agp: Use pci_resource_start() to get CPU physical address for BAR
[deliverable/linux.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
... / ...
CommitLineData
1/*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <drm/drmP.h>
26#include <drm/i915_drm.h>
27#include "i915_drv.h"
28#include "i915_trace.h"
29#include "intel_drv.h"
30
31#define GEN6_PPGTT_PD_ENTRIES 512
32#define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33typedef uint64_t gen8_gtt_pte_t;
34typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36/* PPGTT stuff */
37#define GEN6_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0xff0))
38#define HSW_GTT_ADDR_ENCODE(addr) ((addr) | (((addr) >> 28) & 0x7f0))
39
40#define GEN6_PDE_VALID (1 << 0)
41/* gen6+ has bit 11-4 for physical addr bit 39-32 */
42#define GEN6_PDE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
43
44#define GEN6_PTE_VALID (1 << 0)
45#define GEN6_PTE_UNCACHED (1 << 1)
46#define HSW_PTE_UNCACHED (0)
47#define GEN6_PTE_CACHE_LLC (2 << 1)
48#define GEN7_PTE_CACHE_L3_LLC (3 << 1)
49#define GEN6_PTE_ADDR_ENCODE(addr) GEN6_GTT_ADDR_ENCODE(addr)
50#define HSW_PTE_ADDR_ENCODE(addr) HSW_GTT_ADDR_ENCODE(addr)
51
52/* Cacheability Control is a 4-bit value. The low three bits are stored in *
53 * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54 */
55#define HSW_CACHEABILITY_CONTROL(bits) ((((bits) & 0x7) << 1) | \
56 (((bits) & 0x8) << (11 - 3)))
57#define HSW_WB_LLC_AGE3 HSW_CACHEABILITY_CONTROL(0x2)
58#define HSW_WB_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x3)
59#define HSW_WB_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0xb)
60#define HSW_WT_ELLC_LLC_AGE0 HSW_CACHEABILITY_CONTROL(0x6)
61
62#define GEN8_PTES_PER_PAGE (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
63#define GEN8_PDES_PER_PAGE (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
64#define GEN8_LEGACY_PDPS 4
65
66#define PPAT_UNCACHED_INDEX (_PAGE_PWT | _PAGE_PCD)
67#define PPAT_CACHED_PDE_INDEX 0 /* WB LLC */
68#define PPAT_CACHED_INDEX _PAGE_PAT /* WB LLCeLLC */
69#define PPAT_DISPLAY_ELLC_INDEX _PAGE_PCD /* WT eLLC */
70
71static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
72 enum i915_cache_level level,
73 bool valid)
74{
75 gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
76 pte |= addr;
77 if (level != I915_CACHE_NONE)
78 pte |= PPAT_CACHED_INDEX;
79 else
80 pte |= PPAT_UNCACHED_INDEX;
81 return pte;
82}
83
84static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
85 dma_addr_t addr,
86 enum i915_cache_level level)
87{
88 gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
89 pde |= addr;
90 if (level != I915_CACHE_NONE)
91 pde |= PPAT_CACHED_PDE_INDEX;
92 else
93 pde |= PPAT_UNCACHED_INDEX;
94 return pde;
95}
96
97static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
98 enum i915_cache_level level,
99 bool valid)
100{
101 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
102 pte |= GEN6_PTE_ADDR_ENCODE(addr);
103
104 switch (level) {
105 case I915_CACHE_L3_LLC:
106 case I915_CACHE_LLC:
107 pte |= GEN6_PTE_CACHE_LLC;
108 break;
109 case I915_CACHE_NONE:
110 pte |= GEN6_PTE_UNCACHED;
111 break;
112 default:
113 WARN_ON(1);
114 }
115
116 return pte;
117}
118
119static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
120 enum i915_cache_level level,
121 bool valid)
122{
123 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
124 pte |= GEN6_PTE_ADDR_ENCODE(addr);
125
126 switch (level) {
127 case I915_CACHE_L3_LLC:
128 pte |= GEN7_PTE_CACHE_L3_LLC;
129 break;
130 case I915_CACHE_LLC:
131 pte |= GEN6_PTE_CACHE_LLC;
132 break;
133 case I915_CACHE_NONE:
134 pte |= GEN6_PTE_UNCACHED;
135 break;
136 default:
137 WARN_ON(1);
138 }
139
140 return pte;
141}
142
143#define BYT_PTE_WRITEABLE (1 << 1)
144#define BYT_PTE_SNOOPED_BY_CPU_CACHES (1 << 2)
145
146static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
147 enum i915_cache_level level,
148 bool valid)
149{
150 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
151 pte |= GEN6_PTE_ADDR_ENCODE(addr);
152
153 /* Mark the page as writeable. Other platforms don't have a
154 * setting for read-only/writable, so this matches that behavior.
