drm/i915: Ensure crtc_state backpointer is always initialized
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
... / ...
CommitLineData
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/dmi.h>
28#include <linux/module.h>
29#include <linux/input.h>
30#include <linux/i2c.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/vgaarb.h>
34#include <drm/drm_edid.h>
35#include <drm/drmP.h>
36#include "intel_drv.h"
37#include <drm/i915_drm.h>
38#include "i915_drv.h"
39#include "i915_trace.h"
40#include <drm/drm_atomic_helper.h>
41#include <drm/drm_dp_helper.h>
42#include <drm/drm_crtc_helper.h>
43#include <drm/drm_plane_helper.h>
44#include <drm/drm_rect.h>
45#include <linux/dma_remapping.h>
46
47/* Primary plane formats supported by all gen */
48#define COMMON_PRIMARY_FORMATS \
49 DRM_FORMAT_C8, \
50 DRM_FORMAT_RGB565, \
51 DRM_FORMAT_XRGB8888, \
52 DRM_FORMAT_ARGB8888
53
54/* Primary plane formats for gen <= 3 */
55static const uint32_t intel_primary_formats_gen2[] = {
56 COMMON_PRIMARY_FORMATS,
57 DRM_FORMAT_XRGB1555,
58 DRM_FORMAT_ARGB1555,
59};
60
61/* Primary plane formats for gen >= 4 */
62static const uint32_t intel_primary_formats_gen4[] = {
63 COMMON_PRIMARY_FORMATS, \
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_ABGR8888,
66 DRM_FORMAT_XRGB2101010,
67 DRM_FORMAT_ARGB2101010,
68 DRM_FORMAT_XBGR2101010,
69 DRM_FORMAT_ABGR2101010,
70};
71
72/* Cursor formats */
73static const uint32_t intel_cursor_formats[] = {
74 DRM_FORMAT_ARGB8888,
75};
76
77static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
78
79static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
80 struct intel_crtc_state *pipe_config);
81static void ironlake_pch_clock_get(struct intel_crtc *crtc,
82 struct intel_crtc_state *pipe_config);
83
84static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
85 int x, int y, struct drm_framebuffer *old_fb);
86static int intel_framebuffer_init(struct drm_device *dev,
87 struct intel_framebuffer *ifb,
88 struct drm_mode_fb_cmd2 *mode_cmd,
89 struct drm_i915_gem_object *obj);
90static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
91static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
92static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
93 struct intel_link_m_n *m_n,
94 struct intel_link_m_n *m2_n2);
95static void ironlake_set_pipeconf(struct drm_crtc *crtc);
96static void haswell_set_pipeconf(struct drm_crtc *crtc);
97static void intel_set_pipe_csc(struct drm_crtc *crtc);
98static void vlv_prepare_pll(struct intel_crtc *crtc,
99 const struct intel_crtc_state *pipe_config);
100static void chv_prepare_pll(struct intel_crtc *crtc,
101 const struct intel_crtc_state *pipe_config);
102static void intel_begin_crtc_commit(struct drm_crtc *crtc);
103static void intel_finish_crtc_commit(struct drm_crtc *crtc);
104
105static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
106{
107 if (!connector->mst_port)
108 return connector->encoder;
109 else
110 return &connector->mst_port->mst_encoders[pipe]->base;
111}
112
113typedef struct {
114 int min, max;
115} intel_range_t;
116
117typedef struct {
118 int dot_limit;
119 int p2_slow, p2_fast;
120} intel_p2_t;
121
122typedef struct intel_limit intel_limit_t;
123struct intel_limit {
124 intel_range_t dot, vco, n, m, m1, m2, p, p1;
125 intel_p2_t p2;
126};
127
128int
129intel_pch_rawclk(struct drm_device *dev)
130{
131 struct drm_i915_private *dev_priv = dev->dev_private;
132
133 WARN_ON(!HAS_PCH_SPLIT(dev));
134
135 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136}
137
138static inline u32 /* units of 100MHz */
139intel_fdi_link_freq(struct drm_device *dev)
140{
141 if (IS_GEN5(dev)) {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144 } else
145 return 27;
146}
147
148static const intel_limit_t intel_limits_i8xx_dac = {
149 .dot = { .min = 25000, .max = 350000 },
150 .vco = { .min = 908000, .max = 1512000 },
151 .n = { .min = 2, .max = 16 },
152 .m = { .min = 96, .max = 140 },
153 .m1 = { .min = 18, .max = 26 },
154 .m2 = { .min = 6, .max = 16 },
155 .p = { .min = 4, .max = 128 },
156 .p1 = { .min = 2, .max = 33 },
157 .p2 = { .dot_limit = 165000,
158 .p2_slow = 4, .p2_fast = 2 },
159};
160
161static const intel_limit_t intel_limits_i8xx_dvo = {
162 .dot = { .min = 25000, .max = 350000 },
163 .vco = { .min = 908000, .max = 1512000 },
164 .n = { .min = 2, .max = 16 },
165 .m = { .min = 96, .max = 140 },
166 .m1 = { .min = 18, .max = 26 },
167 .m2 = { .min = 6, .max = 16 },
168 .p = { .min = 4, .max = 128 },
169 .p1 = { .min = 2, .max = 33 },
170 .p2 = { .dot_limit = 165000,
171 .p2_slow = 4, .p2_fast = 4 },
172};
173
174static const intel_limit_t intel_limits_i8xx_lvds = {
175 .dot = { .min = 25000, .max = 350000 },
176 .vco = { .min = 908000, .max = 1512000 },
177 .n = { .min = 2, .max = 16 },
178 .m = { .min = 96, .max = 140 },
179 .m1 = { .min = 18, .max = 26 },
180 .m2 = { .min = 6, .max = 16 },
181 .p = { .min = 4, .max = 128 },
182 .p1 = { .min = 1, .max = 6 },
183 .p2 = { .dot_limit = 165000,
184 .p2_slow = 14, .p2_fast = 7 },
185};
186
187static const intel_limit_t intel_limits_i9xx_sdvo = {
188 .dot = { .min = 20000, .max = 400000 },
189 .vco = { .min = 1400000, .max = 2800000 },
190 .n = { .min = 1, .max = 6 },
191 .m = { .min = 70, .max = 120 },
192 .m1 = { .min = 8, .max = 18 },
193 .m2 = { .min = 3, .max = 7 },
194 .p = { .min = 5, .max = 80 },
195 .p1 = { .min = 1, .max = 8 },
196 .p2 = { .dot_limit = 200000,
197 .p2_slow = 10, .p2_fast = 5 },
198};
199
200static const intel_limit_t intel_limits_i9xx_lvds = {
201 .dot = { .min = 20000, .max = 400000 },
202 .vco = { .min = 1400000, .max = 2800000 },
203 .n = { .min = 1, .max = 6 },
204 .m = { .min = 70, .max = 120 },
205 .m1 = { .min = 8, .max = 18 },
206 .m2 = { .min = 3, .max = 7 },
207 .p = { .min = 7, .max = 98 },
208 .p1 = { .min = 1, .max = 8 },
209 .p2 = { .dot_limit = 112000,
210 .p2_slow = 14, .p2_fast = 7 },
211};
212
213
214static const intel_limit_t intel_limits_g4x_sdvo = {
215 .dot = { .min = 25000, .max = 270000 },
216 .vco = { .min = 1750000, .max = 3500000},
217 .n = { .min = 1, .max = 4 },
218 .m = { .min = 104, .max = 138 },
219 .m1 = { .min = 17, .max = 23 },
220 .m2 = { .min = 5, .max = 11 },
221 .p = { .min = 10, .max = 30 },
222 .p1 = { .min = 1, .max = 3},
223 .p2 = { .dot_limit = 270000,
224 .p2_slow = 10,
225 .p2_fast = 10
226 },
227};
228
229static const intel_limit_t intel_limits_g4x_hdmi = {
230 .dot = { .min = 22000, .max = 400000 },
231 .vco = { .min = 1750000, .max = 3500000},
232 .n = { .min = 1, .max = 4 },
233 .m = { .min = 104, .max = 138 },
234 .m1 = { .min = 16, .max = 23 },
235 .m2 = { .min = 5, .max = 11 },
236 .p = { .min = 5, .max = 80 },
237 .p1 = { .min = 1, .max = 8},
238 .p2 = { .dot_limit = 165000,
239 .p2_slow = 10, .p2_fast = 5 },
240};
241
242static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243 .dot = { .min = 20000, .max = 115000 },
244 .vco = { .min = 1750000, .max = 3500000 },
245 .n = { .min = 1, .max = 3 },
246 .m = { .min = 104, .max = 138 },
247 .m1 = { .min = 17, .max = 23 },
248 .m2 = { .min = 5, .max = 11 },
249 .p = { .min = 28, .max = 112 },
250 .p1 = { .min = 2, .max = 8 },
251 .p2 = { .dot_limit = 0,
252 .p2_slow = 14, .p2_fast = 14
253 },
254};
255
256static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257 .dot = { .min = 80000, .max = 224000 },
258 .vco = { .min = 1750000, .max = 3500000 },
259 .n = { .min = 1, .max = 3 },
260 .m = { .min = 104, .max = 138 },
261 .m1 = { .min = 17, .max = 23 },
262 .m2 = { .min = 5, .max = 11 },
263 .p = { .min = 14, .max = 42 },
264 .p1 = { .min = 2, .max = 6 },
265 .p2 = { .dot_limit = 0,
266 .p2_slow = 7, .p2_fast = 7
267 },
268};
269
270static const intel_limit_t intel_limits_pineview_sdvo = {
271 .dot = { .min = 20000, .max = 400000},
272 .vco = { .min = 1700000, .max = 3500000 },
273 /* Pineview's Ncounter is a ring counter */
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 /* Pineview only has one combined m divider, which we treat as m2. */
277 .m1 = { .min = 0, .max = 0 },
278 .m2 = { .min = 0, .max = 254 },
279 .p = { .min = 5, .max = 80 },
280 .p1 = { .min = 1, .max = 8 },
281 .p2 = { .dot_limit = 200000,
282 .p2_slow = 10, .p2_fast = 5 },
283};
284
285static const intel_limit_t intel_limits_pineview_lvds = {
286 .dot = { .min = 20000, .max = 400000 },
287 .vco = { .min = 1700000, .max = 3500000 },
288 .n = { .min = 3, .max = 6 },
289 .m = { .min = 2, .max = 256 },
290 .m1 = { .min = 0, .max = 0 },
291 .m2 = { .min = 0, .max = 254 },
292 .p = { .min = 7, .max = 112 },
293 .p1 = { .min = 1, .max = 8 },
294 .p2 = { .dot_limit = 112000,
295 .p2_slow = 14, .p2_fast = 14 },
296};
297
298/* Ironlake / Sandybridge
299 *
300 * We calculate clock using (register_value + 2) for N/M1/M2, so here
301 * the range value for them is (actual_value - 2).
302 */
303static const intel_limit_t intel_limits_ironlake_dac = {
304 .dot = { .min = 25000, .max = 350000 },
305 .vco = { .min = 1760000, .max = 3510000 },
306 .n = { .min = 1, .max = 5 },
307 .m = { .min = 79, .max = 127 },
308 .m1 = { .min = 12, .max = 22 },
309 .m2 = { .min = 5, .max = 9 },
310 .p = { .min = 5, .max = 80 },
311 .p1 = { .min = 1, .max = 8 },
312 .p2 = { .dot_limit = 225000,
313 .p2_slow = 10, .p2_fast = 5 },
314};
315
316static const intel_limit_t intel_limits_ironlake_single_lvds = {
317 .dot = { .min = 25000, .max = 350000 },
318 .vco = { .min = 1760000, .max = 3510000 },
319 .n = { .min = 1, .max = 3 },
320 .m = { .min = 79, .max = 118 },
321 .m1 = { .min = 12, .max = 22 },
322 .m2 = { .min = 5, .max = 9 },
323 .p = { .min = 28, .max = 112 },
324 .p1 = { .min = 2, .max = 8 },
325 .p2 = { .dot_limit = 225000,
326 .p2_slow = 14, .p2_fast = 14 },
327};
328
329static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330 .dot = { .min = 25000, .max = 350000 },
331 .vco = { .min = 1760000, .max = 3510000 },
332 .n = { .min = 1, .max = 3 },
333 .m = { .min = 79, .max = 127 },
334 .m1 = { .min = 12, .max = 22 },
335 .m2 = { .min = 5, .max = 9 },
336 .p = { .min = 14, .max = 56 },
337 .p1 = { .min = 2, .max = 8 },
338 .p2 = { .dot_limit = 225000,
339 .p2_slow = 7, .p2_fast = 7 },
340};
341
342/* LVDS 100mhz refclk limits. */
343static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344 .dot = { .min = 25000, .max = 350000 },
345 .vco = { .min = 1760000, .max = 3510000 },
346 .n = { .min = 1, .max = 2 },
347 .m = { .min = 79, .max = 126 },
348 .m1 = { .min = 12, .max = 22 },
349 .m2 = { .min = 5, .max = 9 },
350 .p = { .min = 28, .max = 112 },
351 .p1 = { .min = 2, .max = 8 },
352 .p2 = { .dot_limit = 225000,
353 .p2_slow = 14, .p2_fast = 14 },
354};
355
356static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357 .dot = { .min = 25000, .max = 350000 },
358 .vco = { .min = 1760000, .max = 3510000 },
359 .n = { .min = 1, .max = 3 },
360 .m = { .min = 79, .max = 126 },
361 .m1 = { .min = 12, .max = 22 },
362 .m2 = { .min = 5, .max = 9 },
363 .p = { .min = 14, .max = 42 },
364 .p1 = { .min = 2, .max = 6 },
365 .p2 = { .dot_limit = 225000,
366 .p2_slow = 7, .p2_fast = 7 },
367};
368
369static const intel_limit_t intel_limits_vlv = {
370 /*
371 * These are the data rate limits (measured in fast clocks)
372 * since those are the strictest limits we have. The fast
373 * clock and actual rate limits are more relaxed, so checking
374 * them would make no difference.
375 */
376 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m1 = { .min = 2, .max = 3 },
380 .m2 = { .min = 11, .max = 156 },
381 .p1 = { .min = 2, .max = 3 },
382 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383};
384
385static const intel_limit_t intel_limits_chv = {
386 /*
387 * These are the data rate limits (measured in fast clocks)
388 * since those are the strictest limits we have. The fast
389 * clock and actual rate limits are more relaxed, so checking
390 * them would make no difference.
391 */
392 .dot = { .min = 25000 * 5, .max = 540000 * 5},
393 .vco = { .min = 4860000, .max = 6480000 },
394 .n = { .min = 1, .max = 1 },
395 .m1 = { .min = 2, .max = 2 },
396 .m2 = { .min = 24 << 22, .max = 175 << 22 },
397 .p1 = { .min = 2, .max = 4 },
398 .p2 = { .p2_slow = 1, .p2_fast = 14 },
399};
400
401static void vlv_clock(int refclk, intel_clock_t *clock)
402{
403 clock->m = clock->m1 * clock->m2;
404 clock->p = clock->p1 * clock->p2;
405 if (WARN_ON(clock->n == 0 || clock->p == 0))
406 return;
407 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
408 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
409}
410
411/**
412 * Returns whether any output on the specified pipe is of the specified type
413 */
414bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
415{
416 struct drm_device *dev = crtc->base.dev;
417 struct intel_encoder *encoder;
418
419 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
420 if (encoder->type == type)
421 return true;
422
423 return false;
424}
425
426/**
427 * Returns whether any output on the specified pipe will have the specified
428 * type after a staged modeset is complete, i.e., the same as
429 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
430 * encoder->crtc.
431 */
432static bool intel_pipe_will_have_type(struct intel_crtc *crtc, int type)
433{
434 struct drm_device *dev = crtc->base.dev;
435 struct intel_encoder *encoder;
436
437 for_each_intel_encoder(dev, encoder)
438 if (encoder->new_crtc == crtc && encoder->type == type)
439 return true;
440
441 return false;
442}
443
444static const intel_limit_t *intel_ironlake_limit(struct intel_crtc *crtc,
445 int refclk)
446{
447 struct drm_device *dev = crtc->base.dev;
448 const intel_limit_t *limit;
449
450 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
451 if (intel_is_dual_link_lvds(dev)) {
452 if (refclk == 100000)
453 limit = &intel_limits_ironlake_dual_lvds_100m;
454 else
455 limit = &intel_limits_ironlake_dual_lvds;
456 } else {
457 if (refclk == 100000)
458 limit = &intel_limits_ironlake_single_lvds_100m;
459 else
460 limit = &intel_limits_ironlake_single_lvds;
461 }
462 } else
463 limit = &intel_limits_ironlake_dac;
464
465 return limit;
466}
467
468static const intel_limit_t *intel_g4x_limit(struct intel_crtc *crtc)
469{
470 struct drm_device *dev = crtc->base.dev;
471 const intel_limit_t *limit;
472
473 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
474 if (intel_is_dual_link_lvds(dev))
475 limit = &intel_limits_g4x_dual_channel_lvds;
476 else
477 limit = &intel_limits_g4x_single_channel_lvds;
478 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI) ||
479 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_ANALOG)) {
480 limit = &intel_limits_g4x_hdmi;
481 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO)) {
482 limit = &intel_limits_g4x_sdvo;
483 } else /* The option is for other outputs */
484 limit = &intel_limits_i9xx_sdvo;
485
486 return limit;
487}
488
489static const intel_limit_t *intel_limit(struct intel_crtc *crtc, int refclk)
490{
491 struct drm_device *dev = crtc->base.dev;
492 const intel_limit_t *limit;
493
494 if (HAS_PCH_SPLIT(dev))
495 limit = intel_ironlake_limit(crtc, refclk);
496 else if (IS_G4X(dev)) {
497 limit = intel_g4x_limit(crtc);
498 } else if (IS_PINEVIEW(dev)) {
499 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
500 limit = &intel_limits_pineview_lvds;
501 else
502 limit = &intel_limits_pineview_sdvo;
503 } else if (IS_CHERRYVIEW(dev)) {
504 limit = &intel_limits_chv;
505 } else if (IS_VALLEYVIEW(dev)) {
506 limit = &intel_limits_vlv;
507 } else if (!IS_GEN2(dev)) {
508 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
509 limit = &intel_limits_i9xx_lvds;
510 else
511 limit = &intel_limits_i9xx_sdvo;
512 } else {
513 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
514 limit = &intel_limits_i8xx_lvds;
515 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
516 limit = &intel_limits_i8xx_dvo;
517 else
518 limit = &intel_limits_i8xx_dac;
519 }
520 return limit;
521}
522
523/* m1 is reserved as 0 in Pineview, n is a ring counter */
524static void pineview_clock(int refclk, intel_clock_t *clock)
525{
526 clock->m = clock->m2 + 2;
527 clock->p = clock->p1 * clock->p2;
528 if (WARN_ON(clock->n == 0 || clock->p == 0))
529 return;
530 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
531 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
532}
533
534static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
535{
536 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
537}
538
539static void i9xx_clock(int refclk, intel_clock_t *clock)
540{
541 clock->m = i9xx_dpll_compute_m(clock);
542 clock->p = clock->p1 * clock->p2;
543 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
544 return;
545 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
546 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
547}
548
549static void chv_clock(int refclk, intel_clock_t *clock)
550{
551 clock->m = clock->m1 * clock->m2;
552 clock->p = clock->p1 * clock->p2;
553 if (WARN_ON(clock->n == 0 || clock->p == 0))
554 return;
555 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
556 clock->n << 22);
557 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
558}
559
560#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
561/**
562 * Returns whether the given set of divisors are valid for a given refclk with
563 * the given connectors.
564 */
565
566static bool intel_PLL_is_valid(struct drm_device *dev,
567 const intel_limit_t *limit,
568 const intel_clock_t *clock)
569{
570 if (clock->n < limit->n.min || limit->n.max < clock->n)
571 INTELPllInvalid("n out of range\n");
572 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
573 INTELPllInvalid("p1 out of range\n");
574 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
575 INTELPllInvalid("m2 out of range\n");
576 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
577 INTELPllInvalid("m1 out of range\n");
578
579 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
580 if (clock->m1 <= clock->m2)
581 INTELPllInvalid("m1 <= m2\n");
582
583 if (!IS_VALLEYVIEW(dev)) {
584 if (clock->p < limit->p.min || limit->p.max < clock->p)
585 INTELPllInvalid("p out of range\n");
586 if (clock->m < limit->m.min || limit->m.max < clock->m)
587 INTELPllInvalid("m out of range\n");
588 }
589
590 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
591 INTELPllInvalid("vco out of range\n");
592 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
593 * connector, etc., rather than just a single range.
594 */
595 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
596 INTELPllInvalid("dot out of range\n");
597
598 return true;
599}
600
601static bool
602i9xx_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
603 int target, int refclk, intel_clock_t *match_clock,
604 intel_clock_t *best_clock)
605{
606 struct drm_device *dev = crtc->base.dev;
607 intel_clock_t clock;
608 int err = target;
609
610 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
611 /*
612 * For LVDS just rely on its current settings for dual-channel.
613 * We haven't figured out how to reliably set up different
614 * single/dual channel state, if we even can.
615 */
616 if (intel_is_dual_link_lvds(dev))
617 clock.p2 = limit->p2.p2_fast;
618 else
619 clock.p2 = limit->p2.p2_slow;
620 } else {
621 if (target < limit->p2.dot_limit)
622 clock.p2 = limit->p2.p2_slow;
623 else
624 clock.p2 = limit->p2.p2_fast;
625 }
626
627 memset(best_clock, 0, sizeof(*best_clock));
628
629 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
630 clock.m1++) {
631 for (clock.m2 = limit->m2.min;
632 clock.m2 <= limit->m2.max; clock.m2++) {
633 if (clock.m2 >= clock.m1)
634 break;
635 for (clock.n = limit->n.min;
636 clock.n <= limit->n.max; clock.n++) {
637 for (clock.p1 = limit->p1.min;
638 clock.p1 <= limit->p1.max; clock.p1++) {
639 int this_err;
640
641 i9xx_clock(refclk, &clock);
642 if (!intel_PLL_is_valid(dev, limit,
643 &clock))
644 continue;
645 if (match_clock &&
646 clock.p != match_clock->p)
647 continue;
648
649 this_err = abs(clock.dot - target);
650 if (this_err < err) {
651 *best_clock = clock;
652 err = this_err;
653 }
654 }
655 }
656 }
657 }
658
659 return (err != target);
660}
661
662static bool
663pnv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
664 int target, int refclk, intel_clock_t *match_clock,
665 intel_clock_t *best_clock)
666{
667 struct drm_device *dev = crtc->base.dev;
668 intel_clock_t clock;
669 int err = target;
670
671 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
672 /*
673 * For LVDS just rely on its current settings for dual-channel.
674 * We haven't figured out how to reliably set up different
675 * single/dual channel state, if we even can.
676 */
677 if (intel_is_dual_link_lvds(dev))
678 clock.p2 = limit->p2.p2_fast;
679 else
680 clock.p2 = limit->p2.p2_slow;
681 } else {
682 if (target < limit->p2.dot_limit)
683 clock.p2 = limit->p2.p2_slow;
684 else
685 clock.p2 = limit->p2.p2_fast;
686 }
687
688 memset(best_clock, 0, sizeof(*best_clock));
689
690 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
691 clock.m1++) {
692 for (clock.m2 = limit->m2.min;
693 clock.m2 <= limit->m2.max; clock.m2++) {
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
698 int this_err;
699
700 pineview_clock(refclk, &clock);
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719}
720
721static bool
722g4x_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
723 int target, int refclk, intel_clock_t *match_clock,
724 intel_clock_t *best_clock)
725{
726 struct drm_device *dev = crtc->base.dev;
727 intel_clock_t clock;
728 int max_n;
729 bool found;
730 /* approximately equals target * 0.00585 */
731 int err_most = (target >> 8) + (target >> 9);
732 found = false;
733
734 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
735 if (intel_is_dual_link_lvds(dev))
736 clock.p2 = limit->p2.p2_fast;
737 else
738 clock.p2 = limit->p2.p2_slow;
739 } else {
740 if (target < limit->p2.dot_limit)
741 clock.p2 = limit->p2.p2_slow;
742 else
743 clock.p2 = limit->p2.p2_fast;
744 }
745
746 memset(best_clock, 0, sizeof(*best_clock));
747 max_n = limit->n.max;
748 /* based on hardware requirement, prefer smaller n to precision */
749 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
750 /* based on hardware requirement, prefere larger m1,m2 */
751 for (clock.m1 = limit->m1.max;
752 clock.m1 >= limit->m1.min; clock.m1--) {
753 for (clock.m2 = limit->m2.max;
754 clock.m2 >= limit->m2.min; clock.m2--) {
755 for (clock.p1 = limit->p1.max;
756 clock.p1 >= limit->p1.min; clock.p1--) {
757 int this_err;
758
759 i9xx_clock(refclk, &clock);
760 if (!intel_PLL_is_valid(dev, limit,
761 &clock))
762 continue;
763
764 this_err = abs(clock.dot - target);
765 if (this_err < err_most) {
766 *best_clock = clock;
767 err_most = this_err;
768 max_n = clock.n;
769 found = true;
770 }
771 }
772 }
773 }
774 }
775 return found;
776}
777
778static bool
779vlv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
780 int target, int refclk, intel_clock_t *match_clock,
781 intel_clock_t *best_clock)
782{
783 struct drm_device *dev = crtc->base.dev;
784 intel_clock_t clock;
785 unsigned int bestppm = 1000000;
786 /* min update 19.2 MHz */
787 int max_n = min(limit->n.max, refclk / 19200);
788 bool found = false;
789
790 target *= 5; /* fast clock */
791
792 memset(best_clock, 0, sizeof(*best_clock));
793
794 /* based on hardware requirement, prefer smaller n to precision */
795 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
796 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
797 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
798 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
799 clock.p = clock.p1 * clock.p2;
800 /* based on hardware requirement, prefer bigger m1,m2 values */
801 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
802 unsigned int ppm, diff;
803
804 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
805 refclk * clock.m1);
806
807 vlv_clock(refclk, &clock);
808
809 if (!intel_PLL_is_valid(dev, limit,
810 &clock))
811 continue;
812
813 diff = abs(clock.dot - target);
814 ppm = div_u64(1000000ULL * diff, target);
815
816 if (ppm < 100 && clock.p > best_clock->p) {
817 bestppm = 0;
818 *best_clock = clock;
819 found = true;
820 }
821
822 if (bestppm >= 10 && ppm < bestppm - 10) {
823 bestppm = ppm;
824 *best_clock = clock;
825 found = true;
826 }
827 }
828 }
829 }
830 }
831
832 return found;
833}
834
835static bool
836chv_find_best_dpll(const intel_limit_t *limit, struct intel_crtc *crtc,
837 int target, int refclk, intel_clock_t *match_clock,
838 intel_clock_t *best_clock)
839{
840 struct drm_device *dev = crtc->base.dev;
841 intel_clock_t clock;
842 uint64_t m2;
843 int found = false;
844
845 memset(best_clock, 0, sizeof(*best_clock));
846
847 /*
848 * Based on hardware doc, the n always set to 1, and m1 always
849 * set to 2. If requires to support 200Mhz refclk, we need to
850 * revisit this because n may not 1 anymore.
851 */
852 clock.n = 1, clock.m1 = 2;
853 target *= 5; /* fast clock */
854
855 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
856 for (clock.p2 = limit->p2.p2_fast;
857 clock.p2 >= limit->p2.p2_slow;
858 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
859
860 clock.p = clock.p1 * clock.p2;
861
862 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
863 clock.n) << 22, refclk * clock.m1);
864
865 if (m2 > INT_MAX/clock.m1)
866 continue;
867
868 clock.m2 = m2;
869
870 chv_clock(refclk, &clock);
871
872 if (!intel_PLL_is_valid(dev, limit, &clock))
873 continue;
874
875 /* based on hardware requirement, prefer bigger p
876 */
877 if (clock.p > best_clock->p) {
878 *best_clock = clock;
879 found = true;
880 }
881 }
882 }
883
884 return found;
885}
886
887bool intel_crtc_active(struct drm_crtc *crtc)
888{
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 /* Be paranoid as we can arrive here with only partial
892 * state retrieved from the hardware during setup.
893 *
894 * We can ditch the adjusted_mode.crtc_clock check as soon
895 * as Haswell has gained clock readout/fastboot support.
896 *
897 * We can ditch the crtc->primary->fb check as soon as we can
898 * properly reconstruct framebuffers.
899 */
900 return intel_crtc->active && crtc->primary->fb &&
901 intel_crtc->config->base.adjusted_mode.crtc_clock;
902}
903
904enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
905 enum pipe pipe)
906{
907 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
908 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
909
910 return intel_crtc->config->cpu_transcoder;
911}
912
913static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
914{
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 u32 reg = PIPEDSL(pipe);
917 u32 line1, line2;
918 u32 line_mask;
919
920 if (IS_GEN2(dev))
921 line_mask = DSL_LINEMASK_GEN2;
922 else
923 line_mask = DSL_LINEMASK_GEN3;
924
925 line1 = I915_READ(reg) & line_mask;
926 mdelay(5);
927 line2 = I915_READ(reg) & line_mask;
928
929 return line1 == line2;
930}
931
932/*
933 * intel_wait_for_pipe_off - wait for pipe to turn off
934 * @crtc: crtc whose pipe to wait for
935 *
936 * After disabling a pipe, we can't wait for vblank in the usual way,
937 * spinning on the vblank interrupt status bit, since we won't actually
938 * see an interrupt when the pipe is disabled.
939 *
940 * On Gen4 and above:
941 * wait for the pipe register state bit to turn off
942 *
943 * Otherwise:
944 * wait for the display line value to settle (it usually
945 * ends up stopping at the start of the next frame).
946 *
947 */
948static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
949{
950 struct drm_device *dev = crtc->base.dev;
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
953 enum pipe pipe = crtc->pipe;
954
955 if (INTEL_INFO(dev)->gen >= 4) {
956 int reg = PIPECONF(cpu_transcoder);
957
958 /* Wait for the Pipe State to go off */
959 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
960 100))
961 WARN(1, "pipe_off wait timed out\n");
962 } else {
963 /* Wait for the display line to settle */
964 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
965 WARN(1, "pipe_off wait timed out\n");
966 }
967}
968
969/*
970 * ibx_digital_port_connected - is the specified port connected?
971 * @dev_priv: i915 private structure
972 * @port: the port to test
973 *
974 * Returns true if @port is connected, false otherwise.
975 */
976bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
977 struct intel_digital_port *port)
978{
979 u32 bit;
980
981 if (HAS_PCH_IBX(dev_priv->dev)) {
982 switch (port->port) {
983 case PORT_B:
984 bit = SDE_PORTB_HOTPLUG;
985 break;
986 case PORT_C:
987 bit = SDE_PORTC_HOTPLUG;
988 break;
989 case PORT_D:
990 bit = SDE_PORTD_HOTPLUG;
991 break;
992 default:
993 return true;
994 }
995 } else {
996 switch (port->port) {
997 case PORT_B:
998 bit = SDE_PORTB_HOTPLUG_CPT;
999 break;
1000 case PORT_C:
1001 bit = SDE_PORTC_HOTPLUG_CPT;
1002 break;
1003 case PORT_D:
1004 bit = SDE_PORTD_HOTPLUG_CPT;
1005 break;
1006 default:
1007 return true;
1008 }
1009 }
1010
1011 return I915_READ(SDEISR) & bit;
1012}
1013
1014static const char *state_string(bool enabled)
1015{
1016 return enabled ? "on" : "off";
1017}
1018
1019/* Only for pre-ILK configs */
1020void assert_pll(struct drm_i915_private *dev_priv,
1021 enum pipe pipe, bool state)
1022{
1023 int reg;
1024 u32 val;
1025 bool cur_state;
1026
1027 reg = DPLL(pipe);
1028 val = I915_READ(reg);
1029 cur_state = !!(val & DPLL_VCO_ENABLE);
1030 I915_STATE_WARN(cur_state != state,
1031 "PLL state assertion failure (expected %s, current %s)\n",
1032 state_string(state), state_string(cur_state));
1033}
1034
1035/* XXX: the dsi pll is shared between MIPI DSI ports */
1036static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1037{
1038 u32 val;
1039 bool cur_state;
1040
1041 mutex_lock(&dev_priv->dpio_lock);
1042 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1043 mutex_unlock(&dev_priv->dpio_lock);
1044
1045 cur_state = val & DSI_PLL_VCO_EN;
1046 I915_STATE_WARN(cur_state != state,
1047 "DSI PLL state assertion failure (expected %s, current %s)\n",
1048 state_string(state), state_string(cur_state));
1049}
1050#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1051#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1052
1053struct intel_shared_dpll *
1054intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1055{
1056 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1057
1058 if (crtc->config->shared_dpll < 0)
1059 return NULL;
1060
1061 return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1062}
1063
1064/* For ILK+ */
1065void assert_shared_dpll(struct drm_i915_private *dev_priv,
1066 struct intel_shared_dpll *pll,
1067 bool state)
1068{
1069 bool cur_state;
1070 struct intel_dpll_hw_state hw_state;
1071
1072 if (WARN (!pll,
1073 "asserting DPLL %s with no DPLL\n", state_string(state)))
1074 return;
1075
1076 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1077 I915_STATE_WARN(cur_state != state,
1078 "%s assertion failure (expected %s, current %s)\n",
1079 pll->name, state_string(state), state_string(cur_state));
1080}
1081
1082static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1083 enum pipe pipe, bool state)
1084{
1085 int reg;
1086 u32 val;
1087 bool cur_state;
1088 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1089 pipe);
1090
1091 if (HAS_DDI(dev_priv->dev)) {
1092 /* DDI does not have a specific FDI_TX register */
1093 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1094 val = I915_READ(reg);
1095 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1096 } else {
1097 reg = FDI_TX_CTL(pipe);
1098 val = I915_READ(reg);
1099 cur_state = !!(val & FDI_TX_ENABLE);
1100 }
1101 I915_STATE_WARN(cur_state != state,
1102 "FDI TX state assertion failure (expected %s, current %s)\n",
1103 state_string(state), state_string(cur_state));
1104}
1105#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1106#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1107
1108static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1109 enum pipe pipe, bool state)
1110{
1111 int reg;
1112 u32 val;
1113 bool cur_state;
1114
1115 reg = FDI_RX_CTL(pipe);
1116 val = I915_READ(reg);
1117 cur_state = !!(val & FDI_RX_ENABLE);
1118 I915_STATE_WARN(cur_state != state,
1119 "FDI RX state assertion failure (expected %s, current %s)\n",
1120 state_string(state), state_string(cur_state));
1121}
1122#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1123#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1124
1125static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1126 enum pipe pipe)
1127{
1128 int reg;
1129 u32 val;
1130
1131 /* ILK FDI PLL is always enabled */
1132 if (INTEL_INFO(dev_priv->dev)->gen == 5)
1133 return;
1134
1135 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1136 if (HAS_DDI(dev_priv->dev))
1137 return;
1138
1139 reg = FDI_TX_CTL(pipe);
1140 val = I915_READ(reg);
1141 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1142}
1143
1144void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1145 enum pipe pipe, bool state)
1146{
1147 int reg;
1148 u32 val;
1149 bool cur_state;
1150
1151 reg = FDI_RX_CTL(pipe);
1152 val = I915_READ(reg);
1153 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1154 I915_STATE_WARN(cur_state != state,
1155 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1156 state_string(state), state_string(cur_state));
1157}
1158
1159void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1160 enum pipe pipe)
1161{
1162 struct drm_device *dev = dev_priv->dev;
1163 int pp_reg;
1164 u32 val;
1165 enum pipe panel_pipe = PIPE_A;
1166 bool locked = true;
1167
1168 if (WARN_ON(HAS_DDI(dev)))
1169 return;
1170
1171 if (HAS_PCH_SPLIT(dev)) {
1172 u32 port_sel;
1173
1174 pp_reg = PCH_PP_CONTROL;
1175 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1176
1177 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1178 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1179 panel_pipe = PIPE_B;
1180 /* XXX: else fix for eDP */
1181 } else if (IS_VALLEYVIEW(dev)) {
1182 /* presumably write lock depends on pipe, not port select */
1183 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1184 panel_pipe = pipe;
1185 } else {
1186 pp_reg = PP_CONTROL;
1187 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1188 panel_pipe = PIPE_B;
1189 }
1190
1191 val = I915_READ(pp_reg);
1192 if (!(val & PANEL_POWER_ON) ||
1193 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1194 locked = false;
1195
1196 I915_STATE_WARN(panel_pipe == pipe && locked,
1197 "panel assertion failure, pipe %c regs locked\n",
1198 pipe_name(pipe));
1199}
1200
1201static void assert_cursor(struct drm_i915_private *dev_priv,
1202 enum pipe pipe, bool state)
1203{
1204 struct drm_device *dev = dev_priv->dev;
1205 bool cur_state;
1206
1207 if (IS_845G(dev) || IS_I865G(dev))
1208 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1209 else
1210 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1211
1212 I915_STATE_WARN(cur_state != state,
1213 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1214 pipe_name(pipe), state_string(state), state_string(cur_state));
1215}
1216#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1217#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1218
1219void assert_pipe(struct drm_i915_private *dev_priv,
1220 enum pipe pipe, bool state)
1221{
1222 int reg;
1223 u32 val;
1224 bool cur_state;
1225 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1226 pipe);
1227
1228 /* if we need the pipe quirk it must be always on */
1229 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1230 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1231 state = true;
1232
1233 if (!intel_display_power_is_enabled(dev_priv,
1234 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1235 cur_state = false;
1236 } else {
1237 reg = PIPECONF(cpu_transcoder);
1238 val = I915_READ(reg);
1239 cur_state = !!(val & PIPECONF_ENABLE);
1240 }
1241
1242 I915_STATE_WARN(cur_state != state,
1243 "pipe %c assertion failure (expected %s, current %s)\n",
1244 pipe_name(pipe), state_string(state), state_string(cur_state));
1245}
1246
1247static void assert_plane(struct drm_i915_private *dev_priv,
1248 enum plane plane, bool state)
1249{
1250 int reg;
1251 u32 val;
1252 bool cur_state;
1253
1254 reg = DSPCNTR(plane);
1255 val = I915_READ(reg);
1256 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1257 I915_STATE_WARN(cur_state != state,
1258 "plane %c assertion failure (expected %s, current %s)\n",
1259 plane_name(plane), state_string(state), state_string(cur_state));
1260}
1261
1262#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1263#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1264
1265static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1266 enum pipe pipe)
1267{
1268 struct drm_device *dev = dev_priv->dev;
1269 int reg, i;
1270 u32 val;
1271 int cur_pipe;
1272
1273 /* Primary planes are fixed to pipes on gen4+ */
1274 if (INTEL_INFO(dev)->gen >= 4) {
1275 reg = DSPCNTR(pipe);
1276 val = I915_READ(reg);
1277 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1278 "plane %c assertion failure, should be disabled but not\n",
1279 plane_name(pipe));
1280 return;
1281 }
1282
1283 /* Need to check both planes against the pipe */
1284 for_each_pipe(dev_priv, i) {
1285 reg = DSPCNTR(i);
1286 val = I915_READ(reg);
1287 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1288 DISPPLANE_SEL_PIPE_SHIFT;
1289 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1290 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1291 plane_name(i), pipe_name(pipe));
1292 }
1293}
1294
1295static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1296 enum pipe pipe)
1297{
1298 struct drm_device *dev = dev_priv->dev;
1299 int reg, sprite;
1300 u32 val;
1301
1302 if (INTEL_INFO(dev)->gen >= 9) {
1303 for_each_sprite(pipe, sprite) {
1304 val = I915_READ(PLANE_CTL(pipe, sprite));
1305 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1306 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1307 sprite, pipe_name(pipe));
1308 }
1309 } else if (IS_VALLEYVIEW(dev)) {
1310 for_each_sprite(pipe, sprite) {
1311 reg = SPCNTR(pipe, sprite);
1312 val = I915_READ(reg);
1313 I915_STATE_WARN(val & SP_ENABLE,
1314 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1315 sprite_name(pipe, sprite), pipe_name(pipe));
1316 }
1317 } else if (INTEL_INFO(dev)->gen >= 7) {
1318 reg = SPRCTL(pipe);
1319 val = I915_READ(reg);
1320 I915_STATE_WARN(val & SPRITE_ENABLE,
1321 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1322 plane_name(pipe), pipe_name(pipe));
1323 } else if (INTEL_INFO(dev)->gen >= 5) {
1324 reg = DVSCNTR(pipe);
1325 val = I915_READ(reg);
1326 I915_STATE_WARN(val & DVS_ENABLE,
1327 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1328 plane_name(pipe), pipe_name(pipe));
1329 }
1330}
1331
1332static void assert_vblank_disabled(struct drm_crtc *crtc)
1333{
1334 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1335 drm_crtc_vblank_put(crtc);
1336}
1337
1338static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1339{
1340 u32 val;
1341 bool enabled;
1342
1343 I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1344
1345 val = I915_READ(PCH_DREF_CONTROL);
1346 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1347 DREF_SUPERSPREAD_SOURCE_MASK));
1348 I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1349}
1350
1351static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1352 enum pipe pipe)
1353{
1354 int reg;
1355 u32 val;
1356 bool enabled;
1357
1358 reg = PCH_TRANSCONF(pipe);
1359 val = I915_READ(reg);
1360 enabled = !!(val & TRANS_ENABLE);
1361 I915_STATE_WARN(enabled,
1362 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1363 pipe_name(pipe));
1364}
1365
1366static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1367 enum pipe pipe, u32 port_sel, u32 val)
1368{
1369 if ((val & DP_PORT_EN) == 0)
1370 return false;
1371
1372 if (HAS_PCH_CPT(dev_priv->dev)) {
1373 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1374 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1375 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1376 return false;
1377 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1378 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1379 return false;
1380 } else {
1381 if ((val & DP_PIPE_MASK) != (pipe << 30))
1382 return false;
1383 }
1384 return true;
1385}
1386
1387static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1388 enum pipe pipe, u32 val)
1389{
1390 if ((val & SDVO_ENABLE) == 0)
1391 return false;
1392
1393 if (HAS_PCH_CPT(dev_priv->dev)) {
1394 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1395 return false;
1396 } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1397 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1398 return false;
1399 } else {
1400 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1401 return false;
1402 }
1403 return true;
1404}
1405
1406static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1407 enum pipe pipe, u32 val)
1408{
1409 if ((val & LVDS_PORT_EN) == 0)
1410 return false;
1411
1412 if (HAS_PCH_CPT(dev_priv->dev)) {
1413 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1414 return false;
1415 } else {
1416 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1417 return false;
1418 }
1419 return true;
1420}
1421
1422static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe, u32 val)
1424{
1425 if ((val & ADPA_DAC_ENABLE) == 0)
1426 return false;
1427 if (HAS_PCH_CPT(dev_priv->dev)) {
1428 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1429 return false;
1430 } else {
1431 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1432 return false;
1433 }
1434 return true;
1435}
1436
1437static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1438 enum pipe pipe, int reg, u32 port_sel)
1439{
1440 u32 val = I915_READ(reg);
1441 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1442 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1443 reg, pipe_name(pipe));
1444
1445 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1446 && (val & DP_PIPEB_SELECT),
1447 "IBX PCH dp port still using transcoder B\n");
1448}
1449
1450static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1451 enum pipe pipe, int reg)
1452{
1453 u32 val = I915_READ(reg);
1454 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1455 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1456 reg, pipe_name(pipe));
1457
1458 I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1459 && (val & SDVO_PIPE_B_SELECT),
1460 "IBX PCH hdmi port still using transcoder B\n");
1461}
1462
1463static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1464 enum pipe pipe)
1465{
1466 int reg;
1467 u32 val;
1468
1469 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1470 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1471 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1472
1473 reg = PCH_ADPA;
1474 val = I915_READ(reg);
1475 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1476 "PCH VGA enabled on transcoder %c, should be disabled\n",
1477 pipe_name(pipe));
1478
1479 reg = PCH_LVDS;
1480 val = I915_READ(reg);
1481 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1482 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1483 pipe_name(pipe));
1484
1485 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1486 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1487 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1488}
1489
1490static void intel_init_dpio(struct drm_device *dev)
1491{
1492 struct drm_i915_private *dev_priv = dev->dev_private;
1493
1494 if (!IS_VALLEYVIEW(dev))
1495 return;
1496
1497 /*
1498 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1499 * CHV x1 PHY (DP/HDMI D)
1500 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1501 */
1502 if (IS_CHERRYVIEW(dev)) {
1503 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1504 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1505 } else {
1506 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1507 }
1508}
1509
1510static void vlv_enable_pll(struct intel_crtc *crtc,
1511 const struct intel_crtc_state *pipe_config)
1512{
1513 struct drm_device *dev = crtc->base.dev;
1514 struct drm_i915_private *dev_priv = dev->dev_private;
1515 int reg = DPLL(crtc->pipe);
1516 u32 dpll = pipe_config->dpll_hw_state.dpll;
1517
1518 assert_pipe_disabled(dev_priv, crtc->pipe);
1519
1520 /* No really, not for ILK+ */
1521 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1522
1523 /* PLL is protected by panel, make sure we can write it */
1524 if (IS_MOBILE(dev_priv->dev))
1525 assert_panel_unlocked(dev_priv, crtc->pipe);
1526
1527 I915_WRITE(reg, dpll);
1528 POSTING_READ(reg);
1529 udelay(150);
1530
1531 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1532 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1533
1534 I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1535 POSTING_READ(DPLL_MD(crtc->pipe));
1536
1537 /* We do this three times for luck */
1538 I915_WRITE(reg, dpll);
1539 POSTING_READ(reg);
1540 udelay(150); /* wait for warmup */
1541 I915_WRITE(reg, dpll);
1542 POSTING_READ(reg);
1543 udelay(150); /* wait for warmup */
1544 I915_WRITE(reg, dpll);
1545 POSTING_READ(reg);
1546 udelay(150); /* wait for warmup */
1547}
1548
1549static void chv_enable_pll(struct intel_crtc *crtc,
1550 const struct intel_crtc_state *pipe_config)
1551{
1552 struct drm_device *dev = crtc->base.dev;
1553 struct drm_i915_private *dev_priv = dev->dev_private;
1554 int pipe = crtc->pipe;
1555 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1556 u32 tmp;
1557
1558 assert_pipe_disabled(dev_priv, crtc->pipe);
1559
1560 BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1561
1562 mutex_lock(&dev_priv->dpio_lock);
1563
1564 /* Enable back the 10bit clock to display controller */
1565 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1566 tmp |= DPIO_DCLKP_EN;
1567 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1568
1569 /*
1570 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1571 */
1572 udelay(1);
1573
1574 /* Enable PLL */
1575 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1576
1577 /* Check PLL is locked */
1578 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1579 DRM_ERROR("PLL %d failed to lock\n", pipe);
1580
1581 /* not sure when this should be written */
1582 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1583 POSTING_READ(DPLL_MD(pipe));
1584
1585 mutex_unlock(&dev_priv->dpio_lock);
1586}
1587
1588static int intel_num_dvo_pipes(struct drm_device *dev)
1589{
1590 struct intel_crtc *crtc;
1591 int count = 0;
1592
1593 for_each_intel_crtc(dev, crtc)
1594 count += crtc->active &&
1595 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1596
1597 return count;
1598}
1599
1600static void i9xx_enable_pll(struct intel_crtc *crtc)
1601{
1602 struct drm_device *dev = crtc->base.dev;
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1604 int reg = DPLL(crtc->pipe);
1605 u32 dpll = crtc->config->dpll_hw_state.dpll;
1606
1607 assert_pipe_disabled(dev_priv, crtc->pipe);
1608
1609 /* No really, not for ILK+ */
1610 BUG_ON(INTEL_INFO(dev)->gen >= 5);
1611
1612 /* PLL is protected by panel, make sure we can write it */
1613 if (IS_MOBILE(dev) && !IS_I830(dev))
1614 assert_panel_unlocked(dev_priv, crtc->pipe);
1615
1616 /* Enable DVO 2x clock on both PLLs if necessary */
1617 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1618 /*
1619 * It appears to be important that we don't enable this
1620 * for the current pipe before otherwise configuring the
1621 * PLL. No idea how this should be handled if multiple
1622 * DVO outputs are enabled simultaneosly.
1623 */
1624 dpll |= DPLL_DVO_2X_MODE;
1625 I915_WRITE(DPLL(!crtc->pipe),
1626 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1627 }
1628
1629 /* Wait for the clocks to stabilize. */
1630 POSTING_READ(reg);
1631 udelay(150);
1632
1633 if (INTEL_INFO(dev)->gen >= 4) {
1634 I915_WRITE(DPLL_MD(crtc->pipe),
1635 crtc->config->dpll_hw_state.dpll_md);
1636 } else {
1637 /* The pixel multiplier can only be updated once the
1638 * DPLL is enabled and the clocks are stable.
1639 *
1640 * So write it again.
1641 */
1642 I915_WRITE(reg, dpll);
1643 }
1644
1645 /* We do this three times for luck */
1646 I915_WRITE(reg, dpll);
1647 POSTING_READ(reg);
1648 udelay(150); /* wait for warmup */
1649 I915_WRITE(reg, dpll);
1650 POSTING_READ(reg);
1651 udelay(150); /* wait for warmup */
1652 I915_WRITE(reg, dpll);
1653 POSTING_READ(reg);
1654 udelay(150); /* wait for warmup */
1655}
1656
1657/**
1658 * i9xx_disable_pll - disable a PLL
1659 * @dev_priv: i915 private structure
1660 * @pipe: pipe PLL to disable
1661 *
1662 * Disable the PLL for @pipe, making sure the pipe is off first.
1663 *
1664 * Note! This is for pre-ILK only.
1665 */
1666static void i9xx_disable_pll(struct intel_crtc *crtc)
1667{
1668 struct drm_device *dev = crtc->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1670 enum pipe pipe = crtc->pipe;
1671
1672 /* Disable DVO 2x clock on both PLLs if necessary */
1673 if (IS_I830(dev) &&
1674 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1675 intel_num_dvo_pipes(dev) == 1) {
1676 I915_WRITE(DPLL(PIPE_B),
1677 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1678 I915_WRITE(DPLL(PIPE_A),
1679 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1680 }
1681
1682 /* Don't disable pipe or pipe PLLs if needed */
1683 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1684 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1685 return;
1686
1687 /* Make sure the pipe isn't still relying on us */
1688 assert_pipe_disabled(dev_priv, pipe);
1689
1690 I915_WRITE(DPLL(pipe), 0);
1691 POSTING_READ(DPLL(pipe));
1692}
1693
1694static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1695{
1696 u32 val = 0;
1697
1698 /* Make sure the pipe isn't still relying on us */
1699 assert_pipe_disabled(dev_priv, pipe);
1700
1701 /*
1702 * Leave integrated clock source and reference clock enabled for pipe B.
1703 * The latter is needed for VGA hotplug / manual detection.
1704 */
1705 if (pipe == PIPE_B)
1706 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1707 I915_WRITE(DPLL(pipe), val);
1708 POSTING_READ(DPLL(pipe));
1709
1710}
1711
1712static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713{
1714 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1715 u32 val;
1716
1717 /* Make sure the pipe isn't still relying on us */
1718 assert_pipe_disabled(dev_priv, pipe);
1719
1720 /* Set PLL en = 0 */
1721 val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1722 if (pipe != PIPE_A)
1723 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
1726
1727 mutex_lock(&dev_priv->dpio_lock);
1728
1729 /* Disable 10bit clock to display controller */
1730 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1731 val &= ~DPIO_DCLKP_EN;
1732 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1733
1734 /* disable left/right clock distribution */
1735 if (pipe != PIPE_B) {
1736 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1737 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1738 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1739 } else {
1740 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1741 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1742 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1743 }
1744
1745 mutex_unlock(&dev_priv->dpio_lock);
1746}
1747
1748void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1749 struct intel_digital_port *dport)
1750{
1751 u32 port_mask;
1752 int dpll_reg;
1753
1754 switch (dport->port) {
1755 case PORT_B:
1756 port_mask = DPLL_PORTB_READY_MASK;
1757 dpll_reg = DPLL(0);
1758 break;
1759 case PORT_C:
1760 port_mask = DPLL_PORTC_READY_MASK;
1761 dpll_reg = DPLL(0);
1762 break;
1763 case PORT_D:
1764 port_mask = DPLL_PORTD_READY_MASK;
1765 dpll_reg = DPIO_PHY_STATUS;
1766 break;
1767 default:
1768 BUG();
1769 }
1770
1771 if (wait_for((I915_READ(dpll_reg) & port_mask) == 0, 1000))
1772 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1773 port_name(dport->port), I915_READ(dpll_reg));
1774}
1775
1776static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1777{
1778 struct drm_device *dev = crtc->base.dev;
1779 struct drm_i915_private *dev_priv = dev->dev_private;
1780 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1781
1782 if (WARN_ON(pll == NULL))
1783 return;
1784
1785 WARN_ON(!pll->config.crtc_mask);
1786 if (pll->active == 0) {
1787 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1788 WARN_ON(pll->on);
1789 assert_shared_dpll_disabled(dev_priv, pll);
1790
1791 pll->mode_set(dev_priv, pll);
1792 }
1793}
1794
1795/**
1796 * intel_enable_shared_dpll - enable PCH PLL
1797 * @dev_priv: i915 private structure
1798 * @pipe: pipe PLL to enable
1799 *
1800 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1801 * drives the transcoder clock.
1802 */
1803static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1804{
1805 struct drm_device *dev = crtc->base.dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1808
1809 if (WARN_ON(pll == NULL))
1810 return;
1811
1812 if (WARN_ON(pll->config.crtc_mask == 0))
1813 return;
1814
1815 DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1816 pll->name, pll->active, pll->on,
1817 crtc->base.base.id);
1818
1819 if (pll->active++) {
1820 WARN_ON(!pll->on);
1821 assert_shared_dpll_enabled(dev_priv, pll);
1822 return;
1823 }
1824 WARN_ON(pll->on);
1825
1826 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1827
1828 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1829 pll->enable(dev_priv, pll);
1830 pll->on = true;
1831}
1832
1833static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1834{
1835 struct drm_device *dev = crtc->base.dev;
1836 struct drm_i915_private *dev_priv = dev->dev_private;
1837 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1838
1839 /* PCH only available on ILK+ */
1840 BUG_ON(INTEL_INFO(dev)->gen < 5);
1841 if (WARN_ON(pll == NULL))
1842 return;
1843
1844 if (WARN_ON(pll->config.crtc_mask == 0))
1845 return;
1846
1847 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1848 pll->name, pll->active, pll->on,
1849 crtc->base.base.id);
1850
1851 if (WARN_ON(pll->active == 0)) {
1852 assert_shared_dpll_disabled(dev_priv, pll);
1853 return;
1854 }
1855
1856 assert_shared_dpll_enabled(dev_priv, pll);
1857 WARN_ON(!pll->on);
1858 if (--pll->active)
1859 return;
1860
1861 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1862 pll->disable(dev_priv, pll);
1863 pll->on = false;
1864
1865 intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1866}
1867
1868static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1869 enum pipe pipe)
1870{
1871 struct drm_device *dev = dev_priv->dev;
1872 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1874 uint32_t reg, val, pipeconf_val;
1875
1876 /* PCH only available on ILK+ */
1877 BUG_ON(!HAS_PCH_SPLIT(dev));
1878
1879 /* Make sure PCH DPLL is enabled */
1880 assert_shared_dpll_enabled(dev_priv,
1881 intel_crtc_to_shared_dpll(intel_crtc));
1882
1883 /* FDI must be feeding us bits for PCH ports */
1884 assert_fdi_tx_enabled(dev_priv, pipe);
1885 assert_fdi_rx_enabled(dev_priv, pipe);
1886
1887 if (HAS_PCH_CPT(dev)) {
1888 /* Workaround: Set the timing override bit before enabling the
1889 * pch transcoder. */
1890 reg = TRANS_CHICKEN2(pipe);
1891 val = I915_READ(reg);
1892 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1893 I915_WRITE(reg, val);
1894 }
1895
1896 reg = PCH_TRANSCONF(pipe);
1897 val = I915_READ(reg);
1898 pipeconf_val = I915_READ(PIPECONF(pipe));
1899
1900 if (HAS_PCH_IBX(dev_priv->dev)) {
1901 /*
1902 * make the BPC in transcoder be consistent with
1903 * that in pipeconf reg.
