL) {
884 ret = -ENOENT;
885 goto unlock;
886 }
887
888 /* Bounds check destination. */
889 if (args->offset > obj->base.size ||
890 args->size > obj->base.size - args->offset) {
891 ret = -EINVAL;
892 goto out;
893 }
894
895 /* prime objects have no backing filp to GEM pread/pwrite
896 * pages from.
897 */
898 if (!obj->base.filp) {
899 ret = -EINVAL;
900 goto out;
901 }
902
903 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
904
905 ret = -EFAULT;
906 /* We can only do the GTT pwrite on untiled buffers, as otherwise
907 * it would end up going through the fenced access, and we'll get
908 * different detiling behavior between reading and writing.
909 * pread/pwrite currently are reading and writing from the CPU
910 * perspective, requiring manual detiling by the client.
911 */
912 if (obj->phys_obj) {
913 ret = i915_gem_phys_pwrite(dev, obj, args, file);
914 goto out;
915 }
916
917 if (obj->tiling_mode == I915_TILING_NONE &&
918 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
919 cpu_write_needs_clflush(obj)) {
920 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
921 /* Note that the gtt paths might fail with non-page-backed user
922 * pointers (e.g. gtt mappings when moving data between
923 * textures). Fallback to the shmem path in that case. */
924 }
925
926 if (ret == -EFAULT || ret == -ENOSPC)
927 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
928
929out:
930 drm_gem_object_unreference(&obj->base);
931unlock:
932 mutex_unlock(&dev->struct_mutex);
933 return ret;
934}
935
936int
937i915_gem_check_wedge(struct i915_gpu_error *error,
938 bool interruptible)
939{
940 if (i915_reset_in_progress(error)) {
941 /* Non-interruptible callers can't handle -EAGAIN, hence return
942 * -EIO unconditionally for these. */
943 if (!interruptible)
944 return -EIO;
945
946 /* Recovery complete, but the reset failed ... */
947 if (i915_terminally_wedged(error))
948 return -EIO;
949
950 return -EAGAIN;
951 }
952
953 return 0;
954}
955
956/*
957 * Compare seqno against outstanding lazy request. Emit a request if they are
958 * equal.
959 */
960static int
961i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
962{
963 int ret;
964
965 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
966
967 ret = 0;
968 if (seqno == ring->outstanding_lazy_seqno)
969 ret = i915_add_request(ring, NULL);
970
971 return ret;
972}
973
974static void fake_irq(unsigned long data)
975{
976 wake_up_process((struct task_struct *)data);
977}
978
979static bool missed_irq(struct drm_i915_private *dev_priv,
980 struct intel_ring_buffer *ring)
981{
982 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
983}
984
985static bool can_wait_boost(struct drm_i915_file_private *file_priv)
986{
987 if (file_priv == NULL)
988 return true;
989
990 return !atomic_xchg(&file_priv->rps_wait_boost, true);
991}
992
993/**
994 * __wait_seqno - wait until execution of seqno has finished
995 * @ring: the ring expected to report seqno
996 * @seqno: duh!
997 * @reset_counter: reset sequence associated with the given seqno
998 * @interruptible: do an interruptible wait (normally yes)
999 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1000 *
1001 * Note: It is of utmost importance that the passed in seqno and reset_counter
1002 * values have been read by the caller in an smp safe manner. Where read-side
1003 * locks are involved, it is sufficient to read the reset_counter before
1004 * unlocking the lock that protects the seqno. For lockless tricks, the
1005 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1006 * inserted.
1007 *
1008 * Returns 0 if the seqno was found within the alloted time. Else returns the
1009 * errno with remaining time filled in timeout argument.
1010 */
1011static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1012 unsigned reset_counter,
1013 bool interruptible,
1014 struct timespec *timeout,
1015 struct drm_i915_file_private *file_priv)
1016{
1017 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1018 const bool irq_test_in_progress =
1019 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1020 struct timespec before, now;
1021 DEFINE_WAIT(wait);
1022 unsigned long timeout_expire;
1023 int ret;
1024
1025 WARN(dev_priv->pc8.irqs_disabled, "IRQs disabled\n");
1026
1027 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1028 return 0;
1029
1030 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1031
1032 if (dev_priv->info->gen >= 6 && can_wait_boost(file_priv)) {
1033 gen6_rps_boost(dev_priv);
1034 if (file_priv)
1035 mod_delayed_work(dev_priv->wq,
1036 &file_priv->mm.idle_work,
1037 msecs_to_jiffies(100));
1038 }
1039
1040 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1041 return -ENODEV;
1042
1043 /* Record current time in case interrupted by signal, or wedged */
1044 trace_i915_gem_request_wait_begin(ring, seqno);
1045 getrawmonotonic(&before);
1046 for (;;) {
1047 struct timer_list timer;
1048
1049 prepare_to_wait(&ring->irq_queue, &wait,
1050 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1051
1052 /* We need to check whether any gpu reset happened in between
1053 * the caller grabbing the seqno and now ... */
1054 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1055 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1056 * is truely gone. */
1057 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1058 if (ret == 0)
1059 ret = -EAGAIN;
1060 break;
1061 }
1062
1063 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1064 ret = 0;
1065 break;
1066 }
1067
1068 if (interruptible && signal_pending(current)) {
1069 ret = -ERESTARTSYS;
1070 break;
1071 }
1072
1073 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1074 ret = -ETIME;
1075 break;
1076 }
1077
1078 timer.function = NULL;
1079 if (timeout || missed_irq(dev_priv, ring)) {
1080 unsigned long expire;
1081
1082 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1083 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1084 mod_timer(&timer, expire);
1085 }
1086
1087 io_schedule();
1088
1089 if (timer.function) {
1090 del_singleshot_timer_sync(&timer);
1091 destroy_timer_on_stack(&timer);
1092 }
1093 }
1094 getrawmonotonic(&now);
1095 trace_i915_gem_request_wait_end(ring, seqno);
1096
1097 if (!irq_test_in_progress)
1098 ring->irq_put(ring);
1099
1100 finish_wait(&ring->irq_queue, &wait);
1101
1102 if (timeout) {
1103 struct timespec sleep_time = timespec_sub(now, before);
1104 *timeout = timespec_sub(*timeout, sleep_time);
1105 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1106 set_normalized_timespec(timeout, 0, 0);
1107 }
1108
1109 return ret;
1110}
1111
1112/**
1113 * Waits for a sequence number to be signaled, and cleans up the
1114 * request and object lists appropriately for that event.
1115 */
1116int
1117i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1118{
1119 struct drm_device *dev = ring->dev;
1120 struct drm_i915_private *dev_priv = dev->dev_private;
1121 bool interruptible = dev_priv->mm.interruptible;
1122 int ret;
1123
1124 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1125 BUG_ON(seqno == 0);
1126
1127 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1128 if (ret)
1129 return ret;
1130
1131 ret = i915_gem_check_olr(ring, seqno);
1132 if (ret)
1133 return ret;
1134
1135 return __wait_seqno(ring, seqno,
1136 atomic_read(&dev_priv->gpu_error.reset_counter),
1137 interruptible, NULL, NULL);
1138}
1139
1140static int
1141i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1142 struct intel_ring_buffer *ring)
1143{
1144 i915_gem_retire_requests_ring(ring);
1145
1146 /* Manually manage the write flush as we may have not yet
1147 * retired the buffer.
1148 *
1149 * Note that the last_write_seqno is always the earlier of
1150 * the two (read/write) seqno, so if we haved successfully waited,
1151 * we know we have passed the last write.
1152 */
1153 obj->last_write_seqno = 0;
1154 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1155
1156 return 0;
1157}
1158
1159/**
1160 * Ensures that all rendering to the object has completed and the object is
1161 * safe to unbind from the GTT or access from the CPU.
1162 */
1163static __must_check int
1164i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1165 bool readonly)
1166{
1167 struct intel_ring_buffer *ring = obj->ring;
1168 u32 seqno;
1169 int ret;
1170
1171 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1172 if (seqno == 0)
1173 return 0;
1174
1175 ret = i915_wait_seqno(ring, seqno);
1176 if (ret)
1177 return ret;
1178
1179 return i915_gem_object_wait_rendering__tail(obj, ring);
1180}
1181
1182/* A nonblocking variant of the above wait. This is a highly dangerous routine
1183 * as the object state may change during this call.
1184 */
1185static __must_check int
1186i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1187 struct drm_file *file,
1188 bool readonly)
1189{
1190 struct drm_device *dev = obj->base.dev;
1191 struct drm_i915_private *dev_priv = dev->dev_private;
1192 struct intel_ring_buffer *ring = obj->ring;
1193 unsigned reset_counter;
1194 u32 seqno;
1195 int ret;
1196
1197 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1198 BUG_ON(!dev_priv->mm.interruptible);
1199
1200 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1201 if (seqno == 0)
1202 return 0;
1203
1204 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1205 if (ret)
1206 return ret;
1207
1208 ret = i915_gem_check_olr(ring, seqno);
1209 if (ret)
1210 return ret;
1211
1212 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1213 mutex_unlock(&dev->struct_mutex);
1214 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file->driver_priv);
1215 mutex_lock(&dev->struct_mutex);
1216 if (ret)
1217 return ret;
1218
1219 return i915_gem_object_wait_rendering__tail(obj, ring);
1220}
1221
1222/**
1223 * Called when user space prepares to use an object with the CPU, either
1224 * through the mmap ioctl's mapping or a GTT mapping.
1225 */
1226int
1227i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1228 struct drm_file *file)
1229{
1230 struct drm_i915_gem_set_domain *args = data;
1231 struct drm_i915_gem_object *obj;
1232 uint32_t read_domains = args->read_domains;
1233 uint32_t write_domain = args->write_domain;
1234 int ret;
1235
1236 /* Only handle setting domains to types used by the CPU. */
1237 if (write_domain & I915_GEM_GPU_DOMAINS)
1238 return -EINVAL;
1239
1240 if (read_domains & I915_GEM_GPU_DOMAINS)
1241 return -EINVAL;
1242
1243 /* Having something in the write domain implies it's in the read
1244 * domain, and only that read domain. Enforce that in the request.
1245 */
1246 if (write_domain != 0 && read_domains != write_domain)
1247 return -EINVAL;
1248
1249 ret = i915_mutex_lock_interruptible(dev);
1250 if (ret)
1251 return ret;
1252
1253 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254 if (&obj->base == NULL) {
1255 ret = -ENOENT;
1256 goto unlock;
1257 }
1258
1259 /* Try to flush the object off the GPU without holding the lock.
1260 * We will repeat the flush holding the lock in the normal manner
1261 * to catch cases where we are gazumped.
1262 */
1263 ret = i915_gem_object_wait_rendering__nonblocking(obj, file, !write_domain);
1264 if (ret)
1265 goto unref;
1266
1267 if (read_domains & I915_GEM_DOMAIN_GTT) {
1268 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1269
1270 /* Silently promote "you're not bound, there was nothing to do"
1271 * to success, since the client was just asking us to
1272 * make sure everything was done.
1273 */
1274 if (ret == -EINVAL)
1275 ret = 0;
1276 } else {
1277 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1278 }
1279
1280unref:
1281 drm_gem_object_unreference(&obj->base);
1282unlock:
1283 mutex_unlock(&dev->struct_mutex);
1284 return ret;
1285}
1286
1287/**
1288 * Called when user space has done writes to this buffer
1289 */
1290int
1291i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1292 struct drm_file *file)
1293{
1294 struct drm_i915_gem_sw_finish *args = data;
1295 struct drm_i915_gem_object *obj;
1296 int ret = 0;
1297
1298 ret = i915_mutex_lock_interruptible(dev);
1299 if (ret)
1300 return ret;
1301
1302 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1303 if (&obj->base == NULL) {
1304 ret = -ENOENT;
1305 goto unlock;
1306 }
1307
1308 /* Pinned buffers may be scanout, so flush the cache */
1309 if (obj->pin_display)
1310 i915_gem_object_flush_cpu_write_domain(obj, true);
1311
1312 drm_gem_object_unreference(&obj->base);
1313unlock:
1314 mutex_unlock(&dev->struct_mutex);
1315 return ret;
1316}
1317
1318/**
1319 * Maps the contents of an object, returning the address it is mapped
1320 * into.
1321 *
1322 * While the mapping holds a reference on the contents of the object, it doesn't
1323 * imply a ref on the object itself.
1324 */
1325int
1326i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1327 struct drm_file *file)
1328{
1329 struct drm_i915_gem_mmap *args = data;
1330 struct drm_gem_object *obj;
1331 unsigned long addr;
1332
1333 obj = drm_gem_object_lookup(dev, file, args->handle);
1334 if (obj == NULL)
1335 return -ENOENT;
1336
1337 /* prime objects have no backing filp to GEM mmap
1338 * pages from.
1339 */
1340 if (!obj->filp) {
1341 drm_gem_object_unreference_unlocked(obj);
1342 return -EINVAL;
1343 }
1344
1345 addr = vm_mmap(obj->filp, 0, args->size,
1346 PROT_READ | PROT_WRITE, MAP_SHARED,
1347 args->offset);
1348 drm_gem_object_unreference_unlocked(obj);
1349 if (IS_ERR((void *)addr))
1350 return addr;
1351
1352 args->addr_ptr = (uint64_t) addr;
1353
1354 return 0;
1355}
1356
1357/**
1358 * i915_gem_fault - fault a page into the GTT
1359 * vma: VMA in question
1360 * vmf: fault info
1361 *
1362 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1363 * from userspace. The fault handler takes care of binding the object to
1364 * the GTT (if needed), allocating and programming a fence register (again,
1365 * only if needed based on whether the old reg is still valid or the object
1366 * is tiled) and inserting a new PTE into the faulting process.
1367 *
1368 * Note that the faulting process may involve evicting existing objects
1369 * from the GTT and/or fence registers to make room. So performance may
1370 * suffer if the GTT working set is large or there are few fence registers
1371 * left.
1372 */
1373int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1374{
1375 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1376 struct drm_device *dev = obj->base.dev;
1377 drm_i915_private_t *dev_priv = dev->dev_private;
1378 pgoff_t page_offset;
1379 unsigned long pfn;
1380 int ret = 0;
1381 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1382
1383 intel_runtime_pm_get(dev_priv);
1384
1385 /* We don't use vmf->pgoff since that has the fake offset */
1386 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1387 PAGE_SHIFT;
1388
1389 ret = i915_mutex_lock_interruptible(dev);
1390 if (ret)
1391 goto out;
1392
1393 trace_i915_gem_object_fault(obj, page_offset, true, write);
1394
1395 /* Access to snoopable pages through the GTT is incoherent. */
1396 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1397 ret = -EINVAL;
1398 goto unlock;
1399 }
1400
1401 /* Now bind it into the GTT if needed */
1402 ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
1403 if (ret)
1404 goto unlock;
1405
1406 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1407 if (ret)
1408 goto unpin;
1409
1410 ret = i915_gem_object_get_fence(obj);
1411 if (ret)
1412 goto unpin;
1413
1414 obj->fault_mappable = true;
1415
1416 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1417 pfn >>= PAGE_SHIFT;
1418 pfn += page_offset;
1419
1420 /* Finally, remap it using the new GTT offset */
1421 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1422unpin:
1423 i915_gem_object_ggtt_unpin(obj);
1424unlock:
1425 mutex_unlock(&dev->struct_mutex);
1426out:
1427 switch (ret) {
1428 case -EIO:
1429 /* If this -EIO is due to a gpu hang, give the reset code a
1430 * chance to clean up the mess. Otherwise return the proper
1431 * SIGBUS. */
1432 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1433 ret = VM_FAULT_SIGBUS;
1434 break;
1435 }
1436 case -EAGAIN:
1437 /*
1438 * EAGAIN means the gpu is hung and we'll wait for the error
1439 * handler to reset everything when re-faulting in
1440 * i915_mutex_lock_interruptible.