155 */
156 pte |= BYT_PTE_WRITEABLE;
157
158 if (level != I915_CACHE_NONE)
159 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
160
161 return pte;
162}
163
164static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
165 enum i915_cache_level level,
166 bool valid)
167{
168 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169 pte |= HSW_PTE_ADDR_ENCODE(addr);
170
171 if (level != I915_CACHE_NONE)
172 pte |= HSW_WB_LLC_AGE3;
173
174 return pte;
175}
176
177static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
178 enum i915_cache_level level,
179 bool valid)
180{
181 gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
182 pte |= HSW_PTE_ADDR_ENCODE(addr);
183
184 switch (level) {
185 case I915_CACHE_NONE:
186 break;
187 case I915_CACHE_WT:
188 pte |= HSW_WT_ELLC_LLC_AGE0;
189 break;
190 default:
191 pte |= HSW_WB_ELLC_LLC_AGE0;
192 break;
193 }
194
195 return pte;
196}
197
198/* Broadwell Page Directory Pointer Descriptors */
199static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
200 uint64_t val)
201{
202 int ret;
203
204 BUG_ON(entry >= 4);
205
206 ret = intel_ring_begin(ring, 6);
207 if (ret)
208 return ret;
209
210 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
211 intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
212 intel_ring_emit(ring, (u32)(val >> 32));
213 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
214 intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
215 intel_ring_emit(ring, (u32)(val));
216 intel_ring_advance(ring);
217
218 return 0;
219}
220
221static int gen8_ppgtt_enable(struct drm_device *dev)
222{
223 struct drm_i915_private *dev_priv = dev->dev_private;
224 struct intel_ring_buffer *ring;
225 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
226 int i, j, ret;
227
228 /* bit of a hack to find the actual last used pd */
229 int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
230
231 for_each_ring(ring, dev_priv, j) {
232 I915_WRITE(RING_MODE_GEN7(ring),
233 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
234 }
235
236 for (i = used_pd - 1; i >= 0; i--) {
237 dma_addr_t addr = ppgtt->pd_dma_addr[i];
238 for_each_ring(ring, dev_priv, j) {
239 ret = gen8_write_pdp(ring, i, addr);
240 if (ret)
241 return ret;
242 }
243 }
244 return 0;
245}
246
247static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
248 unsigned first_entry,
249 unsigned num_entries,
250 bool use_scratch)
251{
252 struct i915_hw_ppgtt *ppgtt =
253 container_of(vm, struct i915_hw_ppgtt, base);
254 gen8_gtt_pte_t *pt_vaddr, scratch_pte;
255 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
256 unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
257 unsigned last_pte, i;
258
259 scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
260 I915_CACHE_LLC, use_scratch);
261
262 while (num_entries) {
263 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
264
265 last_pte = first_pte + num_entries;
266 if (last_pte > GEN8_PTES_PER_PAGE)
267 last_pte = GEN8_PTES_PER_PAGE;
268
269 pt_vaddr = kmap_atomic(page_table);
270
271 for (i = first_pte; i < last_pte; i++)
272 pt_vaddr[i] = scratch_pte;
273
274 kunmap_atomic(pt_vaddr);
275
276 num_entries -= last_pte - first_pte;
277 first_pte = 0;
278 act_pt++;
279 }
280}
281
282static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
283 struct sg_table *pages,
284 unsigned first_entry,
285 enum i915_cache_level cache_level)
286{
287 struct i915_hw_ppgtt *ppgtt =
288 container_of(vm, struct i915_hw_ppgtt, base);
289 gen8_gtt_pte_t *pt_vaddr;
290 unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
291 unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
292 struct sg_page_iter sg_iter;
293
294 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
295 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
296 dma_addr_t page_addr;
297
298 page_addr = sg_dma_address(sg_iter.sg) +
299 (sg_iter.sg_pgoffset << PAGE_SHIFT);
300 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
301 true);
302 if (++act_pte == GEN8_PTES_PER_PAGE) {
303 kunmap_atomic(pt_vaddr);
304 act_pt++;
305 pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
306 act_pte = 0;
307
308 }
309 }
310 kunmap_atomic(pt_vaddr);
311}
312
313static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
314{
315 struct i915_hw_ppgtt *ppgtt =
316 container_of(vm, struct i915_hw_ppgtt, base);
317 int i, j;
318
319 for (i = 0; i < ppgtt->num_pd_pages ; i++) {
320 if (ppgtt->pd_dma_addr[i]) {
321 pci_unmap_page(ppgtt->base.dev->pdev,
322 ppgtt->pd_dma_addr[i],
323 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
324
325 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
326 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
327 if (addr)
328 pci_unmap_page(ppgtt->base.dev->pdev,
329 addr,
330 PAGE_SIZE,
331 PCI_DMA_BIDIRECTIONAL);
332
333 }
334 }
335 kfree(ppgtt->gen8_pt_dma_addr[i]);
336 }
337
338 __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
339 __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
340}
341
342/**
343 * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
344 * net effect resembling a 2-level page table in normal x86 terms. Each PDP
345 * represents 1GB of memory
346 * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
347 *
348 * TODO: Do something with the size parameter
349 **/
350static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
351{
352 struct page *pt_pages;
353 int i, j, ret = -ENOMEM;
354 const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
355 const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
356
357 if (size % (1<<30))
358 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
359
360 /* FIXME: split allocation into smaller pieces. For now we only ever do
361 * this once, but with full PPGTT, the multiple contiguous allocations
362 * will be bad.
363 */
364 ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
365 if (!ppgtt->pd_pages)
366 return -ENOMEM;
367
368 pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
369 if (!pt_pages) {
370 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
371 return -ENOMEM;
372 }
373
374 ppgtt->gen8_pt_pages = pt_pages;
375 ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
376 ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
377 ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
378 ppgtt->enable = gen8_ppgtt_enable;
379 ppgtt->base.clear_range = gen8_ppgtt_clear_range;
380 ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
381 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
382
383 BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
384
385 /*
386 * - Create a mapping for the page directories.