1904 */
1905 val &= ~PIPECONF_BPC_MASK;
1906 val |= pipeconf_val & PIPECONF_BPC_MASK;
1907 }
1908
1909 val &= ~TRANS_INTERLACE_MASK;
1910 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1911 if (HAS_PCH_IBX(dev_priv->dev) &&
1912 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
1913 val |= TRANS_LEGACY_INTERLACED_ILK;
1914 else
1915 val |= TRANS_INTERLACED;
1916 else
1917 val |= TRANS_PROGRESSIVE;
1918
1919 I915_WRITE(reg, val | TRANS_ENABLE);
1920 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1921 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1922}
1923
1924static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1925 enum transcoder cpu_transcoder)
1926{
1927 u32 val, pipeconf_val;
1928
1929 /* PCH only available on ILK+ */
1930 BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
1931
1932 /* FDI must be feeding us bits for PCH ports */
1933 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1934 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1935
1936 /* Workaround: set timing override bit. */
1937 val = I915_READ(_TRANSA_CHICKEN2);
1938 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1939 I915_WRITE(_TRANSA_CHICKEN2, val);
1940
1941 val = TRANS_ENABLE;
1942 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1943
1944 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1945 PIPECONF_INTERLACED_ILK)
1946 val |= TRANS_INTERLACED;
1947 else
1948 val |= TRANS_PROGRESSIVE;
1949
1950 I915_WRITE(LPT_TRANSCONF, val);
1951 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1952 DRM_ERROR("Failed to enable PCH transcoder\n");
1953}
1954
1955static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1956 enum pipe pipe)
1957{
1958 struct drm_device *dev = dev_priv->dev;
1959 uint32_t reg, val;
1960
1961 /* FDI relies on the transcoder */
1962 assert_fdi_tx_disabled(dev_priv, pipe);
1963 assert_fdi_rx_disabled(dev_priv, pipe);
1964
1965 /* Ports must be off as well */
1966 assert_pch_ports_disabled(dev_priv, pipe);
1967
1968 reg = PCH_TRANSCONF(pipe);
1969 val = I915_READ(reg);
1970 val &= ~TRANS_ENABLE;
1971 I915_WRITE(reg, val);
1972 /* wait for PCH transcoder off, transcoder state */
1973 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1974 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1975
1976 if (!HAS_PCH_IBX(dev)) {
1977 /* Workaround: Clear the timing override chicken bit again. */
1978 reg = TRANS_CHICKEN2(pipe);
1979 val = I915_READ(reg);
1980 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1981 I915_WRITE(reg, val);
1982 }
1983}
1984
1985static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1986{
1987 u32 val;
1988
1989 val = I915_READ(LPT_TRANSCONF);
1990 val &= ~TRANS_ENABLE;
1991 I915_WRITE(LPT_TRANSCONF, val);
1992 /* wait for PCH transcoder off, transcoder state */
1993 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1994 DRM_ERROR("Failed to disable PCH transcoder\n");
1995
1996 /* Workaround: clear timing override bit. */
1997 val = I915_READ(_TRANSA_CHICKEN2);
1998 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1999 I915_WRITE(_TRANSA_CHICKEN2, val);
2000}
2001
2002/**
2003 * intel_enable_pipe - enable a pipe, asserting requirements
2004 * @crtc: crtc responsible for the pipe
2005 *
2006 * Enable @crtc's pipe, making sure that various hardware specific requirements
2007 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2008 */
2009static void intel_enable_pipe(struct intel_crtc *crtc)
2010{
2011 struct drm_device *dev = crtc->base.dev;
2012 struct drm_i915_private *dev_priv = dev->dev_private;
2013 enum pipe pipe = crtc->pipe;
2014 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2015 pipe);
2016 enum pipe pch_transcoder;
2017 int reg;
2018 u32 val;
2019
2020 assert_planes_disabled(dev_priv, pipe);
2021 assert_cursor_disabled(dev_priv, pipe);
2022 assert_sprites_disabled(dev_priv, pipe);
2023
2024 if (HAS_PCH_LPT(dev_priv->dev))
2025 pch_transcoder = TRANSCODER_A;
2026 else
2027 pch_transcoder = pipe;
2028
2029 /*
2030 * A pipe without a PLL won't actually be able to drive bits from
2031 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
2032 * need the check.
2033 */
2034 if (!HAS_PCH_SPLIT(dev_priv->dev))
2035 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2036 assert_dsi_pll_enabled(dev_priv);
2037 else
2038 assert_pll_enabled(dev_priv, pipe);
2039 else {
2040 if (crtc->config->has_pch_encoder) {
2041 /* if driving the PCH, we need FDI enabled */
2042 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2043 assert_fdi_tx_pll_enabled(dev_priv,
2044 (enum pipe) cpu_transcoder);
2045 }
2046 /* FIXME: assert CPU port conditions for SNB+ */
2047 }
2048
2049 reg = PIPECONF(cpu_transcoder);
2050 val = I915_READ(reg);
2051 if (val & PIPECONF_ENABLE) {
2052 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2053 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2054 return;
2055 }
2056
2057 I915_WRITE(reg, val | PIPECONF_ENABLE);
2058 POSTING_READ(reg);
2059}
2060
2061/**
2062 * intel_disable_pipe - disable a pipe, asserting requirements
2063 * @crtc: crtc whose pipes is to be disabled
2064 *
2065 * Disable the pipe of @crtc, making sure that various hardware
2066 * specific requirements are met, if applicable, e.g. plane
2067 * disabled, panel fitter off, etc.
2068 *
2069 * Will wait until the pipe has shut down before returning.
2070 */
2071static void intel_disable_pipe(struct intel_crtc *crtc)
2072{
2073 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2074 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2075 enum pipe pipe = crtc->pipe;
2076 int reg;
2077 u32 val;
2078
2079 /*
2080 * Make sure planes won't keep trying to pump pixels to us,
2081 * or we might hang the display.
2082 */
2083 assert_planes_disabled(dev_priv, pipe);
2084 assert_cursor_disabled(dev_priv, pipe);
2085 assert_sprites_disabled(dev_priv, pipe);
2086
2087 reg = PIPECONF(cpu_transcoder);
2088 val = I915_READ(reg);
2089 if ((val & PIPECONF_ENABLE) == 0)
2090 return;
2091
2092 /*
2093 * Double wide has implications for planes
2094 * so best keep it disabled when not needed.
2095 */
2096 if (crtc->config->double_wide)
2097 val &= ~PIPECONF_DOUBLE_WIDE;
2098
2099 /* Don't disable pipe or pipe PLLs if needed */
2100 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2101 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2102 val &= ~PIPECONF_ENABLE;
2103
2104 I915_WRITE(reg, val);
2105 if ((val & PIPECONF_ENABLE) == 0)
2106 intel_wait_for_pipe_off(crtc);
2107}
2108
2109/*
2110 * Plane regs are double buffered, going from enabled->disabled needs a
2111 * trigger in order to latch. The display address reg provides this.
2112 */
2113void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
2114 enum plane plane)
2115{
2116 struct drm_device *dev = dev_priv->dev;
2117 u32 reg = INTEL_INFO(dev)->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
2118
2119 I915_WRITE(reg, I915_READ(reg));
2120 POSTING_READ(reg);
2121}
2122
2123/**
2124 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2125 * @plane: plane to be enabled
2126 * @crtc: crtc for the plane
2127 *
2128 * Enable @plane on @crtc, making sure that the pipe is running first.
2129 */
2130static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2131 struct drm_crtc *crtc)
2132{
2133 struct drm_device *dev = plane->dev;
2134 struct drm_i915_private *dev_priv = dev->dev_private;
2135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2136
2137 /* If the pipe isn't enabled, we can't pump pixels and may hang */
2138 assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2139
2140 if (intel_crtc->primary_enabled)
2141 return;
2142
2143 intel_crtc->primary_enabled = true;
2144
2145 dev_priv->display.update_primary_plane(crtc, plane->fb,
2146 crtc->x, crtc->y);
2147
2148 /*
2149 * BDW signals flip done immediately if the plane
2150 * is disabled, even if the plane enable is already
2151 * armed to occur at the next vblank :(
2152 */
2153 if (IS_BROADWELL(dev))
2154 intel_wait_for_vblank(dev, intel_crtc->pipe);
2155}
2156
2157/**
2158 * intel_disable_primary_hw_plane - disable the primary hardware plane
2159 * @plane: plane to be disabled
2160 * @crtc: crtc for the plane
2161 *
2162 * Disable @plane on @crtc, making sure that the pipe is running first.
2163 */
2164static void intel_disable_primary_hw_plane(struct drm_plane *plane,
2165 struct drm_crtc *crtc)
2166{
2167 struct drm_device *dev = plane->dev;
2168 struct drm_i915_private *dev_priv = dev->dev_private;
2169 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2170
2171 if (WARN_ON(!intel_crtc->active))
2172 return;
2173
2174 if (!intel_crtc->primary_enabled)
2175 return;
2176
2177 intel_crtc->primary_enabled = false;
2178
2179 dev_priv->display.update_primary_plane(crtc, plane->fb,
2180 crtc->x, crtc->y);
2181}
2182
2183static bool need_vtd_wa(struct drm_device *dev)
2184{
2185#ifdef CONFIG_INTEL_IOMMU
2186 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2187 return true;
2188#endif
2189 return false;
2190}
2191
2192int
2193intel_fb_align_height(struct drm_device *dev, int height,
2194 uint32_t pixel_format,
2195 uint64_t fb_format_modifier)
2196{
2197 int tile_height;
2198
2199 tile_height = fb_format_modifier == I915_FORMAT_MOD_X_TILED ?
2200 (IS_GEN2(dev) ? 16 : 8) : 1;
2201
2202 return ALIGN(height, tile_height);
2203}
2204
2205int
2206intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2207 struct drm_framebuffer *fb,
2208 struct intel_engine_cs *pipelined)
2209{
2210 struct drm_device *dev = fb->dev;
2211 struct drm_i915_private *dev_priv = dev->dev_private;
2212 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2213 u32 alignment;
2214 int ret;
2215
2216 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2217
2218 switch (fb->modifier[0]) {
2219 case DRM_FORMAT_MOD_NONE:
2220 if (INTEL_INFO(dev)->gen >= 9)
2221 alignment = 256 * 1024;
2222 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2223 alignment = 128 * 1024;
2224 else if (INTEL_INFO(dev)->gen >= 4)
2225 alignment = 4 * 1024;
2226 else
2227 alignment = 64 * 1024;
2228 break;
2229 case I915_FORMAT_MOD_X_TILED:
2230 if (INTEL_INFO(dev)->gen >= 9)
2231 alignment = 256 * 1024;
2232 else {
2233 /* pin() will align the object as required by fence */
2234 alignment = 0;
2235 }
2236 break;
2237 case I915_FORMAT_MOD_Y_TILED:
2238 WARN(1, "Y tiled bo slipped through, driver bug!\n");
2239 return -EINVAL;
2240 default:
2241 MISSING_CASE(fb->modifier[0]);
2242 return -EINVAL;
2243 }
2244
2245 /* Note that the w/a also requires 64 PTE of padding following the
2246 * bo. We currently fill all unused PTE with the shadow page and so
2247 * we should always have valid PTE following the scanout preventing
2248 * the VT-d warning.
2249 */
2250 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2251 alignment = 256 * 1024;
2252
2253 /*
2254 * Global gtt pte registers are special registers which actually forward
2255 * writes to a chunk of system memory. Which means that there is no risk
2256 * that the register values disappear as soon as we call
2257 * intel_runtime_pm_put(), so it is correct to wrap only the
2258 * pin/unpin/fence and not more.
2259 */
2260 intel_runtime_pm_get(dev_priv);
2261
2262 dev_priv->mm.interruptible = false;
2263 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2264 if (ret)
2265 goto err_interruptible;
2266
2267 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2268 * fence, whereas 965+ only requires a fence if using
2269 * framebuffer compression. For simplicity, we always install
2270 * a fence as the cost is not that onerous.
2271 */
2272 ret = i915_gem_object_get_fence(obj);
2273 if (ret)
2274 goto err_unpin;
2275
2276 i915_gem_object_pin_fence(obj);
2277
2278 dev_priv->mm.interruptible = true;
2279 intel_runtime_pm_put(dev_priv);
2280 return 0;
2281
2282err_unpin:
2283 i915_gem_object_unpin_from_display_plane(obj);
2284err_interruptible:
2285 dev_priv->mm.interruptible = true;
2286 intel_runtime_pm_put(dev_priv);
2287 return ret;
2288}
2289
2290static void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2291{
2292 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2293
2294 i915_gem_object_unpin_fence(obj);
2295 i915_gem_object_unpin_from_display_plane(obj);
2296}
2297
2298/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2299 * is assumed to be a power-of-two. */
2300unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2301 unsigned int tiling_mode,
2302 unsigned int cpp,
2303 unsigned int pitch)
2304{
2305 if (tiling_mode != I915_TILING_NONE) {
2306 unsigned int tile_rows, tiles;
2307
2308 tile_rows = *y / 8;
2309 *y %= 8;
2310
2311 tiles = *x / (512/cpp);
2312 *x %= 512/cpp;
2313
2314 return tile_rows * pitch * 8 + tiles * 4096;
2315 } else {
2316 unsigned int offset;
2317
2318 offset = *y * pitch + *x * cpp;
2319 *y = 0;
2320 *x = (offset & 4095) / cpp;
2321 return offset & -4096;
2322 }
2323}
2324
2325static int i9xx_format_to_fourcc(int format)
2326{
2327 switch (format) {
2328 case DISPPLANE_8BPP:
2329 return DRM_FORMAT_C8;
2330 case DISPPLANE_BGRX555:
2331 return DRM_FORMAT_XRGB1555;
2332 case DISPPLANE_BGRX565:
2333 return DRM_FORMAT_RGB565;
2334 default:
2335 case DISPPLANE_BGRX888:
2336 return DRM_FORMAT_XRGB8888;
2337 case DISPPLANE_RGBX888:
2338 return DRM_FORMAT_XBGR8888;
2339 case DISPPLANE_BGRX101010:
2340 return DRM_FORMAT_XRGB2101010;
2341 case DISPPLANE_RGBX101010:
2342 return DRM_FORMAT_XBGR2101010;
2343 }
2344}
2345
2346static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2347{
2348 switch (format) {
2349 case PLANE_CTL_FORMAT_RGB_565:
2350 return DRM_FORMAT_RGB565;
2351 default:
2352 case PLANE_CTL_FORMAT_XRGB_8888:
2353 if (rgb_order) {
2354 if (alpha)
2355 return DRM_FORMAT_ABGR8888;
2356 else
2357 return DRM_FORMAT_XBGR8888;
2358 } else {
2359 if (alpha)
2360 return DRM_FORMAT_ARGB8888;
2361 else
2362 return DRM_FORMAT_XRGB8888;
2363 }
2364 case PLANE_CTL_FORMAT_XRGB_2101010:
2365 if (rgb_order)
2366 return DRM_FORMAT_XBGR2101010;
2367 else
2368 return DRM_FORMAT_XRGB2101010;
2369 }
2370}
2371
2372static bool
2373intel_alloc_plane_obj(struct intel_crtc *crtc,
2374 struct intel_initial_plane_config *plane_config)
2375{
2376 struct drm_device *dev = crtc->base.dev;
2377 struct drm_i915_gem_object *obj = NULL;
2378 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2379 struct drm_framebuffer *fb = &plane_config->fb->base;
2380 u32 base = plane_config->base;
2381
2382 if (plane_config->size == 0)
2383 return false;
2384
2385 obj = i915_gem_object_create_stolen_for_preallocated(dev, base, base,
2386 plane_config->size);
2387 if (!obj)
2388 return false;
2389
2390 obj->tiling_mode = plane_config->tiling;
2391 if (obj->tiling_mode == I915_TILING_X)
2392 obj->stride = fb->pitches[0];
2393
2394 mode_cmd.pixel_format = fb->pixel_format;
2395 mode_cmd.width = fb->width;
2396 mode_cmd.height = fb->height;
2397 mode_cmd.pitches[0] = fb->pitches[0];
2398 mode_cmd.modifier[0] = fb->modifier[0];
2399 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2400
2401 mutex_lock(&dev->struct_mutex);
2402
2403 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2404 &mode_cmd, obj)) {
2405 DRM_DEBUG_KMS("intel fb init failed\n");
2406 goto out_unref_obj;
2407 }
2408
2409 obj->frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(crtc->pipe);
2410 mutex_unlock(&dev->struct_mutex);
2411
2412 DRM_DEBUG_KMS("plane fb obj %p\n", obj);
2413 return true;
2414
2415out_unref_obj:
2416 drm_gem_object_unreference(&obj->base);
2417 mutex_unlock(&dev->struct_mutex);
2418 return false;
2419}
2420
2421/* Update plane->state->fb to match plane->fb after driver-internal updates */
2422static void
2423update_state_fb(struct drm_plane *plane)
2424{
2425 if (plane->fb == plane->state->fb)
2426 return;
2427
2428 if (plane->state->fb)
2429 drm_framebuffer_unreference(plane->state->fb);
2430 plane->state->fb = plane->fb;
2431 if (plane->state->fb)
2432 drm_framebuffer_reference(plane->state->fb);
2433}
2434
2435static void
2436intel_find_plane_obj(struct intel_crtc *intel_crtc,
2437 struct intel_initial_plane_config *plane_config)
2438{
2439 struct drm_device *dev = intel_crtc->base.dev;
2440 struct drm_i915_private *dev_priv = dev->dev_private;
2441 struct drm_crtc *c;
2442 struct intel_crtc *i;
2443 struct drm_i915_gem_object *obj;
2444
2445 if (!plane_config->fb)
2446 return;
2447
2448 if (intel_alloc_plane_obj(intel_crtc, plane_config)) {
2449 struct drm_plane *primary = intel_crtc->base.primary;
2450
2451 primary->fb = &plane_config->fb->base;
2452 primary->state->crtc = &intel_crtc->base;
2453 update_state_fb(primary);
2454
2455 return;
2456 }
2457
2458 kfree(plane_config->fb);
2459
2460 /*
2461 * Failed to alloc the obj, check to see if we should share
2462 * an fb with another CRTC instead
2463 */
2464 for_each_crtc(dev, c) {
2465 i = to_intel_crtc(c);
2466
2467 if (c == &intel_crtc->base)
2468 continue;
2469
2470 if (!i->active)
2471 continue;
2472
2473 obj = intel_fb_obj(c->primary->fb);
2474 if (obj == NULL)
2475 continue;
2476
2477 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2478 struct drm_plane *primary = intel_crtc->base.primary;
2479
2480 if (obj->tiling_mode != I915_TILING_NONE)
2481 dev_priv->preserve_bios_swizzle = true;
2482
2483 drm_framebuffer_reference(c->primary->fb);
2484 primary->fb = c->primary->fb;
2485 primary->state->crtc = &intel_crtc->base;
2486 update_state_fb(intel_crtc->base.primary);
2487 obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2488 break;
2489 }
2490 }
2491
2492}
2493
2494static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2495 struct drm_framebuffer *fb,
2496 int x, int y)
2497{
2498 struct drm_device *dev = crtc->dev;
2499 struct drm_i915_private *dev_priv = dev->dev_private;
2500 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2501 struct drm_i915_gem_object *obj;
2502 int plane = intel_crtc->plane;
2503 unsigned long linear_offset;
2504 u32 dspcntr;
2505 u32 reg = DSPCNTR(plane);
2506 int pixel_size;
2507
2508 if (!intel_crtc->primary_enabled) {
2509 I915_WRITE(reg, 0);
2510 if (INTEL_INFO(dev)->gen >= 4)
2511 I915_WRITE(DSPSURF(plane), 0);
2512 else
2513 I915_WRITE(DSPADDR(plane), 0);
2514 POSTING_READ(reg);
2515 return;
2516 }
2517
2518 obj = intel_fb_obj(fb);
2519 if (WARN_ON(obj == NULL))
2520 return;
2521
2522 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2523
2524 dspcntr = DISPPLANE_GAMMA_ENABLE;
2525
2526 dspcntr |= DISPLAY_PLANE_ENABLE;
2527
2528 if (INTEL_INFO(dev)->gen < 4) {
2529 if (intel_crtc->pipe == PIPE_B)
2530 dspcntr |= DISPPLANE_SEL_PIPE_B;
2531
2532 /* pipesrc and dspsize control the size that is scaled from,
2533 * which should always be the user's requested size.
2534 */
2535 I915_WRITE(DSPSIZE(plane),
2536 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2537 (intel_crtc->config->pipe_src_w - 1));
2538 I915_WRITE(DSPPOS(plane), 0);
2539 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2540 I915_WRITE(PRIMSIZE(plane),
2541 ((intel_crtc->config->pipe_src_h - 1) << 16) |
2542 (intel_crtc->config->pipe_src_w - 1));
2543 I915_WRITE(PRIMPOS(plane), 0);
2544 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2545 }
2546
2547 switch (fb->pixel_format) {
2548 case DRM_FORMAT_C8:
2549 dspcntr |= DISPPLANE_8BPP;
2550 break;
2551 case DRM_FORMAT_XRGB1555:
2552 case DRM_FORMAT_ARGB1555:
2553 dspcntr |= DISPPLANE_BGRX555;
2554 break;
2555 case DRM_FORMAT_RGB565:
2556 dspcntr |= DISPPLANE_BGRX565;
2557 break;
2558 case DRM_FORMAT_XRGB8888:
2559 case DRM_FORMAT_ARGB8888:
2560 dspcntr |= DISPPLANE_BGRX888;
2561 break;
2562 case DRM_FORMAT_XBGR8888:
2563 case DRM_FORMAT_ABGR8888:
2564 dspcntr |= DISPPLANE_RGBX888;
2565 break;
2566 case DRM_FORMAT_XRGB2101010:
2567 case DRM_FORMAT_ARGB2101010:
2568 dspcntr |= DISPPLANE_BGRX101010;
2569 break;
2570 case DRM_FORMAT_XBGR2101010:
2571 case DRM_FORMAT_ABGR2101010:
2572 dspcntr |= DISPPLANE_RGBX101010;
2573 break;
2574 default:
2575 BUG();
2576 }
2577
2578 if (INTEL_INFO(dev)->gen >= 4 &&
2579 obj->tiling_mode != I915_TILING_NONE)
2580 dspcntr |= DISPPLANE_TILED;
2581
2582 if (IS_G4X(dev))
2583 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2584
2585 linear_offset = y * fb->pitches[0] + x * pixel_size;
2586
2587 if (INTEL_INFO(dev)->gen >= 4) {
2588 intel_crtc->dspaddr_offset =
2589 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2590 pixel_size,
2591 fb->pitches[0]);
2592 linear_offset -= intel_crtc->dspaddr_offset;
2593 } else {
2594 intel_crtc->dspaddr_offset = linear_offset;
2595 }
2596
2597 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2598 dspcntr |= DISPPLANE_ROTATE_180;
2599
2600 x += (intel_crtc->config->pipe_src_w - 1);
2601 y += (intel_crtc->config->pipe_src_h - 1);
2602
2603 /* Finding the last pixel of the last line of the display
2604 data and adding to linear_offset*/
2605 linear_offset +=
2606 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2607 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2608 }
2609
2610 I915_WRITE(reg, dspcntr);
2611
2612 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2613 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2614 fb->pitches[0]);
2615 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2616 if (INTEL_INFO(dev)->gen >= 4) {
2617 I915_WRITE(DSPSURF(plane),
2618 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2619 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2620 I915_WRITE(DSPLINOFF(plane), linear_offset);
2621 } else
2622 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2623 POSTING_READ(reg);
2624}
2625
2626static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2627 struct drm_framebuffer *fb,
2628 int x, int y)
2629{
2630 struct drm_device *dev = crtc->dev;
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2633 struct drm_i915_gem_object *obj;
2634 int plane = intel_crtc->plane;
2635 unsigned long linear_offset;
2636 u32 dspcntr;
2637 u32 reg = DSPCNTR(plane);
2638 int pixel_size;
2639
2640 if (!intel_crtc->primary_enabled) {
2641 I915_WRITE(reg, 0);
2642 I915_WRITE(DSPSURF(plane), 0);
2643 POSTING_READ(reg);
2644 return;
2645 }
2646
2647 obj = intel_fb_obj(fb);
2648 if (WARN_ON(obj == NULL))
2649 return;
2650
2651 pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2652
2653 dspcntr = DISPPLANE_GAMMA_ENABLE;
2654
2655 dspcntr |= DISPLAY_PLANE_ENABLE;
2656
2657 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2658 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2659
2660 switch (fb->pixel_format) {
2661 case DRM_FORMAT_C8:
2662 dspcntr |= DISPPLANE_8BPP;
2663 break;
2664 case DRM_FORMAT_RGB565:
2665 dspcntr |= DISPPLANE_BGRX565;
2666 break;
2667 case DRM_FORMAT_XRGB8888:
2668 case DRM_FORMAT_ARGB8888:
2669 dspcntr |= DISPPLANE_BGRX888;
2670 break;
2671 case DRM_FORMAT_XBGR8888:
2672 case DRM_FORMAT_ABGR8888:
2673 dspcntr |= DISPPLANE_RGBX888;
2674 break;
2675 case DRM_FORMAT_XRGB2101010:
2676 case DRM_FORMAT_ARGB2101010:
2677 dspcntr |= DISPPLANE_BGRX101010;
2678 break;
2679 case DRM_FORMAT_XBGR2101010:
2680 case DRM_FORMAT_ABGR2101010:
2681 dspcntr |= DISPPLANE_RGBX101010;
2682 break;
2683 default:
2684 BUG();
2685 }
2686
2687 if (obj->tiling_mode != I915_TILING_NONE)
2688 dspcntr |= DISPPLANE_TILED;
2689
2690 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2691 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2692
2693 linear_offset = y * fb->pitches[0] + x * pixel_size;
2694 intel_crtc->dspaddr_offset =
2695 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2696 pixel_size,
2697 fb->pitches[0]);
2698 linear_offset -= intel_crtc->dspaddr_offset;
2699 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2700 dspcntr |= DISPPLANE_ROTATE_180;
2701
2702 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2703 x += (intel_crtc->config->pipe_src_w - 1);
2704 y += (intel_crtc->config->pipe_src_h - 1);
2705
2706 /* Finding the last pixel of the last line of the display
2707 data and adding to linear_offset*/
2708 linear_offset +=
2709 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2710 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2711 }
2712 }
2713
2714 I915_WRITE(reg, dspcntr);
2715
2716 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2717 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2718 fb->pitches[0]);
2719 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2720 I915_WRITE(DSPSURF(plane),
2721 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2722 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2723 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2724 } else {
2725 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2726 I915_WRITE(DSPLINOFF(plane), linear_offset);
2727 }
2728 POSTING_READ(reg);
2729}
2730
2731static void skylake_update_primary_plane(struct drm_crtc *crtc,
2732 struct drm_framebuffer *fb,
2733 int x, int y)
2734{
2735 struct drm_device *dev = crtc->dev;
2736 struct drm_i915_private *dev_priv = dev->dev_private;
2737 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2738 struct intel_framebuffer *intel_fb;
2739 struct drm_i915_gem_object *obj;
2740 int pipe = intel_crtc->pipe;
2741 u32 plane_ctl, stride;
2742
2743 if (!intel_crtc->primary_enabled) {
2744 I915_WRITE(PLANE_CTL(pipe, 0), 0);
2745 I915_WRITE(PLANE_SURF(pipe, 0), 0);
2746 POSTING_READ(PLANE_CTL(pipe, 0));
2747 return;
2748 }
2749
2750 plane_ctl = PLANE_CTL_ENABLE |
2751 PLANE_CTL_PIPE_GAMMA_ENABLE |
2752 PLANE_CTL_PIPE_CSC_ENABLE;
2753
2754 switch (fb->pixel_format) {
2755 case DRM_FORMAT_RGB565:
2756 plane_ctl |= PLANE_CTL_FORMAT_RGB_565;
2757 break;
2758 case DRM_FORMAT_XRGB8888:
2759 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2760 break;
2761 case DRM_FORMAT_XBGR8888:
2762 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2763 plane_ctl |= PLANE_CTL_FORMAT_XRGB_8888;
2764 break;
2765 case DRM_FORMAT_XRGB2101010:
2766 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2767 break;
2768 case DRM_FORMAT_XBGR2101010:
2769 plane_ctl |= PLANE_CTL_ORDER_RGBX;
2770 plane_ctl |= PLANE_CTL_FORMAT_XRGB_2101010;
2771 break;
2772 default:
2773 BUG();
2774 }
2775
2776 intel_fb = to_intel_framebuffer(fb);
2777 obj = intel_fb->obj;
2778
2779 /*
2780 * The stride is either expressed as a multiple of 64 bytes chunks for
2781 * linear buffers or in number of tiles for tiled buffers.
2782 */
2783 switch (fb->modifier[0]) {
2784 case DRM_FORMAT_MOD_NONE:
2785 stride = fb->pitches[0] >> 6;
2786 break;
2787 case I915_FORMAT_MOD_X_TILED:
2788 plane_ctl |= PLANE_CTL_TILED_X;
2789 stride = fb->pitches[0] >> 9;
2790 break;
2791 default:
2792 BUG();
2793 }
2794
2795 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
2796 if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180))
2797 plane_ctl |= PLANE_CTL_ROTATE_180;
2798
2799 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
2800
2801 DRM_DEBUG_KMS("Writing base %08lX %d,%d,%d,%d pitch=%d\n",
2802 i915_gem_obj_ggtt_offset(obj),
2803 x, y, fb->width, fb->height,
2804 fb->pitches[0]);
2805
2806 I915_WRITE(PLANE_POS(pipe, 0), 0);
2807 I915_WRITE(PLANE_OFFSET(pipe, 0), (y << 16) | x);
2808 I915_WRITE(PLANE_SIZE(pipe, 0),
2809 (intel_crtc->config->pipe_src_h - 1) << 16 |
2810 (intel_crtc->config->pipe_src_w - 1));
2811 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
2812 I915_WRITE(PLANE_SURF(pipe, 0), i915_gem_obj_ggtt_offset(obj));
2813
2814 POSTING_READ(PLANE_SURF(pipe, 0));
2815}
2816
2817/* Assume fb object is pinned & idle & fenced and just update base pointers */
2818static int
2819intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2820 int x, int y, enum mode_set_atomic state)
2821{
2822 struct drm_device *dev = crtc->dev;
2823 struct drm_i915_private *dev_priv = dev->dev_private;
2824
2825 if (dev_priv->display.disable_fbc)
2826 dev_priv->display.disable_fbc(dev);
2827
2828 dev_priv->display.update_primary_plane(crtc, fb, x, y);
2829
2830 return 0;
2831}
2832
2833static void intel_complete_page_flips(struct drm_device *dev)
2834{
2835 struct drm_crtc *crtc;
2836
2837 for_each_crtc(dev, crtc) {
2838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2839 enum plane plane = intel_crtc->plane;
2840
2841 intel_prepare_page_flip(dev, plane);
2842 intel_finish_page_flip_plane(dev, plane);
2843 }
2844}
2845
2846static void intel_update_primary_planes(struct drm_device *dev)
2847{
2848 struct drm_i915_private *dev_priv = dev->dev_private;
2849 struct drm_crtc *crtc;
2850
2851 for_each_crtc(dev, crtc) {
2852 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2853
2854 drm_modeset_lock(&crtc->mutex, NULL);
2855 /*
2856 * FIXME: Once we have proper support for primary planes (and
2857 * disabling them without disabling the entire crtc) allow again
2858 * a NULL crtc->primary->fb.
2859 */
2860 if (intel_crtc->active && crtc->primary->fb)
2861 dev_priv->display.update_primary_plane(crtc,
2862 crtc->primary->fb,
2863 crtc->x,
2864 crtc->y);
2865 drm_modeset_unlock(&crtc->mutex);
2866 }
2867}
2868
2869void intel_prepare_reset(struct drm_device *dev)
2870{
2871 struct drm_i915_private *dev_priv = to_i915(dev);
2872 struct intel_crtc *crtc;
2873
2874 /* no reset support for gen2 */
2875 if (IS_GEN2(dev))
2876 return;
2877
2878 /* reset doesn't touch the display */
2879 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
2880 return;
2881
2882 drm_modeset_lock_all(dev);
2883
2884 /*
2885 * Disabling the crtcs gracefully seems nicer. Also the
2886 * g33 docs say we should at least disable all the planes.
2887 */
2888 for_each_intel_crtc(dev, crtc) {
2889 if (crtc->active)
2890 dev_priv->display.crtc_disable(&crtc->base);
2891 }
2892}
2893
2894void intel_finish_reset(struct drm_device *dev)
2895{
2896 struct drm_i915_private *dev_priv = to_i915(dev);
2897
2898 /*
2899 * Flips in the rings will be nuked by the reset,
2900 * so complete all pending flips so that user space
2901 * will get its events and not get stuck.
2902 */
2903 intel_complete_page_flips(dev);
2904
2905 /* no reset support for gen2 */
2906 if (IS_GEN2(dev))
2907 return;
2908
2909 /* reset doesn't touch the display */
2910 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
2911 /*
2912 * Flips in the rings have been nuked by the reset,
2913 * so update the base address of all primary
2914 * planes to the the last fb to make sure we're
2915 * showing the correct fb after a reset.
2916 */
2917 intel_update_primary_planes(dev);
2918 return;
2919 }
2920
2921 /*
2922 * The display has been reset as well,
2923 * so need a full re-initialization.
2924 */
2925 intel_runtime_pm_disable_interrupts(dev_priv);
2926 intel_runtime_pm_enable_interrupts(dev_priv);
2927
2928 intel_modeset_init_hw(dev);
2929
2930 spin_lock_irq(&dev_priv->irq_lock);
2931 if (dev_priv->display.hpd_irq_setup)
2932 dev_priv->display.hpd_irq_setup(dev);
2933 spin_unlock_irq(&dev_priv->irq_lock);
2934
2935 intel_modeset_setup_hw_state(dev, true);
2936
2937 intel_hpd_init(dev_priv);
2938
2939 drm_modeset_unlock_all(dev);
2940}
2941
2942static int
2943intel_finish_fb(struct drm_framebuffer *old_fb)
2944{
2945 struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
2946 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2947 bool was_interruptible = dev_priv->mm.interruptible;
2948 int ret;
2949
2950 /* Big Hammer, we also need to ensure that any pending
2951 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2952 * current scanout is retired before unpinning the old
2953 * framebuffer.
2954 *
2955 * This should only fail upon a hung GPU, in which case we
2956 * can safely continue.
2957 */
2958 dev_priv->mm.interruptible = false;
2959 ret = i915_gem_object_finish_gpu(obj);
2960 dev_priv->mm.interruptible = was_interruptible;
2961
2962 return ret;
2963}
2964
2965static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2966{
2967 struct drm_device *dev = crtc->dev;
2968 struct drm_i915_private *dev_priv = dev->dev_private;
2969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2970 bool pending;
2971
2972 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2973 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2974 return false;
2975
2976 spin_lock_irq(&dev->event_lock);
2977 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2978 spin_unlock_irq(&dev->event_lock);
2979
2980 return pending;
2981}
2982
2983static void intel_update_pipe_size(struct intel_crtc *crtc)
2984{
2985 struct drm_device *dev = crtc->base.dev;
2986 struct drm_i915_private *dev_priv = dev->dev_private;
2987 const struct drm_display_mode *adjusted_mode;
2988
2989 if (!i915.fastboot)
2990 return;
2991
2992 /*
2993 * Update pipe size and adjust fitter if needed: the reason for this is
2994 * that in compute_mode_changes we check the native mode (not the pfit
2995 * mode) to see if we can flip rather than do a full mode set. In the
2996 * fastboot case, we'll flip, but if we don't update the pipesrc and
2997 * pfit state, we'll end up with a big fb scanned out into the wrong
2998 * sized surface.
2999 *
3000 * To fix this properly, we need to hoist the checks up into
3001 * compute_mode_changes (or above), check the actual pfit state and
3002 * whether the platform allows pfit disable with pipe active, and only
3003 * then update the pipesrc and pfit state, even on the flip path.
3004 */
3005
3006 adjusted_mode = &crtc->config->base.adjusted_mode;
3007
3008 I915_WRITE(PIPESRC(crtc->pipe),
3009 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3010 (adjusted_mode->crtc_vdisplay - 1));
3011 if (!crtc->config->pch_pfit.enabled &&
3012 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3013 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3014 I915_WRITE(PF_CTL(crtc->pipe), 0);
3015 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3016 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3017 }
3018 crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3019 crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3020}
3021
3022static void intel_fdi_normal_train(struct drm_crtc *crtc)
3023{
3024 struct drm_device *dev = crtc->dev;
3025 struct drm_i915_private *dev_priv = dev->dev_private;
3026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3027 int pipe = intel_crtc->pipe;
3028 u32 reg, temp;
3029
3030 /* enable normal train */
3031 reg = FDI_TX_CTL(pipe);
3032 temp = I915_READ(reg);
3033 if (IS_IVYBRIDGE(dev)) {
3034 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3035 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3036 } else {
3037 temp &= ~FDI_LINK_TRAIN_NONE;
3038 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3039 }
3040 I915_WRITE(reg, temp);
3041
3042 reg = FDI_RX_CTL(pipe);
3043 temp = I915_READ(reg);
3044 if (HAS_PCH_CPT(dev)) {
3045 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3046 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3047 } else {
3048 temp &= ~FDI_LINK_TRAIN_NONE;
3049 temp |= FDI_LINK_TRAIN_NONE;
3050 }
3051 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3052
3053 /* wait one idle pattern time */
3054 POSTING_READ(reg);
3055 udelay(1000);
3056
3057 /* IVB wants error correction enabled */
3058 if (IS_IVYBRIDGE(dev))
3059 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3060 FDI_FE_ERRC_ENABLE);
3061}
3062
3063static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
3064{
3065 return crtc->base.state->enable && crtc->active &&
3066 crtc->config->has_pch_encoder;
3067}
3068
3069static void ivb_modeset_global_resources(struct drm_device *dev)
3070{
3071 struct drm_i915_private *dev_priv = dev->dev_private;
3072 struct intel_crtc *pipe_B_crtc =
3073 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
3074 struct intel_crtc *pipe_C_crtc =
3075 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
3076 uint32_t temp;
3077
3078 /*
3079 * When everything is off disable fdi C so that we could enable fdi B
3080 * with all lanes. Note that we don't care about enabled pipes without
3081 * an enabled pch encoder.
3082 */
3083 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
3084 !pipe_has_enabled_pch(pipe_C_crtc)) {
3085 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3086 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3087
3088 temp = I915_READ(SOUTH_CHICKEN1);
3089 temp &= ~FDI_BC_BIFURCATION_SELECT;
3090 DRM_DEBUG_KMS("disabling fdi C rx\n");
3091 I915_WRITE(SOUTH_CHICKEN1, temp);
3092 }
3093}
3094
3095/* The FDI link training functions for ILK/Ibexpeak. */
3096static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3097{
3098 struct drm_device *dev = crtc->dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3101 int pipe = intel_crtc->pipe;
3102 u32 reg, temp, tries;
3103
3104 /* FDI needs bits from pipe first */
3105 assert_pipe_enabled(dev_priv, pipe);
3106
3107 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3108 for train result */
3109 reg = FDI_RX_IMR(pipe);
3110 temp = I915_READ(reg);
3111 temp &= ~FDI_RX_SYMBOL_LOCK;
3112 temp &= ~FDI_RX_BIT_LOCK;
3113 I915_WRITE(reg, temp);
3114 I915_READ(reg);
3115 udelay(150);
3116
3117 /* enable CPU FDI TX and PCH FDI RX */
3118 reg = FDI_TX_CTL(pipe);
3119 temp = I915_READ(reg);
3120 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3121 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3122 temp &= ~FDI_LINK_TRAIN_NONE;
3123 temp |= FDI_LINK_TRAIN_PATTERN_1;
3124 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3125
3126 reg = FDI_RX_CTL(pipe);
3127 temp = I915_READ(reg);
3128 temp &= ~FDI_LINK_TRAIN_NONE;
3129 temp |= FDI_LINK_TRAIN_PATTERN_1;
3130 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3131
3132 POSTING_READ(reg);
3133 udelay(150);
3134
3135 /* Ironlake workaround, enable clock pointer after FDI enable*/
3136 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3137 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3138 FDI_RX_PHASE_SYNC_POINTER_EN);
3139
3140 reg = FDI_RX_IIR(pipe);
3141 for (tries = 0; tries < 5; tries++) {
3142 temp = I915_READ(reg);
3143 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3144
3145 if ((temp & FDI_RX_BIT_LOCK)) {
3146 DRM_DEBUG_KMS("FDI train 1 done.\n");
3147 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3148 break;
3149 }
3150 }
3151 if (tries == 5)
3152 DRM_ERROR("FDI train 1 fail!\n");
3153
3154 /* Train 2 */
3155 reg = FDI_TX_CTL(pipe);
3156 temp = I915_READ(reg);
3157 temp &= ~FDI_LINK_TRAIN_NONE;
3158 temp |= FDI_LINK_TRAIN_PATTERN_2;
3159 I915_WRITE(reg, temp);
3160
3161 reg = FDI_RX_CTL(pipe);
3162 temp = I915_READ(reg);
3163 temp &= ~FDI_LINK_TRAIN_NONE;
3164 temp |= FDI_LINK_TRAIN_PATTERN_2;
3165 I915_WRITE(reg, temp);
3166
3167 POSTING_READ(reg);
3168 udelay(150);
3169
3170 reg = FDI_RX_IIR(pipe);
3171 for (tries = 0; tries < 5; tries++) {
3172 temp = I915_READ(reg);
3173 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3174
3175 if (temp & FDI_RX_SYMBOL_LOCK) {
3176 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3177 DRM_DEBUG_KMS("FDI train 2 done.\n");
3178 break;
3179 }
3180 }
3181 if (tries == 5)
3182 DRM_ERROR("FDI train 2 fail!\n");
3183
3184 DRM_DEBUG_KMS("FDI train done\n");
3185
3186}
3187
3188static const int snb_b_fdi_train_param[] = {
3189 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3190 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3191 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3192 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3193};
3194
3195/* The FDI link training functions for SNB/Cougarpoint. */
3196static void gen6_fdi_link_train(struct drm_crtc *crtc)
3197{
3198 struct drm_device *dev = crtc->dev;
3199 struct drm_i915_private *dev_priv = dev->dev_private;
3200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3201 int pipe = intel_crtc->pipe;
3202 u32 reg, temp, i, retry;
3203
3204 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3205 for train result */
3206 reg = FDI_RX_IMR(pipe);
3207 temp = I915_READ(reg);
3208 temp &= ~FDI_RX_SYMBOL_LOCK;
3209 temp &= ~FDI_RX_BIT_LOCK;
3210 I915_WRITE(reg, temp);
3211
3212 POSTING_READ(reg);
3213 udelay(150);
3214
3215 /* enable CPU FDI TX and PCH FDI RX */
3216 reg = FDI_TX_CTL(pipe);
3217 temp = I915_READ(reg);
3218 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3219 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3220 temp &= ~FDI_LINK_TRAIN_NONE;
3221 temp |= FDI_LINK_TRAIN_PATTERN_1;
3222 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3223 /* SNB-B */
3224 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3225 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3226
3227 I915_WRITE(FDI_RX_MISC(pipe),
3228 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3229
3230 reg = FDI_RX_CTL(pipe);
3231 temp = I915_READ(reg);
3232 if (HAS_PCH_CPT(dev)) {
3233 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3234 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3235 } else {
3236 temp &= ~FDI_LINK_TRAIN_NONE;
3237 temp |= FDI_LINK_TRAIN_PATTERN_1;
3238 }
3239 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3240
3241 POSTING_READ(reg);
3242 udelay(150);
3243
3244 for (i = 0; i < 4; i++) {
3245 reg = FDI_TX_CTL(pipe);
3246 temp = I915_READ(reg);
3247 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3248 temp |= snb_b_fdi_train_param[i];
3249 I915_WRITE(reg, temp);
3250
3251 POSTING_READ(reg);
3252 udelay(500);
3253
3254 for (retry = 0; retry < 5; retry++) {
3255 reg = FDI_RX_IIR(pipe);
3256 temp = I915_READ(reg);
3257 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3258 if (temp & FDI_RX_BIT_LOCK) {
3259 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3260 DRM_DEBUG_KMS("FDI train 1 done.\n");
3261 break;
3262 }
3263 udelay(50);
3264 }
3265 if (retry < 5)
3266 break;
3267 }
3268 if (i == 4)
3269 DRM_ERROR("FDI train 1 fail!\n");
3270
3271 /* Train 2 */
3272 reg = FDI_TX_CTL(pipe);
3273 temp = I915_READ(reg);
3274 temp &= ~FDI_LINK_TRAIN_NONE;
3275 temp |= FDI_LINK_TRAIN_PATTERN_2;
3276 if (IS_GEN6(dev)) {
3277 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3278 /* SNB-B */
3279 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3280 }
3281 I915_WRITE(reg, temp);
3282
3283 reg = FDI_RX_CTL(pipe);
3284 temp = I915_READ(reg);
3285 if (HAS_PCH_CPT(dev)) {
3286 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3287 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3288 } else {
3289 temp &= ~FDI_LINK_TRAIN_NONE;
3290 temp |= FDI_LINK_TRAIN_PATTERN_2;
3291 }
3292 I915_WRITE(reg, temp);
3293
3294 POSTING_READ(reg);
3295 udelay(150);
3296
3297 for (i = 0; i < 4; i++) {
3298 reg = FDI_TX_CTL(pipe);
3299 temp = I915_READ(reg);
3300 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3301 temp |= snb_b_fdi_train_param[i];
3302 I915_WRITE(reg, temp);
3303
3304 POSTING_READ(reg);
3305 udelay(500);
3306
3307 for (retry = 0; retry < 5; retry++) {
3308 reg = FDI_RX_IIR(pipe);
3309 temp = I915_READ(reg);
3310 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3311 if (temp & FDI_RX_SYMBOL_LOCK) {
3312 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3313 DRM_DEBUG_KMS("FDI train 2 done.\n");
3314 break;
3315 }
3316 udelay(50);
3317 }
3318 if (retry < 5)
3319 break;
3320 }
3321 if (i == 4)
3322 DRM_ERROR("FDI train 2 fail!\n");
3323
3324 DRM_DEBUG_KMS("FDI train done.\n");
3325}
3326
3327/* Manual link training for Ivy Bridge A0 parts */
3328static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3329{
3330 struct drm_device *dev = crtc->dev;
3331 struct drm_i915_private *dev_priv = dev->dev_private;
3332 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3333 int pipe = intel_crtc->pipe;
3334 u32 reg, temp, i, j;
3335
3336 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3337 for train result */
3338 reg = FDI_RX_IMR(pipe);
3339 temp = I915_READ(reg);
3340 temp &= ~FDI_RX_SYMBOL_LOCK;
3341 temp &= ~FDI_RX_BIT_LOCK;
3342 I915_WRITE(reg, temp);
3343
3344 POSTING_READ(reg);
3345 udelay(150);
3346
3347 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3348 I915_READ(FDI_RX_IIR(pipe)));
3349
3350 /* Try each vswing and preemphasis setting twice before moving on */
3351 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3352 /* disable first in case we need to retry */
3353 reg = FDI_TX_CTL(pipe);
3354 temp = I915_READ(reg);
3355 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3356 temp &= ~FDI_TX_ENABLE;
3357 I915_WRITE(reg, temp);
3358
3359 reg = FDI_RX_CTL(pipe);
3360 temp = I915_READ(reg);
3361 temp &= ~FDI_LINK_TRAIN_AUTO;
3362 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3363 temp &= ~FDI_RX_ENABLE;
3364 I915_WRITE(reg, temp);
3365
3366 /* enable CPU FDI TX and PCH FDI RX */
3367 reg = FDI_TX_CTL(pipe);
3368 temp = I915_READ(reg);
3369 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3370 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3371 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3372 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3373 temp |= snb_b_fdi_train_param[j/2];
3374 temp |= FDI_COMPOSITE_SYNC;
3375 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3376
3377 I915_WRITE(FDI_RX_MISC(pipe),
3378 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3379
3380 reg = FDI_RX_CTL(pipe);
3381 temp = I915_READ(reg);
3382 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3383 temp |= FDI_COMPOSITE_SYNC;
3384 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3385
3386 POSTING_READ(reg);
3387 udelay(1); /* should be 0.5us */
3388
3389 for (i = 0; i < 4; i++) {
3390 reg = FDI_RX_IIR(pipe);
3391 temp = I915_READ(reg);
3392 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3393
3394 if (temp & FDI_RX_BIT_LOCK ||
3395 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3396 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3397 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3398 i);
3399 break;
3400 }
3401 udelay(1); /* should be 0.5us */
3402 }
3403 if (i == 4) {
3404 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3405 continue;
3406 }
3407
3408 /* Train 2 */
3409 reg = FDI_TX_CTL(pipe);
3410 temp = I915_READ(reg);
3411 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3412 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3413 I915_WRITE(reg, temp);
3414
3415 reg = FDI_RX_CTL(pipe);
3416 temp = I915_READ(reg);
3417 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3418 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3419 I915_WRITE(reg, temp);
3420
3421 POSTING_READ(reg);
3422 udelay(2); /* should be 1.5us */
3423
3424 for (i = 0; i < 4; i++) {
3425 reg = FDI_RX_IIR(pipe);
3426 temp = I915_READ(reg);
3427 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429 if (temp & FDI_RX_SYMBOL_LOCK ||
3430 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3431 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3432 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3433 i);
3434 goto train_done;
3435 }
3436 udelay(2); /* should be 1.5us */
3437 }
3438 if (i == 4)
3439 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3440 }
3441
3442train_done:
3443 DRM_DEBUG_KMS("FDI train done.\n");
3444}
3445
3446static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3447{
3448 struct drm_device *dev = intel_crtc->base.dev;
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 int pipe = intel_crtc->pipe;
3451 u32 reg, temp;
3452
3453
3454 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3455 reg = FDI_RX_CTL(pipe);
3456 temp = I915_READ(reg);
3457 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3458 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3459 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3460 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3461
3462 POSTING_READ(reg);
3463 udelay(200);
3464
3465 /* Switch from Rawclk to PCDclk */
3466 temp = I915_READ(reg);
3467 I915_WRITE(reg, temp | FDI_PCDCLK);
3468
3469 POSTING_READ(reg);
3470 udelay(200);
3471
3472 /* Enable CPU FDI TX PLL, always on for Ironlake */
3473 reg = FDI_TX_CTL(pipe);
3474 temp = I915_READ(reg);
3475 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3476 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3477
3478 POSTING_READ(reg);
3479 udelay(100);
3480 }
3481}
3482
3483static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3484{
3485 struct drm_device *dev = intel_crtc->base.dev;
3486 struct drm_i915_private *dev_priv = dev->dev_private;
3487 int pipe = intel_crtc->pipe;
3488 u32 reg, temp;
3489
3490 /* Switch from PCDclk to Rawclk */
3491 reg = FDI_RX_CTL(pipe);
3492 temp = I915_READ(reg);
3493 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3494
3495 /* Disable CPU FDI TX PLL */
3496 reg = FDI_TX_CTL(pipe);
3497 temp = I915_READ(reg);
3498 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3499
3500 POSTING_READ(reg);
3501 udelay(100);
3502
3503 reg = FDI_RX_CTL(pipe);
3504 temp = I915_READ(reg);
3505 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3506
3507 /* Wait for the clocks to turn off. */
3508 POSTING_READ(reg);
3509 udelay(100);
3510}
3511
3512static void ironlake_fdi_disable(struct drm_crtc *crtc)
3513{
3514 struct drm_device *dev = crtc->dev;
3515 struct drm_i915_private *dev_priv = dev->dev_private;
3516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3517 int pipe = intel_crtc->pipe;
3518 u32 reg, temp;
3519
3520 /* disable CPU FDI tx and PCH FDI rx */
3521 reg = FDI_TX_CTL(pipe);
3522 temp = I915_READ(reg);
3523 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3524 POSTING_READ(reg);
3525
3526 reg = FDI_RX_CTL(pipe);
3527 temp = I915_READ(reg);
3528 temp &= ~(0x7 << 16);
3529 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3530 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3531
3532 POSTING_READ(reg);
3533 udelay(100);
3534
3535 /* Ironlake workaround, disable clock pointer after downing FDI */
3536 if (HAS_PCH_IBX(dev))
3537 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3538
3539 /* still set train pattern 1 */
3540 reg = FDI_TX_CTL(pipe);
3541 temp = I915_READ(reg);
3542 temp &= ~FDI_LINK_TRAIN_NONE;
3543 temp |= FDI_LINK_TRAIN_PATTERN_1;
3544 I915_WRITE(reg, temp);
3545
3546 reg = FDI_RX_CTL(pipe);
3547 temp = I915_READ(reg);
3548 if (HAS_PCH_CPT(dev)) {
3549 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3550 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3551 } else {
3552 temp &= ~FDI_LINK_TRAIN_NONE;
3553 temp |= FDI_LINK_TRAIN_PATTERN_1;
3554 }
3555 /* BPC in FDI rx is consistent with that in PIPECONF */
3556 temp &= ~(0x07 << 16);
3557 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3558 I915_WRITE(reg, temp);
3559
3560 POSTING_READ(reg);
3561 udelay(100);
3562}
3563
3564bool intel_has_pending_fb_unpin(struct drm_device *dev)
3565{
3566 struct intel_crtc *crtc;
3567
3568 /* Note that we don't need to be called with mode_config.lock here
3569 * as our list of CRTC objects is static for the lifetime of the
3570 * device and so cannot disappear as we iterate. Similarly, we can
3571 * happily treat the predicates as racy, atomic checks as userspace
3572 * cannot claim and pin a new fb without at least acquring the
3573 * struct_mutex and so serialising with us.