1441 */
1442 case 0:
1443 case -ERESTARTSYS:
1444 case -EINTR:
1445 case -EBUSY:
1446 /*
1447 * EBUSY is ok: this just means that another thread
1448 * already did the job.
1449 */
1450 ret = VM_FAULT_NOPAGE;
1451 break;
1452 case -ENOMEM:
1453 ret = VM_FAULT_OOM;
1454 break;
1455 case -ENOSPC:
1456 ret = VM_FAULT_SIGBUS;
1457 break;
1458 default:
1459 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1460 ret = VM_FAULT_SIGBUS;
1461 break;
1462 }
1463
1464 intel_runtime_pm_put(dev_priv);
1465 return ret;
1466}
1467
1468void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1469{
1470 struct i915_vma *vma;
1471
1472 /*
1473 * Only the global gtt is relevant for gtt memory mappings, so restrict
1474 * list traversal to objects bound into the global address space. Note
1475 * that the active list should be empty, but better safe than sorry.
1476 */
1477 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1478 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1479 i915_gem_release_mmap(vma->obj);
1480 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1481 i915_gem_release_mmap(vma->obj);
1482}
1483
1484/**
1485 * i915_gem_release_mmap - remove physical page mappings
1486 * @obj: obj in question
1487 *
1488 * Preserve the reservation of the mmapping with the DRM core code, but
1489 * relinquish ownership of the pages back to the system.
1490 *
1491 * It is vital that we remove the page mapping if we have mapped a tiled
1492 * object through the GTT and then lose the fence register due to
1493 * resource pressure. Similarly if the object has been moved out of the
1494 * aperture, than pages mapped into userspace must be revoked. Removing the
1495 * mapping will then trigger a page fault on the next user access, allowing
1496 * fixup by i915_gem_fault().
1497 */
1498void
1499i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1500{
1501 if (!obj->fault_mappable)
1502 return;
1503
1504 drm_vma_node_unmap(&obj->base.vma_node, obj->base.dev->dev_mapping);
1505 obj->fault_mappable = false;
1506}
1507
1508uint32_t
1509i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1510{
1511 uint32_t gtt_size;
1512
1513 if (INTEL_INFO(dev)->gen >= 4 ||
1514 tiling_mode == I915_TILING_NONE)
1515 return size;
1516
1517 /* Previous chips need a power-of-two fence region when tiling */
1518 if (INTEL_INFO(dev)->gen == 3)
1519 gtt_size = 1024*1024;
1520 else
1521 gtt_size = 512*1024;
1522
1523 while (gtt_size < size)
1524 gtt_size <<= 1;
1525
1526 return gtt_size;
1527}
1528
1529/**
1530 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1531 * @obj: object to check
1532 *
1533 * Return the required GTT alignment for an object, taking into account
1534 * potential fence register mapping.
1535 */
1536uint32_t
1537i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1538 int tiling_mode, bool fenced)
1539{
1540 /*
1541 * Minimum alignment is 4k (GTT page size), but might be greater
1542 * if a fence register is needed for the object.
1543 */
1544 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1545 tiling_mode == I915_TILING_NONE)
1546 return 4096;
1547
1548 /*
1549 * Previous chips need to be aligned to the size of the smallest
1550 * fence register that can contain the object.
1551 */
1552 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1553}
1554
1555static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1556{
1557 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1558 int ret;
1559
1560 if (drm_vma_node_has_offset(&obj->base.vma_node))
1561 return 0;
1562
1563 dev_priv->mm.shrinker_no_lock_stealing = true;
1564
1565 ret = drm_gem_create_mmap_offset(&obj->base);
1566 if (ret != -ENOSPC)
1567 goto out;
1568
1569 /* Badly fragmented mmap space? The only way we can recover
1570 * space is by destroying unwanted objects. We can't randomly release
1571 * mmap_offsets as userspace expects them to be persistent for the
1572 * lifetime of the objects. The closest we can is to release the
1573 * offsets on purgeable objects by truncating it and marking it purged,
1574 * which prevents userspace from ever using that object again.
1575 */
1576 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1577 ret = drm_gem_create_mmap_offset(&obj->base);
1578 if (ret != -ENOSPC)
1579 goto out;
1580
1581 i915_gem_shrink_all(dev_priv);
1582 ret = drm_gem_create_mmap_offset(&obj->base);
1583out:
1584 dev_priv->mm.shrinker_no_lock_stealing = false;
1585
1586 return ret;
1587}
1588
1589static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1590{
1591 drm_gem_free_mmap_offset(&obj->base);
1592}
1593
1594int
1595i915_gem_mmap_gtt(struct drm_file *file,
1596 struct drm_device *dev,
1597 uint32_t handle,
1598 uint64_t *offset)
1599{
1600 struct drm_i915_private *dev_priv = dev->dev_private;
1601 struct drm_i915_gem_object *obj;
1602 int ret;
1603
1604 ret = i915_mutex_lock_interruptible(dev);
1605 if (ret)
1606 return ret;
1607
1608 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1609 if (&obj->base == NULL) {
1610 ret = -ENOENT;
1611 goto unlock;
1612 }
1613
1614 if (obj->base.size > dev_priv->gtt.mappable_end) {
1615 ret = -E2BIG;
1616 goto out;
1617 }
1618
1619 if (obj->madv != I915_MADV_WILLNEED) {
1620 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1621 ret = -EINVAL;
1622 goto out;
1623 }
1624
1625 ret = i915_gem_object_create_mmap_offset(obj);
1626 if (ret)
1627 goto out;
1628
1629 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1630
1631out:
1632 drm_gem_object_unreference(&obj->base);
1633unlock:
1634 mutex_unlock(&dev->struct_mutex);
1635 return ret;
1636}
1637
1638/**
1639 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1640 * @dev: DRM device
1641 * @data: GTT mapping ioctl data
1642 * @file: GEM object info
1643 *
1644 * Simply returns the fake offset to userspace so it can mmap it.
1645 * The mmap call will end up in drm_gem_mmap(), which will set things
1646 * up so we can get faults in the handler above.
1647 *
1648 * The fault handler will take care of binding the object into the GTT
1649 * (since it may have been evicted to make room for something), allocating
1650 * a fence register, and mapping the appropriate aperture address into
1651 * userspace.
1652 */
1653int
1654i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1655 struct drm_file *file)
1656{
1657 struct drm_i915_gem_mmap_gtt *args = data;
1658
1659 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1660}
1661
1662/* Immediately discard the backing storage */
1663static void
1664i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1665{
1666 struct inode *inode;
1667
1668 i915_gem_object_free_mmap_offset(obj);
1669
1670 if (obj->base.filp == NULL)
1671 return;
1672
1673 /* Our goal here is to return as much of the memory as
1674 * is possible back to the system as we are called from OOM.
1675 * To do this we must instruct the shmfs to drop all of its
1676 * backing pages, *now*.
1677 */
1678 inode = file_inode(obj->base.filp);
1679 shmem_truncate_range(inode, 0, (loff_t)-1);
1680
1681 obj->madv = __I915_MADV_PURGED;
1682}
1683
1684static inline int
1685i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1686{
1687 return obj->madv == I915_MADV_DONTNEED;
1688}
1689
1690static void
1691i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1692{
1693 struct sg_page_iter sg_iter;
1694 int ret;
1695
1696 BUG_ON(obj->madv == __I915_MADV_PURGED);
1697
1698 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1699 if (ret) {
1700 /* In the event of a disaster, abandon all caches and
1701 * hope for the best.
1702 */
1703 WARN_ON(ret != -EIO);
1704 i915_gem_clflush_object(obj, true);
1705 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1706 }
1707
1708 if (i915_gem_object_needs_bit17_swizzle(obj))
1709 i915_gem_object_save_bit_17_swizzle(obj);
1710
1711 if (obj->madv == I915_MADV_DONTNEED)
1712 obj->dirty = 0;
1713
1714 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1715 struct page *page = sg_page_iter_page(&sg_iter);
1716
1717 if (obj->dirty)
1718 set_page_dirty(page);
1719
1720 if (obj->madv == I915_MADV_WILLNEED)
1721 mark_page_accessed(page);
1722
1723 page_cache_release(page);
1724 }
1725 obj->dirty = 0;
1726
1727 sg_free_table(obj->pages);
1728 kfree(obj->pages);
1729}
1730
1731int
1732i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1733{
1734 const struct drm_i915_gem_object_ops *ops = obj->ops;
1735
1736 if (obj->pages == NULL)
1737 return 0;
1738
1739 if (obj->pages_pin_count)
1740 return -EBUSY;
1741
1742 BUG_ON(i915_gem_obj_bound_any(obj));
1743
1744 /* ->put_pages might need to allocate memory for the bit17 swizzle
1745 * array, hence protect them from being reaped by removing them from gtt
1746 * lists early. */
1747 list_del(&obj->global_list);
1748
1749 ops->put_pages(obj);
1750 obj->pages = NULL;
1751
1752 if (i915_gem_object_is_purgeable(obj))
1753 i915_gem_object_truncate(obj);
1754
1755 return 0;
1756}
1757
1758static unsigned long
1759__i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1760 bool purgeable_only)
1761{
1762 struct list_head still_bound_list;
1763 struct drm_i915_gem_object *obj, *next;
1764 unsigned long count = 0;
1765
1766 list_for_each_entry_safe(obj, next,
1767 &dev_priv->mm.unbound_list,
1768 global_list) {
1769 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1770 i915_gem_object_put_pages(obj) == 0) {
1771 count += obj->base.size >> PAGE_SHIFT;
1772 if (count >= target)
1773 return count;
1774 }
1775 }
1776
1777 /*
1778 * As we may completely rewrite the bound list whilst unbinding
1779 * (due to retiring requests) we have to strictly process only
1780 * one element of the list at the time, and recheck the list
1781 * on every iteration.
1782 */
1783 INIT_LIST_HEAD(&still_bound_list);
1784 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1785 struct i915_vma *vma, *v;
1786
1787 obj = list_first_entry(&dev_priv->mm.bound_list,
1788 typeof(*obj), global_list);
1789 list_move_tail(&obj->global_list, &still_bound_list);
1790
1791 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1792 continue;
1793
1794 /*
1795 * Hold a reference whilst we unbind this object, as we may
1796 * end up waiting for and retiring requests. This might
1797 * release the final reference (held by the active list)
1798 * and result in the object being freed from under us.
1799 * in this object being freed.
1800 *
1801 * Note 1: Shrinking the bound list is special since only active
1802 * (and hence bound objects) can contain such limbo objects, so
1803 * we don't need special tricks for shrinking the unbound list.
1804 * The only other place where we have to be careful with active
1805 * objects suddenly disappearing due to retiring requests is the
1806 * eviction code.
1807 *
1808 * Note 2: Even though the bound list doesn't hold a reference
1809 * to the object we can safely grab one here: The final object
1810 * unreferencing and the bound_list are both protected by the
1811 * dev->struct_mutex and so we won't ever be able to observe an
1812 * object on the bound_list with a reference count equals 0.
1813 */
1814 drm_gem_object_reference(&obj->base);
1815
1816 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1817 if (i915_vma_unbind(vma))
1818 break;
1819
1820 if (i915_gem_object_put_pages(obj) == 0)
1821 count += obj->base.size >> PAGE_SHIFT;
1822
1823 drm_gem_object_unreference(&obj->base);
1824 }
1825 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1826
1827 return count;
1828}
1829
1830static unsigned long
1831i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1832{
1833 return __i915_gem_shrink(dev_priv, target, true);
1834}
1835
1836static unsigned long
1837i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1838{
1839 struct drm_i915_gem_object *obj, *next;
1840 long freed = 0;
1841
1842 i915_gem_evict_everything(dev_priv->dev);
1843
1844 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1845 global_list) {
1846 if (i915_gem_object_put_pages(obj) == 0)
1847 freed += obj->base.size >> PAGE_SHIFT;
1848 }
1849 return freed;
1850}
1851
1852static int
1853i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1854{
1855 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1856 int page_count, i;
1857 struct address_space *mapping;
1858 struct sg_table *st;
1859 struct scatterlist *sg;
1860 struct sg_page_iter sg_iter;
1861 struct page *page;
1862 unsigned long last_pfn = 0; /* suppress gcc warning */
1863 gfp_t gfp;
1864
1865 /* Assert that the object is not currently in any GPU domain. As it
1866 * wasn't in the GTT, there shouldn't be any way it could have been in
1867 * a GPU cache
1868 */
1869 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1870 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1871
1872 st = kmalloc(sizeof(*st), GFP_KERNEL);
1873 if (st == NULL)
1874 return -ENOMEM;
1875
1876 page_count = obj->base.size / PAGE_SIZE;
1877 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1878 kfree(st);
1879 return -ENOMEM;
1880 }
1881
1882 /* Get the list of pages out of our struct file. They'll be pinned
1883 * at this point until we release them.
1884 *
1885 * Fail silently without starting the shrinker
1886 */
1887 mapping = file_inode(obj->base.filp)->i_mapping;
1888 gfp = mapping_gfp_mask(mapping);
1889 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1890 gfp &= ~(__GFP_IO | __GFP_WAIT);
1891 sg = st->sgl;
1892 st->nents = 0;
1893 for (i = 0; i < page_count; i++) {
1894 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1895 if (IS_ERR(page)) {
1896 i915_gem_purge(dev_priv, page_count);
1897 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1898 }
1899 if (IS_ERR(page)) {
1900 /* We've tried hard to allocate the memory by reaping
1901 * our own buffer, now let the real VM do its job and
1902 * go down in flames if truly OOM.