387 * - For each page directory:
388 * allocate space for page table mappings.
389 * map each page table
390 */
391 for (i = 0; i < max_pdp; i++) {
392 dma_addr_t temp;
393 temp = pci_map_page(ppgtt->base.dev->pdev,
394 &ppgtt->pd_pages[i], 0,
395 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
396 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
397 goto err_out;
398
399 ppgtt->pd_dma_addr[i] = temp;
400
401 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
402 if (!ppgtt->gen8_pt_dma_addr[i])
403 goto err_out;
404
405 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
406 struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
407 temp = pci_map_page(ppgtt->base.dev->pdev,
408 p, 0, PAGE_SIZE,
409 PCI_DMA_BIDIRECTIONAL);
410
411 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
412 goto err_out;
413
414 ppgtt->gen8_pt_dma_addr[i][j] = temp;
415 }
416 }
417
418 /* For now, the PPGTT helper functions all require that the PDEs are
419 * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
420 * will never need to touch the PDEs again */
421 for (i = 0; i < max_pdp; i++) {
422 gen8_ppgtt_pde_t *pd_vaddr;
423 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
424 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
425 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
426 pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
427 I915_CACHE_LLC);
428 }
429 kunmap_atomic(pd_vaddr);
430 }
431
432 ppgtt->base.clear_range(&ppgtt->base, 0,
433 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
434 true);
435
436 DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
437 ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
438 DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
439 ppgtt->num_pt_pages,
440 (ppgtt->num_pt_pages - num_pt_pages) +
441 size % (1<<30));
442 return 0;
443
444err_out:
445 ppgtt->base.cleanup(&ppgtt->base);
446 return ret;
447}
448
449static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
450{
451 struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
452 gen6_gtt_pte_t __iomem *pd_addr;
453 uint32_t pd_entry;
454 int i;
455
456 WARN_ON(ppgtt->pd_offset & 0x3f);
457 pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
458 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
459 for (i = 0; i < ppgtt->num_pd_entries; i++) {
460 dma_addr_t pt_addr;
461
462 pt_addr = ppgtt->pt_dma_addr[i];
463 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
464 pd_entry |= GEN6_PDE_VALID;
465
466 writel(pd_entry, pd_addr + i);
467 }
468 readl(pd_addr);
469}
470
471static int gen6_ppgtt_enable(struct drm_device *dev)
472{
473 drm_i915_private_t *dev_priv = dev->dev_private;
474 uint32_t pd_offset;
475 struct intel_ring_buffer *ring;
476 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
477 int i;
478
479 BUG_ON(ppgtt->pd_offset & 0x3f);
480
481 gen6_write_pdes(ppgtt);
482
483 pd_offset = ppgtt->pd_offset;
484 pd_offset /= 64; /* in cachelines, */
485 pd_offset <<= 16;
486
487 if (INTEL_INFO(dev)->gen == 6) {
488 uint32_t ecochk, gab_ctl, ecobits;
489
490 ecobits = I915_READ(GAC_ECO_BITS);
491 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
492 ECOBITS_PPGTT_CACHE64B);
493
494 gab_ctl = I915_READ(GAB_CTL);
495 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
496
497 ecochk = I915_READ(GAM_ECOCHK);
498 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
499 ECOCHK_PPGTT_CACHE64B);
500 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
501 } else if (INTEL_INFO(dev)->gen >= 7) {
502 uint32_t ecochk, ecobits;
503
504 ecobits = I915_READ(GAC_ECO_BITS);
505 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
506
507 ecochk = I915_READ(GAM_ECOCHK);
508 if (IS_HASWELL(dev)) {
509 ecochk |= ECOCHK_PPGTT_WB_HSW;
510 } else {
511 ecochk |= ECOCHK_PPGTT_LLC_IVB;
512 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
513 }
514 I915_WRITE(GAM_ECOCHK, ecochk);
515 /* GFX_MODE is per-ring on gen7+ */
516 }
517
518 for_each_ring(ring, dev_priv, i) {
519 if (INTEL_INFO(dev)->gen >= 7)
520 I915_WRITE(RING_MODE_GEN7(ring),
521 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
522
523 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
524 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
525 }
526 return 0;
527}
528
529/* PPGTT support for Sandybdrige/Gen6 and later */
530static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
531 unsigned first_entry,
532 unsigned num_entries,
533 bool use_scratch)
534{
535 struct i915_hw_ppgtt *ppgtt =
536 container_of(vm, struct i915_hw_ppgtt, base);
537 gen6_gtt_pte_t *pt_vaddr, scratch_pte;
538 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
539 unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
540 unsigned last_pte, i;
541
542 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
543
544 while (num_entries) {
545 last_pte = first_pte + num_entries;
546 if (last_pte > I915_PPGTT_PT_ENTRIES)
547 last_pte = I915_PPGTT_PT_ENTRIES;
548
549 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
550
551 for (i = first_pte; i < last_pte; i++)
552 pt_vaddr[i] = scratch_pte;
553
554 kunmap_atomic(pt_vaddr);
555
556 num_entries -= last_pte - first_pte;
557 first_pte = 0;
558 act_pt++;
559 }
560}
561
562static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
563 struct sg_table *pages,
564 unsigned first_entry,
565 enum i915_cache_level cache_level)
566{