3574 */
3575 for_each_intel_crtc(dev, crtc) {
3576 if (atomic_read(&crtc->unpin_work_count) == 0)
3577 continue;
3578
3579 if (crtc->unpin_work)
3580 intel_wait_for_vblank(dev, crtc->pipe);
3581
3582 return true;
3583 }
3584
3585 return false;
3586}
3587
3588static void page_flip_completed(struct intel_crtc *intel_crtc)
3589{
3590 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3591 struct intel_unpin_work *work = intel_crtc->unpin_work;
3592
3593 /* ensure that the unpin work is consistent wrt ->pending. */
3594 smp_rmb();
3595 intel_crtc->unpin_work = NULL;
3596
3597 if (work->event)
3598 drm_send_vblank_event(intel_crtc->base.dev,
3599 intel_crtc->pipe,
3600 work->event);
3601
3602 drm_crtc_vblank_put(&intel_crtc->base);
3603
3604 wake_up_all(&dev_priv->pending_flip_queue);
3605 queue_work(dev_priv->wq, &work->work);
3606
3607 trace_i915_flip_complete(intel_crtc->plane,
3608 work->pending_flip_obj);
3609}
3610
3611void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3612{
3613 struct drm_device *dev = crtc->dev;
3614 struct drm_i915_private *dev_priv = dev->dev_private;
3615
3616 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3617 if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3618 !intel_crtc_has_pending_flip(crtc),
3619 60*HZ) == 0)) {
3620 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3621
3622 spin_lock_irq(&dev->event_lock);
3623 if (intel_crtc->unpin_work) {
3624 WARN_ONCE(1, "Removing stuck page flip\n");
3625 page_flip_completed(intel_crtc);
3626 }
3627 spin_unlock_irq(&dev->event_lock);
3628 }
3629
3630 if (crtc->primary->fb) {
3631 mutex_lock(&dev->struct_mutex);
3632 intel_finish_fb(crtc->primary->fb);
3633 mutex_unlock(&dev->struct_mutex);
3634 }
3635}
3636
3637/* Program iCLKIP clock to the desired frequency */
3638static void lpt_program_iclkip(struct drm_crtc *crtc)
3639{
3640 struct drm_device *dev = crtc->dev;
3641 struct drm_i915_private *dev_priv = dev->dev_private;
3642 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3643 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3644 u32 temp;
3645
3646 mutex_lock(&dev_priv->dpio_lock);
3647
3648 /* It is necessary to ungate the pixclk gate prior to programming
3649 * the divisors, and gate it back when it is done.
3650 */
3651 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3652
3653 /* Disable SSCCTL */
3654 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3655 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3656 SBI_SSCCTL_DISABLE,
3657 SBI_ICLK);
3658
3659 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3660 if (clock == 20000) {
3661 auxdiv = 1;
3662 divsel = 0x41;
3663 phaseinc = 0x20;
3664 } else {
3665 /* The iCLK virtual clock root frequency is in MHz,
3666 * but the adjusted_mode->crtc_clock in in KHz. To get the
3667 * divisors, it is necessary to divide one by another, so we
3668 * convert the virtual clock precision to KHz here for higher
3669 * precision.
3670 */
3671 u32 iclk_virtual_root_freq = 172800 * 1000;
3672 u32 iclk_pi_range = 64;
3673 u32 desired_divisor, msb_divisor_value, pi_value;
3674
3675 desired_divisor = (iclk_virtual_root_freq / clock);
3676 msb_divisor_value = desired_divisor / iclk_pi_range;
3677 pi_value = desired_divisor % iclk_pi_range;
3678
3679 auxdiv = 0;
3680 divsel = msb_divisor_value - 2;
3681 phaseinc = pi_value;
3682 }
3683
3684 /* This should not happen with any sane values */
3685 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3686 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3687 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3688 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3689
3690 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3691 clock,
3692 auxdiv,
3693 divsel,
3694 phasedir,
3695 phaseinc);
3696
3697 /* Program SSCDIVINTPHASE6 */
3698 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3699 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3700 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3701 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3702 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3703 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3704 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3705 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3706
3707 /* Program SSCAUXDIV */
3708 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3709 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3710 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3711 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3712
3713 /* Enable modulator and associated divider */
3714 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3715 temp &= ~SBI_SSCCTL_DISABLE;
3716 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3717
3718 /* Wait for initialization time */
3719 udelay(24);
3720
3721 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3722
3723 mutex_unlock(&dev_priv->dpio_lock);
3724}
3725
3726static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3727 enum pipe pch_transcoder)
3728{
3729 struct drm_device *dev = crtc->base.dev;
3730 struct drm_i915_private *dev_priv = dev->dev_private;
3731 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
3732
3733 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3734 I915_READ(HTOTAL(cpu_transcoder)));
3735 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3736 I915_READ(HBLANK(cpu_transcoder)));
3737 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3738 I915_READ(HSYNC(cpu_transcoder)));
3739
3740 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3741 I915_READ(VTOTAL(cpu_transcoder)));
3742 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3743 I915_READ(VBLANK(cpu_transcoder)));
3744 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3745 I915_READ(VSYNC(cpu_transcoder)));
3746 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3747 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3748}
3749
3750static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3751{
3752 struct drm_i915_private *dev_priv = dev->dev_private;
3753 uint32_t temp;
3754
3755 temp = I915_READ(SOUTH_CHICKEN1);
3756 if (temp & FDI_BC_BIFURCATION_SELECT)
3757 return;
3758
3759 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3760 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3761
3762 temp |= FDI_BC_BIFURCATION_SELECT;
3763 DRM_DEBUG_KMS("enabling fdi C rx\n");
3764 I915_WRITE(SOUTH_CHICKEN1, temp);
3765 POSTING_READ(SOUTH_CHICKEN1);
3766}
3767
3768static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3769{
3770 struct drm_device *dev = intel_crtc->base.dev;
3771 struct drm_i915_private *dev_priv = dev->dev_private;
3772
3773 switch (intel_crtc->pipe) {
3774 case PIPE_A:
3775 break;
3776 case PIPE_B:
3777 if (intel_crtc->config->fdi_lanes > 2)
3778 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3779 else
3780 cpt_enable_fdi_bc_bifurcation(dev);
3781
3782 break;
3783 case PIPE_C:
3784 cpt_enable_fdi_bc_bifurcation(dev);
3785
3786 break;
3787 default:
3788 BUG();
3789 }
3790}
3791
3792/*
3793 * Enable PCH resources required for PCH ports:
3794 * - PCH PLLs
3795 * - FDI training & RX/TX
3796 * - update transcoder timings
3797 * - DP transcoding bits
3798 * - transcoder
3799 */
3800static void ironlake_pch_enable(struct drm_crtc *crtc)
3801{
3802 struct drm_device *dev = crtc->dev;
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3805 int pipe = intel_crtc->pipe;
3806 u32 reg, temp;
3807
3808 assert_pch_transcoder_disabled(dev_priv, pipe);
3809
3810 if (IS_IVYBRIDGE(dev))
3811 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3812
3813 /* Write the TU size bits before fdi link training, so that error
3814 * detection works. */
3815 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3816 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3817
3818 /* For PCH output, training FDI link */
3819 dev_priv->display.fdi_link_train(crtc);
3820
3821 /* We need to program the right clock selection before writing the pixel
3822 * mutliplier into the DPLL. */
3823 if (HAS_PCH_CPT(dev)) {
3824 u32 sel;
3825
3826 temp = I915_READ(PCH_DPLL_SEL);
3827 temp |= TRANS_DPLL_ENABLE(pipe);
3828 sel = TRANS_DPLLB_SEL(pipe);
3829 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
3830 temp |= sel;
3831 else
3832 temp &= ~sel;
3833 I915_WRITE(PCH_DPLL_SEL, temp);
3834 }
3835
3836 /* XXX: pch pll's can be enabled any time before we enable the PCH
3837 * transcoder, and we actually should do this to not upset any PCH
3838 * transcoder that already use the clock when we share it.
3839 *
3840 * Note that enable_shared_dpll tries to do the right thing, but
3841 * get_shared_dpll unconditionally resets the pll - we need that to have
3842 * the right LVDS enable sequence. */
3843 intel_enable_shared_dpll(intel_crtc);
3844
3845 /* set transcoder timing, panel must allow it */
3846 assert_panel_unlocked(dev_priv, pipe);
3847 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3848
3849 intel_fdi_normal_train(crtc);
3850
3851 /* For PCH DP, enable TRANS_DP_CTL */
3852 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
3853 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3854 reg = TRANS_DP_CTL(pipe);
3855 temp = I915_READ(reg);
3856 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3857 TRANS_DP_SYNC_MASK |
3858 TRANS_DP_BPC_MASK);
3859 temp |= (TRANS_DP_OUTPUT_ENABLE |
3860 TRANS_DP_ENH_FRAMING);
3861 temp |= bpc << 9; /* same format but at 11:9 */
3862
3863 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3864 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3865 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3866 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3867
3868 switch (intel_trans_dp_port_sel(crtc)) {
3869 case PCH_DP_B:
3870 temp |= TRANS_DP_PORT_SEL_B;
3871 break;
3872 case PCH_DP_C:
3873 temp |= TRANS_DP_PORT_SEL_C;
3874 break;
3875 case PCH_DP_D:
3876 temp |= TRANS_DP_PORT_SEL_D;
3877 break;
3878 default:
3879 BUG();
3880 }
3881
3882 I915_WRITE(reg, temp);
3883 }
3884
3885 ironlake_enable_pch_transcoder(dev_priv, pipe);
3886}
3887
3888static void lpt_pch_enable(struct drm_crtc *crtc)
3889{
3890 struct drm_device *dev = crtc->dev;
3891 struct drm_i915_private *dev_priv = dev->dev_private;
3892 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3893 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
3894
3895 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3896
3897 lpt_program_iclkip(crtc);
3898
3899 /* Set transcoder timing. */
3900 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3901
3902 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3903}
3904
3905void intel_put_shared_dpll(struct intel_crtc *crtc)
3906{
3907 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3908
3909 if (pll == NULL)
3910 return;
3911
3912 if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
3913 WARN(1, "bad %s crtc mask\n", pll->name);
3914 return;
3915 }
3916
3917 pll->config.crtc_mask &= ~(1 << crtc->pipe);
3918 if (pll->config.crtc_mask == 0) {
3919 WARN_ON(pll->on);
3920 WARN_ON(pll->active);
3921 }
3922
3923 crtc->config->shared_dpll = DPLL_ID_PRIVATE;
3924}
3925
3926struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
3927 struct intel_crtc_state *crtc_state)
3928{
3929 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3930 struct intel_shared_dpll *pll;
3931 enum intel_dpll_id i;
3932
3933 if (HAS_PCH_IBX(dev_priv->dev)) {
3934 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3935 i = (enum intel_dpll_id) crtc->pipe;
3936 pll = &dev_priv->shared_dplls[i];
3937
3938 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3939 crtc->base.base.id, pll->name);
3940
3941 WARN_ON(pll->new_config->crtc_mask);
3942
3943 goto found;
3944 }
3945
3946 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3947 pll = &dev_priv->shared_dplls[i];
3948
3949 /* Only want to check enabled timings first */
3950 if (pll->new_config->crtc_mask == 0)
3951 continue;
3952
3953 if (memcmp(&crtc_state->dpll_hw_state,
3954 &pll->new_config->hw_state,
3955 sizeof(pll->new_config->hw_state)) == 0) {
3956 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
3957 crtc->base.base.id, pll->name,
3958 pll->new_config->crtc_mask,
3959 pll->active);
3960 goto found;
3961 }
3962 }
3963
3964 /* Ok no matching timings, maybe there's a free one? */
3965 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3966 pll = &dev_priv->shared_dplls[i];
3967 if (pll->new_config->crtc_mask == 0) {
3968 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3969 crtc->base.base.id, pll->name);
3970 goto found;
3971 }
3972 }
3973
3974 return NULL;
3975
3976found:
3977 if (pll->new_config->crtc_mask == 0)
3978 pll->new_config->hw_state = crtc_state->dpll_hw_state;
3979
3980 crtc_state->shared_dpll = i;
3981 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3982 pipe_name(crtc->pipe));
3983
3984 pll->new_config->crtc_mask |= 1 << crtc->pipe;
3985
3986 return pll;
3987}
3988
3989/**
3990 * intel_shared_dpll_start_config - start a new PLL staged config
3991 * @dev_priv: DRM device
3992 * @clear_pipes: mask of pipes that will have their PLLs freed
3993 *
3994 * Starts a new PLL staged config, copying the current config but
3995 * releasing the references of pipes specified in clear_pipes.
3996 */
3997static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
3998 unsigned clear_pipes)
3999{
4000 struct intel_shared_dpll *pll;
4001 enum intel_dpll_id i;
4002
4003 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4004 pll = &dev_priv->shared_dplls[i];
4005
4006 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4007 GFP_KERNEL);
4008 if (!pll->new_config)
4009 goto cleanup;
4010
4011 pll->new_config->crtc_mask &= ~clear_pipes;
4012 }
4013
4014 return 0;
4015
4016cleanup:
4017 while (--i >= 0) {
4018 pll = &dev_priv->shared_dplls[i];
4019 kfree(pll->new_config);
4020 pll->new_config = NULL;
4021 }
4022
4023 return -ENOMEM;
4024}
4025
4026static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4027{
4028 struct intel_shared_dpll *pll;
4029 enum intel_dpll_id i;
4030
4031 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4032 pll = &dev_priv->shared_dplls[i];
4033
4034 WARN_ON(pll->new_config == &pll->config);
4035
4036 pll->config = *pll->new_config;
4037 kfree(pll->new_config);
4038 pll->new_config = NULL;
4039 }
4040}
4041
4042static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4043{
4044 struct intel_shared_dpll *pll;
4045 enum intel_dpll_id i;
4046
4047 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4048 pll = &dev_priv->shared_dplls[i];
4049
4050 WARN_ON(pll->new_config == &pll->config);
4051
4052 kfree(pll->new_config);
4053 pll->new_config = NULL;
4054 }
4055}
4056
4057static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4058{
4059 struct drm_i915_private *dev_priv = dev->dev_private;
4060 int dslreg = PIPEDSL(pipe);
4061 u32 temp;
4062
4063 temp = I915_READ(dslreg);
4064 udelay(500);
4065 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4066 if (wait_for(I915_READ(dslreg) != temp, 5))
4067 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4068 }
4069}
4070
4071static void skylake_pfit_enable(struct intel_crtc *crtc)
4072{
4073 struct drm_device *dev = crtc->base.dev;
4074 struct drm_i915_private *dev_priv = dev->dev_private;
4075 int pipe = crtc->pipe;
4076
4077 if (crtc->config->pch_pfit.enabled) {
4078 I915_WRITE(PS_CTL(pipe), PS_ENABLE);
4079 I915_WRITE(PS_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4080 I915_WRITE(PS_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4081 }
4082}
4083
4084static void ironlake_pfit_enable(struct intel_crtc *crtc)
4085{
4086 struct drm_device *dev = crtc->base.dev;
4087 struct drm_i915_private *dev_priv = dev->dev_private;
4088 int pipe = crtc->pipe;
4089
4090 if (crtc->config->pch_pfit.enabled) {
4091 /* Force use of hard-coded filter coefficients
4092 * as some pre-programmed values are broken,
4093 * e.g. x201.
4094 */
4095 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4096 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4097 PF_PIPE_SEL_IVB(pipe));
4098 else
4099 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4100 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4101 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4102 }
4103}
4104
4105static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4106{
4107 struct drm_device *dev = crtc->dev;
4108 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4109 struct drm_plane *plane;
4110 struct intel_plane *intel_plane;
4111
4112 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4113 intel_plane = to_intel_plane(plane);
4114 if (intel_plane->pipe == pipe)
4115 intel_plane_restore(&intel_plane->base);
4116 }
4117}
4118
4119static void intel_disable_sprite_planes(struct drm_crtc *crtc)
4120{
4121 struct drm_device *dev = crtc->dev;
4122 enum pipe pipe = to_intel_crtc(crtc)->pipe;
4123 struct drm_plane *plane;
4124 struct intel_plane *intel_plane;
4125
4126 drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4127 intel_plane = to_intel_plane(plane);
4128 if (intel_plane->pipe == pipe)
4129 plane->funcs->disable_plane(plane);
4130 }
4131}
4132
4133void hsw_enable_ips(struct intel_crtc *crtc)
4134{
4135 struct drm_device *dev = crtc->base.dev;
4136 struct drm_i915_private *dev_priv = dev->dev_private;
4137
4138 if (!crtc->config->ips_enabled)
4139 return;
4140
4141 /* We can only enable IPS after we enable a plane and wait for a vblank */
4142 intel_wait_for_vblank(dev, crtc->pipe);
4143
4144 assert_plane_enabled(dev_priv, crtc->plane);
4145 if (IS_BROADWELL(dev)) {
4146 mutex_lock(&dev_priv->rps.hw_lock);
4147 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4148 mutex_unlock(&dev_priv->rps.hw_lock);
4149 /* Quoting Art Runyan: "its not safe to expect any particular
4150 * value in IPS_CTL bit 31 after enabling IPS through the
4151 * mailbox." Moreover, the mailbox may return a bogus state,
4152 * so we need to just enable it and continue on.
4153 */
4154 } else {
4155 I915_WRITE(IPS_CTL, IPS_ENABLE);
4156 /* The bit only becomes 1 in the next vblank, so this wait here
4157 * is essentially intel_wait_for_vblank. If we don't have this
4158 * and don't wait for vblanks until the end of crtc_enable, then
4159 * the HW state readout code will complain that the expected
4160 * IPS_CTL value is not the one we read. */
4161 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4162 DRM_ERROR("Timed out waiting for IPS enable\n");
4163 }
4164}
4165
4166void hsw_disable_ips(struct intel_crtc *crtc)
4167{
4168 struct drm_device *dev = crtc->base.dev;
4169 struct drm_i915_private *dev_priv = dev->dev_private;
4170
4171 if (!crtc->config->ips_enabled)
4172 return;
4173
4174 assert_plane_enabled(dev_priv, crtc->plane);
4175 if (IS_BROADWELL(dev)) {
4176 mutex_lock(&dev_priv->rps.hw_lock);
4177 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4178 mutex_unlock(&dev_priv->rps.hw_lock);
4179 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4180 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4181 DRM_ERROR("Timed out waiting for IPS disable\n");
4182 } else {
4183 I915_WRITE(IPS_CTL, 0);
4184 POSTING_READ(IPS_CTL);
4185 }
4186
4187 /* We need to wait for a vblank before we can disable the plane. */
4188 intel_wait_for_vblank(dev, crtc->pipe);
4189}
4190
4191/** Loads the palette/gamma unit for the CRTC with the prepared values */
4192static void intel_crtc_load_lut(struct drm_crtc *crtc)
4193{
4194 struct drm_device *dev = crtc->dev;
4195 struct drm_i915_private *dev_priv = dev->dev_private;
4196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4197 enum pipe pipe = intel_crtc->pipe;
4198 int palreg = PALETTE(pipe);
4199 int i;
4200 bool reenable_ips = false;
4201
4202 /* The clocks have to be on to load the palette. */
4203 if (!crtc->state->enable || !intel_crtc->active)
4204 return;
4205
4206 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
4207 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4208 assert_dsi_pll_enabled(dev_priv);
4209 else
4210 assert_pll_enabled(dev_priv, pipe);
4211 }
4212
4213 /* use legacy palette for Ironlake */
4214 if (!HAS_GMCH_DISPLAY(dev))
4215 palreg = LGC_PALETTE(pipe);
4216
4217 /* Workaround : Do not read or write the pipe palette/gamma data while
4218 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4219 */
4220 if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4221 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4222 GAMMA_MODE_MODE_SPLIT)) {
4223 hsw_disable_ips(intel_crtc);
4224 reenable_ips = true;
4225 }
4226
4227 for (i = 0; i < 256; i++) {
4228 I915_WRITE(palreg + 4 * i,
4229 (intel_crtc->lut_r[i] << 16) |
4230 (intel_crtc->lut_g[i] << 8) |
4231 intel_crtc->lut_b[i]);
4232 }
4233
4234 if (reenable_ips)
4235 hsw_enable_ips(intel_crtc);
4236}
4237
4238static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
4239{
4240 if (!enable && intel_crtc->overlay) {
4241 struct drm_device *dev = intel_crtc->base.dev;
4242 struct drm_i915_private *dev_priv = dev->dev_private;
4243
4244 mutex_lock(&dev->struct_mutex);
4245 dev_priv->mm.interruptible = false;
4246 (void) intel_overlay_switch_off(intel_crtc->overlay);
4247 dev_priv->mm.interruptible = true;
4248 mutex_unlock(&dev->struct_mutex);
4249 }
4250
4251 /* Let userspace switch the overlay on again. In most cases userspace
4252 * has to recompute where to put it anyway.
4253 */
4254}
4255
4256static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4257{
4258 struct drm_device *dev = crtc->dev;
4259 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4260 int pipe = intel_crtc->pipe;
4261
4262 intel_enable_primary_hw_plane(crtc->primary, crtc);
4263 intel_enable_sprite_planes(crtc);
4264 intel_crtc_update_cursor(crtc, true);
4265 intel_crtc_dpms_overlay(intel_crtc, true);
4266
4267 hsw_enable_ips(intel_crtc);
4268
4269 mutex_lock(&dev->struct_mutex);
4270 intel_fbc_update(dev);
4271 mutex_unlock(&dev->struct_mutex);
4272
4273 /*
4274 * FIXME: Once we grow proper nuclear flip support out of this we need
4275 * to compute the mask of flip planes precisely. For the time being
4276 * consider this a flip from a NULL plane.
4277 */
4278 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4279}
4280
4281static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4282{
4283 struct drm_device *dev = crtc->dev;
4284 struct drm_i915_private *dev_priv = dev->dev_private;
4285 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4286 int pipe = intel_crtc->pipe;
4287
4288 intel_crtc_wait_for_pending_flips(crtc);
4289
4290 if (dev_priv->fbc.crtc == intel_crtc)
4291 intel_fbc_disable(dev);
4292
4293 hsw_disable_ips(intel_crtc);
4294
4295 intel_crtc_dpms_overlay(intel_crtc, false);
4296 intel_crtc_update_cursor(crtc, false);
4297 intel_disable_sprite_planes(crtc);
4298 intel_disable_primary_hw_plane(crtc->primary, crtc);
4299
4300 /*
4301 * FIXME: Once we grow proper nuclear flip support out of this we need
4302 * to compute the mask of flip planes precisely. For the time being
4303 * consider this a flip to a NULL plane.
4304 */
4305 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4306}
4307
4308static void ironlake_crtc_enable(struct drm_crtc *crtc)
4309{
4310 struct drm_device *dev = crtc->dev;
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4313 struct intel_encoder *encoder;
4314 int pipe = intel_crtc->pipe;
4315
4316 WARN_ON(!crtc->state->enable);
4317
4318 if (intel_crtc->active)
4319 return;
4320
4321 if (intel_crtc->config->has_pch_encoder)
4322 intel_prepare_shared_dpll(intel_crtc);
4323
4324 if (intel_crtc->config->has_dp_encoder)
4325 intel_dp_set_m_n(intel_crtc, M1_N1);
4326
4327 intel_set_pipe_timings(intel_crtc);
4328
4329 if (intel_crtc->config->has_pch_encoder) {
4330 intel_cpu_transcoder_set_m_n(intel_crtc,
4331 &intel_crtc->config->fdi_m_n, NULL);
4332 }
4333
4334 ironlake_set_pipeconf(crtc);
4335
4336 intel_crtc->active = true;
4337
4338 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4339 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4340
4341 for_each_encoder_on_crtc(dev, crtc, encoder)
4342 if (encoder->pre_enable)
4343 encoder->pre_enable(encoder);
4344
4345 if (intel_crtc->config->has_pch_encoder) {
4346 /* Note: FDI PLL enabling _must_ be done before we enable the
4347 * cpu pipes, hence this is separate from all the other fdi/pch
4348 * enabling. */
4349 ironlake_fdi_pll_enable(intel_crtc);
4350 } else {
4351 assert_fdi_tx_disabled(dev_priv, pipe);
4352 assert_fdi_rx_disabled(dev_priv, pipe);
4353 }
4354
4355 ironlake_pfit_enable(intel_crtc);
4356
4357 /*
4358 * On ILK+ LUT must be loaded before the pipe is running but with
4359 * clocks enabled
4360 */
4361 intel_crtc_load_lut(crtc);
4362
4363 intel_update_watermarks(crtc);
4364 intel_enable_pipe(intel_crtc);
4365
4366 if (intel_crtc->config->has_pch_encoder)
4367 ironlake_pch_enable(crtc);
4368
4369 assert_vblank_disabled(crtc);
4370 drm_crtc_vblank_on(crtc);
4371
4372 for_each_encoder_on_crtc(dev, crtc, encoder)
4373 encoder->enable(encoder);
4374
4375 if (HAS_PCH_CPT(dev))
4376 cpt_verify_modeset(dev, intel_crtc->pipe);
4377
4378 intel_crtc_enable_planes(crtc);
4379}
4380
4381/* IPS only exists on ULT machines and is tied to pipe A. */
4382static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4383{
4384 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4385}
4386
4387/*
4388 * This implements the workaround described in the "notes" section of the mode
4389 * set sequence documentation. When going from no pipes or single pipe to
4390 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4391 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4392 */
4393static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4394{
4395 struct drm_device *dev = crtc->base.dev;
4396 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4397
4398 /* We want to get the other_active_crtc only if there's only 1 other
4399 * active crtc. */
4400 for_each_intel_crtc(dev, crtc_it) {
4401 if (!crtc_it->active || crtc_it == crtc)
4402 continue;
4403
4404 if (other_active_crtc)
4405 return;
4406
4407 other_active_crtc = crtc_it;
4408 }
4409 if (!other_active_crtc)
4410 return;
4411
4412 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4413 intel_wait_for_vblank(dev, other_active_crtc->pipe);
4414}
4415
4416static void haswell_crtc_enable(struct drm_crtc *crtc)
4417{
4418 struct drm_device *dev = crtc->dev;
4419 struct drm_i915_private *dev_priv = dev->dev_private;
4420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421 struct intel_encoder *encoder;
4422 int pipe = intel_crtc->pipe;
4423
4424 WARN_ON(!crtc->state->enable);
4425
4426 if (intel_crtc->active)
4427 return;
4428
4429 if (intel_crtc_to_shared_dpll(intel_crtc))
4430 intel_enable_shared_dpll(intel_crtc);
4431
4432 if (intel_crtc->config->has_dp_encoder)
4433 intel_dp_set_m_n(intel_crtc, M1_N1);
4434
4435 intel_set_pipe_timings(intel_crtc);
4436
4437 if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4438 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4439 intel_crtc->config->pixel_multiplier - 1);
4440 }
4441
4442 if (intel_crtc->config->has_pch_encoder) {
4443 intel_cpu_transcoder_set_m_n(intel_crtc,
4444 &intel_crtc->config->fdi_m_n, NULL);
4445 }
4446
4447 haswell_set_pipeconf(crtc);
4448
4449 intel_set_pipe_csc(crtc);
4450
4451 intel_crtc->active = true;
4452
4453 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4454 for_each_encoder_on_crtc(dev, crtc, encoder)
4455 if (encoder->pre_enable)
4456 encoder->pre_enable(encoder);
4457
4458 if (intel_crtc->config->has_pch_encoder) {
4459 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4460 true);
4461 dev_priv->display.fdi_link_train(crtc);
4462 }
4463
4464 intel_ddi_enable_pipe_clock(intel_crtc);
4465
4466 if (IS_SKYLAKE(dev))
4467 skylake_pfit_enable(intel_crtc);
4468 else
4469 ironlake_pfit_enable(intel_crtc);
4470
4471 /*
4472 * On ILK+ LUT must be loaded before the pipe is running but with
4473 * clocks enabled
4474 */
4475 intel_crtc_load_lut(crtc);
4476
4477 intel_ddi_set_pipe_settings(crtc);
4478 intel_ddi_enable_transcoder_func(crtc);
4479
4480 intel_update_watermarks(crtc);
4481 intel_enable_pipe(intel_crtc);
4482
4483 if (intel_crtc->config->has_pch_encoder)
4484 lpt_pch_enable(crtc);
4485
4486 if (intel_crtc->config->dp_encoder_is_mst)
4487 intel_ddi_set_vc_payload_alloc(crtc, true);
4488
4489 assert_vblank_disabled(crtc);
4490 drm_crtc_vblank_on(crtc);
4491
4492 for_each_encoder_on_crtc(dev, crtc, encoder) {
4493 encoder->enable(encoder);
4494 intel_opregion_notify_encoder(encoder, true);
4495 }
4496
4497 /* If we change the relative order between pipe/planes enabling, we need
4498 * to change the workaround. */
4499 haswell_mode_set_planes_workaround(intel_crtc);
4500 intel_crtc_enable_planes(crtc);
4501}
4502
4503static void skylake_pfit_disable(struct intel_crtc *crtc)
4504{
4505 struct drm_device *dev = crtc->base.dev;
4506 struct drm_i915_private *dev_priv = dev->dev_private;
4507 int pipe = crtc->pipe;
4508
4509 /* To avoid upsetting the power well on haswell only disable the pfit if
4510 * it's in use. The hw state code will make sure we get this right. */
4511 if (crtc->config->pch_pfit.enabled) {
4512 I915_WRITE(PS_CTL(pipe), 0);
4513 I915_WRITE(PS_WIN_POS(pipe), 0);
4514 I915_WRITE(PS_WIN_SZ(pipe), 0);
4515 }
4516}
4517
4518static void ironlake_pfit_disable(struct intel_crtc *crtc)
4519{
4520 struct drm_device *dev = crtc->base.dev;
4521 struct drm_i915_private *dev_priv = dev->dev_private;
4522 int pipe = crtc->pipe;
4523
4524 /* To avoid upsetting the power well on haswell only disable the pfit if
4525 * it's in use. The hw state code will make sure we get this right. */
4526 if (crtc->config->pch_pfit.enabled) {
4527 I915_WRITE(PF_CTL(pipe), 0);
4528 I915_WRITE(PF_WIN_POS(pipe), 0);
4529 I915_WRITE(PF_WIN_SZ(pipe), 0);
4530 }
4531}
4532
4533static void ironlake_crtc_disable(struct drm_crtc *crtc)
4534{
4535 struct drm_device *dev = crtc->dev;
4536 struct drm_i915_private *dev_priv = dev->dev_private;
4537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4538 struct intel_encoder *encoder;
4539 int pipe = intel_crtc->pipe;
4540 u32 reg, temp;
4541
4542 if (!intel_crtc->active)
4543 return;
4544
4545 intel_crtc_disable_planes(crtc);
4546
4547 for_each_encoder_on_crtc(dev, crtc, encoder)
4548 encoder->disable(encoder);
4549
4550 drm_crtc_vblank_off(crtc);
4551 assert_vblank_disabled(crtc);
4552
4553 if (intel_crtc->config->has_pch_encoder)
4554 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4555
4556 intel_disable_pipe(intel_crtc);
4557
4558 ironlake_pfit_disable(intel_crtc);
4559
4560 for_each_encoder_on_crtc(dev, crtc, encoder)
4561 if (encoder->post_disable)
4562 encoder->post_disable(encoder);
4563
4564 if (intel_crtc->config->has_pch_encoder) {
4565 ironlake_fdi_disable(crtc);
4566
4567 ironlake_disable_pch_transcoder(dev_priv, pipe);
4568
4569 if (HAS_PCH_CPT(dev)) {
4570 /* disable TRANS_DP_CTL */
4571 reg = TRANS_DP_CTL(pipe);
4572 temp = I915_READ(reg);
4573 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
4574 TRANS_DP_PORT_SEL_MASK);
4575 temp |= TRANS_DP_PORT_SEL_NONE;
4576 I915_WRITE(reg, temp);
4577
4578 /* disable DPLL_SEL */
4579 temp = I915_READ(PCH_DPLL_SEL);
4580 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
4581 I915_WRITE(PCH_DPLL_SEL, temp);
4582 }
4583
4584 /* disable PCH DPLL */
4585 intel_disable_shared_dpll(intel_crtc);
4586
4587 ironlake_fdi_pll_disable(intel_crtc);
4588 }
4589
4590 intel_crtc->active = false;
4591 intel_update_watermarks(crtc);
4592
4593 mutex_lock(&dev->struct_mutex);
4594 intel_fbc_update(dev);
4595 mutex_unlock(&dev->struct_mutex);
4596}
4597
4598static void haswell_crtc_disable(struct drm_crtc *crtc)
4599{
4600 struct drm_device *dev = crtc->dev;
4601 struct drm_i915_private *dev_priv = dev->dev_private;
4602 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4603 struct intel_encoder *encoder;
4604 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4605
4606 if (!intel_crtc->active)
4607 return;
4608
4609 intel_crtc_disable_planes(crtc);
4610
4611 for_each_encoder_on_crtc(dev, crtc, encoder) {
4612 intel_opregion_notify_encoder(encoder, false);
4613 encoder->disable(encoder);
4614 }
4615
4616 drm_crtc_vblank_off(crtc);
4617 assert_vblank_disabled(crtc);
4618
4619 if (intel_crtc->config->has_pch_encoder)
4620 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4621 false);
4622 intel_disable_pipe(intel_crtc);
4623
4624 if (intel_crtc->config->dp_encoder_is_mst)
4625 intel_ddi_set_vc_payload_alloc(crtc, false);
4626
4627 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4628
4629 if (IS_SKYLAKE(dev))
4630 skylake_pfit_disable(intel_crtc);
4631 else
4632 ironlake_pfit_disable(intel_crtc);
4633
4634 intel_ddi_disable_pipe_clock(intel_crtc);
4635
4636 if (intel_crtc->config->has_pch_encoder) {
4637 lpt_disable_pch_transcoder(dev_priv);
4638 intel_ddi_fdi_disable(crtc);
4639 }
4640
4641 for_each_encoder_on_crtc(dev, crtc, encoder)
4642 if (encoder->post_disable)
4643 encoder->post_disable(encoder);
4644
4645 intel_crtc->active = false;
4646 intel_update_watermarks(crtc);
4647
4648 mutex_lock(&dev->struct_mutex);
4649 intel_fbc_update(dev);
4650 mutex_unlock(&dev->struct_mutex);
4651
4652 if (intel_crtc_to_shared_dpll(intel_crtc))
4653 intel_disable_shared_dpll(intel_crtc);
4654}
4655
4656static void ironlake_crtc_off(struct drm_crtc *crtc)
4657{
4658 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4659 intel_put_shared_dpll(intel_crtc);
4660}
4661
4662
4663static void i9xx_pfit_enable(struct intel_crtc *crtc)
4664{
4665 struct drm_device *dev = crtc->base.dev;
4666 struct drm_i915_private *dev_priv = dev->dev_private;
4667 struct intel_crtc_state *pipe_config = crtc->config;
4668
4669 if (!pipe_config->gmch_pfit.control)
4670 return;
4671
4672 /*
4673 * The panel fitter should only be adjusted whilst the pipe is disabled,
4674 * according to register description and PRM.
4675 */
4676 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
4677 assert_pipe_disabled(dev_priv, crtc->pipe);
4678
4679 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
4680 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
4681
4682 /* Border color in case we don't scale up to the full screen. Black by
4683 * default, change to something else for debugging. */
4684 I915_WRITE(BCLRPAT(crtc->pipe), 0);
4685}
4686
4687static enum intel_display_power_domain port_to_power_domain(enum port port)
4688{
4689 switch (port) {
4690 case PORT_A:
4691 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
4692 case PORT_B:
4693 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
4694 case PORT_C:
4695 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
4696 case PORT_D:
4697 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
4698 default:
4699 WARN_ON_ONCE(1);
4700 return POWER_DOMAIN_PORT_OTHER;
4701 }
4702}
4703
4704#define for_each_power_domain(domain, mask) \
4705 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
4706 if ((1 << (domain)) & (mask))
4707
4708enum intel_display_power_domain
4709intel_display_port_power_domain(struct intel_encoder *intel_encoder)
4710{
4711 struct drm_device *dev = intel_encoder->base.dev;
4712 struct intel_digital_port *intel_dig_port;
4713
4714 switch (intel_encoder->type) {
4715 case INTEL_OUTPUT_UNKNOWN:
4716 /* Only DDI platforms should ever use this output type */
4717 WARN_ON_ONCE(!HAS_DDI(dev));
4718 case INTEL_OUTPUT_DISPLAYPORT:
4719 case INTEL_OUTPUT_HDMI:
4720 case INTEL_OUTPUT_EDP:
4721 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
4722 return port_to_power_domain(intel_dig_port->port);
4723 case INTEL_OUTPUT_DP_MST:
4724 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
4725 return port_to_power_domain(intel_dig_port->port);
4726 case INTEL_OUTPUT_ANALOG:
4727 return POWER_DOMAIN_PORT_CRT;
4728 case INTEL_OUTPUT_DSI:
4729 return POWER_DOMAIN_PORT_DSI;
4730 default:
4731 return POWER_DOMAIN_PORT_OTHER;
4732 }
4733}
4734
4735static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
4736{
4737 struct drm_device *dev = crtc->dev;
4738 struct intel_encoder *intel_encoder;
4739 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740 enum pipe pipe = intel_crtc->pipe;
4741 unsigned long mask;
4742 enum transcoder transcoder;
4743
4744 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
4745
4746 mask = BIT(POWER_DOMAIN_PIPE(pipe));
4747 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
4748 if (intel_crtc->config->pch_pfit.enabled ||
4749 intel_crtc->config->pch_pfit.force_thru)
4750 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
4751
4752 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4753 mask |= BIT(intel_display_port_power_domain(intel_encoder));
4754
4755 return mask;
4756}
4757
4758static void modeset_update_crtc_power_domains(struct drm_device *dev)
4759{
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
4762 struct intel_crtc *crtc;
4763
4764 /*
4765 * First get all needed power domains, then put all unneeded, to avoid
4766 * any unnecessary toggling of the power wells.
4767 */
4768 for_each_intel_crtc(dev, crtc) {
4769 enum intel_display_power_domain domain;
4770
4771 if (!crtc->base.state->enable)
4772 continue;
4773
4774 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
4775
4776 for_each_power_domain(domain, pipe_domains[crtc->pipe])
4777 intel_display_power_get(dev_priv, domain);
4778 }
4779
4780 if (dev_priv->display.modeset_global_resources)
4781 dev_priv->display.modeset_global_resources(dev);
4782
4783 for_each_intel_crtc(dev, crtc) {
4784 enum intel_display_power_domain domain;
4785
4786 for_each_power_domain(domain, crtc->enabled_power_domains)
4787 intel_display_power_put(dev_priv, domain);
4788
4789 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
4790 }
4791
4792 intel_display_set_init_power(dev_priv, false);
4793}
4794
4795/* returns HPLL frequency in kHz */
4796static int valleyview_get_vco(struct drm_i915_private *dev_priv)
4797{
4798 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
4799
4800 /* Obtain SKU information */
4801 mutex_lock(&dev_priv->dpio_lock);
4802 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
4803 CCK_FUSE_HPLL_FREQ_MASK;
4804 mutex_unlock(&dev_priv->dpio_lock);
4805
4806 return vco_freq[hpll_freq] * 1000;
4807}
4808
4809static void vlv_update_cdclk(struct drm_device *dev)
4810{
4811 struct drm_i915_private *dev_priv = dev->dev_private;
4812
4813 dev_priv->vlv_cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
4814 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
4815 dev_priv->vlv_cdclk_freq);
4816
4817 /*
4818 * Program the gmbus_freq based on the cdclk frequency.
4819 * BSpec erroneously claims we should aim for 4MHz, but
4820 * in fact 1MHz is the correct frequency.
4821 */
4822 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->vlv_cdclk_freq, 1000));
4823}
4824
4825/* Adjust CDclk dividers to allow high res or save power if possible */
4826static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
4827{
4828 struct drm_i915_private *dev_priv = dev->dev_private;
4829 u32 val, cmd;
4830
4831 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4832
4833 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
4834 cmd = 2;
4835 else if (cdclk == 266667)
4836 cmd = 1;
4837 else
4838 cmd = 0;
4839
4840 mutex_lock(&dev_priv->rps.hw_lock);
4841 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4842 val &= ~DSPFREQGUAR_MASK;
4843 val |= (cmd << DSPFREQGUAR_SHIFT);
4844 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4845 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4846 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
4847 50)) {
4848 DRM_ERROR("timed out waiting for CDclk change\n");
4849 }
4850 mutex_unlock(&dev_priv->rps.hw_lock);
4851
4852 if (cdclk == 400000) {
4853 u32 divider;
4854
4855 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
4856
4857 mutex_lock(&dev_priv->dpio_lock);
4858 /* adjust cdclk divider */
4859 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4860 val &= ~DISPLAY_FREQUENCY_VALUES;
4861 val |= divider;
4862 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
4863
4864 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
4865 DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
4866 50))
4867 DRM_ERROR("timed out waiting for CDclk change\n");
4868 mutex_unlock(&dev_priv->dpio_lock);
4869 }
4870
4871 mutex_lock(&dev_priv->dpio_lock);
4872 /* adjust self-refresh exit latency value */
4873 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4874 val &= ~0x7f;
4875
4876 /*
4877 * For high bandwidth configs, we set a higher latency in the bunit
4878 * so that the core display fetch happens in time to avoid underruns.
4879 */
4880 if (cdclk == 400000)
4881 val |= 4500 / 250; /* 4.5 usec */
4882 else
4883 val |= 3000 / 250; /* 3.0 usec */
4884 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4885 mutex_unlock(&dev_priv->dpio_lock);
4886
4887 vlv_update_cdclk(dev);
4888}
4889
4890static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
4891{
4892 struct drm_i915_private *dev_priv = dev->dev_private;
4893 u32 val, cmd;
4894
4895 WARN_ON(dev_priv->display.get_display_clock_speed(dev) != dev_priv->vlv_cdclk_freq);
4896
4897 switch (cdclk) {
4898 case 400000:
4899 cmd = 3;
4900 break;
4901 case 333333:
4902 case 320000:
4903 cmd = 2;
4904 break;
4905 case 266667:
4906 cmd = 1;
4907 break;
4908 case 200000:
4909 cmd = 0;
4910 break;
4911 default:
4912 MISSING_CASE(cdclk);
4913 return;
4914 }
4915
4916 mutex_lock(&dev_priv->rps.hw_lock);
4917 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4918 val &= ~DSPFREQGUAR_MASK_CHV;
4919 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
4920 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
4921 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
4922 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
4923 50)) {
4924 DRM_ERROR("timed out waiting for CDclk change\n");
4925 }
4926 mutex_unlock(&dev_priv->rps.hw_lock);
4927
4928 vlv_update_cdclk(dev);
4929}
4930
4931static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4932 int max_pixclk)
4933{
4934 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
4935
4936 /* FIXME: Punit isn't quite ready yet */
4937 if (IS_CHERRYVIEW(dev_priv->dev))
4938 return 400000;
4939
4940 /*
4941 * Really only a few cases to deal with, as only 4 CDclks are supported:
4942 * 200MHz
4943 * 267MHz
4944 * 320/333MHz (depends on HPLL freq)
4945 * 400MHz
4946 * So we check to see whether we're above 90% of the lower bin and
4947 * adjust if needed.
4948 *
4949 * We seem to get an unstable or solid color picture at 200MHz.
4950 * Not sure what's wrong. For now use 200MHz only when all pipes
4951 * are off.
4952 */
4953 if (max_pixclk > freq_320*9/10)
4954 return 400000;
4955 else if (max_pixclk > 266667*9/10)
4956 return freq_320;
4957 else if (max_pixclk > 0)
4958 return 266667;
4959 else
4960 return 200000;
4961}
4962
4963/* compute the max pixel clock for new configuration */
4964static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv)
4965{
4966 struct drm_device *dev = dev_priv->dev;
4967 struct intel_crtc *intel_crtc;
4968 int max_pixclk = 0;
4969
4970 for_each_intel_crtc(dev, intel_crtc) {
4971 if (intel_crtc->new_enabled)
4972 max_pixclk = max(max_pixclk,
4973 intel_crtc->new_config->base.adjusted_mode.crtc_clock);
4974 }
4975
4976 return max_pixclk;
4977}
4978
4979static void valleyview_modeset_global_pipes(struct drm_device *dev,
4980 unsigned *prepare_pipes)
4981{
4982 struct drm_i915_private *dev_priv = dev->dev_private;
4983 struct intel_crtc *intel_crtc;
4984 int max_pixclk = intel_mode_max_pixclk(dev_priv);
4985
4986 if (valleyview_calc_cdclk(dev_priv, max_pixclk) ==
4987 dev_priv->vlv_cdclk_freq)
4988 return;
4989
4990 /* disable/enable all currently active pipes while we change cdclk */
4991 for_each_intel_crtc(dev, intel_crtc)
4992 if (intel_crtc->base.state->enable)
4993 *prepare_pipes |= (1 << intel_crtc->pipe);
4994}
4995
4996static void valleyview_modeset_global_resources(struct drm_device *dev)
4997{
4998 struct drm_i915_private *dev_priv = dev->dev_private;
4999 int max_pixclk = intel_mode_max_pixclk(dev_priv);
5000 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5001
5002 if (req_cdclk != dev_priv->vlv_cdclk_freq) {
5003 /*
5004 * FIXME: We can end up here with all power domains off, yet
5005 * with a CDCLK frequency other than the minimum. To account
5006 * for this take the PIPE-A power domain, which covers the HW
5007 * blocks needed for the following programming. This can be
5008 * removed once it's guaranteed that we get here either with
5009 * the minimum CDCLK set, or the required power domains
5010 * enabled.
5011 */
5012 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
5013
5014 if (IS_CHERRYVIEW(dev))
5015 cherryview_set_cdclk(dev, req_cdclk);
5016 else
5017 valleyview_set_cdclk(dev, req_cdclk);
5018
5019 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
5020 }
5021}
5022
5023static void valleyview_crtc_enable(struct drm_crtc *crtc)
5024{
5025 struct drm_device *dev = crtc->dev;
5026 struct drm_i915_private *dev_priv = to_i915(dev);
5027 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5028 struct intel_encoder *encoder;
5029 int pipe = intel_crtc->pipe;
5030 bool is_dsi;
5031
5032 WARN_ON(!crtc->state->enable);
5033
5034 if (intel_crtc->active)
5035 return;
5036
5037 is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5038
5039 if (!is_dsi) {
5040 if (IS_CHERRYVIEW(dev))
5041 chv_prepare_pll(intel_crtc, intel_crtc->config);
5042 else
5043 vlv_prepare_pll(intel_crtc, intel_crtc->config);
5044 }
5045
5046 if (intel_crtc->config->has_dp_encoder)
5047 intel_dp_set_m_n(intel_crtc, M1_N1);
5048
5049 intel_set_pipe_timings(intel_crtc);
5050
5051 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
5052 struct drm_i915_private *dev_priv = dev->dev_private;
5053
5054 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
5055 I915_WRITE(CHV_CANVAS(pipe), 0);
5056 }
5057
5058 i9xx_set_pipeconf(intel_crtc);
5059
5060 intel_crtc->active = true;
5061
5062 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5063
5064 for_each_encoder_on_crtc(dev, crtc, encoder)
5065 if (encoder->pre_pll_enable)
5066 encoder->pre_pll_enable(encoder);
5067
5068 if (!is_dsi) {
5069 if (IS_CHERRYVIEW(dev))
5070 chv_enable_pll(intel_crtc, intel_crtc->config);
5071 else
5072 vlv_enable_pll(intel_crtc, intel_crtc->config);
5073 }
5074
5075 for_each_encoder_on_crtc(dev, crtc, encoder)
5076 if (encoder->pre_enable)
5077 encoder->pre_enable(encoder);
5078
5079 i9xx_pfit_enable(intel_crtc);
5080
5081 intel_crtc_load_lut(crtc);
5082
5083 intel_update_watermarks(crtc);
5084 intel_enable_pipe(intel_crtc);
5085
5086 assert_vblank_disabled(crtc);
5087 drm_crtc_vblank_on(crtc);
5088
5089 for_each_encoder_on_crtc(dev, crtc, encoder)
5090 encoder->enable(encoder);
5091
5092 intel_crtc_enable_planes(crtc);
5093
5094 /* Underruns don't raise interrupts, so check manually. */
5095 i9xx_check_fifo_underruns(dev_priv);
5096}
5097
5098static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
5099{
5100 struct drm_device *dev = crtc->base.dev;
5101 struct drm_i915_private *dev_priv = dev->dev_private;
5102
5103 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
5104 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
5105}
5106
5107static void i9xx_crtc_enable(struct drm_crtc *crtc)
5108{
5109 struct drm_device *dev = crtc->dev;
5110 struct drm_i915_private *dev_priv = to_i915(dev);
5111 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5112 struct intel_encoder *encoder;
5113 int pipe = intel_crtc->pipe;
5114
5115 WARN_ON(!crtc->state->enable);
5116
5117 if (intel_crtc->active)
5118 return;
5119
5120 i9xx_set_pll_dividers(intel_crtc);
5121
5122 if (intel_crtc->config->has_dp_encoder)
5123 intel_dp_set_m_n(intel_crtc, M1_N1);
5124
5125 intel_set_pipe_timings(intel_crtc);
5126
5127 i9xx_set_pipeconf(intel_crtc);
5128
5129 intel_crtc->active = true;
5130
5131 if (!IS_GEN2(dev))
5132 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5133
5134 for_each_encoder_on_crtc(dev, crtc, encoder)
5135 if (encoder->pre_enable)
5136 encoder->pre_enable(encoder);
5137
5138 i9xx_enable_pll(intel_crtc);
5139
5140 i9xx_pfit_enable(intel_crtc);
5141
5142 intel_crtc_load_lut(crtc);
5143
5144 intel_update_watermarks(crtc);
5145 intel_enable_pipe(intel_crtc);
5146
5147 assert_vblank_disabled(crtc);
5148 drm_crtc_vblank_on(crtc);
5149
5150 for_each_encoder_on_crtc(dev, crtc, encoder)
5151 encoder->enable(encoder);
5152
5153 intel_crtc_enable_planes(crtc);
5154
5155 /*
5156 * Gen2 reports pipe underruns whenever all planes are disabled.
5157 * So don't enable underrun reporting before at least some planes
5158 * are enabled.
5159 * FIXME: Need to fix the logic to work when we turn off all planes
5160 * but leave the pipe running.
5161 */
5162 if (IS_GEN2(dev))
5163 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5164
5165 /* Underruns don't raise interrupts, so check manually. */
5166 i9xx_check_fifo_underruns(dev_priv);
5167}
5168
5169static void i9xx_pfit_disable(struct intel_crtc *crtc)
5170{
5171 struct drm_device *dev = crtc->base.dev;
5172 struct drm_i915_private *dev_priv = dev->dev_private;
5173
5174 if (!crtc->config->gmch_pfit.control)
5175 return;
5176
5177 assert_pipe_disabled(dev_priv, crtc->pipe);
5178
5179 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
5180 I915_READ(PFIT_CONTROL));
5181 I915_WRITE(PFIT_CONTROL, 0);
5182}
5183
5184static void i9xx_crtc_disable(struct drm_crtc *crtc)
5185{
5186 struct drm_device *dev = crtc->dev;
5187 struct drm_i915_private *dev_priv = dev->dev_private;
5188 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5189 struct intel_encoder *encoder;
5190 int pipe = intel_crtc->pipe;
5191
5192 if (!intel_crtc->active)
5193 return;
5194
5195 /*
5196 * Gen2 reports pipe underruns whenever all planes are disabled.
5197 * So diasble underrun reporting before all the planes get disabled.
5198 * FIXME: Need to fix the logic to work when we turn off all planes
5199 * but leave the pipe running.
5200 */
5201 if (IS_GEN2(dev))
5202 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5203
5204 /*
5205 * Vblank time updates from the shadow to live plane control register
5206 * are blocked if the memory self-refresh mode is active at that
5207 * moment. So to make sure the plane gets truly disabled, disable
5208 * first the self-refresh mode. The self-refresh enable bit in turn
5209 * will be checked/applied by the HW only at the next frame start
5210 * event which is after the vblank start event, so we need to have a
5211 * wait-for-vblank between disabling the plane and the pipe.
5212 */
5213 intel_set_memory_cxsr(dev_priv, false);
5214 intel_crtc_disable_planes(crtc);
5215
5216 /*
5217 * On gen2 planes are double buffered but the pipe isn't, so we must
5218 * wait for planes to fully turn off before disabling the pipe.
5219 * We also need to wait on all gmch platforms because of the
5220 * self-refresh mode constraint explained above.
5221 */
5222 intel_wait_for_vblank(dev, pipe);
5223
5224 for_each_encoder_on_crtc(dev, crtc, encoder)
5225 encoder->disable(encoder);
5226
5227 drm_crtc_vblank_off(crtc);
5228 assert_vblank_disabled(crtc);
5229
5230 intel_disable_pipe(intel_crtc);
5231
5232 i9xx_pfit_disable(intel_crtc);
5233
5234 for_each_encoder_on_crtc(dev, crtc, encoder)
5235 if (encoder->post_disable)
5236 encoder->post_disable(encoder);
5237
5238 if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
5239 if (IS_CHERRYVIEW(dev))
5240 chv_disable_pll(dev_priv, pipe);
5241 else if (IS_VALLEYVIEW(dev))
5242 vlv_disable_pll(dev_priv, pipe);
5243 else
5244 i9xx_disable_pll(intel_crtc);
5245 }
5246
5247 if (!IS_GEN2(dev))
5248 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5249
5250 intel_crtc->active = false;
5251 intel_update_watermarks(crtc);
5252
5253 mutex_lock(&dev->struct_mutex);
5254 intel_fbc_update(dev);
5255 mutex_unlock(&dev->struct_mutex);
5256}
5257
5258static void i9xx_crtc_off(struct drm_crtc *crtc)
5259{
5260}
5261
5262/* Master function to enable/disable CRTC and corresponding power wells */
5263void intel_crtc_control(struct drm_crtc *crtc, bool enable)
5264{
5265 struct drm_device *dev = crtc->dev;
5266 struct drm_i915_private *dev_priv = dev->dev_private;
5267 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5268 enum intel_display_power_domain domain;
5269 unsigned long domains;
5270
5271 if (enable) {
5272 if (!intel_crtc->active) {
5273 domains = get_crtc_power_domains(crtc);
5274 for_each_power_domain(domain, domains)
5275 intel_display_power_get(dev_priv, domain);
5276 intel_crtc->enabled_power_domains = domains;
5277
5278 dev_priv->display.crtc_enable(crtc);
5279 }
5280 } else {
5281 if (intel_crtc->active) {
5282 dev_priv->display.crtc_disable(crtc);
5283
5284 domains = intel_crtc->enabled_power_domains;
5285 for_each_power_domain(domain, domains)
5286 intel_display_power_put(dev_priv, domain);
5287 intel_crtc->enabled_power_domains = 0;
5288 }
5289 }
5290}
5291
5292/**
5293 * Sets the power management mode of the pipe and plane.