1903 */
1904 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1905 gfp |= __GFP_IO | __GFP_WAIT;
1906
1907 i915_gem_shrink_all(dev_priv);
1908 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1909 if (IS_ERR(page))
1910 goto err_pages;
1911
1912 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1913 gfp &= ~(__GFP_IO | __GFP_WAIT);
1914 }
1915#ifdef CONFIG_SWIOTLB
1916 if (swiotlb_nr_tbl()) {
1917 st->nents++;
1918 sg_set_page(sg, page, PAGE_SIZE, 0);
1919 sg = sg_next(sg);
1920 continue;
1921 }
1922#endif
1923 if (!i || page_to_pfn(page) != last_pfn + 1) {
1924 if (i)
1925 sg = sg_next(sg);
1926 st->nents++;
1927 sg_set_page(sg, page, PAGE_SIZE, 0);
1928 } else {
1929 sg->length += PAGE_SIZE;
1930 }
1931 last_pfn = page_to_pfn(page);
1932
1933 /* Check that the i965g/gm workaround works. */
1934 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1935 }
1936#ifdef CONFIG_SWIOTLB
1937 if (!swiotlb_nr_tbl())
1938#endif
1939 sg_mark_end(sg);
1940 obj->pages = st;
1941
1942 if (i915_gem_object_needs_bit17_swizzle(obj))
1943 i915_gem_object_do_bit_17_swizzle(obj);
1944
1945 return 0;
1946
1947err_pages:
1948 sg_mark_end(sg);
1949 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1950 page_cache_release(sg_page_iter_page(&sg_iter));
1951 sg_free_table(st);
1952 kfree(st);
1953 return PTR_ERR(page);
1954}
1955
1956/* Ensure that the associated pages are gathered from the backing storage
1957 * and pinned into our object. i915_gem_object_get_pages() may be called
1958 * multiple times before they are released by a single call to
1959 * i915_gem_object_put_pages() - once the pages are no longer referenced
1960 * either as a result of memory pressure (reaping pages under the shrinker)
1961 * or as the object is itself released.
1962 */
1963int
1964i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1965{
1966 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1967 const struct drm_i915_gem_object_ops *ops = obj->ops;
1968 int ret;
1969
1970 if (obj->pages)
1971 return 0;
1972
1973 if (obj->madv != I915_MADV_WILLNEED) {
1974 DRM_ERROR("Attempting to obtain a purgeable object\n");
1975 return -EINVAL;
1976 }
1977
1978 BUG_ON(obj->pages_pin_count);
1979
1980 ret = ops->get_pages(obj);
1981 if (ret)
1982 return ret;
1983
1984 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
1985 return 0;
1986}
1987
1988static void
1989i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1990 struct intel_ring_buffer *ring)
1991{
1992 struct drm_device *dev = obj->base.dev;
1993 struct drm_i915_private *dev_priv = dev->dev_private;
1994 u32 seqno = intel_ring_get_seqno(ring);
1995
1996 BUG_ON(ring == NULL);
1997 if (obj->ring != ring && obj->last_write_seqno) {
1998 /* Keep the seqno relative to the current ring */
1999 obj->last_write_seqno = seqno;
2000 }
2001 obj->ring = ring;
2002
2003 /* Add a reference if we're newly entering the active list. */
2004 if (!obj->active) {
2005 drm_gem_object_reference(&obj->base);
2006 obj->active = 1;
2007 }
2008
2009 list_move_tail(&obj->ring_list, &ring->active_list);
2010
2011 obj->last_read_seqno = seqno;
2012
2013 if (obj->fenced_gpu_access) {
2014 obj->last_fenced_seqno = seqno;
2015
2016 /* Bump MRU to take account of the delayed flush */
2017 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2018 struct drm_i915_fence_reg *reg;
2019
2020 reg = &dev_priv->fence_regs[obj->fence_reg];
2021 list_move_tail(&reg->lru_list,
2022 &dev_priv->mm.fence_list);
2023 }
2024 }
2025}
2026
2027void i915_vma_move_to_active(struct i915_vma *vma,
2028 struct intel_ring_buffer *ring)
2029{
2030 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2031 return i915_gem_object_move_to_active(vma->obj, ring);
2032}
2033
2034static void
2035i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2036{
2037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2038 struct i915_address_space *vm;
2039 struct i915_vma *vma;
2040
2041 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2042 BUG_ON(!obj->active);
2043
2044 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2045 vma = i915_gem_obj_to_vma(obj, vm);
2046 if (vma && !list_empty(&vma->mm_list))
2047 list_move_tail(&vma->mm_list, &vm->inactive_list);
2048 }
2049
2050 list_del_init(&obj->ring_list);
2051 obj->ring = NULL;
2052
2053 obj->last_read_seqno = 0;
2054 obj->last_write_seqno = 0;
2055 obj->base.write_domain = 0;
2056
2057 obj->last_fenced_seqno = 0;
2058 obj->fenced_gpu_access = false;
2059
2060 obj->active = 0;
2061 drm_gem_object_unreference(&obj->base);
2062
2063 WARN_ON(i915_verify_lists(dev));
2064}
2065
2066static int
2067i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2068{
2069 struct drm_i915_private *dev_priv = dev->dev_private;
2070 struct intel_ring_buffer *ring;
2071 int ret, i, j;
2072
2073 /* Carefully retire all requests without writing to the rings */
2074 for_each_ring(ring, dev_priv, i) {
2075 ret = intel_ring_idle(ring);
2076 if (ret)
2077 return ret;
2078 }
2079 i915_gem_retire_requests(dev);
2080
2081 /* Finally reset hw state */
2082 for_each_ring(ring, dev_priv, i) {
2083 intel_ring_init_seqno(ring, seqno);
2084
2085 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2086 ring->sync_seqno[j] = 0;
2087 }
2088
2089 return 0;
2090}
2091
2092int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2093{
2094 struct drm_i915_private *dev_priv = dev->dev_private;
2095 int ret;
2096
2097 if (seqno == 0)
2098 return -EINVAL;
2099
2100 /* HWS page needs to be set less than what we
2101 * will inject to ring
2102 */
2103 ret = i915_gem_init_seqno(dev, seqno - 1);
2104 if (ret)
2105 return ret;
2106
2107 /* Carefully set the last_seqno value so that wrap
2108 * detection still works
2109 */
2110 dev_priv->next_seqno = seqno;
2111 dev_priv->last_seqno = seqno - 1;
2112 if (dev_priv->last_seqno == 0)
2113 dev_priv->last_seqno--;
2114
2115 return 0;
2116}
2117
2118int
2119i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2120{
2121 struct drm_i915_private *dev_priv = dev->dev_private;
2122
2123 /* reserve 0 for non-seqno */
2124 if (dev_priv->next_seqno == 0) {
2125 int ret = i915_gem_init_seqno(dev, 0);
2126 if (ret)
2127 return ret;
2128
2129 dev_priv->next_seqno = 1;
2130 }
2131
2132 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2133 return 0;
2134}
2135
2136int __i915_add_request(struct intel_ring_buffer *ring,
2137 struct drm_file *file,
2138 struct drm_i915_gem_object *obj,
2139 u32 *out_seqno)
2140{
2141 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2142 struct drm_i915_gem_request *request;
2143 u32 request_ring_position, request_start;
2144 int was_empty;
2145 int ret;
2146
2147 request_start = intel_ring_get_tail(ring);
2148 /*
2149 * Emit any outstanding flushes - execbuf can fail to emit the flush
2150 * after having emitted the batchbuffer command. Hence we need to fix
2151 * things up similar to emitting the lazy request. The difference here
2152 * is that the flush _must_ happen before the next request, no matter
2153 * what.
2154 */
2155 ret = intel_ring_flush_all_caches(ring);
2156 if (ret)
2157 return ret;
2158
2159 request = ring->preallocated_lazy_request;
2160 if (WARN_ON(request == NULL))
2161 return -ENOMEM;
2162
2163 /* Record the position of the start of the request so that
2164 * should we detect the updated seqno part-way through the
2165 * GPU processing the request, we never over-estimate the
2166 * position of the head.
2167 */
2168 request_ring_position = intel_ring_get_tail(ring);
2169
2170 ret = ring->add_request(ring);
2171 if (ret)
2172 return ret;
2173
2174 request->seqno = intel_ring_get_seqno(ring);
2175 request->ring = ring;
2176 request->head = request_start;
2177 request->tail = request_ring_position;
2178
2179 /* Whilst this request exists, batch_obj will be on the
2180 * active_list, and so will hold the active reference. Only when this
2181 * request is retired will the the batch_obj be moved onto the
2182 * inactive_list and lose its active reference. Hence we do not need
2183 * to explicitly hold another reference here.
2184 */
2185 request->batch_obj = obj;
2186
2187 /* Hold a reference to the current context so that we can inspect
2188 * it later in case a hangcheck error event fires.
2189 */
2190 request->ctx = ring->last_context;
2191 if (request->ctx)
2192 i915_gem_context_reference(request->ctx);
2193
2194 request->emitted_jiffies = jiffies;
2195 was_empty = list_empty(&ring->request_list);
2196 list_add_tail(&request->list, &ring->request_list);
2197 request->file_priv = NULL;
2198
2199 if (file) {
2200 struct drm_i915_file_private *file_priv = file->driver_priv;
2201
2202 spin_lock(&file_priv->mm.lock);
2203 request->file_priv = file_priv;
2204 list_add_tail(&request->client_list,
2205 &file_priv->mm.request_list);
2206 spin_unlock(&file_priv->mm.lock);
2207 }
2208
2209 trace_i915_gem_request_add(ring, request->seqno);
2210 ring->outstanding_lazy_seqno = 0;
2211 ring->preallocated_lazy_request = NULL;
2212
2213 if (!dev_priv->ums.mm_suspended) {
2214 i915_queue_hangcheck(ring->dev);
2215
2216 if (was_empty) {
2217 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2218 queue_delayed_work(dev_priv->wq,
2219 &dev_priv->mm.retire_work,
2220 round_jiffies_up_relative(HZ));
2221 intel_mark_busy(dev_priv->dev);
2222 }
2223 }
2224
2225 if (out_seqno)
2226 *out_seqno = request->seqno;
2227 return 0;
2228}
2229
2230static inline void
2231i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2232{
2233 struct drm_i915_file_private *file_priv = request->file_priv;
2234
2235 if (!file_priv)
2236 return;
2237
2238 spin_lock(&file_priv->mm.lock);
2239 list_del(&request->client_list);
2240 request->file_priv = NULL;
2241 spin_unlock(&file_priv->mm.lock);
2242}
2243
2244static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2245 const struct i915_hw_context *ctx)
2246{
2247 unsigned long elapsed;
2248
2249 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2250
2251 if (ctx->hang_stats.banned)
2252 return true;
2253
2254 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2255 if (dev_priv->gpu_error.stop_rings == 0 &&
2256 i915_gem_context_is_default(ctx)) {
2257 DRM_ERROR("gpu hanging too fast, banning!\n");
2258 } else {
2259 DRM_DEBUG("context hanging too fast, banning!\n");
2260 }
2261
2262 return true;
2263 }
2264
2265 return false;
2266}
2267
2268static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2269 struct i915_hw_context *ctx,
2270 const bool guilty)
2271{
2272 struct i915_ctx_hang_stats *hs;
2273
2274 if (WARN_ON(!ctx))
2275 return;
2276
2277 hs = &ctx->hang_stats;
2278
2279 if (guilty) {
2280 hs->banned = i915_context_is_banned(dev_priv, ctx);
2281 hs->batch_active++;
2282 hs->guilty_ts = get_seconds();
2283 } else {
2284 hs->batch_pending++;
2285 }
2286}
2287
2288static void i915_gem_free_request(struct drm_i915_gem_request *request)
2289{
2290 list_del(&request->list);
2291 i915_gem_request_remove_from_client(request);
2292
2293 if (request->ctx)
2294 i915_gem_context_unreference(request->ctx);
2295
2296 kfree(request);
2297}
2298
2299static struct drm_i915_gem_request *
2300i915_gem_find_first_non_complete(struct intel_ring_buffer *ring)
2301{
2302 struct drm_i915_gem_request *request;
2303 const u32 completed_seqno = ring->get_seqno(ring, false);
2304
2305 list_for_each_entry(request, &ring->request_list, list) {
2306 if (i915_seqno_passed(completed_seqno, request->seqno))
2307 continue;
2308
2309 return request;
2310 }
2311
2312 return NULL;
2313}
2314
2315static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2316 struct intel_ring_buffer *ring)
2317{
2318 struct drm_i915_gem_request *request;
2319 bool ring_hung;
2320
2321 request = i915_gem_find_first_non_complete(ring);
2322
2323 if (request == NULL)
2324 return;
2325
2326 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2327
2328 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2329
2330 list_for_each_entry_continue(request, &ring->request_list, list)
2331 i915_set_reset_status(dev_priv, request->ctx, false);
2332}
2333
2334static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2335 struct intel_ring_buffer *ring)
2336{
2337 while (!list_empty(&ring->active_list)) {
2338 struct drm_i915_gem_object *obj;
2339
2340 obj = list_first_entry(&ring->active_list,
2341 struct drm_i915_gem_object,
2342 ring_list);
2343
2344 i915_gem_object_move_to_inactive(obj);
2345 }
2346
2347 /*
2348 * We must free the requests after all the corresponding objects have
2349 * been moved off active lists. Which is the same order as the normal
2350 * retire_requests function does. This is important if object hold
2351 * implicit references on things like e.g. ppgtt address spaces through
2352 * the request.
2353 */
2354 while (!list_empty(&ring->request_list)) {
2355 struct drm_i915_gem_request *request;
2356
2357 request = list_first_entry(&ring->request_list,
2358 struct drm_i915_gem_request,
2359 list);
2360
2361 i915_gem_free_request(request);
2362 }
2363}
2364
2365void i915_gem_restore_fences(struct drm_device *dev)
2366{
2367 struct drm_i915_private *dev_priv = dev->dev_private;
2368 int i;
2369
2370 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2371 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2372
2373 /*
2374 * Commit delayed tiling changes if we have an object still
2375 * attached to the fence, otherwise just clear the fence.
2376 */
2377 if (reg->obj) {
2378 i915_gem_object_update_fence(reg->obj, reg,
2379 reg->obj->tiling_mode);
2380 } else {
2381 i915_gem_write_fence(dev, i, NULL);
2382 }
2383 }
2384}
2385
2386void i915_gem_reset(struct drm_device *dev)
2387{
2388 struct drm_i915_private *dev_priv = dev->dev_private;
2389 struct intel_ring_buffer *ring;
2390 int i;
2391
2392 /*
2393 * Before we free the objects from the requests, we need to inspect
2394 * them for finding the guilty party. As the requests only borrow
2395 * their reference to the objects, the inspection must be done first.
2396 */
2397 for_each_ring(ring, dev_priv, i)
2398 i915_gem_reset_ring_status(dev_priv, ring);
2399
2400 for_each_ring(ring, dev_priv, i)
2401 i915_gem_reset_ring_cleanup(dev_priv, ring);
2402
2403 i915_gem_cleanup_ringbuffer(dev);
2404
2405 i915_gem_context_reset(dev);
2406
2407 i915_gem_restore_fences(dev);
2408}
2409
2410/**
2411 * This function clears the request list as sequence numbers are passed.
2412 */
2413void
2414i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2415{
2416 uint32_t seqno;
2417
2418 if (list_empty(&ring->request_list))
2419 return;
2420
2421 WARN_ON(i915_verify_lists(ring->dev));
2422
2423 seqno = ring->get_seqno(ring, true);
2424
2425 /* Move any buffers on the active list that are no longer referenced
2426 * by the ringbuffer to the flushing/inactive lists as appropriate,
2427 * before we free the context associated with the requests.