567 struct i915_hw_ppgtt *ppgtt =
568 container_of(vm, struct i915_hw_ppgtt, base);
569 gen6_gtt_pte_t *pt_vaddr;
570 unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
571 unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
572 struct sg_page_iter sg_iter;
573
574 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
575 for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
576 dma_addr_t page_addr;
577
578 page_addr = sg_page_iter_dma_address(&sg_iter);
579 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
580 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
581 kunmap_atomic(pt_vaddr);
582 act_pt++;
583 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
584 act_pte = 0;
585
586 }
587 }
588 kunmap_atomic(pt_vaddr);
589}
590
591static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
592{
593 struct i915_hw_ppgtt *ppgtt =
594 container_of(vm, struct i915_hw_ppgtt, base);
595 int i;
596
597 drm_mm_takedown(&ppgtt->base.mm);
598
599 if (ppgtt->pt_dma_addr) {
600 for (i = 0; i < ppgtt->num_pd_entries; i++)
601 pci_unmap_page(ppgtt->base.dev->pdev,
602 ppgtt->pt_dma_addr[i],
603 4096, PCI_DMA_BIDIRECTIONAL);
604 }
605
606 kfree(ppgtt->pt_dma_addr);
607 for (i = 0; i < ppgtt->num_pd_entries; i++)
608 __free_page(ppgtt->pt_pages[i]);
609 kfree(ppgtt->pt_pages);
610 kfree(ppgtt);
611}
612
613static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
614{
615 struct drm_device *dev = ppgtt->base.dev;
616 struct drm_i915_private *dev_priv = dev->dev_private;
617 unsigned first_pd_entry_in_global_pt;
618 int i;
619 int ret = -ENOMEM;
620
621 /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
622 * entries. For aliasing ppgtt support we just steal them at the end for
623 * now. */
624 first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
625
626 ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
627 ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
628 ppgtt->enable = gen6_ppgtt_enable;
629 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
630 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
631 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
632 ppgtt->base.scratch = dev_priv->gtt.base.scratch;
633 ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
634 GFP_KERNEL);
635 if (!ppgtt->pt_pages)
636 return -ENOMEM;
637
638 for (i = 0; i < ppgtt->num_pd_entries; i++) {
639 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
640 if (!ppgtt->pt_pages[i])
641 goto err_pt_alloc;
642 }
643
644 ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
645 GFP_KERNEL);
646 if (!ppgtt->pt_dma_addr)
647 goto err_pt_alloc;
648
649 for (i = 0; i < ppgtt->num_pd_entries; i++) {
650 dma_addr_t pt_addr;
651
652 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
653 PCI_DMA_BIDIRECTIONAL);
654
655 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
656 ret = -EIO;
657 goto err_pd_pin;
658
659 }
660 ppgtt->pt_dma_addr[i] = pt_addr;
661 }
662
663 ppgtt->base.clear_range(&ppgtt->base, 0,
664 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
665
666 ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
667
668 return 0;
669
670err_pd_pin:
671 if (ppgtt->pt_dma_addr) {
672 for (i--; i >= 0; i--)
673 pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
674 4096, PCI_DMA_BIDIRECTIONAL);
675 }
676err_pt_alloc:
677 kfree(ppgtt->pt_dma_addr);
678 for (i = 0; i < ppgtt->num_pd_entries; i++) {
679 if (ppgtt->pt_pages[i])
680 __free_page(ppgtt->pt_pages[i]);
681 }
682 kfree(ppgtt->pt_pages);
683
684 return ret;
685}
686
687static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
688{
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 struct i915_hw_ppgtt *ppgtt;
691 int ret;
692
693 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
694 if (!ppgtt)
695 return -ENOMEM;
696
697 ppgtt->base.dev = dev;
698
699 if (INTEL_INFO(dev)->gen < 8)
700 ret = gen6_ppgtt_init(ppgtt);
701 else if (IS_GEN8(dev))
702 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
703 else
704 BUG();
705
706 if (ret)
707 kfree(ppgtt);
708 else {
709 dev_priv->mm.aliasing_ppgtt = ppgtt;
710 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
711 ppgtt->base.total);
712 }
713
714 return ret;
715}
716
717void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
718{
719 struct drm_i915_private *dev_priv = dev->dev_private;
720 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
721
722 if (!ppgtt)
723 return;
724
725 ppgtt->base.cleanup(&ppgtt->base);
726 dev_priv->mm.aliasing_ppgtt = NULL;
727}
728
729void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
730 struct drm_i915_gem_object *obj,
731 enum i915_cache_level cache_level)
732{
733 ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
734 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
735 cache_level);
736}
737
738void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
739 struct drm_i915_gem_object *obj)
740{
741 ppgtt->base.clear_range(&ppgtt->base,
742 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
743 obj->base.size >> PAGE_SHIFT,
744 true);
745}
746
747extern int intel_iommu_gfx_mapped;
748/* Certain Gen5 chipsets require require idling the GPU before
749 * unmapping anything from the GTT when VT-d is enabled.
750 */
751static inline bool needs_idle_maps(struct drm_device *dev)
752{
753#ifdef CONFIG_INTEL_IOMMU
754 /* Query intel_iommu to see if we need the workaround. Presumably that
755 * was loaded first.