5294 */
5295void intel_crtc_update_dpms(struct drm_crtc *crtc)
5296{
5297 struct drm_device *dev = crtc->dev;
5298 struct intel_encoder *intel_encoder;
5299 bool enable = false;
5300
5301 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5302 enable |= intel_encoder->connectors_active;
5303
5304 intel_crtc_control(crtc, enable);
5305}
5306
5307static void intel_crtc_disable(struct drm_crtc *crtc)
5308{
5309 struct drm_device *dev = crtc->dev;
5310 struct drm_connector *connector;
5311 struct drm_i915_private *dev_priv = dev->dev_private;
5312
5313 /* crtc should still be enabled when we disable it. */
5314 WARN_ON(!crtc->state->enable);
5315
5316 dev_priv->display.crtc_disable(crtc);
5317 dev_priv->display.off(crtc);
5318
5319 crtc->primary->funcs->disable_plane(crtc->primary);
5320
5321 /* Update computed state. */
5322 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
5323 if (!connector->encoder || !connector->encoder->crtc)
5324 continue;
5325
5326 if (connector->encoder->crtc != crtc)
5327 continue;
5328
5329 connector->dpms = DRM_MODE_DPMS_OFF;
5330 to_intel_encoder(connector->encoder)->connectors_active = false;
5331 }
5332}
5333
5334void intel_encoder_destroy(struct drm_encoder *encoder)
5335{
5336 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5337
5338 drm_encoder_cleanup(encoder);
5339 kfree(intel_encoder);
5340}
5341
5342/* Simple dpms helper for encoders with just one connector, no cloning and only
5343 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
5344 * state of the entire output pipe. */
5345static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
5346{
5347 if (mode == DRM_MODE_DPMS_ON) {
5348 encoder->connectors_active = true;
5349
5350 intel_crtc_update_dpms(encoder->base.crtc);
5351 } else {
5352 encoder->connectors_active = false;
5353
5354 intel_crtc_update_dpms(encoder->base.crtc);
5355 }
5356}
5357
5358/* Cross check the actual hw state with our own modeset state tracking (and it's
5359 * internal consistency). */
5360static void intel_connector_check_state(struct intel_connector *connector)
5361{
5362 if (connector->get_hw_state(connector)) {
5363 struct intel_encoder *encoder = connector->encoder;
5364 struct drm_crtc *crtc;
5365 bool encoder_enabled;
5366 enum pipe pipe;
5367
5368 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5369 connector->base.base.id,
5370 connector->base.name);
5371
5372 /* there is no real hw state for MST connectors */
5373 if (connector->mst_port)
5374 return;
5375
5376 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
5377 "wrong connector dpms state\n");
5378 I915_STATE_WARN(connector->base.encoder != &encoder->base,
5379 "active connector not linked to encoder\n");
5380
5381 if (encoder) {
5382 I915_STATE_WARN(!encoder->connectors_active,
5383 "encoder->connectors_active not set\n");
5384
5385 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
5386 I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
5387 if (I915_STATE_WARN_ON(!encoder->base.crtc))
5388 return;
5389
5390 crtc = encoder->base.crtc;
5391
5392 I915_STATE_WARN(!crtc->state->enable,
5393 "crtc not enabled\n");
5394 I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
5395 I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
5396 "encoder active on the wrong pipe\n");
5397 }
5398 }
5399}
5400
5401/* Even simpler default implementation, if there's really no special case to
5402 * consider. */
5403void intel_connector_dpms(struct drm_connector *connector, int mode)
5404{
5405 /* All the simple cases only support two dpms states. */
5406 if (mode != DRM_MODE_DPMS_ON)
5407 mode = DRM_MODE_DPMS_OFF;
5408
5409 if (mode == connector->dpms)
5410 return;
5411
5412 connector->dpms = mode;
5413
5414 /* Only need to change hw state when actually enabled */
5415 if (connector->encoder)
5416 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
5417
5418 intel_modeset_check_state(connector->dev);
5419}
5420
5421/* Simple connector->get_hw_state implementation for encoders that support only
5422 * one connector and no cloning and hence the encoder state determines the state
5423 * of the connector. */
5424bool intel_connector_get_hw_state(struct intel_connector *connector)
5425{
5426 enum pipe pipe = 0;
5427 struct intel_encoder *encoder = connector->encoder;
5428
5429 return encoder->get_hw_state(encoder, &pipe);
5430}
5431
5432static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5433 struct intel_crtc_state *pipe_config)
5434{
5435 struct drm_i915_private *dev_priv = dev->dev_private;
5436 struct intel_crtc *pipe_B_crtc =
5437 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5438
5439 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
5440 pipe_name(pipe), pipe_config->fdi_lanes);
5441 if (pipe_config->fdi_lanes > 4) {
5442 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
5443 pipe_name(pipe), pipe_config->fdi_lanes);
5444 return false;
5445 }
5446
5447 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
5448 if (pipe_config->fdi_lanes > 2) {
5449 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
5450 pipe_config->fdi_lanes);
5451 return false;
5452 } else {
5453 return true;
5454 }
5455 }
5456
5457 if (INTEL_INFO(dev)->num_pipes == 2)
5458 return true;
5459
5460 /* Ivybridge 3 pipe is really complicated */
5461 switch (pipe) {
5462 case PIPE_A:
5463 return true;
5464 case PIPE_B:
5465 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5466 pipe_config->fdi_lanes > 2) {
5467 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5468 pipe_name(pipe), pipe_config->fdi_lanes);
5469 return false;
5470 }
5471 return true;
5472 case PIPE_C:
5473 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
5474 pipe_B_crtc->config->fdi_lanes <= 2) {
5475 if (pipe_config->fdi_lanes > 2) {
5476 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
5477 pipe_name(pipe), pipe_config->fdi_lanes);
5478 return false;
5479 }
5480 } else {
5481 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5482 return false;
5483 }
5484 return true;
5485 default:
5486 BUG();
5487 }
5488}
5489
5490#define RETRY 1
5491static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5492 struct intel_crtc_state *pipe_config)
5493{
5494 struct drm_device *dev = intel_crtc->base.dev;
5495 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5496 int lane, link_bw, fdi_dotclock;
5497 bool setup_ok, needs_recompute = false;
5498
5499retry:
5500 /* FDI is a binary signal running at ~2.7GHz, encoding
5501 * each output octet as 10 bits. The actual frequency
5502 * is stored as a divider into a 100MHz clock, and the
5503 * mode pixel clock is stored in units of 1KHz.
5504 * Hence the bw of each lane in terms of the mode signal
5505 * is:
5506 */
5507 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5508
5509 fdi_dotclock = adjusted_mode->crtc_clock;
5510
5511 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
5512 pipe_config->pipe_bpp);
5513
5514 pipe_config->fdi_lanes = lane;
5515
5516 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
5517 link_bw, &pipe_config->fdi_m_n);
5518
5519 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
5520 intel_crtc->pipe, pipe_config);
5521 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
5522 pipe_config->pipe_bpp -= 2*3;
5523 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
5524 pipe_config->pipe_bpp);
5525 needs_recompute = true;
5526 pipe_config->bw_constrained = true;
5527
5528 goto retry;
5529 }
5530
5531 if (needs_recompute)
5532 return RETRY;
5533
5534 return setup_ok ? 0 : -EINVAL;
5535}
5536
5537static void hsw_compute_ips_config(struct intel_crtc *crtc,
5538 struct intel_crtc_state *pipe_config)
5539{
5540 pipe_config->ips_enabled = i915.enable_ips &&
5541 hsw_crtc_supports_ips(crtc) &&
5542 pipe_config->pipe_bpp <= 24;
5543}
5544
5545static int intel_crtc_compute_config(struct intel_crtc *crtc,
5546 struct intel_crtc_state *pipe_config)
5547{
5548 struct drm_device *dev = crtc->base.dev;
5549 struct drm_i915_private *dev_priv = dev->dev_private;
5550 struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
5551
5552 /* FIXME should check pixel clock limits on all platforms */
5553 if (INTEL_INFO(dev)->gen < 4) {
5554 int clock_limit =
5555 dev_priv->display.get_display_clock_speed(dev);
5556
5557 /*
5558 * Enable pixel doubling when the dot clock
5559 * is > 90% of the (display) core speed.
5560 *
5561 * GDG double wide on either pipe,
5562 * otherwise pipe A only.
5563 */
5564 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
5565 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
5566 clock_limit *= 2;
5567 pipe_config->double_wide = true;
5568 }
5569
5570 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
5571 return -EINVAL;
5572 }
5573
5574 /*
5575 * Pipe horizontal size must be even in:
5576 * - DVO ganged mode
5577 * - LVDS dual channel mode
5578 * - Double wide pipe
5579 */
5580 if ((intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5581 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
5582 pipe_config->pipe_src_w &= ~1;
5583
5584 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
5585 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
5586 */
5587 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
5588 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
5589 return -EINVAL;
5590
5591 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
5592 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
5593 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
5594 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
5595 * for lvds. */
5596 pipe_config->pipe_bpp = 8*3;
5597 }
5598
5599 if (HAS_IPS(dev))
5600 hsw_compute_ips_config(crtc, pipe_config);
5601
5602 if (pipe_config->has_pch_encoder)
5603 return ironlake_fdi_compute_config(crtc, pipe_config);
5604
5605 return 0;
5606}
5607
5608static int valleyview_get_display_clock_speed(struct drm_device *dev)
5609{
5610 struct drm_i915_private *dev_priv = dev->dev_private;
5611 u32 val;
5612 int divider;
5613
5614 /* FIXME: Punit isn't quite ready yet */
5615 if (IS_CHERRYVIEW(dev))
5616 return 400000;
5617
5618 if (dev_priv->hpll_freq == 0)
5619 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
5620
5621 mutex_lock(&dev_priv->dpio_lock);
5622 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5623 mutex_unlock(&dev_priv->dpio_lock);
5624
5625 divider = val & DISPLAY_FREQUENCY_VALUES;
5626
5627 WARN((val & DISPLAY_FREQUENCY_STATUS) !=
5628 (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5629 "cdclk change in progress\n");
5630
5631 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
5632}
5633
5634static int i945_get_display_clock_speed(struct drm_device *dev)
5635{
5636 return 400000;
5637}
5638
5639static int i915_get_display_clock_speed(struct drm_device *dev)
5640{
5641 return 333000;
5642}
5643
5644static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
5645{
5646 return 200000;
5647}
5648
5649static int pnv_get_display_clock_speed(struct drm_device *dev)
5650{
5651 u16 gcfgc = 0;
5652
5653 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5654
5655 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5656 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
5657 return 267000;
5658 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
5659 return 333000;
5660 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
5661 return 444000;
5662 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
5663 return 200000;
5664 default:
5665 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
5666 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
5667 return 133000;
5668 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
5669 return 167000;
5670 }
5671}
5672
5673static int i915gm_get_display_clock_speed(struct drm_device *dev)
5674{
5675 u16 gcfgc = 0;
5676
5677 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
5678
5679 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
5680 return 133000;
5681 else {
5682 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
5683 case GC_DISPLAY_CLOCK_333_MHZ:
5684 return 333000;
5685 default:
5686 case GC_DISPLAY_CLOCK_190_200_MHZ:
5687 return 190000;
5688 }
5689 }
5690}
5691
5692static int i865_get_display_clock_speed(struct drm_device *dev)
5693{
5694 return 266000;
5695}
5696
5697static int i855_get_display_clock_speed(struct drm_device *dev)
5698{
5699 u16 hpllcc = 0;
5700 /* Assume that the hardware is in the high speed state. This
5701 * should be the default.
5702 */
5703 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
5704 case GC_CLOCK_133_200:
5705 case GC_CLOCK_100_200:
5706 return 200000;
5707 case GC_CLOCK_166_250:
5708 return 250000;
5709 case GC_CLOCK_100_133:
5710 return 133000;
5711 }
5712
5713 /* Shouldn't happen */
5714 return 0;
5715}
5716
5717static int i830_get_display_clock_speed(struct drm_device *dev)
5718{
5719 return 133000;
5720}
5721
5722static void
5723intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
5724{
5725 while (*num > DATA_LINK_M_N_MASK ||
5726 *den > DATA_LINK_M_N_MASK) {
5727 *num >>= 1;
5728 *den >>= 1;
5729 }
5730}
5731
5732static void compute_m_n(unsigned int m, unsigned int n,
5733 uint32_t *ret_m, uint32_t *ret_n)
5734{
5735 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
5736 *ret_m = div_u64((uint64_t) m * *ret_n, n);
5737 intel_reduce_m_n_ratio(ret_m, ret_n);
5738}
5739
5740void
5741intel_link_compute_m_n(int bits_per_pixel, int nlanes,
5742 int pixel_clock, int link_clock,
5743 struct intel_link_m_n *m_n)
5744{
5745 m_n->tu = 64;
5746
5747 compute_m_n(bits_per_pixel * pixel_clock,
5748 link_clock * nlanes * 8,
5749 &m_n->gmch_m, &m_n->gmch_n);
5750
5751 compute_m_n(pixel_clock, link_clock,
5752 &m_n->link_m, &m_n->link_n);
5753}
5754
5755static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
5756{
5757 if (i915.panel_use_ssc >= 0)
5758 return i915.panel_use_ssc != 0;
5759 return dev_priv->vbt.lvds_use_ssc
5760 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
5761}
5762
5763static int i9xx_get_refclk(struct intel_crtc *crtc, int num_connectors)
5764{
5765 struct drm_device *dev = crtc->base.dev;
5766 struct drm_i915_private *dev_priv = dev->dev_private;
5767 int refclk;
5768
5769 if (IS_VALLEYVIEW(dev)) {
5770 refclk = 100000;
5771 } else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5772 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5773 refclk = dev_priv->vbt.lvds_ssc_freq;
5774 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
5775 } else if (!IS_GEN2(dev)) {
5776 refclk = 96000;
5777 } else {
5778 refclk = 48000;
5779 }
5780
5781 return refclk;
5782}
5783
5784static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
5785{
5786 return (1 << dpll->n) << 16 | dpll->m2;
5787}
5788
5789static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
5790{
5791 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
5792}
5793
5794static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
5795 struct intel_crtc_state *crtc_state,
5796 intel_clock_t *reduced_clock)
5797{
5798 struct drm_device *dev = crtc->base.dev;
5799 u32 fp, fp2 = 0;
5800
5801 if (IS_PINEVIEW(dev)) {
5802 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
5803 if (reduced_clock)
5804 fp2 = pnv_dpll_compute_fp(reduced_clock);
5805 } else {
5806 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
5807 if (reduced_clock)
5808 fp2 = i9xx_dpll_compute_fp(reduced_clock);
5809 }
5810
5811 crtc_state->dpll_hw_state.fp0 = fp;
5812
5813 crtc->lowfreq_avail = false;
5814 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
5815 reduced_clock && i915.powersave) {
5816 crtc_state->dpll_hw_state.fp1 = fp2;
5817 crtc->lowfreq_avail = true;
5818 } else {
5819 crtc_state->dpll_hw_state.fp1 = fp;
5820 }
5821}
5822
5823static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
5824 pipe)
5825{
5826 u32 reg_val;
5827
5828 /*
5829 * PLLB opamp always calibrates to max value of 0x3f, force enable it
5830 * and set it to a reasonable value instead.
5831 */
5832 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5833 reg_val &= 0xffffff00;
5834 reg_val |= 0x00000030;
5835 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5836
5837 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5838 reg_val &= 0x8cffffff;
5839 reg_val = 0x8c000000;
5840 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5841
5842 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
5843 reg_val &= 0xffffff00;
5844 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
5845
5846 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
5847 reg_val &= 0x00ffffff;
5848 reg_val |= 0xb0000000;
5849 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
5850}
5851
5852static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
5853 struct intel_link_m_n *m_n)
5854{
5855 struct drm_device *dev = crtc->base.dev;
5856 struct drm_i915_private *dev_priv = dev->dev_private;
5857 int pipe = crtc->pipe;
5858
5859 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5860 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
5861 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
5862 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
5863}
5864
5865static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
5866 struct intel_link_m_n *m_n,
5867 struct intel_link_m_n *m2_n2)
5868{
5869 struct drm_device *dev = crtc->base.dev;
5870 struct drm_i915_private *dev_priv = dev->dev_private;
5871 int pipe = crtc->pipe;
5872 enum transcoder transcoder = crtc->config->cpu_transcoder;
5873
5874 if (INTEL_INFO(dev)->gen >= 5) {
5875 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
5876 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
5877 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
5878 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
5879 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
5880 * for gen < 8) and if DRRS is supported (to make sure the
5881 * registers are not unnecessarily accessed).
5882 */
5883 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
5884 crtc->config->has_drrs) {
5885 I915_WRITE(PIPE_DATA_M2(transcoder),
5886 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
5887 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
5888 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
5889 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
5890 }
5891 } else {
5892 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
5893 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
5894 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
5895 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
5896 }
5897}
5898
5899void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
5900{
5901 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
5902
5903 if (m_n == M1_N1) {
5904 dp_m_n = &crtc->config->dp_m_n;
5905 dp_m2_n2 = &crtc->config->dp_m2_n2;
5906 } else if (m_n == M2_N2) {
5907
5908 /*
5909 * M2_N2 registers are not supported. Hence m2_n2 divider value
5910 * needs to be programmed into M1_N1.
5911 */
5912 dp_m_n = &crtc->config->dp_m2_n2;
5913 } else {
5914 DRM_ERROR("Unsupported divider value\n");
5915 return;
5916 }
5917
5918 if (crtc->config->has_pch_encoder)
5919 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
5920 else
5921 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
5922}
5923
5924static void vlv_update_pll(struct intel_crtc *crtc,
5925 struct intel_crtc_state *pipe_config)
5926{
5927 u32 dpll, dpll_md;
5928
5929 /*
5930 * Enable DPIO clock input. We should never disable the reference
5931 * clock for pipe B, since VGA hotplug / manual detection depends
5932 * on it.
5933 */
5934 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
5935 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
5936 /* We should never disable this, set it here for state tracking */
5937 if (crtc->pipe == PIPE_B)
5938 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
5939 dpll |= DPLL_VCO_ENABLE;
5940 pipe_config->dpll_hw_state.dpll = dpll;
5941
5942 dpll_md = (pipe_config->pixel_multiplier - 1)
5943 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5944 pipe_config->dpll_hw_state.dpll_md = dpll_md;
5945}
5946
5947static void vlv_prepare_pll(struct intel_crtc *crtc,
5948 const struct intel_crtc_state *pipe_config)
5949{
5950 struct drm_device *dev = crtc->base.dev;
5951 struct drm_i915_private *dev_priv = dev->dev_private;
5952 int pipe = crtc->pipe;
5953 u32 mdiv;
5954 u32 bestn, bestm1, bestm2, bestp1, bestp2;
5955 u32 coreclk, reg_val;
5956
5957 mutex_lock(&dev_priv->dpio_lock);
5958
5959 bestn = pipe_config->dpll.n;
5960 bestm1 = pipe_config->dpll.m1;
5961 bestm2 = pipe_config->dpll.m2;
5962 bestp1 = pipe_config->dpll.p1;
5963 bestp2 = pipe_config->dpll.p2;
5964
5965 /* See eDP HDMI DPIO driver vbios notes doc */
5966
5967 /* PLL B needs special handling */
5968 if (pipe == PIPE_B)
5969 vlv_pllb_recal_opamp(dev_priv, pipe);
5970
5971 /* Set up Tx target for periodic Rcomp update */
5972 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
5973
5974 /* Disable target IRef on PLL */
5975 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
5976 reg_val &= 0x00ffffff;
5977 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
5978
5979 /* Disable fast lock */
5980 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
5981
5982 /* Set idtafcrecal before PLL is enabled */
5983 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
5984 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
5985 mdiv |= ((bestn << DPIO_N_SHIFT));
5986 mdiv |= (1 << DPIO_K_SHIFT);
5987
5988 /*
5989 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
5990 * but we don't support that).
5991 * Note: don't use the DAC post divider as it seems unstable.
5992 */
5993 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
5994 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5995
5996 mdiv |= DPIO_ENABLE_CALIBRATION;
5997 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
5998
5999 /* Set HBR and RBR LPF coefficients */
6000 if (pipe_config->port_clock == 162000 ||
6001 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
6002 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
6003 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6004 0x009f0003);
6005 else
6006 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
6007 0x00d0000f);
6008
6009 if (pipe_config->has_dp_encoder) {
6010 /* Use SSC source */
6011 if (pipe == PIPE_A)
6012 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6013 0x0df40000);
6014 else
6015 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6016 0x0df70000);
6017 } else { /* HDMI or VGA */
6018 /* Use bend source */
6019 if (pipe == PIPE_A)
6020 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6021 0x0df70000);
6022 else
6023 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
6024 0x0df40000);
6025 }
6026
6027 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
6028 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
6029 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
6030 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
6031 coreclk |= 0x01000000;
6032 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
6033
6034 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
6035 mutex_unlock(&dev_priv->dpio_lock);
6036}
6037
6038static void chv_update_pll(struct intel_crtc *crtc,
6039 struct intel_crtc_state *pipe_config)
6040{
6041 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
6042 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
6043 DPLL_VCO_ENABLE;
6044 if (crtc->pipe != PIPE_A)
6045 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
6046
6047 pipe_config->dpll_hw_state.dpll_md =
6048 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6049}
6050
6051static void chv_prepare_pll(struct intel_crtc *crtc,
6052 const struct intel_crtc_state *pipe_config)
6053{
6054 struct drm_device *dev = crtc->base.dev;
6055 struct drm_i915_private *dev_priv = dev->dev_private;
6056 int pipe = crtc->pipe;
6057 int dpll_reg = DPLL(crtc->pipe);
6058 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6059 u32 loopfilter, intcoeff;
6060 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
6061 int refclk;
6062
6063 bestn = pipe_config->dpll.n;
6064 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
6065 bestm1 = pipe_config->dpll.m1;
6066 bestm2 = pipe_config->dpll.m2 >> 22;
6067 bestp1 = pipe_config->dpll.p1;
6068 bestp2 = pipe_config->dpll.p2;
6069
6070 /*
6071 * Enable Refclk and SSC
6072 */
6073 I915_WRITE(dpll_reg,
6074 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
6075
6076 mutex_lock(&dev_priv->dpio_lock);
6077
6078 /* p1 and p2 divider */
6079 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
6080 5 << DPIO_CHV_S1_DIV_SHIFT |
6081 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
6082 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
6083 1 << DPIO_CHV_K_DIV_SHIFT);
6084
6085 /* Feedback post-divider - m2 */
6086 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
6087
6088 /* Feedback refclk divider - n and m1 */
6089 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
6090 DPIO_CHV_M1_DIV_BY_2 |
6091 1 << DPIO_CHV_N_DIV_SHIFT);
6092
6093 /* M2 fraction division */
6094 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
6095
6096 /* M2 fraction division enable */
6097 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port),
6098 DPIO_CHV_FRAC_DIV_EN |
6099 (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT));
6100
6101 /* Loop filter */
6102 refclk = i9xx_get_refclk(crtc, 0);
6103 loopfilter = 5 << DPIO_CHV_PROP_COEFF_SHIFT |
6104 2 << DPIO_CHV_GAIN_CTRL_SHIFT;
6105 if (refclk == 100000)
6106 intcoeff = 11;
6107 else if (refclk == 38400)
6108 intcoeff = 10;
6109 else
6110 intcoeff = 9;
6111 loopfilter |= intcoeff << DPIO_CHV_INT_COEFF_SHIFT;
6112 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
6113
6114 /* AFC Recal */
6115 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
6116 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
6117 DPIO_AFC_RECAL);
6118
6119 mutex_unlock(&dev_priv->dpio_lock);
6120}
6121
6122/**
6123 * vlv_force_pll_on - forcibly enable just the PLL
6124 * @dev_priv: i915 private structure
6125 * @pipe: pipe PLL to enable
6126 * @dpll: PLL configuration
6127 *
6128 * Enable the PLL for @pipe using the supplied @dpll config. To be used
6129 * in cases where we need the PLL enabled even when @pipe is not going to
6130 * be enabled.
6131 */
6132void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
6133 const struct dpll *dpll)
6134{
6135 struct intel_crtc *crtc =
6136 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
6137 struct intel_crtc_state pipe_config = {
6138 .pixel_multiplier = 1,
6139 .dpll = *dpll,
6140 };
6141
6142 if (IS_CHERRYVIEW(dev)) {
6143 chv_update_pll(crtc, &pipe_config);
6144 chv_prepare_pll(crtc, &pipe_config);
6145 chv_enable_pll(crtc, &pipe_config);
6146 } else {
6147 vlv_update_pll(crtc, &pipe_config);
6148 vlv_prepare_pll(crtc, &pipe_config);
6149 vlv_enable_pll(crtc, &pipe_config);
6150 }
6151}
6152
6153/**
6154 * vlv_force_pll_off - forcibly disable just the PLL
6155 * @dev_priv: i915 private structure
6156 * @pipe: pipe PLL to disable
6157 *
6158 * Disable the PLL for @pipe. To be used in cases where we need
6159 * the PLL enabled even when @pipe is not going to be enabled.
6160 */
6161void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
6162{
6163 if (IS_CHERRYVIEW(dev))
6164 chv_disable_pll(to_i915(dev), pipe);
6165 else
6166 vlv_disable_pll(to_i915(dev), pipe);
6167}
6168
6169static void i9xx_update_pll(struct intel_crtc *crtc,
6170 struct intel_crtc_state *crtc_state,
6171 intel_clock_t *reduced_clock,
6172 int num_connectors)
6173{
6174 struct drm_device *dev = crtc->base.dev;
6175 struct drm_i915_private *dev_priv = dev->dev_private;
6176 u32 dpll;
6177 bool is_sdvo;
6178 struct dpll *clock = &crtc_state->dpll;
6179
6180 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6181
6182 is_sdvo = intel_pipe_will_have_type(crtc, INTEL_OUTPUT_SDVO) ||
6183 intel_pipe_will_have_type(crtc, INTEL_OUTPUT_HDMI);
6184
6185 dpll = DPLL_VGA_MODE_DIS;
6186
6187 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS))
6188 dpll |= DPLLB_MODE_LVDS;
6189 else
6190 dpll |= DPLLB_MODE_DAC_SERIAL;
6191
6192 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6193 dpll |= (crtc_state->pixel_multiplier - 1)
6194 << SDVO_MULTIPLIER_SHIFT_HIRES;
6195 }
6196
6197 if (is_sdvo)
6198 dpll |= DPLL_SDVO_HIGH_SPEED;
6199
6200 if (crtc_state->has_dp_encoder)
6201 dpll |= DPLL_SDVO_HIGH_SPEED;
6202
6203 /* compute bitmask from p1 value */
6204 if (IS_PINEVIEW(dev))
6205 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
6206 else {
6207 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6208 if (IS_G4X(dev) && reduced_clock)
6209 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6210 }
6211 switch (clock->p2) {
6212 case 5:
6213 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6214 break;
6215 case 7:
6216 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6217 break;
6218 case 10:
6219 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6220 break;
6221 case 14:
6222 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6223 break;
6224 }
6225 if (INTEL_INFO(dev)->gen >= 4)
6226 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
6227
6228 if (crtc_state->sdvo_tv_clock)
6229 dpll |= PLL_REF_INPUT_TVCLKINBC;
6230 else if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6231 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6232 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6233 else
6234 dpll |= PLL_REF_INPUT_DREFCLK;
6235
6236 dpll |= DPLL_VCO_ENABLE;
6237 crtc_state->dpll_hw_state.dpll = dpll;
6238
6239 if (INTEL_INFO(dev)->gen >= 4) {
6240 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
6241 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
6242 crtc_state->dpll_hw_state.dpll_md = dpll_md;
6243 }
6244}
6245
6246static void i8xx_update_pll(struct intel_crtc *crtc,
6247 struct intel_crtc_state *crtc_state,
6248 intel_clock_t *reduced_clock,
6249 int num_connectors)
6250{
6251 struct drm_device *dev = crtc->base.dev;
6252 struct drm_i915_private *dev_priv = dev->dev_private;
6253 u32 dpll;
6254 struct dpll *clock = &crtc_state->dpll;
6255
6256 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
6257
6258 dpll = DPLL_VGA_MODE_DIS;
6259
6260 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS)) {
6261 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6262 } else {
6263 if (clock->p1 == 2)
6264 dpll |= PLL_P1_DIVIDE_BY_TWO;
6265 else
6266 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6267 if (clock->p2 == 4)
6268 dpll |= PLL_P2_DIVIDE_BY_4;
6269 }
6270
6271 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc, INTEL_OUTPUT_DVO))
6272 dpll |= DPLL_DVO_2X_MODE;
6273
6274 if (intel_pipe_will_have_type(crtc, INTEL_OUTPUT_LVDS) &&
6275 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6276 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6277 else
6278 dpll |= PLL_REF_INPUT_DREFCLK;
6279
6280 dpll |= DPLL_VCO_ENABLE;
6281 crtc_state->dpll_hw_state.dpll = dpll;
6282}
6283
6284static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
6285{
6286 struct drm_device *dev = intel_crtc->base.dev;
6287 struct drm_i915_private *dev_priv = dev->dev_private;
6288 enum pipe pipe = intel_crtc->pipe;
6289 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
6290 struct drm_display_mode *adjusted_mode =
6291 &intel_crtc->config->base.adjusted_mode;
6292 uint32_t crtc_vtotal, crtc_vblank_end;
6293 int vsyncshift = 0;
6294
6295 /* We need to be careful not to changed the adjusted mode, for otherwise
6296 * the hw state checker will get angry at the mismatch. */
6297 crtc_vtotal = adjusted_mode->crtc_vtotal;
6298 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
6299
6300 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6301 /* the chip adds 2 halflines automatically */
6302 crtc_vtotal -= 1;
6303 crtc_vblank_end -= 1;
6304
6305 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6306 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
6307 else
6308 vsyncshift = adjusted_mode->crtc_hsync_start -
6309 adjusted_mode->crtc_htotal / 2;
6310 if (vsyncshift < 0)
6311 vsyncshift += adjusted_mode->crtc_htotal;
6312 }
6313
6314 if (INTEL_INFO(dev)->gen > 3)
6315 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
6316
6317 I915_WRITE(HTOTAL(cpu_transcoder),
6318 (adjusted_mode->crtc_hdisplay - 1) |
6319 ((adjusted_mode->crtc_htotal - 1) << 16));
6320 I915_WRITE(HBLANK(cpu_transcoder),
6321 (adjusted_mode->crtc_hblank_start - 1) |
6322 ((adjusted_mode->crtc_hblank_end - 1) << 16));
6323 I915_WRITE(HSYNC(cpu_transcoder),
6324 (adjusted_mode->crtc_hsync_start - 1) |
6325 ((adjusted_mode->crtc_hsync_end - 1) << 16));
6326
6327 I915_WRITE(VTOTAL(cpu_transcoder),
6328 (adjusted_mode->crtc_vdisplay - 1) |
6329 ((crtc_vtotal - 1) << 16));
6330 I915_WRITE(VBLANK(cpu_transcoder),
6331 (adjusted_mode->crtc_vblank_start - 1) |
6332 ((crtc_vblank_end - 1) << 16));
6333 I915_WRITE(VSYNC(cpu_transcoder),
6334 (adjusted_mode->crtc_vsync_start - 1) |
6335 ((adjusted_mode->crtc_vsync_end - 1) << 16));
6336
6337 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
6338 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
6339 * documented on the DDI_FUNC_CTL register description, EDP Input Select
6340 * bits. */
6341 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
6342 (pipe == PIPE_B || pipe == PIPE_C))
6343 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
6344
6345 /* pipesrc controls the size that is scaled from, which should
6346 * always be the user's requested size.
6347 */
6348 I915_WRITE(PIPESRC(pipe),
6349 ((intel_crtc->config->pipe_src_w - 1) << 16) |
6350 (intel_crtc->config->pipe_src_h - 1));
6351}
6352
6353static void intel_get_pipe_timings(struct intel_crtc *crtc,
6354 struct intel_crtc_state *pipe_config)
6355{
6356 struct drm_device *dev = crtc->base.dev;
6357 struct drm_i915_private *dev_priv = dev->dev_private;
6358 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6359 uint32_t tmp;
6360
6361 tmp = I915_READ(HTOTAL(cpu_transcoder));
6362 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
6363 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
6364 tmp = I915_READ(HBLANK(cpu_transcoder));
6365 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
6366 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
6367 tmp = I915_READ(HSYNC(cpu_transcoder));
6368 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
6369 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
6370
6371 tmp = I915_READ(VTOTAL(cpu_transcoder));
6372 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
6373 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
6374 tmp = I915_READ(VBLANK(cpu_transcoder));
6375 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
6376 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
6377 tmp = I915_READ(VSYNC(cpu_transcoder));
6378 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
6379 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
6380
6381 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
6382 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
6383 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
6384 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
6385 }
6386
6387 tmp = I915_READ(PIPESRC(crtc->pipe));
6388 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
6389 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
6390
6391 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
6392 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
6393}
6394
6395void intel_mode_from_pipe_config(struct drm_display_mode *mode,
6396 struct intel_crtc_state *pipe_config)
6397{
6398 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
6399 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
6400 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
6401 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
6402
6403 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
6404 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
6405 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
6406 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
6407
6408 mode->flags = pipe_config->base.adjusted_mode.flags;
6409
6410 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
6411 mode->flags |= pipe_config->base.adjusted_mode.flags;
6412}
6413
6414static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
6415{
6416 struct drm_device *dev = intel_crtc->base.dev;
6417 struct drm_i915_private *dev_priv = dev->dev_private;
6418 uint32_t pipeconf;
6419
6420 pipeconf = 0;
6421
6422 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
6423 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
6424 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
6425
6426 if (intel_crtc->config->double_wide)
6427 pipeconf |= PIPECONF_DOUBLE_WIDE;
6428
6429 /* only g4x and later have fancy bpc/dither controls */
6430 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6431 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6432 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
6433 pipeconf |= PIPECONF_DITHER_EN |
6434 PIPECONF_DITHER_TYPE_SP;
6435
6436 switch (intel_crtc->config->pipe_bpp) {
6437 case 18:
6438 pipeconf |= PIPECONF_6BPC;
6439 break;
6440 case 24:
6441 pipeconf |= PIPECONF_8BPC;
6442 break;
6443 case 30:
6444 pipeconf |= PIPECONF_10BPC;
6445 break;
6446 default:
6447 /* Case prevented by intel_choose_pipe_bpp_dither. */
6448 BUG();
6449 }
6450 }
6451
6452 if (HAS_PIPE_CXSR(dev)) {
6453 if (intel_crtc->lowfreq_avail) {
6454 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6455 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6456 } else {
6457 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6458 }
6459 }
6460
6461 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
6462 if (INTEL_INFO(dev)->gen < 4 ||
6463 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
6464 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
6465 else
6466 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
6467 } else
6468 pipeconf |= PIPECONF_PROGRESSIVE;
6469
6470 if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
6471 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
6472
6473 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
6474 POSTING_READ(PIPECONF(intel_crtc->pipe));
6475}
6476
6477static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
6478 struct intel_crtc_state *crtc_state)
6479{
6480 struct drm_device *dev = crtc->base.dev;
6481 struct drm_i915_private *dev_priv = dev->dev_private;
6482 int refclk, num_connectors = 0;
6483 intel_clock_t clock, reduced_clock;
6484 bool ok, has_reduced_clock = false;
6485 bool is_lvds = false, is_dsi = false;
6486 struct intel_encoder *encoder;
6487 const intel_limit_t *limit;
6488
6489 for_each_intel_encoder(dev, encoder) {
6490 if (encoder->new_crtc != crtc)
6491 continue;
6492
6493 switch (encoder->type) {
6494 case INTEL_OUTPUT_LVDS:
6495 is_lvds = true;
6496 break;
6497 case INTEL_OUTPUT_DSI:
6498 is_dsi = true;
6499 break;
6500 default:
6501 break;
6502 }
6503
6504 num_connectors++;
6505 }
6506
6507 if (is_dsi)
6508 return 0;
6509
6510 if (!crtc_state->clock_set) {
6511 refclk = i9xx_get_refclk(crtc, num_connectors);
6512
6513 /*
6514 * Returns a set of divisors for the desired target clock with
6515 * the given refclk, or FALSE. The returned values represent
6516 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
6517 * 2) / p1 / p2.
6518 */
6519 limit = intel_limit(crtc, refclk);
6520 ok = dev_priv->display.find_dpll(limit, crtc,
6521 crtc_state->port_clock,
6522 refclk, NULL, &clock);
6523 if (!ok) {
6524 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6525 return -EINVAL;
6526 }
6527
6528 if (is_lvds && dev_priv->lvds_downclock_avail) {
6529 /*
6530 * Ensure we match the reduced clock's P to the target
6531 * clock. If the clocks don't match, we can't switch
6532 * the display clock by using the FP0/FP1. In such case
6533 * we will disable the LVDS downclock feature.
6534 */
6535 has_reduced_clock =
6536 dev_priv->display.find_dpll(limit, crtc,
6537 dev_priv->lvds_downclock,
6538 refclk, &clock,
6539 &reduced_clock);
6540 }
6541 /* Compat-code for transition, will disappear. */
6542 crtc_state->dpll.n = clock.n;
6543 crtc_state->dpll.m1 = clock.m1;
6544 crtc_state->dpll.m2 = clock.m2;
6545 crtc_state->dpll.p1 = clock.p1;
6546 crtc_state->dpll.p2 = clock.p2;
6547 }
6548
6549 if (IS_GEN2(dev)) {
6550 i8xx_update_pll(crtc, crtc_state,
6551 has_reduced_clock ? &reduced_clock : NULL,
6552 num_connectors);
6553 } else if (IS_CHERRYVIEW(dev)) {
6554 chv_update_pll(crtc, crtc_state);
6555 } else if (IS_VALLEYVIEW(dev)) {
6556 vlv_update_pll(crtc, crtc_state);
6557 } else {
6558 i9xx_update_pll(crtc, crtc_state,
6559 has_reduced_clock ? &reduced_clock : NULL,
6560 num_connectors);
6561 }
6562
6563 return 0;
6564}
6565
6566static void i9xx_get_pfit_config(struct intel_crtc *crtc,
6567 struct intel_crtc_state *pipe_config)
6568{
6569 struct drm_device *dev = crtc->base.dev;
6570 struct drm_i915_private *dev_priv = dev->dev_private;
6571 uint32_t tmp;
6572
6573 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
6574 return;
6575
6576 tmp = I915_READ(PFIT_CONTROL);
6577 if (!(tmp & PFIT_ENABLE))
6578 return;
6579
6580 /* Check whether the pfit is attached to our pipe. */
6581 if (INTEL_INFO(dev)->gen < 4) {
6582 if (crtc->pipe != PIPE_B)
6583 return;
6584 } else {
6585 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
6586 return;
6587 }
6588
6589 pipe_config->gmch_pfit.control = tmp;
6590 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
6591 if (INTEL_INFO(dev)->gen < 5)
6592 pipe_config->gmch_pfit.lvds_border_bits =
6593 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
6594}
6595
6596static void vlv_crtc_clock_get(struct intel_crtc *crtc,
6597 struct intel_crtc_state *pipe_config)
6598{
6599 struct drm_device *dev = crtc->base.dev;
6600 struct drm_i915_private *dev_priv = dev->dev_private;
6601 int pipe = pipe_config->cpu_transcoder;
6602 intel_clock_t clock;
6603 u32 mdiv;
6604 int refclk = 100000;
6605
6606 /* In case of MIPI DPLL will not even be used */
6607 if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
6608 return;
6609
6610 mutex_lock(&dev_priv->dpio_lock);
6611 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
6612 mutex_unlock(&dev_priv->dpio_lock);
6613
6614 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
6615 clock.m2 = mdiv & DPIO_M2DIV_MASK;
6616 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
6617 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
6618 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
6619
6620 vlv_clock(refclk, &clock);
6621
6622 /* clock.dot is the fast clock */
6623 pipe_config->port_clock = clock.dot / 5;
6624}
6625
6626static void
6627i9xx_get_initial_plane_config(struct intel_crtc *crtc,
6628 struct intel_initial_plane_config *plane_config)
6629{
6630 struct drm_device *dev = crtc->base.dev;
6631 struct drm_i915_private *dev_priv = dev->dev_private;
6632 u32 val, base, offset;
6633 int pipe = crtc->pipe, plane = crtc->plane;
6634 int fourcc, pixel_format;
6635 int aligned_height;
6636 struct drm_framebuffer *fb;
6637 struct intel_framebuffer *intel_fb;
6638
6639 val = I915_READ(DSPCNTR(plane));
6640 if (!(val & DISPLAY_PLANE_ENABLE))
6641 return;
6642
6643 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6644 if (!intel_fb) {
6645 DRM_DEBUG_KMS("failed to alloc fb\n");
6646 return;
6647 }
6648
6649 fb = &intel_fb->base;
6650
6651 if (INTEL_INFO(dev)->gen >= 4) {
6652 if (val & DISPPLANE_TILED) {
6653 plane_config->tiling = I915_TILING_X;
6654 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
6655 }
6656 }
6657
6658 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
6659 fourcc = i9xx_format_to_fourcc(pixel_format);
6660 fb->pixel_format = fourcc;
6661 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
6662
6663 if (INTEL_INFO(dev)->gen >= 4) {
6664 if (plane_config->tiling)
6665 offset = I915_READ(DSPTILEOFF(plane));
6666 else
6667 offset = I915_READ(DSPLINOFF(plane));
6668 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
6669 } else {
6670 base = I915_READ(DSPADDR(plane));
6671 }
6672 plane_config->base = base;
6673
6674 val = I915_READ(PIPESRC(pipe));
6675 fb->width = ((val >> 16) & 0xfff) + 1;
6676 fb->height = ((val >> 0) & 0xfff) + 1;
6677
6678 val = I915_READ(DSPSTRIDE(pipe));
6679 fb->pitches[0] = val & 0xffffffc0;
6680
6681 aligned_height = intel_fb_align_height(dev, fb->height,
6682 fb->pixel_format,
6683 fb->modifier[0]);
6684
6685 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
6686
6687 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
6688 pipe_name(pipe), plane, fb->width, fb->height,
6689 fb->bits_per_pixel, base, fb->pitches[0],
6690 plane_config->size);
6691
6692 plane_config->fb = intel_fb;
6693}
6694
6695static void chv_crtc_clock_get(struct intel_crtc *crtc,
6696 struct intel_crtc_state *pipe_config)
6697{
6698 struct drm_device *dev = crtc->base.dev;
6699 struct drm_i915_private *dev_priv = dev->dev_private;
6700 int pipe = pipe_config->cpu_transcoder;
6701 enum dpio_channel port = vlv_pipe_to_channel(pipe);
6702 intel_clock_t clock;
6703 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2;
6704 int refclk = 100000;
6705
6706 mutex_lock(&dev_priv->dpio_lock);
6707 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
6708 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
6709 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
6710 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
6711 mutex_unlock(&dev_priv->dpio_lock);
6712
6713 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
6714 clock.m2 = ((pll_dw0 & 0xff) << 22) | (pll_dw2 & 0x3fffff);
6715 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
6716 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
6717 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
6718
6719 chv_clock(refclk, &clock);
6720
6721 /* clock.dot is the fast clock */
6722 pipe_config->port_clock = clock.dot / 5;
6723}
6724
6725static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
6726 struct intel_crtc_state *pipe_config)
6727{
6728 struct drm_device *dev = crtc->base.dev;
6729 struct drm_i915_private *dev_priv = dev->dev_private;
6730 uint32_t tmp;
6731
6732 if (!intel_display_power_is_enabled(dev_priv,
6733 POWER_DOMAIN_PIPE(crtc->pipe)))
6734 return false;
6735
6736 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6737 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6738
6739 tmp = I915_READ(PIPECONF(crtc->pipe));
6740 if (!(tmp & PIPECONF_ENABLE))
6741 return false;
6742
6743 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
6744 switch (tmp & PIPECONF_BPC_MASK) {
6745 case PIPECONF_6BPC:
6746 pipe_config->pipe_bpp = 18;
6747 break;
6748 case PIPECONF_8BPC:
6749 pipe_config->pipe_bpp = 24;
6750 break;
6751 case PIPECONF_10BPC:
6752 pipe_config->pipe_bpp = 30;
6753 break;
6754 default:
6755 break;
6756 }
6757 }
6758
6759 if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
6760 pipe_config->limited_color_range = true;
6761
6762 if (INTEL_INFO(dev)->gen < 4)
6763 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
6764
6765 intel_get_pipe_timings(crtc, pipe_config);
6766
6767 i9xx_get_pfit_config(crtc, pipe_config);
6768
6769 if (INTEL_INFO(dev)->gen >= 4) {
6770 tmp = I915_READ(DPLL_MD(crtc->pipe));
6771 pipe_config->pixel_multiplier =
6772 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
6773 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
6774 pipe_config->dpll_hw_state.dpll_md = tmp;
6775 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
6776 tmp = I915_READ(DPLL(crtc->pipe));
6777 pipe_config->pixel_multiplier =
6778 ((tmp & SDVO_MULTIPLIER_MASK)
6779 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
6780 } else {
6781 /* Note that on i915G/GM the pixel multiplier is in the sdvo
6782 * port and will be fixed up in the encoder->get_config
6783 * function. */
6784 pipe_config->pixel_multiplier = 1;
6785 }
6786 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
6787 if (!IS_VALLEYVIEW(dev)) {
6788 /*
6789 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
6790 * on 830. Filter it out here so that we don't
6791 * report errors due to that.
6792 */
6793 if (IS_I830(dev))
6794 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
6795
6796 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
6797 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
6798 } else {
6799 /* Mask out read-only status bits. */
6800 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
6801 DPLL_PORTC_READY_MASK |
6802 DPLL_PORTB_READY_MASK);
6803 }
6804
6805 if (IS_CHERRYVIEW(dev))
6806 chv_crtc_clock_get(crtc, pipe_config);
6807 else if (IS_VALLEYVIEW(dev))
6808 vlv_crtc_clock_get(crtc, pipe_config);
6809 else
6810 i9xx_crtc_clock_get(crtc, pipe_config);
6811
6812 return true;
6813}
6814
6815static void ironlake_init_pch_refclk(struct drm_device *dev)
6816{
6817 struct drm_i915_private *dev_priv = dev->dev_private;
6818 struct intel_encoder *encoder;
6819 u32 val, final;
6820 bool has_lvds = false;
6821 bool has_cpu_edp = false;
6822 bool has_panel = false;
6823 bool has_ck505 = false;
6824 bool can_ssc = false;
6825
6826 /* We need to take the global config into account */
6827 for_each_intel_encoder(dev, encoder) {
6828 switch (encoder->type) {
6829 case INTEL_OUTPUT_LVDS:
6830 has_panel = true;
6831 has_lvds = true;
6832 break;
6833 case INTEL_OUTPUT_EDP:
6834 has_panel = true;
6835 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
6836 has_cpu_edp = true;
6837 break;
6838 default:
6839 break;
6840 }
6841 }
6842
6843 if (HAS_PCH_IBX(dev)) {
6844 has_ck505 = dev_priv->vbt.display_clock_mode;
6845 can_ssc = has_ck505;
6846 } else {
6847 has_ck505 = false;
6848 can_ssc = true;
6849 }
6850
6851 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
6852 has_panel, has_lvds, has_ck505);
6853
6854 /* Ironlake: try to setup display ref clock before DPLL
6855 * enabling. This is only under driver's control after
6856 * PCH B stepping, previous chipset stepping should be
6857 * ignoring this setting.
6858 */
6859 val = I915_READ(PCH_DREF_CONTROL);
6860
6861 /* As we must carefully and slowly disable/enable each source in turn,
6862 * compute the final state we want first and check if we need to
6863 * make any changes at all.
6864 */
6865 final = val;
6866 final &= ~DREF_NONSPREAD_SOURCE_MASK;
6867 if (has_ck505)
6868 final |= DREF_NONSPREAD_CK505_ENABLE;
6869 else
6870 final |= DREF_NONSPREAD_SOURCE_ENABLE;
6871
6872 final &= ~DREF_SSC_SOURCE_MASK;
6873 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6874 final &= ~DREF_SSC1_ENABLE;
6875
6876 if (has_panel) {
6877 final |= DREF_SSC_SOURCE_ENABLE;
6878
6879 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6880 final |= DREF_SSC1_ENABLE;
6881
6882 if (has_cpu_edp) {
6883 if (intel_panel_use_ssc(dev_priv) && can_ssc)
6884 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6885 else
6886 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6887 } else
6888 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6889 } else {
6890 final |= DREF_SSC_SOURCE_DISABLE;
6891 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6892 }
6893
6894 if (final == val)
6895 return;
6896
6897 /* Always enable nonspread source */
6898 val &= ~DREF_NONSPREAD_SOURCE_MASK;
6899
6900 if (has_ck505)
6901 val |= DREF_NONSPREAD_CK505_ENABLE;
6902 else
6903 val |= DREF_NONSPREAD_SOURCE_ENABLE;
6904
6905 if (has_panel) {
6906 val &= ~DREF_SSC_SOURCE_MASK;
6907 val |= DREF_SSC_SOURCE_ENABLE;
6908
6909 /* SSC must be turned on before enabling the CPU output */
6910 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6911 DRM_DEBUG_KMS("Using SSC on panel\n");
6912 val |= DREF_SSC1_ENABLE;
6913 } else
6914 val &= ~DREF_SSC1_ENABLE;
6915
6916 /* Get SSC going before enabling the outputs */
6917 I915_WRITE(PCH_DREF_CONTROL, val);
6918 POSTING_READ(PCH_DREF_CONTROL);
6919 udelay(200);
6920
6921 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6922
6923 /* Enable CPU source on CPU attached eDP */
6924 if (has_cpu_edp) {
6925 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
6926 DRM_DEBUG_KMS("Using SSC on eDP\n");
6927 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
6928 } else
6929 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
6930 } else
6931 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6932
6933 I915_WRITE(PCH_DREF_CONTROL, val);
6934 POSTING_READ(PCH_DREF_CONTROL);
6935 udelay(200);
6936 } else {
6937 DRM_DEBUG_KMS("Disabling SSC entirely\n");
6938
6939 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
6940
6941 /* Turn off CPU output */
6942 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
6943
6944 I915_WRITE(PCH_DREF_CONTROL, val);
6945 POSTING_READ(PCH_DREF_CONTROL);
6946 udelay(200);
6947
6948 /* Turn off the SSC source */
6949 val &= ~DREF_SSC_SOURCE_MASK;
6950 val |= DREF_SSC_SOURCE_DISABLE;
6951
6952 /* Turn off SSC1 */
6953 val &= ~DREF_SSC1_ENABLE;
6954
6955 I915_WRITE(PCH_DREF_CONTROL, val);
6956 POSTING_READ(PCH_DREF_CONTROL);
6957 udelay(200);
6958 }
6959
6960 BUG_ON(val != final);
6961}
6962
6963static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
6964{
6965 uint32_t tmp;
6966
6967 tmp = I915_READ(SOUTH_CHICKEN2);
6968 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
6969 I915_WRITE(SOUTH_CHICKEN2, tmp);
6970
6971 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
6972 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
6973 DRM_ERROR("FDI mPHY reset assert timeout\n");
6974
6975 tmp = I915_READ(SOUTH_CHICKEN2);
6976 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
6977 I915_WRITE(SOUTH_CHICKEN2, tmp);
6978
6979 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
6980 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
6981 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
6982}
6983
6984/* WaMPhyProgramming:hsw */
6985static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
6986{
6987 uint32_t tmp;
6988
6989 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
6990 tmp &= ~(0xFF << 24);
6991 tmp |= (0x12 << 24);
6992 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
6993
6994 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
6995 tmp |= (1 << 11);
6996 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
6997
6998 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
6999 tmp |= (1 << 11);
7000 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
7001
7002 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
7003 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7004 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
7005
7006 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
7007 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
7008 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
7009
7010 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
7011 tmp &= ~(7 << 13);
7012 tmp |= (5 << 13);
7013 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
7014
7015 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
7016 tmp &= ~(7 << 13);
7017 tmp |= (5 << 13);
7018 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
7019
7020 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
7021 tmp &= ~0xFF;
7022 tmp |= 0x1C;
7023 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
7024
7025 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
7026 tmp &= ~0xFF;
7027 tmp |= 0x1C;
7028 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
7029
7030 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
7031 tmp &= ~(0xFF << 16);
7032 tmp |= (0x1C << 16);
7033 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
7034
7035 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
7036 tmp &= ~(0xFF << 16);
7037 tmp |= (0x1C << 16);
7038 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
7039
7040 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
7041 tmp |= (1 << 27);
7042 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
7043
7044 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
7045 tmp |= (1 << 27);
7046 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
7047
7048 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
7049 tmp &= ~(0xF << 28);
7050 tmp |= (4 << 28);
7051 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
7052
7053 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
7054 tmp &= ~(0xF << 28);
7055 tmp |= (4 << 28);
7056 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
7057}
7058
7059/* Implements 3 different sequences from BSpec chapter "Display iCLK
7060 * Programming" based on the parameters passed:
7061 * - Sequence to enable CLKOUT_DP
7062 * - Sequence to enable CLKOUT_DP without spread
7063 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
7064 */
7065static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
7066 bool with_fdi)
7067{
7068 struct drm_i915_private *dev_priv = dev->dev_private;
7069 uint32_t reg, tmp;
7070
7071 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
7072 with_spread = true;
7073 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
7074 with_fdi, "LP PCH doesn't have FDI\n"))
7075 with_fdi = false;
7076
7077 mutex_lock(&dev_priv->dpio_lock);
7078
7079 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7080 tmp &= ~SBI_SSCCTL_DISABLE;
7081 tmp |= SBI_SSCCTL_PATHALT;
7082 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7083
7084 udelay(24);
7085
7086 if (with_spread) {
7087 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7088 tmp &= ~SBI_SSCCTL_PATHALT;
7089 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7090
7091 if (with_fdi) {
7092 lpt_reset_fdi_mphy(dev_priv);
7093 lpt_program_fdi_mphy(dev_priv);
7094 }
7095 }
7096
7097 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7098 SBI_GEN0 : SBI_DBUFF0;
7099 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7100 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7101 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7102
7103 mutex_unlock(&dev_priv->dpio_lock);
7104}
7105
7106/* Sequence to disable CLKOUT_DP */
7107static void lpt_disable_clkout_dp(struct drm_device *dev)
7108{
7109 struct drm_i915_private *dev_priv = dev->dev_private;
7110 uint32_t reg, tmp;
7111
7112 mutex_lock(&dev_priv->dpio_lock);
7113
7114 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
7115 SBI_GEN0 : SBI_DBUFF0;
7116 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
7117 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
7118 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
7119
7120 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
7121 if (!(tmp & SBI_SSCCTL_DISABLE)) {
7122 if (!(tmp & SBI_SSCCTL_PATHALT)) {
7123 tmp |= SBI_SSCCTL_PATHALT;
7124 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7125 udelay(32);
7126 }
7127 tmp |= SBI_SSCCTL_DISABLE;
7128 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
7129 }
7130
7131 mutex_unlock(&dev_priv->dpio_lock);
7132}
7133
7134static void lpt_init_pch_refclk(struct drm_device *dev)
7135{
7136 struct intel_encoder *encoder;
7137 bool has_vga = false;
7138
7139 for_each_intel_encoder(dev, encoder) {
7140 switch (encoder->type) {
7141 case INTEL_OUTPUT_ANALOG:
7142 has_vga = true;
7143 break;
7144 default:
7145 break;
7146 }
7147 }
7148
7149 if (has_vga)
7150 lpt_enable_clkout_dp(dev, true, true);
7151 else
7152 lpt_disable_clkout_dp(dev);
7153}
7154
7155/*
7156 * Initialize reference clocks when the driver loads
7157 */
7158void intel_init_pch_refclk(struct drm_device *dev)
7159{
7160 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
7161 ironlake_init_pch_refclk(dev);
7162 else if (HAS_PCH_LPT(dev))
7163 lpt_init_pch_refclk(dev);
7164}
7165
7166static int ironlake_get_refclk(struct drm_crtc *crtc)
7167{
7168 struct drm_device *dev = crtc->dev;
7169 struct drm_i915_private *dev_priv = dev->dev_private;
7170 struct intel_encoder *encoder;
7171 int num_connectors = 0;
7172 bool is_lvds = false;
7173
7174 for_each_intel_encoder(dev, encoder) {
7175 if (encoder->new_crtc != to_intel_crtc(crtc))
7176 continue;
7177
7178 switch (encoder->type) {
7179 case INTEL_OUTPUT_LVDS:
7180 is_lvds = true;
7181 break;
7182 default:
7183 break;
7184 }
7185 num_connectors++;
7186 }
7187
7188 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7189 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
7190 dev_priv->vbt.lvds_ssc_freq);
7191 return dev_priv->vbt.lvds_ssc_freq;
7192 }
7193
7194 return 120000;
7195}
7196
7197static void ironlake_set_pipeconf(struct drm_crtc *crtc)
7198{
7199 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
7200 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7201 int pipe = intel_crtc->pipe;
7202 uint32_t val;
7203
7204 val = 0;
7205
7206 switch (intel_crtc->config->pipe_bpp) {
7207 case 18:
7208 val |= PIPECONF_6BPC;
7209 break;
7210 case 24:
7211 val |= PIPECONF_8BPC;
7212 break;
7213 case 30:
7214 val |= PIPECONF_10BPC;
7215 break;
7216 case 36:
7217 val |= PIPECONF_12BPC;
7218 break;
7219 default:
7220 /* Case prevented by intel_choose_pipe_bpp_dither. */
7221 BUG();
7222 }
7223
7224 if (intel_crtc->config->dither)
7225 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7226
7227 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7228 val |= PIPECONF_INTERLACED_ILK;
7229 else
7230 val |= PIPECONF_PROGRESSIVE;
7231
7232 if (intel_crtc->config->limited_color_range)
7233 val |= PIPECONF_COLOR_RANGE_SELECT;
7234
7235 I915_WRITE(PIPECONF(pipe), val);
7236 POSTING_READ(PIPECONF(pipe));
7237}
7238
7239/*
7240 * Set up the pipe CSC unit.