2428 */
2429 while (!list_empty(&ring->active_list)) {
2430 struct drm_i915_gem_object *obj;
2431
2432 obj = list_first_entry(&ring->active_list,
2433 struct drm_i915_gem_object,
2434 ring_list);
2435
2436 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2437 break;
2438
2439 i915_gem_object_move_to_inactive(obj);
2440 }
2441
2442
2443 while (!list_empty(&ring->request_list)) {
2444 struct drm_i915_gem_request *request;
2445
2446 request = list_first_entry(&ring->request_list,
2447 struct drm_i915_gem_request,
2448 list);
2449
2450 if (!i915_seqno_passed(seqno, request->seqno))
2451 break;
2452
2453 trace_i915_gem_request_retire(ring, request->seqno);
2454 /* We know the GPU must have read the request to have
2455 * sent us the seqno + interrupt, so use the position
2456 * of tail of the request to update the last known position
2457 * of the GPU head.
2458 */
2459 ring->last_retired_head = request->tail;
2460
2461 i915_gem_free_request(request);
2462 }
2463
2464 if (unlikely(ring->trace_irq_seqno &&
2465 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2466 ring->irq_put(ring);
2467 ring->trace_irq_seqno = 0;
2468 }
2469
2470 WARN_ON(i915_verify_lists(ring->dev));
2471}
2472
2473bool
2474i915_gem_retire_requests(struct drm_device *dev)
2475{
2476 drm_i915_private_t *dev_priv = dev->dev_private;
2477 struct intel_ring_buffer *ring;
2478 bool idle = true;
2479 int i;
2480
2481 for_each_ring(ring, dev_priv, i) {
2482 i915_gem_retire_requests_ring(ring);
2483 idle &= list_empty(&ring->request_list);
2484 }
2485
2486 if (idle)
2487 mod_delayed_work(dev_priv->wq,
2488 &dev_priv->mm.idle_work,
2489 msecs_to_jiffies(100));
2490
2491 return idle;
2492}
2493
2494static void
2495i915_gem_retire_work_handler(struct work_struct *work)
2496{
2497 struct drm_i915_private *dev_priv =
2498 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2499 struct drm_device *dev = dev_priv->dev;
2500 bool idle;
2501
2502 /* Come back later if the device is busy... */
2503 idle = false;
2504 if (mutex_trylock(&dev->struct_mutex)) {
2505 idle = i915_gem_retire_requests(dev);
2506 mutex_unlock(&dev->struct_mutex);
2507 }
2508 if (!idle)
2509 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2510 round_jiffies_up_relative(HZ));
2511}
2512
2513static void
2514i915_gem_idle_work_handler(struct work_struct *work)
2515{
2516 struct drm_i915_private *dev_priv =
2517 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2518
2519 intel_mark_idle(dev_priv->dev);
2520}
2521
2522/**
2523 * Ensures that an object will eventually get non-busy by flushing any required
2524 * write domains, emitting any outstanding lazy request and retiring and
2525 * completed requests.
2526 */
2527static int
2528i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2529{
2530 int ret;
2531
2532 if (obj->active) {
2533 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2534 if (ret)
2535 return ret;
2536
2537 i915_gem_retire_requests_ring(obj->ring);
2538 }
2539
2540 return 0;
2541}
2542
2543/**
2544 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2545 * @DRM_IOCTL_ARGS: standard ioctl arguments
2546 *
2547 * Returns 0 if successful, else an error is returned with the remaining time in
2548 * the timeout parameter.
2549 * -ETIME: object is still busy after timeout
2550 * -ERESTARTSYS: signal interrupted the wait
2551 * -ENONENT: object doesn't exist
2552 * Also possible, but rare:
2553 * -EAGAIN: GPU wedged
2554 * -ENOMEM: damn
2555 * -ENODEV: Internal IRQ fail
2556 * -E?: The add request failed
2557 *
2558 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2559 * non-zero timeout parameter the wait ioctl will wait for the given number of
2560 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2561 * without holding struct_mutex the object may become re-busied before this
2562 * function completes. A similar but shorter * race condition exists in the busy
2563 * ioctl
2564 */
2565int
2566i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2567{
2568 drm_i915_private_t *dev_priv = dev->dev_private;
2569 struct drm_i915_gem_wait *args = data;
2570 struct drm_i915_gem_object *obj;
2571 struct intel_ring_buffer *ring = NULL;
2572 struct timespec timeout_stack, *timeout = NULL;
2573 unsigned reset_counter;
2574 u32 seqno = 0;
2575 int ret = 0;
2576
2577 if (args->timeout_ns >= 0) {
2578 timeout_stack = ns_to_timespec(args->timeout_ns);
2579 timeout = &timeout_stack;
2580 }
2581
2582 ret = i915_mutex_lock_interruptible(dev);
2583 if (ret)
2584 return ret;
2585
2586 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2587 if (&obj->base == NULL) {
2588 mutex_unlock(&dev->struct_mutex);
2589 return -ENOENT;
2590 }
2591
2592 /* Need to make sure the object gets inactive eventually. */
2593 ret = i915_gem_object_flush_active(obj);
2594 if (ret)
2595 goto out;
2596
2597 if (obj->active) {
2598 seqno = obj->last_read_seqno;
2599 ring = obj->ring;
2600 }
2601
2602 if (seqno == 0)
2603 goto out;
2604
2605 /* Do this after OLR check to make sure we make forward progress polling
2606 * on this IOCTL with a 0 timeout (like busy ioctl)
2607 */
2608 if (!args->timeout_ns) {
2609 ret = -ETIME;
2610 goto out;
2611 }
2612
2613 drm_gem_object_unreference(&obj->base);
2614 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2615 mutex_unlock(&dev->struct_mutex);
2616
2617 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2618 if (timeout)
2619 args->timeout_ns = timespec_to_ns(timeout);
2620 return ret;
2621
2622out:
2623 drm_gem_object_unreference(&obj->base);
2624 mutex_unlock(&dev->struct_mutex);
2625 return ret;
2626}
2627
2628/**
2629 * i915_gem_object_sync - sync an object to a ring.
2630 *
2631 * @obj: object which may be in use on another ring.
2632 * @to: ring we wish to use the object on. May be NULL.
2633 *
2634 * This code is meant to abstract object synchronization with the GPU.
2635 * Calling with NULL implies synchronizing the object with the CPU
2636 * rather than a particular GPU ring.
2637 *
2638 * Returns 0 if successful, else propagates up the lower layer error.
2639 */
2640int
2641i915_gem_object_sync(struct drm_i915_gem_object *obj,
2642 struct intel_ring_buffer *to)
2643{
2644 struct intel_ring_buffer *from = obj->ring;
2645 u32 seqno;
2646 int ret, idx;
2647
2648 if (from == NULL || to == from)
2649 return 0;
2650
2651 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2652 return i915_gem_object_wait_rendering(obj, false);
2653
2654 idx = intel_ring_sync_index(from, to);
2655
2656 seqno = obj->last_read_seqno;
2657 if (seqno <= from->sync_seqno[idx])
2658 return 0;
2659
2660 ret = i915_gem_check_olr(obj->ring, seqno);
2661 if (ret)
2662 return ret;
2663
2664 trace_i915_gem_ring_sync_to(from, to, seqno);
2665 ret = to->sync_to(to, from, seqno);
2666 if (!ret)
2667 /* We use last_read_seqno because sync_to()
2668 * might have just caused seqno wrap under
2669 * the radar.
2670 */
2671 from->sync_seqno[idx] = obj->last_read_seqno;
2672
2673 return ret;
2674}
2675
2676static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2677{
2678 u32 old_write_domain, old_read_domains;
2679
2680 /* Force a pagefault for domain tracking on next user access */
2681 i915_gem_release_mmap(obj);
2682
2683 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2684 return;
2685
2686 /* Wait for any direct GTT access to complete */
2687 mb();
2688
2689 old_read_domains = obj->base.read_domains;
2690 old_write_domain = obj->base.write_domain;
2691
2692 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2693 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2694
2695 trace_i915_gem_object_change_domain(obj,
2696 old_read_domains,
2697 old_write_domain);
2698}
2699
2700int i915_vma_unbind(struct i915_vma *vma)
2701{
2702 struct drm_i915_gem_object *obj = vma->obj;
2703 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2704 int ret;
2705
2706 if (list_empty(&vma->vma_link))
2707 return 0;
2708
2709 if (!drm_mm_node_allocated(&vma->node)) {
2710 i915_gem_vma_destroy(vma);
2711
2712 return 0;
2713 }
2714
2715 if (vma->pin_count)
2716 return -EBUSY;
2717
2718 BUG_ON(obj->pages == NULL);
2719
2720 ret = i915_gem_object_finish_gpu(obj);
2721 if (ret)
2722 return ret;
2723 /* Continue on if we fail due to EIO, the GPU is hung so we
2724 * should be safe and we need to cleanup or else we might
2725 * cause memory corruption through use-after-free.
2726 */
2727
2728 i915_gem_object_finish_gtt(obj);
2729
2730 /* release the fence reg _after_ flushing */
2731 ret = i915_gem_object_put_fence(obj);
2732 if (ret)
2733 return ret;
2734
2735 trace_i915_vma_unbind(vma);
2736
2737 vma->unbind_vma(vma);
2738
2739 i915_gem_gtt_finish_object(obj);
2740
2741 list_del(&vma->mm_list);
2742 /* Avoid an unnecessary call to unbind on rebind. */
2743 if (i915_is_ggtt(vma->vm))
2744 obj->map_and_fenceable = true;
2745
2746 drm_mm_remove_node(&vma->node);
2747 i915_gem_vma_destroy(vma);
2748
2749 /* Since the unbound list is global, only move to that list if
2750 * no more VMAs exist. */
2751 if (list_empty(&obj->vma_list))
2752 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2753
2754 /* And finally now the object is completely decoupled from this vma,
2755 * we can drop its hold on the backing storage and allow it to be
2756 * reaped by the shrinker.
2757 */
2758 i915_gem_object_unpin_pages(obj);
2759
2760 return 0;
2761}
2762
2763/**
2764 * Unbinds an object from the global GTT aperture.
2765 */
2766int
2767i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2768{
2769 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2770 struct i915_address_space *ggtt = &dev_priv->gtt.base;
2771
2772 if (!i915_gem_obj_ggtt_bound(obj))
2773 return 0;
2774
2775 if (i915_gem_obj_to_ggtt(obj)->pin_count)
2776 return -EBUSY;
2777
2778 BUG_ON(obj->pages == NULL);
2779
2780 return i915_vma_unbind(i915_gem_obj_to_vma(obj, ggtt));
2781}
2782
2783int i915_gpu_idle(struct drm_device *dev)
2784{
2785 drm_i915_private_t *dev_priv = dev->dev_private;
2786 struct intel_ring_buffer *ring;
2787 int ret, i;
2788
2789 /* Flush everything onto the inactive list. */
2790 for_each_ring(ring, dev_priv, i) {
2791 ret = i915_switch_context(ring, NULL, ring->default_context);
2792 if (ret)
2793 return ret;
2794
2795 ret = intel_ring_idle(ring);
2796 if (ret)
2797 return ret;
2798 }
2799
2800 return 0;
2801}
2802
2803static void i965_write_fence_reg(struct drm_device *dev, int reg,
2804 struct drm_i915_gem_object *obj)
2805{
2806 drm_i915_private_t *dev_priv = dev->dev_private;
2807 int fence_reg;
2808 int fence_pitch_shift;
2809
2810 if (INTEL_INFO(dev)->gen >= 6) {
2811 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2812 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2813 } else {
2814 fence_reg = FENCE_REG_965_0;
2815 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2816 }
2817
2818 fence_reg += reg * 8;
2819
2820 /* To w/a incoherency with non-atomic 64-bit register updates,
2821 * we split the 64-bit update into two 32-bit writes. In order
2822 * for a partial fence not to be evaluated between writes, we
2823 * precede the update with write to turn off the fence register,
2824 * and only enable the fence as the last step.
2825 *
2826 * For extra levels of paranoia, we make sure each step lands
2827 * before applying the next step.
2828 */
2829 I915_WRITE(fence_reg, 0);
2830 POSTING_READ(fence_reg);
2831
2832 if (obj) {
2833 u32 size = i915_gem_obj_ggtt_size(obj);
2834 uint64_t val;
2835
2836 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2837 0xfffff000) << 32;
2838 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2839 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2840 if (obj->tiling_mode == I915_TILING_Y)
2841 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2842 val |= I965_FENCE_REG_VALID;
2843
2844 I915_WRITE(fence_reg + 4, val >> 32);
2845 POSTING_READ(fence_reg + 4);
2846
2847 I915_WRITE(fence_reg + 0, val);
2848 POSTING_READ(fence_reg);
2849 } else {
2850 I915_WRITE(fence_reg + 4, 0);
2851 POSTING_READ(fence_reg + 4);
2852 }
2853}
2854
2855static void i915_write_fence_reg(struct drm_device *dev, int reg,
2856 struct drm_i915_gem_object *obj)
2857{
2858 drm_i915_private_t *dev_priv = dev->dev_private;
2859 u32 val;
2860
2861 if (obj) {
2862 u32 size = i915_gem_obj_ggtt_size(obj);
2863 int pitch_val;
2864 int tile_width;
2865
2866 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2867 (size & -size) != size ||
2868 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2869 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2870 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2871
2872 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2873 tile_width = 128;
2874 else
2875 tile_width = 512;
2876
2877 /* Note: pitch better be a power of two tile widths */
2878 pitch_val = obj->stride / tile_width;
2879 pitch_val = ffs(pitch_val) - 1;
2880
2881 val = i915_gem_obj_ggtt_offset(obj);
2882 if (obj->tiling_mode == I915_TILING_Y)
2883 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2884 val |= I915_FENCE_SIZE_BITS(size);
2885 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2886 val |= I830_FENCE_REG_VALID;
2887 } else
2888 val = 0;
2889
2890 if (reg < 8)
2891 reg = FENCE_REG_830_0 + reg * 4;
2892 else
2893 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2894
2895 I915_WRITE(reg, val);
2896 POSTING_READ(reg);
2897}
2898
2899static void i830_write_fence_reg(struct drm_device *dev, int reg,
2900 struct drm_i915_gem_object *obj)
2901{
2902 drm_i915_private_t *dev_priv = dev->dev_private;
2903 uint32_t val;
2904
2905 if (obj) {
2906 u32 size = i915_gem_obj_ggtt_size(obj);
2907 uint32_t pitch_val;
2908
2909 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2910 (size & -size) != size ||
2911 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2912 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2913 i915_gem_obj_ggtt_offset(obj), size);
2914
2915 pitch_val = obj->stride / 128;
2916 pitch_val = ffs(pitch_val) - 1;
2917
2918 val = i915_gem_obj_ggtt_offset(obj);
2919 if (obj->tiling_mode == I915_TILING_Y)
2920 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2921 val |= I830_FENCE_SIZE_BITS(size);
2922 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2923 val |= I830_FENCE_REG_VALID;
2924 } else
2925 val = 0;
2926
2927 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2928 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2929}
2930
2931inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2932{
2933 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2934}
2935
2936static void i915_gem_write_fence(struct drm_device *dev, int reg,
2937 struct drm_i915_gem_object *obj)
2938{
2939 struct drm_i915_private *dev_priv = dev->dev_private;
2940
2941 /* Ensure that all CPU reads are completed before installing a fence
2942 * and all writes before removing the fence.