756 */
757 if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
758 return true;
759#endif
760 return false;
761}
762
763static bool do_idling(struct drm_i915_private *dev_priv)
764{
765 bool ret = dev_priv->mm.interruptible;
766
767 if (unlikely(dev_priv->gtt.do_idle_maps)) {
768 dev_priv->mm.interruptible = false;
769 if (i915_gpu_idle(dev_priv->dev)) {
770 DRM_ERROR("Couldn't idle GPU\n");
771 /* Wait a bit, in hopes it avoids the hang */
772 udelay(10);
773 }
774 }
775
776 return ret;
777}
778
779static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
780{
781 if (unlikely(dev_priv->gtt.do_idle_maps))
782 dev_priv->mm.interruptible = interruptible;
783}
784
785void i915_check_and_clear_faults(struct drm_device *dev)
786{
787 struct drm_i915_private *dev_priv = dev->dev_private;
788 struct intel_ring_buffer *ring;
789 int i;
790
791 if (INTEL_INFO(dev)->gen < 6)
792 return;
793
794 for_each_ring(ring, dev_priv, i) {
795 u32 fault_reg;
796 fault_reg = I915_READ(RING_FAULT_REG(ring));
797 if (fault_reg & RING_FAULT_VALID) {
798 DRM_DEBUG_DRIVER("Unexpected fault\n"
799 "\tAddr: 0x%08lx\\n"
800 "\tAddress space: %s\n"
801 "\tSource ID: %d\n"
802 "\tType: %d\n",
803 fault_reg & PAGE_MASK,
804 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
805 RING_FAULT_SRCID(fault_reg),
806 RING_FAULT_FAULT_TYPE(fault_reg));
807 I915_WRITE(RING_FAULT_REG(ring),
808 fault_reg & ~RING_FAULT_VALID);
809 }
810 }
811 POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
812}
813
814void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
815{
816 struct drm_i915_private *dev_priv = dev->dev_private;
817
818 /* Don't bother messing with faults pre GEN6 as we have little
819 * documentation supporting that it's a good idea.
820 */
821 if (INTEL_INFO(dev)->gen < 6)
822 return;
823
824 i915_check_and_clear_faults(dev);
825
826 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
827 dev_priv->gtt.base.start / PAGE_SIZE,
828 dev_priv->gtt.base.total / PAGE_SIZE,
829 false);
830}
831
832void i915_gem_restore_gtt_mappings(struct drm_device *dev)
833{
834 struct drm_i915_private *dev_priv = dev->dev_private;
835 struct drm_i915_gem_object *obj;
836
837 i915_check_and_clear_faults(dev);
838
839 /* First fill our portion of the GTT with scratch pages */
840 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
841 dev_priv->gtt.base.start / PAGE_SIZE,
842 dev_priv->gtt.base.total / PAGE_SIZE,
843 true);
844
845 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
846 i915_gem_clflush_object(obj, obj->pin_display);
847 i915_gem_gtt_bind_object(obj, obj->cache_level);
848 }
849
850 i915_gem_chipset_flush(dev);
851}
852
853int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
854{
855 if (obj->has_dma_mapping)
856 return 0;
857
858 if (!dma_map_sg(&obj->base.dev->pdev->dev,
859 obj->pages->sgl, obj->pages->nents,
860 PCI_DMA_BIDIRECTIONAL))
861 return -ENOSPC;
862
863 return 0;
864}
865
866static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
867{
868#ifdef writeq
869 writeq(pte, addr);
870#else
871 iowrite32((u32)pte, addr);
872 iowrite32(pte >> 32, addr + 4);
873#endif
874}
875
876static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
877 struct sg_table *st,
878 unsigned int first_entry,
879 enum i915_cache_level level)
880{
881 struct drm_i915_private *dev_priv = vm->dev->dev_private;
882 gen8_gtt_pte_t __iomem *gtt_entries =
883 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
884 int i = 0;
885 struct sg_page_iter sg_iter;
886 dma_addr_t addr;
887
888 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
889 addr = sg_dma_address(sg_iter.sg) +
890 (sg_iter.sg_pgoffset << PAGE_SHIFT);
891 gen8_set_pte(&gtt_entries[i],
892 gen8_pte_encode(addr, level, true));
893 i++;
894 }
895
896 /*
897 * XXX: This serves as a posting read to make sure that the PTE has
898 * actually been updated. There is some concern that even though
899 * registers and PTEs are within the same BAR that they are potentially
900 * of NUMA access patterns. Therefore, even with the way we assume
901 * hardware should work, we must keep this posting read for paranoia.
902 */
903 if (i != 0)
904 WARN_ON(readq(&gtt_entries[i-1])
905 != gen8_pte_encode(addr, level, true));
906
907#if 0 /* TODO: Still needed on GEN8? */
908 /* This next bit makes the above posting read even more important. We
909 * want to flush the TLBs only after we're certain all the PTE updates
910 * have finished.
911 */
912 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
913 POSTING_READ(GFX_FLSH_CNTL_GEN6);
914#endif
915}
916
917/*
918 * Binds an object into the global gtt with the specified cache level. The object
919 * will be accessible to the GPU via commands whose operands reference offsets
920 * within the global GTT as well as accessible by the GPU through the GMADR
921 * mapped BAR (dev_priv->mm.gtt->gtt).
