drm/i915: Update i915_gem_object_sync() to take a request structure
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <drm/drmP.h>
29#include <drm/drm_vma_manager.h>
30#include <drm/i915_drm.h>
31#include "i915_drv.h"
32#include "i915_vgpu.h"
33#include "i915_trace.h"
34#include "intel_drv.h"
35#include <linux/shmem_fs.h>
36#include <linux/slab.h>
37#include <linux/swap.h>
38#include <linux/pci.h>
39#include <linux/dma-buf.h>
40
41#define RQ_BUG_ON(expr)
42
43static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45static void
46i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47static void
48i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49static void i915_gem_write_fence(struct drm_device *dev, int reg,
50 struct drm_i915_gem_object *obj);
51static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
52 struct drm_i915_fence_reg *fence,
53 bool enable);
54
55static bool cpu_cache_is_coherent(struct drm_device *dev,
56 enum i915_cache_level level)
57{
58 return HAS_LLC(dev) || level != I915_CACHE_NONE;
59}
60
61static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
62{
63 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
64 return true;
65
66 return obj->pin_display;
67}
68
69static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
70{
71 if (obj->tiling_mode)
72 i915_gem_release_mmap(obj);
73
74 /* As we do not have an associated fence register, we will force
75 * a tiling change if we ever need to acquire one.
76 */
77 obj->fence_dirty = false;
78 obj->fence_reg = I915_FENCE_REG_NONE;
79}
80
81/* some bookkeeping */
82static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
83 size_t size)
84{
85 spin_lock(&dev_priv->mm.object_stat_lock);
86 dev_priv->mm.object_count++;
87 dev_priv->mm.object_memory += size;
88 spin_unlock(&dev_priv->mm.object_stat_lock);
89}
90
91static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
92 size_t size)
93{
94 spin_lock(&dev_priv->mm.object_stat_lock);
95 dev_priv->mm.object_count--;
96 dev_priv->mm.object_memory -= size;
97 spin_unlock(&dev_priv->mm.object_stat_lock);
98}
99
100static int
101i915_gem_wait_for_error(struct i915_gpu_error *error)
102{
103 int ret;
104
105#define EXIT_COND (!i915_reset_in_progress(error) || \
106 i915_terminally_wedged(error))
107 if (EXIT_COND)
108 return 0;
109
110 /*
111 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112 * userspace. If it takes that long something really bad is going on and
113 * we should simply try to bail out and fail as gracefully as possible.
114 */
115 ret = wait_event_interruptible_timeout(error->reset_queue,
116 EXIT_COND,
117 10*HZ);
118 if (ret == 0) {
119 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120 return -EIO;
121 } else if (ret < 0) {
122 return ret;
123 }
124#undef EXIT_COND
125
126 return 0;
127}
128
129int i915_mutex_lock_interruptible(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132 int ret;
133
134 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 if (ret)
136 return ret;
137
138 ret = mutex_lock_interruptible(&dev->struct_mutex);
139 if (ret)
140 return ret;
141
142 WARN_ON(i915_verify_lists(dev));
143 return 0;
144}
145
146int
147i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
149{
150 struct drm_i915_private *dev_priv = dev->dev_private;
151 struct drm_i915_gem_get_aperture *args = data;
152 struct drm_i915_gem_object *obj;
153 size_t pinned;
154
155 pinned = 0;
156 mutex_lock(&dev->struct_mutex);
157 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
158 if (i915_gem_obj_is_pinned(obj))
159 pinned += i915_gem_obj_ggtt_size(obj);
160 mutex_unlock(&dev->struct_mutex);
161
162 args->aper_size = dev_priv->gtt.base.total;
163 args->aper_available_size = args->aper_size - pinned;
164
165 return 0;
166}
167
168static int
169i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170{
171 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
172 char *vaddr = obj->phys_handle->vaddr;
173 struct sg_table *st;
174 struct scatterlist *sg;
175 int i;
176
177 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
178 return -EINVAL;
179
180 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
181 struct page *page;
182 char *src;
183
184 page = shmem_read_mapping_page(mapping, i);
185 if (IS_ERR(page))
186 return PTR_ERR(page);
187
188 src = kmap_atomic(page);
189 memcpy(vaddr, src, PAGE_SIZE);
190 drm_clflush_virt_range(vaddr, PAGE_SIZE);
191 kunmap_atomic(src);
192
193 page_cache_release(page);
194 vaddr += PAGE_SIZE;
195 }
196
197 i915_gem_chipset_flush(obj->base.dev);
198
199 st = kmalloc(sizeof(*st), GFP_KERNEL);
200 if (st == NULL)
201 return -ENOMEM;
202
203 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
204 kfree(st);
205 return -ENOMEM;
206 }
207
208 sg = st->sgl;
209 sg->offset = 0;
210 sg->length = obj->base.size;
211
212 sg_dma_address(sg) = obj->phys_handle->busaddr;
213 sg_dma_len(sg) = obj->base.size;
214
215 obj->pages = st;
216 obj->has_dma_mapping = true;
217 return 0;
218}
219
220static void
221i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
222{
223 int ret;
224
225 BUG_ON(obj->madv == __I915_MADV_PURGED);
226
227 ret = i915_gem_object_set_to_cpu_domain(obj, true);
228 if (ret) {
229 /* In the event of a disaster, abandon all caches and
230 * hope for the best.
231 */
232 WARN_ON(ret != -EIO);
233 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234 }
235
236 if (obj->madv == I915_MADV_DONTNEED)
237 obj->dirty = 0;
238
239 if (obj->dirty) {
240 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241 char *vaddr = obj->phys_handle->vaddr;
242 int i;
243
244 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 struct page *page;
246 char *dst;
247
248 page = shmem_read_mapping_page(mapping, i);
249 if (IS_ERR(page))
250 continue;
251
252 dst = kmap_atomic(page);
253 drm_clflush_virt_range(vaddr, PAGE_SIZE);
254 memcpy(dst, vaddr, PAGE_SIZE);
255 kunmap_atomic(dst);
256
257 set_page_dirty(page);
258 if (obj->madv == I915_MADV_WILLNEED)
259 mark_page_accessed(page);
260 page_cache_release(page);
261 vaddr += PAGE_SIZE;
262 }
263 obj->dirty = 0;
264 }
265
266 sg_free_table(obj->pages);
267 kfree(obj->pages);
268
269 obj->has_dma_mapping = false;
270}
271
272static void
273i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274{
275 drm_pci_free(obj->base.dev, obj->phys_handle);
276}
277
278static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279 .get_pages = i915_gem_object_get_pages_phys,
280 .put_pages = i915_gem_object_put_pages_phys,
281 .release = i915_gem_object_release_phys,
282};
283
284static int
285drop_pages(struct drm_i915_gem_object *obj)
286{
287 struct i915_vma *vma, *next;
288 int ret;
289
290 drm_gem_object_reference(&obj->base);
291 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
292 if (i915_vma_unbind(vma))
293 break;
294
295 ret = i915_gem_object_put_pages(obj);
296 drm_gem_object_unreference(&obj->base);
297
298 return ret;
299}
300
301int
302i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303 int align)
304{
305 drm_dma_handle_t *phys;
306 int ret;
307
308 if (obj->phys_handle) {
309 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310 return -EBUSY;
311
312 return 0;
313 }
314
315 if (obj->madv != I915_MADV_WILLNEED)
316 return -EFAULT;
317
318 if (obj->base.filp == NULL)
319 return -EINVAL;
320
321 ret = drop_pages(obj);
322 if (ret)
323 return ret;
324
325 /* create a new object */
326 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327 if (!phys)
328 return -ENOMEM;
329
330 obj->phys_handle = phys;
331 obj->ops = &i915_gem_phys_ops;
332
333 return i915_gem_object_get_pages(obj);
334}
335
336static int
337i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338 struct drm_i915_gem_pwrite *args,
339 struct drm_file *file_priv)
340{
341 struct drm_device *dev = obj->base.dev;
342 void *vaddr = obj->phys_handle->vaddr + args->offset;
343 char __user *user_data = to_user_ptr(args->data_ptr);
344 int ret = 0;
345
346 /* We manually control the domain here and pretend that it
347 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348 */
349 ret = i915_gem_object_wait_rendering(obj, false);
350 if (ret)
351 return ret;
352
353 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355 unsigned long unwritten;
356
357 /* The physical object once assigned is fixed for the lifetime
358 * of the obj, so we can safely drop the lock and continue
359 * to access vaddr.
360 */
361 mutex_unlock(&dev->struct_mutex);
362 unwritten = copy_from_user(vaddr, user_data, args->size);
363 mutex_lock(&dev->struct_mutex);
364 if (unwritten) {
365 ret = -EFAULT;
366 goto out;
367 }
368 }
369
370 drm_clflush_virt_range(vaddr, args->size);
371 i915_gem_chipset_flush(dev);
372
373out:
374 intel_fb_obj_flush(obj, false);
375 return ret;
376}
377
378void *i915_gem_object_alloc(struct drm_device *dev)
379{
380 struct drm_i915_private *dev_priv = dev->dev_private;
381 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382}
383
384void i915_gem_object_free(struct drm_i915_gem_object *obj)
385{
386 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387 kmem_cache_free(dev_priv->objects, obj);
388}
389
390static int
391i915_gem_create(struct drm_file *file,
392 struct drm_device *dev,
393 uint64_t size,
394 uint32_t *handle_p)
395{
396 struct drm_i915_gem_object *obj;
397 int ret;
398 u32 handle;
399
400 size = roundup(size, PAGE_SIZE);
401 if (size == 0)
402 return -EINVAL;
403
404 /* Allocate the new object */
405 obj = i915_gem_alloc_object(dev, size);
406 if (obj == NULL)
407 return -ENOMEM;
408
409 ret = drm_gem_handle_create(file, &obj->base, &handle);
410 /* drop reference from allocate - handle holds it now */
411 drm_gem_object_unreference_unlocked(&obj->base);
412 if (ret)
413 return ret;
414
415 *handle_p = handle;
416 return 0;
417}
418
419int
420i915_gem_dumb_create(struct drm_file *file,
421 struct drm_device *dev,
422 struct drm_mode_create_dumb *args)
423{
424 /* have to work out size/pitch and return them */
425 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 args->size = args->pitch * args->height;
427 return i915_gem_create(file, dev,
428 args->size, &args->handle);
429}
430
431/**
432 * Creates a new mm object and returns a handle to it.
433 */
434int
435i915_gem_create_ioctl(struct drm_device *dev, void *data,
436 struct drm_file *file)
437{
438 struct drm_i915_gem_create *args = data;
439
440 return i915_gem_create(file, dev,
441 args->size, &args->handle);
442}
443
444static inline int
445__copy_to_user_swizzled(char __user *cpu_vaddr,
446 const char *gpu_vaddr, int gpu_offset,
447 int length)
448{
449 int ret, cpu_offset = 0;
450
451 while (length > 0) {
452 int cacheline_end = ALIGN(gpu_offset + 1, 64);
453 int this_length = min(cacheline_end - gpu_offset, length);
454 int swizzled_gpu_offset = gpu_offset ^ 64;
455
456 ret = __copy_to_user(cpu_vaddr + cpu_offset,
457 gpu_vaddr + swizzled_gpu_offset,
458 this_length);
459 if (ret)
460 return ret + length;
461
462 cpu_offset += this_length;
463 gpu_offset += this_length;
464 length -= this_length;
465 }
466
467 return 0;
468}
469
470static inline int
471__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
472 const char __user *cpu_vaddr,
473 int length)
474{
475 int ret, cpu_offset = 0;
476
477 while (length > 0) {
478 int cacheline_end = ALIGN(gpu_offset + 1, 64);
479 int this_length = min(cacheline_end - gpu_offset, length);
480 int swizzled_gpu_offset = gpu_offset ^ 64;
481
482 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
483 cpu_vaddr + cpu_offset,
484 this_length);
485 if (ret)
486 return ret + length;
487
488 cpu_offset += this_length;
489 gpu_offset += this_length;
490 length -= this_length;
491 }
492
493 return 0;
494}
495
496/*
497 * Pins the specified object's pages and synchronizes the object with
498 * GPU accesses. Sets needs_clflush to non-zero if the caller should
499 * flush the object from the CPU cache.
500 */
501int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
502 int *needs_clflush)
503{
504 int ret;
505
506 *needs_clflush = 0;
507
508 if (!obj->base.filp)
509 return -EINVAL;
510
511 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
512 /* If we're not in the cpu read domain, set ourself into the gtt
513 * read domain and manually flush cachelines (if required). This
514 * optimizes for the case when the gpu will dirty the data
515 * anyway again before the next pread happens. */
516 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
517 obj->cache_level);
518 ret = i915_gem_object_wait_rendering(obj, true);
519 if (ret)
520 return ret;
521 }
522
523 ret = i915_gem_object_get_pages(obj);
524 if (ret)
525 return ret;
526
527 i915_gem_object_pin_pages(obj);
528
529 return ret;
530}
531
532/* Per-page copy function for the shmem pread fastpath.
533 * Flushes invalid cachelines before reading the target if
534 * needs_clflush is set. */
535static int
536shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
537 char __user *user_data,
538 bool page_do_bit17_swizzling, bool needs_clflush)
539{
540 char *vaddr;
541 int ret;
542
543 if (unlikely(page_do_bit17_swizzling))
544 return -EINVAL;
545
546 vaddr = kmap_atomic(page);
547 if (needs_clflush)
548 drm_clflush_virt_range(vaddr + shmem_page_offset,
549 page_length);
550 ret = __copy_to_user_inatomic(user_data,
551 vaddr + shmem_page_offset,
552 page_length);
553 kunmap_atomic(vaddr);
554
555 return ret ? -EFAULT : 0;
556}
557
558static void
559shmem_clflush_swizzled_range(char *addr, unsigned long length,
560 bool swizzled)
561{
562 if (unlikely(swizzled)) {
563 unsigned long start = (unsigned long) addr;
564 unsigned long end = (unsigned long) addr + length;
565
566 /* For swizzling simply ensure that we always flush both
567 * channels. Lame, but simple and it works. Swizzled
568 * pwrite/pread is far from a hotpath - current userspace
569 * doesn't use it at all. */
570 start = round_down(start, 128);
571 end = round_up(end, 128);
572
573 drm_clflush_virt_range((void *)start, end - start);
574 } else {
575 drm_clflush_virt_range(addr, length);
576 }
577
578}
579
580/* Only difference to the fast-path function is that this can handle bit17
581 * and uses non-atomic copy and kmap functions. */
582static int
583shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
584 char __user *user_data,
585 bool page_do_bit17_swizzling, bool needs_clflush)
586{
587 char *vaddr;
588 int ret;
589
590 vaddr = kmap(page);
591 if (needs_clflush)
592 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
593 page_length,
594 page_do_bit17_swizzling);
595
596 if (page_do_bit17_swizzling)
597 ret = __copy_to_user_swizzled(user_data,
598 vaddr, shmem_page_offset,
599 page_length);
600 else
601 ret = __copy_to_user(user_data,
602 vaddr + shmem_page_offset,
603 page_length);
604 kunmap(page);
605
606 return ret ? - EFAULT : 0;
607}
608
609static int
610i915_gem_shmem_pread(struct drm_device *dev,
611 struct drm_i915_gem_object *obj,
612 struct drm_i915_gem_pread *args,
613 struct drm_file *file)
614{
615 char __user *user_data;
616 ssize_t remain;
617 loff_t offset;
618 int shmem_page_offset, page_length, ret = 0;
619 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
620 int prefaulted = 0;
621 int needs_clflush = 0;
622 struct sg_page_iter sg_iter;
623
624 user_data = to_user_ptr(args->data_ptr);
625 remain = args->size;
626
627 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
628
629 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
630 if (ret)
631 return ret;
632
633 offset = args->offset;
634
635 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
636 offset >> PAGE_SHIFT) {
637 struct page *page = sg_page_iter_page(&sg_iter);
638
639 if (remain <= 0)
640 break;
641
642 /* Operation in this page
643 *
644 * shmem_page_offset = offset within page in shmem file
645 * page_length = bytes to copy for this page
646 */
647 shmem_page_offset = offset_in_page(offset);
648 page_length = remain;
649 if ((shmem_page_offset + page_length) > PAGE_SIZE)
650 page_length = PAGE_SIZE - shmem_page_offset;
651
652 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
653 (page_to_phys(page) & (1 << 17)) != 0;
654
655 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
656 user_data, page_do_bit17_swizzling,
657 needs_clflush);
658 if (ret == 0)
659 goto next_page;
660
661 mutex_unlock(&dev->struct_mutex);
662
663 if (likely(!i915.prefault_disable) && !prefaulted) {
664 ret = fault_in_multipages_writeable(user_data, remain);
665 /* Userspace is tricking us, but we've already clobbered
666 * its pages with the prefault and promised to write the
667 * data up to the first fault. Hence ignore any errors
668 * and just continue. */
669 (void)ret;
670 prefaulted = 1;
671 }
672
673 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
674 user_data, page_do_bit17_swizzling,
675 needs_clflush);
676
677 mutex_lock(&dev->struct_mutex);
678
679 if (ret)
680 goto out;
681
682next_page:
683 remain -= page_length;
684 user_data += page_length;
685 offset += page_length;
686 }
687
688out:
689 i915_gem_object_unpin_pages(obj);
690
691 return ret;
692}
693
694/**
695 * Reads data from the object referenced by handle.
696 *
697 * On error, the contents of *data are undefined.
698 */
699int
700i915_gem_pread_ioctl(struct drm_device *dev, void *data,
701 struct drm_file *file)
702{
703 struct drm_i915_gem_pread *args = data;
704 struct drm_i915_gem_object *obj;
705 int ret = 0;
706
707 if (args->size == 0)
708 return 0;
709
710 if (!access_ok(VERIFY_WRITE,
711 to_user_ptr(args->data_ptr),
712 args->size))
713 return -EFAULT;
714
715 ret = i915_mutex_lock_interruptible(dev);
716 if (ret)
717 return ret;
718
719 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
720 if (&obj->base == NULL) {
721 ret = -ENOENT;
722 goto unlock;
723 }
724
725 /* Bounds check source. */
726 if (args->offset > obj->base.size ||
727 args->size > obj->base.size - args->offset) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 /* prime objects have no backing filp to GEM pread/pwrite
733 * pages from.
734 */
735 if (!obj->base.filp) {
736 ret = -EINVAL;
737 goto out;
738 }
739
740 trace_i915_gem_object_pread(obj, args->offset, args->size);
741
742 ret = i915_gem_shmem_pread(dev, obj, args, file);
743
744out:
745 drm_gem_object_unreference(&obj->base);
746unlock:
747 mutex_unlock(&dev->struct_mutex);
748 return ret;
749}
750
751/* This is the fast write path which cannot handle
752 * page faults in the source data
753 */
754
755static inline int
756fast_user_write(struct io_mapping *mapping,
757 loff_t page_base, int page_offset,
758 char __user *user_data,
759 int length)
760{
761 void __iomem *vaddr_atomic;
762 void *vaddr;
763 unsigned long unwritten;
764
765 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
766 /* We can use the cpu mem copy function because this is X86. */
767 vaddr = (void __force*)vaddr_atomic + page_offset;
768 unwritten = __copy_from_user_inatomic_nocache(vaddr,
769 user_data, length);
770 io_mapping_unmap_atomic(vaddr_atomic);
771 return unwritten;
772}
773
774/**
775 * This is the fast pwrite path, where we copy the data directly from the
776 * user into the GTT, uncached.