2943 */
2944 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2945 mb();
2946
2947 WARN(obj && (!obj->stride || !obj->tiling_mode),
2948 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2949 obj->stride, obj->tiling_mode);
2950
2951 switch (INTEL_INFO(dev)->gen) {
2952 case 8:
2953 case 7:
2954 case 6:
2955 case 5:
2956 case 4: i965_write_fence_reg(dev, reg, obj); break;
2957 case 3: i915_write_fence_reg(dev, reg, obj); break;
2958 case 2: i830_write_fence_reg(dev, reg, obj); break;
2959 default: BUG();
2960 }
2961
2962 /* And similarly be paranoid that no direct access to this region
2963 * is reordered to before the fence is installed.
2964 */
2965 if (i915_gem_object_needs_mb(obj))
2966 mb();
2967}
2968
2969static inline int fence_number(struct drm_i915_private *dev_priv,
2970 struct drm_i915_fence_reg *fence)
2971{
2972 return fence - dev_priv->fence_regs;
2973}
2974
2975static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2976 struct drm_i915_fence_reg *fence,
2977 bool enable)
2978{
2979 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2980 int reg = fence_number(dev_priv, fence);
2981
2982 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2983
2984 if (enable) {
2985 obj->fence_reg = reg;
2986 fence->obj = obj;
2987 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2988 } else {
2989 obj->fence_reg = I915_FENCE_REG_NONE;
2990 fence->obj = NULL;
2991 list_del_init(&fence->lru_list);
2992 }
2993 obj->fence_dirty = false;
2994}
2995
2996static int
2997i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2998{
2999 if (obj->last_fenced_seqno) {
3000 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3001 if (ret)
3002 return ret;
3003
3004 obj->last_fenced_seqno = 0;
3005 }
3006
3007 obj->fenced_gpu_access = false;
3008 return 0;
3009}
3010
3011int
3012i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3013{
3014 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3015 struct drm_i915_fence_reg *fence;
3016 int ret;
3017
3018 ret = i915_gem_object_wait_fence(obj);
3019 if (ret)
3020 return ret;
3021
3022 if (obj->fence_reg == I915_FENCE_REG_NONE)
3023 return 0;
3024
3025 fence = &dev_priv->fence_regs[obj->fence_reg];
3026
3027 i915_gem_object_fence_lost(obj);
3028 i915_gem_object_update_fence(obj, fence, false);
3029
3030 return 0;
3031}
3032
3033static struct drm_i915_fence_reg *
3034i915_find_fence_reg(struct drm_device *dev)
3035{
3036 struct drm_i915_private *dev_priv = dev->dev_private;
3037 struct drm_i915_fence_reg *reg, *avail;
3038 int i;
3039
3040 /* First try to find a free reg */
3041 avail = NULL;
3042 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3043 reg = &dev_priv->fence_regs[i];
3044 if (!reg->obj)
3045 return reg;
3046
3047 if (!reg->pin_count)
3048 avail = reg;
3049 }
3050
3051 if (avail == NULL)
3052 goto deadlock;
3053
3054 /* None available, try to steal one or wait for a user to finish */
3055 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3056 if (reg->pin_count)
3057 continue;
3058
3059 return reg;
3060 }
3061
3062deadlock:
3063 /* Wait for completion of pending flips which consume fences */
3064 if (intel_has_pending_fb_unpin(dev))
3065 return ERR_PTR(-EAGAIN);
3066
3067 return ERR_PTR(-EDEADLK);
3068}
3069
3070/**
3071 * i915_gem_object_get_fence - set up fencing for an object
3072 * @obj: object to map through a fence reg
3073 *
3074 * When mapping objects through the GTT, userspace wants to be able to write
3075 * to them without having to worry about swizzling if the object is tiled.
3076 * This function walks the fence regs looking for a free one for @obj,
3077 * stealing one if it can't find any.
3078 *
3079 * It then sets up the reg based on the object's properties: address, pitch
3080 * and tiling format.
3081 *
3082 * For an untiled surface, this removes any existing fence.
3083 */
3084int
3085i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3086{
3087 struct drm_device *dev = obj->base.dev;
3088 struct drm_i915_private *dev_priv = dev->dev_private;
3089 bool enable = obj->tiling_mode != I915_TILING_NONE;
3090 struct drm_i915_fence_reg *reg;
3091 int ret;
3092
3093 /* Have we updated the tiling parameters upon the object and so
3094 * will need to serialise the write to the associated fence register?
3095 */
3096 if (obj->fence_dirty) {
3097 ret = i915_gem_object_wait_fence(obj);
3098 if (ret)
3099 return ret;
3100 }
3101
3102 /* Just update our place in the LRU if our fence is getting reused. */
3103 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3104 reg = &dev_priv->fence_regs[obj->fence_reg];
3105 if (!obj->fence_dirty) {
3106 list_move_tail(&reg->lru_list,
3107 &dev_priv->mm.fence_list);
3108 return 0;
3109 }
3110 } else if (enable) {
3111 reg = i915_find_fence_reg(dev);
3112 if (IS_ERR(reg))
3113 return PTR_ERR(reg);
3114
3115 if (reg->obj) {
3116 struct drm_i915_gem_object *old = reg->obj;
3117
3118 ret = i915_gem_object_wait_fence(old);
3119 if (ret)
3120 return ret;
3121
3122 i915_gem_object_fence_lost(old);
3123 }
3124 } else
3125 return 0;
3126
3127 i915_gem_object_update_fence(obj, reg, enable);
3128
3129 return 0;
3130}
3131
3132static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3133 struct drm_mm_node *gtt_space,
3134 unsigned long cache_level)
3135{
3136 struct drm_mm_node *other;
3137
3138 /* On non-LLC machines we have to be careful when putting differing
3139 * types of snoopable memory together to avoid the prefetcher
3140 * crossing memory domains and dying.
3141 */
3142 if (HAS_LLC(dev))
3143 return true;
3144
3145 if (!drm_mm_node_allocated(gtt_space))
3146 return true;
3147
3148 if (list_empty(&gtt_space->node_list))
3149 return true;
3150
3151 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3152 if (other->allocated && !other->hole_follows && other->color != cache_level)
3153 return false;
3154
3155 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3156 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3157 return false;
3158
3159 return true;
3160}
3161
3162static void i915_gem_verify_gtt(struct drm_device *dev)
3163{
3164#if WATCH_GTT
3165 struct drm_i915_private *dev_priv = dev->dev_private;
3166 struct drm_i915_gem_object *obj;
3167 int err = 0;
3168
3169 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3170 if (obj->gtt_space == NULL) {
3171 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3172 err++;
3173 continue;
3174 }
3175
3176 if (obj->cache_level != obj->gtt_space->color) {
3177 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3178 i915_gem_obj_ggtt_offset(obj),
3179 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3180 obj->cache_level,
3181 obj->gtt_space->color);
3182 err++;
3183 continue;
3184 }
3185
3186 if (!i915_gem_valid_gtt_space(dev,
3187 obj->gtt_space,
3188 obj->cache_level)) {
3189 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3190 i915_gem_obj_ggtt_offset(obj),
3191 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3192 obj->cache_level);
3193 err++;
3194 continue;
3195 }
3196 }
3197
3198 WARN_ON(err);
3199#endif
3200}
3201
3202/**
3203 * Finds free space in the GTT aperture and binds the object there.
3204 */
3205static int
3206i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3207 struct i915_address_space *vm,
3208 unsigned alignment,
3209 bool map_and_fenceable,
3210 bool nonblocking)
3211{
3212 struct drm_device *dev = obj->base.dev;
3213 drm_i915_private_t *dev_priv = dev->dev_private;
3214 u32 size, fence_size, fence_alignment, unfenced_alignment;
3215 size_t gtt_max =
3216 map_and_fenceable ? dev_priv->gtt.mappable_end : vm->total;
3217 struct i915_vma *vma;
3218 int ret;
3219
3220 fence_size = i915_gem_get_gtt_size(dev,
3221 obj->base.size,
3222 obj->tiling_mode);
3223 fence_alignment = i915_gem_get_gtt_alignment(dev,
3224 obj->base.size,
3225 obj->tiling_mode, true);
3226 unfenced_alignment =
3227 i915_gem_get_gtt_alignment(dev,
3228 obj->base.size,
3229 obj->tiling_mode, false);
3230
3231 if (alignment == 0)
3232 alignment = map_and_fenceable ? fence_alignment :
3233 unfenced_alignment;
3234 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
3235 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
3236 return -EINVAL;
3237 }
3238
3239 size = map_and_fenceable ? fence_size : obj->base.size;
3240
3241 /* If the object is bigger than the entire aperture, reject it early
3242 * before evicting everything in a vain attempt to find space.
3243 */
3244 if (obj->base.size > gtt_max) {
3245 DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3246 obj->base.size,
3247 map_and_fenceable ? "mappable" : "total",
3248 gtt_max);
3249 return -E2BIG;
3250 }
3251
3252 ret = i915_gem_object_get_pages(obj);
3253 if (ret)
3254 return ret;
3255
3256 i915_gem_object_pin_pages(obj);
3257
3258 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3259 if (IS_ERR(vma)) {
3260 ret = PTR_ERR(vma);
3261 goto err_unpin;
3262 }
3263
3264search_free:
3265 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3266 size, alignment,
3267 obj->cache_level, 0, gtt_max,
3268 DRM_MM_SEARCH_DEFAULT);
3269 if (ret) {
3270 ret = i915_gem_evict_something(dev, vm, size, alignment,
3271 obj->cache_level,
3272 map_and_fenceable,
3273 nonblocking);
3274 if (ret == 0)
3275 goto search_free;
3276
3277 goto err_free_vma;
3278 }
3279 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3280 obj->cache_level))) {
3281 ret = -EINVAL;
3282 goto err_remove_node;
3283 }
3284
3285 ret = i915_gem_gtt_prepare_object(obj);
3286 if (ret)
3287 goto err_remove_node;
3288
3289 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3290 list_add_tail(&vma->mm_list, &vm->inactive_list);
3291
3292 if (i915_is_ggtt(vm)) {
3293 bool mappable, fenceable;
3294
3295 fenceable = (vma->node.size == fence_size &&
3296 (vma->node.start & (fence_alignment - 1)) == 0);
3297
3298 mappable = (vma->node.start + obj->base.size <=
3299 dev_priv->gtt.mappable_end);
3300
3301 obj->map_and_fenceable = mappable && fenceable;
3302 }
3303
3304 WARN_ON(map_and_fenceable && !obj->map_and_fenceable);
3305
3306 trace_i915_vma_bind(vma, map_and_fenceable);
3307 i915_gem_verify_gtt(dev);
3308 return 0;
3309
3310err_remove_node:
3311 drm_mm_remove_node(&vma->node);
3312err_free_vma:
3313 i915_gem_vma_destroy(vma);
3314err_unpin:
3315 i915_gem_object_unpin_pages(obj);
3316 return ret;
3317}
3318
3319bool
3320i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3321 bool force)
3322{
3323 /* If we don't have a page list set up, then we're not pinned
3324 * to GPU, and we can ignore the cache flush because it'll happen
3325 * again at bind time.
3326 */
3327 if (obj->pages == NULL)
3328 return false;
3329
3330 /*
3331 * Stolen memory is always coherent with the GPU as it is explicitly
3332 * marked as wc by the system, or the system is cache-coherent.
3333 */
3334 if (obj->stolen)
3335 return false;
3336
3337 /* If the GPU is snooping the contents of the CPU cache,
3338 * we do not need to manually clear the CPU cache lines. However,
3339 * the caches are only snooped when the render cache is
3340 * flushed/invalidated. As we always have to emit invalidations
3341 * and flushes when moving into and out of the RENDER domain, correct
3342 * snooping behaviour occurs naturally as the result of our domain
3343 * tracking.
3344 */
3345 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3346 return false;
3347
3348 trace_i915_gem_object_clflush(obj);
3349 drm_clflush_sg(obj->pages);
3350
3351 return true;
3352}
3353
3354/** Flushes the GTT write domain for the object if it's dirty. */
3355static void
3356i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3357{
3358 uint32_t old_write_domain;
3359
3360 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3361 return;
3362
3363 /* No actual flushing is required for the GTT write domain. Writes
3364 * to it immediately go to main memory as far as we know, so there's
3365 * no chipset flush. It also doesn't land in render cache.
3366 *
3367 * However, we do have to enforce the order so that all writes through
3368 * the GTT land before any writes to the device, such as updates to
3369 * the GATT itself.
3370 */
3371 wmb();
3372
3373 old_write_domain = obj->base.write_domain;
3374 obj->base.write_domain = 0;
3375
3376 trace_i915_gem_object_change_domain(obj,
3377 obj->base.read_domains,
3378 old_write_domain);
3379}
3380
3381/** Flushes the CPU write domain for the object if it's dirty. */
3382static void
3383i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3384 bool force)
3385{
3386 uint32_t old_write_domain;
3387
3388 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3389 return;
3390
3391 if (i915_gem_clflush_object(obj, force))
3392 i915_gem_chipset_flush(obj->base.dev);
3393
3394 old_write_domain = obj->base.write_domain;
3395 obj->base.write_domain = 0;
3396
3397 trace_i915_gem_object_change_domain(obj,
3398 obj->base.read_domains,
3399 old_write_domain);
3400}
3401
3402/**
3403 * Moves a single object to the GTT read, and possibly write domain.
3404 *
3405 * This function returns when the move is complete, including waiting on
3406 * flushes to occur.
3407 */
3408int
3409i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3410{
3411 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3412 uint32_t old_write_domain, old_read_domains;
3413 int ret;
3414
3415 /* Not valid to be called on unbound objects. */
3416 if (!i915_gem_obj_bound_any(obj))
3417 return -EINVAL;
3418
3419 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3420 return 0;
3421
3422 ret = i915_gem_object_wait_rendering(obj, !write);
3423 if (ret)
3424 return ret;
3425
3426 i915_gem_object_flush_cpu_write_domain(obj, false);
3427
3428 /* Serialise direct access to this object with the barriers for
3429 * coherent writes from the GPU, by effectively invalidating the
3430 * GTT domain upon first access.
3431 */
3432 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3433 mb();
3434
3435 old_write_domain = obj->base.write_domain;
3436 old_read_domains = obj->base.read_domains;
3437
3438 /* It should now be out of any other write domains, and we can update
3439 * the domain values for our changes.
