drm/i915: Fixup hpd irq register setup ordering
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
... / ...
CommitLineData
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/dmi.h>
28#include <linux/module.h>
29#include <linux/input.h>
30#include <linux/i2c.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/vgaarb.h>
34#include <drm/drm_edid.h>
35#include <drm/drmP.h>
36#include "intel_drv.h"
37#include <drm/i915_drm.h>
38#include "i915_drv.h"
39#include "i915_trace.h"
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
42#include <linux/dma_remapping.h>
43
44bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
45static void intel_increase_pllclock(struct drm_crtc *crtc);
46static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48typedef struct {
49 /* given values */
50 int n;
51 int m1, m2;
52 int p1, p2;
53 /* derived values */
54 int dot;
55 int vco;
56 int m;
57 int p;
58} intel_clock_t;
59
60typedef struct {
61 int min, max;
62} intel_range_t;
63
64typedef struct {
65 int dot_limit;
66 int p2_slow, p2_fast;
67} intel_p2_t;
68
69#define INTEL_P2_NUM 2
70typedef struct intel_limit intel_limit_t;
71struct intel_limit {
72 intel_range_t dot, vco, n, m, m1, m2, p, p1;
73 intel_p2_t p2;
74 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75 int, int, intel_clock_t *, intel_clock_t *);
76};
77
78/* FDI */
79#define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
80
81int
82intel_pch_rawclk(struct drm_device *dev)
83{
84 struct drm_i915_private *dev_priv = dev->dev_private;
85
86 WARN_ON(!HAS_PCH_SPLIT(dev));
87
88 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
89}
90
91static bool
92intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *match_clock,
94 intel_clock_t *best_clock);
95static bool
96intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
97 int target, int refclk, intel_clock_t *match_clock,
98 intel_clock_t *best_clock);
99
100static bool
101intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
102 int target, int refclk, intel_clock_t *match_clock,
103 intel_clock_t *best_clock);
104static bool
105intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
106 int target, int refclk, intel_clock_t *match_clock,
107 intel_clock_t *best_clock);
108
109static bool
110intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
111 int target, int refclk, intel_clock_t *match_clock,
112 intel_clock_t *best_clock);
113
114static inline u32 /* units of 100MHz */
115intel_fdi_link_freq(struct drm_device *dev)
116{
117 if (IS_GEN5(dev)) {
118 struct drm_i915_private *dev_priv = dev->dev_private;
119 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
120 } else
121 return 27;
122}
123
124static const intel_limit_t intel_limits_i8xx_dvo = {
125 .dot = { .min = 25000, .max = 350000 },
126 .vco = { .min = 930000, .max = 1400000 },
127 .n = { .min = 3, .max = 16 },
128 .m = { .min = 96, .max = 140 },
129 .m1 = { .min = 18, .max = 26 },
130 .m2 = { .min = 6, .max = 16 },
131 .p = { .min = 4, .max = 128 },
132 .p1 = { .min = 2, .max = 33 },
133 .p2 = { .dot_limit = 165000,
134 .p2_slow = 4, .p2_fast = 2 },
135 .find_pll = intel_find_best_PLL,
136};
137
138static const intel_limit_t intel_limits_i8xx_lvds = {
139 .dot = { .min = 25000, .max = 350000 },
140 .vco = { .min = 930000, .max = 1400000 },
141 .n = { .min = 3, .max = 16 },
142 .m = { .min = 96, .max = 140 },
143 .m1 = { .min = 18, .max = 26 },
144 .m2 = { .min = 6, .max = 16 },
145 .p = { .min = 4, .max = 128 },
146 .p1 = { .min = 1, .max = 6 },
147 .p2 = { .dot_limit = 165000,
148 .p2_slow = 14, .p2_fast = 7 },
149 .find_pll = intel_find_best_PLL,
150};
151
152static const intel_limit_t intel_limits_i9xx_sdvo = {
153 .dot = { .min = 20000, .max = 400000 },
154 .vco = { .min = 1400000, .max = 2800000 },
155 .n = { .min = 1, .max = 6 },
156 .m = { .min = 70, .max = 120 },
157 .m1 = { .min = 10, .max = 22 },
158 .m2 = { .min = 5, .max = 9 },
159 .p = { .min = 5, .max = 80 },
160 .p1 = { .min = 1, .max = 8 },
161 .p2 = { .dot_limit = 200000,
162 .p2_slow = 10, .p2_fast = 5 },
163 .find_pll = intel_find_best_PLL,
164};
165
166static const intel_limit_t intel_limits_i9xx_lvds = {
167 .dot = { .min = 20000, .max = 400000 },
168 .vco = { .min = 1400000, .max = 2800000 },