777 */
778static int
779i915_gem_gtt_pwrite_fast(struct drm_device *dev,
780 struct drm_i915_gem_object *obj,
781 struct drm_i915_gem_pwrite *args,
782 struct drm_file *file)
783{
784 struct drm_i915_private *dev_priv = dev->dev_private;
785 ssize_t remain;
786 loff_t offset, page_base;
787 char __user *user_data;
788 int page_offset, page_length, ret;
789
790 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
791 if (ret)
792 goto out;
793
794 ret = i915_gem_object_set_to_gtt_domain(obj, true);
795 if (ret)
796 goto out_unpin;
797
798 ret = i915_gem_object_put_fence(obj);
799 if (ret)
800 goto out_unpin;
801
802 user_data = to_user_ptr(args->data_ptr);
803 remain = args->size;
804
805 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
806
807 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
808
809 while (remain > 0) {
810 /* Operation in this page
811 *
812 * page_base = page offset within aperture
813 * page_offset = offset within page
814 * page_length = bytes to copy for this page
815 */
816 page_base = offset & PAGE_MASK;
817 page_offset = offset_in_page(offset);
818 page_length = remain;
819 if ((page_offset + remain) > PAGE_SIZE)
820 page_length = PAGE_SIZE - page_offset;
821
822 /* If we get a fault while copying data, then (presumably) our
823 * source page isn't available. Return the error and we'll
824 * retry in the slow path.
825 */
826 if (fast_user_write(dev_priv->gtt.mappable, page_base,
827 page_offset, user_data, page_length)) {
828 ret = -EFAULT;
829 goto out_flush;
830 }
831
832 remain -= page_length;
833 user_data += page_length;
834 offset += page_length;
835 }
836
837out_flush:
838 intel_fb_obj_flush(obj, false);
839out_unpin:
840 i915_gem_object_ggtt_unpin(obj);
841out:
842 return ret;
843}
844
845/* Per-page copy function for the shmem pwrite fastpath.
846 * Flushes invalid cachelines before writing to the target if
847 * needs_clflush_before is set and flushes out any written cachelines after
848 * writing if needs_clflush is set. */
849static int
850shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
851 char __user *user_data,
852 bool page_do_bit17_swizzling,
853 bool needs_clflush_before,
854 bool needs_clflush_after)
855{
856 char *vaddr;
857 int ret;
858
859 if (unlikely(page_do_bit17_swizzling))
860 return -EINVAL;
861
862 vaddr = kmap_atomic(page);
863 if (needs_clflush_before)
864 drm_clflush_virt_range(vaddr + shmem_page_offset,
865 page_length);
866 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
867 user_data, page_length);
868 if (needs_clflush_after)
869 drm_clflush_virt_range(vaddr + shmem_page_offset,
870 page_length);
871 kunmap_atomic(vaddr);
872
873 return ret ? -EFAULT : 0;
874}
875
876/* Only difference to the fast-path function is that this can handle bit17
877 * and uses non-atomic copy and kmap functions. */
878static int
879shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
880 char __user *user_data,
881 bool page_do_bit17_swizzling,
882 bool needs_clflush_before,
883 bool needs_clflush_after)
884{
885 char *vaddr;
886 int ret;
887
888 vaddr = kmap(page);
889 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
890 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
891 page_length,
892 page_do_bit17_swizzling);
893 if (page_do_bit17_swizzling)
894 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
895 user_data,
896 page_length);
897 else
898 ret = __copy_from_user(vaddr + shmem_page_offset,
899 user_data,
900 page_length);
901 if (needs_clflush_after)
902 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
903 page_length,
904 page_do_bit17_swizzling);
905 kunmap(page);
906
907 return ret ? -EFAULT : 0;
908}
909
910static int
911i915_gem_shmem_pwrite(struct drm_device *dev,
912 struct drm_i915_gem_object *obj,
913 struct drm_i915_gem_pwrite *args,
914 struct drm_file *file)
915{
916 ssize_t remain;
917 loff_t offset;
918 char __user *user_data;
919 int shmem_page_offset, page_length, ret = 0;
920 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
921 int hit_slowpath = 0;
922 int needs_clflush_after = 0;
923 int needs_clflush_before = 0;
924 struct sg_page_iter sg_iter;
925
926 user_data = to_user_ptr(args->data_ptr);
927 remain = args->size;
928
929 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
930
931 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
932 /* If we're not in the cpu write domain, set ourself into the gtt
933 * write domain and manually flush cachelines (if required). This
934 * optimizes for the case when the gpu will use the data
935 * right away and we therefore have to clflush anyway. */
936 needs_clflush_after = cpu_write_needs_clflush(obj);
937 ret = i915_gem_object_wait_rendering(obj, false);
938 if (ret)
939 return ret;
940 }
941 /* Same trick applies to invalidate partially written cachelines read
942 * before writing. */
943 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
944 needs_clflush_before =
945 !cpu_cache_is_coherent(dev, obj->cache_level);
946
947 ret = i915_gem_object_get_pages(obj);
948 if (ret)
949 return ret;
950
951 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
952
953 i915_gem_object_pin_pages(obj);
954
955 offset = args->offset;
956 obj->dirty = 1;
957
958 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
959 offset >> PAGE_SHIFT) {
960 struct page *page = sg_page_iter_page(&sg_iter);
961 int partial_cacheline_write;
962
963 if (remain <= 0)
964 break;
965
966 /* Operation in this page
967 *
968 * shmem_page_offset = offset within page in shmem file
969 * page_length = bytes to copy for this page
970 */
971 shmem_page_offset = offset_in_page(offset);
972
973 page_length = remain;
974 if ((shmem_page_offset + page_length) > PAGE_SIZE)
975 page_length = PAGE_SIZE - shmem_page_offset;
976
977 /* If we don't overwrite a cacheline completely we need to be
978 * careful to have up-to-date data by first clflushing. Don't
979 * overcomplicate things and flush the entire patch. */
980 partial_cacheline_write = needs_clflush_before &&
981 ((shmem_page_offset | page_length)
982 & (boot_cpu_data.x86_clflush_size - 1));
983
984 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
985 (page_to_phys(page) & (1 << 17)) != 0;
986
987 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
988 user_data, page_do_bit17_swizzling,
989 partial_cacheline_write,
990 needs_clflush_after);
991 if (ret == 0)
992 goto next_page;
993
994 hit_slowpath = 1;
995 mutex_unlock(&dev->struct_mutex);
996 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
997 user_data, page_do_bit17_swizzling,
998 partial_cacheline_write,
999 needs_clflush_after);
1000
1001 mutex_lock(&dev->struct_mutex);
1002
1003 if (ret)
1004 goto out;
1005
1006next_page:
1007 remain -= page_length;
1008 user_data += page_length;
1009 offset += page_length;
1010 }
1011
1012out:
1013 i915_gem_object_unpin_pages(obj);
1014
1015 if (hit_slowpath) {
1016 /*
1017 * Fixup: Flush cpu caches in case we didn't flush the dirty
1018 * cachelines in-line while writing and the object moved
1019 * out of the cpu write domain while we've dropped the lock.
1020 */
1021 if (!needs_clflush_after &&
1022 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1023 if (i915_gem_clflush_object(obj, obj->pin_display))
1024 i915_gem_chipset_flush(dev);
1025 }
1026 }
1027
1028 if (needs_clflush_after)
1029 i915_gem_chipset_flush(dev);
1030
1031 intel_fb_obj_flush(obj, false);
1032 return ret;
1033}
1034
1035/**
1036 * Writes data to the object referenced by handle.
1037 *
1038 * On error, the contents of the buffer that were to be modified are undefined.
1039 */
1040int
1041i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1042 struct drm_file *file)
1043{
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 struct drm_i915_gem_pwrite *args = data;
1046 struct drm_i915_gem_object *obj;
1047 int ret;
1048
1049 if (args->size == 0)
1050 return 0;
1051
1052 if (!access_ok(VERIFY_READ,
1053 to_user_ptr(args->data_ptr),
1054 args->size))
1055 return -EFAULT;
1056
1057 if (likely(!i915.prefault_disable)) {
1058 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1059 args->size);
1060 if (ret)
1061 return -EFAULT;
1062 }
1063
1064 intel_runtime_pm_get(dev_priv);
1065
1066 ret = i915_mutex_lock_interruptible(dev);
1067 if (ret)
1068 goto put_rpm;
1069
1070 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1071 if (&obj->base == NULL) {
1072 ret = -ENOENT;
1073 goto unlock;
1074 }
1075
1076 /* Bounds check destination. */
1077 if (args->offset > obj->base.size ||
1078 args->size > obj->base.size - args->offset) {
1079 ret = -EINVAL;
1080 goto out;
1081 }
1082
1083 /* prime objects have no backing filp to GEM pread/pwrite
1084 * pages from.
1085 */
1086 if (!obj->base.filp) {
1087 ret = -EINVAL;
1088 goto out;
1089 }
1090
1091 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1092
1093 ret = -EFAULT;
1094 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1095 * it would end up going through the fenced access, and we'll get
1096 * different detiling behavior between reading and writing.
1097 * pread/pwrite currently are reading and writing from the CPU
1098 * perspective, requiring manual detiling by the client.
1099 */
1100 if (obj->tiling_mode == I915_TILING_NONE &&
1101 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1102 cpu_write_needs_clflush(obj)) {
1103 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1104 /* Note that the gtt paths might fail with non-page-backed user
1105 * pointers (e.g. gtt mappings when moving data between
1106 * textures). Fallback to the shmem path in that case. */
1107 }
1108
1109 if (ret == -EFAULT || ret == -ENOSPC) {
1110 if (obj->phys_handle)
1111 ret = i915_gem_phys_pwrite(obj, args, file);
1112 else
1113 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1114 }
1115
1116out:
1117 drm_gem_object_unreference(&obj->base);
1118unlock:
1119 mutex_unlock(&dev->struct_mutex);
1120put_rpm:
1121 intel_runtime_pm_put(dev_priv);
1122
1123 return ret;
1124}
1125
1126int
1127i915_gem_check_wedge(struct i915_gpu_error *error,
1128 bool interruptible)
1129{
1130 if (i915_reset_in_progress(error)) {
1131 /* Non-interruptible callers can't handle -EAGAIN, hence return
1132 * -EIO unconditionally for these. */
1133 if (!interruptible)
1134 return -EIO;
1135
1136 /* Recovery complete, but the reset failed ... */
1137 if (i915_terminally_wedged(error))
1138 return -EIO;
1139
1140 /*
1141 * Check if GPU Reset is in progress - we need intel_ring_begin
1142 * to work properly to reinit the hw state while the gpu is
1143 * still marked as reset-in-progress. Handle this with a flag.
1144 */
1145 if (!error->reload_in_reset)
1146 return -EAGAIN;
1147 }
1148
1149 return 0;
1150}
1151
1152/*
1153 * Compare arbitrary request against outstanding lazy request. Emit on match.
1154 */
1155int
1156i915_gem_check_olr(struct drm_i915_gem_request *req)
1157{
1158 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1159
1160 if (req == req->ring->outstanding_lazy_request)
1161 i915_add_request(req->ring);
1162
1163 return 0;
1164}
1165
1166static void fake_irq(unsigned long data)
1167{
1168 wake_up_process((struct task_struct *)data);
1169}
1170
1171static bool missed_irq(struct drm_i915_private *dev_priv,
1172 struct intel_engine_cs *ring)
1173{
1174 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1175}
1176
1177static int __i915_spin_request(struct drm_i915_gem_request *req)
1178{
1179 unsigned long timeout;
1180
1181 if (i915_gem_request_get_ring(req)->irq_refcount)
1182 return -EBUSY;
1183
1184 timeout = jiffies + 1;
1185 while (!need_resched()) {
1186 if (i915_gem_request_completed(req, true))
1187 return 0;
1188
1189 if (time_after_eq(jiffies, timeout))
1190 break;
1191
1192 cpu_relax_lowlatency();
1193 }
1194 if (i915_gem_request_completed(req, false))
1195 return 0;
1196
1197 return -EAGAIN;
1198}
1199
1200/**
1201 * __i915_wait_request - wait until execution of request has finished
1202 * @req: duh!
1203 * @reset_counter: reset sequence associated with the given request
1204 * @interruptible: do an interruptible wait (normally yes)
1205 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1206 *
1207 * Note: It is of utmost importance that the passed in seqno and reset_counter
1208 * values have been read by the caller in an smp safe manner. Where read-side
1209 * locks are involved, it is sufficient to read the reset_counter before
1210 * unlocking the lock that protects the seqno. For lockless tricks, the
1211 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1212 * inserted.
1213 *
1214 * Returns 0 if the request was found within the alloted time. Else returns the
1215 * errno with remaining time filled in timeout argument.
1216 */
1217int __i915_wait_request(struct drm_i915_gem_request *req,
1218 unsigned reset_counter,
1219 bool interruptible,
1220 s64 *timeout,
1221 struct intel_rps_client *rps)
1222{
1223 struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1224 struct drm_device *dev = ring->dev;
1225 struct drm_i915_private *dev_priv = dev->dev_private;
1226 const bool irq_test_in_progress =
1227 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1228 DEFINE_WAIT(wait);
1229 unsigned long timeout_expire;
1230 s64 before, now;
1231 int ret;
1232
1233 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1234
1235 if (list_empty(&req->list))
1236 return 0;
1237
1238 if (i915_gem_request_completed(req, true))
1239 return 0;
1240
1241 timeout_expire = timeout ?
1242 jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1243
1244 if (INTEL_INFO(dev_priv)->gen >= 6)
1245 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1246
1247 /* Record current time in case interrupted by signal, or wedged */
1248 trace_i915_gem_request_wait_begin(req);
1249 before = ktime_get_raw_ns();
1250
1251 /* Optimistic spin for the next jiffie before touching IRQs */
1252 ret = __i915_spin_request(req);
1253 if (ret == 0)
1254 goto out;
1255
1256 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1257 ret = -ENODEV;
1258 goto out;
1259 }
1260
1261 for (;;) {
1262 struct timer_list timer;
1263
1264 prepare_to_wait(&ring->irq_queue, &wait,
1265 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1266
1267 /* We need to check whether any gpu reset happened in between
1268 * the caller grabbing the seqno and now ... */
1269 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1270 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1271 * is truely gone. */
1272 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1273 if (ret == 0)
1274 ret = -EAGAIN;
1275 break;
1276 }
1277
1278 if (i915_gem_request_completed(req, false)) {
1279 ret = 0;
1280 break;
1281 }
1282
1283 if (interruptible && signal_pending(current)) {
1284 ret = -ERESTARTSYS;
1285 break;
1286 }
1287
1288 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1289 ret = -ETIME;
1290 break;
1291 }
1292
1293 timer.function = NULL;
1294 if (timeout || missed_irq(dev_priv, ring)) {
1295 unsigned long expire;
1296
1297 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1298 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1299 mod_timer(&timer, expire);
1300 }
1301
1302 io_schedule();
1303
1304 if (timer.function) {
1305 del_singleshot_timer_sync(&timer);
1306 destroy_timer_on_stack(&timer);
1307 }
1308 }
1309 if (!irq_test_in_progress)
1310 ring->irq_put(ring);
1311
1312 finish_wait(&ring->irq_queue, &wait);
1313
1314out:
1315 now = ktime_get_raw_ns();
1316 trace_i915_gem_request_wait_end(req);
1317
1318 if (timeout) {
1319 s64 tres = *timeout - (now - before);
1320
1321 *timeout = tres < 0 ? 0 : tres;
1322
1323 /*
1324 * Apparently ktime isn't accurate enough and occasionally has a
1325 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1326 * things up to make the test happy. We allow up to 1 jiffy.
1327 *
1328 * This is a regrssion from the timespec->ktime conversion.
1329 */
1330 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1331 *timeout = 0;
1332 }
1333
1334 return ret;
1335}
1336
1337static inline void
1338i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1339{
1340 struct drm_i915_file_private *file_priv = request->file_priv;
1341
1342 if (!file_priv)
1343 return;
1344
1345 spin_lock(&file_priv->mm.lock);
1346 list_del(&request->client_list);
1347 request->file_priv = NULL;
1348 spin_unlock(&file_priv->mm.lock);
1349}
1350
1351static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1352{
1353 trace_i915_gem_request_retire(request);
1354
1355 /* We know the GPU must have read the request to have
1356 * sent us the seqno + interrupt, so use the position
1357 * of tail of the request to update the last known position
1358 * of the GPU head.
1359 *
1360 * Note this requires that we are always called in request
1361 * completion order.
1362 */
1363 request->ringbuf->last_retired_head = request->postfix;
1364
1365 list_del_init(&request->list);
1366 i915_gem_request_remove_from_client(request);
1367
1368 put_pid(request->pid);
1369
1370 i915_gem_request_unreference(request);
1371}
1372
1373static void
1374__i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1375{
1376 struct intel_engine_cs *engine = req->ring;
1377 struct drm_i915_gem_request *tmp;
1378
1379 lockdep_assert_held(&engine->dev->struct_mutex);
1380
1381 if (list_empty(&req->list))
1382 return;
1383
1384 do {
1385 tmp = list_first_entry(&engine->request_list,
1386 typeof(*tmp), list);
1387
1388 i915_gem_request_retire(tmp);
1389 } while (tmp != req);
1390
1391 WARN_ON(i915_verify_lists(engine->dev));
1392}
1393
1394/**
1395 * Waits for a request to be signaled, and cleans up the
1396 * request and object lists appropriately for that event.
1397 */
1398int
1399i915_wait_request(struct drm_i915_gem_request *req)
1400{
1401 struct drm_device *dev;
1402 struct drm_i915_private *dev_priv;
1403 bool interruptible;
1404 int ret;
1405
1406 BUG_ON(req == NULL);
1407
1408 dev = req->ring->dev;
1409 dev_priv = dev->dev_private;
1410 interruptible = dev_priv->mm.interruptible;
1411
1412 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1413
1414 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1415 if (ret)
1416 return ret;
1417
1418 ret = i915_gem_check_olr(req);
1419 if (ret)
1420 return ret;
1421
1422 ret = __i915_wait_request(req,
1423 atomic_read(&dev_priv->gpu_error.reset_counter),
1424 interruptible, NULL, NULL);
1425 if (ret)
1426 return ret;
1427
1428 __i915_gem_request_retire__upto(req);
1429 return 0;
1430}
1431
1432/**
1433 * Ensures that all rendering to the object has completed and the object is
1434 * safe to unbind from the GTT or access from the CPU.
1435 */
1436int
1437i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1438 bool readonly)
1439{
1440 int ret, i;
1441
1442 if (!obj->active)
1443 return 0;
1444
1445 if (readonly) {
1446 if (obj->last_write_req != NULL) {
1447 ret = i915_wait_request(obj->last_write_req);
1448 if (ret)
1449 return ret;
1450
1451 i = obj->last_write_req->ring->id;
1452 if (obj->last_read_req[i] == obj->last_write_req)
1453 i915_gem_object_retire__read(obj, i);
1454 else
1455 i915_gem_object_retire__write(obj);
1456 }
1457 } else {
1458 for (i = 0; i < I915_NUM_RINGS; i++) {
1459 if (obj->last_read_req[i] == NULL)
1460 continue;
1461
1462 ret = i915_wait_request(obj->last_read_req[i]);
1463 if (ret)
1464 return ret;
1465
1466 i915_gem_object_retire__read(obj, i);
1467 }
1468 RQ_BUG_ON(obj->active);
1469 }
1470
1471 return 0;
1472}
1473
1474static void
1475i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1476 struct drm_i915_gem_request *req)
1477{
1478 int ring = req->ring->id;
1479
1480 if (obj->last_read_req[ring] == req)
1481 i915_gem_object_retire__read(obj, ring);
1482 else if (obj->last_write_req == req)
1483 i915_gem_object_retire__write(obj);
1484
1485 __i915_gem_request_retire__upto(req);
1486}
1487
1488/* A nonblocking variant of the above wait. This is a highly dangerous routine
1489 * as the object state may change during this call.