3440 */
3441 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3442 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3443 if (write) {
3444 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3445 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3446 obj->dirty = 1;
3447 }
3448
3449 trace_i915_gem_object_change_domain(obj,
3450 old_read_domains,
3451 old_write_domain);
3452
3453 /* And bump the LRU for this access */
3454 if (i915_gem_object_is_inactive(obj)) {
3455 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3456 if (vma)
3457 list_move_tail(&vma->mm_list,
3458 &dev_priv->gtt.base.inactive_list);
3459
3460 }
3461
3462 return 0;
3463}
3464
3465int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3466 enum i915_cache_level cache_level)
3467{
3468 struct drm_device *dev = obj->base.dev;
3469 struct i915_vma *vma;
3470 int ret;
3471
3472 if (obj->cache_level == cache_level)
3473 return 0;
3474
3475 if (i915_gem_obj_is_pinned(obj)) {
3476 DRM_DEBUG("can not change the cache level of pinned objects\n");
3477 return -EBUSY;
3478 }
3479
3480 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3481 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3482 ret = i915_vma_unbind(vma);
3483 if (ret)
3484 return ret;
3485
3486 break;
3487 }
3488 }
3489
3490 if (i915_gem_obj_bound_any(obj)) {
3491 ret = i915_gem_object_finish_gpu(obj);
3492 if (ret)
3493 return ret;
3494
3495 i915_gem_object_finish_gtt(obj);
3496
3497 /* Before SandyBridge, you could not use tiling or fence
3498 * registers with snooped memory, so relinquish any fences
3499 * currently pointing to our region in the aperture.
3500 */
3501 if (INTEL_INFO(dev)->gen < 6) {
3502 ret = i915_gem_object_put_fence(obj);
3503 if (ret)
3504 return ret;
3505 }
3506
3507 list_for_each_entry(vma, &obj->vma_list, vma_link)
3508 vma->bind_vma(vma, cache_level, 0);
3509 }
3510
3511 list_for_each_entry(vma, &obj->vma_list, vma_link)
3512 vma->node.color = cache_level;
3513 obj->cache_level = cache_level;
3514
3515 if (cpu_write_needs_clflush(obj)) {
3516 u32 old_read_domains, old_write_domain;
3517
3518 /* If we're coming from LLC cached, then we haven't
3519 * actually been tracking whether the data is in the
3520 * CPU cache or not, since we only allow one bit set
3521 * in obj->write_domain and have been skipping the clflushes.
3522 * Just set it to the CPU cache for now.
3523 */
3524 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3525
3526 old_read_domains = obj->base.read_domains;
3527 old_write_domain = obj->base.write_domain;
3528
3529 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3530 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3531
3532 trace_i915_gem_object_change_domain(obj,
3533 old_read_domains,
3534 old_write_domain);
3535 }
3536
3537 i915_gem_verify_gtt(dev);
3538 return 0;
3539}
3540
3541int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3542 struct drm_file *file)
3543{
3544 struct drm_i915_gem_caching *args = data;
3545 struct drm_i915_gem_object *obj;
3546 int ret;
3547
3548 ret = i915_mutex_lock_interruptible(dev);
3549 if (ret)
3550 return ret;
3551
3552 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3553 if (&obj->base == NULL) {
3554 ret = -ENOENT;
3555 goto unlock;
3556 }
3557
3558 switch (obj->cache_level) {
3559 case I915_CACHE_LLC:
3560 case I915_CACHE_L3_LLC:
3561 args->caching = I915_CACHING_CACHED;
3562 break;
3563
3564 case I915_CACHE_WT:
3565 args->caching = I915_CACHING_DISPLAY;
3566 break;
3567
3568 default:
3569 args->caching = I915_CACHING_NONE;
3570 break;
3571 }
3572
3573 drm_gem_object_unreference(&obj->base);
3574unlock:
3575 mutex_unlock(&dev->struct_mutex);
3576 return ret;
3577}
3578
3579int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3580 struct drm_file *file)
3581{
3582 struct drm_i915_gem_caching *args = data;
3583 struct drm_i915_gem_object *obj;
3584 enum i915_cache_level level;
3585 int ret;
3586
3587 switch (args->caching) {
3588 case I915_CACHING_NONE:
3589 level = I915_CACHE_NONE;
3590 break;
3591 case I915_CACHING_CACHED:
3592 level = I915_CACHE_LLC;
3593 break;
3594 case I915_CACHING_DISPLAY:
3595 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3596 break;
3597 default:
3598 return -EINVAL;
3599 }
3600
3601 ret = i915_mutex_lock_interruptible(dev);
3602 if (ret)
3603 return ret;
3604
3605 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606 if (&obj->base == NULL) {
3607 ret = -ENOENT;
3608 goto unlock;
3609 }
3610
3611 ret = i915_gem_object_set_cache_level(obj, level);
3612
3613 drm_gem_object_unreference(&obj->base);
3614unlock:
3615 mutex_unlock(&dev->struct_mutex);
3616 return ret;
3617}
3618
3619static bool is_pin_display(struct drm_i915_gem_object *obj)
3620{
3621 /* There are 3 sources that pin objects:
3622 * 1. The display engine (scanouts, sprites, cursors);
3623 * 2. Reservations for execbuffer;
3624 * 3. The user.
3625 *
3626 * We can ignore reservations as we hold the struct_mutex and
3627 * are only called outside of the reservation path. The user
3628 * can only increment pin_count once, and so if after
3629 * subtracting the potential reference by the user, any pin_count
3630 * remains, it must be due to another use by the display engine.
3631 */
3632 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3633}
3634
3635/*
3636 * Prepare buffer for display plane (scanout, cursors, etc).
3637 * Can be called from an uninterruptible phase (modesetting) and allows
3638 * any flushes to be pipelined (for pageflips).
3639 */
3640int
3641i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3642 u32 alignment,
3643 struct intel_ring_buffer *pipelined)
3644{
3645 u32 old_read_domains, old_write_domain;
3646 int ret;
3647
3648 if (pipelined != obj->ring) {
3649 ret = i915_gem_object_sync(obj, pipelined);
3650 if (ret)
3651 return ret;
3652 }
3653
3654 /* Mark the pin_display early so that we account for the
3655 * display coherency whilst setting up the cache domains.
3656 */
3657 obj->pin_display = true;
3658
3659 /* The display engine is not coherent with the LLC cache on gen6. As
3660 * a result, we make sure that the pinning that is about to occur is
3661 * done with uncached PTEs. This is lowest common denominator for all
3662 * chipsets.
3663 *
3664 * However for gen6+, we could do better by using the GFDT bit instead
3665 * of uncaching, which would allow us to flush all the LLC-cached data
3666 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3667 */
3668 ret = i915_gem_object_set_cache_level(obj,
3669 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3670 if (ret)
3671 goto err_unpin_display;
3672
3673 /* As the user may map the buffer once pinned in the display plane
3674 * (e.g. libkms for the bootup splash), we have to ensure that we
3675 * always use map_and_fenceable for all scanout buffers.
3676 */
3677 ret = i915_gem_obj_ggtt_pin(obj, alignment, true, false);
3678 if (ret)
3679 goto err_unpin_display;
3680
3681 i915_gem_object_flush_cpu_write_domain(obj, true);
3682
3683 old_write_domain = obj->base.write_domain;
3684 old_read_domains = obj->base.read_domains;
3685
3686 /* It should now be out of any other write domains, and we can update
3687 * the domain values for our changes.
3688 */
3689 obj->base.write_domain = 0;
3690 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3691
3692 trace_i915_gem_object_change_domain(obj,
3693 old_read_domains,
3694 old_write_domain);
3695
3696 return 0;
3697
3698err_unpin_display:
3699 obj->pin_display = is_pin_display(obj);
3700 return ret;
3701}
3702
3703void
3704i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3705{
3706 i915_gem_object_ggtt_unpin(obj);
3707 obj->pin_display = is_pin_display(obj);
3708}
3709
3710int
3711i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3712{
3713 int ret;
3714
3715 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3716 return 0;
3717
3718 ret = i915_gem_object_wait_rendering(obj, false);
3719 if (ret)
3720 return ret;
3721
3722 /* Ensure that we invalidate the GPU's caches and TLBs. */
3723 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3724 return 0;
3725}
3726
3727/**
3728 * Moves a single object to the CPU read, and possibly write domain.
3729 *
3730 * This function returns when the move is complete, including waiting on
3731 * flushes to occur.
3732 */
3733int
3734i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3735{
3736 uint32_t old_write_domain, old_read_domains;
3737 int ret;
3738
3739 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3740 return 0;
3741
3742 ret = i915_gem_object_wait_rendering(obj, !write);
3743 if (ret)
3744 return ret;
3745
3746 i915_gem_object_flush_gtt_write_domain(obj);
3747
3748 old_write_domain = obj->base.write_domain;
3749 old_read_domains = obj->base.read_domains;
3750
3751 /* Flush the CPU cache if it's still invalid. */
3752 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3753 i915_gem_clflush_object(obj, false);
3754
3755 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3756 }
3757
3758 /* It should now be out of any other write domains, and we can update
3759 * the domain values for our changes.
3760 */
3761 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3762
3763 /* If we're writing through the CPU, then the GPU read domains will
3764 * need to be invalidated at next use.
3765 */
3766 if (write) {
3767 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3768 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3769 }
3770
3771 trace_i915_gem_object_change_domain(obj,
3772 old_read_domains,
3773 old_write_domain);
3774
3775 return 0;
3776}
3777
3778/* Throttle our rendering by waiting until the ring has completed our requests
3779 * emitted over 20 msec ago.
3780 *
3781 * Note that if we were to use the current jiffies each time around the loop,
3782 * we wouldn't escape the function with any frames outstanding if the time to
3783 * render a frame was over 20ms.
3784 *
3785 * This should get us reasonable parallelism between CPU and GPU but also
3786 * relatively low latency when blocking on a particular request to finish.
3787 */
3788static int
3789i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3790{
3791 struct drm_i915_private *dev_priv = dev->dev_private;
3792 struct drm_i915_file_private *file_priv = file->driver_priv;
3793 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3794 struct drm_i915_gem_request *request;
3795 struct intel_ring_buffer *ring = NULL;
3796 unsigned reset_counter;
3797 u32 seqno = 0;
3798 int ret;
3799
3800 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3801 if (ret)
3802 return ret;
3803
3804 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3805 if (ret)
3806 return ret;
3807
3808 spin_lock(&file_priv->mm.lock);
3809 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3810 if (time_after_eq(request->emitted_jiffies, recent_enough))
3811 break;
3812
3813 ring = request->ring;
3814 seqno = request->seqno;
3815 }
3816 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3817 spin_unlock(&file_priv->mm.lock);
3818
3819 if (seqno == 0)
3820 return 0;
3821
3822 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3823 if (ret == 0)
3824 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3825
3826 return ret;
3827}
3828
3829int
3830i915_gem_object_pin(struct drm_i915_gem_object *obj,
3831 struct i915_address_space *vm,
3832 uint32_t alignment,
3833 bool map_and_fenceable,
3834 bool nonblocking)
3835{
3836 const u32 flags = map_and_fenceable ? GLOBAL_BIND : 0;
3837 struct i915_vma *vma;
3838 int ret;
3839
3840 WARN_ON(map_and_fenceable && !i915_is_ggtt(vm));
3841
3842 vma = i915_gem_obj_to_vma(obj, vm);
3843
3844 if (vma) {
3845 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3846 return -EBUSY;
3847
3848 if ((alignment &&
3849 vma->node.start & (alignment - 1)) ||
3850 (map_and_fenceable && !obj->map_and_fenceable)) {
3851 WARN(vma->pin_count,
3852 "bo is already pinned with incorrect alignment:"
3853 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3854 " obj->map_and_fenceable=%d\n",
3855 i915_gem_obj_offset(obj, vm), alignment,
3856 map_and_fenceable,
3857 obj->map_and_fenceable);
3858 ret = i915_vma_unbind(vma);
3859 if (ret)
3860 return ret;
3861 }
3862 }
3863
3864 if (!i915_gem_obj_bound(obj, vm)) {
3865 ret = i915_gem_object_bind_to_vm(obj, vm, alignment,
3866 map_and_fenceable,
3867 nonblocking);
3868 if (ret)
3869 return ret;
3870
3871 }
3872
3873 vma = i915_gem_obj_to_vma(obj, vm);
3874
3875 vma->bind_vma(vma, obj->cache_level, flags);
3876
3877 i915_gem_obj_to_vma(obj, vm)->pin_count++;
3878 obj->pin_mappable |= map_and_fenceable;
3879
3880 return 0;
3881}
3882
3883void
3884i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3885{
3886 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3887
3888 BUG_ON(!vma);
3889 BUG_ON(vma->pin_count == 0);
3890 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3891
3892 if (--vma->pin_count == 0)
3893 obj->pin_mappable = false;
3894}
3895
3896int
3897i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3898 struct drm_file *file)
3899{
3900 struct drm_i915_gem_pin *args = data;
3901 struct drm_i915_gem_object *obj;
3902 int ret;
3903
3904 if (INTEL_INFO(dev)->gen >= 6)
3905 return -ENODEV;
3906
3907 ret = i915_mutex_lock_interruptible(dev);
3908 if (ret)
3909 return ret;
3910
3911 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3912 if (&obj->base == NULL) {
3913 ret = -ENOENT;
3914 goto unlock;
3915 }
3916
3917 if (obj->madv != I915_MADV_WILLNEED) {
3918 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3919 ret = -EINVAL;
3920 goto out;
3921 }
3922
3923 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3924 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3925 args->handle);
3926 ret = -EINVAL;
3927 goto out;
3928 }
3929
3930 if (obj->user_pin_count == ULONG_MAX) {
3931 ret = -EBUSY;
3932 goto out;
3933 }
3934
3935 if (obj->user_pin_count == 0) {
3936 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, true, false);
3937 if (ret)
3938 goto out;
3939 }
3940
3941 obj->user_pin_count++;
3942 obj->pin_filp = file;
3943
3944 args->offset = i915_gem_obj_ggtt_offset(obj);
3945out:
3946 drm_gem_object_unreference(&obj->base);
3947unlock:
3948 mutex_unlock(&dev->struct_mutex);
3949 return ret;
3950}
3951
3952int
3953i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3954 struct drm_file *file)
3955{
3956 struct drm_i915_gem_pin *args = data;
3957 struct drm_i915_gem_object *obj;
3958 int ret;
3959
3960 ret = i915_mutex_lock_interruptible(dev);
3961 if (ret)
3962 return ret;
3963
3964 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3965 if (&obj->base == NULL) {
3966 ret = -ENOENT;
3967 goto unlock;
3968 }
3969
3970 if (obj->pin_filp != file) {
3971 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3972 args->handle);
3973 ret = -EINVAL;
3974 goto out;
3975 }
3976 obj->user_pin_count--;
3977 if (obj->user_pin_count == 0) {
3978 obj->pin_filp = NULL;
3979 i915_gem_object_ggtt_unpin(obj);
3980 }
3981
3982out:
3983 drm_gem_object_unreference(&obj->base);
3984unlock:
3985 mutex_unlock(&dev->struct_mutex);
3986 return ret;
3987}
3988
3989int
3990i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3991 struct drm_file *file)
3992{
3993 struct drm_i915_gem_busy *args = data;
3994 struct drm_i915_gem_object *obj;
3995 int ret;
3996
3997 ret = i915_mutex_lock_interruptible(dev);
3998 if (ret)
3999 return ret;
4000
4001 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4002 if (&obj->base == NULL) {
4003 ret = -ENOENT;
4004 goto unlock;
4005 }
4006
4007 /* Count all active objects as busy, even if they are currently not used
4008 * by the gpu. Users of this interface expect objects to eventually
4009 * become non-busy without any further actions, therefore emit any
4010 * necessary flushes here.