922 */
923static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
924 struct sg_table *st,
925 unsigned int first_entry,
926 enum i915_cache_level level)
927{
928 struct drm_i915_private *dev_priv = vm->dev->dev_private;
929 gen6_gtt_pte_t __iomem *gtt_entries =
930 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
931 int i = 0;
932 struct sg_page_iter sg_iter;
933 dma_addr_t addr;
934
935 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
936 addr = sg_page_iter_dma_address(&sg_iter);
937 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
938 i++;
939 }
940
941 /* XXX: This serves as a posting read to make sure that the PTE has
942 * actually been updated. There is some concern that even though
943 * registers and PTEs are within the same BAR that they are potentially
944 * of NUMA access patterns. Therefore, even with the way we assume
945 * hardware should work, we must keep this posting read for paranoia.
946 */
947 if (i != 0)
948 WARN_ON(readl(&gtt_entries[i-1]) !=
949 vm->pte_encode(addr, level, true));
950
951 /* This next bit makes the above posting read even more important. We
952 * want to flush the TLBs only after we're certain all the PTE updates
953 * have finished.
954 */
955 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
956 POSTING_READ(GFX_FLSH_CNTL_GEN6);
957}
958
959static void gen8_ggtt_clear_range(struct i915_address_space *vm,
960 unsigned int first_entry,
961 unsigned int num_entries,
962 bool use_scratch)
963{
964 struct drm_i915_private *dev_priv = vm->dev->dev_private;
965 gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
966 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
967 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
968 int i;
969
970 if (WARN(num_entries > max_entries,
971 "First entry = %d; Num entries = %d (max=%d)\n",
972 first_entry, num_entries, max_entries))
973 num_entries = max_entries;
974
975 scratch_pte = gen8_pte_encode(vm->scratch.addr,
976 I915_CACHE_LLC,
977 use_scratch);
978 for (i = 0; i < num_entries; i++)
979 gen8_set_pte(&gtt_base[i], scratch_pte);
980 readl(gtt_base);
981}
982
983static void gen6_ggtt_clear_range(struct i915_address_space *vm,
984 unsigned int first_entry,
985 unsigned int num_entries,
986 bool use_scratch)
987{
988 struct drm_i915_private *dev_priv = vm->dev->dev_private;
989 gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
990 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
991 const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
992 int i;
993
994 if (WARN(num_entries > max_entries,
995 "First entry = %d; Num entries = %d (max=%d)\n",
996 first_entry, num_entries, max_entries))
997 num_entries = max_entries;
998
999 scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1000
1001 for (i = 0; i < num_entries; i++)
1002 iowrite32(scratch_pte, &gtt_base[i]);
1003 readl(gtt_base);
1004}
1005
1006static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1007 struct sg_table *st,
1008 unsigned int pg_start,
1009 enum i915_cache_level cache_level)
1010{
1011 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1012 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1013
1014 intel_gtt_insert_sg_entries(st, pg_start, flags);
1015
1016}
1017
1018static void i915_ggtt_clear_range(struct i915_address_space *vm,
1019 unsigned int first_entry,
1020 unsigned int num_entries,
1021 bool unused)
1022{
1023 intel_gtt_clear_range(first_entry, num_entries);
1024}
1025
1026
1027void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1028 enum i915_cache_level cache_level)
1029{
1030 struct drm_device *dev = obj->base.dev;
1031 struct drm_i915_private *dev_priv = dev->dev_private;
1032 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1033
1034 dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1035 entry,
1036 cache_level);
1037
1038 obj->has_global_gtt_mapping = 1;
1039}
1040
1041void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1042{
1043 struct drm_device *dev = obj->base.dev;
1044 struct drm_i915_private *dev_priv = dev->dev_private;
1045 const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1046
1047 dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1048 entry,
1049 obj->base.size >> PAGE_SHIFT,
1050 true);
1051
1052 obj->has_global_gtt_mapping = 0;
1053}
1054
1055void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1056{
1057 struct drm_device *dev = obj->base.dev;
1058 struct drm_i915_private *dev_priv = dev->dev_private;
1059 bool interruptible;
1060
1061 interruptible = do_idling(dev_priv);
1062
1063 if (!obj->has_dma_mapping)
1064 dma_unmap_sg(&dev->pdev->dev,
1065 obj->pages->sgl, obj->pages->nents,
1066 PCI_DMA_BIDIRECTIONAL);
1067
1068 undo_idling(dev_priv, interruptible);
1069}
1070
1071static void i915_gtt_color_adjust(struct drm_mm_node *node,
1072 unsigned long color,
1073 unsigned long *start,
1074 unsigned long *end)
1075{
1076 if (node->color != color)
1077 *start += 4096;
1078
1079 if (!list_empty(&node->node_list)) {
1080 node = list_entry(node->node_list.next,
1081 struct drm_mm_node,
1082 node_list);
1083 if (node->allocated && node->color != color)
1084 *end -= 4096;
1085 }
1086}
1087
1088void i915_gem_setup_global_gtt(struct drm_device *dev,
1089 unsigned long start,
1090 unsigned long mappable_end,
1091 unsigned long end)
1092{
1093 /* Let GEM Manage all of the aperture.
1094 *
1095 * However, leave one page at the end still bound to the scratch page.
1096 * There are a number of places where the hardware apparently prefetches
1097 * past the end of the object, and we've seen multiple hangs with the
1098 * GPU head pointer stuck in a batchbuffer bound at the last page of the
1099 * aperture. One page should be enough to keep any prefetching inside
1100 * of the aperture.