1490 */
1491static __must_check int
1492i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1493 struct intel_rps_client *rps,
1494 bool readonly)
1495{
1496 struct drm_device *dev = obj->base.dev;
1497 struct drm_i915_private *dev_priv = dev->dev_private;
1498 struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1499 unsigned reset_counter;
1500 int ret, i, n = 0;
1501
1502 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1503 BUG_ON(!dev_priv->mm.interruptible);
1504
1505 if (!obj->active)
1506 return 0;
1507
1508 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1509 if (ret)
1510 return ret;
1511
1512 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1513
1514 if (readonly) {
1515 struct drm_i915_gem_request *req;
1516
1517 req = obj->last_write_req;
1518 if (req == NULL)
1519 return 0;
1520
1521 ret = i915_gem_check_olr(req);
1522 if (ret)
1523 goto err;
1524
1525 requests[n++] = i915_gem_request_reference(req);
1526 } else {
1527 for (i = 0; i < I915_NUM_RINGS; i++) {
1528 struct drm_i915_gem_request *req;
1529
1530 req = obj->last_read_req[i];
1531 if (req == NULL)
1532 continue;
1533
1534 ret = i915_gem_check_olr(req);
1535 if (ret)
1536 goto err;
1537
1538 requests[n++] = i915_gem_request_reference(req);
1539 }
1540 }
1541
1542 mutex_unlock(&dev->struct_mutex);
1543 for (i = 0; ret == 0 && i < n; i++)
1544 ret = __i915_wait_request(requests[i], reset_counter, true,
1545 NULL, rps);
1546 mutex_lock(&dev->struct_mutex);
1547
1548err:
1549 for (i = 0; i < n; i++) {
1550 if (ret == 0)
1551 i915_gem_object_retire_request(obj, requests[i]);
1552 i915_gem_request_unreference(requests[i]);
1553 }
1554
1555 return ret;
1556}
1557
1558static struct intel_rps_client *to_rps_client(struct drm_file *file)
1559{
1560 struct drm_i915_file_private *fpriv = file->driver_priv;
1561 return &fpriv->rps;
1562}
1563
1564/**
1565 * Called when user space prepares to use an object with the CPU, either
1566 * through the mmap ioctl's mapping or a GTT mapping.
1567 */
1568int
1569i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1570 struct drm_file *file)
1571{
1572 struct drm_i915_gem_set_domain *args = data;
1573 struct drm_i915_gem_object *obj;
1574 uint32_t read_domains = args->read_domains;
1575 uint32_t write_domain = args->write_domain;
1576 int ret;
1577
1578 /* Only handle setting domains to types used by the CPU. */
1579 if (write_domain & I915_GEM_GPU_DOMAINS)
1580 return -EINVAL;
1581
1582 if (read_domains & I915_GEM_GPU_DOMAINS)
1583 return -EINVAL;
1584
1585 /* Having something in the write domain implies it's in the read
1586 * domain, and only that read domain. Enforce that in the request.
1587 */
1588 if (write_domain != 0 && read_domains != write_domain)
1589 return -EINVAL;
1590
1591 ret = i915_mutex_lock_interruptible(dev);
1592 if (ret)
1593 return ret;
1594
1595 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1596 if (&obj->base == NULL) {
1597 ret = -ENOENT;
1598 goto unlock;
1599 }
1600
1601 /* Try to flush the object off the GPU without holding the lock.
1602 * We will repeat the flush holding the lock in the normal manner
1603 * to catch cases where we are gazumped.
1604 */
1605 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1606 to_rps_client(file),
1607 !write_domain);
1608 if (ret)
1609 goto unref;
1610
1611 if (read_domains & I915_GEM_DOMAIN_GTT)
1612 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1613 else
1614 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1615
1616unref:
1617 drm_gem_object_unreference(&obj->base);
1618unlock:
1619 mutex_unlock(&dev->struct_mutex);
1620 return ret;
1621}
1622
1623/**
1624 * Called when user space has done writes to this buffer
1625 */
1626int
1627i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628 struct drm_file *file)
1629{
1630 struct drm_i915_gem_sw_finish *args = data;
1631 struct drm_i915_gem_object *obj;
1632 int ret = 0;
1633
1634 ret = i915_mutex_lock_interruptible(dev);
1635 if (ret)
1636 return ret;
1637
1638 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639 if (&obj->base == NULL) {
1640 ret = -ENOENT;
1641 goto unlock;
1642 }
1643
1644 /* Pinned buffers may be scanout, so flush the cache */
1645 if (obj->pin_display)
1646 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648 drm_gem_object_unreference(&obj->base);
1649unlock:
1650 mutex_unlock(&dev->struct_mutex);
1651 return ret;
1652}
1653
1654/**
1655 * Maps the contents of an object, returning the address it is mapped
1656 * into.
1657 *
1658 * While the mapping holds a reference on the contents of the object, it doesn't
1659 * imply a ref on the object itself.
1660 *
1661 * IMPORTANT:
1662 *
1663 * DRM driver writers who look a this function as an example for how to do GEM
1664 * mmap support, please don't implement mmap support like here. The modern way
1665 * to implement DRM mmap support is with an mmap offset ioctl (like
1666 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667 * That way debug tooling like valgrind will understand what's going on, hiding
1668 * the mmap call in a driver private ioctl will break that. The i915 driver only
1669 * does cpu mmaps this way because we didn't know better.
1670 */
1671int
1672i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673 struct drm_file *file)
1674{
1675 struct drm_i915_gem_mmap *args = data;
1676 struct drm_gem_object *obj;
1677 unsigned long addr;
1678
1679 if (args->flags & ~(I915_MMAP_WC))
1680 return -EINVAL;
1681
1682 if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683 return -ENODEV;
1684
1685 obj = drm_gem_object_lookup(dev, file, args->handle);
1686 if (obj == NULL)
1687 return -ENOENT;
1688
1689 /* prime objects have no backing filp to GEM mmap
1690 * pages from.
1691 */
1692 if (!obj->filp) {
1693 drm_gem_object_unreference_unlocked(obj);
1694 return -EINVAL;
1695 }
1696
1697 addr = vm_mmap(obj->filp, 0, args->size,
1698 PROT_READ | PROT_WRITE, MAP_SHARED,
1699 args->offset);
1700 if (args->flags & I915_MMAP_WC) {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma;
1703
1704 down_write(&mm->mmap_sem);
1705 vma = find_vma(mm, addr);
1706 if (vma)
1707 vma->vm_page_prot =
1708 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709 else
1710 addr = -ENOMEM;
1711 up_write(&mm->mmap_sem);
1712 }
1713 drm_gem_object_unreference_unlocked(obj);
1714 if (IS_ERR((void *)addr))
1715 return addr;
1716
1717 args->addr_ptr = (uint64_t) addr;
1718
1719 return 0;
1720}
1721
1722/**
1723 * i915_gem_fault - fault a page into the GTT
1724 * vma: VMA in question
1725 * vmf: fault info
1726 *
1727 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728 * from userspace. The fault handler takes care of binding the object to
1729 * the GTT (if needed), allocating and programming a fence register (again,
1730 * only if needed based on whether the old reg is still valid or the object
1731 * is tiled) and inserting a new PTE into the faulting process.
1732 *
1733 * Note that the faulting process may involve evicting existing objects
1734 * from the GTT and/or fence registers to make room. So performance may
1735 * suffer if the GTT working set is large or there are few fence registers
1736 * left.
1737 */
1738int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739{
1740 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741 struct drm_device *dev = obj->base.dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 struct i915_ggtt_view view = i915_ggtt_view_normal;
1744 pgoff_t page_offset;
1745 unsigned long pfn;
1746 int ret = 0;
1747 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749 intel_runtime_pm_get(dev_priv);
1750
1751 /* We don't use vmf->pgoff since that has the fake offset */
1752 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753 PAGE_SHIFT;
1754
1755 ret = i915_mutex_lock_interruptible(dev);
1756 if (ret)
1757 goto out;
1758
1759 trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761 /* Try to flush the object off the GPU first without holding the lock.
1762 * Upon reacquiring the lock, we will perform our sanity checks and then
1763 * repeat the flush holding the lock in the normal manner to catch cases
1764 * where we are gazumped.
1765 */
1766 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767 if (ret)
1768 goto unlock;
1769
1770 /* Access to snoopable pages through the GTT is incoherent. */
1771 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772 ret = -EFAULT;
1773 goto unlock;
1774 }
1775
1776 /* Use a partial view if the object is bigger than the aperture. */
1777 if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778 obj->tiling_mode == I915_TILING_NONE) {
1779 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781 memset(&view, 0, sizeof(view));
1782 view.type = I915_GGTT_VIEW_PARTIAL;
1783 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784 view.params.partial.size =
1785 min_t(unsigned int,
1786 chunk_size,
1787 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788 view.params.partial.offset);
1789 }
1790
1791 /* Now pin it into the GTT if needed */
1792 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793 if (ret)
1794 goto unlock;
1795
1796 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797 if (ret)
1798 goto unpin;
1799
1800 ret = i915_gem_object_get_fence(obj);
1801 if (ret)
1802 goto unpin;
1803
1804 /* Finally, remap it using the new GTT offset */
1805 pfn = dev_priv->gtt.mappable_base +
1806 i915_gem_obj_ggtt_offset_view(obj, &view);
1807 pfn >>= PAGE_SHIFT;
1808
1809 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810 /* Overriding existing pages in partial view does not cause
1811 * us any trouble as TLBs are still valid because the fault
1812 * is due to userspace losing part of the mapping or never
1813 * having accessed it before (at this partials' range).
1814 */
1815 unsigned long base = vma->vm_start +
1816 (view.params.partial.offset << PAGE_SHIFT);
1817 unsigned int i;
1818
1819 for (i = 0; i < view.params.partial.size; i++) {
1820 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821 if (ret)
1822 break;
1823 }
1824
1825 obj->fault_mappable = true;
1826 } else {
1827 if (!obj->fault_mappable) {
1828 unsigned long size = min_t(unsigned long,
1829 vma->vm_end - vma->vm_start,
1830 obj->base.size);
1831 int i;
1832
1833 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834 ret = vm_insert_pfn(vma,
1835 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836 pfn + i);
1837 if (ret)
1838 break;
1839 }
1840
1841 obj->fault_mappable = true;
1842 } else
1843 ret = vm_insert_pfn(vma,
1844 (unsigned long)vmf->virtual_address,
1845 pfn + page_offset);
1846 }
1847unpin:
1848 i915_gem_object_ggtt_unpin_view(obj, &view);
1849unlock:
1850 mutex_unlock(&dev->struct_mutex);
1851out:
1852 switch (ret) {
1853 case -EIO:
1854 /*
1855 * We eat errors when the gpu is terminally wedged to avoid
1856 * userspace unduly crashing (gl has no provisions for mmaps to
1857 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858 * and so needs to be reported.
1859 */
1860 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861 ret = VM_FAULT_SIGBUS;
1862 break;
1863 }
1864 case -EAGAIN:
1865 /*
1866 * EAGAIN means the gpu is hung and we'll wait for the error
1867 * handler to reset everything when re-faulting in
1868 * i915_mutex_lock_interruptible.
1869 */
1870 case 0:
1871 case -ERESTARTSYS:
1872 case -EINTR:
1873 case -EBUSY:
1874 /*
1875 * EBUSY is ok: this just means that another thread
1876 * already did the job.
1877 */
1878 ret = VM_FAULT_NOPAGE;
1879 break;
1880 case -ENOMEM:
1881 ret = VM_FAULT_OOM;
1882 break;
1883 case -ENOSPC:
1884 case -EFAULT:
1885 ret = VM_FAULT_SIGBUS;
1886 break;
1887 default:
1888 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889 ret = VM_FAULT_SIGBUS;
1890 break;
1891 }
1892
1893 intel_runtime_pm_put(dev_priv);
1894 return ret;
1895}
1896
1897/**
1898 * i915_gem_release_mmap - remove physical page mappings
1899 * @obj: obj in question
1900 *
1901 * Preserve the reservation of the mmapping with the DRM core code, but
1902 * relinquish ownership of the pages back to the system.
1903 *
1904 * It is vital that we remove the page mapping if we have mapped a tiled
1905 * object through the GTT and then lose the fence register due to
1906 * resource pressure. Similarly if the object has been moved out of the
1907 * aperture, than pages mapped into userspace must be revoked. Removing the
1908 * mapping will then trigger a page fault on the next user access, allowing
1909 * fixup by i915_gem_fault().
1910 */
1911void
1912i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913{
1914 if (!obj->fault_mappable)
1915 return;
1916
1917 drm_vma_node_unmap(&obj->base.vma_node,
1918 obj->base.dev->anon_inode->i_mapping);
1919 obj->fault_mappable = false;
1920}
1921
1922void
1923i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924{
1925 struct drm_i915_gem_object *obj;
1926
1927 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928 i915_gem_release_mmap(obj);
1929}
1930
1931uint32_t
1932i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933{
1934 uint32_t gtt_size;
1935
1936 if (INTEL_INFO(dev)->gen >= 4 ||
1937 tiling_mode == I915_TILING_NONE)
1938 return size;
1939
1940 /* Previous chips need a power-of-two fence region when tiling */
1941 if (INTEL_INFO(dev)->gen == 3)
1942 gtt_size = 1024*1024;
1943 else
1944 gtt_size = 512*1024;
1945
1946 while (gtt_size < size)
1947 gtt_size <<= 1;
1948
1949 return gtt_size;
1950}
1951
1952/**
1953 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954 * @obj: object to check
1955 *
1956 * Return the required GTT alignment for an object, taking into account
1957 * potential fence register mapping.
1958 */
1959uint32_t
1960i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961 int tiling_mode, bool fenced)
1962{
1963 /*
1964 * Minimum alignment is 4k (GTT page size), but might be greater
1965 * if a fence register is needed for the object.
1966 */
1967 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968 tiling_mode == I915_TILING_NONE)
1969 return 4096;
1970
1971 /*
1972 * Previous chips need to be aligned to the size of the smallest
1973 * fence register that can contain the object.
1974 */
1975 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976}
1977
1978static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979{
1980 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981 int ret;
1982
1983 if (drm_vma_node_has_offset(&obj->base.vma_node))
1984 return 0;
1985
1986 dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988 ret = drm_gem_create_mmap_offset(&obj->base);
1989 if (ret != -ENOSPC)
1990 goto out;
1991
1992 /* Badly fragmented mmap space? The only way we can recover
1993 * space is by destroying unwanted objects. We can't randomly release
1994 * mmap_offsets as userspace expects them to be persistent for the
1995 * lifetime of the objects. The closest we can is to release the
1996 * offsets on purgeable objects by truncating it and marking it purged,
1997 * which prevents userspace from ever using that object again.
1998 */
1999 i915_gem_shrink(dev_priv,
2000 obj->base.size >> PAGE_SHIFT,
2001 I915_SHRINK_BOUND |
2002 I915_SHRINK_UNBOUND |
2003 I915_SHRINK_PURGEABLE);
2004 ret = drm_gem_create_mmap_offset(&obj->base);
2005 if (ret != -ENOSPC)
2006 goto out;
2007
2008 i915_gem_shrink_all(dev_priv);
2009 ret = drm_gem_create_mmap_offset(&obj->base);
2010out:
2011 dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013 return ret;
2014}
2015
2016static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017{
2018 drm_gem_free_mmap_offset(&obj->base);
2019}
2020
2021int
2022i915_gem_mmap_gtt(struct drm_file *file,
2023 struct drm_device *dev,
2024 uint32_t handle,
2025 uint64_t *offset)
2026{
2027 struct drm_i915_gem_object *obj;
2028 int ret;
2029
2030 ret = i915_mutex_lock_interruptible(dev);
2031 if (ret)
2032 return ret;
2033
2034 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035 if (&obj->base == NULL) {
2036 ret = -ENOENT;
2037 goto unlock;
2038 }
2039
2040 if (obj->madv != I915_MADV_WILLNEED) {
2041 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042 ret = -EFAULT;
2043 goto out;
2044 }
2045
2046 ret = i915_gem_object_create_mmap_offset(obj);
2047 if (ret)
2048 goto out;
2049
2050 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052out:
2053 drm_gem_object_unreference(&obj->base);
2054unlock:
2055 mutex_unlock(&dev->struct_mutex);
2056 return ret;
2057}
2058
2059/**
2060 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061 * @dev: DRM device
2062 * @data: GTT mapping ioctl data
2063 * @file: GEM object info
2064 *
2065 * Simply returns the fake offset to userspace so it can mmap it.
2066 * The mmap call will end up in drm_gem_mmap(), which will set things
2067 * up so we can get faults in the handler above.
2068 *
2069 * The fault handler will take care of binding the object into the GTT
2070 * (since it may have been evicted to make room for something), allocating
2071 * a fence register, and mapping the appropriate aperture address into
2072 * userspace.
2073 */
2074int
2075i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076 struct drm_file *file)
2077{
2078 struct drm_i915_gem_mmap_gtt *args = data;
2079
2080 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081}
2082
2083/* Immediately discard the backing storage */
2084static void
2085i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086{
2087 i915_gem_object_free_mmap_offset(obj);
2088
2089 if (obj->base.filp == NULL)
2090 return;
2091
2092 /* Our goal here is to return as much of the memory as
2093 * is possible back to the system as we are called from OOM.
2094 * To do this we must instruct the shmfs to drop all of its
2095 * backing pages, *now*.
2096 */
2097 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098 obj->madv = __I915_MADV_PURGED;
2099}
2100
2101/* Try to discard unwanted pages */
2102static void
2103i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104{
2105 struct address_space *mapping;
2106
2107 switch (obj->madv) {
2108 case I915_MADV_DONTNEED:
2109 i915_gem_object_truncate(obj);
2110 case __I915_MADV_PURGED:
2111 return;
2112 }
2113
2114 if (obj->base.filp == NULL)
2115 return;
2116
2117 mapping = file_inode(obj->base.filp)->i_mapping,
2118 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119}
2120
2121static void
2122i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123{
2124 struct sg_page_iter sg_iter;
2125 int ret;
2126
2127 BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130 if (ret) {
2131 /* In the event of a disaster, abandon all caches and
2132 * hope for the best.