4011 */
4012 ret = i915_gem_object_flush_active(obj);
4013
4014 args->busy = obj->active;
4015 if (obj->ring) {
4016 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4017 args->busy |= intel_ring_flag(obj->ring) << 16;
4018 }
4019
4020 drm_gem_object_unreference(&obj->base);
4021unlock:
4022 mutex_unlock(&dev->struct_mutex);
4023 return ret;
4024}
4025
4026int
4027i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4028 struct drm_file *file_priv)
4029{
4030 return i915_gem_ring_throttle(dev, file_priv);
4031}
4032
4033int
4034i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4035 struct drm_file *file_priv)
4036{
4037 struct drm_i915_gem_madvise *args = data;
4038 struct drm_i915_gem_object *obj;
4039 int ret;
4040
4041 switch (args->madv) {
4042 case I915_MADV_DONTNEED:
4043 case I915_MADV_WILLNEED:
4044 break;
4045 default:
4046 return -EINVAL;
4047 }
4048
4049 ret = i915_mutex_lock_interruptible(dev);
4050 if (ret)
4051 return ret;
4052
4053 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4054 if (&obj->base == NULL) {
4055 ret = -ENOENT;
4056 goto unlock;
4057 }
4058
4059 if (i915_gem_obj_is_pinned(obj)) {
4060 ret = -EINVAL;
4061 goto out;
4062 }
4063
4064 if (obj->madv != __I915_MADV_PURGED)
4065 obj->madv = args->madv;
4066
4067 /* if the object is no longer attached, discard its backing storage */
4068 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4069 i915_gem_object_truncate(obj);
4070
4071 args->retained = obj->madv != __I915_MADV_PURGED;
4072
4073out:
4074 drm_gem_object_unreference(&obj->base);
4075unlock:
4076 mutex_unlock(&dev->struct_mutex);
4077 return ret;
4078}
4079
4080void i915_gem_object_init(struct drm_i915_gem_object *obj,
4081 const struct drm_i915_gem_object_ops *ops)
4082{
4083 INIT_LIST_HEAD(&obj->global_list);
4084 INIT_LIST_HEAD(&obj->ring_list);
4085 INIT_LIST_HEAD(&obj->obj_exec_link);
4086 INIT_LIST_HEAD(&obj->vma_list);
4087
4088 obj->ops = ops;
4089
4090 obj->fence_reg = I915_FENCE_REG_NONE;
4091 obj->madv = I915_MADV_WILLNEED;
4092 /* Avoid an unnecessary call to unbind on the first bind. */
4093 obj->map_and_fenceable = true;
4094
4095 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4096}
4097
4098static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4099 .get_pages = i915_gem_object_get_pages_gtt,
4100 .put_pages = i915_gem_object_put_pages_gtt,
4101};
4102
4103struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4104 size_t size)
4105{
4106 struct drm_i915_gem_object *obj;
4107 struct address_space *mapping;
4108 gfp_t mask;
4109
4110 obj = i915_gem_object_alloc(dev);
4111 if (obj == NULL)
4112 return NULL;
4113
4114 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4115 i915_gem_object_free(obj);
4116 return NULL;
4117 }
4118
4119 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4121 /* 965gm cannot relocate objects above 4GiB. */
4122 mask &= ~__GFP_HIGHMEM;
4123 mask |= __GFP_DMA32;
4124 }
4125
4126 mapping = file_inode(obj->base.filp)->i_mapping;
4127 mapping_set_gfp_mask(mapping, mask);
4128
4129 i915_gem_object_init(obj, &i915_gem_object_ops);
4130
4131 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4132 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4133
4134 if (HAS_LLC(dev)) {
4135 /* On some devices, we can have the GPU use the LLC (the CPU
4136 * cache) for about a 10% performance improvement
4137 * compared to uncached. Graphics requests other than
4138 * display scanout are coherent with the CPU in
4139 * accessing this cache. This means in this mode we
4140 * don't need to clflush on the CPU side, and on the
4141 * GPU side we only need to flush internal caches to
4142 * get data visible to the CPU.
4143 *
4144 * However, we maintain the display planes as UC, and so
4145 * need to rebind when first used as such.
4146 */
4147 obj->cache_level = I915_CACHE_LLC;
4148 } else
4149 obj->cache_level = I915_CACHE_NONE;
4150
4151 trace_i915_gem_object_create(obj);
4152
4153 return obj;
4154}
4155
4156void i915_gem_free_object(struct drm_gem_object *gem_obj)
4157{
4158 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4159 struct drm_device *dev = obj->base.dev;
4160 drm_i915_private_t *dev_priv = dev->dev_private;
4161 struct i915_vma *vma, *next;
4162
4163 intel_runtime_pm_get(dev_priv);
4164
4165 trace_i915_gem_object_destroy(obj);
4166
4167 if (obj->phys_obj)
4168 i915_gem_detach_phys_object(dev, obj);
4169
4170 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4171 int ret;
4172
4173 vma->pin_count = 0;
4174 ret = i915_vma_unbind(vma);
4175 if (WARN_ON(ret == -ERESTARTSYS)) {
4176 bool was_interruptible;
4177
4178 was_interruptible = dev_priv->mm.interruptible;
4179 dev_priv->mm.interruptible = false;
4180
4181 WARN_ON(i915_vma_unbind(vma));
4182
4183 dev_priv->mm.interruptible = was_interruptible;
4184 }
4185 }
4186
4187 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4188 * before progressing. */
4189 if (obj->stolen)
4190 i915_gem_object_unpin_pages(obj);
4191
4192 if (WARN_ON(obj->pages_pin_count))
4193 obj->pages_pin_count = 0;
4194 i915_gem_object_put_pages(obj);
4195 i915_gem_object_free_mmap_offset(obj);
4196 i915_gem_object_release_stolen(obj);
4197
4198 BUG_ON(obj->pages);
4199
4200 if (obj->base.import_attach)
4201 drm_prime_gem_destroy(&obj->base, NULL);
4202
4203 drm_gem_object_release(&obj->base);
4204 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4205
4206 kfree(obj->bit_17);
4207 i915_gem_object_free(obj);
4208
4209 intel_runtime_pm_put(dev_priv);
4210}
4211
4212struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4213 struct i915_address_space *vm)
4214{
4215 struct i915_vma *vma;
4216 list_for_each_entry(vma, &obj->vma_list, vma_link)
4217 if (vma->vm == vm)
4218 return vma;
4219
4220 return NULL;
4221}
4222
4223void i915_gem_vma_destroy(struct i915_vma *vma)
4224{
4225 WARN_ON(vma->node.allocated);
4226
4227 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4228 if (!list_empty(&vma->exec_list))
4229 return;
4230
4231 list_del(&vma->vma_link);
4232
4233 kfree(vma);
4234}
4235
4236int
4237i915_gem_suspend(struct drm_device *dev)
4238{
4239 drm_i915_private_t *dev_priv = dev->dev_private;
4240 int ret = 0;
4241
4242 mutex_lock(&dev->struct_mutex);
4243 if (dev_priv->ums.mm_suspended)
4244 goto err;
4245
4246 ret = i915_gpu_idle(dev);
4247 if (ret)
4248 goto err;
4249
4250 i915_gem_retire_requests(dev);
4251
4252 /* Under UMS, be paranoid and evict. */
4253 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4254 i915_gem_evict_everything(dev);
4255
4256 i915_kernel_lost_context(dev);
4257 i915_gem_cleanup_ringbuffer(dev);
4258
4259 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4260 * We need to replace this with a semaphore, or something.
4261 * And not confound ums.mm_suspended!
4262 */
4263 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4264 DRIVER_MODESET);
4265 mutex_unlock(&dev->struct_mutex);
4266
4267 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4268 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4269 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4270
4271 return 0;
4272
4273err:
4274 mutex_unlock(&dev->struct_mutex);
4275 return ret;
4276}
4277
4278int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4279{
4280 struct drm_device *dev = ring->dev;
4281 drm_i915_private_t *dev_priv = dev->dev_private;
4282 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4283 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4284 int i, ret;
4285
4286 if (!HAS_L3_DPF(dev) || !remap_info)
4287 return 0;
4288
4289 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4290 if (ret)
4291 return ret;
4292
4293 /*
4294 * Note: We do not worry about the concurrent register cacheline hang
4295 * here because no other code should access these registers other than
4296 * at initialization time.
4297 */
4298 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4299 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4300 intel_ring_emit(ring, reg_base + i);
4301 intel_ring_emit(ring, remap_info[i/4]);
4302 }
4303
4304 intel_ring_advance(ring);
4305
4306 return ret;
4307}
4308
4309void i915_gem_init_swizzling(struct drm_device *dev)
4310{
4311 drm_i915_private_t *dev_priv = dev->dev_private;
4312
4313 if (INTEL_INFO(dev)->gen < 5 ||
4314 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4315 return;
4316
4317 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4318 DISP_TILE_SURFACE_SWIZZLING);
4319
4320 if (IS_GEN5(dev))
4321 return;
4322
4323 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4324 if (IS_GEN6(dev))
4325 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4326 else if (IS_GEN7(dev))
4327 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4328 else if (IS_GEN8(dev))
4329 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4330 else
4331 BUG();
4332}
4333
4334static bool
4335intel_enable_blt(struct drm_device *dev)
4336{
4337 if (!HAS_BLT(dev))
4338 return false;
4339
4340 /* The blitter was dysfunctional on early prototypes */
4341 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4342 DRM_INFO("BLT not supported on this pre-production hardware;"
4343 " graphics performance will be degraded.\n");
4344 return false;
4345 }
4346
4347 return true;
4348}
4349
4350static int i915_gem_init_rings(struct drm_device *dev)
4351{
4352 struct drm_i915_private *dev_priv = dev->dev_private;
4353 int ret;
4354
4355 ret = intel_init_render_ring_buffer(dev);
4356 if (ret)
4357 return ret;
4358
4359 if (HAS_BSD(dev)) {
4360 ret = intel_init_bsd_ring_buffer(dev);
4361 if (ret)
4362 goto cleanup_render_ring;
4363 }
4364
4365 if (intel_enable_blt(dev)) {
4366 ret = intel_init_blt_ring_buffer(dev);
4367 if (ret)
4368 goto cleanup_bsd_ring;
4369 }
4370
4371 if (HAS_VEBOX(dev)) {
4372 ret = intel_init_vebox_ring_buffer(dev);
4373 if (ret)
4374 goto cleanup_blt_ring;
4375 }
4376
4377
4378 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4379 if (ret)
4380 goto cleanup_vebox_ring;
4381
4382 return 0;
4383
4384cleanup_vebox_ring:
4385 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4386cleanup_blt_ring:
4387 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4388cleanup_bsd_ring:
4389 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4390cleanup_render_ring:
4391 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4392
4393 return ret;
4394}
4395
4396int
4397i915_gem_init_hw(struct drm_device *dev)
4398{
4399 drm_i915_private_t *dev_priv = dev->dev_private;
4400 int ret, i;
4401
4402 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4403 return -EIO;
4404
4405 if (dev_priv->ellc_size)
4406 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4407
4408 if (IS_HASWELL(dev))
4409 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4410 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4411
4412 if (HAS_PCH_NOP(dev)) {
4413 if (IS_IVYBRIDGE(dev)) {
4414 u32 temp = I915_READ(GEN7_MSG_CTL);
4415 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4416 I915_WRITE(GEN7_MSG_CTL, temp);
4417 } else if (INTEL_INFO(dev)->gen >= 7) {
4418 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4419 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4420 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4421 }
4422 }
4423
4424 i915_gem_init_swizzling(dev);
4425
4426 ret = i915_gem_init_rings(dev);
4427 if (ret)
4428 return ret;
4429
4430 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4431 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4432
4433 /*
4434 * XXX: Contexts should only be initialized once. Doing a switch to the
4435 * default context switch however is something we'd like to do after
4436 * reset or thaw (the latter may not actually be necessary for HW, but
4437 * goes with our code better). Context switching requires rings (for
4438 * the do_switch), but before enabling PPGTT. So don't move this.