7241 *
7242 * Currently only full range RGB to limited range RGB conversion
7243 * is supported, but eventually this should handle various
7244 * RGB<->YCbCr scenarios as well.
7245 */
7246static void intel_set_pipe_csc(struct drm_crtc *crtc)
7247{
7248 struct drm_device *dev = crtc->dev;
7249 struct drm_i915_private *dev_priv = dev->dev_private;
7250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7251 int pipe = intel_crtc->pipe;
7252 uint16_t coeff = 0x7800; /* 1.0 */
7253
7254 /*
7255 * TODO: Check what kind of values actually come out of the pipe
7256 * with these coeff/postoff values and adjust to get the best
7257 * accuracy. Perhaps we even need to take the bpc value into
7258 * consideration.
7259 */
7260
7261 if (intel_crtc->config->limited_color_range)
7262 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
7263
7264 /*
7265 * GY/GU and RY/RU should be the other way around according
7266 * to BSpec, but reality doesn't agree. Just set them up in
7267 * a way that results in the correct picture.
7268 */
7269 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
7270 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
7271
7272 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
7273 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
7274
7275 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
7276 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
7277
7278 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
7279 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
7280 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
7281
7282 if (INTEL_INFO(dev)->gen > 6) {
7283 uint16_t postoff = 0;
7284
7285 if (intel_crtc->config->limited_color_range)
7286 postoff = (16 * (1 << 12) / 255) & 0x1fff;
7287
7288 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
7289 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
7290 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
7291
7292 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
7293 } else {
7294 uint32_t mode = CSC_MODE_YUV_TO_RGB;
7295
7296 if (intel_crtc->config->limited_color_range)
7297 mode |= CSC_BLACK_SCREEN_OFFSET;
7298
7299 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
7300 }
7301}
7302
7303static void haswell_set_pipeconf(struct drm_crtc *crtc)
7304{
7305 struct drm_device *dev = crtc->dev;
7306 struct drm_i915_private *dev_priv = dev->dev_private;
7307 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7308 enum pipe pipe = intel_crtc->pipe;
7309 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7310 uint32_t val;
7311
7312 val = 0;
7313
7314 if (IS_HASWELL(dev) && intel_crtc->config->dither)
7315 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
7316
7317 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
7318 val |= PIPECONF_INTERLACED_ILK;
7319 else
7320 val |= PIPECONF_PROGRESSIVE;
7321
7322 I915_WRITE(PIPECONF(cpu_transcoder), val);
7323 POSTING_READ(PIPECONF(cpu_transcoder));
7324
7325 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
7326 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
7327
7328 if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
7329 val = 0;
7330
7331 switch (intel_crtc->config->pipe_bpp) {
7332 case 18:
7333 val |= PIPEMISC_DITHER_6_BPC;
7334 break;
7335 case 24:
7336 val |= PIPEMISC_DITHER_8_BPC;
7337 break;
7338 case 30:
7339 val |= PIPEMISC_DITHER_10_BPC;
7340 break;
7341 case 36:
7342 val |= PIPEMISC_DITHER_12_BPC;
7343 break;
7344 default:
7345 /* Case prevented by pipe_config_set_bpp. */
7346 BUG();
7347 }
7348
7349 if (intel_crtc->config->dither)
7350 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
7351
7352 I915_WRITE(PIPEMISC(pipe), val);
7353 }
7354}
7355
7356static bool ironlake_compute_clocks(struct drm_crtc *crtc,
7357 struct intel_crtc_state *crtc_state,
7358 intel_clock_t *clock,
7359 bool *has_reduced_clock,
7360 intel_clock_t *reduced_clock)
7361{
7362 struct drm_device *dev = crtc->dev;
7363 struct drm_i915_private *dev_priv = dev->dev_private;
7364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7365 int refclk;
7366 const intel_limit_t *limit;
7367 bool ret, is_lvds = false;
7368
7369 is_lvds = intel_pipe_will_have_type(intel_crtc, INTEL_OUTPUT_LVDS);
7370
7371 refclk = ironlake_get_refclk(crtc);
7372
7373 /*
7374 * Returns a set of divisors for the desired target clock with the given
7375 * refclk, or FALSE. The returned values represent the clock equation:
7376 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
7377 */
7378 limit = intel_limit(intel_crtc, refclk);
7379 ret = dev_priv->display.find_dpll(limit, intel_crtc,
7380 crtc_state->port_clock,
7381 refclk, NULL, clock);
7382 if (!ret)
7383 return false;
7384
7385 if (is_lvds && dev_priv->lvds_downclock_avail) {
7386 /*
7387 * Ensure we match the reduced clock's P to the target clock.
7388 * If the clocks don't match, we can't switch the display clock
7389 * by using the FP0/FP1. In such case we will disable the LVDS
7390 * downclock feature.
7391 */
7392 *has_reduced_clock =
7393 dev_priv->display.find_dpll(limit, intel_crtc,
7394 dev_priv->lvds_downclock,
7395 refclk, clock,
7396 reduced_clock);
7397 }
7398
7399 return true;
7400}
7401
7402int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
7403{
7404 /*
7405 * Account for spread spectrum to avoid
7406 * oversubscribing the link. Max center spread
7407 * is 2.5%; use 5% for safety's sake.
7408 */
7409 u32 bps = target_clock * bpp * 21 / 20;
7410 return DIV_ROUND_UP(bps, link_bw * 8);
7411}
7412
7413static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
7414{
7415 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
7416}
7417
7418static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
7419 struct intel_crtc_state *crtc_state,
7420 u32 *fp,
7421 intel_clock_t *reduced_clock, u32 *fp2)
7422{
7423 struct drm_crtc *crtc = &intel_crtc->base;
7424 struct drm_device *dev = crtc->dev;
7425 struct drm_i915_private *dev_priv = dev->dev_private;
7426 struct intel_encoder *intel_encoder;
7427 uint32_t dpll;
7428 int factor, num_connectors = 0;
7429 bool is_lvds = false, is_sdvo = false;
7430
7431 for_each_intel_encoder(dev, intel_encoder) {
7432 if (intel_encoder->new_crtc != to_intel_crtc(crtc))
7433 continue;
7434
7435 switch (intel_encoder->type) {
7436 case INTEL_OUTPUT_LVDS:
7437 is_lvds = true;
7438 break;
7439 case INTEL_OUTPUT_SDVO:
7440 case INTEL_OUTPUT_HDMI:
7441 is_sdvo = true;
7442 break;
7443 default:
7444 break;
7445 }
7446
7447 num_connectors++;
7448 }
7449
7450 /* Enable autotuning of the PLL clock (if permissible) */
7451 factor = 21;
7452 if (is_lvds) {
7453 if ((intel_panel_use_ssc(dev_priv) &&
7454 dev_priv->vbt.lvds_ssc_freq == 100000) ||
7455 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
7456 factor = 25;
7457 } else if (crtc_state->sdvo_tv_clock)
7458 factor = 20;
7459
7460 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
7461 *fp |= FP_CB_TUNE;
7462
7463 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
7464 *fp2 |= FP_CB_TUNE;
7465
7466 dpll = 0;
7467
7468 if (is_lvds)
7469 dpll |= DPLLB_MODE_LVDS;
7470 else
7471 dpll |= DPLLB_MODE_DAC_SERIAL;
7472
7473 dpll |= (crtc_state->pixel_multiplier - 1)
7474 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
7475
7476 if (is_sdvo)
7477 dpll |= DPLL_SDVO_HIGH_SPEED;
7478 if (crtc_state->has_dp_encoder)
7479 dpll |= DPLL_SDVO_HIGH_SPEED;
7480
7481 /* compute bitmask from p1 value */
7482 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7483 /* also FPA1 */
7484 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7485
7486 switch (crtc_state->dpll.p2) {
7487 case 5:
7488 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7489 break;
7490 case 7:
7491 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7492 break;
7493 case 10:
7494 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7495 break;
7496 case 14:
7497 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7498 break;
7499 }
7500
7501 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7502 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7503 else
7504 dpll |= PLL_REF_INPUT_DREFCLK;
7505
7506 return dpll | DPLL_VCO_ENABLE;
7507}
7508
7509static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
7510 struct intel_crtc_state *crtc_state)
7511{
7512 struct drm_device *dev = crtc->base.dev;
7513 intel_clock_t clock, reduced_clock;
7514 u32 dpll = 0, fp = 0, fp2 = 0;
7515 bool ok, has_reduced_clock = false;
7516 bool is_lvds = false;
7517 struct intel_shared_dpll *pll;
7518
7519 is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
7520
7521 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
7522 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
7523
7524 ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
7525 &has_reduced_clock, &reduced_clock);
7526 if (!ok && !crtc_state->clock_set) {
7527 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7528 return -EINVAL;
7529 }
7530 /* Compat-code for transition, will disappear. */
7531 if (!crtc_state->clock_set) {
7532 crtc_state->dpll.n = clock.n;
7533 crtc_state->dpll.m1 = clock.m1;
7534 crtc_state->dpll.m2 = clock.m2;
7535 crtc_state->dpll.p1 = clock.p1;
7536 crtc_state->dpll.p2 = clock.p2;
7537 }
7538
7539 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
7540 if (crtc_state->has_pch_encoder) {
7541 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7542 if (has_reduced_clock)
7543 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
7544
7545 dpll = ironlake_compute_dpll(crtc, crtc_state,
7546 &fp, &reduced_clock,
7547 has_reduced_clock ? &fp2 : NULL);
7548
7549 crtc_state->dpll_hw_state.dpll = dpll;
7550 crtc_state->dpll_hw_state.fp0 = fp;
7551 if (has_reduced_clock)
7552 crtc_state->dpll_hw_state.fp1 = fp2;
7553 else
7554 crtc_state->dpll_hw_state.fp1 = fp;
7555
7556 pll = intel_get_shared_dpll(crtc, crtc_state);
7557 if (pll == NULL) {
7558 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
7559 pipe_name(crtc->pipe));
7560 return -EINVAL;
7561 }
7562 }
7563
7564 if (is_lvds && has_reduced_clock && i915.powersave)
7565 crtc->lowfreq_avail = true;
7566 else
7567 crtc->lowfreq_avail = false;
7568
7569 return 0;
7570}
7571
7572static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
7573 struct intel_link_m_n *m_n)
7574{
7575 struct drm_device *dev = crtc->base.dev;
7576 struct drm_i915_private *dev_priv = dev->dev_private;
7577 enum pipe pipe = crtc->pipe;
7578
7579 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
7580 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
7581 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
7582 & ~TU_SIZE_MASK;
7583 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
7584 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
7585 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7586}
7587
7588static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
7589 enum transcoder transcoder,
7590 struct intel_link_m_n *m_n,
7591 struct intel_link_m_n *m2_n2)
7592{
7593 struct drm_device *dev = crtc->base.dev;
7594 struct drm_i915_private *dev_priv = dev->dev_private;
7595 enum pipe pipe = crtc->pipe;
7596
7597 if (INTEL_INFO(dev)->gen >= 5) {
7598 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
7599 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
7600 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
7601 & ~TU_SIZE_MASK;
7602 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
7603 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
7604 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7605 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
7606 * gen < 8) and if DRRS is supported (to make sure the
7607 * registers are not unnecessarily read).
7608 */
7609 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
7610 crtc->config->has_drrs) {
7611 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
7612 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
7613 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
7614 & ~TU_SIZE_MASK;
7615 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
7616 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
7617 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7618 }
7619 } else {
7620 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
7621 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
7622 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
7623 & ~TU_SIZE_MASK;
7624 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
7625 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
7626 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
7627 }
7628}
7629
7630void intel_dp_get_m_n(struct intel_crtc *crtc,
7631 struct intel_crtc_state *pipe_config)
7632{
7633 if (pipe_config->has_pch_encoder)
7634 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
7635 else
7636 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7637 &pipe_config->dp_m_n,
7638 &pipe_config->dp_m2_n2);
7639}
7640
7641static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
7642 struct intel_crtc_state *pipe_config)
7643{
7644 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
7645 &pipe_config->fdi_m_n, NULL);
7646}
7647
7648static void skylake_get_pfit_config(struct intel_crtc *crtc,
7649 struct intel_crtc_state *pipe_config)
7650{
7651 struct drm_device *dev = crtc->base.dev;
7652 struct drm_i915_private *dev_priv = dev->dev_private;
7653 uint32_t tmp;
7654
7655 tmp = I915_READ(PS_CTL(crtc->pipe));
7656
7657 if (tmp & PS_ENABLE) {
7658 pipe_config->pch_pfit.enabled = true;
7659 pipe_config->pch_pfit.pos = I915_READ(PS_WIN_POS(crtc->pipe));
7660 pipe_config->pch_pfit.size = I915_READ(PS_WIN_SZ(crtc->pipe));
7661 }
7662}
7663
7664static void
7665skylake_get_initial_plane_config(struct intel_crtc *crtc,
7666 struct intel_initial_plane_config *plane_config)
7667{
7668 struct drm_device *dev = crtc->base.dev;
7669 struct drm_i915_private *dev_priv = dev->dev_private;
7670 u32 val, base, offset, stride_mult;
7671 int pipe = crtc->pipe;
7672 int fourcc, pixel_format;
7673 int aligned_height;
7674 struct drm_framebuffer *fb;
7675 struct intel_framebuffer *intel_fb;
7676
7677 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7678 if (!intel_fb) {
7679 DRM_DEBUG_KMS("failed to alloc fb\n");
7680 return;
7681 }
7682
7683 fb = &intel_fb->base;
7684
7685 val = I915_READ(PLANE_CTL(pipe, 0));
7686 if (!(val & PLANE_CTL_ENABLE))
7687 goto error;
7688
7689 if (val & PLANE_CTL_TILED_MASK) {
7690 plane_config->tiling = I915_TILING_X;
7691 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7692 }
7693
7694 pixel_format = val & PLANE_CTL_FORMAT_MASK;
7695 fourcc = skl_format_to_fourcc(pixel_format,
7696 val & PLANE_CTL_ORDER_RGBX,
7697 val & PLANE_CTL_ALPHA_MASK);
7698 fb->pixel_format = fourcc;
7699 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7700
7701 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
7702 plane_config->base = base;
7703
7704 offset = I915_READ(PLANE_OFFSET(pipe, 0));
7705
7706 val = I915_READ(PLANE_SIZE(pipe, 0));
7707 fb->height = ((val >> 16) & 0xfff) + 1;
7708 fb->width = ((val >> 0) & 0x1fff) + 1;
7709
7710 val = I915_READ(PLANE_STRIDE(pipe, 0));
7711 switch (plane_config->tiling) {
7712 case I915_TILING_NONE:
7713 stride_mult = 64;
7714 break;
7715 case I915_TILING_X:
7716 stride_mult = 512;
7717 break;
7718 default:
7719 MISSING_CASE(plane_config->tiling);
7720 goto error;
7721 }
7722 fb->pitches[0] = (val & 0x3ff) * stride_mult;
7723
7724 aligned_height = intel_fb_align_height(dev, fb->height,
7725 fb->pixel_format,
7726 fb->modifier[0]);
7727
7728 plane_config->size = ALIGN(fb->pitches[0] * aligned_height, PAGE_SIZE);
7729
7730 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7731 pipe_name(pipe), fb->width, fb->height,
7732 fb->bits_per_pixel, base, fb->pitches[0],
7733 plane_config->size);
7734
7735 plane_config->fb = intel_fb;
7736 return;
7737
7738error:
7739 kfree(fb);
7740}
7741
7742static void ironlake_get_pfit_config(struct intel_crtc *crtc,
7743 struct intel_crtc_state *pipe_config)
7744{
7745 struct drm_device *dev = crtc->base.dev;
7746 struct drm_i915_private *dev_priv = dev->dev_private;
7747 uint32_t tmp;
7748
7749 tmp = I915_READ(PF_CTL(crtc->pipe));
7750
7751 if (tmp & PF_ENABLE) {
7752 pipe_config->pch_pfit.enabled = true;
7753 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
7754 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
7755
7756 /* We currently do not free assignements of panel fitters on
7757 * ivb/hsw (since we don't use the higher upscaling modes which
7758 * differentiates them) so just WARN about this case for now. */
7759 if (IS_GEN7(dev)) {
7760 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
7761 PF_PIPE_SEL_IVB(crtc->pipe));
7762 }
7763 }
7764}
7765
7766static void
7767ironlake_get_initial_plane_config(struct intel_crtc *crtc,
7768 struct intel_initial_plane_config *plane_config)
7769{
7770 struct drm_device *dev = crtc->base.dev;
7771 struct drm_i915_private *dev_priv = dev->dev_private;
7772 u32 val, base, offset;
7773 int pipe = crtc->pipe;
7774 int fourcc, pixel_format;
7775 int aligned_height;
7776 struct drm_framebuffer *fb;
7777 struct intel_framebuffer *intel_fb;
7778
7779 val = I915_READ(DSPCNTR(pipe));
7780 if (!(val & DISPLAY_PLANE_ENABLE))
7781 return;
7782
7783 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7784 if (!intel_fb) {
7785 DRM_DEBUG_KMS("failed to alloc fb\n");
7786 return;
7787 }
7788
7789 fb = &intel_fb->base;
7790
7791 if (INTEL_INFO(dev)->gen >= 4) {
7792 if (val & DISPPLANE_TILED) {
7793 plane_config->tiling = I915_TILING_X;
7794 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7795 }
7796 }
7797
7798 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7799 fourcc = i9xx_format_to_fourcc(pixel_format);
7800 fb->pixel_format = fourcc;
7801 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7802
7803 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
7804 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7805 offset = I915_READ(DSPOFFSET(pipe));
7806 } else {
7807 if (plane_config->tiling)
7808 offset = I915_READ(DSPTILEOFF(pipe));
7809 else
7810 offset = I915_READ(DSPLINOFF(pipe));
7811 }
7812 plane_config->base = base;
7813
7814 val = I915_READ(PIPESRC(pipe));
7815 fb->width = ((val >> 16) & 0xfff) + 1;
7816 fb->height = ((val >> 0) & 0xfff) + 1;
7817
7818 val = I915_READ(DSPSTRIDE(pipe));
7819 fb->pitches[0] = val & 0xffffffc0;
7820
7821 aligned_height = intel_fb_align_height(dev, fb->height,
7822 fb->pixel_format,
7823 fb->modifier[0]);
7824
7825 plane_config->size = PAGE_ALIGN(fb->pitches[0] * aligned_height);
7826
7827 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7828 pipe_name(pipe), fb->width, fb->height,
7829 fb->bits_per_pixel, base, fb->pitches[0],
7830 plane_config->size);
7831
7832 plane_config->fb = intel_fb;
7833}
7834
7835static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
7836 struct intel_crtc_state *pipe_config)
7837{
7838 struct drm_device *dev = crtc->base.dev;
7839 struct drm_i915_private *dev_priv = dev->dev_private;
7840 uint32_t tmp;
7841
7842 if (!intel_display_power_is_enabled(dev_priv,
7843 POWER_DOMAIN_PIPE(crtc->pipe)))
7844 return false;
7845
7846 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7847 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7848
7849 tmp = I915_READ(PIPECONF(crtc->pipe));
7850 if (!(tmp & PIPECONF_ENABLE))
7851 return false;
7852
7853 switch (tmp & PIPECONF_BPC_MASK) {
7854 case PIPECONF_6BPC:
7855 pipe_config->pipe_bpp = 18;
7856 break;
7857 case PIPECONF_8BPC:
7858 pipe_config->pipe_bpp = 24;
7859 break;
7860 case PIPECONF_10BPC:
7861 pipe_config->pipe_bpp = 30;
7862 break;
7863 case PIPECONF_12BPC:
7864 pipe_config->pipe_bpp = 36;
7865 break;
7866 default:
7867 break;
7868 }
7869
7870 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
7871 pipe_config->limited_color_range = true;
7872
7873 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
7874 struct intel_shared_dpll *pll;
7875
7876 pipe_config->has_pch_encoder = true;
7877
7878 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
7879 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
7880 FDI_DP_PORT_WIDTH_SHIFT) + 1;
7881
7882 ironlake_get_fdi_m_n_config(crtc, pipe_config);
7883
7884 if (HAS_PCH_IBX(dev_priv->dev)) {
7885 pipe_config->shared_dpll =
7886 (enum intel_dpll_id) crtc->pipe;
7887 } else {
7888 tmp = I915_READ(PCH_DPLL_SEL);
7889 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
7890 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
7891 else
7892 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
7893 }
7894
7895 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
7896
7897 WARN_ON(!pll->get_hw_state(dev_priv, pll,
7898 &pipe_config->dpll_hw_state));
7899
7900 tmp = pipe_config->dpll_hw_state.dpll;
7901 pipe_config->pixel_multiplier =
7902 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
7903 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
7904
7905 ironlake_pch_clock_get(crtc, pipe_config);
7906 } else {
7907 pipe_config->pixel_multiplier = 1;
7908 }
7909
7910 intel_get_pipe_timings(crtc, pipe_config);
7911
7912 ironlake_get_pfit_config(crtc, pipe_config);
7913
7914 return true;
7915}
7916
7917static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
7918{
7919 struct drm_device *dev = dev_priv->dev;
7920 struct intel_crtc *crtc;
7921
7922 for_each_intel_crtc(dev, crtc)
7923 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
7924 pipe_name(crtc->pipe));
7925
7926 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
7927 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
7928 I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
7929 I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
7930 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
7931 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
7932 "CPU PWM1 enabled\n");
7933 if (IS_HASWELL(dev))
7934 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
7935 "CPU PWM2 enabled\n");
7936 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
7937 "PCH PWM1 enabled\n");
7938 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
7939 "Utility pin enabled\n");
7940 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
7941
7942 /*
7943 * In theory we can still leave IRQs enabled, as long as only the HPD
7944 * interrupts remain enabled. We used to check for that, but since it's
7945 * gen-specific and since we only disable LCPLL after we fully disable
7946 * the interrupts, the check below should be enough.
7947 */
7948 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
7949}
7950
7951static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
7952{
7953 struct drm_device *dev = dev_priv->dev;
7954
7955 if (IS_HASWELL(dev))
7956 return I915_READ(D_COMP_HSW);
7957 else
7958 return I915_READ(D_COMP_BDW);
7959}
7960
7961static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
7962{
7963 struct drm_device *dev = dev_priv->dev;
7964
7965 if (IS_HASWELL(dev)) {
7966 mutex_lock(&dev_priv->rps.hw_lock);
7967 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
7968 val))
7969 DRM_ERROR("Failed to write to D_COMP\n");
7970 mutex_unlock(&dev_priv->rps.hw_lock);
7971 } else {
7972 I915_WRITE(D_COMP_BDW, val);
7973 POSTING_READ(D_COMP_BDW);
7974 }
7975}
7976
7977/*
7978 * This function implements pieces of two sequences from BSpec:
7979 * - Sequence for display software to disable LCPLL
7980 * - Sequence for display software to allow package C8+
7981 * The steps implemented here are just the steps that actually touch the LCPLL
7982 * register. Callers should take care of disabling all the display engine
7983 * functions, doing the mode unset, fixing interrupts, etc.
7984 */
7985static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
7986 bool switch_to_fclk, bool allow_power_down)
7987{
7988 uint32_t val;
7989
7990 assert_can_disable_lcpll(dev_priv);
7991
7992 val = I915_READ(LCPLL_CTL);
7993
7994 if (switch_to_fclk) {
7995 val |= LCPLL_CD_SOURCE_FCLK;
7996 I915_WRITE(LCPLL_CTL, val);
7997
7998 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
7999 LCPLL_CD_SOURCE_FCLK_DONE, 1))
8000 DRM_ERROR("Switching to FCLK failed\n");
8001
8002 val = I915_READ(LCPLL_CTL);
8003 }
8004
8005 val |= LCPLL_PLL_DISABLE;
8006 I915_WRITE(LCPLL_CTL, val);
8007 POSTING_READ(LCPLL_CTL);
8008
8009 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
8010 DRM_ERROR("LCPLL still locked\n");
8011
8012 val = hsw_read_dcomp(dev_priv);
8013 val |= D_COMP_COMP_DISABLE;
8014 hsw_write_dcomp(dev_priv, val);
8015 ndelay(100);
8016
8017 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
8018 1))
8019 DRM_ERROR("D_COMP RCOMP still in progress\n");
8020
8021 if (allow_power_down) {
8022 val = I915_READ(LCPLL_CTL);
8023 val |= LCPLL_POWER_DOWN_ALLOW;
8024 I915_WRITE(LCPLL_CTL, val);
8025 POSTING_READ(LCPLL_CTL);
8026 }
8027}
8028
8029/*
8030 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
8031 * source.
8032 */
8033static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
8034{
8035 uint32_t val;
8036
8037 val = I915_READ(LCPLL_CTL);
8038
8039 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
8040 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
8041 return;
8042
8043 /*
8044 * Make sure we're not on PC8 state before disabling PC8, otherwise
8045 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
8046 */
8047 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
8048
8049 if (val & LCPLL_POWER_DOWN_ALLOW) {
8050 val &= ~LCPLL_POWER_DOWN_ALLOW;
8051 I915_WRITE(LCPLL_CTL, val);
8052 POSTING_READ(LCPLL_CTL);
8053 }
8054
8055 val = hsw_read_dcomp(dev_priv);
8056 val |= D_COMP_COMP_FORCE;
8057 val &= ~D_COMP_COMP_DISABLE;
8058 hsw_write_dcomp(dev_priv, val);
8059
8060 val = I915_READ(LCPLL_CTL);
8061 val &= ~LCPLL_PLL_DISABLE;
8062 I915_WRITE(LCPLL_CTL, val);
8063
8064 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
8065 DRM_ERROR("LCPLL not locked yet\n");
8066
8067 if (val & LCPLL_CD_SOURCE_FCLK) {
8068 val = I915_READ(LCPLL_CTL);
8069 val &= ~LCPLL_CD_SOURCE_FCLK;
8070 I915_WRITE(LCPLL_CTL, val);
8071
8072 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
8073 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
8074 DRM_ERROR("Switching back to LCPLL failed\n");
8075 }
8076
8077 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
8078}
8079
8080/*
8081 * Package states C8 and deeper are really deep PC states that can only be
8082 * reached when all the devices on the system allow it, so even if the graphics
8083 * device allows PC8+, it doesn't mean the system will actually get to these
8084 * states. Our driver only allows PC8+ when going into runtime PM.
8085 *
8086 * The requirements for PC8+ are that all the outputs are disabled, the power
8087 * well is disabled and most interrupts are disabled, and these are also
8088 * requirements for runtime PM. When these conditions are met, we manually do
8089 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
8090 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
8091 * hang the machine.
8092 *
8093 * When we really reach PC8 or deeper states (not just when we allow it) we lose
8094 * the state of some registers, so when we come back from PC8+ we need to
8095 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
8096 * need to take care of the registers kept by RC6. Notice that this happens even
8097 * if we don't put the device in PCI D3 state (which is what currently happens
8098 * because of the runtime PM support).
8099 *
8100 * For more, read "Display Sequences for Package C8" on the hardware
8101 * documentation.
8102 */
8103void hsw_enable_pc8(struct drm_i915_private *dev_priv)
8104{
8105 struct drm_device *dev = dev_priv->dev;
8106 uint32_t val;
8107
8108 DRM_DEBUG_KMS("Enabling package C8+\n");
8109
8110 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8111 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8112 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
8113 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8114 }
8115
8116 lpt_disable_clkout_dp(dev);
8117 hsw_disable_lcpll(dev_priv, true, true);
8118}
8119
8120void hsw_disable_pc8(struct drm_i915_private *dev_priv)
8121{
8122 struct drm_device *dev = dev_priv->dev;
8123 uint32_t val;
8124
8125 DRM_DEBUG_KMS("Disabling package C8+\n");
8126
8127 hsw_restore_lcpll(dev_priv);
8128 lpt_init_pch_refclk(dev);
8129
8130 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
8131 val = I915_READ(SOUTH_DSPCLK_GATE_D);
8132 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
8133 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
8134 }
8135
8136 intel_prepare_ddi(dev);
8137}
8138
8139static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
8140 struct intel_crtc_state *crtc_state)
8141{
8142 if (!intel_ddi_pll_select(crtc, crtc_state))
8143 return -EINVAL;
8144
8145 crtc->lowfreq_avail = false;
8146
8147 return 0;
8148}
8149
8150static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
8151 enum port port,
8152 struct intel_crtc_state *pipe_config)
8153{
8154 u32 temp, dpll_ctl1;
8155
8156 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
8157 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
8158
8159 switch (pipe_config->ddi_pll_sel) {
8160 case SKL_DPLL0:
8161 /*
8162 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
8163 * of the shared DPLL framework and thus needs to be read out
8164 * separately
8165 */
8166 dpll_ctl1 = I915_READ(DPLL_CTRL1);
8167 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
8168 break;
8169 case SKL_DPLL1:
8170 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
8171 break;
8172 case SKL_DPLL2:
8173 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
8174 break;
8175 case SKL_DPLL3:
8176 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
8177 break;
8178 }
8179}
8180
8181static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
8182 enum port port,
8183 struct intel_crtc_state *pipe_config)
8184{
8185 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
8186
8187 switch (pipe_config->ddi_pll_sel) {
8188 case PORT_CLK_SEL_WRPLL1:
8189 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
8190 break;
8191 case PORT_CLK_SEL_WRPLL2:
8192 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
8193 break;
8194 }
8195}
8196
8197static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
8198 struct intel_crtc_state *pipe_config)
8199{
8200 struct drm_device *dev = crtc->base.dev;
8201 struct drm_i915_private *dev_priv = dev->dev_private;
8202 struct intel_shared_dpll *pll;
8203 enum port port;
8204 uint32_t tmp;
8205
8206 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
8207
8208 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
8209
8210 if (IS_SKYLAKE(dev))
8211 skylake_get_ddi_pll(dev_priv, port, pipe_config);
8212 else
8213 haswell_get_ddi_pll(dev_priv, port, pipe_config);
8214
8215 if (pipe_config->shared_dpll >= 0) {
8216 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
8217
8218 WARN_ON(!pll->get_hw_state(dev_priv, pll,
8219 &pipe_config->dpll_hw_state));
8220 }
8221
8222 /*
8223 * Haswell has only FDI/PCH transcoder A. It is which is connected to
8224 * DDI E. So just check whether this pipe is wired to DDI E and whether
8225 * the PCH transcoder is on.
8226 */
8227 if (INTEL_INFO(dev)->gen < 9 &&
8228 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
8229 pipe_config->has_pch_encoder = true;
8230
8231 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
8232 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
8233 FDI_DP_PORT_WIDTH_SHIFT) + 1;
8234
8235 ironlake_get_fdi_m_n_config(crtc, pipe_config);
8236 }
8237}
8238
8239static bool haswell_get_pipe_config(struct intel_crtc *crtc,
8240 struct intel_crtc_state *pipe_config)
8241{
8242 struct drm_device *dev = crtc->base.dev;
8243 struct drm_i915_private *dev_priv = dev->dev_private;
8244 enum intel_display_power_domain pfit_domain;
8245 uint32_t tmp;
8246
8247 if (!intel_display_power_is_enabled(dev_priv,
8248 POWER_DOMAIN_PIPE(crtc->pipe)))
8249 return false;
8250
8251 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8252 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8253
8254 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8255 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8256 enum pipe trans_edp_pipe;
8257 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8258 default:
8259 WARN(1, "unknown pipe linked to edp transcoder\n");
8260 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8261 case TRANS_DDI_EDP_INPUT_A_ON:
8262 trans_edp_pipe = PIPE_A;
8263 break;
8264 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8265 trans_edp_pipe = PIPE_B;
8266 break;
8267 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8268 trans_edp_pipe = PIPE_C;
8269 break;
8270 }
8271
8272 if (trans_edp_pipe == crtc->pipe)
8273 pipe_config->cpu_transcoder = TRANSCODER_EDP;
8274 }
8275
8276 if (!intel_display_power_is_enabled(dev_priv,
8277 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
8278 return false;
8279
8280 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
8281 if (!(tmp & PIPECONF_ENABLE))
8282 return false;
8283
8284 haswell_get_ddi_port_state(crtc, pipe_config);
8285
8286 intel_get_pipe_timings(crtc, pipe_config);
8287
8288 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
8289 if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
8290 if (IS_SKYLAKE(dev))
8291 skylake_get_pfit_config(crtc, pipe_config);
8292 else
8293 ironlake_get_pfit_config(crtc, pipe_config);
8294 }
8295
8296 if (IS_HASWELL(dev))
8297 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
8298 (I915_READ(IPS_CTL) & IPS_ENABLE);
8299
8300 if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
8301 pipe_config->pixel_multiplier =
8302 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
8303 } else {
8304 pipe_config->pixel_multiplier = 1;
8305 }
8306
8307 return true;
8308}
8309
8310static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
8311{
8312 struct drm_device *dev = crtc->dev;
8313 struct drm_i915_private *dev_priv = dev->dev_private;
8314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8315 uint32_t cntl = 0, size = 0;
8316
8317 if (base) {
8318 unsigned int width = intel_crtc->cursor_width;
8319 unsigned int height = intel_crtc->cursor_height;
8320 unsigned int stride = roundup_pow_of_two(width) * 4;
8321
8322 switch (stride) {
8323 default:
8324 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
8325 width, stride);
8326 stride = 256;
8327 /* fallthrough */
8328 case 256:
8329 case 512:
8330 case 1024:
8331 case 2048:
8332 break;
8333 }
8334
8335 cntl |= CURSOR_ENABLE |
8336 CURSOR_GAMMA_ENABLE |
8337 CURSOR_FORMAT_ARGB |
8338 CURSOR_STRIDE(stride);
8339
8340 size = (height << 12) | width;
8341 }
8342
8343 if (intel_crtc->cursor_cntl != 0 &&
8344 (intel_crtc->cursor_base != base ||
8345 intel_crtc->cursor_size != size ||
8346 intel_crtc->cursor_cntl != cntl)) {
8347 /* On these chipsets we can only modify the base/size/stride
8348 * whilst the cursor is disabled.
8349 */
8350 I915_WRITE(_CURACNTR, 0);
8351 POSTING_READ(_CURACNTR);
8352 intel_crtc->cursor_cntl = 0;
8353 }
8354
8355 if (intel_crtc->cursor_base != base) {
8356 I915_WRITE(_CURABASE, base);
8357 intel_crtc->cursor_base = base;
8358 }
8359
8360 if (intel_crtc->cursor_size != size) {
8361 I915_WRITE(CURSIZE, size);
8362 intel_crtc->cursor_size = size;
8363 }
8364
8365 if (intel_crtc->cursor_cntl != cntl) {
8366 I915_WRITE(_CURACNTR, cntl);
8367 POSTING_READ(_CURACNTR);
8368 intel_crtc->cursor_cntl = cntl;
8369 }
8370}
8371
8372static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
8373{
8374 struct drm_device *dev = crtc->dev;
8375 struct drm_i915_private *dev_priv = dev->dev_private;
8376 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8377 int pipe = intel_crtc->pipe;
8378 uint32_t cntl;
8379
8380 cntl = 0;
8381 if (base) {
8382 cntl = MCURSOR_GAMMA_ENABLE;
8383 switch (intel_crtc->cursor_width) {
8384 case 64:
8385 cntl |= CURSOR_MODE_64_ARGB_AX;
8386 break;
8387 case 128:
8388 cntl |= CURSOR_MODE_128_ARGB_AX;
8389 break;
8390 case 256:
8391 cntl |= CURSOR_MODE_256_ARGB_AX;
8392 break;
8393 default:
8394 MISSING_CASE(intel_crtc->cursor_width);
8395 return;
8396 }
8397 cntl |= pipe << 28; /* Connect to correct pipe */
8398
8399 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
8400 cntl |= CURSOR_PIPE_CSC_ENABLE;
8401 }
8402
8403 if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
8404 cntl |= CURSOR_ROTATE_180;
8405
8406 if (intel_crtc->cursor_cntl != cntl) {
8407 I915_WRITE(CURCNTR(pipe), cntl);
8408 POSTING_READ(CURCNTR(pipe));
8409 intel_crtc->cursor_cntl = cntl;
8410 }
8411
8412 /* and commit changes on next vblank */
8413 I915_WRITE(CURBASE(pipe), base);
8414 POSTING_READ(CURBASE(pipe));
8415
8416 intel_crtc->cursor_base = base;
8417}
8418
8419/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
8420static void intel_crtc_update_cursor(struct drm_crtc *crtc,
8421 bool on)
8422{
8423 struct drm_device *dev = crtc->dev;
8424 struct drm_i915_private *dev_priv = dev->dev_private;
8425 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8426 int pipe = intel_crtc->pipe;
8427 int x = crtc->cursor_x;
8428 int y = crtc->cursor_y;
8429 u32 base = 0, pos = 0;
8430
8431 if (on)
8432 base = intel_crtc->cursor_addr;
8433
8434 if (x >= intel_crtc->config->pipe_src_w)
8435 base = 0;
8436
8437 if (y >= intel_crtc->config->pipe_src_h)
8438 base = 0;
8439
8440 if (x < 0) {
8441 if (x + intel_crtc->cursor_width <= 0)
8442 base = 0;
8443
8444 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
8445 x = -x;
8446 }
8447 pos |= x << CURSOR_X_SHIFT;
8448
8449 if (y < 0) {
8450 if (y + intel_crtc->cursor_height <= 0)
8451 base = 0;
8452
8453 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
8454 y = -y;
8455 }
8456 pos |= y << CURSOR_Y_SHIFT;
8457
8458 if (base == 0 && intel_crtc->cursor_base == 0)
8459 return;
8460
8461 I915_WRITE(CURPOS(pipe), pos);
8462
8463 /* ILK+ do this automagically */
8464 if (HAS_GMCH_DISPLAY(dev) &&
8465 crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
8466 base += (intel_crtc->cursor_height *
8467 intel_crtc->cursor_width - 1) * 4;
8468 }
8469
8470 if (IS_845G(dev) || IS_I865G(dev))
8471 i845_update_cursor(crtc, base);
8472 else
8473 i9xx_update_cursor(crtc, base);
8474}
8475
8476static bool cursor_size_ok(struct drm_device *dev,
8477 uint32_t width, uint32_t height)
8478{
8479 if (width == 0 || height == 0)
8480 return false;
8481
8482 /*
8483 * 845g/865g are special in that they are only limited by
8484 * the width of their cursors, the height is arbitrary up to
8485 * the precision of the register. Everything else requires
8486 * square cursors, limited to a few power-of-two sizes.
8487 */
8488 if (IS_845G(dev) || IS_I865G(dev)) {
8489 if ((width & 63) != 0)
8490 return false;
8491
8492 if (width > (IS_845G(dev) ? 64 : 512))
8493 return false;
8494
8495 if (height > 1023)
8496 return false;
8497 } else {
8498 switch (width | height) {
8499 case 256:
8500 case 128:
8501 if (IS_GEN2(dev))
8502 return false;
8503 case 64:
8504 break;
8505 default:
8506 return false;
8507 }
8508 }
8509
8510 return true;
8511}
8512
8513static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
8514 u16 *blue, uint32_t start, uint32_t size)
8515{
8516 int end = (start + size > 256) ? 256 : start + size, i;
8517 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8518
8519 for (i = start; i < end; i++) {
8520 intel_crtc->lut_r[i] = red[i] >> 8;
8521 intel_crtc->lut_g[i] = green[i] >> 8;
8522 intel_crtc->lut_b[i] = blue[i] >> 8;
8523 }
8524
8525 intel_crtc_load_lut(crtc);
8526}
8527
8528/* VESA 640x480x72Hz mode to set on the pipe */
8529static struct drm_display_mode load_detect_mode = {
8530 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
8531 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
8532};
8533
8534struct drm_framebuffer *
8535__intel_framebuffer_create(struct drm_device *dev,
8536 struct drm_mode_fb_cmd2 *mode_cmd,
8537 struct drm_i915_gem_object *obj)
8538{
8539 struct intel_framebuffer *intel_fb;
8540 int ret;
8541
8542 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8543 if (!intel_fb) {
8544 drm_gem_object_unreference(&obj->base);
8545 return ERR_PTR(-ENOMEM);
8546 }
8547
8548 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
8549 if (ret)
8550 goto err;
8551
8552 return &intel_fb->base;
8553err:
8554 drm_gem_object_unreference(&obj->base);
8555 kfree(intel_fb);
8556
8557 return ERR_PTR(ret);
8558}
8559
8560static struct drm_framebuffer *
8561intel_framebuffer_create(struct drm_device *dev,
8562 struct drm_mode_fb_cmd2 *mode_cmd,
8563 struct drm_i915_gem_object *obj)
8564{
8565 struct drm_framebuffer *fb;
8566 int ret;
8567
8568 ret = i915_mutex_lock_interruptible(dev);
8569 if (ret)
8570 return ERR_PTR(ret);
8571 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
8572 mutex_unlock(&dev->struct_mutex);
8573
8574 return fb;
8575}
8576
8577static u32
8578intel_framebuffer_pitch_for_width(int width, int bpp)
8579{
8580 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
8581 return ALIGN(pitch, 64);
8582}
8583
8584static u32
8585intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
8586{
8587 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
8588 return PAGE_ALIGN(pitch * mode->vdisplay);
8589}
8590
8591static struct drm_framebuffer *
8592intel_framebuffer_create_for_mode(struct drm_device *dev,
8593 struct drm_display_mode *mode,
8594 int depth, int bpp)
8595{
8596 struct drm_i915_gem_object *obj;
8597 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
8598
8599 obj = i915_gem_alloc_object(dev,
8600 intel_framebuffer_size_for_mode(mode, bpp));
8601 if (obj == NULL)
8602 return ERR_PTR(-ENOMEM);
8603
8604 mode_cmd.width = mode->hdisplay;
8605 mode_cmd.height = mode->vdisplay;
8606 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
8607 bpp);
8608 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
8609
8610 return intel_framebuffer_create(dev, &mode_cmd, obj);
8611}
8612
8613static struct drm_framebuffer *
8614mode_fits_in_fbdev(struct drm_device *dev,
8615 struct drm_display_mode *mode)
8616{
8617#ifdef CONFIG_DRM_I915_FBDEV
8618 struct drm_i915_private *dev_priv = dev->dev_private;
8619 struct drm_i915_gem_object *obj;
8620 struct drm_framebuffer *fb;
8621
8622 if (!dev_priv->fbdev)
8623 return NULL;
8624
8625 if (!dev_priv->fbdev->fb)
8626 return NULL;
8627
8628 obj = dev_priv->fbdev->fb->obj;
8629 BUG_ON(!obj);
8630
8631 fb = &dev_priv->fbdev->fb->base;
8632 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
8633 fb->bits_per_pixel))
8634 return NULL;
8635
8636 if (obj->base.size < mode->vdisplay * fb->pitches[0])
8637 return NULL;
8638
8639 return fb;
8640#else
8641 return NULL;
8642#endif
8643}
8644
8645bool intel_get_load_detect_pipe(struct drm_connector *connector,
8646 struct drm_display_mode *mode,
8647 struct intel_load_detect_pipe *old,
8648 struct drm_modeset_acquire_ctx *ctx)
8649{
8650 struct intel_crtc *intel_crtc;
8651 struct intel_encoder *intel_encoder =
8652 intel_attached_encoder(connector);
8653 struct drm_crtc *possible_crtc;
8654 struct drm_encoder *encoder = &intel_encoder->base;
8655 struct drm_crtc *crtc = NULL;
8656 struct drm_device *dev = encoder->dev;
8657 struct drm_framebuffer *fb;
8658 struct drm_mode_config *config = &dev->mode_config;
8659 int ret, i = -1;
8660
8661 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8662 connector->base.id, connector->name,
8663 encoder->base.id, encoder->name);
8664
8665retry:
8666 ret = drm_modeset_lock(&config->connection_mutex, ctx);
8667 if (ret)
8668 goto fail_unlock;
8669
8670 /*
8671 * Algorithm gets a little messy:
8672 *
8673 * - if the connector already has an assigned crtc, use it (but make
8674 * sure it's on first)
8675 *
8676 * - try to find the first unused crtc that can drive this connector,
8677 * and use that if we find one
8678 */
8679
8680 /* See if we already have a CRTC for this connector */
8681 if (encoder->crtc) {
8682 crtc = encoder->crtc;
8683
8684 ret = drm_modeset_lock(&crtc->mutex, ctx);
8685 if (ret)
8686 goto fail_unlock;
8687 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8688 if (ret)
8689 goto fail_unlock;
8690
8691 old->dpms_mode = connector->dpms;
8692 old->load_detect_temp = false;
8693
8694 /* Make sure the crtc and connector are running */
8695 if (connector->dpms != DRM_MODE_DPMS_ON)
8696 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
8697
8698 return true;
8699 }
8700
8701 /* Find an unused one (if possible) */
8702 for_each_crtc(dev, possible_crtc) {
8703 i++;
8704 if (!(encoder->possible_crtcs & (1 << i)))
8705 continue;
8706 if (possible_crtc->state->enable)
8707 continue;
8708 /* This can occur when applying the pipe A quirk on resume. */
8709 if (to_intel_crtc(possible_crtc)->new_enabled)
8710 continue;
8711
8712 crtc = possible_crtc;
8713 break;
8714 }
8715
8716 /*
8717 * If we didn't find an unused CRTC, don't use any.
8718 */
8719 if (!crtc) {
8720 DRM_DEBUG_KMS("no pipe available for load-detect\n");
8721 goto fail_unlock;
8722 }
8723
8724 ret = drm_modeset_lock(&crtc->mutex, ctx);
8725 if (ret)
8726 goto fail_unlock;
8727 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
8728 if (ret)
8729 goto fail_unlock;
8730 intel_encoder->new_crtc = to_intel_crtc(crtc);
8731 to_intel_connector(connector)->new_encoder = intel_encoder;
8732
8733 intel_crtc = to_intel_crtc(crtc);
8734 intel_crtc->new_enabled = true;
8735 intel_crtc->new_config = intel_crtc->config;
8736 old->dpms_mode = connector->dpms;
8737 old->load_detect_temp = true;
8738 old->release_fb = NULL;
8739
8740 if (!mode)
8741 mode = &load_detect_mode;
8742
8743 /* We need a framebuffer large enough to accommodate all accesses
8744 * that the plane may generate whilst we perform load detection.
8745 * We can not rely on the fbcon either being present (we get called
8746 * during its initialisation to detect all boot displays, or it may
8747 * not even exist) or that it is large enough to satisfy the
8748 * requested mode.
8749 */
8750 fb = mode_fits_in_fbdev(dev, mode);
8751 if (fb == NULL) {
8752 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
8753 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
8754 old->release_fb = fb;
8755 } else
8756 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
8757 if (IS_ERR(fb)) {
8758 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
8759 goto fail;
8760 }
8761
8762 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
8763 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
8764 if (old->release_fb)
8765 old->release_fb->funcs->destroy(old->release_fb);
8766 goto fail;
8767 }
8768
8769 /* let the connector get through one full cycle before testing */
8770 intel_wait_for_vblank(dev, intel_crtc->pipe);
8771 return true;
8772
8773 fail:
8774 intel_crtc->new_enabled = crtc->state->enable;
8775 if (intel_crtc->new_enabled)
8776 intel_crtc->new_config = intel_crtc->config;
8777 else
8778 intel_crtc->new_config = NULL;
8779fail_unlock:
8780 if (ret == -EDEADLK) {
8781 drm_modeset_backoff(ctx);
8782 goto retry;
8783 }
8784
8785 return false;
8786}
8787
8788void intel_release_load_detect_pipe(struct drm_connector *connector,
8789 struct intel_load_detect_pipe *old)
8790{
8791 struct intel_encoder *intel_encoder =
8792 intel_attached_encoder(connector);
8793 struct drm_encoder *encoder = &intel_encoder->base;
8794 struct drm_crtc *crtc = encoder->crtc;
8795 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8796
8797 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
8798 connector->base.id, connector->name,
8799 encoder->base.id, encoder->name);
8800
8801 if (old->load_detect_temp) {
8802 to_intel_connector(connector)->new_encoder = NULL;
8803 intel_encoder->new_crtc = NULL;
8804 intel_crtc->new_enabled = false;
8805 intel_crtc->new_config = NULL;
8806 intel_set_mode(crtc, NULL, 0, 0, NULL);
8807
8808 if (old->release_fb) {
8809 drm_framebuffer_unregister_private(old->release_fb);
8810 drm_framebuffer_unreference(old->release_fb);
8811 }
8812
8813 return;
8814 }
8815
8816 /* Switch crtc and encoder back off if necessary */
8817 if (old->dpms_mode != DRM_MODE_DPMS_ON)
8818 connector->funcs->dpms(connector, old->dpms_mode);
8819}
8820
8821static int i9xx_pll_refclk(struct drm_device *dev,
8822 const struct intel_crtc_state *pipe_config)
8823{
8824 struct drm_i915_private *dev_priv = dev->dev_private;
8825 u32 dpll = pipe_config->dpll_hw_state.dpll;
8826
8827 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
8828 return dev_priv->vbt.lvds_ssc_freq;
8829 else if (HAS_PCH_SPLIT(dev))
8830 return 120000;
8831 else if (!IS_GEN2(dev))
8832 return 96000;
8833 else
8834 return 48000;
8835}
8836
8837/* Returns the clock of the currently programmed mode of the given pipe. */
8838static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
8839 struct intel_crtc_state *pipe_config)
8840{
8841 struct drm_device *dev = crtc->base.dev;
8842 struct drm_i915_private *dev_priv = dev->dev_private;
8843 int pipe = pipe_config->cpu_transcoder;
8844 u32 dpll = pipe_config->dpll_hw_state.dpll;
8845 u32 fp;
8846 intel_clock_t clock;
8847 int refclk = i9xx_pll_refclk(dev, pipe_config);
8848
8849 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
8850 fp = pipe_config->dpll_hw_state.fp0;
8851 else
8852 fp = pipe_config->dpll_hw_state.fp1;
8853
8854 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
8855 if (IS_PINEVIEW(dev)) {
8856 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
8857 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
8858 } else {
8859 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
8860 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
8861 }
8862
8863 if (!IS_GEN2(dev)) {
8864 if (IS_PINEVIEW(dev))
8865 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
8866 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
8867 else
8868 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
8869 DPLL_FPA01_P1_POST_DIV_SHIFT);
8870
8871 switch (dpll & DPLL_MODE_MASK) {
8872 case DPLLB_MODE_DAC_SERIAL:
8873 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
8874 5 : 10;
8875 break;
8876 case DPLLB_MODE_LVDS:
8877 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
8878 7 : 14;
8879 break;
8880 default:
8881 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
8882 "mode\n", (int)(dpll & DPLL_MODE_MASK));
8883 return;
8884 }
8885
8886 if (IS_PINEVIEW(dev))
8887 pineview_clock(refclk, &clock);
8888 else
8889 i9xx_clock(refclk, &clock);
8890 } else {
8891 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
8892 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
8893
8894 if (is_lvds) {
8895 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
8896 DPLL_FPA01_P1_POST_DIV_SHIFT);
8897
8898 if (lvds & LVDS_CLKB_POWER_UP)
8899 clock.p2 = 7;
8900 else
8901 clock.p2 = 14;
8902 } else {
8903 if (dpll & PLL_P1_DIVIDE_BY_TWO)
8904 clock.p1 = 2;
8905 else {
8906 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
8907 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
8908 }
8909 if (dpll & PLL_P2_DIVIDE_BY_4)
8910 clock.p2 = 4;
8911 else
8912 clock.p2 = 2;
8913 }
8914
8915 i9xx_clock(refclk, &clock);
8916 }
8917
8918 /*
8919 * This value includes pixel_multiplier. We will use
8920 * port_clock to compute adjusted_mode.crtc_clock in the
8921 * encoder's get_config() function.
8922 */
8923 pipe_config->port_clock = clock.dot;
8924}
8925
8926int intel_dotclock_calculate(int link_freq,
8927 const struct intel_link_m_n *m_n)
8928{
8929 /*
8930 * The calculation for the data clock is:
8931 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8932 * But we want to avoid losing precison if possible, so:
8933 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8934 *
8935 * and the link clock is simpler:
8936 * link_clock = (m * link_clock) / n
8937 */
8938
8939 if (!m_n->link_n)
8940 return 0;
8941
8942 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8943}
8944
8945static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8946 struct intel_crtc_state *pipe_config)
8947{
8948 struct drm_device *dev = crtc->base.dev;
8949
8950 /* read out port_clock from the DPLL */
8951 i9xx_crtc_clock_get(crtc, pipe_config);
8952
8953 /*
8954 * This value does not include pixel_multiplier.