2133 */
2134 WARN_ON(ret != -EIO);
2135 i915_gem_clflush_object(obj, true);
2136 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137 }
2138
2139 if (i915_gem_object_needs_bit17_swizzle(obj))
2140 i915_gem_object_save_bit_17_swizzle(obj);
2141
2142 if (obj->madv == I915_MADV_DONTNEED)
2143 obj->dirty = 0;
2144
2145 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2146 struct page *page = sg_page_iter_page(&sg_iter);
2147
2148 if (obj->dirty)
2149 set_page_dirty(page);
2150
2151 if (obj->madv == I915_MADV_WILLNEED)
2152 mark_page_accessed(page);
2153
2154 page_cache_release(page);
2155 }
2156 obj->dirty = 0;
2157
2158 sg_free_table(obj->pages);
2159 kfree(obj->pages);
2160}
2161
2162int
2163i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2164{
2165 const struct drm_i915_gem_object_ops *ops = obj->ops;
2166
2167 if (obj->pages == NULL)
2168 return 0;
2169
2170 if (obj->pages_pin_count)
2171 return -EBUSY;
2172
2173 BUG_ON(i915_gem_obj_bound_any(obj));
2174
2175 /* ->put_pages might need to allocate memory for the bit17 swizzle
2176 * array, hence protect them from being reaped by removing them from gtt
2177 * lists early. */
2178 list_del(&obj->global_list);
2179
2180 ops->put_pages(obj);
2181 obj->pages = NULL;
2182
2183 i915_gem_object_invalidate(obj);
2184
2185 return 0;
2186}
2187
2188static int
2189i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2190{
2191 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2192 int page_count, i;
2193 struct address_space *mapping;
2194 struct sg_table *st;
2195 struct scatterlist *sg;
2196 struct sg_page_iter sg_iter;
2197 struct page *page;
2198 unsigned long last_pfn = 0; /* suppress gcc warning */
2199 gfp_t gfp;
2200
2201 /* Assert that the object is not currently in any GPU domain. As it
2202 * wasn't in the GTT, there shouldn't be any way it could have been in
2203 * a GPU cache
2204 */
2205 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2206 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2207
2208 st = kmalloc(sizeof(*st), GFP_KERNEL);
2209 if (st == NULL)
2210 return -ENOMEM;
2211
2212 page_count = obj->base.size / PAGE_SIZE;
2213 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2214 kfree(st);
2215 return -ENOMEM;
2216 }
2217
2218 /* Get the list of pages out of our struct file. They'll be pinned
2219 * at this point until we release them.
2220 *
2221 * Fail silently without starting the shrinker
2222 */
2223 mapping = file_inode(obj->base.filp)->i_mapping;
2224 gfp = mapping_gfp_mask(mapping);
2225 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2226 gfp &= ~(__GFP_IO | __GFP_WAIT);
2227 sg = st->sgl;
2228 st->nents = 0;
2229 for (i = 0; i < page_count; i++) {
2230 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2231 if (IS_ERR(page)) {
2232 i915_gem_shrink(dev_priv,
2233 page_count,
2234 I915_SHRINK_BOUND |
2235 I915_SHRINK_UNBOUND |
2236 I915_SHRINK_PURGEABLE);
2237 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2238 }
2239 if (IS_ERR(page)) {
2240 /* We've tried hard to allocate the memory by reaping
2241 * our own buffer, now let the real VM do its job and
2242 * go down in flames if truly OOM.
2243 */
2244 i915_gem_shrink_all(dev_priv);
2245 page = shmem_read_mapping_page(mapping, i);
2246 if (IS_ERR(page))
2247 goto err_pages;
2248 }
2249#ifdef CONFIG_SWIOTLB
2250 if (swiotlb_nr_tbl()) {
2251 st->nents++;
2252 sg_set_page(sg, page, PAGE_SIZE, 0);
2253 sg = sg_next(sg);
2254 continue;
2255 }
2256#endif
2257 if (!i || page_to_pfn(page) != last_pfn + 1) {
2258 if (i)
2259 sg = sg_next(sg);
2260 st->nents++;
2261 sg_set_page(sg, page, PAGE_SIZE, 0);
2262 } else {
2263 sg->length += PAGE_SIZE;
2264 }
2265 last_pfn = page_to_pfn(page);
2266
2267 /* Check that the i965g/gm workaround works. */
2268 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2269 }
2270#ifdef CONFIG_SWIOTLB
2271 if (!swiotlb_nr_tbl())
2272#endif
2273 sg_mark_end(sg);
2274 obj->pages = st;
2275
2276 if (i915_gem_object_needs_bit17_swizzle(obj))
2277 i915_gem_object_do_bit_17_swizzle(obj);
2278
2279 if (obj->tiling_mode != I915_TILING_NONE &&
2280 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2281 i915_gem_object_pin_pages(obj);
2282
2283 return 0;
2284
2285err_pages:
2286 sg_mark_end(sg);
2287 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2288 page_cache_release(sg_page_iter_page(&sg_iter));
2289 sg_free_table(st);
2290 kfree(st);
2291
2292 /* shmemfs first checks if there is enough memory to allocate the page
2293 * and reports ENOSPC should there be insufficient, along with the usual
2294 * ENOMEM for a genuine allocation failure.
2295 *
2296 * We use ENOSPC in our driver to mean that we have run out of aperture
2297 * space and so want to translate the error from shmemfs back to our
2298 * usual understanding of ENOMEM.
2299 */
2300 if (PTR_ERR(page) == -ENOSPC)
2301 return -ENOMEM;
2302 else
2303 return PTR_ERR(page);
2304}
2305
2306/* Ensure that the associated pages are gathered from the backing storage
2307 * and pinned into our object. i915_gem_object_get_pages() may be called
2308 * multiple times before they are released by a single call to
2309 * i915_gem_object_put_pages() - once the pages are no longer referenced
2310 * either as a result of memory pressure (reaping pages under the shrinker)
2311 * or as the object is itself released.
2312 */
2313int
2314i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2315{
2316 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2317 const struct drm_i915_gem_object_ops *ops = obj->ops;
2318 int ret;
2319
2320 if (obj->pages)
2321 return 0;
2322
2323 if (obj->madv != I915_MADV_WILLNEED) {
2324 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2325 return -EFAULT;
2326 }
2327
2328 BUG_ON(obj->pages_pin_count);
2329
2330 ret = ops->get_pages(obj);
2331 if (ret)
2332 return ret;
2333
2334 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2335
2336 obj->get_page.sg = obj->pages->sgl;
2337 obj->get_page.last = 0;
2338
2339 return 0;
2340}
2341
2342void i915_vma_move_to_active(struct i915_vma *vma,
2343 struct intel_engine_cs *ring)
2344{
2345 struct drm_i915_gem_object *obj = vma->obj;
2346
2347 /* Add a reference if we're newly entering the active list. */
2348 if (obj->active == 0)
2349 drm_gem_object_reference(&obj->base);
2350 obj->active |= intel_ring_flag(ring);
2351
2352 list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2353 i915_gem_request_assign(&obj->last_read_req[ring->id],
2354 intel_ring_get_request(ring));
2355
2356 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2357}
2358
2359static void
2360i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2361{
2362 RQ_BUG_ON(obj->last_write_req == NULL);
2363 RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2364
2365 i915_gem_request_assign(&obj->last_write_req, NULL);
2366 intel_fb_obj_flush(obj, true);
2367}
2368
2369static void
2370i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2371{
2372 struct i915_vma *vma;
2373
2374 RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2375 RQ_BUG_ON(!(obj->active & (1 << ring)));
2376
2377 list_del_init(&obj->ring_list[ring]);
2378 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2379
2380 if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2381 i915_gem_object_retire__write(obj);
2382
2383 obj->active &= ~(1 << ring);
2384 if (obj->active)
2385 return;
2386
2387 list_for_each_entry(vma, &obj->vma_list, vma_link) {
2388 if (!list_empty(&vma->mm_list))
2389 list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2390 }
2391
2392 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2393 drm_gem_object_unreference(&obj->base);
2394}
2395
2396static int
2397i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2398{
2399 struct drm_i915_private *dev_priv = dev->dev_private;
2400 struct intel_engine_cs *ring;
2401 int ret, i, j;
2402
2403 /* Carefully retire all requests without writing to the rings */
2404 for_each_ring(ring, dev_priv, i) {
2405 ret = intel_ring_idle(ring);
2406 if (ret)
2407 return ret;
2408 }
2409 i915_gem_retire_requests(dev);
2410
2411 /* Finally reset hw state */
2412 for_each_ring(ring, dev_priv, i) {
2413 intel_ring_init_seqno(ring, seqno);
2414
2415 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2416 ring->semaphore.sync_seqno[j] = 0;
2417 }
2418
2419 return 0;
2420}
2421
2422int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2423{
2424 struct drm_i915_private *dev_priv = dev->dev_private;
2425 int ret;
2426
2427 if (seqno == 0)
2428 return -EINVAL;
2429
2430 /* HWS page needs to be set less than what we
2431 * will inject to ring
2432 */
2433 ret = i915_gem_init_seqno(dev, seqno - 1);
2434 if (ret)
2435 return ret;
2436
2437 /* Carefully set the last_seqno value so that wrap
2438 * detection still works
2439 */
2440 dev_priv->next_seqno = seqno;
2441 dev_priv->last_seqno = seqno - 1;
2442 if (dev_priv->last_seqno == 0)
2443 dev_priv->last_seqno--;
2444
2445 return 0;
2446}
2447
2448int
2449i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2450{
2451 struct drm_i915_private *dev_priv = dev->dev_private;
2452
2453 /* reserve 0 for non-seqno */
2454 if (dev_priv->next_seqno == 0) {
2455 int ret = i915_gem_init_seqno(dev, 0);
2456 if (ret)
2457 return ret;
2458
2459 dev_priv->next_seqno = 1;
2460 }
2461
2462 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2463 return 0;
2464}
2465
2466/*
2467 * NB: This function is not allowed to fail. Doing so would mean the the
2468 * request is not being tracked for completion but the work itself is
2469 * going to happen on the hardware. This would be a Bad Thing(tm).
2470 */
2471void __i915_add_request(struct intel_engine_cs *ring,
2472 struct drm_file *file,
2473 struct drm_i915_gem_object *obj,
2474 bool flush_caches)
2475{
2476 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2477 struct drm_i915_gem_request *request;
2478 struct intel_ringbuffer *ringbuf;
2479 u32 request_start;
2480 int ret;
2481
2482 request = ring->outstanding_lazy_request;
2483 if (WARN_ON(request == NULL))
2484 return;
2485
2486 if (i915.enable_execlists) {
2487 ringbuf = request->ctx->engine[ring->id].ringbuf;
2488 } else
2489 ringbuf = ring->buffer;
2490
2491 /*
2492 * To ensure that this call will not fail, space for its emissions
2493 * should already have been reserved in the ring buffer. Let the ring
2494 * know that it is time to use that space up.
2495 */
2496 intel_ring_reserved_space_use(ringbuf);
2497
2498 request_start = intel_ring_get_tail(ringbuf);
2499 /*
2500 * Emit any outstanding flushes - execbuf can fail to emit the flush
2501 * after having emitted the batchbuffer command. Hence we need to fix
2502 * things up similar to emitting the lazy request. The difference here
2503 * is that the flush _must_ happen before the next request, no matter
2504 * what.
2505 */
2506 if (flush_caches) {
2507 if (i915.enable_execlists)
2508 ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2509 else
2510 ret = intel_ring_flush_all_caches(ring);
2511 /* Not allowed to fail! */
2512 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2513 }
2514
2515 /* Record the position of the start of the request so that
2516 * should we detect the updated seqno part-way through the
2517 * GPU processing the request, we never over-estimate the
2518 * position of the head.
2519 */
2520 request->postfix = intel_ring_get_tail(ringbuf);
2521
2522 if (i915.enable_execlists)
2523 ret = ring->emit_request(ringbuf, request);
2524 else {
2525 ret = ring->add_request(ring);
2526
2527 request->tail = intel_ring_get_tail(ringbuf);
2528 }
2529 /* Not allowed to fail! */
2530 WARN(ret, "emit|add_request failed: %d!\n", ret);
2531
2532 request->head = request_start;
2533
2534 /* Whilst this request exists, batch_obj will be on the
2535 * active_list, and so will hold the active reference. Only when this
2536 * request is retired will the the batch_obj be moved onto the
2537 * inactive_list and lose its active reference. Hence we do not need
2538 * to explicitly hold another reference here.
2539 */
2540 request->batch_obj = obj;
2541
2542 request->emitted_jiffies = jiffies;
2543 list_add_tail(&request->list, &ring->request_list);
2544 request->file_priv = NULL;
2545
2546 if (file) {
2547 struct drm_i915_file_private *file_priv = file->driver_priv;
2548
2549 spin_lock(&file_priv->mm.lock);
2550 request->file_priv = file_priv;
2551 list_add_tail(&request->client_list,
2552 &file_priv->mm.request_list);
2553 spin_unlock(&file_priv->mm.lock);
2554
2555 request->pid = get_pid(task_pid(current));
2556 }
2557
2558 trace_i915_gem_request_add(request);
2559 ring->outstanding_lazy_request = NULL;
2560
2561 i915_queue_hangcheck(ring->dev);
2562
2563 queue_delayed_work(dev_priv->wq,
2564 &dev_priv->mm.retire_work,
2565 round_jiffies_up_relative(HZ));
2566 intel_mark_busy(dev_priv->dev);
2567
2568 /* Sanity check that the reserved size was large enough. */
2569 intel_ring_reserved_space_end(ringbuf);
2570}
2571
2572static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2573 const struct intel_context *ctx)
2574{
2575 unsigned long elapsed;
2576
2577 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2578
2579 if (ctx->hang_stats.banned)
2580 return true;
2581
2582 if (ctx->hang_stats.ban_period_seconds &&
2583 elapsed <= ctx->hang_stats.ban_period_seconds) {
2584 if (!i915_gem_context_is_default(ctx)) {
2585 DRM_DEBUG("context hanging too fast, banning!\n");
2586 return true;
2587 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2588 if (i915_stop_ring_allow_warn(dev_priv))
2589 DRM_ERROR("gpu hanging too fast, banning!\n");
2590 return true;
2591 }
2592 }
2593
2594 return false;
2595}
2596
2597static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2598 struct intel_context *ctx,
2599 const bool guilty)
2600{
2601 struct i915_ctx_hang_stats *hs;
2602
2603 if (WARN_ON(!ctx))
2604 return;
2605
2606 hs = &ctx->hang_stats;
2607
2608 if (guilty) {
2609 hs->banned = i915_context_is_banned(dev_priv, ctx);
2610 hs->batch_active++;
2611 hs->guilty_ts = get_seconds();
2612 } else {
2613 hs->batch_pending++;
2614 }
2615}
2616
2617void i915_gem_request_free(struct kref *req_ref)
2618{
2619 struct drm_i915_gem_request *req = container_of(req_ref,
2620 typeof(*req), ref);
2621 struct intel_context *ctx = req->ctx;
2622
2623 if (ctx) {
2624 if (i915.enable_execlists) {
2625 struct intel_engine_cs *ring = req->ring;
2626
2627 if (ctx != ring->default_context)
2628 intel_lr_context_unpin(ring, ctx);
2629 }
2630
2631 i915_gem_context_unreference(ctx);
2632 }
2633
2634 kmem_cache_free(req->i915->requests, req);
2635}
2636
2637int i915_gem_request_alloc(struct intel_engine_cs *ring,
2638 struct intel_context *ctx,
2639 struct drm_i915_gem_request **req_out)
2640{
2641 struct drm_i915_private *dev_priv = to_i915(ring->dev);
2642 struct drm_i915_gem_request *req;
2643 int ret;
2644
2645 if (!req_out)
2646 return -EINVAL;
2647
2648 if ((*req_out = ring->outstanding_lazy_request) != NULL)
2649 return 0;
2650
2651 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2652 if (req == NULL)
2653 return -ENOMEM;
2654
2655 ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2656 if (ret)
2657 goto err;
2658
2659 kref_init(&req->ref);
2660 req->i915 = dev_priv;
2661 req->ring = ring;
2662 req->ctx = ctx;
2663 i915_gem_context_reference(req->ctx);
2664
2665 if (i915.enable_execlists)
2666 ret = intel_logical_ring_alloc_request_extras(req);
2667 else
2668 ret = intel_ring_alloc_request_extras(req);
2669 if (ret) {
2670 i915_gem_context_unreference(req->ctx);
2671 goto err;
2672 }
2673
2674 /*
2675 * Reserve space in the ring buffer for all the commands required to
2676 * eventually emit this request. This is to guarantee that the
2677 * i915_add_request() call can't fail. Note that the reserve may need
2678 * to be redone if the request is not actually submitted straight
2679 * away, e.g. because a GPU scheduler has deferred it.
2680 *
2681 * Note further that this call merely notes the reserve request. A
2682 * subsequent call to *_ring_begin() is required to actually ensure
2683 * that the reservation is available. Without the begin, if the
2684 * request creator immediately submitted the request without adding
2685 * any commands to it then there might not actually be sufficient
2686 * room for the submission commands. Unfortunately, the current
2687 * *_ring_begin() implementations potentially call back here to
2688 * i915_gem_request_alloc(). Thus calling _begin() here would lead to
2689 * infinite recursion! Until that back call path is removed, it is
2690 * necessary to do a manual _begin() outside.
2691 */
2692 intel_ring_reserved_space_reserve(req->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
2693
2694 *req_out = ring->outstanding_lazy_request = req;
2695 return 0;
2696
2697err:
2698 kmem_cache_free(dev_priv->requests, req);
2699 return ret;
2700}
2701
2702void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2703{
2704 intel_ring_reserved_space_cancel(req->ringbuf);
2705
2706 i915_gem_request_unreference(req);
2707}
2708
2709struct drm_i915_gem_request *
2710i915_gem_find_active_request(struct intel_engine_cs *ring)
2711{
2712 struct drm_i915_gem_request *request;
2713
2714 list_for_each_entry(request, &ring->request_list, list) {
2715 if (i915_gem_request_completed(request, false))
2716 continue;
2717
2718 return request;
2719 }
2720
2721 return NULL;
2722}
2723
2724static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2725 struct intel_engine_cs *ring)
2726{
2727 struct drm_i915_gem_request *request;
2728 bool ring_hung;
2729
2730 request = i915_gem_find_active_request(ring);
2731
2732 if (request == NULL)
2733 return;
2734
2735 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2736
2737 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2738
2739 list_for_each_entry_continue(request, &ring->request_list, list)
2740 i915_set_reset_status(dev_priv, request->ctx, false);
2741}
2742
2743static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2744 struct intel_engine_cs *ring)
2745{
2746 while (!list_empty(&ring->active_list)) {
2747 struct drm_i915_gem_object *obj;
2748
2749 obj = list_first_entry(&ring->active_list,
2750 struct drm_i915_gem_object,
2751 ring_list[ring->id]);
2752
2753 i915_gem_object_retire__read(obj, ring->id);
2754 }
2755
2756 /*
2757 * Clear the execlists queue up before freeing the requests, as those
2758 * are the ones that keep the context and ringbuffer backing objects
2759 * pinned in place.
2760 */
2761 while (!list_empty(&ring->execlist_queue)) {
2762 struct drm_i915_gem_request *submit_req;
2763
2764 submit_req = list_first_entry(&ring->execlist_queue,
2765 struct drm_i915_gem_request,
2766 execlist_link);
2767 list_del(&submit_req->execlist_link);
2768
2769 if (submit_req->ctx != ring->default_context)
2770 intel_lr_context_unpin(ring, submit_req->ctx);
2771
2772 i915_gem_request_unreference(submit_req);
2773 }
2774
2775 /*
2776 * We must free the requests after all the corresponding objects have
2777 * been moved off active lists. Which is the same order as the normal
2778 * retire_requests function does. This is important if object hold
2779 * implicit references on things like e.g. ppgtt address spaces through
2780 * the request.
2781 */
2782 while (!list_empty(&ring->request_list)) {
2783 struct drm_i915_gem_request *request;
2784
2785 request = list_first_entry(&ring->request_list,
2786 struct drm_i915_gem_request,
2787 list);
2788
2789 i915_gem_request_retire(request);
2790 }
2791
2792 /* This may not have been flushed before the reset, so clean it now */
2793 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2794}
2795
2796void i915_gem_restore_fences(struct drm_device *dev)
2797{
2798 struct drm_i915_private *dev_priv = dev->dev_private;
2799 int i;
2800
2801 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2802 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2803
2804 /*
2805 * Commit delayed tiling changes if we have an object still
2806 * attached to the fence, otherwise just clear the fence.