4439 */
4440 ret = i915_gem_context_enable(dev_priv);
4441 if (ret) {
4442 DRM_ERROR("Context enable failed %d\n", ret);
4443 goto err_out;
4444 }
4445
4446 return 0;
4447
4448err_out:
4449 i915_gem_cleanup_ringbuffer(dev);
4450 return ret;
4451}
4452
4453int i915_gem_init(struct drm_device *dev)
4454{
4455 struct drm_i915_private *dev_priv = dev->dev_private;
4456 int ret;
4457
4458 mutex_lock(&dev->struct_mutex);
4459
4460 if (IS_VALLEYVIEW(dev)) {
4461 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4462 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4463 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4464 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4465 }
4466
4467 i915_gem_init_global_gtt(dev);
4468
4469 ret = i915_gem_context_init(dev);
4470 if (ret)
4471 return ret;
4472
4473 ret = i915_gem_init_hw(dev);
4474 mutex_unlock(&dev->struct_mutex);
4475 if (ret) {
4476 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4477 i915_gem_context_fini(dev);
4478 drm_mm_takedown(&dev_priv->gtt.base.mm);
4479 return ret;
4480 }
4481
4482 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4483 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4484 dev_priv->dri1.allow_batchbuffer = 1;
4485 return 0;
4486}
4487
4488void
4489i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4490{
4491 drm_i915_private_t *dev_priv = dev->dev_private;
4492 struct intel_ring_buffer *ring;
4493 int i;
4494
4495 for_each_ring(ring, dev_priv, i)
4496 intel_cleanup_ring_buffer(ring);
4497}
4498
4499int
4500i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4501 struct drm_file *file_priv)
4502{
4503 struct drm_i915_private *dev_priv = dev->dev_private;
4504 int ret;
4505
4506 if (drm_core_check_feature(dev, DRIVER_MODESET))
4507 return 0;
4508
4509 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4510 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4511 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4512 }
4513
4514 mutex_lock(&dev->struct_mutex);
4515 dev_priv->ums.mm_suspended = 0;
4516
4517 ret = i915_gem_init_hw(dev);
4518 if (ret != 0) {
4519 mutex_unlock(&dev->struct_mutex);
4520 return ret;
4521 }
4522
4523 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4524 mutex_unlock(&dev->struct_mutex);
4525
4526 ret = drm_irq_install(dev);
4527 if (ret)
4528 goto cleanup_ringbuffer;
4529
4530 return 0;
4531
4532cleanup_ringbuffer:
4533 mutex_lock(&dev->struct_mutex);
4534 i915_gem_cleanup_ringbuffer(dev);
4535 dev_priv->ums.mm_suspended = 1;
4536 mutex_unlock(&dev->struct_mutex);
4537
4538 return ret;
4539}
4540
4541int
4542i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4543 struct drm_file *file_priv)
4544{
4545 if (drm_core_check_feature(dev, DRIVER_MODESET))
4546 return 0;
4547
4548 drm_irq_uninstall(dev);
4549
4550 return i915_gem_suspend(dev);
4551}
4552
4553void
4554i915_gem_lastclose(struct drm_device *dev)
4555{
4556 int ret;
4557
4558 if (drm_core_check_feature(dev, DRIVER_MODESET))
4559 return;
4560
4561 ret = i915_gem_suspend(dev);
4562 if (ret)
4563 DRM_ERROR("failed to idle hardware: %d\n", ret);
4564}
4565
4566static void
4567init_ring_lists(struct intel_ring_buffer *ring)
4568{
4569 INIT_LIST_HEAD(&ring->active_list);
4570 INIT_LIST_HEAD(&ring->request_list);
4571}
4572
4573void i915_init_vm(struct drm_i915_private *dev_priv,
4574 struct i915_address_space *vm)
4575{
4576 if (!i915_is_ggtt(vm))
4577 drm_mm_init(&vm->mm, vm->start, vm->total);
4578 vm->dev = dev_priv->dev;
4579 INIT_LIST_HEAD(&vm->active_list);
4580 INIT_LIST_HEAD(&vm->inactive_list);
4581 INIT_LIST_HEAD(&vm->global_link);
4582 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4583}
4584
4585void
4586i915_gem_load(struct drm_device *dev)
4587{
4588 drm_i915_private_t *dev_priv = dev->dev_private;
4589 int i;
4590
4591 dev_priv->slab =
4592 kmem_cache_create("i915_gem_object",
4593 sizeof(struct drm_i915_gem_object), 0,
4594 SLAB_HWCACHE_ALIGN,
4595 NULL);
4596
4597 INIT_LIST_HEAD(&dev_priv->vm_list);
4598 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4599
4600 INIT_LIST_HEAD(&dev_priv->context_list);
4601 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4602 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4603 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4604 for (i = 0; i < I915_NUM_RINGS; i++)
4605 init_ring_lists(&dev_priv->ring[i]);
4606 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4607 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4608 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4609 i915_gem_retire_work_handler);
4610 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4611 i915_gem_idle_work_handler);
4612 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4613
4614 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4615 if (IS_GEN3(dev)) {
4616 I915_WRITE(MI_ARB_STATE,
4617 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4618 }
4619
4620 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4621
4622 /* Old X drivers will take 0-2 for front, back, depth buffers */
4623 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4624 dev_priv->fence_reg_start = 3;
4625
4626 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4627 dev_priv->num_fence_regs = 32;
4628 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4629 dev_priv->num_fence_regs = 16;
4630 else
4631 dev_priv->num_fence_regs = 8;
4632
4633 /* Initialize fence registers to zero */
4634 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4635 i915_gem_restore_fences(dev);
4636
4637 i915_gem_detect_bit_6_swizzle(dev);
4638 init_waitqueue_head(&dev_priv->pending_flip_queue);
4639
4640 dev_priv->mm.interruptible = true;
4641
4642 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4643 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4644 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4645 register_shrinker(&dev_priv->mm.inactive_shrinker);
4646}
4647
4648/*
4649 * Create a physically contiguous memory object for this object
4650 * e.g. for cursor + overlay regs
4651 */
4652static int i915_gem_init_phys_object(struct drm_device *dev,
4653 int id, int size, int align)
4654{
4655 drm_i915_private_t *dev_priv = dev->dev_private;
4656 struct drm_i915_gem_phys_object *phys_obj;
4657 int ret;
4658
4659 if (dev_priv->mm.phys_objs[id - 1] || !size)
4660 return 0;
4661
4662 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4663 if (!phys_obj)
4664 return -ENOMEM;
4665
4666 phys_obj->id = id;
4667
4668 phys_obj->handle = drm_pci_alloc(dev, size, align);
4669 if (!phys_obj->handle) {
4670 ret = -ENOMEM;
4671 goto kfree_obj;
4672 }
4673#ifdef CONFIG_X86
4674 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4675#endif
4676
4677 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4678
4679 return 0;
4680kfree_obj:
4681 kfree(phys_obj);
4682 return ret;
4683}
4684
4685static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4686{
4687 drm_i915_private_t *dev_priv = dev->dev_private;
4688 struct drm_i915_gem_phys_object *phys_obj;
4689
4690 if (!dev_priv->mm.phys_objs[id - 1])
4691 return;
4692
4693 phys_obj = dev_priv->mm.phys_objs[id - 1];
4694 if (phys_obj->cur_obj) {
4695 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4696 }
4697
4698#ifdef CONFIG_X86
4699 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4700#endif
4701 drm_pci_free(dev, phys_obj->handle);
4702 kfree(phys_obj);
4703 dev_priv->mm.phys_objs[id - 1] = NULL;
4704}
4705
4706void i915_gem_free_all_phys_object(struct drm_device *dev)
4707{
4708 int i;
4709
4710 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4711 i915_gem_free_phys_object(dev, i);
4712}
4713
4714void i915_gem_detach_phys_object(struct drm_device *dev,
4715 struct drm_i915_gem_object *obj)
4716{
4717 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4718 char *vaddr;
4719 int i;
4720 int page_count;
4721
4722 if (!obj->phys_obj)
4723 return;
4724 vaddr = obj->phys_obj->handle->vaddr;
4725
4726 page_count = obj->base.size / PAGE_SIZE;
4727 for (i = 0; i < page_count; i++) {
4728 struct page *page = shmem_read_mapping_page(mapping, i);
4729 if (!IS_ERR(page)) {
4730 char *dst = kmap_atomic(page);
4731 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4732 kunmap_atomic(dst);
4733
4734 drm_clflush_pages(&page, 1);
4735
4736 set_page_dirty(page);
4737 mark_page_accessed(page);
4738 page_cache_release(page);
4739 }
4740 }
4741 i915_gem_chipset_flush(dev);
4742
4743 obj->phys_obj->cur_obj = NULL;
4744 obj->phys_obj = NULL;
4745}
4746
4747int
4748i915_gem_attach_phys_object(struct drm_device *dev,
4749 struct drm_i915_gem_object *obj,
4750 int id,
4751 int align)
4752{
4753 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4754 drm_i915_private_t *dev_priv = dev->dev_private;
4755 int ret = 0;
4756 int page_count;
4757 int i;
4758
4759 if (id > I915_MAX_PHYS_OBJECT)
4760 return -EINVAL;
4761
4762 if (obj->phys_obj) {
4763 if (obj->phys_obj->id == id)
4764 return 0;
4765 i915_gem_detach_phys_object(dev, obj);
4766 }
4767
4768 /* create a new object */
4769 if (!dev_priv->mm.phys_objs[id - 1]) {
4770 ret = i915_gem_init_phys_object(dev, id,
4771 obj->base.size, align);
4772 if (ret) {
4773 DRM_ERROR("failed to init phys object %d size: %zu\n",
4774 id, obj->base.size);
4775 return ret;
4776 }
4777 }
4778
4779 /* bind to the object */
4780 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4781 obj->phys_obj->cur_obj = obj;
4782
4783 page_count = obj->base.size / PAGE_SIZE;
4784
4785 for (i = 0; i < page_count; i++) {
4786 struct page *page;
4787 char *dst, *src;
4788
4789 page = shmem_read_mapping_page(mapping, i);
4790 if (IS_ERR(page))
4791 return PTR_ERR(page);
4792
4793 src = kmap_atomic(page);
4794 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4795 memcpy(dst, src, PAGE_SIZE);
4796 kunmap_atomic(src);
4797
4798 mark_page_accessed(page);
4799 page_cache_release(page);
4800 }
4801
4802 return 0;
4803}
4804
4805static int
4806i915_gem_phys_pwrite(struct drm_device *dev,
4807 struct drm_i915_gem_object *obj,
4808 struct drm_i915_gem_pwrite *args,
4809 struct drm_file *file_priv)
4810{
4811 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4812 char __user *user_data = to_user_ptr(args->data_ptr);
4813
4814 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4815 unsigned long unwritten;
4816
4817 /* The physical object once assigned is fixed for the lifetime
4818 * of the obj, so we can safely drop the lock and continue
4819 * to access vaddr.
4820 */
4821 mutex_unlock(&dev->struct_mutex);
4822 unwritten = copy_from_user(vaddr, user_data, args->size);
4823 mutex_lock(&dev->struct_mutex);
4824 if (unwritten)
4825 return -EFAULT;
4826 }
4827
4828 i915_gem_chipset_flush(dev);
4829 return 0;
4830}
4831
4832void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4833{
4834 struct drm_i915_file_private *file_priv = file->driver_priv;
4835
4836 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4837
4838 /* Clean up our request list when the client is going away, so that
4839 * later retire_requests won't dereference our soon-to-be-gone
4840 * file_priv.
4841 */
4842 spin_lock(&file_priv->mm.lock);
4843 while (!list_empty(&file_priv->mm.request_list)) {
4844 struct drm_i915_gem_request *request;
4845
4846 request = list_first_entry(&file_priv->mm.request_list,
4847 struct drm_i915_gem_request,
4848 client_list);
4849 list_del(&request->client_list);
4850 request->file_priv = NULL;
4851 }
4852 spin_unlock(&file_priv->mm.lock);
4853}
4854
4855static void
4856i915_gem_file_idle_work_handler(struct work_struct *work)
4857{
4858 struct drm_i915_file_private *file_priv =
4859 container_of(work, typeof(*file_priv), mm.idle_work.work);
4860
4861 atomic_set(&file_priv->rps_wait_boost, false);
4862}
4863
4864int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4865{
4866 struct drm_i915_file_private *file_priv;
4867 int ret;
4868
4869 DRM_DEBUG_DRIVER("\n");
4870
4871 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4872 if (!file_priv)
4873 return -ENOMEM;
4874
4875 file->driver_priv = file_priv;
4876 file_priv->dev_priv = dev->dev_private;
4877
4878 spin_lock_init(&file_priv->mm.lock);
4879 INIT_LIST_HEAD(&file_priv->mm.request_list);
4880 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4881 i915_gem_file_idle_work_handler);
4882
4883 ret = i915_gem_context_open(dev, file);
4884 if (ret)
4885 kfree(file_priv);
4886
4887 return ret;
4888}
4889
4890static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4891{
4892 if (!mutex_is_locked(mutex))
4893 return false;
4894
4895#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4896 return mutex->owner == task;
4897#else
4898 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4899 return false;
4900#endif
4901}
4902
4903static unsigned long
4904i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4905{
4906 struct drm_i915_private *dev_priv =
4907 container_of(shrinker,
4908 struct drm_i915_private,
4909 mm.inactive_shrinker);
4910 struct drm_device *dev = dev_priv->dev;
4911 struct drm_i915_gem_object *obj;
4912 bool unlock = true;
4913 unsigned long count;
4914
4915 if (!mutex_trylock(&dev->struct_mutex)) {
4916 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4917 return 0;
4918
4919 if (dev_priv->mm.shrinker_no_lock_stealing)
4920 return 0;
4921
4922 unlock = false;
4923 }
4924
4925 count = 0;
4926 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4927 if (obj->pages_pin_count == 0)
4928 count += obj->base.size >> PAGE_SHIFT;
4929
4930 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4931 if (obj->active)
4932 continue;
4933
4934 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4935 count += obj->base.size >> PAGE_SHIFT;
4936 }
4937
4938 if (unlock)
4939 mutex_unlock(&dev->struct_mutex);
4940
4941 return count;
4942}
4943
4944/* All the new VM stuff */
4945unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4946 struct i915_address_space *vm)
4947{
4948 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4949 struct i915_vma *vma;
4950
4951 if (!dev_priv->mm.aliasing_ppgtt ||
4952 vm == &dev_priv->mm.aliasing_ppgtt->base)
4953 vm = &dev_priv->gtt.base;
4954
4955 BUG_ON(list_empty(&o->vma_list));
4956 list_for_each_entry(vma, &o->vma_list, vma_link) {
4957 if (vma->vm == vm)
4958 return vma->node.start;
4959
4960 }
4961 return -1;
4962}
4963
4964bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4965 struct i915_address_space *vm)
4966{
4967 struct i915_vma *vma;
4968
4969 list_for_each_entry(vma, &o->vma_list, vma_link)
4970 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4971 return true;
4972
4973 return false;
4974}
4975
4976bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4977{
4978 struct i915_vma *vma;
4979
4980 list_for_each_entry(vma, &o->vma_list, vma_link)
4981 if (drm_mm_node_allocated(&vma->node))
4982 return true;
4983
4984 return false;
4985}
4986
4987unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4988 struct i915_address_space *vm)
4989{
4990 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4991 struct i915_vma *vma;
4992
4993 if (!dev_priv->mm.aliasing_ppgtt ||
4994 vm == &dev_priv->mm.aliasing_ppgtt->base)
4995 vm = &dev_priv->gtt.base;
4996
4997 BUG_ON(list_empty(&o->vma_list));
4998
4999 list_for_each_entry(vma, &o->vma_list, vma_link)
5000 if (vma->vm == vm)
5001 return vma->node.size;
5002
5003 return 0;
5004}
5005
5006static unsigned long
5007i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5008{
5009 struct drm_i915_private *dev_priv =
5010 container_of(shrinker,
5011 struct drm_i915_private,
5012 mm.inactive_shrinker);
5013 struct drm_device *dev = dev_priv->dev;
5014 unsigned long freed;
5015 bool unlock = true;
5016
5017 if (!mutex_trylock(&dev->struct_mutex)) {
5018 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5019 return SHRINK_STOP;
5020
5021 if (dev_priv->mm.shrinker_no_lock_stealing)
5022 return SHRINK_STOP;
5023
5024 unlock = false;
5025 }
5026
5027 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5028 if (freed < sc->nr_to_scan)
5029 freed += __i915_gem_shrink(dev_priv,
5030 sc->nr_to_scan - freed,
5031 false);
5032 if (freed < sc->nr_to_scan)
5033 freed += i915_gem_shrink_all(dev_priv);
5034
5035 if (unlock)
5036 mutex_unlock(&dev->struct_mutex);
5037
5038 return freed;
5039}
5040
5041struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5042{
5043 struct i915_vma *vma;
5044
5045 if (WARN_ON(list_empty(&obj->vma_list)))
5046 return NULL;
5047
5048 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5049 if (vma->vm != obj_to_ggtt(obj))
5050 return NULL;
5051
5052 return vma;
5053}
This page took 0.040493 seconds and 5 git commands to generate.