1101 */
1102 struct drm_i915_private *dev_priv = dev->dev_private;
1103 struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1104 struct drm_mm_node *entry;
1105 struct drm_i915_gem_object *obj;
1106 unsigned long hole_start, hole_end;
1107
1108 BUG_ON(mappable_end > end);
1109
1110 /* Subtract the guard page ... */
1111 drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1112 if (!HAS_LLC(dev))
1113 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1114
1115 /* Mark any preallocated objects as occupied */
1116 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1117 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1118 int ret;
1119 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1120 i915_gem_obj_ggtt_offset(obj), obj->base.size);
1121
1122 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1123 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1124 if (ret)
1125 DRM_DEBUG_KMS("Reservation failed\n");
1126 obj->has_global_gtt_mapping = 1;
1127 list_add(&vma->vma_link, &obj->vma_list);
1128 }
1129
1130 dev_priv->gtt.base.start = start;
1131 dev_priv->gtt.base.total = end - start;
1132
1133 /* Clear any non-preallocated blocks */
1134 drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1135 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1136 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1137 hole_start, hole_end);
1138 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1139 }
1140
1141 /* And finally clear the reserved guard page */
1142 ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1143}
1144
1145static bool
1146intel_enable_ppgtt(struct drm_device *dev)
1147{
1148 if (i915_enable_ppgtt >= 0)
1149 return i915_enable_ppgtt;
1150
1151#ifdef CONFIG_INTEL_IOMMU
1152 /* Disable ppgtt on SNB if VT-d is on. */
1153 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1154 return false;
1155#endif
1156
1157 return true;
1158}
1159
1160void i915_gem_init_global_gtt(struct drm_device *dev)
1161{
1162 struct drm_i915_private *dev_priv = dev->dev_private;
1163 unsigned long gtt_size, mappable_size;
1164
1165 gtt_size = dev_priv->gtt.base.total;
1166 mappable_size = dev_priv->gtt.mappable_end;
1167
1168 if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1169 int ret;
1170
1171 if (INTEL_INFO(dev)->gen <= 7) {
1172 /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1173 * aperture accordingly when using aliasing ppgtt. */
1174 gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1175 }
1176
1177 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1178
1179 ret = i915_gem_init_aliasing_ppgtt(dev);
1180 if (!ret)
1181 return;
1182
1183 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1184 drm_mm_takedown(&dev_priv->gtt.base.mm);
1185 if (INTEL_INFO(dev)->gen < 8)
1186 gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1187 }
1188 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1189}
1190
1191static int setup_scratch_page(struct drm_device *dev)
1192{
1193 struct drm_i915_private *dev_priv = dev->dev_private;
1194 struct page *page;
1195 dma_addr_t dma_addr;
1196
1197 page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1198 if (page == NULL)
1199 return -ENOMEM;
1200 get_page(page);
1201 set_pages_uc(page, 1);
1202
1203#ifdef CONFIG_INTEL_IOMMU
1204 dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1205 PCI_DMA_BIDIRECTIONAL);
1206 if (pci_dma_mapping_error(dev->pdev, dma_addr))
1207 return -EINVAL;
1208#else
1209 dma_addr = page_to_phys(page);
1210#endif
1211 dev_priv->gtt.base.scratch.page = page;
1212 dev_priv->gtt.base.scratch.addr = dma_addr;
1213
1214 return 0;
1215}
1216
1217static void teardown_scratch_page(struct drm_device *dev)
1218{
1219 struct drm_i915_private *dev_priv = dev->dev_private;
1220 struct page *page = dev_priv->gtt.base.scratch.page;
1221
1222 set_pages_wb(page, 1);
1223 pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1224 PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1225 put_page(page);
1226 __free_page(page);
1227}
1228
1229static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1230{
1231 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1232 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1233 return snb_gmch_ctl << 20;
1234}
1235
1236static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1237{
1238 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1239 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1240 if (bdw_gmch_ctl)
1241 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1242 return bdw_gmch_ctl << 20;
1243}
1244
1245static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1246{
1247 snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1248 snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1249 return snb_gmch_ctl << 25; /* 32 MB units */
1250}
1251
1252static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1253{
1254 bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1255 bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1256 return bdw_gmch_ctl << 25; /* 32 MB units */
1257}
1258
1259static int ggtt_probe_common(struct drm_device *dev,
1260 size_t gtt_size)
1261{
1262 struct drm_i915_private *dev_priv = dev->dev_private;
1263 phys_addr_t gtt_bus_addr;
1264 int ret;
1265
1266 /* For Modern GENs the PTEs and register space are split in the BAR */
1267 gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1268 (pci_resource_len(dev->pdev, 0) / 2);
1269
1270 dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1271 if (!dev_priv->gtt.gsm) {
1272 DRM_ERROR("Failed to map the gtt page table\n");
1273 return -ENOMEM;
1274 }
1275
1276 ret = setup_scratch_page(dev);
1277 if (ret) {
1278 DRM_ERROR("Scratch setup failed\n");
1279 /* iounmap will also get called at remove, but meh */
1280 iounmap(dev_priv->gtt.gsm);
1281 }
1282
1283 return ret;
1284}
1285
1286/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1287 * bits. When using advanced contexts each context stores its own PAT, but
1288 * writing this data shouldn't be harmful even in those cases. */
1289static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1290{