8955 * We will check that port_clock and adjusted_mode.crtc_clock
8956 * agree once we know their relationship in the encoder's
8957 * get_config() function.
8958 */
8959 pipe_config->base.adjusted_mode.crtc_clock =
8960 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8961 &pipe_config->fdi_m_n);
8962}
8963
8964/** Returns the currently programmed mode of the given pipe. */
8965struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8966 struct drm_crtc *crtc)
8967{
8968 struct drm_i915_private *dev_priv = dev->dev_private;
8969 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8970 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8971 struct drm_display_mode *mode;
8972 struct intel_crtc_state pipe_config;
8973 int htot = I915_READ(HTOTAL(cpu_transcoder));
8974 int hsync = I915_READ(HSYNC(cpu_transcoder));
8975 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8976 int vsync = I915_READ(VSYNC(cpu_transcoder));
8977 enum pipe pipe = intel_crtc->pipe;
8978
8979 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8980 if (!mode)
8981 return NULL;
8982
8983 /*
8984 * Construct a pipe_config sufficient for getting the clock info
8985 * back out of crtc_clock_get.
8986 *
8987 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8988 * to use a real value here instead.
8989 */
8990 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8991 pipe_config.pixel_multiplier = 1;
8992 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8993 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8994 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8995 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8996
8997 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8998 mode->hdisplay = (htot & 0xffff) + 1;
8999 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
9000 mode->hsync_start = (hsync & 0xffff) + 1;
9001 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
9002 mode->vdisplay = (vtot & 0xffff) + 1;
9003 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
9004 mode->vsync_start = (vsync & 0xffff) + 1;
9005 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
9006
9007 drm_mode_set_name(mode);
9008
9009 return mode;
9010}
9011
9012static void intel_decrease_pllclock(struct drm_crtc *crtc)
9013{
9014 struct drm_device *dev = crtc->dev;
9015 struct drm_i915_private *dev_priv = dev->dev_private;
9016 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9017
9018 if (!HAS_GMCH_DISPLAY(dev))
9019 return;
9020
9021 if (!dev_priv->lvds_downclock_avail)
9022 return;
9023
9024 /*
9025 * Since this is called by a timer, we should never get here in
9026 * the manual case.
9027 */
9028 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
9029 int pipe = intel_crtc->pipe;
9030 int dpll_reg = DPLL(pipe);
9031 int dpll;
9032
9033 DRM_DEBUG_DRIVER("downclocking LVDS\n");
9034
9035 assert_panel_unlocked(dev_priv, pipe);
9036
9037 dpll = I915_READ(dpll_reg);
9038 dpll |= DISPLAY_RATE_SELECT_FPA1;
9039 I915_WRITE(dpll_reg, dpll);
9040 intel_wait_for_vblank(dev, pipe);
9041 dpll = I915_READ(dpll_reg);
9042 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
9043 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
9044 }
9045
9046}
9047
9048void intel_mark_busy(struct drm_device *dev)
9049{
9050 struct drm_i915_private *dev_priv = dev->dev_private;
9051
9052 if (dev_priv->mm.busy)
9053 return;
9054
9055 intel_runtime_pm_get(dev_priv);
9056 i915_update_gfx_val(dev_priv);
9057 dev_priv->mm.busy = true;
9058}
9059
9060void intel_mark_idle(struct drm_device *dev)
9061{
9062 struct drm_i915_private *dev_priv = dev->dev_private;
9063 struct drm_crtc *crtc;
9064
9065 if (!dev_priv->mm.busy)
9066 return;
9067
9068 dev_priv->mm.busy = false;
9069
9070 if (!i915.powersave)
9071 goto out;
9072
9073 for_each_crtc(dev, crtc) {
9074 if (!crtc->primary->fb)
9075 continue;
9076
9077 intel_decrease_pllclock(crtc);
9078 }
9079
9080 if (INTEL_INFO(dev)->gen >= 6)
9081 gen6_rps_idle(dev->dev_private);
9082
9083out:
9084 intel_runtime_pm_put(dev_priv);
9085}
9086
9087static void intel_crtc_set_state(struct intel_crtc *crtc,
9088 struct intel_crtc_state *crtc_state)
9089{
9090 kfree(crtc->config);
9091 crtc->config = crtc_state;
9092 crtc->base.state = &crtc_state->base;
9093}
9094
9095static void intel_crtc_destroy(struct drm_crtc *crtc)
9096{
9097 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9098 struct drm_device *dev = crtc->dev;
9099 struct intel_unpin_work *work;
9100
9101 spin_lock_irq(&dev->event_lock);
9102 work = intel_crtc->unpin_work;
9103 intel_crtc->unpin_work = NULL;
9104 spin_unlock_irq(&dev->event_lock);
9105
9106 if (work) {
9107 cancel_work_sync(&work->work);
9108 kfree(work);
9109 }
9110
9111 intel_crtc_set_state(intel_crtc, NULL);
9112 drm_crtc_cleanup(crtc);
9113
9114 kfree(intel_crtc);
9115}
9116
9117static void intel_unpin_work_fn(struct work_struct *__work)
9118{
9119 struct intel_unpin_work *work =
9120 container_of(__work, struct intel_unpin_work, work);
9121 struct drm_device *dev = work->crtc->dev;
9122 enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
9123
9124 mutex_lock(&dev->struct_mutex);
9125 intel_unpin_fb_obj(intel_fb_obj(work->old_fb));
9126 drm_gem_object_unreference(&work->pending_flip_obj->base);
9127 drm_framebuffer_unreference(work->old_fb);
9128
9129 intel_fbc_update(dev);
9130
9131 if (work->flip_queued_req)
9132 i915_gem_request_assign(&work->flip_queued_req, NULL);
9133 mutex_unlock(&dev->struct_mutex);
9134
9135 intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9136
9137 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
9138 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
9139
9140 kfree(work);
9141}
9142
9143static void do_intel_finish_page_flip(struct drm_device *dev,
9144 struct drm_crtc *crtc)
9145{
9146 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9147 struct intel_unpin_work *work;
9148 unsigned long flags;
9149
9150 /* Ignore early vblank irqs */
9151 if (intel_crtc == NULL)
9152 return;
9153
9154 /*
9155 * This is called both by irq handlers and the reset code (to complete
9156 * lost pageflips) so needs the full irqsave spinlocks.
9157 */
9158 spin_lock_irqsave(&dev->event_lock, flags);
9159 work = intel_crtc->unpin_work;
9160
9161 /* Ensure we don't miss a work->pending update ... */
9162 smp_rmb();
9163
9164 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
9165 spin_unlock_irqrestore(&dev->event_lock, flags);
9166 return;
9167 }
9168
9169 page_flip_completed(intel_crtc);
9170
9171 spin_unlock_irqrestore(&dev->event_lock, flags);
9172}
9173
9174void intel_finish_page_flip(struct drm_device *dev, int pipe)
9175{
9176 struct drm_i915_private *dev_priv = dev->dev_private;
9177 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9178
9179 do_intel_finish_page_flip(dev, crtc);
9180}
9181
9182void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
9183{
9184 struct drm_i915_private *dev_priv = dev->dev_private;
9185 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
9186
9187 do_intel_finish_page_flip(dev, crtc);
9188}
9189
9190/* Is 'a' after or equal to 'b'? */
9191static bool g4x_flip_count_after_eq(u32 a, u32 b)
9192{
9193 return !((a - b) & 0x80000000);
9194}
9195
9196static bool page_flip_finished(struct intel_crtc *crtc)
9197{
9198 struct drm_device *dev = crtc->base.dev;
9199 struct drm_i915_private *dev_priv = dev->dev_private;
9200
9201 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
9202 crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
9203 return true;
9204
9205 /*
9206 * The relevant registers doen't exist on pre-ctg.
9207 * As the flip done interrupt doesn't trigger for mmio
9208 * flips on gmch platforms, a flip count check isn't
9209 * really needed there. But since ctg has the registers,
9210 * include it in the check anyway.
9211 */
9212 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
9213 return true;
9214
9215 /*
9216 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
9217 * used the same base address. In that case the mmio flip might
9218 * have completed, but the CS hasn't even executed the flip yet.
9219 *
9220 * A flip count check isn't enough as the CS might have updated
9221 * the base address just after start of vblank, but before we
9222 * managed to process the interrupt. This means we'd complete the
9223 * CS flip too soon.
9224 *
9225 * Combining both checks should get us a good enough result. It may
9226 * still happen that the CS flip has been executed, but has not
9227 * yet actually completed. But in case the base address is the same
9228 * anyway, we don't really care.
9229 */
9230 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
9231 crtc->unpin_work->gtt_offset &&
9232 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
9233 crtc->unpin_work->flip_count);
9234}
9235
9236void intel_prepare_page_flip(struct drm_device *dev, int plane)
9237{
9238 struct drm_i915_private *dev_priv = dev->dev_private;
9239 struct intel_crtc *intel_crtc =
9240 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
9241 unsigned long flags;
9242
9243
9244 /*
9245 * This is called both by irq handlers and the reset code (to complete
9246 * lost pageflips) so needs the full irqsave spinlocks.
9247 *
9248 * NB: An MMIO update of the plane base pointer will also
9249 * generate a page-flip completion irq, i.e. every modeset
9250 * is also accompanied by a spurious intel_prepare_page_flip().
9251 */
9252 spin_lock_irqsave(&dev->event_lock, flags);
9253 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
9254 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
9255 spin_unlock_irqrestore(&dev->event_lock, flags);
9256}
9257
9258static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
9259{
9260 /* Ensure that the work item is consistent when activating it ... */
9261 smp_wmb();
9262 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
9263 /* and that it is marked active as soon as the irq could fire. */
9264 smp_wmb();
9265}
9266
9267static int intel_gen2_queue_flip(struct drm_device *dev,
9268 struct drm_crtc *crtc,
9269 struct drm_framebuffer *fb,
9270 struct drm_i915_gem_object *obj,
9271 struct intel_engine_cs *ring,
9272 uint32_t flags)
9273{
9274 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9275 u32 flip_mask;
9276 int ret;
9277
9278 ret = intel_ring_begin(ring, 6);
9279 if (ret)
9280 return ret;
9281
9282 /* Can't queue multiple flips, so wait for the previous
9283 * one to finish before executing the next.
9284 */
9285 if (intel_crtc->plane)
9286 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9287 else
9288 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9289 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9290 intel_ring_emit(ring, MI_NOOP);
9291 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9292 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9293 intel_ring_emit(ring, fb->pitches[0]);
9294 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9295 intel_ring_emit(ring, 0); /* aux display base address, unused */
9296
9297 intel_mark_page_flip_active(intel_crtc);
9298 __intel_ring_advance(ring);
9299 return 0;
9300}
9301
9302static int intel_gen3_queue_flip(struct drm_device *dev,
9303 struct drm_crtc *crtc,
9304 struct drm_framebuffer *fb,
9305 struct drm_i915_gem_object *obj,
9306 struct intel_engine_cs *ring,
9307 uint32_t flags)
9308{
9309 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9310 u32 flip_mask;
9311 int ret;
9312
9313 ret = intel_ring_begin(ring, 6);
9314 if (ret)
9315 return ret;
9316
9317 if (intel_crtc->plane)
9318 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
9319 else
9320 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
9321 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
9322 intel_ring_emit(ring, MI_NOOP);
9323 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
9324 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9325 intel_ring_emit(ring, fb->pitches[0]);
9326 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9327 intel_ring_emit(ring, MI_NOOP);
9328
9329 intel_mark_page_flip_active(intel_crtc);
9330 __intel_ring_advance(ring);
9331 return 0;
9332}
9333
9334static int intel_gen4_queue_flip(struct drm_device *dev,
9335 struct drm_crtc *crtc,
9336 struct drm_framebuffer *fb,
9337 struct drm_i915_gem_object *obj,
9338 struct intel_engine_cs *ring,
9339 uint32_t flags)
9340{
9341 struct drm_i915_private *dev_priv = dev->dev_private;
9342 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9343 uint32_t pf, pipesrc;
9344 int ret;
9345
9346 ret = intel_ring_begin(ring, 4);
9347 if (ret)
9348 return ret;
9349
9350 /* i965+ uses the linear or tiled offsets from the
9351 * Display Registers (which do not change across a page-flip)
9352 * so we need only reprogram the base address.
9353 */
9354 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9355 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9356 intel_ring_emit(ring, fb->pitches[0]);
9357 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
9358 obj->tiling_mode);
9359
9360 /* XXX Enabling the panel-fitter across page-flip is so far
9361 * untested on non-native modes, so ignore it for now.
9362 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
9363 */
9364 pf = 0;
9365 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9366 intel_ring_emit(ring, pf | pipesrc);
9367
9368 intel_mark_page_flip_active(intel_crtc);
9369 __intel_ring_advance(ring);
9370 return 0;
9371}
9372
9373static int intel_gen6_queue_flip(struct drm_device *dev,
9374 struct drm_crtc *crtc,
9375 struct drm_framebuffer *fb,
9376 struct drm_i915_gem_object *obj,
9377 struct intel_engine_cs *ring,
9378 uint32_t flags)
9379{
9380 struct drm_i915_private *dev_priv = dev->dev_private;
9381 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9382 uint32_t pf, pipesrc;
9383 int ret;
9384
9385 ret = intel_ring_begin(ring, 4);
9386 if (ret)
9387 return ret;
9388
9389 intel_ring_emit(ring, MI_DISPLAY_FLIP |
9390 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
9391 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
9392 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9393
9394 /* Contrary to the suggestions in the documentation,
9395 * "Enable Panel Fitter" does not seem to be required when page
9396 * flipping with a non-native mode, and worse causes a normal
9397 * modeset to fail.
9398 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
9399 */
9400 pf = 0;
9401 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
9402 intel_ring_emit(ring, pf | pipesrc);
9403
9404 intel_mark_page_flip_active(intel_crtc);
9405 __intel_ring_advance(ring);
9406 return 0;
9407}
9408
9409static int intel_gen7_queue_flip(struct drm_device *dev,
9410 struct drm_crtc *crtc,
9411 struct drm_framebuffer *fb,
9412 struct drm_i915_gem_object *obj,
9413 struct intel_engine_cs *ring,
9414 uint32_t flags)
9415{
9416 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9417 uint32_t plane_bit = 0;
9418 int len, ret;
9419
9420 switch (intel_crtc->plane) {
9421 case PLANE_A:
9422 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
9423 break;
9424 case PLANE_B:
9425 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
9426 break;
9427 case PLANE_C:
9428 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
9429 break;
9430 default:
9431 WARN_ONCE(1, "unknown plane in flip command\n");
9432 return -ENODEV;
9433 }
9434
9435 len = 4;
9436 if (ring->id == RCS) {
9437 len += 6;
9438 /*
9439 * On Gen 8, SRM is now taking an extra dword to accommodate
9440 * 48bits addresses, and we need a NOOP for the batch size to
9441 * stay even.
9442 */
9443 if (IS_GEN8(dev))
9444 len += 2;
9445 }
9446
9447 /*
9448 * BSpec MI_DISPLAY_FLIP for IVB:
9449 * "The full packet must be contained within the same cache line."
9450 *
9451 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
9452 * cacheline, if we ever start emitting more commands before
9453 * the MI_DISPLAY_FLIP we may need to first emit everything else,
9454 * then do the cacheline alignment, and finally emit the
9455 * MI_DISPLAY_FLIP.
9456 */
9457 ret = intel_ring_cacheline_align(ring);
9458 if (ret)
9459 return ret;
9460
9461 ret = intel_ring_begin(ring, len);
9462 if (ret)
9463 return ret;
9464
9465 /* Unmask the flip-done completion message. Note that the bspec says that
9466 * we should do this for both the BCS and RCS, and that we must not unmask
9467 * more than one flip event at any time (or ensure that one flip message
9468 * can be sent by waiting for flip-done prior to queueing new flips).
9469 * Experimentation says that BCS works despite DERRMR masking all
9470 * flip-done completion events and that unmasking all planes at once
9471 * for the RCS also doesn't appear to drop events. Setting the DERRMR
9472 * to zero does lead to lockups within MI_DISPLAY_FLIP.
9473 */
9474 if (ring->id == RCS) {
9475 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
9476 intel_ring_emit(ring, DERRMR);
9477 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
9478 DERRMR_PIPEB_PRI_FLIP_DONE |
9479 DERRMR_PIPEC_PRI_FLIP_DONE));
9480 if (IS_GEN8(dev))
9481 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
9482 MI_SRM_LRM_GLOBAL_GTT);
9483 else
9484 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
9485 MI_SRM_LRM_GLOBAL_GTT);
9486 intel_ring_emit(ring, DERRMR);
9487 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
9488 if (IS_GEN8(dev)) {
9489 intel_ring_emit(ring, 0);
9490 intel_ring_emit(ring, MI_NOOP);
9491 }
9492 }
9493
9494 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
9495 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
9496 intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
9497 intel_ring_emit(ring, (MI_NOOP));
9498
9499 intel_mark_page_flip_active(intel_crtc);
9500 __intel_ring_advance(ring);
9501 return 0;
9502}
9503
9504static bool use_mmio_flip(struct intel_engine_cs *ring,
9505 struct drm_i915_gem_object *obj)
9506{
9507 /*
9508 * This is not being used for older platforms, because
9509 * non-availability of flip done interrupt forces us to use
9510 * CS flips. Older platforms derive flip done using some clever
9511 * tricks involving the flip_pending status bits and vblank irqs.
9512 * So using MMIO flips there would disrupt this mechanism.
9513 */
9514
9515 if (ring == NULL)
9516 return true;
9517
9518 if (INTEL_INFO(ring->dev)->gen < 5)
9519 return false;
9520
9521 if (i915.use_mmio_flip < 0)
9522 return false;
9523 else if (i915.use_mmio_flip > 0)
9524 return true;
9525 else if (i915.enable_execlists)
9526 return true;
9527 else
9528 return ring != i915_gem_request_get_ring(obj->last_read_req);
9529}
9530
9531static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
9532{
9533 struct drm_device *dev = intel_crtc->base.dev;
9534 struct drm_i915_private *dev_priv = dev->dev_private;
9535 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
9536 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
9537 struct drm_i915_gem_object *obj = intel_fb->obj;
9538 const enum pipe pipe = intel_crtc->pipe;
9539 u32 ctl, stride;
9540
9541 ctl = I915_READ(PLANE_CTL(pipe, 0));
9542 ctl &= ~PLANE_CTL_TILED_MASK;
9543 if (obj->tiling_mode == I915_TILING_X)
9544 ctl |= PLANE_CTL_TILED_X;
9545
9546 /*
9547 * The stride is either expressed as a multiple of 64 bytes chunks for
9548 * linear buffers or in number of tiles for tiled buffers.
9549 */
9550 stride = fb->pitches[0] >> 6;
9551 if (obj->tiling_mode == I915_TILING_X)
9552 stride = fb->pitches[0] >> 9; /* X tiles are 512 bytes wide */
9553
9554 /*
9555 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
9556 * PLANE_SURF updates, the update is then guaranteed to be atomic.
9557 */
9558 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
9559 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
9560
9561 I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
9562 POSTING_READ(PLANE_SURF(pipe, 0));
9563}
9564
9565static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
9566{
9567 struct drm_device *dev = intel_crtc->base.dev;
9568 struct drm_i915_private *dev_priv = dev->dev_private;
9569 struct intel_framebuffer *intel_fb =
9570 to_intel_framebuffer(intel_crtc->base.primary->fb);
9571 struct drm_i915_gem_object *obj = intel_fb->obj;
9572 u32 dspcntr;
9573 u32 reg;
9574
9575 reg = DSPCNTR(intel_crtc->plane);
9576 dspcntr = I915_READ(reg);
9577
9578 if (obj->tiling_mode != I915_TILING_NONE)
9579 dspcntr |= DISPPLANE_TILED;
9580 else
9581 dspcntr &= ~DISPPLANE_TILED;
9582
9583 I915_WRITE(reg, dspcntr);
9584
9585 I915_WRITE(DSPSURF(intel_crtc->plane),
9586 intel_crtc->unpin_work->gtt_offset);
9587 POSTING_READ(DSPSURF(intel_crtc->plane));
9588
9589}
9590
9591/*
9592 * XXX: This is the temporary way to update the plane registers until we get
9593 * around to using the usual plane update functions for MMIO flips
9594 */
9595static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
9596{
9597 struct drm_device *dev = intel_crtc->base.dev;
9598 bool atomic_update;
9599 u32 start_vbl_count;
9600
9601 intel_mark_page_flip_active(intel_crtc);
9602
9603 atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
9604
9605 if (INTEL_INFO(dev)->gen >= 9)
9606 skl_do_mmio_flip(intel_crtc);
9607 else
9608 /* use_mmio_flip() retricts MMIO flips to ilk+ */
9609 ilk_do_mmio_flip(intel_crtc);
9610
9611 if (atomic_update)
9612 intel_pipe_update_end(intel_crtc, start_vbl_count);
9613}
9614
9615static void intel_mmio_flip_work_func(struct work_struct *work)
9616{
9617 struct intel_crtc *crtc =
9618 container_of(work, struct intel_crtc, mmio_flip.work);
9619 struct intel_mmio_flip *mmio_flip;
9620
9621 mmio_flip = &crtc->mmio_flip;
9622 if (mmio_flip->req)
9623 WARN_ON(__i915_wait_request(mmio_flip->req,
9624 crtc->reset_counter,
9625 false, NULL, NULL) != 0);
9626
9627 intel_do_mmio_flip(crtc);
9628 if (mmio_flip->req) {
9629 mutex_lock(&crtc->base.dev->struct_mutex);
9630 i915_gem_request_assign(&mmio_flip->req, NULL);
9631 mutex_unlock(&crtc->base.dev->struct_mutex);
9632 }
9633}
9634
9635static int intel_queue_mmio_flip(struct drm_device *dev,
9636 struct drm_crtc *crtc,
9637 struct drm_framebuffer *fb,
9638 struct drm_i915_gem_object *obj,
9639 struct intel_engine_cs *ring,
9640 uint32_t flags)
9641{
9642 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9643
9644 i915_gem_request_assign(&intel_crtc->mmio_flip.req,
9645 obj->last_write_req);
9646
9647 schedule_work(&intel_crtc->mmio_flip.work);
9648
9649 return 0;
9650}
9651
9652static int intel_default_queue_flip(struct drm_device *dev,
9653 struct drm_crtc *crtc,
9654 struct drm_framebuffer *fb,
9655 struct drm_i915_gem_object *obj,
9656 struct intel_engine_cs *ring,
9657 uint32_t flags)
9658{
9659 return -ENODEV;
9660}
9661
9662static bool __intel_pageflip_stall_check(struct drm_device *dev,
9663 struct drm_crtc *crtc)
9664{
9665 struct drm_i915_private *dev_priv = dev->dev_private;
9666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9667 struct intel_unpin_work *work = intel_crtc->unpin_work;
9668 u32 addr;
9669
9670 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
9671 return true;
9672
9673 if (!work->enable_stall_check)
9674 return false;
9675
9676 if (work->flip_ready_vblank == 0) {
9677 if (work->flip_queued_req &&
9678 !i915_gem_request_completed(work->flip_queued_req, true))
9679 return false;
9680
9681 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
9682 }
9683
9684 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
9685 return false;
9686
9687 /* Potential stall - if we see that the flip has happened,
9688 * assume a missed interrupt. */
9689 if (INTEL_INFO(dev)->gen >= 4)
9690 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
9691 else
9692 addr = I915_READ(DSPADDR(intel_crtc->plane));
9693
9694 /* There is a potential issue here with a false positive after a flip
9695 * to the same address. We could address this by checking for a
9696 * non-incrementing frame counter.
9697 */
9698 return addr == work->gtt_offset;
9699}
9700
9701void intel_check_page_flip(struct drm_device *dev, int pipe)
9702{
9703 struct drm_i915_private *dev_priv = dev->dev_private;
9704 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
9705 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9706
9707 WARN_ON(!in_irq());
9708
9709 if (crtc == NULL)
9710 return;
9711
9712 spin_lock(&dev->event_lock);
9713 if (intel_crtc->unpin_work && __intel_pageflip_stall_check(dev, crtc)) {
9714 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
9715 intel_crtc->unpin_work->flip_queued_vblank,
9716 drm_vblank_count(dev, pipe));
9717 page_flip_completed(intel_crtc);
9718 }
9719 spin_unlock(&dev->event_lock);
9720}
9721
9722static int intel_crtc_page_flip(struct drm_crtc *crtc,
9723 struct drm_framebuffer *fb,
9724 struct drm_pending_vblank_event *event,
9725 uint32_t page_flip_flags)
9726{
9727 struct drm_device *dev = crtc->dev;
9728 struct drm_i915_private *dev_priv = dev->dev_private;
9729 struct drm_framebuffer *old_fb = crtc->primary->fb;
9730 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
9731 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9732 struct drm_plane *primary = crtc->primary;
9733 enum pipe pipe = intel_crtc->pipe;
9734 struct intel_unpin_work *work;
9735 struct intel_engine_cs *ring;
9736 int ret;
9737
9738 /*
9739 * drm_mode_page_flip_ioctl() should already catch this, but double
9740 * check to be safe. In the future we may enable pageflipping from
9741 * a disabled primary plane.
9742 */
9743 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
9744 return -EBUSY;
9745
9746 /* Can't change pixel format via MI display flips. */
9747 if (fb->pixel_format != crtc->primary->fb->pixel_format)
9748 return -EINVAL;
9749
9750 /*
9751 * TILEOFF/LINOFF registers can't be changed via MI display flips.
9752 * Note that pitch changes could also affect these register.
9753 */
9754 if (INTEL_INFO(dev)->gen > 3 &&
9755 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
9756 fb->pitches[0] != crtc->primary->fb->pitches[0]))
9757 return -EINVAL;
9758
9759 if (i915_terminally_wedged(&dev_priv->gpu_error))
9760 goto out_hang;
9761
9762 work = kzalloc(sizeof(*work), GFP_KERNEL);
9763 if (work == NULL)
9764 return -ENOMEM;
9765
9766 work->event = event;
9767 work->crtc = crtc;
9768 work->old_fb = old_fb;
9769 INIT_WORK(&work->work, intel_unpin_work_fn);
9770
9771 ret = drm_crtc_vblank_get(crtc);
9772 if (ret)
9773 goto free_work;
9774
9775 /* We borrow the event spin lock for protecting unpin_work */
9776 spin_lock_irq(&dev->event_lock);
9777 if (intel_crtc->unpin_work) {
9778 /* Before declaring the flip queue wedged, check if
9779 * the hardware completed the operation behind our backs.
9780 */
9781 if (__intel_pageflip_stall_check(dev, crtc)) {
9782 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
9783 page_flip_completed(intel_crtc);
9784 } else {
9785 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
9786 spin_unlock_irq(&dev->event_lock);
9787
9788 drm_crtc_vblank_put(crtc);
9789 kfree(work);
9790 return -EBUSY;
9791 }
9792 }
9793 intel_crtc->unpin_work = work;
9794 spin_unlock_irq(&dev->event_lock);
9795
9796 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
9797 flush_workqueue(dev_priv->wq);
9798
9799 ret = i915_mutex_lock_interruptible(dev);
9800 if (ret)
9801 goto cleanup;
9802
9803 /* Reference the objects for the scheduled work. */
9804 drm_framebuffer_reference(work->old_fb);
9805 drm_gem_object_reference(&obj->base);
9806
9807 crtc->primary->fb = fb;
9808 update_state_fb(crtc->primary);
9809
9810 work->pending_flip_obj = obj;
9811
9812 atomic_inc(&intel_crtc->unpin_work_count);
9813 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
9814
9815 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
9816 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
9817
9818 if (IS_VALLEYVIEW(dev)) {
9819 ring = &dev_priv->ring[BCS];
9820 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
9821 /* vlv: DISPLAY_FLIP fails to change tiling */
9822 ring = NULL;
9823 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
9824 ring = &dev_priv->ring[BCS];
9825 } else if (INTEL_INFO(dev)->gen >= 7) {
9826 ring = i915_gem_request_get_ring(obj->last_read_req);
9827 if (ring == NULL || ring->id != RCS)
9828 ring = &dev_priv->ring[BCS];
9829 } else {
9830 ring = &dev_priv->ring[RCS];
9831 }
9832
9833 ret = intel_pin_and_fence_fb_obj(crtc->primary, fb, ring);
9834 if (ret)
9835 goto cleanup_pending;
9836
9837 work->gtt_offset =
9838 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset;
9839
9840 if (use_mmio_flip(ring, obj)) {
9841 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
9842 page_flip_flags);
9843 if (ret)
9844 goto cleanup_unpin;
9845
9846 i915_gem_request_assign(&work->flip_queued_req,
9847 obj->last_write_req);
9848 } else {
9849 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
9850 page_flip_flags);
9851 if (ret)
9852 goto cleanup_unpin;
9853
9854 i915_gem_request_assign(&work->flip_queued_req,
9855 intel_ring_get_request(ring));
9856 }
9857
9858 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
9859 work->enable_stall_check = true;
9860
9861 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
9862 INTEL_FRONTBUFFER_PRIMARY(pipe));
9863
9864 intel_fbc_disable(dev);
9865 intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
9866 mutex_unlock(&dev->struct_mutex);
9867
9868 trace_i915_flip_request(intel_crtc->plane, obj);
9869
9870 return 0;
9871
9872cleanup_unpin:
9873 intel_unpin_fb_obj(obj);
9874cleanup_pending:
9875 atomic_dec(&intel_crtc->unpin_work_count);
9876 crtc->primary->fb = old_fb;
9877 update_state_fb(crtc->primary);
9878 drm_framebuffer_unreference(work->old_fb);
9879 drm_gem_object_unreference(&obj->base);
9880 mutex_unlock(&dev->struct_mutex);
9881
9882cleanup:
9883 spin_lock_irq(&dev->event_lock);
9884 intel_crtc->unpin_work = NULL;
9885 spin_unlock_irq(&dev->event_lock);
9886
9887 drm_crtc_vblank_put(crtc);
9888free_work:
9889 kfree(work);
9890
9891 if (ret == -EIO) {
9892out_hang:
9893 ret = intel_plane_restore(primary);
9894 if (ret == 0 && event) {
9895 spin_lock_irq(&dev->event_lock);
9896 drm_send_vblank_event(dev, pipe, event);
9897 spin_unlock_irq(&dev->event_lock);
9898 }
9899 }
9900 return ret;
9901}
9902
9903static struct drm_crtc_helper_funcs intel_helper_funcs = {
9904 .mode_set_base_atomic = intel_pipe_set_base_atomic,
9905 .load_lut = intel_crtc_load_lut,
9906 .atomic_begin = intel_begin_crtc_commit,
9907 .atomic_flush = intel_finish_crtc_commit,
9908};
9909
9910/**
9911 * intel_modeset_update_staged_output_state
9912 *
9913 * Updates the staged output configuration state, e.g. after we've read out the
9914 * current hw state.
9915 */
9916static void intel_modeset_update_staged_output_state(struct drm_device *dev)
9917{
9918 struct intel_crtc *crtc;
9919 struct intel_encoder *encoder;
9920 struct intel_connector *connector;
9921
9922 list_for_each_entry(connector, &dev->mode_config.connector_list,
9923 base.head) {
9924 connector->new_encoder =
9925 to_intel_encoder(connector->base.encoder);
9926 }
9927
9928 for_each_intel_encoder(dev, encoder) {
9929 encoder->new_crtc =
9930 to_intel_crtc(encoder->base.crtc);
9931 }
9932
9933 for_each_intel_crtc(dev, crtc) {
9934 crtc->new_enabled = crtc->base.state->enable;
9935
9936 if (crtc->new_enabled)
9937 crtc->new_config = crtc->config;
9938 else
9939 crtc->new_config = NULL;
9940 }
9941}
9942
9943/**
9944 * intel_modeset_commit_output_state
9945 *
9946 * This function copies the stage display pipe configuration to the real one.
9947 */
9948static void intel_modeset_commit_output_state(struct drm_device *dev)
9949{
9950 struct intel_crtc *crtc;
9951 struct intel_encoder *encoder;
9952 struct intel_connector *connector;
9953
9954 list_for_each_entry(connector, &dev->mode_config.connector_list,
9955 base.head) {
9956 connector->base.encoder = &connector->new_encoder->base;
9957 }
9958
9959 for_each_intel_encoder(dev, encoder) {
9960 encoder->base.crtc = &encoder->new_crtc->base;
9961 }
9962
9963 for_each_intel_crtc(dev, crtc) {
9964 crtc->base.state->enable = crtc->new_enabled;
9965 crtc->base.enabled = crtc->new_enabled;
9966 }
9967}
9968
9969static void
9970connected_sink_compute_bpp(struct intel_connector *connector,
9971 struct intel_crtc_state *pipe_config)
9972{
9973 int bpp = pipe_config->pipe_bpp;
9974
9975 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
9976 connector->base.base.id,
9977 connector->base.name);
9978
9979 /* Don't use an invalid EDID bpc value */
9980 if (connector->base.display_info.bpc &&
9981 connector->base.display_info.bpc * 3 < bpp) {
9982 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
9983 bpp, connector->base.display_info.bpc*3);
9984 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
9985 }
9986
9987 /* Clamp bpp to 8 on screens without EDID 1.4 */
9988 if (connector->base.display_info.bpc == 0 && bpp > 24) {
9989 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
9990 bpp);
9991 pipe_config->pipe_bpp = 24;
9992 }
9993}
9994
9995static int
9996compute_baseline_pipe_bpp(struct intel_crtc *crtc,
9997 struct drm_framebuffer *fb,
9998 struct intel_crtc_state *pipe_config)
9999{
10000 struct drm_device *dev = crtc->base.dev;
10001 struct intel_connector *connector;
10002 int bpp;
10003
10004 switch (fb->pixel_format) {
10005 case DRM_FORMAT_C8:
10006 bpp = 8*3; /* since we go through a colormap */
10007 break;
10008 case DRM_FORMAT_XRGB1555:
10009 case DRM_FORMAT_ARGB1555:
10010 /* checked in intel_framebuffer_init already */
10011 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
10012 return -EINVAL;
10013 case DRM_FORMAT_RGB565:
10014 bpp = 6*3; /* min is 18bpp */
10015 break;
10016 case DRM_FORMAT_XBGR8888:
10017 case DRM_FORMAT_ABGR8888:
10018 /* checked in intel_framebuffer_init already */
10019 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10020 return -EINVAL;
10021 case DRM_FORMAT_XRGB8888:
10022 case DRM_FORMAT_ARGB8888:
10023 bpp = 8*3;
10024 break;
10025 case DRM_FORMAT_XRGB2101010:
10026 case DRM_FORMAT_ARGB2101010:
10027 case DRM_FORMAT_XBGR2101010:
10028 case DRM_FORMAT_ABGR2101010:
10029 /* checked in intel_framebuffer_init already */
10030 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
10031 return -EINVAL;
10032 bpp = 10*3;
10033 break;
10034 /* TODO: gen4+ supports 16 bpc floating point, too. */
10035 default:
10036 DRM_DEBUG_KMS("unsupported depth\n");
10037 return -EINVAL;
10038 }
10039
10040 pipe_config->pipe_bpp = bpp;
10041
10042 /* Clamp display bpp to EDID value */
10043 list_for_each_entry(connector, &dev->mode_config.connector_list,
10044 base.head) {
10045 if (!connector->new_encoder ||
10046 connector->new_encoder->new_crtc != crtc)
10047 continue;
10048
10049 connected_sink_compute_bpp(connector, pipe_config);
10050 }
10051
10052 return bpp;
10053}
10054
10055static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
10056{
10057 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
10058 "type: 0x%x flags: 0x%x\n",
10059 mode->crtc_clock,
10060 mode->crtc_hdisplay, mode->crtc_hsync_start,
10061 mode->crtc_hsync_end, mode->crtc_htotal,
10062 mode->crtc_vdisplay, mode->crtc_vsync_start,
10063 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
10064}
10065
10066static void intel_dump_pipe_config(struct intel_crtc *crtc,
10067 struct intel_crtc_state *pipe_config,
10068 const char *context)
10069{
10070 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
10071 context, pipe_name(crtc->pipe));
10072
10073 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
10074 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
10075 pipe_config->pipe_bpp, pipe_config->dither);
10076 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10077 pipe_config->has_pch_encoder,
10078 pipe_config->fdi_lanes,
10079 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
10080 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
10081 pipe_config->fdi_m_n.tu);
10082 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
10083 pipe_config->has_dp_encoder,
10084 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
10085 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
10086 pipe_config->dp_m_n.tu);
10087
10088 DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
10089 pipe_config->has_dp_encoder,
10090 pipe_config->dp_m2_n2.gmch_m,
10091 pipe_config->dp_m2_n2.gmch_n,
10092 pipe_config->dp_m2_n2.link_m,
10093 pipe_config->dp_m2_n2.link_n,
10094 pipe_config->dp_m2_n2.tu);
10095
10096 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
10097 pipe_config->has_audio,
10098 pipe_config->has_infoframe);
10099
10100 DRM_DEBUG_KMS("requested mode:\n");
10101 drm_mode_debug_printmodeline(&pipe_config->base.mode);
10102 DRM_DEBUG_KMS("adjusted mode:\n");
10103 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
10104 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
10105 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
10106 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
10107 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
10108 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
10109 pipe_config->gmch_pfit.control,
10110 pipe_config->gmch_pfit.pgm_ratios,
10111 pipe_config->gmch_pfit.lvds_border_bits);
10112 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
10113 pipe_config->pch_pfit.pos,
10114 pipe_config->pch_pfit.size,
10115 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
10116 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
10117 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
10118}
10119
10120static bool encoders_cloneable(const struct intel_encoder *a,
10121 const struct intel_encoder *b)
10122{
10123 /* masks could be asymmetric, so check both ways */
10124 return a == b || (a->cloneable & (1 << b->type) &&
10125 b->cloneable & (1 << a->type));
10126}
10127
10128static bool check_single_encoder_cloning(struct intel_crtc *crtc,
10129 struct intel_encoder *encoder)
10130{
10131 struct drm_device *dev = crtc->base.dev;
10132 struct intel_encoder *source_encoder;
10133
10134 for_each_intel_encoder(dev, source_encoder) {
10135 if (source_encoder->new_crtc != crtc)
10136 continue;
10137
10138 if (!encoders_cloneable(encoder, source_encoder))
10139 return false;
10140 }
10141
10142 return true;
10143}
10144
10145static bool check_encoder_cloning(struct intel_crtc *crtc)
10146{
10147 struct drm_device *dev = crtc->base.dev;
10148 struct intel_encoder *encoder;
10149
10150 for_each_intel_encoder(dev, encoder) {
10151 if (encoder->new_crtc != crtc)
10152 continue;
10153
10154 if (!check_single_encoder_cloning(crtc, encoder))
10155 return false;
10156 }
10157
10158 return true;
10159}
10160
10161static bool check_digital_port_conflicts(struct drm_device *dev)
10162{
10163 struct intel_connector *connector;
10164 unsigned int used_ports = 0;
10165
10166 /*
10167 * Walk the connector list instead of the encoder
10168 * list to detect the problem on ddi platforms
10169 * where there's just one encoder per digital port.
10170 */
10171 list_for_each_entry(connector,
10172 &dev->mode_config.connector_list, base.head) {
10173 struct intel_encoder *encoder = connector->new_encoder;
10174
10175 if (!encoder)
10176 continue;
10177
10178 WARN_ON(!encoder->new_crtc);
10179
10180 switch (encoder->type) {
10181 unsigned int port_mask;
10182 case INTEL_OUTPUT_UNKNOWN:
10183 if (WARN_ON(!HAS_DDI(dev)))
10184 break;
10185 case INTEL_OUTPUT_DISPLAYPORT:
10186 case INTEL_OUTPUT_HDMI:
10187 case INTEL_OUTPUT_EDP:
10188 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
10189
10190 /* the same port mustn't appear more than once */
10191 if (used_ports & port_mask)
10192 return false;
10193
10194 used_ports |= port_mask;
10195 default:
10196 break;
10197 }
10198 }
10199
10200 return true;
10201}
10202
10203static struct intel_crtc_state *
10204intel_modeset_pipe_config(struct drm_crtc *crtc,
10205 struct drm_framebuffer *fb,
10206 struct drm_display_mode *mode)
10207{
10208 struct drm_device *dev = crtc->dev;
10209 struct intel_encoder *encoder;
10210 struct intel_crtc_state *pipe_config;
10211 int plane_bpp, ret = -EINVAL;
10212 bool retry = true;
10213
10214 if (!check_encoder_cloning(to_intel_crtc(crtc))) {
10215 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
10216 return ERR_PTR(-EINVAL);
10217 }
10218
10219 if (!check_digital_port_conflicts(dev)) {
10220 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
10221 return ERR_PTR(-EINVAL);
10222 }
10223
10224 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10225 if (!pipe_config)
10226 return ERR_PTR(-ENOMEM);
10227
10228 pipe_config->base.crtc = crtc;
10229 drm_mode_copy(&pipe_config->base.adjusted_mode, mode);
10230 drm_mode_copy(&pipe_config->base.mode, mode);
10231
10232 pipe_config->cpu_transcoder =
10233 (enum transcoder) to_intel_crtc(crtc)->pipe;
10234 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
10235
10236 /*
10237 * Sanitize sync polarity flags based on requested ones. If neither
10238 * positive or negative polarity is requested, treat this as meaning
10239 * negative polarity.
10240 */
10241 if (!(pipe_config->base.adjusted_mode.flags &
10242 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
10243 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
10244
10245 if (!(pipe_config->base.adjusted_mode.flags &
10246 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
10247 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
10248
10249 /* Compute a starting value for pipe_config->pipe_bpp taking the source
10250 * plane pixel format and any sink constraints into account. Returns the
10251 * source plane bpp so that dithering can be selected on mismatches
10252 * after encoders and crtc also have had their say. */
10253 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
10254 fb, pipe_config);
10255 if (plane_bpp < 0)
10256 goto fail;
10257
10258 /*
10259 * Determine the real pipe dimensions. Note that stereo modes can
10260 * increase the actual pipe size due to the frame doubling and
10261 * insertion of additional space for blanks between the frame. This
10262 * is stored in the crtc timings. We use the requested mode to do this
10263 * computation to clearly distinguish it from the adjusted mode, which
10264 * can be changed by the connectors in the below retry loop.
10265 */
10266 drm_crtc_get_hv_timing(&pipe_config->base.mode,
10267 &pipe_config->pipe_src_w,
10268 &pipe_config->pipe_src_h);
10269
10270encoder_retry:
10271 /* Ensure the port clock defaults are reset when retrying. */
10272 pipe_config->port_clock = 0;
10273 pipe_config->pixel_multiplier = 1;
10274
10275 /* Fill in default crtc timings, allow encoders to overwrite them. */
10276 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
10277 CRTC_STEREO_DOUBLE);
10278
10279 /* Pass our mode to the connectors and the CRTC to give them a chance to
10280 * adjust it according to limitations or connector properties, and also
10281 * a chance to reject the mode entirely.
10282 */
10283 for_each_intel_encoder(dev, encoder) {
10284
10285 if (&encoder->new_crtc->base != crtc)
10286 continue;
10287
10288 if (!(encoder->compute_config(encoder, pipe_config))) {
10289 DRM_DEBUG_KMS("Encoder config failure\n");
10290 goto fail;
10291 }
10292 }
10293
10294 /* Set default port clock if not overwritten by the encoder. Needs to be
10295 * done afterwards in case the encoder adjusts the mode. */
10296 if (!pipe_config->port_clock)
10297 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
10298 * pipe_config->pixel_multiplier;
10299
10300 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
10301 if (ret < 0) {
10302 DRM_DEBUG_KMS("CRTC fixup failed\n");
10303 goto fail;
10304 }
10305
10306 if (ret == RETRY) {
10307 if (WARN(!retry, "loop in pipe configuration computation\n")) {
10308 ret = -EINVAL;
10309 goto fail;
10310 }
10311
10312 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
10313 retry = false;
10314 goto encoder_retry;
10315 }
10316
10317 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
10318 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
10319 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
10320
10321 return pipe_config;
10322fail:
10323 kfree(pipe_config);
10324 return ERR_PTR(ret);
10325}
10326
10327/* Computes which crtcs are affected and sets the relevant bits in the mask. For
10328 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
10329static void
10330intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
10331 unsigned *prepare_pipes, unsigned *disable_pipes)
10332{
10333 struct intel_crtc *intel_crtc;
10334 struct drm_device *dev = crtc->dev;
10335 struct intel_encoder *encoder;
10336 struct intel_connector *connector;
10337 struct drm_crtc *tmp_crtc;
10338
10339 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
10340
10341 /* Check which crtcs have changed outputs connected to them, these need
10342 * to be part of the prepare_pipes mask. We don't (yet) support global
10343 * modeset across multiple crtcs, so modeset_pipes will only have one
10344 * bit set at most. */
10345 list_for_each_entry(connector, &dev->mode_config.connector_list,
10346 base.head) {
10347 if (connector->base.encoder == &connector->new_encoder->base)
10348 continue;
10349
10350 if (connector->base.encoder) {
10351 tmp_crtc = connector->base.encoder->crtc;
10352
10353 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10354 }
10355
10356 if (connector->new_encoder)
10357 *prepare_pipes |=
10358 1 << connector->new_encoder->new_crtc->pipe;
10359 }
10360
10361 for_each_intel_encoder(dev, encoder) {
10362 if (encoder->base.crtc == &encoder->new_crtc->base)
10363 continue;
10364
10365 if (encoder->base.crtc) {
10366 tmp_crtc = encoder->base.crtc;
10367
10368 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
10369 }
10370
10371 if (encoder->new_crtc)
10372 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
10373 }
10374
10375 /* Check for pipes that will be enabled/disabled ... */
10376 for_each_intel_crtc(dev, intel_crtc) {
10377 if (intel_crtc->base.state->enable == intel_crtc->new_enabled)
10378 continue;
10379
10380 if (!intel_crtc->new_enabled)
10381 *disable_pipes |= 1 << intel_crtc->pipe;
10382 else
10383 *prepare_pipes |= 1 << intel_crtc->pipe;
10384 }
10385
10386
10387 /* set_mode is also used to update properties on life display pipes. */
10388 intel_crtc = to_intel_crtc(crtc);
10389 if (intel_crtc->new_enabled)
10390 *prepare_pipes |= 1 << intel_crtc->pipe;
10391
10392 /*
10393 * For simplicity do a full modeset on any pipe where the output routing
10394 * changed. We could be more clever, but that would require us to be
10395 * more careful with calling the relevant encoder->mode_set functions.
10396 */
10397 if (*prepare_pipes)
10398 *modeset_pipes = *prepare_pipes;
10399
10400 /* ... and mask these out. */
10401 *modeset_pipes &= ~(*disable_pipes);
10402 *prepare_pipes &= ~(*disable_pipes);
10403
10404 /*
10405 * HACK: We don't (yet) fully support global modesets. intel_set_config
10406 * obies this rule, but the modeset restore mode of
10407 * intel_modeset_setup_hw_state does not.
10408 */
10409 *modeset_pipes &= 1 << intel_crtc->pipe;
10410 *prepare_pipes &= 1 << intel_crtc->pipe;
10411
10412 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
10413 *modeset_pipes, *prepare_pipes, *disable_pipes);
10414}
10415
10416static bool intel_crtc_in_use(struct drm_crtc *crtc)
10417{
10418 struct drm_encoder *encoder;
10419 struct drm_device *dev = crtc->dev;
10420
10421 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
10422 if (encoder->crtc == crtc)
10423 return true;
10424
10425 return false;
10426}
10427
10428static void
10429intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
10430{
10431 struct drm_i915_private *dev_priv = dev->dev_private;
10432 struct intel_encoder *intel_encoder;
10433 struct intel_crtc *intel_crtc;
10434 struct drm_connector *connector;
10435
10436 intel_shared_dpll_commit(dev_priv);
10437
10438 for_each_intel_encoder(dev, intel_encoder) {
10439 if (!intel_encoder->base.crtc)
10440 continue;
10441
10442 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
10443
10444 if (prepare_pipes & (1 << intel_crtc->pipe))
10445 intel_encoder->connectors_active = false;
10446 }
10447
10448 intel_modeset_commit_output_state(dev);
10449
10450 /* Double check state. */
10451 for_each_intel_crtc(dev, intel_crtc) {
10452 WARN_ON(intel_crtc->base.state->enable != intel_crtc_in_use(&intel_crtc->base));
10453 WARN_ON(intel_crtc->new_config &&
10454 intel_crtc->new_config != intel_crtc->config);
10455 WARN_ON(intel_crtc->base.state->enable != !!intel_crtc->new_config);
10456 }
10457
10458 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
10459 if (!connector->encoder || !connector->encoder->crtc)
10460 continue;
10461
10462 intel_crtc = to_intel_crtc(connector->encoder->crtc);
10463
10464 if (prepare_pipes & (1 << intel_crtc->pipe)) {
10465 struct drm_property *dpms_property =
10466 dev->mode_config.dpms_property;
10467
10468 connector->dpms = DRM_MODE_DPMS_ON;
10469 drm_object_property_set_value(&connector->base,
10470 dpms_property,
10471 DRM_MODE_DPMS_ON);
10472
10473 intel_encoder = to_intel_encoder(connector->encoder);
10474 intel_encoder->connectors_active = true;
10475 }
10476 }
10477
10478}
10479
10480static bool intel_fuzzy_clock_check(int clock1, int clock2)
10481{
10482 int diff;
10483
10484 if (clock1 == clock2)
10485 return true;
10486
10487 if (!clock1 || !clock2)
10488 return false;
10489
10490 diff = abs(clock1 - clock2);
10491
10492 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
10493 return true;
10494
10495 return false;
10496}
10497
10498#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
10499 list_for_each_entry((intel_crtc), \
10500 &(dev)->mode_config.crtc_list, \
10501 base.head) \
10502 if (mask & (1 <<(intel_crtc)->pipe))
10503
10504static bool
10505intel_pipe_config_compare(struct drm_device *dev,
10506 struct intel_crtc_state *current_config,
10507 struct intel_crtc_state *pipe_config)
10508{
10509#define PIPE_CONF_CHECK_X(name) \
10510 if (current_config->name != pipe_config->name) { \
10511 DRM_ERROR("mismatch in " #name " " \
10512 "(expected 0x%08x, found 0x%08x)\n", \
10513 current_config->name, \
10514 pipe_config->name); \
10515 return false; \
10516 }
10517
10518#define PIPE_CONF_CHECK_I(name) \
10519 if (current_config->name != pipe_config->name) { \
10520 DRM_ERROR("mismatch in " #name " " \
10521 "(expected %i, found %i)\n", \
10522 current_config->name, \
10523 pipe_config->name); \
10524 return false; \
10525 }
10526
10527/* This is required for BDW+ where there is only one set of registers for
10528 * switching between high and low RR.
10529 * This macro can be used whenever a comparison has to be made between one
10530 * hw state and multiple sw state variables.
10531 */
10532#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
10533 if ((current_config->name != pipe_config->name) && \
10534 (current_config->alt_name != pipe_config->name)) { \
10535 DRM_ERROR("mismatch in " #name " " \
10536 "(expected %i or %i, found %i)\n", \
10537 current_config->name, \
10538 current_config->alt_name, \
10539 pipe_config->name); \
10540 return false; \
10541 }
10542
10543#define PIPE_CONF_CHECK_FLAGS(name, mask) \
10544 if ((current_config->name ^ pipe_config->name) & (mask)) { \
10545 DRM_ERROR("mismatch in " #name "(" #mask ") " \
10546 "(expected %i, found %i)\n", \
10547 current_config->name & (mask), \
10548 pipe_config->name & (mask)); \
10549 return false; \
10550 }
10551
10552#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
10553 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
10554 DRM_ERROR("mismatch in " #name " " \
10555 "(expected %i, found %i)\n", \
10556 current_config->name, \
10557 pipe_config->name); \
10558 return false; \
10559 }
10560
10561#define PIPE_CONF_QUIRK(quirk) \
10562 ((current_config->quirks | pipe_config->quirks) & (quirk))
10563
10564 PIPE_CONF_CHECK_I(cpu_transcoder);
10565
10566 PIPE_CONF_CHECK_I(has_pch_encoder);
10567 PIPE_CONF_CHECK_I(fdi_lanes);
10568 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
10569 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
10570 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
10571 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
10572 PIPE_CONF_CHECK_I(fdi_m_n.tu);
10573
10574 PIPE_CONF_CHECK_I(has_dp_encoder);
10575
10576 if (INTEL_INFO(dev)->gen < 8) {
10577 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
10578 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
10579 PIPE_CONF_CHECK_I(dp_m_n.link_m);
10580 PIPE_CONF_CHECK_I(dp_m_n.link_n);
10581 PIPE_CONF_CHECK_I(dp_m_n.tu);
10582
10583 if (current_config->has_drrs) {
10584 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
10585 PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
10586 PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
10587 PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
10588 PIPE_CONF_CHECK_I(dp_m2_n2.tu);
10589 }
10590 } else {
10591 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
10592 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
10593 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
10594 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
10595 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
10596 }
10597
10598 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
10599 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
10600 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
10601 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
10602 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
10603 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
10604
10605 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
10606 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
10607 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
10608 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
10609 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
10610 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
10611
10612 PIPE_CONF_CHECK_I(pixel_multiplier);
10613 PIPE_CONF_CHECK_I(has_hdmi_sink);
10614 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
10615 IS_VALLEYVIEW(dev))
10616 PIPE_CONF_CHECK_I(limited_color_range);
10617 PIPE_CONF_CHECK_I(has_infoframe);
10618
10619 PIPE_CONF_CHECK_I(has_audio);
10620
10621 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10622 DRM_MODE_FLAG_INTERLACE);
10623
10624 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
10625 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10626 DRM_MODE_FLAG_PHSYNC);
10627 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10628 DRM_MODE_FLAG_NHSYNC);
10629 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10630 DRM_MODE_FLAG_PVSYNC);
10631 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
10632 DRM_MODE_FLAG_NVSYNC);
10633 }
10634
10635 PIPE_CONF_CHECK_I(pipe_src_w);
10636 PIPE_CONF_CHECK_I(pipe_src_h);
10637
10638 /*
10639 * FIXME: BIOS likes to set up a cloned config with lvds+external
10640 * screen. Since we don't yet re-compute the pipe config when moving
10641 * just the lvds port away to another pipe the sw tracking won't match.
10642 *
10643 * Proper atomic modesets with recomputed global state will fix this.
10644 * Until then just don't check gmch state for inherited modes.