2807 */
2808 if (reg->obj) {
2809 i915_gem_object_update_fence(reg->obj, reg,
2810 reg->obj->tiling_mode);
2811 } else {
2812 i915_gem_write_fence(dev, i, NULL);
2813 }
2814 }
2815}
2816
2817void i915_gem_reset(struct drm_device *dev)
2818{
2819 struct drm_i915_private *dev_priv = dev->dev_private;
2820 struct intel_engine_cs *ring;
2821 int i;
2822
2823 /*
2824 * Before we free the objects from the requests, we need to inspect
2825 * them for finding the guilty party. As the requests only borrow
2826 * their reference to the objects, the inspection must be done first.
2827 */
2828 for_each_ring(ring, dev_priv, i)
2829 i915_gem_reset_ring_status(dev_priv, ring);
2830
2831 for_each_ring(ring, dev_priv, i)
2832 i915_gem_reset_ring_cleanup(dev_priv, ring);
2833
2834 i915_gem_context_reset(dev);
2835
2836 i915_gem_restore_fences(dev);
2837
2838 WARN_ON(i915_verify_lists(dev));
2839}
2840
2841/**
2842 * This function clears the request list as sequence numbers are passed.
2843 */
2844void
2845i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2846{
2847 WARN_ON(i915_verify_lists(ring->dev));
2848
2849 /* Retire requests first as we use it above for the early return.
2850 * If we retire requests last, we may use a later seqno and so clear
2851 * the requests lists without clearing the active list, leading to
2852 * confusion.
2853 */
2854 while (!list_empty(&ring->request_list)) {
2855 struct drm_i915_gem_request *request;
2856
2857 request = list_first_entry(&ring->request_list,
2858 struct drm_i915_gem_request,
2859 list);
2860
2861 if (!i915_gem_request_completed(request, true))
2862 break;
2863
2864 i915_gem_request_retire(request);
2865 }
2866
2867 /* Move any buffers on the active list that are no longer referenced
2868 * by the ringbuffer to the flushing/inactive lists as appropriate,
2869 * before we free the context associated with the requests.
2870 */
2871 while (!list_empty(&ring->active_list)) {
2872 struct drm_i915_gem_object *obj;
2873
2874 obj = list_first_entry(&ring->active_list,
2875 struct drm_i915_gem_object,
2876 ring_list[ring->id]);
2877
2878 if (!list_empty(&obj->last_read_req[ring->id]->list))
2879 break;
2880
2881 i915_gem_object_retire__read(obj, ring->id);
2882 }
2883
2884 if (unlikely(ring->trace_irq_req &&
2885 i915_gem_request_completed(ring->trace_irq_req, true))) {
2886 ring->irq_put(ring);
2887 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2888 }
2889
2890 WARN_ON(i915_verify_lists(ring->dev));
2891}
2892
2893bool
2894i915_gem_retire_requests(struct drm_device *dev)
2895{
2896 struct drm_i915_private *dev_priv = dev->dev_private;
2897 struct intel_engine_cs *ring;
2898 bool idle = true;
2899 int i;
2900
2901 for_each_ring(ring, dev_priv, i) {
2902 i915_gem_retire_requests_ring(ring);
2903 idle &= list_empty(&ring->request_list);
2904 if (i915.enable_execlists) {
2905 unsigned long flags;
2906
2907 spin_lock_irqsave(&ring->execlist_lock, flags);
2908 idle &= list_empty(&ring->execlist_queue);
2909 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2910
2911 intel_execlists_retire_requests(ring);
2912 }
2913 }
2914
2915 if (idle)
2916 mod_delayed_work(dev_priv->wq,
2917 &dev_priv->mm.idle_work,
2918 msecs_to_jiffies(100));
2919
2920 return idle;
2921}
2922
2923static void
2924i915_gem_retire_work_handler(struct work_struct *work)
2925{
2926 struct drm_i915_private *dev_priv =
2927 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2928 struct drm_device *dev = dev_priv->dev;
2929 bool idle;
2930
2931 /* Come back later if the device is busy... */
2932 idle = false;
2933 if (mutex_trylock(&dev->struct_mutex)) {
2934 idle = i915_gem_retire_requests(dev);
2935 mutex_unlock(&dev->struct_mutex);
2936 }
2937 if (!idle)
2938 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2939 round_jiffies_up_relative(HZ));
2940}
2941
2942static void
2943i915_gem_idle_work_handler(struct work_struct *work)
2944{
2945 struct drm_i915_private *dev_priv =
2946 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2947 struct drm_device *dev = dev_priv->dev;
2948 struct intel_engine_cs *ring;
2949 int i;
2950
2951 for_each_ring(ring, dev_priv, i)
2952 if (!list_empty(&ring->request_list))
2953 return;
2954
2955 intel_mark_idle(dev);
2956
2957 if (mutex_trylock(&dev->struct_mutex)) {
2958 struct intel_engine_cs *ring;
2959 int i;
2960
2961 for_each_ring(ring, dev_priv, i)
2962 i915_gem_batch_pool_fini(&ring->batch_pool);
2963
2964 mutex_unlock(&dev->struct_mutex);
2965 }
2966}
2967
2968/**
2969 * Ensures that an object will eventually get non-busy by flushing any required
2970 * write domains, emitting any outstanding lazy request and retiring and
2971 * completed requests.
2972 */
2973static int
2974i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2975{
2976 int ret, i;
2977
2978 if (!obj->active)
2979 return 0;
2980
2981 for (i = 0; i < I915_NUM_RINGS; i++) {
2982 struct drm_i915_gem_request *req;
2983
2984 req = obj->last_read_req[i];
2985 if (req == NULL)
2986 continue;
2987
2988 if (list_empty(&req->list))
2989 goto retire;
2990
2991 ret = i915_gem_check_olr(req);
2992 if (ret)
2993 return ret;
2994
2995 if (i915_gem_request_completed(req, true)) {
2996 __i915_gem_request_retire__upto(req);
2997retire:
2998 i915_gem_object_retire__read(obj, i);
2999 }
3000 }
3001
3002 return 0;
3003}
3004
3005/**
3006 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3007 * @DRM_IOCTL_ARGS: standard ioctl arguments
3008 *
3009 * Returns 0 if successful, else an error is returned with the remaining time in
3010 * the timeout parameter.
3011 * -ETIME: object is still busy after timeout
3012 * -ERESTARTSYS: signal interrupted the wait
3013 * -ENONENT: object doesn't exist
3014 * Also possible, but rare:
3015 * -EAGAIN: GPU wedged
3016 * -ENOMEM: damn
3017 * -ENODEV: Internal IRQ fail
3018 * -E?: The add request failed
3019 *
3020 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3021 * non-zero timeout parameter the wait ioctl will wait for the given number of
3022 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3023 * without holding struct_mutex the object may become re-busied before this
3024 * function completes. A similar but shorter * race condition exists in the busy
3025 * ioctl
3026 */
3027int
3028i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3029{
3030 struct drm_i915_private *dev_priv = dev->dev_private;
3031 struct drm_i915_gem_wait *args = data;
3032 struct drm_i915_gem_object *obj;
3033 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3034 unsigned reset_counter;
3035 int i, n = 0;
3036 int ret;
3037
3038 if (args->flags != 0)
3039 return -EINVAL;
3040
3041 ret = i915_mutex_lock_interruptible(dev);
3042 if (ret)
3043 return ret;
3044
3045 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3046 if (&obj->base == NULL) {
3047 mutex_unlock(&dev->struct_mutex);
3048 return -ENOENT;
3049 }
3050
3051 /* Need to make sure the object gets inactive eventually. */
3052 ret = i915_gem_object_flush_active(obj);
3053 if (ret)
3054 goto out;
3055
3056 if (!obj->active)
3057 goto out;
3058
3059 /* Do this after OLR check to make sure we make forward progress polling
3060 * on this IOCTL with a timeout == 0 (like busy ioctl)
3061 */
3062 if (args->timeout_ns == 0) {
3063 ret = -ETIME;
3064 goto out;
3065 }
3066
3067 drm_gem_object_unreference(&obj->base);
3068 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3069
3070 for (i = 0; i < I915_NUM_RINGS; i++) {
3071 if (obj->last_read_req[i] == NULL)
3072 continue;
3073
3074 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3075 }
3076
3077 mutex_unlock(&dev->struct_mutex);
3078
3079 for (i = 0; i < n; i++) {
3080 if (ret == 0)
3081 ret = __i915_wait_request(req[i], reset_counter, true,
3082 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3083 file->driver_priv);
3084 i915_gem_request_unreference__unlocked(req[i]);
3085 }
3086 return ret;
3087
3088out:
3089 drm_gem_object_unreference(&obj->base);
3090 mutex_unlock(&dev->struct_mutex);
3091 return ret;
3092}
3093
3094static int
3095__i915_gem_object_sync(struct drm_i915_gem_object *obj,
3096 struct intel_engine_cs *to,
3097 struct drm_i915_gem_request *from_req,
3098 struct drm_i915_gem_request **to_req)
3099{
3100 struct intel_engine_cs *from;
3101 int ret;
3102
3103 from = i915_gem_request_get_ring(from_req);
3104 if (to == from)
3105 return 0;
3106
3107 if (i915_gem_request_completed(from_req, true))
3108 return 0;
3109
3110 ret = i915_gem_check_olr(from_req);
3111 if (ret)
3112 return ret;
3113
3114 if (!i915_semaphore_is_enabled(obj->base.dev)) {
3115 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3116 ret = __i915_wait_request(from_req,
3117 atomic_read(&i915->gpu_error.reset_counter),
3118 i915->mm.interruptible,
3119 NULL,
3120 &i915->rps.semaphores);
3121 if (ret)
3122 return ret;
3123
3124 i915_gem_object_retire_request(obj, from_req);
3125 } else {
3126 int idx = intel_ring_sync_index(from, to);
3127 u32 seqno = i915_gem_request_get_seqno(from_req);
3128
3129 WARN_ON(!to_req);
3130
3131 if (seqno <= from->semaphore.sync_seqno[idx])
3132 return 0;
3133
3134 if (*to_req == NULL) {
3135 ret = i915_gem_request_alloc(to, to->default_context, to_req);
3136 if (ret)
3137 return ret;
3138 }
3139
3140 trace_i915_gem_ring_sync_to(from, to, from_req);
3141 ret = to->semaphore.sync_to(to, from, seqno);
3142 if (ret)
3143 return ret;
3144
3145 /* We use last_read_req because sync_to()
3146 * might have just caused seqno wrap under
3147 * the radar.
3148 */
3149 from->semaphore.sync_seqno[idx] =
3150 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3151 }
3152
3153 return 0;
3154}
3155
3156/**
3157 * i915_gem_object_sync - sync an object to a ring.
3158 *
3159 * @obj: object which may be in use on another ring.
3160 * @to: ring we wish to use the object on. May be NULL.
3161 * @to_req: request we wish to use the object for. See below.
3162 * This will be allocated and returned if a request is
3163 * required but not passed in.
3164 *
3165 * This code is meant to abstract object synchronization with the GPU.
3166 * Calling with NULL implies synchronizing the object with the CPU
3167 * rather than a particular GPU ring. Conceptually we serialise writes
3168 * between engines inside the GPU. We only allow one engine to write
3169 * into a buffer at any time, but multiple readers. To ensure each has
3170 * a coherent view of memory, we must:
3171 *
3172 * - If there is an outstanding write request to the object, the new
3173 * request must wait for it to complete (either CPU or in hw, requests
3174 * on the same ring will be naturally ordered).
3175 *
3176 * - If we are a write request (pending_write_domain is set), the new
3177 * request must wait for outstanding read requests to complete.
3178 *
3179 * For CPU synchronisation (NULL to) no request is required. For syncing with
3180 * rings to_req must be non-NULL. However, a request does not have to be
3181 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3182 * request will be allocated automatically and returned through *to_req. Note
3183 * that it is not guaranteed that commands will be emitted (because the system
3184 * might already be idle). Hence there is no need to create a request that
3185 * might never have any work submitted. Note further that if a request is
3186 * returned in *to_req, it is the responsibility of the caller to submit
3187 * that request (after potentially adding more work to it).
3188 *
3189 * Returns 0 if successful, else propagates up the lower layer error.
3190 */
3191int
3192i915_gem_object_sync(struct drm_i915_gem_object *obj,
3193 struct intel_engine_cs *to,
3194 struct drm_i915_gem_request **to_req)
3195{
3196 const bool readonly = obj->base.pending_write_domain == 0;
3197 struct drm_i915_gem_request *req[I915_NUM_RINGS];
3198 int ret, i, n;
3199
3200 if (!obj->active)
3201 return 0;
3202
3203 if (to == NULL)
3204 return i915_gem_object_wait_rendering(obj, readonly);
3205
3206 n = 0;
3207 if (readonly) {
3208 if (obj->last_write_req)
3209 req[n++] = obj->last_write_req;
3210 } else {
3211 for (i = 0; i < I915_NUM_RINGS; i++)
3212 if (obj->last_read_req[i])
3213 req[n++] = obj->last_read_req[i];
3214 }
3215 for (i = 0; i < n; i++) {
3216 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3217 if (ret)
3218 return ret;
3219 }
3220
3221 return 0;
3222}
3223
3224static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3225{
3226 u32 old_write_domain, old_read_domains;
3227
3228 /* Force a pagefault for domain tracking on next user access */
3229 i915_gem_release_mmap(obj);
3230
3231 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3232 return;
3233
3234 /* Wait for any direct GTT access to complete */
3235 mb();
3236
3237 old_read_domains = obj->base.read_domains;
3238 old_write_domain = obj->base.write_domain;
3239
3240 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3241 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3242
3243 trace_i915_gem_object_change_domain(obj,
3244 old_read_domains,
3245 old_write_domain);
3246}
3247
3248int i915_vma_unbind(struct i915_vma *vma)
3249{
3250 struct drm_i915_gem_object *obj = vma->obj;
3251 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3252 int ret;
3253
3254 if (list_empty(&vma->vma_link))
3255 return 0;
3256
3257 if (!drm_mm_node_allocated(&vma->node)) {
3258 i915_gem_vma_destroy(vma);
3259 return 0;
3260 }
3261
3262 if (vma->pin_count)
3263 return -EBUSY;
3264
3265 BUG_ON(obj->pages == NULL);
3266
3267 ret = i915_gem_object_wait_rendering(obj, false);
3268 if (ret)
3269 return ret;
3270 /* Continue on if we fail due to EIO, the GPU is hung so we
3271 * should be safe and we need to cleanup or else we might
3272 * cause memory corruption through use-after-free.
3273 */
3274
3275 if (i915_is_ggtt(vma->vm) &&
3276 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3277 i915_gem_object_finish_gtt(obj);
3278
3279 /* release the fence reg _after_ flushing */
3280 ret = i915_gem_object_put_fence(obj);
3281 if (ret)
3282 return ret;
3283 }
3284
3285 trace_i915_vma_unbind(vma);
3286
3287 vma->vm->unbind_vma(vma);
3288 vma->bound = 0;
3289
3290 list_del_init(&vma->mm_list);
3291 if (i915_is_ggtt(vma->vm)) {
3292 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3293 obj->map_and_fenceable = false;
3294 } else if (vma->ggtt_view.pages) {
3295 sg_free_table(vma->ggtt_view.pages);
3296 kfree(vma->ggtt_view.pages);
3297 vma->ggtt_view.pages = NULL;
3298 }
3299 }
3300
3301 drm_mm_remove_node(&vma->node);
3302 i915_gem_vma_destroy(vma);
3303
3304 /* Since the unbound list is global, only move to that list if
3305 * no more VMAs exist. */
3306 if (list_empty(&obj->vma_list)) {
3307 i915_gem_gtt_finish_object(obj);
3308 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3309 }
3310
3311 /* And finally now the object is completely decoupled from this vma,
3312 * we can drop its hold on the backing storage and allow it to be
3313 * reaped by the shrinker.
3314 */
3315 i915_gem_object_unpin_pages(obj);
3316
3317 return 0;
3318}
3319
3320int i915_gpu_idle(struct drm_device *dev)
3321{
3322 struct drm_i915_private *dev_priv = dev->dev_private;
3323 struct intel_engine_cs *ring;
3324 int ret, i;
3325
3326 /* Flush everything onto the inactive list. */
3327 for_each_ring(ring, dev_priv, i) {
3328 if (!i915.enable_execlists) {
3329 struct drm_i915_gem_request *req;
3330
3331 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3332 if (ret)
3333 return ret;
3334
3335 ret = i915_switch_context(req);
3336 if (ret) {
3337 i915_gem_request_cancel(req);
3338 return ret;
3339 }
3340
3341 i915_add_request_no_flush(req->ring);
3342 }
3343
3344 WARN_ON(ring->outstanding_lazy_request);
3345
3346 ret = intel_ring_idle(ring);
3347 if (ret)
3348 return ret;
3349 }
3350
3351 WARN_ON(i915_verify_lists(dev));
3352 return 0;
3353}
3354
3355static void i965_write_fence_reg(struct drm_device *dev, int reg,
3356 struct drm_i915_gem_object *obj)
3357{
3358 struct drm_i915_private *dev_priv = dev->dev_private;
3359 int fence_reg;
3360 int fence_pitch_shift;
3361
3362 if (INTEL_INFO(dev)->gen >= 6) {
3363 fence_reg = FENCE_REG_SANDYBRIDGE_0;
3364 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
3365 } else {
3366 fence_reg = FENCE_REG_965_0;
3367 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
3368 }
3369
3370 fence_reg += reg * 8;
3371
3372 /* To w/a incoherency with non-atomic 64-bit register updates,
3373 * we split the 64-bit update into two 32-bit writes. In order
3374 * for a partial fence not to be evaluated between writes, we
3375 * precede the update with write to turn off the fence register,
3376 * and only enable the fence as the last step.
3377 *
3378 * For extra levels of paranoia, we make sure each step lands
3379 * before applying the next step.