1291#define GEN8_PPAT_UC (0<<0)
1292#define GEN8_PPAT_WC (1<<0)
1293#define GEN8_PPAT_WT (2<<0)
1294#define GEN8_PPAT_WB (3<<0)
1295#define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1296/* FIXME(BDW): Bspec is completely confused about cache control bits. */
1297#define GEN8_PPAT_LLC (1<<2)
1298#define GEN8_PPAT_LLCELLC (2<<2)
1299#define GEN8_PPAT_LLCeLLC (3<<2)
1300#define GEN8_PPAT_AGE(x) (x<<4)
1301#define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1302 uint64_t pat;
1303
1304 pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
1305 GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1306 GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1307 GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
1308 GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1309 GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1310 GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1311 GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1312
1313 /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1314 * write would work. */
1315 I915_WRITE(GEN8_PRIVATE_PAT, pat);
1316 I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1317}
1318
1319static int gen8_gmch_probe(struct drm_device *dev,
1320 size_t *gtt_total,
1321 size_t *stolen,
1322 phys_addr_t *mappable_base,
1323 unsigned long *mappable_end)
1324{
1325 struct drm_i915_private *dev_priv = dev->dev_private;
1326 unsigned int gtt_size;
1327 u16 snb_gmch_ctl;
1328 int ret;
1329
1330 /* TODO: We're not aware of mappable constraints on gen8 yet */
1331 *mappable_base = pci_resource_start(dev->pdev, 2);
1332 *mappable_end = pci_resource_len(dev->pdev, 2);
1333
1334 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1335 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1336
1337 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1338
1339 *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1340
1341 gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1342 *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1343
1344 gen8_setup_private_ppat(dev_priv);
1345
1346 ret = ggtt_probe_common(dev, gtt_size);
1347
1348 dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1349 dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1350
1351 return ret;
1352}
1353
1354static int gen6_gmch_probe(struct drm_device *dev,
1355 size_t *gtt_total,
1356 size_t *stolen,
1357 phys_addr_t *mappable_base,
1358 unsigned long *mappable_end)
1359{
1360 struct drm_i915_private *dev_priv = dev->dev_private;
1361 unsigned int gtt_size;
1362 u16 snb_gmch_ctl;
1363 int ret;
1364
1365 *mappable_base = pci_resource_start(dev->pdev, 2);
1366 *mappable_end = pci_resource_len(dev->pdev, 2);
1367
1368 /* 64/512MB is the current min/max we actually know of, but this is just
1369 * a coarse sanity check.
1370 */
1371 if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1372 DRM_ERROR("Unknown GMADR size (%lx)\n",
1373 dev_priv->gtt.mappable_end);
1374 return -ENXIO;
1375 }
1376
1377 if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1378 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1379 pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1380
1381 *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1382
1383 gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1384 *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1385
1386 ret = ggtt_probe_common(dev, gtt_size);
1387
1388 dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1389 dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1390
1391 return ret;
1392}
1393
1394static void gen6_gmch_remove(struct i915_address_space *vm)
1395{
1396
1397 struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1398 iounmap(gtt->gsm);
1399 teardown_scratch_page(vm->dev);
1400}
1401
1402static int i915_gmch_probe(struct drm_device *dev,
1403 size_t *gtt_total,
1404 size_t *stolen,
1405 phys_addr_t *mappable_base,
1406 unsigned long *mappable_end)
1407{
1408 struct drm_i915_private *dev_priv = dev->dev_private;
1409 int ret;
1410
1411 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1412 if (!ret) {
1413 DRM_ERROR("failed to set up gmch\n");
1414 return -EIO;
1415 }
1416
1417 intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1418
1419 dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1420 dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1421 dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1422
1423 return 0;
1424}
1425
1426static void i915_gmch_remove(struct i915_address_space *vm)
1427{
1428 intel_gmch_remove();
1429}
1430
1431int i915_gem_gtt_init(struct drm_device *dev)
1432{
1433 struct drm_i915_private *dev_priv = dev->dev_private;
1434 struct i915_gtt *gtt = &dev_priv->gtt;
1435 int ret;
1436
1437 if (INTEL_INFO(dev)->gen <= 5) {
1438 gtt->gtt_probe = i915_gmch_probe;
1439 gtt->base.cleanup = i915_gmch_remove;
1440 } else if (INTEL_INFO(dev)->gen < 8) {
1441 gtt->gtt_probe = gen6_gmch_probe;
1442 gtt->base.cleanup = gen6_gmch_remove;
1443 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1444 gtt->base.pte_encode = iris_pte_encode;
1445 else if (IS_HASWELL(dev))
1446 gtt->base.pte_encode = hsw_pte_encode;
1447 else if (IS_VALLEYVIEW(dev))
1448 gtt->base.pte_encode = byt_pte_encode;
1449 else if (INTEL_INFO(dev)->gen >= 7)
1450 gtt->base.pte_encode = ivb_pte_encode;
1451 else
1452 gtt->base.pte_encode = snb_pte_encode;
1453 } else {
1454 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1455 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1456 }
1457
1458 ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1459 &gtt->mappable_base, &gtt->mappable_end);
1460 if (ret)
1461 return ret;
1462
1463 gtt->base.dev = dev;
1464
1465 /* GMADR is the PCI mmio aperture into the global GTT. */
1466 DRM_INFO("Memory usable by graphics device = %zdM\n",
1467 gtt->base.total >> 20);
1468 DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1469 DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1470
1471 return 0;
1472}
This page took 0.029198 seconds and 5 git commands to generate.