10645 */
10646 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
10647 PIPE_CONF_CHECK_I(gmch_pfit.control);
10648 /* pfit ratios are autocomputed by the hw on gen4+ */
10649 if (INTEL_INFO(dev)->gen < 4)
10650 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
10651 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
10652 }
10653
10654 PIPE_CONF_CHECK_I(pch_pfit.enabled);
10655 if (current_config->pch_pfit.enabled) {
10656 PIPE_CONF_CHECK_I(pch_pfit.pos);
10657 PIPE_CONF_CHECK_I(pch_pfit.size);
10658 }
10659
10660 /* BDW+ don't expose a synchronous way to read the state */
10661 if (IS_HASWELL(dev))
10662 PIPE_CONF_CHECK_I(ips_enabled);
10663
10664 PIPE_CONF_CHECK_I(double_wide);
10665
10666 PIPE_CONF_CHECK_X(ddi_pll_sel);
10667
10668 PIPE_CONF_CHECK_I(shared_dpll);
10669 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
10670 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
10671 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
10672 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
10673 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
10674 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
10675 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
10676 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
10677
10678 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
10679 PIPE_CONF_CHECK_I(pipe_bpp);
10680
10681 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
10682 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
10683
10684#undef PIPE_CONF_CHECK_X
10685#undef PIPE_CONF_CHECK_I
10686#undef PIPE_CONF_CHECK_I_ALT
10687#undef PIPE_CONF_CHECK_FLAGS
10688#undef PIPE_CONF_CHECK_CLOCK_FUZZY
10689#undef PIPE_CONF_QUIRK
10690
10691 return true;
10692}
10693
10694static void check_wm_state(struct drm_device *dev)
10695{
10696 struct drm_i915_private *dev_priv = dev->dev_private;
10697 struct skl_ddb_allocation hw_ddb, *sw_ddb;
10698 struct intel_crtc *intel_crtc;
10699 int plane;
10700
10701 if (INTEL_INFO(dev)->gen < 9)
10702 return;
10703
10704 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
10705 sw_ddb = &dev_priv->wm.skl_hw.ddb;
10706
10707 for_each_intel_crtc(dev, intel_crtc) {
10708 struct skl_ddb_entry *hw_entry, *sw_entry;
10709 const enum pipe pipe = intel_crtc->pipe;
10710
10711 if (!intel_crtc->active)
10712 continue;
10713
10714 /* planes */
10715 for_each_plane(pipe, plane) {
10716 hw_entry = &hw_ddb.plane[pipe][plane];
10717 sw_entry = &sw_ddb->plane[pipe][plane];
10718
10719 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10720 continue;
10721
10722 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
10723 "(expected (%u,%u), found (%u,%u))\n",
10724 pipe_name(pipe), plane + 1,
10725 sw_entry->start, sw_entry->end,
10726 hw_entry->start, hw_entry->end);
10727 }
10728
10729 /* cursor */
10730 hw_entry = &hw_ddb.cursor[pipe];
10731 sw_entry = &sw_ddb->cursor[pipe];
10732
10733 if (skl_ddb_entry_equal(hw_entry, sw_entry))
10734 continue;
10735
10736 DRM_ERROR("mismatch in DDB state pipe %c cursor "
10737 "(expected (%u,%u), found (%u,%u))\n",
10738 pipe_name(pipe),
10739 sw_entry->start, sw_entry->end,
10740 hw_entry->start, hw_entry->end);
10741 }
10742}
10743
10744static void
10745check_connector_state(struct drm_device *dev)
10746{
10747 struct intel_connector *connector;
10748
10749 list_for_each_entry(connector, &dev->mode_config.connector_list,
10750 base.head) {
10751 /* This also checks the encoder/connector hw state with the
10752 * ->get_hw_state callbacks. */
10753 intel_connector_check_state(connector);
10754
10755 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
10756 "connector's staged encoder doesn't match current encoder\n");
10757 }
10758}
10759
10760static void
10761check_encoder_state(struct drm_device *dev)
10762{
10763 struct intel_encoder *encoder;
10764 struct intel_connector *connector;
10765
10766 for_each_intel_encoder(dev, encoder) {
10767 bool enabled = false;
10768 bool active = false;
10769 enum pipe pipe, tracked_pipe;
10770
10771 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
10772 encoder->base.base.id,
10773 encoder->base.name);
10774
10775 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
10776 "encoder's stage crtc doesn't match current crtc\n");
10777 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
10778 "encoder's active_connectors set, but no crtc\n");
10779
10780 list_for_each_entry(connector, &dev->mode_config.connector_list,
10781 base.head) {
10782 if (connector->base.encoder != &encoder->base)
10783 continue;
10784 enabled = true;
10785 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
10786 active = true;
10787 }
10788 /*
10789 * for MST connectors if we unplug the connector is gone
10790 * away but the encoder is still connected to a crtc
10791 * until a modeset happens in response to the hotplug.
10792 */
10793 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
10794 continue;
10795
10796 I915_STATE_WARN(!!encoder->base.crtc != enabled,
10797 "encoder's enabled state mismatch "
10798 "(expected %i, found %i)\n",
10799 !!encoder->base.crtc, enabled);
10800 I915_STATE_WARN(active && !encoder->base.crtc,
10801 "active encoder with no crtc\n");
10802
10803 I915_STATE_WARN(encoder->connectors_active != active,
10804 "encoder's computed active state doesn't match tracked active state "
10805 "(expected %i, found %i)\n", active, encoder->connectors_active);
10806
10807 active = encoder->get_hw_state(encoder, &pipe);
10808 I915_STATE_WARN(active != encoder->connectors_active,
10809 "encoder's hw state doesn't match sw tracking "
10810 "(expected %i, found %i)\n",
10811 encoder->connectors_active, active);
10812
10813 if (!encoder->base.crtc)
10814 continue;
10815
10816 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
10817 I915_STATE_WARN(active && pipe != tracked_pipe,
10818 "active encoder's pipe doesn't match"
10819 "(expected %i, found %i)\n",
10820 tracked_pipe, pipe);
10821
10822 }
10823}
10824
10825static void
10826check_crtc_state(struct drm_device *dev)
10827{
10828 struct drm_i915_private *dev_priv = dev->dev_private;
10829 struct intel_crtc *crtc;
10830 struct intel_encoder *encoder;
10831 struct intel_crtc_state pipe_config;
10832
10833 for_each_intel_crtc(dev, crtc) {
10834 bool enabled = false;
10835 bool active = false;
10836
10837 memset(&pipe_config, 0, sizeof(pipe_config));
10838
10839 DRM_DEBUG_KMS("[CRTC:%d]\n",
10840 crtc->base.base.id);
10841
10842 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
10843 "active crtc, but not enabled in sw tracking\n");
10844
10845 for_each_intel_encoder(dev, encoder) {
10846 if (encoder->base.crtc != &crtc->base)
10847 continue;
10848 enabled = true;
10849 if (encoder->connectors_active)
10850 active = true;
10851 }
10852
10853 I915_STATE_WARN(active != crtc->active,
10854 "crtc's computed active state doesn't match tracked active state "
10855 "(expected %i, found %i)\n", active, crtc->active);
10856 I915_STATE_WARN(enabled != crtc->base.state->enable,
10857 "crtc's computed enabled state doesn't match tracked enabled state "
10858 "(expected %i, found %i)\n", enabled,
10859 crtc->base.state->enable);
10860
10861 active = dev_priv->display.get_pipe_config(crtc,
10862 &pipe_config);
10863
10864 /* hw state is inconsistent with the pipe quirk */
10865 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
10866 (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
10867 active = crtc->active;
10868
10869 for_each_intel_encoder(dev, encoder) {
10870 enum pipe pipe;
10871 if (encoder->base.crtc != &crtc->base)
10872 continue;
10873 if (encoder->get_hw_state(encoder, &pipe))
10874 encoder->get_config(encoder, &pipe_config);
10875 }
10876
10877 I915_STATE_WARN(crtc->active != active,
10878 "crtc active state doesn't match with hw state "
10879 "(expected %i, found %i)\n", crtc->active, active);
10880
10881 if (active &&
10882 !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
10883 I915_STATE_WARN(1, "pipe state doesn't match!\n");
10884 intel_dump_pipe_config(crtc, &pipe_config,
10885 "[hw state]");
10886 intel_dump_pipe_config(crtc, crtc->config,
10887 "[sw state]");
10888 }
10889 }
10890}
10891
10892static void
10893check_shared_dpll_state(struct drm_device *dev)
10894{
10895 struct drm_i915_private *dev_priv = dev->dev_private;
10896 struct intel_crtc *crtc;
10897 struct intel_dpll_hw_state dpll_hw_state;
10898 int i;
10899
10900 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10901 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10902 int enabled_crtcs = 0, active_crtcs = 0;
10903 bool active;
10904
10905 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
10906
10907 DRM_DEBUG_KMS("%s\n", pll->name);
10908
10909 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
10910
10911 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
10912 "more active pll users than references: %i vs %i\n",
10913 pll->active, hweight32(pll->config.crtc_mask));
10914 I915_STATE_WARN(pll->active && !pll->on,
10915 "pll in active use but not on in sw tracking\n");
10916 I915_STATE_WARN(pll->on && !pll->active,
10917 "pll in on but not on in use in sw tracking\n");
10918 I915_STATE_WARN(pll->on != active,
10919 "pll on state mismatch (expected %i, found %i)\n",
10920 pll->on, active);
10921
10922 for_each_intel_crtc(dev, crtc) {
10923 if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
10924 enabled_crtcs++;
10925 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10926 active_crtcs++;
10927 }
10928 I915_STATE_WARN(pll->active != active_crtcs,
10929 "pll active crtcs mismatch (expected %i, found %i)\n",
10930 pll->active, active_crtcs);
10931 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
10932 "pll enabled crtcs mismatch (expected %i, found %i)\n",
10933 hweight32(pll->config.crtc_mask), enabled_crtcs);
10934
10935 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
10936 sizeof(dpll_hw_state)),
10937 "pll hw state mismatch\n");
10938 }
10939}
10940
10941void
10942intel_modeset_check_state(struct drm_device *dev)
10943{
10944 check_wm_state(dev);
10945 check_connector_state(dev);
10946 check_encoder_state(dev);
10947 check_crtc_state(dev);
10948 check_shared_dpll_state(dev);
10949}
10950
10951void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
10952 int dotclock)
10953{
10954 /*
10955 * FDI already provided one idea for the dotclock.
10956 * Yell if the encoder disagrees.
10957 */
10958 WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
10959 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
10960 pipe_config->base.adjusted_mode.crtc_clock, dotclock);
10961}
10962
10963static void update_scanline_offset(struct intel_crtc *crtc)
10964{
10965 struct drm_device *dev = crtc->base.dev;
10966
10967 /*
10968 * The scanline counter increments at the leading edge of hsync.
10969 *
10970 * On most platforms it starts counting from vtotal-1 on the
10971 * first active line. That means the scanline counter value is
10972 * always one less than what we would expect. Ie. just after
10973 * start of vblank, which also occurs at start of hsync (on the
10974 * last active line), the scanline counter will read vblank_start-1.
10975 *
10976 * On gen2 the scanline counter starts counting from 1 instead
10977 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
10978 * to keep the value positive), instead of adding one.
10979 *
10980 * On HSW+ the behaviour of the scanline counter depends on the output
10981 * type. For DP ports it behaves like most other platforms, but on HDMI
10982 * there's an extra 1 line difference. So we need to add two instead of
10983 * one to the value.
10984 */
10985 if (IS_GEN2(dev)) {
10986 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
10987 int vtotal;
10988
10989 vtotal = mode->crtc_vtotal;
10990 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
10991 vtotal /= 2;
10992
10993 crtc->scanline_offset = vtotal - 1;
10994 } else if (HAS_DDI(dev) &&
10995 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
10996 crtc->scanline_offset = 2;
10997 } else
10998 crtc->scanline_offset = 1;
10999}
11000
11001static struct intel_crtc_state *
11002intel_modeset_compute_config(struct drm_crtc *crtc,
11003 struct drm_display_mode *mode,
11004 struct drm_framebuffer *fb,
11005 unsigned *modeset_pipes,
11006 unsigned *prepare_pipes,
11007 unsigned *disable_pipes)
11008{
11009 struct intel_crtc_state *pipe_config = NULL;
11010
11011 intel_modeset_affected_pipes(crtc, modeset_pipes,
11012 prepare_pipes, disable_pipes);
11013
11014 if ((*modeset_pipes) == 0)
11015 goto out;
11016
11017 /*
11018 * Note this needs changes when we start tracking multiple modes
11019 * and crtcs. At that point we'll need to compute the whole config
11020 * (i.e. one pipe_config for each crtc) rather than just the one
11021 * for this crtc.
11022 */
11023 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
11024 if (IS_ERR(pipe_config)) {
11025 goto out;
11026 }
11027 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
11028 "[modeset]");
11029
11030out:
11031 return pipe_config;
11032}
11033
11034static int __intel_set_mode_setup_plls(struct drm_device *dev,
11035 unsigned modeset_pipes,
11036 unsigned disable_pipes)
11037{
11038 struct drm_i915_private *dev_priv = to_i915(dev);
11039 unsigned clear_pipes = modeset_pipes | disable_pipes;
11040 struct intel_crtc *intel_crtc;
11041 int ret = 0;
11042
11043 if (!dev_priv->display.crtc_compute_clock)
11044 return 0;
11045
11046 ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
11047 if (ret)
11048 goto done;
11049
11050 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11051 struct intel_crtc_state *state = intel_crtc->new_config;
11052 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11053 state);
11054 if (ret) {
11055 intel_shared_dpll_abort_config(dev_priv);
11056 goto done;
11057 }
11058 }
11059
11060done:
11061 return ret;
11062}
11063
11064static int __intel_set_mode(struct drm_crtc *crtc,
11065 struct drm_display_mode *mode,
11066 int x, int y, struct drm_framebuffer *fb,
11067 struct intel_crtc_state *pipe_config,
11068 unsigned modeset_pipes,
11069 unsigned prepare_pipes,
11070 unsigned disable_pipes)
11071{
11072 struct drm_device *dev = crtc->dev;
11073 struct drm_i915_private *dev_priv = dev->dev_private;
11074 struct drm_display_mode *saved_mode;
11075 struct intel_crtc *intel_crtc;
11076 int ret = 0;
11077
11078 saved_mode = kmalloc(sizeof(*saved_mode), GFP_KERNEL);
11079 if (!saved_mode)
11080 return -ENOMEM;
11081
11082 *saved_mode = crtc->mode;
11083
11084 if (modeset_pipes)
11085 to_intel_crtc(crtc)->new_config = pipe_config;
11086
11087 /*
11088 * See if the config requires any additional preparation, e.g.
11089 * to adjust global state with pipes off. We need to do this
11090 * here so we can get the modeset_pipe updated config for the new
11091 * mode set on this crtc. For other crtcs we need to use the
11092 * adjusted_mode bits in the crtc directly.
11093 */
11094 if (IS_VALLEYVIEW(dev)) {
11095 valleyview_modeset_global_pipes(dev, &prepare_pipes);
11096
11097 /* may have added more to prepare_pipes than we should */
11098 prepare_pipes &= ~disable_pipes;
11099 }
11100
11101 ret = __intel_set_mode_setup_plls(dev, modeset_pipes, disable_pipes);
11102 if (ret)
11103 goto done;
11104
11105 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
11106 intel_crtc_disable(&intel_crtc->base);
11107
11108 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11109 if (intel_crtc->base.state->enable)
11110 dev_priv->display.crtc_disable(&intel_crtc->base);
11111 }
11112
11113 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
11114 * to set it here already despite that we pass it down the callchain.
11115 *
11116 * Note we'll need to fix this up when we start tracking multiple
11117 * pipes; here we assume a single modeset_pipe and only track the
11118 * single crtc and mode.
11119 */
11120 if (modeset_pipes) {
11121 crtc->mode = *mode;
11122 /* mode_set/enable/disable functions rely on a correct pipe
11123 * config. */
11124 intel_crtc_set_state(to_intel_crtc(crtc), pipe_config);
11125
11126 /*
11127 * Calculate and store various constants which
11128 * are later needed by vblank and swap-completion
11129 * timestamping. They are derived from true hwmode.
11130 */
11131 drm_calc_timestamping_constants(crtc,
11132 &pipe_config->base.adjusted_mode);
11133 }
11134
11135 /* Only after disabling all output pipelines that will be changed can we
11136 * update the the output configuration. */
11137 intel_modeset_update_state(dev, prepare_pipes);
11138
11139 modeset_update_crtc_power_domains(dev);
11140
11141 /* Set up the DPLL and any encoders state that needs to adjust or depend
11142 * on the DPLL.
11143 */
11144 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
11145 struct drm_plane *primary = intel_crtc->base.primary;
11146 int vdisplay, hdisplay;
11147
11148 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11149 ret = primary->funcs->update_plane(primary, &intel_crtc->base,
11150 fb, 0, 0,
11151 hdisplay, vdisplay,
11152 x << 16, y << 16,
11153 hdisplay << 16, vdisplay << 16);
11154 }
11155
11156 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
11157 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
11158 update_scanline_offset(intel_crtc);
11159
11160 dev_priv->display.crtc_enable(&intel_crtc->base);
11161 }
11162
11163 /* FIXME: add subpixel order */
11164done:
11165 if (ret && crtc->state->enable)
11166 crtc->mode = *saved_mode;
11167
11168 kfree(saved_mode);
11169 return ret;
11170}
11171
11172static int intel_set_mode_pipes(struct drm_crtc *crtc,
11173 struct drm_display_mode *mode,
11174 int x, int y, struct drm_framebuffer *fb,
11175 struct intel_crtc_state *pipe_config,
11176 unsigned modeset_pipes,
11177 unsigned prepare_pipes,
11178 unsigned disable_pipes)
11179{
11180 int ret;
11181
11182 ret = __intel_set_mode(crtc, mode, x, y, fb, pipe_config, modeset_pipes,
11183 prepare_pipes, disable_pipes);
11184
11185 if (ret == 0)
11186 intel_modeset_check_state(crtc->dev);
11187
11188 return ret;
11189}
11190
11191static int intel_set_mode(struct drm_crtc *crtc,
11192 struct drm_display_mode *mode,
11193 int x, int y, struct drm_framebuffer *fb)
11194{
11195 struct intel_crtc_state *pipe_config;
11196 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11197
11198 pipe_config = intel_modeset_compute_config(crtc, mode, fb,
11199 &modeset_pipes,
11200 &prepare_pipes,
11201 &disable_pipes);
11202
11203 if (IS_ERR(pipe_config))
11204 return PTR_ERR(pipe_config);
11205
11206 return intel_set_mode_pipes(crtc, mode, x, y, fb, pipe_config,
11207 modeset_pipes, prepare_pipes,
11208 disable_pipes);
11209}
11210
11211void intel_crtc_restore_mode(struct drm_crtc *crtc)
11212{
11213 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->primary->fb);
11214}
11215
11216#undef for_each_intel_crtc_masked
11217
11218static void intel_set_config_free(struct intel_set_config *config)
11219{
11220 if (!config)
11221 return;
11222
11223 kfree(config->save_connector_encoders);
11224 kfree(config->save_encoder_crtcs);
11225 kfree(config->save_crtc_enabled);
11226 kfree(config);
11227}
11228
11229static int intel_set_config_save_state(struct drm_device *dev,
11230 struct intel_set_config *config)
11231{
11232 struct drm_crtc *crtc;
11233 struct drm_encoder *encoder;
11234 struct drm_connector *connector;
11235 int count;
11236
11237 config->save_crtc_enabled =
11238 kcalloc(dev->mode_config.num_crtc,
11239 sizeof(bool), GFP_KERNEL);
11240 if (!config->save_crtc_enabled)
11241 return -ENOMEM;
11242
11243 config->save_encoder_crtcs =
11244 kcalloc(dev->mode_config.num_encoder,
11245 sizeof(struct drm_crtc *), GFP_KERNEL);
11246 if (!config->save_encoder_crtcs)
11247 return -ENOMEM;
11248
11249 config->save_connector_encoders =
11250 kcalloc(dev->mode_config.num_connector,
11251 sizeof(struct drm_encoder *), GFP_KERNEL);
11252 if (!config->save_connector_encoders)
11253 return -ENOMEM;
11254
11255 /* Copy data. Note that driver private data is not affected.
11256 * Should anything bad happen only the expected state is
11257 * restored, not the drivers personal bookkeeping.
11258 */
11259 count = 0;
11260 for_each_crtc(dev, crtc) {
11261 config->save_crtc_enabled[count++] = crtc->state->enable;
11262 }
11263
11264 count = 0;
11265 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
11266 config->save_encoder_crtcs[count++] = encoder->crtc;
11267 }
11268
11269 count = 0;
11270 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11271 config->save_connector_encoders[count++] = connector->encoder;
11272 }
11273
11274 return 0;
11275}
11276
11277static void intel_set_config_restore_state(struct drm_device *dev,
11278 struct intel_set_config *config)
11279{
11280 struct intel_crtc *crtc;
11281 struct intel_encoder *encoder;
11282 struct intel_connector *connector;
11283 int count;
11284
11285 count = 0;
11286 for_each_intel_crtc(dev, crtc) {
11287 crtc->new_enabled = config->save_crtc_enabled[count++];
11288
11289 if (crtc->new_enabled)
11290 crtc->new_config = crtc->config;
11291 else
11292 crtc->new_config = NULL;
11293 }
11294
11295 count = 0;
11296 for_each_intel_encoder(dev, encoder) {
11297 encoder->new_crtc =
11298 to_intel_crtc(config->save_encoder_crtcs[count++]);
11299 }
11300
11301 count = 0;
11302 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11303 connector->new_encoder =
11304 to_intel_encoder(config->save_connector_encoders[count++]);
11305 }
11306}
11307
11308static bool
11309is_crtc_connector_off(struct drm_mode_set *set)
11310{
11311 int i;
11312
11313 if (set->num_connectors == 0)
11314 return false;
11315
11316 if (WARN_ON(set->connectors == NULL))
11317 return false;
11318
11319 for (i = 0; i < set->num_connectors; i++)
11320 if (set->connectors[i]->encoder &&
11321 set->connectors[i]->encoder->crtc == set->crtc &&
11322 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
11323 return true;
11324
11325 return false;
11326}
11327
11328static void
11329intel_set_config_compute_mode_changes(struct drm_mode_set *set,
11330 struct intel_set_config *config)
11331{
11332
11333 /* We should be able to check here if the fb has the same properties
11334 * and then just flip_or_move it */
11335 if (is_crtc_connector_off(set)) {
11336 config->mode_changed = true;
11337 } else if (set->crtc->primary->fb != set->fb) {
11338 /*
11339 * If we have no fb, we can only flip as long as the crtc is
11340 * active, otherwise we need a full mode set. The crtc may
11341 * be active if we've only disabled the primary plane, or
11342 * in fastboot situations.
11343 */
11344 if (set->crtc->primary->fb == NULL) {
11345 struct intel_crtc *intel_crtc =
11346 to_intel_crtc(set->crtc);
11347
11348 if (intel_crtc->active) {
11349 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
11350 config->fb_changed = true;
11351 } else {
11352 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
11353 config->mode_changed = true;
11354 }
11355 } else if (set->fb == NULL) {
11356 config->mode_changed = true;
11357 } else if (set->fb->pixel_format !=
11358 set->crtc->primary->fb->pixel_format) {
11359 config->mode_changed = true;
11360 } else {
11361 config->fb_changed = true;
11362 }
11363 }
11364
11365 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
11366 config->fb_changed = true;
11367
11368 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
11369 DRM_DEBUG_KMS("modes are different, full mode set\n");
11370 drm_mode_debug_printmodeline(&set->crtc->mode);
11371 drm_mode_debug_printmodeline(set->mode);
11372 config->mode_changed = true;
11373 }
11374
11375 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
11376 set->crtc->base.id, config->mode_changed, config->fb_changed);
11377}
11378
11379static int
11380intel_modeset_stage_output_state(struct drm_device *dev,
11381 struct drm_mode_set *set,
11382 struct intel_set_config *config)
11383{
11384 struct intel_connector *connector;
11385 struct intel_encoder *encoder;
11386 struct intel_crtc *crtc;
11387 int ro;
11388
11389 /* The upper layers ensure that we either disable a crtc or have a list
11390 * of connectors. For paranoia, double-check this. */
11391 WARN_ON(!set->fb && (set->num_connectors != 0));
11392 WARN_ON(set->fb && (set->num_connectors == 0));
11393
11394 list_for_each_entry(connector, &dev->mode_config.connector_list,
11395 base.head) {
11396 /* Otherwise traverse passed in connector list and get encoders
11397 * for them. */
11398 for (ro = 0; ro < set->num_connectors; ro++) {
11399 if (set->connectors[ro] == &connector->base) {
11400 connector->new_encoder = intel_find_encoder(connector, to_intel_crtc(set->crtc)->pipe);
11401 break;
11402 }
11403 }
11404
11405 /* If we disable the crtc, disable all its connectors. Also, if
11406 * the connector is on the changing crtc but not on the new
11407 * connector list, disable it. */
11408 if ((!set->fb || ro == set->num_connectors) &&
11409 connector->base.encoder &&
11410 connector->base.encoder->crtc == set->crtc) {
11411 connector->new_encoder = NULL;
11412
11413 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
11414 connector->base.base.id,
11415 connector->base.name);
11416 }
11417
11418
11419 if (&connector->new_encoder->base != connector->base.encoder) {
11420 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
11421 config->mode_changed = true;
11422 }
11423 }
11424 /* connector->new_encoder is now updated for all connectors. */
11425
11426 /* Update crtc of enabled connectors. */
11427 list_for_each_entry(connector, &dev->mode_config.connector_list,
11428 base.head) {
11429 struct drm_crtc *new_crtc;
11430
11431 if (!connector->new_encoder)
11432 continue;
11433
11434 new_crtc = connector->new_encoder->base.crtc;
11435
11436 for (ro = 0; ro < set->num_connectors; ro++) {
11437 if (set->connectors[ro] == &connector->base)
11438 new_crtc = set->crtc;
11439 }
11440
11441 /* Make sure the new CRTC will work with the encoder */
11442 if (!drm_encoder_crtc_ok(&connector->new_encoder->base,
11443 new_crtc)) {
11444 return -EINVAL;
11445 }
11446 connector->new_encoder->new_crtc = to_intel_crtc(new_crtc);
11447
11448 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
11449 connector->base.base.id,
11450 connector->base.name,
11451 new_crtc->base.id);
11452 }
11453
11454 /* Check for any encoders that needs to be disabled. */
11455 for_each_intel_encoder(dev, encoder) {
11456 int num_connectors = 0;
11457 list_for_each_entry(connector,
11458 &dev->mode_config.connector_list,
11459 base.head) {
11460 if (connector->new_encoder == encoder) {
11461 WARN_ON(!connector->new_encoder->new_crtc);
11462 num_connectors++;
11463 }
11464 }
11465
11466 if (num_connectors == 0)
11467 encoder->new_crtc = NULL;
11468 else if (num_connectors > 1)
11469 return -EINVAL;
11470
11471 /* Only now check for crtc changes so we don't miss encoders
11472 * that will be disabled. */
11473 if (&encoder->new_crtc->base != encoder->base.crtc) {
11474 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
11475 config->mode_changed = true;
11476 }
11477 }
11478 /* Now we've also updated encoder->new_crtc for all encoders. */
11479 list_for_each_entry(connector, &dev->mode_config.connector_list,
11480 base.head) {
11481 if (connector->new_encoder)
11482 if (connector->new_encoder != connector->encoder)
11483 connector->encoder = connector->new_encoder;
11484 }
11485 for_each_intel_crtc(dev, crtc) {
11486 crtc->new_enabled = false;
11487
11488 for_each_intel_encoder(dev, encoder) {
11489 if (encoder->new_crtc == crtc) {
11490 crtc->new_enabled = true;
11491 break;
11492 }
11493 }
11494
11495 if (crtc->new_enabled != crtc->base.state->enable) {
11496 DRM_DEBUG_KMS("crtc %sabled, full mode switch\n",
11497 crtc->new_enabled ? "en" : "dis");
11498 config->mode_changed = true;
11499 }
11500
11501 if (crtc->new_enabled)
11502 crtc->new_config = crtc->config;
11503 else
11504 crtc->new_config = NULL;
11505 }
11506
11507 return 0;
11508}
11509
11510static void disable_crtc_nofb(struct intel_crtc *crtc)
11511{
11512 struct drm_device *dev = crtc->base.dev;
11513 struct intel_encoder *encoder;
11514 struct intel_connector *connector;
11515
11516 DRM_DEBUG_KMS("Trying to restore without FB -> disabling pipe %c\n",
11517 pipe_name(crtc->pipe));
11518
11519 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
11520 if (connector->new_encoder &&
11521 connector->new_encoder->new_crtc == crtc)
11522 connector->new_encoder = NULL;
11523 }
11524
11525 for_each_intel_encoder(dev, encoder) {
11526 if (encoder->new_crtc == crtc)
11527 encoder->new_crtc = NULL;
11528 }
11529
11530 crtc->new_enabled = false;
11531 crtc->new_config = NULL;
11532}
11533
11534static int intel_crtc_set_config(struct drm_mode_set *set)
11535{
11536 struct drm_device *dev;
11537 struct drm_mode_set save_set;
11538 struct intel_set_config *config;
11539 struct intel_crtc_state *pipe_config;
11540 unsigned modeset_pipes, prepare_pipes, disable_pipes;
11541 int ret;
11542
11543 BUG_ON(!set);
11544 BUG_ON(!set->crtc);
11545 BUG_ON(!set->crtc->helper_private);
11546
11547 /* Enforce sane interface api - has been abused by the fb helper. */
11548 BUG_ON(!set->mode && set->fb);
11549 BUG_ON(set->fb && set->num_connectors == 0);
11550
11551 if (set->fb) {
11552 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
11553 set->crtc->base.id, set->fb->base.id,
11554 (int)set->num_connectors, set->x, set->y);
11555 } else {
11556 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
11557 }
11558
11559 dev = set->crtc->dev;
11560
11561 ret = -ENOMEM;
11562 config = kzalloc(sizeof(*config), GFP_KERNEL);
11563 if (!config)
11564 goto out_config;
11565
11566 ret = intel_set_config_save_state(dev, config);
11567 if (ret)
11568 goto out_config;
11569
11570 save_set.crtc = set->crtc;
11571 save_set.mode = &set->crtc->mode;
11572 save_set.x = set->crtc->x;
11573 save_set.y = set->crtc->y;
11574 save_set.fb = set->crtc->primary->fb;
11575
11576 /* Compute whether we need a full modeset, only an fb base update or no
11577 * change at all. In the future we might also check whether only the
11578 * mode changed, e.g. for LVDS where we only change the panel fitter in
11579 * such cases. */
11580 intel_set_config_compute_mode_changes(set, config);
11581
11582 ret = intel_modeset_stage_output_state(dev, set, config);
11583 if (ret)
11584 goto fail;
11585
11586 pipe_config = intel_modeset_compute_config(set->crtc, set->mode,
11587 set->fb,
11588 &modeset_pipes,
11589 &prepare_pipes,
11590 &disable_pipes);
11591 if (IS_ERR(pipe_config)) {
11592 ret = PTR_ERR(pipe_config);
11593 goto fail;
11594 } else if (pipe_config) {
11595 if (pipe_config->has_audio !=
11596 to_intel_crtc(set->crtc)->config->has_audio)
11597 config->mode_changed = true;
11598
11599 /*
11600 * Note we have an issue here with infoframes: current code
11601 * only updates them on the full mode set path per hw
11602 * requirements. So here we should be checking for any
11603 * required changes and forcing a mode set.
11604 */
11605 }
11606
11607 /* set_mode will free it in the mode_changed case */
11608 if (!config->mode_changed)
11609 kfree(pipe_config);
11610
11611 intel_update_pipe_size(to_intel_crtc(set->crtc));
11612
11613 if (config->mode_changed) {
11614 ret = intel_set_mode_pipes(set->crtc, set->mode,
11615 set->x, set->y, set->fb, pipe_config,
11616 modeset_pipes, prepare_pipes,
11617 disable_pipes);
11618 } else if (config->fb_changed) {
11619 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
11620 struct drm_plane *primary = set->crtc->primary;
11621 int vdisplay, hdisplay;
11622
11623 drm_crtc_get_hv_timing(set->mode, &hdisplay, &vdisplay);
11624 ret = primary->funcs->update_plane(primary, set->crtc, set->fb,
11625 0, 0, hdisplay, vdisplay,
11626 set->x << 16, set->y << 16,
11627 hdisplay << 16, vdisplay << 16);
11628
11629 /*
11630 * We need to make sure the primary plane is re-enabled if it
11631 * has previously been turned off.
11632 */
11633 if (!intel_crtc->primary_enabled && ret == 0) {
11634 WARN_ON(!intel_crtc->active);
11635 intel_enable_primary_hw_plane(set->crtc->primary, set->crtc);
11636 }
11637
11638 /*
11639 * In the fastboot case this may be our only check of the
11640 * state after boot. It would be better to only do it on
11641 * the first update, but we don't have a nice way of doing that
11642 * (and really, set_config isn't used much for high freq page
11643 * flipping, so increasing its cost here shouldn't be a big
11644 * deal).
11645 */
11646 if (i915.fastboot && ret == 0)
11647 intel_modeset_check_state(set->crtc->dev);
11648 }
11649
11650 if (ret) {
11651 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
11652 set->crtc->base.id, ret);
11653fail:
11654 intel_set_config_restore_state(dev, config);
11655
11656 /*
11657 * HACK: if the pipe was on, but we didn't have a framebuffer,
11658 * force the pipe off to avoid oopsing in the modeset code
11659 * due to fb==NULL. This should only happen during boot since
11660 * we don't yet reconstruct the FB from the hardware state.
11661 */
11662 if (to_intel_crtc(save_set.crtc)->new_enabled && !save_set.fb)
11663 disable_crtc_nofb(to_intel_crtc(save_set.crtc));
11664
11665 /* Try to restore the config */
11666 if (config->mode_changed &&
11667 intel_set_mode(save_set.crtc, save_set.mode,
11668 save_set.x, save_set.y, save_set.fb))
11669 DRM_ERROR("failed to restore config after modeset failure\n");
11670 }
11671
11672out_config:
11673 intel_set_config_free(config);
11674 return ret;
11675}
11676
11677static const struct drm_crtc_funcs intel_crtc_funcs = {
11678 .gamma_set = intel_crtc_gamma_set,
11679 .set_config = intel_crtc_set_config,
11680 .destroy = intel_crtc_destroy,
11681 .page_flip = intel_crtc_page_flip,
11682 .atomic_duplicate_state = intel_crtc_duplicate_state,
11683 .atomic_destroy_state = intel_crtc_destroy_state,
11684};
11685
11686static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
11687 struct intel_shared_dpll *pll,
11688 struct intel_dpll_hw_state *hw_state)
11689{
11690 uint32_t val;
11691
11692 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
11693 return false;
11694
11695 val = I915_READ(PCH_DPLL(pll->id));
11696 hw_state->dpll = val;
11697 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
11698 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
11699
11700 return val & DPLL_VCO_ENABLE;
11701}
11702
11703static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
11704 struct intel_shared_dpll *pll)
11705{
11706 I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
11707 I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
11708}
11709
11710static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
11711 struct intel_shared_dpll *pll)
11712{
11713 /* PCH refclock must be enabled first */
11714 ibx_assert_pch_refclk_enabled(dev_priv);
11715
11716 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11717
11718 /* Wait for the clocks to stabilize. */
11719 POSTING_READ(PCH_DPLL(pll->id));
11720 udelay(150);
11721
11722 /* The pixel multiplier can only be updated once the
11723 * DPLL is enabled and the clocks are stable.
11724 *
11725 * So write it again.
11726 */
11727 I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
11728 POSTING_READ(PCH_DPLL(pll->id));
11729 udelay(200);
11730}
11731
11732static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
11733 struct intel_shared_dpll *pll)
11734{
11735 struct drm_device *dev = dev_priv->dev;
11736 struct intel_crtc *crtc;
11737
11738 /* Make sure no transcoder isn't still depending on us. */
11739 for_each_intel_crtc(dev, crtc) {
11740 if (intel_crtc_to_shared_dpll(crtc) == pll)
11741 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
11742 }
11743
11744 I915_WRITE(PCH_DPLL(pll->id), 0);
11745 POSTING_READ(PCH_DPLL(pll->id));
11746 udelay(200);
11747}
11748
11749static char *ibx_pch_dpll_names[] = {
11750 "PCH DPLL A",
11751 "PCH DPLL B",
11752};
11753
11754static void ibx_pch_dpll_init(struct drm_device *dev)
11755{
11756 struct drm_i915_private *dev_priv = dev->dev_private;
11757 int i;
11758
11759 dev_priv->num_shared_dpll = 2;
11760
11761 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11762 dev_priv->shared_dplls[i].id = i;
11763 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
11764 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
11765 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
11766 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
11767 dev_priv->shared_dplls[i].get_hw_state =
11768 ibx_pch_dpll_get_hw_state;
11769 }
11770}
11771
11772static void intel_shared_dpll_init(struct drm_device *dev)
11773{
11774 struct drm_i915_private *dev_priv = dev->dev_private;
11775
11776 if (HAS_DDI(dev))
11777 intel_ddi_pll_init(dev);
11778 else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
11779 ibx_pch_dpll_init(dev);
11780 else
11781 dev_priv->num_shared_dpll = 0;
11782
11783 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
11784}
11785
11786/**
11787 * intel_prepare_plane_fb - Prepare fb for usage on plane
11788 * @plane: drm plane to prepare for
11789 * @fb: framebuffer to prepare for presentation
11790 *
11791 * Prepares a framebuffer for usage on a display plane. Generally this
11792 * involves pinning the underlying object and updating the frontbuffer tracking
11793 * bits. Some older platforms need special physical address handling for
11794 * cursor planes.
11795 *
11796 * Returns 0 on success, negative error code on failure.
11797 */
11798int
11799intel_prepare_plane_fb(struct drm_plane *plane,
11800 struct drm_framebuffer *fb)
11801{
11802 struct drm_device *dev = plane->dev;
11803 struct intel_plane *intel_plane = to_intel_plane(plane);
11804 enum pipe pipe = intel_plane->pipe;
11805 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11806 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
11807 unsigned frontbuffer_bits = 0;
11808 int ret = 0;
11809
11810 if (!obj)
11811 return 0;
11812
11813 switch (plane->type) {
11814 case DRM_PLANE_TYPE_PRIMARY:
11815 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
11816 break;
11817 case DRM_PLANE_TYPE_CURSOR:
11818 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
11819 break;
11820 case DRM_PLANE_TYPE_OVERLAY:
11821 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
11822 break;
11823 }
11824
11825 mutex_lock(&dev->struct_mutex);
11826
11827 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
11828 INTEL_INFO(dev)->cursor_needs_physical) {
11829 int align = IS_I830(dev) ? 16 * 1024 : 256;
11830 ret = i915_gem_object_attach_phys(obj, align);
11831 if (ret)
11832 DRM_DEBUG_KMS("failed to attach phys object\n");
11833 } else {
11834 ret = intel_pin_and_fence_fb_obj(plane, fb, NULL);
11835 }
11836
11837 if (ret == 0)
11838 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
11839
11840 mutex_unlock(&dev->struct_mutex);
11841
11842 return ret;
11843}
11844
11845/**
11846 * intel_cleanup_plane_fb - Cleans up an fb after plane use
11847 * @plane: drm plane to clean up for
11848 * @fb: old framebuffer that was on plane
11849 *
11850 * Cleans up a framebuffer that has just been removed from a plane.
11851 */
11852void
11853intel_cleanup_plane_fb(struct drm_plane *plane,
11854 struct drm_framebuffer *fb)
11855{
11856 struct drm_device *dev = plane->dev;
11857 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11858
11859 if (WARN_ON(!obj))
11860 return;
11861
11862 if (plane->type != DRM_PLANE_TYPE_CURSOR ||
11863 !INTEL_INFO(dev)->cursor_needs_physical) {
11864 mutex_lock(&dev->struct_mutex);
11865 intel_unpin_fb_obj(obj);
11866 mutex_unlock(&dev->struct_mutex);
11867 }
11868}
11869
11870static int
11871intel_check_primary_plane(struct drm_plane *plane,
11872 struct intel_plane_state *state)
11873{
11874 struct drm_device *dev = plane->dev;
11875 struct drm_i915_private *dev_priv = dev->dev_private;
11876 struct drm_crtc *crtc = state->base.crtc;
11877 struct intel_crtc *intel_crtc;
11878 struct drm_framebuffer *fb = state->base.fb;
11879 struct drm_rect *dest = &state->dst;
11880 struct drm_rect *src = &state->src;
11881 const struct drm_rect *clip = &state->clip;
11882 int ret;
11883
11884 crtc = crtc ? crtc : plane->crtc;
11885 intel_crtc = to_intel_crtc(crtc);
11886
11887 ret = drm_plane_helper_check_update(plane, crtc, fb,
11888 src, dest, clip,
11889 DRM_PLANE_HELPER_NO_SCALING,
11890 DRM_PLANE_HELPER_NO_SCALING,
11891 false, true, &state->visible);
11892 if (ret)
11893 return ret;
11894
11895 if (intel_crtc->active) {
11896 intel_crtc->atomic.wait_for_flips = true;
11897
11898 /*
11899 * FBC does not work on some platforms for rotated
11900 * planes, so disable it when rotation is not 0 and
11901 * update it when rotation is set back to 0.
11902 *
11903 * FIXME: This is redundant with the fbc update done in
11904 * the primary plane enable function except that that
11905 * one is done too late. We eventually need to unify
11906 * this.
11907 */
11908 if (intel_crtc->primary_enabled &&
11909 INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11910 dev_priv->fbc.crtc == intel_crtc &&
11911 state->base.rotation != BIT(DRM_ROTATE_0)) {
11912 intel_crtc->atomic.disable_fbc = true;
11913 }
11914
11915 if (state->visible) {
11916 /*
11917 * BDW signals flip done immediately if the plane
11918 * is disabled, even if the plane enable is already
11919 * armed to occur at the next vblank :(
11920 */
11921 if (IS_BROADWELL(dev) && !intel_crtc->primary_enabled)
11922 intel_crtc->atomic.wait_vblank = true;
11923 }
11924
11925 intel_crtc->atomic.fb_bits |=
11926 INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
11927
11928 intel_crtc->atomic.update_fbc = true;
11929 }
11930
11931 return 0;
11932}
11933
11934static void
11935intel_commit_primary_plane(struct drm_plane *plane,
11936 struct intel_plane_state *state)
11937{
11938 struct drm_crtc *crtc = state->base.crtc;
11939 struct drm_framebuffer *fb = state->base.fb;
11940 struct drm_device *dev = plane->dev;
11941 struct drm_i915_private *dev_priv = dev->dev_private;
11942 struct intel_crtc *intel_crtc;
11943 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11944 struct intel_plane *intel_plane = to_intel_plane(plane);
11945 struct drm_rect *src = &state->src;
11946
11947 crtc = crtc ? crtc : plane->crtc;
11948 intel_crtc = to_intel_crtc(crtc);
11949
11950 plane->fb = fb;
11951 crtc->x = src->x1 >> 16;
11952 crtc->y = src->y1 >> 16;
11953
11954 intel_plane->obj = obj;
11955
11956 if (intel_crtc->active) {
11957 if (state->visible) {
11958 /* FIXME: kill this fastboot hack */
11959 intel_update_pipe_size(intel_crtc);
11960
11961 intel_crtc->primary_enabled = true;
11962
11963 dev_priv->display.update_primary_plane(crtc, plane->fb,
11964 crtc->x, crtc->y);
11965 } else {
11966 /*
11967 * If clipping results in a non-visible primary plane,
11968 * we'll disable the primary plane. Note that this is
11969 * a bit different than what happens if userspace
11970 * explicitly disables the plane by passing fb=0
11971 * because plane->fb still gets set and pinned.
11972 */
11973 intel_disable_primary_hw_plane(plane, crtc);
11974 }
11975 }
11976}
11977
11978static void intel_begin_crtc_commit(struct drm_crtc *crtc)
11979{
11980 struct drm_device *dev = crtc->dev;
11981 struct drm_i915_private *dev_priv = dev->dev_private;
11982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11983 struct intel_plane *intel_plane;
11984 struct drm_plane *p;
11985 unsigned fb_bits = 0;
11986
11987 /* Track fb's for any planes being disabled */
11988 list_for_each_entry(p, &dev->mode_config.plane_list, head) {
11989 intel_plane = to_intel_plane(p);
11990
11991 if (intel_crtc->atomic.disabled_planes &
11992 (1 << drm_plane_index(p))) {
11993 switch (p->type) {
11994 case DRM_PLANE_TYPE_PRIMARY:
11995 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
11996 break;
11997 case DRM_PLANE_TYPE_CURSOR:
11998 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
11999 break;
12000 case DRM_PLANE_TYPE_OVERLAY:
12001 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
12002 break;
12003 }
12004
12005 mutex_lock(&dev->struct_mutex);
12006 i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
12007 mutex_unlock(&dev->struct_mutex);
12008 }
12009 }
12010
12011 if (intel_crtc->atomic.wait_for_flips)
12012 intel_crtc_wait_for_pending_flips(crtc);
12013
12014 if (intel_crtc->atomic.disable_fbc)
12015 intel_fbc_disable(dev);
12016
12017 if (intel_crtc->atomic.pre_disable_primary)
12018 intel_pre_disable_primary(crtc);
12019
12020 if (intel_crtc->atomic.update_wm)
12021 intel_update_watermarks(crtc);
12022
12023 intel_runtime_pm_get(dev_priv);
12024
12025 /* Perform vblank evasion around commit operation */
12026 if (intel_crtc->active)
12027 intel_crtc->atomic.evade =
12028 intel_pipe_update_start(intel_crtc,
12029 &intel_crtc->atomic.start_vbl_count);
12030}
12031
12032static void intel_finish_crtc_commit(struct drm_crtc *crtc)
12033{
12034 struct drm_device *dev = crtc->dev;
12035 struct drm_i915_private *dev_priv = dev->dev_private;
12036 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12037 struct drm_plane *p;
12038
12039 if (intel_crtc->atomic.evade)
12040 intel_pipe_update_end(intel_crtc,
12041 intel_crtc->atomic.start_vbl_count);
12042
12043 intel_runtime_pm_put(dev_priv);
12044
12045 if (intel_crtc->atomic.wait_vblank)
12046 intel_wait_for_vblank(dev, intel_crtc->pipe);
12047
12048 intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
12049
12050 if (intel_crtc->atomic.update_fbc) {
12051 mutex_lock(&dev->struct_mutex);
12052 intel_fbc_update(dev);
12053 mutex_unlock(&dev->struct_mutex);
12054 }
12055
12056 if (intel_crtc->atomic.post_enable_primary)
12057 intel_post_enable_primary(crtc);
12058
12059 drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
12060 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
12061 intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
12062 false, false);
12063
12064 memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
12065}
12066
12067/**
12068 * intel_plane_destroy - destroy a plane
12069 * @plane: plane to destroy
12070 *
12071 * Common destruction function for all types of planes (primary, cursor,
12072 * sprite).
12073 */
12074void intel_plane_destroy(struct drm_plane *plane)
12075{
12076 struct intel_plane *intel_plane = to_intel_plane(plane);
12077 drm_plane_cleanup(plane);
12078 kfree(intel_plane);
12079}
12080
12081const struct drm_plane_funcs intel_plane_funcs = {
12082 .update_plane = drm_atomic_helper_update_plane,
12083 .disable_plane = drm_atomic_helper_disable_plane,
12084 .destroy = intel_plane_destroy,
12085 .set_property = drm_atomic_helper_plane_set_property,
12086 .atomic_get_property = intel_plane_atomic_get_property,
12087 .atomic_set_property = intel_plane_atomic_set_property,
12088 .atomic_duplicate_state = intel_plane_duplicate_state,
12089 .atomic_destroy_state = intel_plane_destroy_state,
12090
12091};
12092
12093static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
12094 int pipe)
12095{
12096 struct intel_plane *primary;
12097 struct intel_plane_state *state;
12098 const uint32_t *intel_primary_formats;
12099 int num_formats;
12100
12101 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
12102 if (primary == NULL)
12103 return NULL;
12104
12105 state = intel_create_plane_state(&primary->base);
12106 if (!state) {
12107 kfree(primary);
12108 return NULL;
12109 }
12110 primary->base.state = &state->base;
12111
12112 primary->can_scale = false;
12113 primary->max_downscale = 1;
12114 primary->pipe = pipe;
12115 primary->plane = pipe;
12116 primary->check_plane = intel_check_primary_plane;
12117 primary->commit_plane = intel_commit_primary_plane;
12118 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
12119 primary->plane = !pipe;
12120
12121 if (INTEL_INFO(dev)->gen <= 3) {
12122 intel_primary_formats = intel_primary_formats_gen2;
12123 num_formats = ARRAY_SIZE(intel_primary_formats_gen2);
12124 } else {
12125 intel_primary_formats = intel_primary_formats_gen4;
12126 num_formats = ARRAY_SIZE(intel_primary_formats_gen4);
12127 }
12128
12129 drm_universal_plane_init(dev, &primary->base, 0,
12130 &intel_plane_funcs,
12131 intel_primary_formats, num_formats,
12132 DRM_PLANE_TYPE_PRIMARY);
12133
12134 if (INTEL_INFO(dev)->gen >= 4) {
12135 if (!dev->mode_config.rotation_property)
12136 dev->mode_config.rotation_property =
12137 drm_mode_create_rotation_property(dev,
12138 BIT(DRM_ROTATE_0) |
12139 BIT(DRM_ROTATE_180));
12140 if (dev->mode_config.rotation_property)
12141 drm_object_attach_property(&primary->base.base,
12142 dev->mode_config.rotation_property,
12143 state->base.rotation);
12144 }
12145
12146 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
12147
12148 return &primary->base;
12149}
12150
12151static int
12152intel_check_cursor_plane(struct drm_plane *plane,
12153 struct intel_plane_state *state)
12154{
12155 struct drm_crtc *crtc = state->base.crtc;
12156 struct drm_device *dev = plane->dev;
12157 struct drm_framebuffer *fb = state->base.fb;
12158 struct drm_rect *dest = &state->dst;
12159 struct drm_rect *src = &state->src;
12160 const struct drm_rect *clip = &state->clip;
12161 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12162 struct intel_crtc *intel_crtc;
12163 unsigned stride;
12164 int ret;
12165
12166 crtc = crtc ? crtc : plane->crtc;
12167 intel_crtc = to_intel_crtc(crtc);
12168
12169 ret = drm_plane_helper_check_update(plane, crtc, fb,
12170 src, dest, clip,
12171 DRM_PLANE_HELPER_NO_SCALING,
12172 DRM_PLANE_HELPER_NO_SCALING,
12173 true, true, &state->visible);
12174 if (ret)
12175 return ret;
12176
12177
12178 /* if we want to turn off the cursor ignore width and height */
12179 if (!obj)
12180 goto finish;
12181
12182 /* Check for which cursor types we support */
12183 if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
12184 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
12185 state->base.crtc_w, state->base.crtc_h);
12186 return -EINVAL;
12187 }
12188
12189 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
12190 if (obj->base.size < stride * state->base.crtc_h) {
12191 DRM_DEBUG_KMS("buffer is too small\n");
12192 return -ENOMEM;
12193 }
12194
12195 if (fb == crtc->cursor->fb)
12196 return 0;
12197
12198 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
12199 DRM_DEBUG_KMS("cursor cannot be tiled\n");
12200 ret = -EINVAL;
12201 }
12202
12203finish:
12204 if (intel_crtc->active) {
12205 if (intel_crtc->cursor_width != state->base.crtc_w)
12206 intel_crtc->atomic.update_wm = true;
12207
12208 intel_crtc->atomic.fb_bits |=
12209 INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
12210 }
12211
12212 return ret;
12213}
12214
12215static void
12216intel_commit_cursor_plane(struct drm_plane *plane,
12217 struct intel_plane_state *state)
12218{
12219 struct drm_crtc *crtc = state->base.crtc;
12220 struct drm_device *dev = plane->dev;
12221 struct intel_crtc *intel_crtc;
12222 struct intel_plane *intel_plane = to_intel_plane(plane);
12223 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
12224 uint32_t addr;
12225
12226 crtc = crtc ? crtc : plane->crtc;
12227 intel_crtc = to_intel_crtc(crtc);
12228
12229 plane->fb = state->base.fb;
12230 crtc->cursor_x = state->base.crtc_x;
12231 crtc->cursor_y = state->base.crtc_y;
12232
12233 intel_plane->obj = obj;
12234
12235 if (intel_crtc->cursor_bo == obj)
12236 goto update;
12237
12238 if (!obj)
12239 addr = 0;
12240 else if (!INTEL_INFO(dev)->cursor_needs_physical)
12241 addr = i915_gem_obj_ggtt_offset(obj);
12242 else
12243 addr = obj->phys_handle->busaddr;
12244
12245 intel_crtc->cursor_addr = addr;
12246 intel_crtc->cursor_bo = obj;
12247update:
12248 intel_crtc->cursor_width = state->base.crtc_w;
12249 intel_crtc->cursor_height = state->base.crtc_h;
12250
12251 if (intel_crtc->active)
12252 intel_crtc_update_cursor(crtc, state->visible);
12253}
12254
12255static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
12256 int pipe)
12257{
12258 struct intel_plane *cursor;
12259 struct intel_plane_state *state;
12260
12261 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
12262 if (cursor == NULL)
12263 return NULL;
12264
12265 state = intel_create_plane_state(&cursor->base);
12266 if (!state) {
12267 kfree(cursor);
12268 return NULL;
12269 }
12270 cursor->base.state = &state->base;
12271
12272 cursor->can_scale = false;
12273 cursor->max_downscale = 1;
12274 cursor->pipe = pipe;
12275 cursor->plane = pipe;
12276 cursor->check_plane = intel_check_cursor_plane;
12277 cursor->commit_plane = intel_commit_cursor_plane;
12278
12279 drm_universal_plane_init(dev, &cursor->base, 0,
12280 &intel_plane_funcs,
12281 intel_cursor_formats,
12282 ARRAY_SIZE(intel_cursor_formats),
12283 DRM_PLANE_TYPE_CURSOR);
12284
12285 if (INTEL_INFO(dev)->gen >= 4) {
12286 if (!dev->mode_config.rotation_property)
12287 dev->mode_config.rotation_property =
12288 drm_mode_create_rotation_property(dev,
12289 BIT(DRM_ROTATE_0) |
12290 BIT(DRM_ROTATE_180));
12291 if (dev->mode_config.rotation_property)
12292 drm_object_attach_property(&cursor->base.base,
12293 dev->mode_config.rotation_property,
12294 state->base.rotation);
12295 }
12296
12297 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
12298
12299 return &cursor->base;
12300}
12301
12302static void intel_crtc_init(struct drm_device *dev, int pipe)
12303{
12304 struct drm_i915_private *dev_priv = dev->dev_private;
12305 struct intel_crtc *intel_crtc;
12306 struct intel_crtc_state *crtc_state = NULL;
12307 struct drm_plane *primary = NULL;
12308 struct drm_plane *cursor = NULL;
12309 int i, ret;
12310
12311 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
12312 if (intel_crtc == NULL)
12313 return;
12314
12315 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
12316 if (!crtc_state)
12317 goto fail;
12318 intel_crtc_set_state(intel_crtc, crtc_state);
12319 crtc_state->base.crtc = &intel_crtc->base;
12320
12321 primary = intel_primary_plane_create(dev, pipe);
12322 if (!primary)
12323 goto fail;
12324
12325 cursor = intel_cursor_plane_create(dev, pipe);
12326 if (!cursor)
12327 goto fail;
12328
12329 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
12330 cursor, &intel_crtc_funcs);
12331 if (ret)
12332 goto fail;
12333
12334 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
12335 for (i = 0; i < 256; i++) {
12336 intel_crtc->lut_r[i] = i;
12337 intel_crtc->lut_g[i] = i;
12338 intel_crtc->lut_b[i] = i;
12339 }
12340
12341 /*
12342 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
12343 * is hooked to pipe B. Hence we want plane A feeding pipe B.