3380 */
3381 I915_WRITE(fence_reg, 0);
3382 POSTING_READ(fence_reg);
3383
3384 if (obj) {
3385 u32 size = i915_gem_obj_ggtt_size(obj);
3386 uint64_t val;
3387
3388 /* Adjust fence size to match tiled area */
3389 if (obj->tiling_mode != I915_TILING_NONE) {
3390 uint32_t row_size = obj->stride *
3391 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
3392 size = (size / row_size) * row_size;
3393 }
3394
3395 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3396 0xfffff000) << 32;
3397 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3398 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3399 if (obj->tiling_mode == I915_TILING_Y)
3400 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3401 val |= I965_FENCE_REG_VALID;
3402
3403 I915_WRITE(fence_reg + 4, val >> 32);
3404 POSTING_READ(fence_reg + 4);
3405
3406 I915_WRITE(fence_reg + 0, val);
3407 POSTING_READ(fence_reg);
3408 } else {
3409 I915_WRITE(fence_reg + 4, 0);
3410 POSTING_READ(fence_reg + 4);
3411 }
3412}
3413
3414static void i915_write_fence_reg(struct drm_device *dev, int reg,
3415 struct drm_i915_gem_object *obj)
3416{
3417 struct drm_i915_private *dev_priv = dev->dev_private;
3418 u32 val;
3419
3420 if (obj) {
3421 u32 size = i915_gem_obj_ggtt_size(obj);
3422 int pitch_val;
3423 int tile_width;
3424
3425 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3426 (size & -size) != size ||
3427 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3428 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3429 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3430
3431 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3432 tile_width = 128;
3433 else
3434 tile_width = 512;
3435
3436 /* Note: pitch better be a power of two tile widths */
3437 pitch_val = obj->stride / tile_width;
3438 pitch_val = ffs(pitch_val) - 1;
3439
3440 val = i915_gem_obj_ggtt_offset(obj);
3441 if (obj->tiling_mode == I915_TILING_Y)
3442 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3443 val |= I915_FENCE_SIZE_BITS(size);
3444 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3445 val |= I830_FENCE_REG_VALID;
3446 } else
3447 val = 0;
3448
3449 if (reg < 8)
3450 reg = FENCE_REG_830_0 + reg * 4;
3451 else
3452 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3453
3454 I915_WRITE(reg, val);
3455 POSTING_READ(reg);
3456}
3457
3458static void i830_write_fence_reg(struct drm_device *dev, int reg,
3459 struct drm_i915_gem_object *obj)
3460{
3461 struct drm_i915_private *dev_priv = dev->dev_private;
3462 uint32_t val;
3463
3464 if (obj) {
3465 u32 size = i915_gem_obj_ggtt_size(obj);
3466 uint32_t pitch_val;
3467
3468 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3469 (size & -size) != size ||
3470 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3471 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3472 i915_gem_obj_ggtt_offset(obj), size);
3473
3474 pitch_val = obj->stride / 128;
3475 pitch_val = ffs(pitch_val) - 1;
3476
3477 val = i915_gem_obj_ggtt_offset(obj);
3478 if (obj->tiling_mode == I915_TILING_Y)
3479 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3480 val |= I830_FENCE_SIZE_BITS(size);
3481 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3482 val |= I830_FENCE_REG_VALID;
3483 } else
3484 val = 0;
3485
3486 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3487 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3488}
3489
3490inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3491{
3492 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3493}
3494
3495static void i915_gem_write_fence(struct drm_device *dev, int reg,
3496 struct drm_i915_gem_object *obj)
3497{
3498 struct drm_i915_private *dev_priv = dev->dev_private;
3499
3500 /* Ensure that all CPU reads are completed before installing a fence
3501 * and all writes before removing the fence.
3502 */
3503 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3504 mb();
3505
3506 WARN(obj && (!obj->stride || !obj->tiling_mode),
3507 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3508 obj->stride, obj->tiling_mode);
3509
3510 if (IS_GEN2(dev))
3511 i830_write_fence_reg(dev, reg, obj);
3512 else if (IS_GEN3(dev))
3513 i915_write_fence_reg(dev, reg, obj);
3514 else if (INTEL_INFO(dev)->gen >= 4)
3515 i965_write_fence_reg(dev, reg, obj);
3516
3517 /* And similarly be paranoid that no direct access to this region
3518 * is reordered to before the fence is installed.
3519 */
3520 if (i915_gem_object_needs_mb(obj))
3521 mb();
3522}
3523
3524static inline int fence_number(struct drm_i915_private *dev_priv,
3525 struct drm_i915_fence_reg *fence)
3526{
3527 return fence - dev_priv->fence_regs;
3528}
3529
3530static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3531 struct drm_i915_fence_reg *fence,
3532 bool enable)
3533{
3534 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3535 int reg = fence_number(dev_priv, fence);
3536
3537 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3538
3539 if (enable) {
3540 obj->fence_reg = reg;
3541 fence->obj = obj;
3542 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3543 } else {
3544 obj->fence_reg = I915_FENCE_REG_NONE;
3545 fence->obj = NULL;
3546 list_del_init(&fence->lru_list);
3547 }
3548 obj->fence_dirty = false;
3549}
3550
3551static int
3552i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3553{
3554 if (obj->last_fenced_req) {
3555 int ret = i915_wait_request(obj->last_fenced_req);
3556 if (ret)
3557 return ret;
3558
3559 i915_gem_request_assign(&obj->last_fenced_req, NULL);
3560 }
3561
3562 return 0;
3563}
3564
3565int
3566i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3567{
3568 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3569 struct drm_i915_fence_reg *fence;
3570 int ret;
3571
3572 ret = i915_gem_object_wait_fence(obj);
3573 if (ret)
3574 return ret;
3575
3576 if (obj->fence_reg == I915_FENCE_REG_NONE)
3577 return 0;
3578
3579 fence = &dev_priv->fence_regs[obj->fence_reg];
3580
3581 if (WARN_ON(fence->pin_count))
3582 return -EBUSY;
3583
3584 i915_gem_object_fence_lost(obj);
3585 i915_gem_object_update_fence(obj, fence, false);
3586
3587 return 0;
3588}
3589
3590static struct drm_i915_fence_reg *
3591i915_find_fence_reg(struct drm_device *dev)
3592{
3593 struct drm_i915_private *dev_priv = dev->dev_private;
3594 struct drm_i915_fence_reg *reg, *avail;
3595 int i;
3596
3597 /* First try to find a free reg */
3598 avail = NULL;
3599 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3600 reg = &dev_priv->fence_regs[i];
3601 if (!reg->obj)
3602 return reg;
3603
3604 if (!reg->pin_count)
3605 avail = reg;
3606 }
3607
3608 if (avail == NULL)
3609 goto deadlock;
3610
3611 /* None available, try to steal one or wait for a user to finish */
3612 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3613 if (reg->pin_count)
3614 continue;
3615
3616 return reg;
3617 }
3618
3619deadlock:
3620 /* Wait for completion of pending flips which consume fences */
3621 if (intel_has_pending_fb_unpin(dev))
3622 return ERR_PTR(-EAGAIN);
3623
3624 return ERR_PTR(-EDEADLK);
3625}
3626
3627/**
3628 * i915_gem_object_get_fence - set up fencing for an object
3629 * @obj: object to map through a fence reg
3630 *
3631 * When mapping objects through the GTT, userspace wants to be able to write
3632 * to them without having to worry about swizzling if the object is tiled.
3633 * This function walks the fence regs looking for a free one for @obj,
3634 * stealing one if it can't find any.
3635 *
3636 * It then sets up the reg based on the object's properties: address, pitch
3637 * and tiling format.
3638 *
3639 * For an untiled surface, this removes any existing fence.
3640 */
3641int
3642i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3643{
3644 struct drm_device *dev = obj->base.dev;
3645 struct drm_i915_private *dev_priv = dev->dev_private;
3646 bool enable = obj->tiling_mode != I915_TILING_NONE;
3647 struct drm_i915_fence_reg *reg;
3648 int ret;
3649
3650 /* Have we updated the tiling parameters upon the object and so
3651 * will need to serialise the write to the associated fence register?
3652 */
3653 if (obj->fence_dirty) {
3654 ret = i915_gem_object_wait_fence(obj);
3655 if (ret)
3656 return ret;
3657 }
3658
3659 /* Just update our place in the LRU if our fence is getting reused. */
3660 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3661 reg = &dev_priv->fence_regs[obj->fence_reg];
3662 if (!obj->fence_dirty) {
3663 list_move_tail(&reg->lru_list,
3664 &dev_priv->mm.fence_list);
3665 return 0;
3666 }
3667 } else if (enable) {
3668 if (WARN_ON(!obj->map_and_fenceable))
3669 return -EINVAL;
3670
3671 reg = i915_find_fence_reg(dev);
3672 if (IS_ERR(reg))
3673 return PTR_ERR(reg);
3674
3675 if (reg->obj) {
3676 struct drm_i915_gem_object *old = reg->obj;
3677
3678 ret = i915_gem_object_wait_fence(old);
3679 if (ret)
3680 return ret;
3681
3682 i915_gem_object_fence_lost(old);
3683 }
3684 } else
3685 return 0;
3686
3687 i915_gem_object_update_fence(obj, reg, enable);
3688
3689 return 0;
3690}
3691
3692static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3693 unsigned long cache_level)
3694{
3695 struct drm_mm_node *gtt_space = &vma->node;
3696 struct drm_mm_node *other;
3697
3698 /*
3699 * On some machines we have to be careful when putting differing types
3700 * of snoopable memory together to avoid the prefetcher crossing memory
3701 * domains and dying. During vm initialisation, we decide whether or not
3702 * these constraints apply and set the drm_mm.color_adjust
3703 * appropriately.
3704 */
3705 if (vma->vm->mm.color_adjust == NULL)
3706 return true;
3707
3708 if (!drm_mm_node_allocated(gtt_space))
3709 return true;
3710
3711 if (list_empty(&gtt_space->node_list))
3712 return true;
3713
3714 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3715 if (other->allocated && !other->hole_follows && other->color != cache_level)
3716 return false;
3717
3718 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3719 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3720 return false;
3721
3722 return true;
3723}
3724
3725/**
3726 * Finds free space in the GTT aperture and binds the object or a view of it
3727 * there.
3728 */
3729static struct i915_vma *
3730i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3731 struct i915_address_space *vm,
3732 const struct i915_ggtt_view *ggtt_view,
3733 unsigned alignment,
3734 uint64_t flags)
3735{
3736 struct drm_device *dev = obj->base.dev;
3737 struct drm_i915_private *dev_priv = dev->dev_private;
3738 u32 size, fence_size, fence_alignment, unfenced_alignment;
3739 unsigned long start =
3740 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3741 unsigned long end =
3742 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3743 struct i915_vma *vma;
3744 int ret;
3745
3746 if (i915_is_ggtt(vm)) {
3747 u32 view_size;
3748
3749 if (WARN_ON(!ggtt_view))
3750 return ERR_PTR(-EINVAL);
3751
3752 view_size = i915_ggtt_view_size(obj, ggtt_view);
3753
3754 fence_size = i915_gem_get_gtt_size(dev,
3755 view_size,
3756 obj->tiling_mode);
3757 fence_alignment = i915_gem_get_gtt_alignment(dev,
3758 view_size,
3759 obj->tiling_mode,
3760 true);
3761 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3762 view_size,
3763 obj->tiling_mode,
3764 false);
3765 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3766 } else {
3767 fence_size = i915_gem_get_gtt_size(dev,
3768 obj->base.size,
3769 obj->tiling_mode);
3770 fence_alignment = i915_gem_get_gtt_alignment(dev,
3771 obj->base.size,
3772 obj->tiling_mode,
3773 true);
3774 unfenced_alignment =
3775 i915_gem_get_gtt_alignment(dev,
3776 obj->base.size,
3777 obj->tiling_mode,
3778 false);
3779 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3780 }
3781
3782 if (alignment == 0)
3783 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3784 unfenced_alignment;
3785 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3786 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3787 ggtt_view ? ggtt_view->type : 0,
3788 alignment);
3789 return ERR_PTR(-EINVAL);
3790 }
3791
3792 /* If binding the object/GGTT view requires more space than the entire
3793 * aperture has, reject it early before evicting everything in a vain
3794 * attempt to find space.
3795 */
3796 if (size > end) {
3797 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
3798 ggtt_view ? ggtt_view->type : 0,
3799 size,
3800 flags & PIN_MAPPABLE ? "mappable" : "total",
3801 end);
3802 return ERR_PTR(-E2BIG);
3803 }
3804
3805 ret = i915_gem_object_get_pages(obj);
3806 if (ret)
3807 return ERR_PTR(ret);
3808
3809 i915_gem_object_pin_pages(obj);
3810
3811 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3812 i915_gem_obj_lookup_or_create_vma(obj, vm);
3813
3814 if (IS_ERR(vma))
3815 goto err_unpin;
3816
3817search_free:
3818 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3819 size, alignment,
3820 obj->cache_level,
3821 start, end,
3822 DRM_MM_SEARCH_DEFAULT,
3823 DRM_MM_CREATE_DEFAULT);
3824 if (ret) {
3825 ret = i915_gem_evict_something(dev, vm, size, alignment,
3826 obj->cache_level,
3827 start, end,
3828 flags);
3829 if (ret == 0)
3830 goto search_free;
3831
3832 goto err_free_vma;
3833 }
3834 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3835 ret = -EINVAL;
3836 goto err_remove_node;
3837 }
3838
3839 ret = i915_gem_gtt_prepare_object(obj);
3840 if (ret)
3841 goto err_remove_node;
3842
3843 trace_i915_vma_bind(vma, flags);
3844 ret = i915_vma_bind(vma, obj->cache_level, flags);
3845 if (ret)
3846 goto err_finish_gtt;
3847
3848 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3849 list_add_tail(&vma->mm_list, &vm->inactive_list);
3850
3851 return vma;
3852
3853err_finish_gtt:
3854 i915_gem_gtt_finish_object(obj);
3855err_remove_node:
3856 drm_mm_remove_node(&vma->node);
3857err_free_vma:
3858 i915_gem_vma_destroy(vma);
3859 vma = ERR_PTR(ret);
3860err_unpin:
3861 i915_gem_object_unpin_pages(obj);
3862 return vma;
3863}
3864
3865bool
3866i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3867 bool force)
3868{
3869 /* If we don't have a page list set up, then we're not pinned
3870 * to GPU, and we can ignore the cache flush because it'll happen
3871 * again at bind time.
3872 */
3873 if (obj->pages == NULL)
3874 return false;
3875
3876 /*
3877 * Stolen memory is always coherent with the GPU as it is explicitly
3878 * marked as wc by the system, or the system is cache-coherent.
3879 */
3880 if (obj->stolen || obj->phys_handle)
3881 return false;
3882
3883 /* If the GPU is snooping the contents of the CPU cache,
3884 * we do not need to manually clear the CPU cache lines. However,
3885 * the caches are only snooped when the render cache is
3886 * flushed/invalidated. As we always have to emit invalidations
3887 * and flushes when moving into and out of the RENDER domain, correct
3888 * snooping behaviour occurs naturally as the result of our domain
3889 * tracking.
3890 */
3891 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3892 obj->cache_dirty = true;
3893 return false;
3894 }
3895
3896 trace_i915_gem_object_clflush(obj);
3897 drm_clflush_sg(obj->pages);
3898 obj->cache_dirty = false;
3899
3900 return true;
3901}
3902
3903/** Flushes the GTT write domain for the object if it's dirty. */
3904static void
3905i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3906{
3907 uint32_t old_write_domain;
3908
3909 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3910 return;
3911
3912 /* No actual flushing is required for the GTT write domain. Writes
3913 * to it immediately go to main memory as far as we know, so there's
3914 * no chipset flush. It also doesn't land in render cache.
3915 *
3916 * However, we do have to enforce the order so that all writes through
3917 * the GTT land before any writes to the device, such as updates to
3918 * the GATT itself.
3919 */
3920 wmb();
3921
3922 old_write_domain = obj->base.write_domain;
3923 obj->base.write_domain = 0;
3924
3925 intel_fb_obj_flush(obj, false);
3926
3927 trace_i915_gem_object_change_domain(obj,
3928 obj->base.read_domains,
3929 old_write_domain);
3930}
3931
3932/** Flushes the CPU write domain for the object if it's dirty. */
3933static void
3934i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3935{
3936 uint32_t old_write_domain;
3937
3938 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3939 return;
3940
3941 if (i915_gem_clflush_object(obj, obj->pin_display))
3942 i915_gem_chipset_flush(obj->base.dev);
3943
3944 old_write_domain = obj->base.write_domain;
3945 obj->base.write_domain = 0;
3946
3947 intel_fb_obj_flush(obj, false);
3948
3949 trace_i915_gem_object_change_domain(obj,
3950 obj->base.read_domains,
3951 old_write_domain);
3952}
3953
3954/**
3955 * Moves a single object to the GTT read, and possibly write domain.
3956 *
3957 * This function returns when the move is complete, including waiting on
3958 * flushes to occur.
3959 */
3960int
3961i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3962{
3963 uint32_t old_write_domain, old_read_domains;
3964 struct i915_vma *vma;
3965 int ret;
3966
3967 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3968 return 0;
3969
3970 ret = i915_gem_object_wait_rendering(obj, !write);
3971 if (ret)
3972 return ret;
3973
3974 /* Flush and acquire obj->pages so that we are coherent through
3975 * direct access in memory with previous cached writes through
3976 * shmemfs and that our cache domain tracking remains valid.
3977 * For example, if the obj->filp was moved to swap without us
3978 * being notified and releasing the pages, we would mistakenly
3979 * continue to assume that the obj remained out of the CPU cached
3980 * domain.
3981 */
3982 ret = i915_gem_object_get_pages(obj);
3983 if (ret)
3984 return ret;
3985
3986 i915_gem_object_flush_cpu_write_domain(obj);
3987
3988 /* Serialise direct access to this object with the barriers for
3989 * coherent writes from the GPU, by effectively invalidating the
3990 * GTT domain upon first access.
3991 */
3992 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3993 mb();
3994
3995 old_write_domain = obj->base.write_domain;
3996 old_read_domains = obj->base.read_domains;
3997
3998 /* It should now be out of any other write domains, and we can update
3999 * the domain values for our changes.
4000 */
4001 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4002 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4003 if (write) {
4004 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4005 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4006 obj->dirty = 1;
4007 }
4008
4009 if (write)
4010 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
4011
4012 trace_i915_gem_object_change_domain(obj,
4013 old_read_domains,
4014 old_write_domain);
4015
4016 /* And bump the LRU for this access */
4017 vma = i915_gem_obj_to_ggtt(obj);
4018 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4019 list_move_tail(&vma->mm_list,
4020 &to_i915(obj->base.dev)->gtt.base.inactive_list);
4021
4022 return 0;
4023}
4024
4025int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4026 enum i915_cache_level cache_level)
4027{
4028 struct drm_device *dev = obj->base.dev;
4029 struct i915_vma *vma, *next;
4030 int ret;
4031
4032 if (obj->cache_level == cache_level)
4033 return 0;
4034
4035 if (i915_gem_obj_is_pinned(obj)) {
4036 DRM_DEBUG("can not change the cache level of pinned objects\n");
4037 return -EBUSY;
4038 }
4039
4040 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4041 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4042 ret = i915_vma_unbind(vma);
4043 if (ret)
4044 return ret;
4045 }
4046 }
4047
4048 if (i915_gem_obj_bound_any(obj)) {
4049 ret = i915_gem_object_wait_rendering(obj, false);
4050 if (ret)
4051 return ret;
4052
4053 i915_gem_object_finish_gtt(obj);
4054
4055 /* Before SandyBridge, you could not use tiling or fence
4056 * registers with snooped memory, so relinquish any fences
4057 * currently pointing to our region in the aperture.
4058 */
4059 if (INTEL_INFO(dev)->gen < 6) {
4060 ret = i915_gem_object_put_fence(obj);
4061 if (ret)
4062 return ret;
4063 }
4064
4065 list_for_each_entry(vma, &obj->vma_list, vma_link)
4066 if (drm_mm_node_allocated(&vma->node)) {
4067 ret = i915_vma_bind(vma, cache_level,
4068 PIN_UPDATE);
4069 if (ret)
4070 return ret;
4071 }
4072 }
4073
4074 list_for_each_entry(vma, &obj->vma_list, vma_link)
4075 vma->node.color = cache_level;
4076 obj->cache_level = cache_level;
4077
4078 if (obj->cache_dirty &&
4079 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
4080 cpu_write_needs_clflush(obj)) {
4081 if (i915_gem_clflush_object(obj, true))
4082 i915_gem_chipset_flush(obj->base.dev);
4083 }
4084
4085 return 0;
4086}
4087
4088int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4089 struct drm_file *file)
4090{
4091 struct drm_i915_gem_caching *args = data;
4092 struct drm_i915_gem_object *obj;
4093
4094 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4095 if (&obj->base == NULL)
4096 return -ENOENT;
4097
4098 switch (obj->cache_level) {
4099 case I915_CACHE_LLC:
4100 case I915_CACHE_L3_LLC:
4101 args->caching = I915_CACHING_CACHED;
4102 break;
4103
4104 case I915_CACHE_WT:
4105 args->caching = I915_CACHING_DISPLAY;
4106 break;
4107
4108 default:
4109 args->caching = I915_CACHING_NONE;
4110 break;
4111 }
4112
4113 drm_gem_object_unreference_unlocked(&obj->base);
4114 return 0;
4115}
4116
4117int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4118 struct drm_file *file)
4119{
4120 struct drm_i915_gem_caching *args = data;
4121 struct drm_i915_gem_object *obj;
4122 enum i915_cache_level level;
4123 int ret;
4124
4125 switch (args->caching) {
4126 case I915_CACHING_NONE:
4127 level = I915_CACHE_NONE;
4128 break;
4129 case I915_CACHING_CACHED:
4130 level = I915_CACHE_LLC;
4131 break;
4132 case I915_CACHING_DISPLAY:
4133 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4134 break;
4135 default:
4136 return -EINVAL;
4137 }
4138
4139 ret = i915_mutex_lock_interruptible(dev);
4140 if (ret)
4141 return ret;
4142
4143 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4144 if (&obj->base == NULL) {
4145 ret = -ENOENT;
4146 goto unlock;
4147 }
4148
4149 ret = i915_gem_object_set_cache_level(obj, level);
4150
4151 drm_gem_object_unreference(&obj->base);
4152unlock:
4153 mutex_unlock(&dev->struct_mutex);
4154 return ret;
4155}
4156
4157/*
4158 * Prepare buffer for display plane (scanout, cursors, etc).
4159 * Can be called from an uninterruptible phase (modesetting) and allows
4160 * any flushes to be pipelined (for pageflips).
4161 */
4162int
4163i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4164 u32 alignment,
4165 struct intel_engine_cs *pipelined,
4166 struct drm_i915_gem_request **pipelined_request,
4167 const struct i915_ggtt_view *view)
4168{
4169 u32 old_read_domains, old_write_domain;
4170 int ret;
4171
4172 ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
4173 if (ret)
4174 return ret;
4175
4176 /* Mark the pin_display early so that we account for the
4177 * display coherency whilst setting up the cache domains.
4178 */
4179 obj->pin_display++;
4180
4181 /* The display engine is not coherent with the LLC cache on gen6. As
4182 * a result, we make sure that the pinning that is about to occur is
4183 * done with uncached PTEs. This is lowest common denominator for all
4184 * chipsets.
4185 *
4186 * However for gen6+, we could do better by using the GFDT bit instead
4187 * of uncaching, which would allow us to flush all the LLC-cached data
4188 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4189 */
4190 ret = i915_gem_object_set_cache_level(obj,
4191 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4192 if (ret)
4193 goto err_unpin_display;
4194
4195 /* As the user may map the buffer once pinned in the display plane
4196 * (e.g. libkms for the bootup splash), we have to ensure that we
4197 * always use map_and_fenceable for all scanout buffers.
4198 */
4199 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4200 view->type == I915_GGTT_VIEW_NORMAL ?
4201 PIN_MAPPABLE : 0);
4202 if (ret)
4203 goto err_unpin_display;
4204
4205 i915_gem_object_flush_cpu_write_domain(obj);
4206
4207 old_write_domain = obj->base.write_domain;
4208 old_read_domains = obj->base.read_domains;
4209
4210 /* It should now be out of any other write domains, and we can update
4211 * the domain values for our changes.
4212 */
4213 obj->base.write_domain = 0;
4214 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4215
4216 trace_i915_gem_object_change_domain(obj,
4217 old_read_domains,
4218 old_write_domain);
4219
4220 return 0;
4221
4222err_unpin_display:
4223 obj->pin_display--;
4224 return ret;
4225}
4226
4227void
4228i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4229 const struct i915_ggtt_view *view)
4230{
4231 if (WARN_ON(obj->pin_display == 0))
4232 return;
4233
4234 i915_gem_object_ggtt_unpin_view(obj, view);
4235
4236 obj->pin_display--;
4237}
4238
4239/**
4240 * Moves a single object to the CPU read, and possibly write domain.
4241 *
4242 * This function returns when the move is complete, including waiting on
4243 * flushes to occur.
4244 */
4245int
4246i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4247{
4248 uint32_t old_write_domain, old_read_domains;
4249 int ret;
4250
4251 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4252 return 0;
4253
4254 ret = i915_gem_object_wait_rendering(obj, !write);
4255 if (ret)
4256 return ret;
4257
4258 i915_gem_object_flush_gtt_write_domain(obj);
4259
4260 old_write_domain = obj->base.write_domain;
4261 old_read_domains = obj->base.read_domains;
4262
4263 /* Flush the CPU cache if it's still invalid. */
4264 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4265 i915_gem_clflush_object(obj, false);
4266
4267 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4268 }
4269
4270 /* It should now be out of any other write domains, and we can update
4271 * the domain values for our changes.
4272 */
4273 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4274
4275 /* If we're writing through the CPU, then the GPU read domains will
4276 * need to be invalidated at next use.
4277 */
4278 if (write) {
4279 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4280 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4281 }
4282
4283 if (write)
4284 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
4285
4286 trace_i915_gem_object_change_domain(obj,
4287 old_read_domains,
4288 old_write_domain);
4289
4290 return 0;
4291}
4292
4293/* Throttle our rendering by waiting until the ring has completed our requests
4294 * emitted over 20 msec ago.
4295 *
4296 * Note that if we were to use the current jiffies each time around the loop,
4297 * we wouldn't escape the function with any frames outstanding if the time to
4298 * render a frame was over 20ms.
4299 *
4300 * This should get us reasonable parallelism between CPU and GPU but also
4301 * relatively low latency when blocking on a particular request to finish.
4302 */
4303static int
4304i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4305{
4306 struct drm_i915_private *dev_priv = dev->dev_private;
4307 struct drm_i915_file_private *file_priv = file->driver_priv;
4308 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4309 struct drm_i915_gem_request *request, *target = NULL;
4310 unsigned reset_counter;
4311 int ret;
4312
4313 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4314 if (ret)
4315 return ret;
4316
4317 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4318 if (ret)
4319 return ret;
4320
4321 spin_lock(&file_priv->mm.lock);
4322 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4323 if (time_after_eq(request->emitted_jiffies, recent_enough))
4324 break;
4325
4326 target = request;
4327 }
4328 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4329 if (target)
4330 i915_gem_request_reference(target);
4331 spin_unlock(&file_priv->mm.lock);
4332
4333 if (target == NULL)
4334 return 0;
4335
4336 ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4337 if (ret == 0)
4338 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4339
4340 i915_gem_request_unreference__unlocked(target);
4341
4342 return ret;
4343}
4344
4345static bool
4346i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4347{
4348 struct drm_i915_gem_object *obj = vma->obj;
4349
4350 if (alignment &&
4351 vma->node.start & (alignment - 1))
4352 return true;
4353
4354 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4355 return true;
4356
4357 if (flags & PIN_OFFSET_BIAS &&
4358 vma->node.start < (flags & PIN_OFFSET_MASK))
4359 return true;
4360
4361 return false;
4362}
4363
4364static int
4365i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4366 struct i915_address_space *vm,
4367 const struct i915_ggtt_view *ggtt_view,
4368 uint32_t alignment,
4369 uint64_t flags)
4370{
4371 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4372 struct i915_vma *vma;
4373 unsigned bound;
4374 int ret;
4375
4376 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4377 return -ENODEV;
4378
4379 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4380 return -EINVAL;
4381
4382 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4383 return -EINVAL;
4384
4385 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4386 return -EINVAL;
4387
4388 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4389 i915_gem_obj_to_vma(obj, vm);
4390
4391 if (IS_ERR(vma))
4392 return PTR_ERR(vma);
4393
4394 if (vma) {
4395 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4396 return -EBUSY;
4397
4398 if (i915_vma_misplaced(vma, alignment, flags)) {
4399 unsigned long offset;
4400 offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4401 i915_gem_obj_offset(obj, vm);
4402 WARN(vma->pin_count,
4403 "bo is already pinned in %s with incorrect alignment:"
4404 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4405 " obj->map_and_fenceable=%d\n",
4406 ggtt_view ? "ggtt" : "ppgtt",
4407 offset,
4408 alignment,
4409 !!(flags & PIN_MAPPABLE),
4410 obj->map_and_fenceable);
4411 ret = i915_vma_unbind(vma);
4412 if (ret)
4413 return ret;
4414
4415 vma = NULL;
4416 }
4417 }
4418
4419 bound = vma ? vma->bound : 0;
4420 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4421 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4422 flags);
4423 if (IS_ERR(vma))
4424 return PTR_ERR(vma);
4425 } else {
4426 ret = i915_vma_bind(vma, obj->cache_level, flags);
4427 if (ret)
4428 return ret;
4429 }
4430
4431 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4432 (bound ^ vma->bound) & GLOBAL_BIND) {
4433 bool mappable, fenceable;
4434 u32 fence_size, fence_alignment;
4435
4436 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4437 obj->base.size,
4438 obj->tiling_mode);
4439 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4440 obj->base.size,
4441 obj->tiling_mode,
4442 true);
4443
4444 fenceable = (vma->node.size == fence_size &&
4445 (vma->node.start & (fence_alignment - 1)) == 0);
4446
4447 mappable = (vma->node.start + fence_size <=
4448 dev_priv->gtt.mappable_end);
4449
4450 obj->map_and_fenceable = mappable && fenceable;
4451
4452 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4453 }
4454
4455 vma->pin_count++;
4456 return 0;
4457}
4458
4459int
4460i915_gem_object_pin(struct drm_i915_gem_object *obj,
4461 struct i915_address_space *vm,
4462 uint32_t alignment,
4463 uint64_t flags)
4464{
4465 return i915_gem_object_do_pin(obj, vm,
4466 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4467 alignment, flags);
4468}
4469
4470int
4471i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4472 const struct i915_ggtt_view *view,
4473 uint32_t alignment,
4474 uint64_t flags)
4475{
4476 if (WARN_ONCE(!view, "no view specified"))
4477 return -EINVAL;
4478
4479 return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4480 alignment, flags | PIN_GLOBAL);
4481}
4482
4483void
4484i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4485 const struct i915_ggtt_view *view)
4486{
4487 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4488
4489 BUG_ON(!vma);
4490 WARN_ON(vma->pin_count == 0);
4491 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4492
4493 --vma->pin_count;
4494}
4495
4496bool
4497i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4498{
4499 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4500 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4501 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4502
4503 WARN_ON(!ggtt_vma ||
4504 dev_priv->fence_regs[obj->fence_reg].pin_count >
4505 ggtt_vma->pin_count);
4506 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4507 return true;
4508 } else
4509 return false;
4510}
4511
4512void
4513i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4514{
4515 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4516 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4517 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4518 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4519 }
4520}
4521
4522int
4523i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4524 struct drm_file *file)
4525{
4526 struct drm_i915_gem_busy *args = data;
4527 struct drm_i915_gem_object *obj;
4528 int ret;
4529
4530 ret = i915_mutex_lock_interruptible(dev);
4531 if (ret)
4532 return ret;
4533
4534 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4535 if (&obj->base == NULL) {
4536 ret = -ENOENT;
4537 goto unlock;
4538 }
4539
4540 /* Count all active objects as busy, even if they are currently not used
4541 * by the gpu. Users of this interface expect objects to eventually
4542 * become non-busy without any further actions, therefore emit any
4543 * necessary flushes here.
4544 */
4545 ret = i915_gem_object_flush_active(obj);
4546 if (ret)
4547 goto unref;
4548
4549 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4550 args->busy = obj->active << 16;
4551 if (obj->last_write_req)
4552 args->busy |= obj->last_write_req->ring->id;
4553
4554unref:
4555 drm_gem_object_unreference(&obj->base);
4556unlock:
4557 mutex_unlock(&dev->struct_mutex);
4558 return ret;
4559}
4560
4561int
4562i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4563 struct drm_file *file_priv)
4564{
4565 return i915_gem_ring_throttle(dev, file_priv);
4566}
4567
4568int
4569i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4570 struct drm_file *file_priv)
4571{
4572 struct drm_i915_private *dev_priv = dev->dev_private;
4573 struct drm_i915_gem_madvise *args = data;
4574 struct drm_i915_gem_object *obj;
4575 int ret;
4576
4577 switch (args->madv) {
4578 case I915_MADV_DONTNEED:
4579 case I915_MADV_WILLNEED:
4580 break;
4581 default:
4582 return -EINVAL;
4583 }
4584
4585 ret = i915_mutex_lock_interruptible(dev);
4586 if (ret)
4587 return ret;
4588
4589 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4590 if (&obj->base == NULL) {
4591 ret = -ENOENT;
4592 goto unlock;
4593 }
4594
4595 if (i915_gem_obj_is_pinned(obj)) {
4596 ret = -EINVAL;
4597 goto out;
4598 }
4599
4600 if (obj->pages &&
4601 obj->tiling_mode != I915_TILING_NONE &&
4602 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4603 if (obj->madv == I915_MADV_WILLNEED)
4604 i915_gem_object_unpin_pages(obj);
4605 if (args->madv == I915_MADV_WILLNEED)
4606 i915_gem_object_pin_pages(obj);
4607 }
4608
4609 if (obj->madv != __I915_MADV_PURGED)
4610 obj->madv = args->madv;
4611
4612 /* if the object is no longer attached, discard its backing storage */
4613 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4614 i915_gem_object_truncate(obj);
4615
4616 args->retained = obj->madv != __I915_MADV_PURGED;
4617
4618out:
4619 drm_gem_object_unreference(&obj->base);
4620unlock:
4621 mutex_unlock(&dev->struct_mutex);
4622 return ret;
4623}
4624
4625void i915_gem_object_init(struct drm_i915_gem_object *obj,
4626 const struct drm_i915_gem_object_ops *ops)
4627{
4628 int i;
4629
4630 INIT_LIST_HEAD(&obj->global_list);
4631 for (i = 0; i < I915_NUM_RINGS; i++)
4632 INIT_LIST_HEAD(&obj->ring_list[i]);
4633 INIT_LIST_HEAD(&obj->obj_exec_link);
4634 INIT_LIST_HEAD(&obj->vma_list);
4635 INIT_LIST_HEAD(&obj->batch_pool_link);
4636
4637 obj->ops = ops;
4638
4639 obj->fence_reg = I915_FENCE_REG_NONE;
4640 obj->madv = I915_MADV_WILLNEED;
4641
4642 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4643}
4644
4645static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4646 .get_pages = i915_gem_object_get_pages_gtt,
4647 .put_pages = i915_gem_object_put_pages_gtt,
4648};
4649
4650struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4651 size_t size)
4652{
4653 struct drm_i915_gem_object *obj;
4654 struct address_space *mapping;
4655 gfp_t mask;
4656
4657 obj = i915_gem_object_alloc(dev);
4658 if (obj == NULL)
4659 return NULL;
4660
4661 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4662 i915_gem_object_free(obj);
4663 return NULL;
4664 }
4665
4666 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4667 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4668 /* 965gm cannot relocate objects above 4GiB. */
4669 mask &= ~__GFP_HIGHMEM;
4670 mask |= __GFP_DMA32;
4671 }
4672
4673 mapping = file_inode(obj->base.filp)->i_mapping;
4674 mapping_set_gfp_mask(mapping, mask);
4675
4676 i915_gem_object_init(obj, &i915_gem_object_ops);
4677
4678 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4679 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4680
4681 if (HAS_LLC(dev)) {
4682 /* On some devices, we can have the GPU use the LLC (the CPU
4683 * cache) for about a 10% performance improvement
4684 * compared to uncached. Graphics requests other than
4685 * display scanout are coherent with the CPU in
4686 * accessing this cache. This means in this mode we
4687 * don't need to clflush on the CPU side, and on the
4688 * GPU side we only need to flush internal caches to
4689 * get data visible to the CPU.
4690 *
4691 * However, we maintain the display planes as UC, and so
4692 * need to rebind when first used as such.
4693 */
4694 obj->cache_level = I915_CACHE_LLC;
4695 } else
4696 obj->cache_level = I915_CACHE_NONE;
4697
4698 trace_i915_gem_object_create(obj);
4699
4700 return obj;
4701}
4702
4703static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4704{
4705 /* If we are the last user of the backing storage (be it shmemfs
4706 * pages or stolen etc), we know that the pages are going to be
4707 * immediately released. In this case, we can then skip copying
4708 * back the contents from the GPU.
4709 */
4710
4711 if (obj->madv != I915_MADV_WILLNEED)
4712 return false;
4713
4714 if (obj->base.filp == NULL)
4715 return true;
4716
4717 /* At first glance, this looks racy, but then again so would be
4718 * userspace racing mmap against close. However, the first external
4719 * reference to the filp can only be obtained through the
4720 * i915_gem_mmap_ioctl() which safeguards us against the user
4721 * acquiring such a reference whilst we are in the middle of
4722 * freeing the object.
4723 */
4724 return atomic_long_read(&obj->base.filp->f_count) == 1;
4725}
4726
4727void i915_gem_free_object(struct drm_gem_object *gem_obj)
4728{
4729 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4730 struct drm_device *dev = obj->base.dev;
4731 struct drm_i915_private *dev_priv = dev->dev_private;
4732 struct i915_vma *vma, *next;
4733
4734 intel_runtime_pm_get(dev_priv);
4735
4736 trace_i915_gem_object_destroy(obj);
4737
4738 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4739 int ret;
4740
4741 vma->pin_count = 0;
4742 ret = i915_vma_unbind(vma);
4743 if (WARN_ON(ret == -ERESTARTSYS)) {
4744 bool was_interruptible;
4745
4746 was_interruptible = dev_priv->mm.interruptible;
4747 dev_priv->mm.interruptible = false;
4748
4749 WARN_ON(i915_vma_unbind(vma));
4750
4751 dev_priv->mm.interruptible = was_interruptible;
4752 }
4753 }
4754
4755 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4756 * before progressing. */
4757 if (obj->stolen)
4758 i915_gem_object_unpin_pages(obj);
4759
4760 WARN_ON(obj->frontbuffer_bits);
4761
4762 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4763 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4764 obj->tiling_mode != I915_TILING_NONE)
4765 i915_gem_object_unpin_pages(obj);
4766
4767 if (WARN_ON(obj->pages_pin_count))
4768 obj->pages_pin_count = 0;
4769 if (discard_backing_storage(obj))
4770 obj->madv = I915_MADV_DONTNEED;
4771 i915_gem_object_put_pages(obj);
4772 i915_gem_object_free_mmap_offset(obj);
4773
4774 BUG_ON(obj->pages);
4775
4776 if (obj->base.import_attach)
4777 drm_prime_gem_destroy(&obj->base, NULL);
4778
4779 if (obj->ops->release)
4780 obj->ops->release(obj);
4781
4782 drm_gem_object_release(&obj->base);
4783 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4784
4785 kfree(obj->bit_17);
4786 i915_gem_object_free(obj);
4787
4788 intel_runtime_pm_put(dev_priv);
4789}
4790
4791struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4792 struct i915_address_space *vm)
4793{
4794 struct i915_vma *vma;
4795 list_for_each_entry(vma, &obj->vma_list, vma_link) {
4796 if (i915_is_ggtt(vma->vm) &&
4797 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4798 continue;
4799 if (vma->vm == vm)
4800 return vma;
4801 }
4802 return NULL;
4803}
4804
4805struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4806 const struct i915_ggtt_view *view)
4807{
4808 struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4809 struct i915_vma *vma;
4810
4811 if (WARN_ONCE(!view, "no view specified"))
4812 return ERR_PTR(-EINVAL);
4813
4814 list_for_each_entry(vma, &obj->vma_list, vma_link)
4815 if (vma->vm == ggtt &&
4816 i915_ggtt_view_equal(&vma->ggtt_view, view))
4817 return vma;
4818 return NULL;
4819}
4820
4821void i915_gem_vma_destroy(struct i915_vma *vma)
4822{
4823 struct i915_address_space *vm = NULL;
4824 WARN_ON(vma->node.allocated);
4825
4826 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4827 if (!list_empty(&vma->exec_list))
4828 return;
4829
4830 vm = vma->vm;
4831
4832 if (!i915_is_ggtt(vm))
4833 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4834
4835 list_del(&vma->vma_link);
4836
4837 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4838}
4839
4840static void
4841i915_gem_stop_ringbuffers(struct drm_device *dev)
4842{
4843 struct drm_i915_private *dev_priv = dev->dev_private;
4844 struct intel_engine_cs *ring;
4845 int i;
4846
4847 for_each_ring(ring, dev_priv, i)
4848 dev_priv->gt.stop_ring(ring);
4849}
4850
4851int
4852i915_gem_suspend(struct drm_device *dev)
4853{
4854 struct drm_i915_private *dev_priv = dev->dev_private;
4855 int ret = 0;
4856
4857 mutex_lock(&dev->struct_mutex);
4858 ret = i915_gpu_idle(dev);
4859 if (ret)
4860 goto err;
4861
4862 i915_gem_retire_requests(dev);
4863
4864 i915_gem_stop_ringbuffers(dev);
4865 mutex_unlock(&dev->struct_mutex);
4866
4867 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4868 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4869 flush_delayed_work(&dev_priv->mm.idle_work);
4870
4871 /* Assert that we sucessfully flushed all the work and
4872 * reset the GPU back to its idle, low power state.