12344 */
12345 intel_crtc->pipe = pipe;
12346 intel_crtc->plane = pipe;
12347 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
12348 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
12349 intel_crtc->plane = !pipe;
12350 }
12351
12352 intel_crtc->cursor_base = ~0;
12353 intel_crtc->cursor_cntl = ~0;
12354 intel_crtc->cursor_size = ~0;
12355
12356 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
12357 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
12358 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
12359 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
12360
12361 INIT_WORK(&intel_crtc->mmio_flip.work, intel_mmio_flip_work_func);
12362
12363 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
12364
12365 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
12366 return;
12367
12368fail:
12369 if (primary)
12370 drm_plane_cleanup(primary);
12371 if (cursor)
12372 drm_plane_cleanup(cursor);
12373 kfree(crtc_state);
12374 kfree(intel_crtc);
12375}
12376
12377enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
12378{
12379 struct drm_encoder *encoder = connector->base.encoder;
12380 struct drm_device *dev = connector->base.dev;
12381
12382 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
12383
12384 if (!encoder || WARN_ON(!encoder->crtc))
12385 return INVALID_PIPE;
12386
12387 return to_intel_crtc(encoder->crtc)->pipe;
12388}
12389
12390int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
12391 struct drm_file *file)
12392{
12393 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
12394 struct drm_crtc *drmmode_crtc;
12395 struct intel_crtc *crtc;
12396
12397 if (!drm_core_check_feature(dev, DRIVER_MODESET))
12398 return -ENODEV;
12399
12400 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
12401
12402 if (!drmmode_crtc) {
12403 DRM_ERROR("no such CRTC id\n");
12404 return -ENOENT;
12405 }
12406
12407 crtc = to_intel_crtc(drmmode_crtc);
12408 pipe_from_crtc_id->pipe = crtc->pipe;
12409
12410 return 0;
12411}
12412
12413static int intel_encoder_clones(struct intel_encoder *encoder)
12414{
12415 struct drm_device *dev = encoder->base.dev;
12416 struct intel_encoder *source_encoder;
12417 int index_mask = 0;
12418 int entry = 0;
12419
12420 for_each_intel_encoder(dev, source_encoder) {
12421 if (encoders_cloneable(encoder, source_encoder))
12422 index_mask |= (1 << entry);
12423
12424 entry++;
12425 }
12426
12427 return index_mask;
12428}
12429
12430static bool has_edp_a(struct drm_device *dev)
12431{
12432 struct drm_i915_private *dev_priv = dev->dev_private;
12433
12434 if (!IS_MOBILE(dev))
12435 return false;
12436
12437 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
12438 return false;
12439
12440 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
12441 return false;
12442
12443 return true;
12444}
12445
12446static bool intel_crt_present(struct drm_device *dev)
12447{
12448 struct drm_i915_private *dev_priv = dev->dev_private;
12449
12450 if (INTEL_INFO(dev)->gen >= 9)
12451 return false;
12452
12453 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
12454 return false;
12455
12456 if (IS_CHERRYVIEW(dev))
12457 return false;
12458
12459 if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
12460 return false;
12461
12462 return true;
12463}
12464
12465static void intel_setup_outputs(struct drm_device *dev)
12466{
12467 struct drm_i915_private *dev_priv = dev->dev_private;
12468 struct intel_encoder *encoder;
12469 struct drm_connector *connector;
12470 bool dpd_is_edp = false;
12471
12472 intel_lvds_init(dev);
12473
12474 if (intel_crt_present(dev))
12475 intel_crt_init(dev);
12476
12477 if (HAS_DDI(dev)) {
12478 int found;
12479
12480 /* Haswell uses DDI functions to detect digital outputs */
12481 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
12482 /* DDI A only supports eDP */
12483 if (found)
12484 intel_ddi_init(dev, PORT_A);
12485
12486 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
12487 * register */
12488 found = I915_READ(SFUSE_STRAP);
12489
12490 if (found & SFUSE_STRAP_DDIB_DETECTED)
12491 intel_ddi_init(dev, PORT_B);
12492 if (found & SFUSE_STRAP_DDIC_DETECTED)
12493 intel_ddi_init(dev, PORT_C);
12494 if (found & SFUSE_STRAP_DDID_DETECTED)
12495 intel_ddi_init(dev, PORT_D);
12496 } else if (HAS_PCH_SPLIT(dev)) {
12497 int found;
12498 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
12499
12500 if (has_edp_a(dev))
12501 intel_dp_init(dev, DP_A, PORT_A);
12502
12503 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
12504 /* PCH SDVOB multiplex with HDMIB */
12505 found = intel_sdvo_init(dev, PCH_SDVOB, true);
12506 if (!found)
12507 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
12508 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
12509 intel_dp_init(dev, PCH_DP_B, PORT_B);
12510 }
12511
12512 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
12513 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
12514
12515 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
12516 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
12517
12518 if (I915_READ(PCH_DP_C) & DP_DETECTED)
12519 intel_dp_init(dev, PCH_DP_C, PORT_C);
12520
12521 if (I915_READ(PCH_DP_D) & DP_DETECTED)
12522 intel_dp_init(dev, PCH_DP_D, PORT_D);
12523 } else if (IS_VALLEYVIEW(dev)) {
12524 /*
12525 * The DP_DETECTED bit is the latched state of the DDC
12526 * SDA pin at boot. However since eDP doesn't require DDC
12527 * (no way to plug in a DP->HDMI dongle) the DDC pins for
12528 * eDP ports may have been muxed to an alternate function.
12529 * Thus we can't rely on the DP_DETECTED bit alone to detect
12530 * eDP ports. Consult the VBT as well as DP_DETECTED to
12531 * detect eDP ports.
12532 */
12533 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
12534 !intel_dp_is_edp(dev, PORT_B))
12535 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
12536 PORT_B);
12537 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
12538 intel_dp_is_edp(dev, PORT_B))
12539 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
12540
12541 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
12542 !intel_dp_is_edp(dev, PORT_C))
12543 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
12544 PORT_C);
12545 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
12546 intel_dp_is_edp(dev, PORT_C))
12547 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
12548
12549 if (IS_CHERRYVIEW(dev)) {
12550 if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
12551 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
12552 PORT_D);
12553 /* eDP not supported on port D, so don't check VBT */
12554 if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
12555 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
12556 }
12557
12558 intel_dsi_init(dev);
12559 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
12560 bool found = false;
12561
12562 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12563 DRM_DEBUG_KMS("probing SDVOB\n");
12564 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
12565 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
12566 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
12567 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
12568 }
12569
12570 if (!found && SUPPORTS_INTEGRATED_DP(dev))
12571 intel_dp_init(dev, DP_B, PORT_B);
12572 }
12573
12574 /* Before G4X SDVOC doesn't have its own detect register */
12575
12576 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
12577 DRM_DEBUG_KMS("probing SDVOC\n");
12578 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
12579 }
12580
12581 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
12582
12583 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
12584 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
12585 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
12586 }
12587 if (SUPPORTS_INTEGRATED_DP(dev))
12588 intel_dp_init(dev, DP_C, PORT_C);
12589 }
12590
12591 if (SUPPORTS_INTEGRATED_DP(dev) &&
12592 (I915_READ(DP_D) & DP_DETECTED))
12593 intel_dp_init(dev, DP_D, PORT_D);
12594 } else if (IS_GEN2(dev))
12595 intel_dvo_init(dev);
12596
12597 if (SUPPORTS_TV(dev))
12598 intel_tv_init(dev);
12599
12600 /*
12601 * FIXME: We don't have full atomic support yet, but we want to be
12602 * able to enable/test plane updates via the atomic interface in the
12603 * meantime. However as soon as we flip DRIVER_ATOMIC on, the DRM core
12604 * will take some atomic codepaths to lookup properties during
12605 * drmModeGetConnector() that unconditionally dereference
12606 * connector->state.
12607 *
12608 * We create a dummy connector state here for each connector to ensure
12609 * the DRM core doesn't try to dereference a NULL connector->state.
12610 * The actual connector properties will never be updated or contain
12611 * useful information, but since we're doing this specifically for
12612 * testing/debug of the plane operations (and only when a specific
12613 * kernel module option is given), that shouldn't really matter.
12614 *
12615 * Once atomic support for crtc's + connectors lands, this loop should
12616 * be removed since we'll be setting up real connector state, which
12617 * will contain Intel-specific properties.
12618 */
12619 if (drm_core_check_feature(dev, DRIVER_ATOMIC)) {
12620 list_for_each_entry(connector,
12621 &dev->mode_config.connector_list,
12622 head) {
12623 if (!WARN_ON(connector->state)) {
12624 connector->state =
12625 kzalloc(sizeof(*connector->state),
12626 GFP_KERNEL);
12627 }
12628 }
12629 }
12630
12631 intel_psr_init(dev);
12632
12633 for_each_intel_encoder(dev, encoder) {
12634 encoder->base.possible_crtcs = encoder->crtc_mask;
12635 encoder->base.possible_clones =
12636 intel_encoder_clones(encoder);
12637 }
12638
12639 intel_init_pch_refclk(dev);
12640
12641 drm_helper_move_panel_connectors_to_head(dev);
12642}
12643
12644static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
12645{
12646 struct drm_device *dev = fb->dev;
12647 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12648
12649 drm_framebuffer_cleanup(fb);
12650 mutex_lock(&dev->struct_mutex);
12651 WARN_ON(!intel_fb->obj->framebuffer_references--);
12652 drm_gem_object_unreference(&intel_fb->obj->base);
12653 mutex_unlock(&dev->struct_mutex);
12654 kfree(intel_fb);
12655}
12656
12657static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
12658 struct drm_file *file,
12659 unsigned int *handle)
12660{
12661 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
12662 struct drm_i915_gem_object *obj = intel_fb->obj;
12663
12664 return drm_gem_handle_create(file, &obj->base, handle);
12665}
12666
12667static const struct drm_framebuffer_funcs intel_fb_funcs = {
12668 .destroy = intel_user_framebuffer_destroy,
12669 .create_handle = intel_user_framebuffer_create_handle,
12670};
12671
12672static int intel_framebuffer_init(struct drm_device *dev,
12673 struct intel_framebuffer *intel_fb,
12674 struct drm_mode_fb_cmd2 *mode_cmd,
12675 struct drm_i915_gem_object *obj)
12676{
12677 int aligned_height;
12678 int pitch_limit;
12679 int ret;
12680
12681 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
12682
12683 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
12684 /* Enforce that fb modifier and tiling mode match, but only for
12685 * X-tiled. This is needed for FBC. */
12686 if (!!(obj->tiling_mode == I915_TILING_X) !=
12687 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
12688 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
12689 return -EINVAL;
12690 }
12691 } else {
12692 if (obj->tiling_mode == I915_TILING_X)
12693 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
12694 else if (obj->tiling_mode == I915_TILING_Y) {
12695 DRM_DEBUG("No Y tiling for legacy addfb\n");
12696 return -EINVAL;
12697 }
12698 }
12699
12700 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_Y_TILED) {
12701 DRM_DEBUG("hardware does not support tiling Y\n");
12702 return -EINVAL;
12703 }
12704
12705 if (mode_cmd->pitches[0] & 63) {
12706 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
12707 mode_cmd->pitches[0]);
12708 return -EINVAL;
12709 }
12710
12711 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
12712 pitch_limit = 32*1024;
12713 } else if (INTEL_INFO(dev)->gen >= 4) {
12714 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)
12715 pitch_limit = 16*1024;
12716 else
12717 pitch_limit = 32*1024;
12718 } else if (INTEL_INFO(dev)->gen >= 3) {
12719 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)
12720 pitch_limit = 8*1024;
12721 else
12722 pitch_limit = 16*1024;
12723 } else
12724 /* XXX DSPC is limited to 4k tiled */
12725 pitch_limit = 8*1024;
12726
12727 if (mode_cmd->pitches[0] > pitch_limit) {
12728 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
12729 mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED ?
12730 "tiled" : "linear",
12731 mode_cmd->pitches[0], pitch_limit);
12732 return -EINVAL;
12733 }
12734
12735 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
12736 mode_cmd->pitches[0] != obj->stride) {
12737 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
12738 mode_cmd->pitches[0], obj->stride);
12739 return -EINVAL;
12740 }
12741
12742 /* Reject formats not supported by any plane early. */
12743 switch (mode_cmd->pixel_format) {
12744 case DRM_FORMAT_C8:
12745 case DRM_FORMAT_RGB565:
12746 case DRM_FORMAT_XRGB8888:
12747 case DRM_FORMAT_ARGB8888:
12748 break;
12749 case DRM_FORMAT_XRGB1555:
12750 case DRM_FORMAT_ARGB1555:
12751 if (INTEL_INFO(dev)->gen > 3) {
12752 DRM_DEBUG("unsupported pixel format: %s\n",
12753 drm_get_format_name(mode_cmd->pixel_format));
12754 return -EINVAL;
12755 }
12756 break;
12757 case DRM_FORMAT_XBGR8888:
12758 case DRM_FORMAT_ABGR8888:
12759 case DRM_FORMAT_XRGB2101010:
12760 case DRM_FORMAT_ARGB2101010:
12761 case DRM_FORMAT_XBGR2101010:
12762 case DRM_FORMAT_ABGR2101010:
12763 if (INTEL_INFO(dev)->gen < 4) {
12764 DRM_DEBUG("unsupported pixel format: %s\n",
12765 drm_get_format_name(mode_cmd->pixel_format));
12766 return -EINVAL;
12767 }
12768 break;
12769 case DRM_FORMAT_YUYV:
12770 case DRM_FORMAT_UYVY:
12771 case DRM_FORMAT_YVYU:
12772 case DRM_FORMAT_VYUY:
12773 if (INTEL_INFO(dev)->gen < 5) {
12774 DRM_DEBUG("unsupported pixel format: %s\n",
12775 drm_get_format_name(mode_cmd->pixel_format));
12776 return -EINVAL;
12777 }
12778 break;
12779 default:
12780 DRM_DEBUG("unsupported pixel format: %s\n",
12781 drm_get_format_name(mode_cmd->pixel_format));
12782 return -EINVAL;
12783 }
12784
12785 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
12786 if (mode_cmd->offsets[0] != 0)
12787 return -EINVAL;
12788
12789 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
12790 mode_cmd->pixel_format,
12791 mode_cmd->modifier[0]);
12792 /* FIXME drm helper for size checks (especially planar formats)? */
12793 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
12794 return -EINVAL;
12795
12796 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
12797 intel_fb->obj = obj;
12798 intel_fb->obj->framebuffer_references++;
12799
12800 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
12801 if (ret) {
12802 DRM_ERROR("framebuffer init failed %d\n", ret);
12803 return ret;
12804 }
12805
12806 return 0;
12807}
12808
12809static struct drm_framebuffer *
12810intel_user_framebuffer_create(struct drm_device *dev,
12811 struct drm_file *filp,
12812 struct drm_mode_fb_cmd2 *mode_cmd)
12813{
12814 struct drm_i915_gem_object *obj;
12815
12816 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
12817 mode_cmd->handles[0]));
12818 if (&obj->base == NULL)
12819 return ERR_PTR(-ENOENT);
12820
12821 return intel_framebuffer_create(dev, mode_cmd, obj);
12822}
12823
12824#ifndef CONFIG_DRM_I915_FBDEV
12825static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
12826{
12827}
12828#endif
12829
12830static const struct drm_mode_config_funcs intel_mode_funcs = {
12831 .fb_create = intel_user_framebuffer_create,
12832 .output_poll_changed = intel_fbdev_output_poll_changed,
12833 .atomic_check = intel_atomic_check,
12834 .atomic_commit = intel_atomic_commit,
12835};
12836
12837/* Set up chip specific display functions */
12838static void intel_init_display(struct drm_device *dev)
12839{
12840 struct drm_i915_private *dev_priv = dev->dev_private;
12841
12842 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
12843 dev_priv->display.find_dpll = g4x_find_best_dpll;
12844 else if (IS_CHERRYVIEW(dev))
12845 dev_priv->display.find_dpll = chv_find_best_dpll;
12846 else if (IS_VALLEYVIEW(dev))
12847 dev_priv->display.find_dpll = vlv_find_best_dpll;
12848 else if (IS_PINEVIEW(dev))
12849 dev_priv->display.find_dpll = pnv_find_best_dpll;
12850 else
12851 dev_priv->display.find_dpll = i9xx_find_best_dpll;
12852
12853 if (INTEL_INFO(dev)->gen >= 9) {
12854 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12855 dev_priv->display.get_initial_plane_config =
12856 skylake_get_initial_plane_config;
12857 dev_priv->display.crtc_compute_clock =
12858 haswell_crtc_compute_clock;
12859 dev_priv->display.crtc_enable = haswell_crtc_enable;
12860 dev_priv->display.crtc_disable = haswell_crtc_disable;
12861 dev_priv->display.off = ironlake_crtc_off;
12862 dev_priv->display.update_primary_plane =
12863 skylake_update_primary_plane;
12864 } else if (HAS_DDI(dev)) {
12865 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
12866 dev_priv->display.get_initial_plane_config =
12867 ironlake_get_initial_plane_config;
12868 dev_priv->display.crtc_compute_clock =
12869 haswell_crtc_compute_clock;
12870 dev_priv->display.crtc_enable = haswell_crtc_enable;
12871 dev_priv->display.crtc_disable = haswell_crtc_disable;
12872 dev_priv->display.off = ironlake_crtc_off;
12873 dev_priv->display.update_primary_plane =
12874 ironlake_update_primary_plane;
12875 } else if (HAS_PCH_SPLIT(dev)) {
12876 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
12877 dev_priv->display.get_initial_plane_config =
12878 ironlake_get_initial_plane_config;
12879 dev_priv->display.crtc_compute_clock =
12880 ironlake_crtc_compute_clock;
12881 dev_priv->display.crtc_enable = ironlake_crtc_enable;
12882 dev_priv->display.crtc_disable = ironlake_crtc_disable;
12883 dev_priv->display.off = ironlake_crtc_off;
12884 dev_priv->display.update_primary_plane =
12885 ironlake_update_primary_plane;
12886 } else if (IS_VALLEYVIEW(dev)) {
12887 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12888 dev_priv->display.get_initial_plane_config =
12889 i9xx_get_initial_plane_config;
12890 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12891 dev_priv->display.crtc_enable = valleyview_crtc_enable;
12892 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12893 dev_priv->display.off = i9xx_crtc_off;
12894 dev_priv->display.update_primary_plane =
12895 i9xx_update_primary_plane;
12896 } else {
12897 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
12898 dev_priv->display.get_initial_plane_config =
12899 i9xx_get_initial_plane_config;
12900 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
12901 dev_priv->display.crtc_enable = i9xx_crtc_enable;
12902 dev_priv->display.crtc_disable = i9xx_crtc_disable;
12903 dev_priv->display.off = i9xx_crtc_off;
12904 dev_priv->display.update_primary_plane =
12905 i9xx_update_primary_plane;
12906 }
12907
12908 /* Returns the core display clock speed */
12909 if (IS_VALLEYVIEW(dev))
12910 dev_priv->display.get_display_clock_speed =
12911 valleyview_get_display_clock_speed;
12912 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
12913 dev_priv->display.get_display_clock_speed =
12914 i945_get_display_clock_speed;
12915 else if (IS_I915G(dev))
12916 dev_priv->display.get_display_clock_speed =
12917 i915_get_display_clock_speed;
12918 else if (IS_I945GM(dev) || IS_845G(dev))
12919 dev_priv->display.get_display_clock_speed =
12920 i9xx_misc_get_display_clock_speed;
12921 else if (IS_PINEVIEW(dev))
12922 dev_priv->display.get_display_clock_speed =
12923 pnv_get_display_clock_speed;
12924 else if (IS_I915GM(dev))
12925 dev_priv->display.get_display_clock_speed =
12926 i915gm_get_display_clock_speed;
12927 else if (IS_I865G(dev))
12928 dev_priv->display.get_display_clock_speed =
12929 i865_get_display_clock_speed;
12930 else if (IS_I85X(dev))
12931 dev_priv->display.get_display_clock_speed =
12932 i855_get_display_clock_speed;
12933 else /* 852, 830 */
12934 dev_priv->display.get_display_clock_speed =
12935 i830_get_display_clock_speed;
12936
12937 if (IS_GEN5(dev)) {
12938 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
12939 } else if (IS_GEN6(dev)) {
12940 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
12941 } else if (IS_IVYBRIDGE(dev)) {
12942 /* FIXME: detect B0+ stepping and use auto training */
12943 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
12944 dev_priv->display.modeset_global_resources =
12945 ivb_modeset_global_resources;
12946 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
12947 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
12948 } else if (IS_VALLEYVIEW(dev)) {
12949 dev_priv->display.modeset_global_resources =
12950 valleyview_modeset_global_resources;
12951 }
12952
12953 switch (INTEL_INFO(dev)->gen) {
12954 case 2:
12955 dev_priv->display.queue_flip = intel_gen2_queue_flip;
12956 break;
12957
12958 case 3:
12959 dev_priv->display.queue_flip = intel_gen3_queue_flip;
12960 break;
12961
12962 case 4:
12963 case 5:
12964 dev_priv->display.queue_flip = intel_gen4_queue_flip;
12965 break;
12966
12967 case 6:
12968 dev_priv->display.queue_flip = intel_gen6_queue_flip;
12969 break;
12970 case 7:
12971 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
12972 dev_priv->display.queue_flip = intel_gen7_queue_flip;
12973 break;
12974 case 9:
12975 /* Drop through - unsupported since execlist only. */
12976 default:
12977 /* Default just returns -ENODEV to indicate unsupported */
12978 dev_priv->display.queue_flip = intel_default_queue_flip;
12979 }
12980
12981 intel_panel_init_backlight_funcs(dev);
12982
12983 mutex_init(&dev_priv->pps_mutex);
12984}
12985
12986/*
12987 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
12988 * resume, or other times. This quirk makes sure that's the case for
12989 * affected systems.
12990 */
12991static void quirk_pipea_force(struct drm_device *dev)
12992{
12993 struct drm_i915_private *dev_priv = dev->dev_private;
12994
12995 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
12996 DRM_INFO("applying pipe a force quirk\n");
12997}
12998
12999static void quirk_pipeb_force(struct drm_device *dev)
13000{
13001 struct drm_i915_private *dev_priv = dev->dev_private;
13002
13003 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
13004 DRM_INFO("applying pipe b force quirk\n");
13005}
13006
13007/*
13008 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
13009 */
13010static void quirk_ssc_force_disable(struct drm_device *dev)
13011{
13012 struct drm_i915_private *dev_priv = dev->dev_private;
13013 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
13014 DRM_INFO("applying lvds SSC disable quirk\n");
13015}
13016
13017/*
13018 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
13019 * brightness value
13020 */
13021static void quirk_invert_brightness(struct drm_device *dev)
13022{
13023 struct drm_i915_private *dev_priv = dev->dev_private;
13024 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
13025 DRM_INFO("applying inverted panel brightness quirk\n");
13026}
13027
13028/* Some VBT's incorrectly indicate no backlight is present */
13029static void quirk_backlight_present(struct drm_device *dev)
13030{
13031 struct drm_i915_private *dev_priv = dev->dev_private;
13032 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
13033 DRM_INFO("applying backlight present quirk\n");
13034}
13035
13036struct intel_quirk {
13037 int device;
13038 int subsystem_vendor;
13039 int subsystem_device;
13040 void (*hook)(struct drm_device *dev);
13041};
13042
13043/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
13044struct intel_dmi_quirk {
13045 void (*hook)(struct drm_device *dev);
13046 const struct dmi_system_id (*dmi_id_list)[];
13047};
13048
13049static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
13050{
13051 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
13052 return 1;
13053}
13054
13055static const struct intel_dmi_quirk intel_dmi_quirks[] = {
13056 {
13057 .dmi_id_list = &(const struct dmi_system_id[]) {
13058 {
13059 .callback = intel_dmi_reverse_brightness,
13060 .ident = "NCR Corporation",
13061 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
13062 DMI_MATCH(DMI_PRODUCT_NAME, ""),
13063 },
13064 },
13065 { } /* terminating entry */
13066 },
13067 .hook = quirk_invert_brightness,
13068 },
13069};
13070
13071static struct intel_quirk intel_quirks[] = {
13072 /* HP Mini needs pipe A force quirk (LP: #322104) */
13073 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
13074
13075 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
13076 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
13077
13078 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
13079 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
13080
13081 /* 830 needs to leave pipe A & dpll A up */
13082 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
13083
13084 /* 830 needs to leave pipe B & dpll B up */
13085 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
13086
13087 /* Lenovo U160 cannot use SSC on LVDS */
13088 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
13089
13090 /* Sony Vaio Y cannot use SSC on LVDS */
13091 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
13092
13093 /* Acer Aspire 5734Z must invert backlight brightness */
13094 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
13095
13096 /* Acer/eMachines G725 */
13097 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
13098
13099 /* Acer/eMachines e725 */
13100 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
13101
13102 /* Acer/Packard Bell NCL20 */
13103 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
13104
13105 /* Acer Aspire 4736Z */
13106 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
13107
13108 /* Acer Aspire 5336 */
13109 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
13110
13111 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
13112 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
13113
13114 /* Acer C720 Chromebook (Core i3 4005U) */
13115 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
13116
13117 /* Apple Macbook 2,1 (Core 2 T7400) */
13118 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
13119
13120 /* Toshiba CB35 Chromebook (Celeron 2955U) */
13121 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
13122
13123 /* HP Chromebook 14 (Celeron 2955U) */
13124 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
13125};
13126
13127static void intel_init_quirks(struct drm_device *dev)
13128{
13129 struct pci_dev *d = dev->pdev;
13130 int i;
13131
13132 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
13133 struct intel_quirk *q = &intel_quirks[i];
13134
13135 if (d->device == q->device &&
13136 (d->subsystem_vendor == q->subsystem_vendor ||
13137 q->subsystem_vendor == PCI_ANY_ID) &&
13138 (d->subsystem_device == q->subsystem_device ||
13139 q->subsystem_device == PCI_ANY_ID))
13140 q->hook(dev);
13141 }
13142 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
13143 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
13144 intel_dmi_quirks[i].hook(dev);
13145 }
13146}
13147
13148/* Disable the VGA plane that we never use */
13149static void i915_disable_vga(struct drm_device *dev)
13150{
13151 struct drm_i915_private *dev_priv = dev->dev_private;
13152 u8 sr1;
13153 u32 vga_reg = i915_vgacntrl_reg(dev);
13154
13155 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
13156 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
13157 outb(SR01, VGA_SR_INDEX);
13158 sr1 = inb(VGA_SR_DATA);
13159 outb(sr1 | 1<<5, VGA_SR_DATA);
13160 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
13161 udelay(300);
13162
13163 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
13164 POSTING_READ(vga_reg);
13165}
13166
13167void intel_modeset_init_hw(struct drm_device *dev)
13168{
13169 intel_prepare_ddi(dev);
13170
13171 if (IS_VALLEYVIEW(dev))
13172 vlv_update_cdclk(dev);
13173
13174 intel_init_clock_gating(dev);
13175
13176 intel_enable_gt_powersave(dev);
13177}
13178
13179void intel_modeset_init(struct drm_device *dev)
13180{
13181 struct drm_i915_private *dev_priv = dev->dev_private;
13182 int sprite, ret;
13183 enum pipe pipe;
13184 struct intel_crtc *crtc;
13185
13186 drm_mode_config_init(dev);
13187
13188 dev->mode_config.min_width = 0;
13189 dev->mode_config.min_height = 0;
13190
13191 dev->mode_config.preferred_depth = 24;
13192 dev->mode_config.prefer_shadow = 1;
13193
13194 dev->mode_config.allow_fb_modifiers = true;
13195
13196 dev->mode_config.funcs = &intel_mode_funcs;
13197
13198 intel_init_quirks(dev);
13199
13200 intel_init_pm(dev);
13201
13202 if (INTEL_INFO(dev)->num_pipes == 0)
13203 return;
13204
13205 intel_init_display(dev);
13206 intel_init_audio(dev);
13207
13208 if (IS_GEN2(dev)) {
13209 dev->mode_config.max_width = 2048;
13210 dev->mode_config.max_height = 2048;
13211 } else if (IS_GEN3(dev)) {
13212 dev->mode_config.max_width = 4096;
13213 dev->mode_config.max_height = 4096;
13214 } else {
13215 dev->mode_config.max_width = 8192;
13216 dev->mode_config.max_height = 8192;
13217 }
13218
13219 if (IS_845G(dev) || IS_I865G(dev)) {
13220 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
13221 dev->mode_config.cursor_height = 1023;
13222 } else if (IS_GEN2(dev)) {
13223 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
13224 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
13225 } else {
13226 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
13227 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
13228 }
13229
13230 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
13231
13232 DRM_DEBUG_KMS("%d display pipe%s available.\n",
13233 INTEL_INFO(dev)->num_pipes,
13234 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
13235
13236 for_each_pipe(dev_priv, pipe) {
13237 intel_crtc_init(dev, pipe);
13238 for_each_sprite(pipe, sprite) {
13239 ret = intel_plane_init(dev, pipe, sprite);
13240 if (ret)
13241 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
13242 pipe_name(pipe), sprite_name(pipe, sprite), ret);
13243 }
13244 }
13245
13246 intel_init_dpio(dev);
13247
13248 intel_shared_dpll_init(dev);
13249
13250 /* Just disable it once at startup */
13251 i915_disable_vga(dev);
13252 intel_setup_outputs(dev);
13253
13254 /* Just in case the BIOS is doing something questionable. */
13255 intel_fbc_disable(dev);
13256
13257 drm_modeset_lock_all(dev);
13258 intel_modeset_setup_hw_state(dev, false);
13259 drm_modeset_unlock_all(dev);
13260
13261 for_each_intel_crtc(dev, crtc) {
13262 if (!crtc->active)
13263 continue;
13264
13265 /*
13266 * Note that reserving the BIOS fb up front prevents us
13267 * from stuffing other stolen allocations like the ring
13268 * on top. This prevents some ugliness at boot time, and
13269 * can even allow for smooth boot transitions if the BIOS
13270 * fb is large enough for the active pipe configuration.
13271 */
13272 if (dev_priv->display.get_initial_plane_config) {
13273 dev_priv->display.get_initial_plane_config(crtc,
13274 &crtc->plane_config);
13275 /*
13276 * If the fb is shared between multiple heads, we'll
13277 * just get the first one.
13278 */
13279 intel_find_plane_obj(crtc, &crtc->plane_config);
13280 }
13281 }
13282}
13283
13284static void intel_enable_pipe_a(struct drm_device *dev)
13285{
13286 struct intel_connector *connector;
13287 struct drm_connector *crt = NULL;
13288 struct intel_load_detect_pipe load_detect_temp;
13289 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
13290
13291 /* We can't just switch on the pipe A, we need to set things up with a
13292 * proper mode and output configuration. As a gross hack, enable pipe A
13293 * by enabling the load detect pipe once. */
13294 list_for_each_entry(connector,
13295 &dev->mode_config.connector_list,
13296 base.head) {
13297 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
13298 crt = &connector->base;
13299 break;
13300 }
13301 }
13302
13303 if (!crt)
13304 return;
13305
13306 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
13307 intel_release_load_detect_pipe(crt, &load_detect_temp);
13308}
13309
13310static bool
13311intel_check_plane_mapping(struct intel_crtc *crtc)
13312{
13313 struct drm_device *dev = crtc->base.dev;
13314 struct drm_i915_private *dev_priv = dev->dev_private;
13315 u32 reg, val;
13316
13317 if (INTEL_INFO(dev)->num_pipes == 1)
13318 return true;
13319
13320 reg = DSPCNTR(!crtc->plane);
13321 val = I915_READ(reg);
13322
13323 if ((val & DISPLAY_PLANE_ENABLE) &&
13324 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
13325 return false;
13326
13327 return true;
13328}
13329
13330static void intel_sanitize_crtc(struct intel_crtc *crtc)
13331{
13332 struct drm_device *dev = crtc->base.dev;
13333 struct drm_i915_private *dev_priv = dev->dev_private;
13334 u32 reg;
13335
13336 /* Clear any frame start delays used for debugging left by the BIOS */
13337 reg = PIPECONF(crtc->config->cpu_transcoder);
13338 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
13339
13340 /* restore vblank interrupts to correct state */
13341 drm_crtc_vblank_reset(&crtc->base);
13342 if (crtc->active) {
13343 update_scanline_offset(crtc);
13344 drm_crtc_vblank_on(&crtc->base);
13345 }
13346
13347 /* We need to sanitize the plane -> pipe mapping first because this will
13348 * disable the crtc (and hence change the state) if it is wrong. Note
13349 * that gen4+ has a fixed plane -> pipe mapping. */
13350 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
13351 struct intel_connector *connector;
13352 bool plane;
13353
13354 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
13355 crtc->base.base.id);
13356
13357 /* Pipe has the wrong plane attached and the plane is active.
13358 * Temporarily change the plane mapping and disable everything
13359 * ... */
13360 plane = crtc->plane;
13361 crtc->plane = !plane;
13362 crtc->primary_enabled = true;
13363 dev_priv->display.crtc_disable(&crtc->base);
13364 crtc->plane = plane;
13365
13366 /* ... and break all links. */
13367 list_for_each_entry(connector, &dev->mode_config.connector_list,
13368 base.head) {
13369 if (connector->encoder->base.crtc != &crtc->base)
13370 continue;
13371
13372 connector->base.dpms = DRM_MODE_DPMS_OFF;
13373 connector->base.encoder = NULL;
13374 }
13375 /* multiple connectors may have the same encoder:
13376 * handle them and break crtc link separately */
13377 list_for_each_entry(connector, &dev->mode_config.connector_list,
13378 base.head)
13379 if (connector->encoder->base.crtc == &crtc->base) {
13380 connector->encoder->base.crtc = NULL;
13381 connector->encoder->connectors_active = false;
13382 }
13383
13384 WARN_ON(crtc->active);
13385 crtc->base.state->enable = false;
13386 crtc->base.enabled = false;
13387 }
13388
13389 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
13390 crtc->pipe == PIPE_A && !crtc->active) {
13391 /* BIOS forgot to enable pipe A, this mostly happens after
13392 * resume. Force-enable the pipe to fix this, the update_dpms
13393 * call below we restore the pipe to the right state, but leave
13394 * the required bits on. */
13395 intel_enable_pipe_a(dev);
13396 }
13397
13398 /* Adjust the state of the output pipe according to whether we
13399 * have active connectors/encoders. */
13400 intel_crtc_update_dpms(&crtc->base);
13401
13402 if (crtc->active != crtc->base.state->enable) {
13403 struct intel_encoder *encoder;
13404
13405 /* This can happen either due to bugs in the get_hw_state
13406 * functions or because the pipe is force-enabled due to the
13407 * pipe A quirk. */
13408 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
13409 crtc->base.base.id,
13410 crtc->base.state->enable ? "enabled" : "disabled",
13411 crtc->active ? "enabled" : "disabled");
13412
13413 crtc->base.state->enable = crtc->active;
13414 crtc->base.enabled = crtc->active;
13415
13416 /* Because we only establish the connector -> encoder ->
13417 * crtc links if something is active, this means the
13418 * crtc is now deactivated. Break the links. connector
13419 * -> encoder links are only establish when things are
13420 * actually up, hence no need to break them. */
13421 WARN_ON(crtc->active);
13422
13423 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13424 WARN_ON(encoder->connectors_active);
13425 encoder->base.crtc = NULL;
13426 }
13427 }
13428
13429 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
13430 /*
13431 * We start out with underrun reporting disabled to avoid races.
13432 * For correct bookkeeping mark this on active crtcs.
13433 *
13434 * Also on gmch platforms we dont have any hardware bits to
13435 * disable the underrun reporting. Which means we need to start
13436 * out with underrun reporting disabled also on inactive pipes,
13437 * since otherwise we'll complain about the garbage we read when
13438 * e.g. coming up after runtime pm.
13439 *
13440 * No protection against concurrent access is required - at
13441 * worst a fifo underrun happens which also sets this to false.
13442 */
13443 crtc->cpu_fifo_underrun_disabled = true;
13444 crtc->pch_fifo_underrun_disabled = true;
13445 }
13446}
13447
13448static void intel_sanitize_encoder(struct intel_encoder *encoder)
13449{
13450 struct intel_connector *connector;
13451 struct drm_device *dev = encoder->base.dev;
13452
13453 /* We need to check both for a crtc link (meaning that the
13454 * encoder is active and trying to read from a pipe) and the
13455 * pipe itself being active. */
13456 bool has_active_crtc = encoder->base.crtc &&
13457 to_intel_crtc(encoder->base.crtc)->active;
13458
13459 if (encoder->connectors_active && !has_active_crtc) {
13460 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
13461 encoder->base.base.id,
13462 encoder->base.name);
13463
13464 /* Connector is active, but has no active pipe. This is
13465 * fallout from our resume register restoring. Disable
13466 * the encoder manually again. */
13467 if (encoder->base.crtc) {
13468 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
13469 encoder->base.base.id,
13470 encoder->base.name);
13471 encoder->disable(encoder);
13472 if (encoder->post_disable)
13473 encoder->post_disable(encoder);
13474 }
13475 encoder->base.crtc = NULL;
13476 encoder->connectors_active = false;
13477
13478 /* Inconsistent output/port/pipe state happens presumably due to
13479 * a bug in one of the get_hw_state functions. Or someplace else
13480 * in our code, like the register restore mess on resume. Clamp
13481 * things to off as a safer default. */
13482 list_for_each_entry(connector,
13483 &dev->mode_config.connector_list,
13484 base.head) {
13485 if (connector->encoder != encoder)
13486 continue;
13487 connector->base.dpms = DRM_MODE_DPMS_OFF;
13488 connector->base.encoder = NULL;
13489 }
13490 }
13491 /* Enabled encoders without active connectors will be fixed in
13492 * the crtc fixup. */
13493}
13494
13495void i915_redisable_vga_power_on(struct drm_device *dev)
13496{
13497 struct drm_i915_private *dev_priv = dev->dev_private;
13498 u32 vga_reg = i915_vgacntrl_reg(dev);
13499
13500 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
13501 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
13502 i915_disable_vga(dev);
13503 }
13504}
13505
13506void i915_redisable_vga(struct drm_device *dev)
13507{
13508 struct drm_i915_private *dev_priv = dev->dev_private;
13509
13510 /* This function can be called both from intel_modeset_setup_hw_state or
13511 * at a very early point in our resume sequence, where the power well
13512 * structures are not yet restored. Since this function is at a very
13513 * paranoid "someone might have enabled VGA while we were not looking"
13514 * level, just check if the power well is enabled instead of trying to
13515 * follow the "don't touch the power well if we don't need it" policy
13516 * the rest of the driver uses. */
13517 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
13518 return;
13519
13520 i915_redisable_vga_power_on(dev);
13521}
13522
13523static bool primary_get_hw_state(struct intel_crtc *crtc)
13524{
13525 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
13526
13527 if (!crtc->active)
13528 return false;
13529
13530 return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
13531}
13532
13533static void intel_modeset_readout_hw_state(struct drm_device *dev)
13534{
13535 struct drm_i915_private *dev_priv = dev->dev_private;
13536 enum pipe pipe;
13537 struct intel_crtc *crtc;
13538 struct intel_encoder *encoder;
13539 struct intel_connector *connector;
13540 int i;
13541
13542 for_each_intel_crtc(dev, crtc) {
13543 memset(crtc->config, 0, sizeof(*crtc->config));
13544
13545 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
13546
13547 crtc->active = dev_priv->display.get_pipe_config(crtc,
13548 crtc->config);
13549
13550 crtc->base.state->enable = crtc->active;
13551 crtc->base.enabled = crtc->active;
13552 crtc->primary_enabled = primary_get_hw_state(crtc);
13553
13554 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
13555 crtc->base.base.id,
13556 crtc->active ? "enabled" : "disabled");
13557 }
13558
13559 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13560 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13561
13562 pll->on = pll->get_hw_state(dev_priv, pll,
13563 &pll->config.hw_state);
13564 pll->active = 0;
13565 pll->config.crtc_mask = 0;
13566 for_each_intel_crtc(dev, crtc) {
13567 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
13568 pll->active++;
13569 pll->config.crtc_mask |= 1 << crtc->pipe;
13570 }
13571 }
13572
13573 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
13574 pll->name, pll->config.crtc_mask, pll->on);
13575
13576 if (pll->config.crtc_mask)
13577 intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
13578 }
13579
13580 for_each_intel_encoder(dev, encoder) {
13581 pipe = 0;
13582
13583 if (encoder->get_hw_state(encoder, &pipe)) {
13584 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13585 encoder->base.crtc = &crtc->base;
13586 encoder->get_config(encoder, crtc->config);
13587 } else {
13588 encoder->base.crtc = NULL;
13589 }
13590
13591 encoder->connectors_active = false;
13592 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
13593 encoder->base.base.id,
13594 encoder->base.name,
13595 encoder->base.crtc ? "enabled" : "disabled",
13596 pipe_name(pipe));
13597 }
13598
13599 list_for_each_entry(connector, &dev->mode_config.connector_list,
13600 base.head) {
13601 if (connector->get_hw_state(connector)) {
13602 connector->base.dpms = DRM_MODE_DPMS_ON;
13603 connector->encoder->connectors_active = true;
13604 connector->base.encoder = &connector->encoder->base;
13605 } else {
13606 connector->base.dpms = DRM_MODE_DPMS_OFF;
13607 connector->base.encoder = NULL;
13608 }
13609 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
13610 connector->base.base.id,
13611 connector->base.name,
13612 connector->base.encoder ? "enabled" : "disabled");
13613 }
13614}
13615
13616/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
13617 * and i915 state tracking structures. */
13618void intel_modeset_setup_hw_state(struct drm_device *dev,
13619 bool force_restore)
13620{
13621 struct drm_i915_private *dev_priv = dev->dev_private;
13622 enum pipe pipe;
13623 struct intel_crtc *crtc;
13624 struct intel_encoder *encoder;
13625 int i;
13626
13627 intel_modeset_readout_hw_state(dev);
13628
13629 /*
13630 * Now that we have the config, copy it to each CRTC struct
13631 * Note that this could go away if we move to using crtc_config
13632 * checking everywhere.
13633 */
13634 for_each_intel_crtc(dev, crtc) {
13635 if (crtc->active && i915.fastboot) {
13636 intel_mode_from_pipe_config(&crtc->base.mode,
13637 crtc->config);
13638 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
13639 crtc->base.base.id);
13640 drm_mode_debug_printmodeline(&crtc->base.mode);
13641 }
13642 }
13643
13644 /* HW state is read out, now we need to sanitize this mess. */
13645 for_each_intel_encoder(dev, encoder) {
13646 intel_sanitize_encoder(encoder);
13647 }
13648
13649 for_each_pipe(dev_priv, pipe) {
13650 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
13651 intel_sanitize_crtc(crtc);
13652 intel_dump_pipe_config(crtc, crtc->config,
13653 "[setup_hw_state]");
13654 }
13655
13656 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13657 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
13658
13659 if (!pll->on || pll->active)
13660 continue;
13661
13662 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
13663
13664 pll->disable(dev_priv, pll);
13665 pll->on = false;
13666 }
13667
13668 if (IS_GEN9(dev))
13669 skl_wm_get_hw_state(dev);
13670 else if (HAS_PCH_SPLIT(dev))
13671 ilk_wm_get_hw_state(dev);
13672
13673 if (force_restore) {
13674 i915_redisable_vga(dev);
13675
13676 /*
13677 * We need to use raw interfaces for restoring state to avoid
13678 * checking (bogus) intermediate states.
13679 */
13680 for_each_pipe(dev_priv, pipe) {
13681 struct drm_crtc *crtc =
13682 dev_priv->pipe_to_crtc_mapping[pipe];
13683
13684 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
13685 crtc->primary->fb);
13686 }
13687 } else {
13688 intel_modeset_update_staged_output_state(dev);
13689 }
13690
13691 intel_modeset_check_state(dev);
13692}
13693
13694void intel_modeset_gem_init(struct drm_device *dev)
13695{
13696 struct drm_i915_private *dev_priv = dev->dev_private;
13697 struct drm_crtc *c;
13698 struct drm_i915_gem_object *obj;
13699
13700 mutex_lock(&dev->struct_mutex);
13701 intel_init_gt_powersave(dev);
13702 mutex_unlock(&dev->struct_mutex);
13703
13704 /*
13705 * There may be no VBT; and if the BIOS enabled SSC we can
13706 * just keep using it to avoid unnecessary flicker. Whereas if the
13707 * BIOS isn't using it, don't assume it will work even if the VBT
13708 * indicates as much.
13709 */
13710 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13711 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
13712 DREF_SSC1_ENABLE);
13713
13714 intel_modeset_init_hw(dev);
13715
13716 intel_setup_overlay(dev);
13717
13718 /*
13719 * Make sure any fbs we allocated at startup are properly
13720 * pinned & fenced. When we do the allocation it's too early
13721 * for this.
13722 */
13723 mutex_lock(&dev->struct_mutex);
13724 for_each_crtc(dev, c) {
13725 obj = intel_fb_obj(c->primary->fb);
13726 if (obj == NULL)
13727 continue;
13728
13729 if (intel_pin_and_fence_fb_obj(c->primary,
13730 c->primary->fb,
13731 NULL)) {
13732 DRM_ERROR("failed to pin boot fb on pipe %d\n",
13733 to_intel_crtc(c)->pipe);
13734 drm_framebuffer_unreference(c->primary->fb);
13735 c->primary->fb = NULL;
13736 update_state_fb(c->primary);
13737 }
13738 }
13739 mutex_unlock(&dev->struct_mutex);
13740
13741 intel_backlight_register(dev);
13742}
13743
13744void intel_connector_unregister(struct intel_connector *intel_connector)
13745{
13746 struct drm_connector *connector = &intel_connector->base;
13747
13748 intel_panel_destroy_backlight(connector);
13749 drm_connector_unregister(connector);
13750}
13751
13752void intel_modeset_cleanup(struct drm_device *dev)
13753{
13754 struct drm_i915_private *dev_priv = dev->dev_private;
13755 struct drm_connector *connector;
13756
13757 intel_disable_gt_powersave(dev);
13758
13759 intel_backlight_unregister(dev);
13760
13761 /*
13762 * Interrupts and polling as the first thing to avoid creating havoc.
13763 * Too much stuff here (turning of connectors, ...) would
13764 * experience fancy races otherwise.
13765 */
13766 intel_irq_uninstall(dev_priv);
13767
13768 /*
13769 * Due to the hpd irq storm handling the hotplug work can re-arm the
13770 * poll handlers. Hence disable polling after hpd handling is shut down.
13771 */
13772 drm_kms_helper_poll_fini(dev);
13773
13774 mutex_lock(&dev->struct_mutex);
13775
13776 intel_unregister_dsm_handler();
13777
13778 intel_fbc_disable(dev);
13779
13780 ironlake_teardown_rc6(dev);
13781
13782 mutex_unlock(&dev->struct_mutex);
13783
13784 /* flush any delayed tasks or pending work */
13785 flush_scheduled_work();
13786
13787 /* destroy the backlight and sysfs files before encoders/connectors */
13788 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
13789 struct intel_connector *intel_connector;
13790
13791 intel_connector = to_intel_connector(connector);
13792 intel_connector->unregister(intel_connector);
13793 }
13794
13795 drm_mode_config_cleanup(dev);
13796
13797 intel_cleanup_overlay(dev);
13798
13799 mutex_lock(&dev->struct_mutex);
13800 intel_cleanup_gt_powersave(dev);
13801 mutex_unlock(&dev->struct_mutex);
13802}
13803
13804/*
13805 * Return which encoder is currently attached for connector.
13806 */
13807struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
13808{
13809 return &intel_attached_encoder(connector)->base;
13810}
13811
13812void intel_connector_attach_encoder(struct intel_connector *connector,
13813 struct intel_encoder *encoder)
13814{
13815 connector->encoder = encoder;
13816 drm_mode_connector_attach_encoder(&connector->base,
13817 &encoder->base);
13818}
13819
13820/*
13821 * set vga decode state - true == enable VGA decode
13822 */
13823int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
13824{
13825 struct drm_i915_private *dev_priv = dev->dev_private;
13826 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
13827 u16 gmch_ctrl;
13828
13829 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
13830 DRM_ERROR("failed to read control word\n");
13831 return -EIO;
13832 }
13833
13834 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
13835 return 0;
13836
13837 if (state)
13838 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
13839 else
13840 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
13841
13842 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
13843 DRM_ERROR("failed to write control word\n");
13844 return -EIO;
13845 }
13846
13847 return 0;
13848}
13849
13850struct intel_display_error_state {
13851
13852 u32 power_well_driver;
13853
13854 int num_transcoders;
13855
13856 struct intel_cursor_error_state {
13857 u32 control;
13858 u32 position;
13859 u32 base;
13860 u32 size;
13861 } cursor[I915_MAX_PIPES];
13862
13863 struct intel_pipe_error_state {
13864 bool power_domain_on;
13865 u32 source;
13866 u32 stat;
13867 } pipe[I915_MAX_PIPES];
13868
13869 struct intel_plane_error_state {
13870 u32 control;
13871 u32 stride;
13872 u32 size;
13873 u32 pos;
13874 u32 addr;
13875 u32 surface;
13876 u32 tile_offset;
13877 } plane[I915_MAX_PIPES];
13878
13879 struct intel_transcoder_error_state {
13880 bool power_domain_on;
13881 enum transcoder cpu_transcoder;
13882
13883 u32 conf;
13884
13885 u32 htotal;
13886 u32 hblank;
13887 u32 hsync;
13888 u32 vtotal;
13889 u32 vblank;
13890 u32 vsync;
13891 } transcoder[4];
13892};
13893
13894struct intel_display_error_state *
13895intel_display_capture_error_state(struct drm_device *dev)
13896{
13897 struct drm_i915_private *dev_priv = dev->dev_private;
13898 struct intel_display_error_state *error;
13899 int transcoders[] = {
13900 TRANSCODER_A,
13901 TRANSCODER_B,
13902 TRANSCODER_C,
13903 TRANSCODER_EDP,
13904 };
13905 int i;
13906
13907 if (INTEL_INFO(dev)->num_pipes == 0)
13908 return NULL;
13909
13910 error = kzalloc(sizeof(*error), GFP_ATOMIC);
13911 if (error == NULL)
13912 return NULL;
13913
13914 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13915 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
13916
13917 for_each_pipe(dev_priv, i) {
13918 error->pipe[i].power_domain_on =
13919 __intel_display_power_is_enabled(dev_priv,
13920 POWER_DOMAIN_PIPE(i));
13921 if (!error->pipe[i].power_domain_on)
13922 continue;
13923
13924 error->cursor[i].control = I915_READ(CURCNTR(i));
13925 error->cursor[i].position = I915_READ(CURPOS(i));
13926 error->cursor[i].base = I915_READ(CURBASE(i));
13927
13928 error->plane[i].control = I915_READ(DSPCNTR(i));
13929 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
13930 if (INTEL_INFO(dev)->gen <= 3) {
13931 error->plane[i].size = I915_READ(DSPSIZE(i));
13932 error->plane[i].pos = I915_READ(DSPPOS(i));
13933 }
13934 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
13935 error->plane[i].addr = I915_READ(DSPADDR(i));
13936 if (INTEL_INFO(dev)->gen >= 4) {
13937 error->plane[i].surface = I915_READ(DSPSURF(i));
13938 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
13939 }
13940
13941 error->pipe[i].source = I915_READ(PIPESRC(i));
13942
13943 if (HAS_GMCH_DISPLAY(dev))
13944 error->pipe[i].stat = I915_READ(PIPESTAT(i));
13945 }
13946
13947 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
13948 if (HAS_DDI(dev_priv->dev))
13949 error->num_transcoders++; /* Account for eDP. */
13950
13951 for (i = 0; i < error->num_transcoders; i++) {
13952 enum transcoder cpu_transcoder = transcoders[i];
13953
13954 error->transcoder[i].power_domain_on =
13955 __intel_display_power_is_enabled(dev_priv,
13956 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
13957 if (!error->transcoder[i].power_domain_on)
13958 continue;
13959
13960 error->transcoder[i].cpu_transcoder = cpu_transcoder;
13961
13962 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
13963 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
13964 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
13965 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
13966 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
13967 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
13968 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
13969 }
13970
13971 return error;
13972}
13973
13974#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
13975
13976void
13977intel_display_print_error_state(struct drm_i915_error_state_buf *m,
13978 struct drm_device *dev,
13979 struct intel_display_error_state *error)
13980{
13981 struct drm_i915_private *dev_priv = dev->dev_private;
13982 int i;
13983
13984 if (!error)
13985 return;
13986
13987 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
13988 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
13989 err_printf(m, "PWR_WELL_CTL2: %08x\n",
13990 error->power_well_driver);
13991 for_each_pipe(dev_priv, i) {
13992 err_printf(m, "Pipe [%d]:\n", i);
13993 err_printf(m, " Power: %s\n",
13994 error->pipe[i].power_domain_on ? "on" : "off");
13995 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
13996 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
13997
13998 err_printf(m, "Plane [%d]:\n", i);
13999 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
14000 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
14001 if (INTEL_INFO(dev)->gen <= 3) {
14002 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
14003 err_printf(m, " POS: %08x\n", error->plane[i].pos);
14004 }
14005 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
14006 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
14007 if (INTEL_INFO(dev)->gen >= 4) {
14008 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
14009 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
14010 }
14011
14012 err_printf(m, "Cursor [%d]:\n", i);
14013 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
14014 err_printf(m, " POS: %08x\n", error->cursor[i].position);
14015 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
14016 }
14017
14018 for (i = 0; i < error->num_transcoders; i++) {
14019 err_printf(m, "CPU transcoder: %c\n",
14020 transcoder_name(error->transcoder[i].cpu_transcoder));
14021 err_printf(m, " Power: %s\n",
14022 error->transcoder[i].power_domain_on ? "on" : "off");
14023 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
14024 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
14025 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
14026 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
14027 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
14028 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
14029 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
14030 }
14031}
14032
14033void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
14034{
14035 struct intel_crtc *crtc;
14036
14037 for_each_intel_crtc(dev, crtc) {
14038 struct intel_unpin_work *work;
14039
14040 spin_lock_irq(&dev->event_lock);
14041
14042 work = crtc->unpin_work;
14043
14044 if (work && work->event &&
14045 work->event->base.file_priv == file) {
14046 kfree(work->event);
14047 work->event = NULL;
14048 }
14049
14050 spin_unlock_irq(&dev->event_lock);
14051 }
14052}
This page took 0.077837 seconds and 5 git commands to generate.