4873 */
4874 WARN_ON(dev_priv->mm.busy);
4875
4876 return 0;
4877
4878err:
4879 mutex_unlock(&dev->struct_mutex);
4880 return ret;
4881}
4882
4883int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4884{
4885 struct drm_device *dev = ring->dev;
4886 struct drm_i915_private *dev_priv = dev->dev_private;
4887 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4888 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4889 int i, ret;
4890
4891 if (!HAS_L3_DPF(dev) || !remap_info)
4892 return 0;
4893
4894 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4895 if (ret)
4896 return ret;
4897
4898 /*
4899 * Note: We do not worry about the concurrent register cacheline hang
4900 * here because no other code should access these registers other than
4901 * at initialization time.
4902 */
4903 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4904 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4905 intel_ring_emit(ring, reg_base + i);
4906 intel_ring_emit(ring, remap_info[i/4]);
4907 }
4908
4909 intel_ring_advance(ring);
4910
4911 return ret;
4912}
4913
4914void i915_gem_init_swizzling(struct drm_device *dev)
4915{
4916 struct drm_i915_private *dev_priv = dev->dev_private;
4917
4918 if (INTEL_INFO(dev)->gen < 5 ||
4919 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4920 return;
4921
4922 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4923 DISP_TILE_SURFACE_SWIZZLING);
4924
4925 if (IS_GEN5(dev))
4926 return;
4927
4928 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4929 if (IS_GEN6(dev))
4930 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4931 else if (IS_GEN7(dev))
4932 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4933 else if (IS_GEN8(dev))
4934 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4935 else
4936 BUG();
4937}
4938
4939static bool
4940intel_enable_blt(struct drm_device *dev)
4941{
4942 if (!HAS_BLT(dev))
4943 return false;
4944
4945 /* The blitter was dysfunctional on early prototypes */
4946 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4947 DRM_INFO("BLT not supported on this pre-production hardware;"
4948 " graphics performance will be degraded.\n");
4949 return false;
4950 }
4951
4952 return true;
4953}
4954
4955static void init_unused_ring(struct drm_device *dev, u32 base)
4956{
4957 struct drm_i915_private *dev_priv = dev->dev_private;
4958
4959 I915_WRITE(RING_CTL(base), 0);
4960 I915_WRITE(RING_HEAD(base), 0);
4961 I915_WRITE(RING_TAIL(base), 0);
4962 I915_WRITE(RING_START(base), 0);
4963}
4964
4965static void init_unused_rings(struct drm_device *dev)
4966{
4967 if (IS_I830(dev)) {
4968 init_unused_ring(dev, PRB1_BASE);
4969 init_unused_ring(dev, SRB0_BASE);
4970 init_unused_ring(dev, SRB1_BASE);
4971 init_unused_ring(dev, SRB2_BASE);
4972 init_unused_ring(dev, SRB3_BASE);
4973 } else if (IS_GEN2(dev)) {
4974 init_unused_ring(dev, SRB0_BASE);
4975 init_unused_ring(dev, SRB1_BASE);
4976 } else if (IS_GEN3(dev)) {
4977 init_unused_ring(dev, PRB1_BASE);
4978 init_unused_ring(dev, PRB2_BASE);
4979 }
4980}
4981
4982int i915_gem_init_rings(struct drm_device *dev)
4983{
4984 struct drm_i915_private *dev_priv = dev->dev_private;
4985 int ret;
4986
4987 ret = intel_init_render_ring_buffer(dev);
4988 if (ret)
4989 return ret;
4990
4991 if (HAS_BSD(dev)) {
4992 ret = intel_init_bsd_ring_buffer(dev);
4993 if (ret)
4994 goto cleanup_render_ring;
4995 }
4996
4997 if (intel_enable_blt(dev)) {
4998 ret = intel_init_blt_ring_buffer(dev);
4999 if (ret)
5000 goto cleanup_bsd_ring;
5001 }
5002
5003 if (HAS_VEBOX(dev)) {
5004 ret = intel_init_vebox_ring_buffer(dev);
5005 if (ret)
5006 goto cleanup_blt_ring;
5007 }
5008
5009 if (HAS_BSD2(dev)) {
5010 ret = intel_init_bsd2_ring_buffer(dev);
5011 if (ret)
5012 goto cleanup_vebox_ring;
5013 }
5014
5015 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
5016 if (ret)
5017 goto cleanup_bsd2_ring;
5018
5019 return 0;
5020
5021cleanup_bsd2_ring:
5022 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
5023cleanup_vebox_ring:
5024 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
5025cleanup_blt_ring:
5026 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
5027cleanup_bsd_ring:
5028 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
5029cleanup_render_ring:
5030 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
5031
5032 return ret;
5033}
5034
5035int
5036i915_gem_init_hw(struct drm_device *dev)
5037{
5038 struct drm_i915_private *dev_priv = dev->dev_private;
5039 struct intel_engine_cs *ring;
5040 int ret, i, j;
5041
5042 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
5043 return -EIO;
5044
5045 /* Double layer security blanket, see i915_gem_init() */
5046 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5047
5048 if (dev_priv->ellc_size)
5049 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5050
5051 if (IS_HASWELL(dev))
5052 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5053 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5054
5055 if (HAS_PCH_NOP(dev)) {
5056 if (IS_IVYBRIDGE(dev)) {
5057 u32 temp = I915_READ(GEN7_MSG_CTL);
5058 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5059 I915_WRITE(GEN7_MSG_CTL, temp);
5060 } else if (INTEL_INFO(dev)->gen >= 7) {
5061 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5062 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5063 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5064 }
5065 }
5066
5067 i915_gem_init_swizzling(dev);
5068
5069 /*
5070 * At least 830 can leave some of the unused rings
5071 * "active" (ie. head != tail) after resume which
5072 * will prevent c3 entry. Makes sure all unused rings
5073 * are totally idle.
5074 */
5075 init_unused_rings(dev);
5076
5077 BUG_ON(!dev_priv->ring[RCS].default_context);
5078
5079 ret = i915_ppgtt_init_hw(dev);
5080 if (ret) {
5081 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5082 goto out;
5083 }
5084
5085 /* Need to do basic initialisation of all rings first: */
5086 for_each_ring(ring, dev_priv, i) {
5087 ret = ring->init_hw(ring);
5088 if (ret)
5089 goto out;
5090 }
5091
5092 /* Now it is safe to go back round and do everything else: */
5093 for_each_ring(ring, dev_priv, i) {
5094 struct drm_i915_gem_request *req;
5095
5096 WARN_ON(!ring->default_context);
5097
5098 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
5099 if (ret) {
5100 i915_gem_cleanup_ringbuffer(dev);
5101 goto out;
5102 }
5103
5104 if (ring->id == RCS) {
5105 for (j = 0; j < NUM_L3_SLICES(dev); j++)
5106 i915_gem_l3_remap(ring, j);
5107 }
5108
5109 ret = i915_ppgtt_init_ring(req);
5110 if (ret && ret != -EIO) {
5111 DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
5112 i915_gem_request_cancel(req);
5113 i915_gem_cleanup_ringbuffer(dev);
5114 goto out;
5115 }
5116
5117 ret = i915_gem_context_enable(req);
5118 if (ret && ret != -EIO) {
5119 DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
5120 i915_gem_request_cancel(req);
5121 i915_gem_cleanup_ringbuffer(dev);
5122 goto out;
5123 }
5124
5125 i915_add_request_no_flush(ring);
5126 }
5127
5128out:
5129 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5130 return ret;
5131}
5132
5133int i915_gem_init(struct drm_device *dev)
5134{
5135 struct drm_i915_private *dev_priv = dev->dev_private;
5136 int ret;
5137
5138 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
5139 i915.enable_execlists);
5140
5141 mutex_lock(&dev->struct_mutex);
5142
5143 if (IS_VALLEYVIEW(dev)) {
5144 /* VLVA0 (potential hack), BIOS isn't actually waking us */
5145 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
5146 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
5147 VLV_GTLC_ALLOWWAKEACK), 10))
5148 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
5149 }
5150
5151 if (!i915.enable_execlists) {
5152 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5153 dev_priv->gt.init_rings = i915_gem_init_rings;
5154 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
5155 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
5156 } else {
5157 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5158 dev_priv->gt.init_rings = intel_logical_rings_init;
5159 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
5160 dev_priv->gt.stop_ring = intel_logical_ring_stop;
5161 }
5162
5163 /* This is just a security blanket to placate dragons.
5164 * On some systems, we very sporadically observe that the first TLBs
5165 * used by the CS may be stale, despite us poking the TLB reset. If
5166 * we hold the forcewake during initialisation these problems
5167 * just magically go away.
5168 */
5169 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5170
5171 ret = i915_gem_init_userptr(dev);
5172 if (ret)
5173 goto out_unlock;
5174
5175 i915_gem_init_global_gtt(dev);
5176
5177 ret = i915_gem_context_init(dev);
5178 if (ret)
5179 goto out_unlock;
5180
5181 ret = dev_priv->gt.init_rings(dev);
5182 if (ret)
5183 goto out_unlock;
5184
5185 ret = i915_gem_init_hw(dev);
5186 if (ret == -EIO) {
5187 /* Allow ring initialisation to fail by marking the GPU as
5188 * wedged. But we only want to do this where the GPU is angry,
5189 * for all other failure, such as an allocation failure, bail.
5190 */
5191 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5192 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5193 ret = 0;
5194 }
5195
5196out_unlock:
5197 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5198 mutex_unlock(&dev->struct_mutex);
5199
5200 return ret;
5201}
5202
5203void
5204i915_gem_cleanup_ringbuffer(struct drm_device *dev)
5205{
5206 struct drm_i915_private *dev_priv = dev->dev_private;
5207 struct intel_engine_cs *ring;
5208 int i;
5209
5210 for_each_ring(ring, dev_priv, i)
5211 dev_priv->gt.cleanup_ring(ring);
5212}
5213
5214static void
5215init_ring_lists(struct intel_engine_cs *ring)
5216{
5217 INIT_LIST_HEAD(&ring->active_list);
5218 INIT_LIST_HEAD(&ring->request_list);
5219}
5220
5221void i915_init_vm(struct drm_i915_private *dev_priv,
5222 struct i915_address_space *vm)
5223{
5224 if (!i915_is_ggtt(vm))
5225 drm_mm_init(&vm->mm, vm->start, vm->total);
5226 vm->dev = dev_priv->dev;
5227 INIT_LIST_HEAD(&vm->active_list);
5228 INIT_LIST_HEAD(&vm->inactive_list);
5229 INIT_LIST_HEAD(&vm->global_link);
5230 list_add_tail(&vm->global_link, &dev_priv->vm_list);
5231}
5232
5233void
5234i915_gem_load(struct drm_device *dev)
5235{
5236 struct drm_i915_private *dev_priv = dev->dev_private;
5237 int i;
5238
5239 dev_priv->objects =
5240 kmem_cache_create("i915_gem_object",
5241 sizeof(struct drm_i915_gem_object), 0,
5242 SLAB_HWCACHE_ALIGN,
5243 NULL);
5244 dev_priv->vmas =
5245 kmem_cache_create("i915_gem_vma",
5246 sizeof(struct i915_vma), 0,
5247 SLAB_HWCACHE_ALIGN,
5248 NULL);
5249 dev_priv->requests =
5250 kmem_cache_create("i915_gem_request",
5251 sizeof(struct drm_i915_gem_request), 0,
5252 SLAB_HWCACHE_ALIGN,
5253 NULL);
5254
5255 INIT_LIST_HEAD(&dev_priv->vm_list);
5256 i915_init_vm(dev_priv, &dev_priv->gtt.base);
5257
5258 INIT_LIST_HEAD(&dev_priv->context_list);
5259 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5260 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5261 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5262 for (i = 0; i < I915_NUM_RINGS; i++)
5263 init_ring_lists(&dev_priv->ring[i]);
5264 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5265 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5266 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5267 i915_gem_retire_work_handler);
5268 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5269 i915_gem_idle_work_handler);
5270 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5271
5272 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5273
5274 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
5275 dev_priv->num_fence_regs = 32;
5276 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5277 dev_priv->num_fence_regs = 16;
5278 else
5279 dev_priv->num_fence_regs = 8;
5280
5281 if (intel_vgpu_active(dev))
5282 dev_priv->num_fence_regs =
5283 I915_READ(vgtif_reg(avail_rs.fence_num));
5284
5285 /* Initialize fence registers to zero */
5286 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5287 i915_gem_restore_fences(dev);
5288
5289 i915_gem_detect_bit_6_swizzle(dev);
5290 init_waitqueue_head(&dev_priv->pending_flip_queue);
5291
5292 dev_priv->mm.interruptible = true;
5293
5294 i915_gem_shrinker_init(dev_priv);
5295
5296 mutex_init(&dev_priv->fb_tracking.lock);
5297}
5298
5299void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5300{
5301 struct drm_i915_file_private *file_priv = file->driver_priv;
5302
5303 /* Clean up our request list when the client is going away, so that
5304 * later retire_requests won't dereference our soon-to-be-gone
5305 * file_priv.
5306 */
5307 spin_lock(&file_priv->mm.lock);
5308 while (!list_empty(&file_priv->mm.request_list)) {
5309 struct drm_i915_gem_request *request;
5310
5311 request = list_first_entry(&file_priv->mm.request_list,
5312 struct drm_i915_gem_request,
5313 client_list);
5314 list_del(&request->client_list);
5315 request->file_priv = NULL;
5316 }
5317 spin_unlock(&file_priv->mm.lock);
5318
5319 if (!list_empty(&file_priv->rps.link)) {
5320 spin_lock(&to_i915(dev)->rps.client_lock);
5321 list_del(&file_priv->rps.link);
5322 spin_unlock(&to_i915(dev)->rps.client_lock);
5323 }
5324}
5325
5326int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5327{
5328 struct drm_i915_file_private *file_priv;
5329 int ret;
5330
5331 DRM_DEBUG_DRIVER("\n");
5332
5333 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5334 if (!file_priv)
5335 return -ENOMEM;
5336
5337 file->driver_priv = file_priv;
5338 file_priv->dev_priv = dev->dev_private;
5339 file_priv->file = file;
5340 INIT_LIST_HEAD(&file_priv->rps.link);
5341
5342 spin_lock_init(&file_priv->mm.lock);
5343 INIT_LIST_HEAD(&file_priv->mm.request_list);
5344
5345 ret = i915_gem_context_open(dev, file);
5346 if (ret)
5347 kfree(file_priv);
5348
5349 return ret;
5350}
5351
5352/**
5353 * i915_gem_track_fb - update frontbuffer tracking
5354 * old: current GEM buffer for the frontbuffer slots
5355 * new: new GEM buffer for the frontbuffer slots
5356 * frontbuffer_bits: bitmask of frontbuffer slots
5357 *
5358 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5359 * from @old and setting them in @new. Both @old and @new can be NULL.
5360 */
5361void i915_gem_track_fb(struct drm_i915_gem_object *old,
5362 struct drm_i915_gem_object *new,
5363 unsigned frontbuffer_bits)
5364{
5365 if (old) {
5366 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5367 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5368 old->frontbuffer_bits &= ~frontbuffer_bits;
5369 }
5370
5371 if (new) {
5372 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5373 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5374 new->frontbuffer_bits |= frontbuffer_bits;
5375 }
5376}
5377
5378/* All the new VM stuff */
5379unsigned long
5380i915_gem_obj_offset(struct drm_i915_gem_object *o,
5381 struct i915_address_space *vm)
5382{
5383 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5384 struct i915_vma *vma;
5385
5386 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5387
5388 list_for_each_entry(vma, &o->vma_list, vma_link) {
5389 if (i915_is_ggtt(vma->vm) &&
5390 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5391 continue;
5392 if (vma->vm == vm)
5393 return vma->node.start;
5394 }
5395
5396 WARN(1, "%s vma for this object not found.\n",
5397 i915_is_ggtt(vm) ? "global" : "ppgtt");
5398 return -1;
5399}
5400
5401unsigned long
5402i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5403 const struct i915_ggtt_view *view)
5404{
5405 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5406 struct i915_vma *vma;
5407
5408 list_for_each_entry(vma, &o->vma_list, vma_link)
5409 if (vma->vm == ggtt &&
5410 i915_ggtt_view_equal(&vma->ggtt_view, view))
5411 return vma->node.start;
5412
5413 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5414 return -1;
5415}
5416
5417bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5418 struct i915_address_space *vm)
5419{
5420 struct i915_vma *vma;
5421
5422 list_for_each_entry(vma, &o->vma_list, vma_link) {
5423 if (i915_is_ggtt(vma->vm) &&
5424 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5425 continue;
5426 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5427 return true;
5428 }
5429
5430 return false;
5431}
5432
5433bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5434 const struct i915_ggtt_view *view)
5435{
5436 struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5437 struct i915_vma *vma;
5438
5439 list_for_each_entry(vma, &o->vma_list, vma_link)
5440 if (vma->vm == ggtt &&
5441 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5442 drm_mm_node_allocated(&vma->node))
5443 return true;
5444
5445 return false;
5446}
5447
5448bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5449{
5450 struct i915_vma *vma;
5451
5452 list_for_each_entry(vma, &o->vma_list, vma_link)
5453 if (drm_mm_node_allocated(&vma->node))
5454 return true;
5455
5456 return false;
5457}
5458
5459unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5460 struct i915_address_space *vm)
5461{
5462 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5463 struct i915_vma *vma;
5464
5465 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5466
5467 BUG_ON(list_empty(&o->vma_list));
5468
5469 list_for_each_entry(vma, &o->vma_list, vma_link) {
5470 if (i915_is_ggtt(vma->vm) &&
5471 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5472 continue;
5473 if (vma->vm == vm)
5474 return vma->node.size;
5475 }
5476 return 0;
5477}
5478
5479bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5480{
5481 struct i915_vma *vma;
5482 list_for_each_entry(vma, &obj->vma_list, vma_link)
5483 if (vma->pin_count > 0)
5484 return true;
5485
5486 return false;
5487}
5488
This page took 0.043279 seconds and 5 git commands to generate.