169 .n = { .min = 1, .max = 6 },
170 .m = { .min = 70, .max = 120 },
171 .m1 = { .min = 10, .max = 22 },
172 .m2 = { .min = 5, .max = 9 },
173 .p = { .min = 7, .max = 98 },
174 .p1 = { .min = 1, .max = 8 },
175 .p2 = { .dot_limit = 112000,
176 .p2_slow = 14, .p2_fast = 7 },
177 .find_pll = intel_find_best_PLL,
178};
179
180
181static const intel_limit_t intel_limits_g4x_sdvo = {
182 .dot = { .min = 25000, .max = 270000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 17, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 10, .max = 30 },
189 .p1 = { .min = 1, .max = 3},
190 .p2 = { .dot_limit = 270000,
191 .p2_slow = 10,
192 .p2_fast = 10
193 },
194 .find_pll = intel_g4x_find_best_PLL,
195};
196
197static const intel_limit_t intel_limits_g4x_hdmi = {
198 .dot = { .min = 22000, .max = 400000 },
199 .vco = { .min = 1750000, .max = 3500000},
200 .n = { .min = 1, .max = 4 },
201 .m = { .min = 104, .max = 138 },
202 .m1 = { .min = 16, .max = 23 },
203 .m2 = { .min = 5, .max = 11 },
204 .p = { .min = 5, .max = 80 },
205 .p1 = { .min = 1, .max = 8},
206 .p2 = { .dot_limit = 165000,
207 .p2_slow = 10, .p2_fast = 5 },
208 .find_pll = intel_g4x_find_best_PLL,
209};
210
211static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
212 .dot = { .min = 20000, .max = 115000 },
213 .vco = { .min = 1750000, .max = 3500000 },
214 .n = { .min = 1, .max = 3 },
215 .m = { .min = 104, .max = 138 },
216 .m1 = { .min = 17, .max = 23 },
217 .m2 = { .min = 5, .max = 11 },
218 .p = { .min = 28, .max = 112 },
219 .p1 = { .min = 2, .max = 8 },
220 .p2 = { .dot_limit = 0,
221 .p2_slow = 14, .p2_fast = 14
222 },
223 .find_pll = intel_g4x_find_best_PLL,
224};
225
226static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
227 .dot = { .min = 80000, .max = 224000 },
228 .vco = { .min = 1750000, .max = 3500000 },
229 .n = { .min = 1, .max = 3 },
230 .m = { .min = 104, .max = 138 },
231 .m1 = { .min = 17, .max = 23 },
232 .m2 = { .min = 5, .max = 11 },
233 .p = { .min = 14, .max = 42 },
234 .p1 = { .min = 2, .max = 6 },
235 .p2 = { .dot_limit = 0,
236 .p2_slow = 7, .p2_fast = 7
237 },
238 .find_pll = intel_g4x_find_best_PLL,
239};
240
241static const intel_limit_t intel_limits_g4x_display_port = {
242 .dot = { .min = 161670, .max = 227000 },
243 .vco = { .min = 1750000, .max = 3500000},
244 .n = { .min = 1, .max = 2 },
245 .m = { .min = 97, .max = 108 },
246 .m1 = { .min = 0x10, .max = 0x12 },
247 .m2 = { .min = 0x05, .max = 0x06 },
248 .p = { .min = 10, .max = 20 },
249 .p1 = { .min = 1, .max = 2},
250 .p2 = { .dot_limit = 0,
251 .p2_slow = 10, .p2_fast = 10 },
252 .find_pll = intel_find_pll_g4x_dp,
253};
254
255static const intel_limit_t intel_limits_pineview_sdvo = {
256 .dot = { .min = 20000, .max = 400000},
257 .vco = { .min = 1700000, .max = 3500000 },
258 /* Pineview's Ncounter is a ring counter */
259 .n = { .min = 3, .max = 6 },
260 .m = { .min = 2, .max = 256 },
261 /* Pineview only has one combined m divider, which we treat as m2. */
262 .m1 = { .min = 0, .max = 0 },
263 .m2 = { .min = 0, .max = 254 },
264 .p = { .min = 5, .max = 80 },
265 .p1 = { .min = 1, .max = 8 },
266 .p2 = { .dot_limit = 200000,
267 .p2_slow = 10, .p2_fast = 5 },
268 .find_pll = intel_find_best_PLL,
269};
270
271static const intel_limit_t intel_limits_pineview_lvds = {
272 .dot = { .min = 20000, .max = 400000 },
273 .vco = { .min = 1700000, .max = 3500000 },
274 .n = { .min = 3, .max = 6 },
275 .m = { .min = 2, .max = 256 },
276 .m1 = { .min = 0, .max = 0 },
277 .m2 = { .min = 0, .max = 254 },
278 .p = { .min = 7, .max = 112 },
279 .p1 = { .min = 1, .max = 8 },
280 .p2 = { .dot_limit = 112000,
281 .p2_slow = 14, .p2_fast = 14 },
282 .find_pll = intel_find_best_PLL,
283};
284
285/* Ironlake / Sandybridge
286 *
287 * We calculate clock using (register_value + 2) for N/M1/M2, so here
288 * the range value for them is (actual_value - 2).
289 */
290static const intel_limit_t intel_limits_ironlake_dac = {
291 .dot = { .min = 25000, .max = 350000 },
292 .vco = { .min = 1760000, .max = 3510000 },
293 .n = { .min = 1, .max = 5 },
294 .m = { .min = 79, .max = 127 },
295 .m1 = { .min = 12, .max = 22 },
296 .m2 = { .min = 5, .max = 9 },
297 .p = { .min = 5, .max = 80 },
298 .p1 = { .min = 1, .max = 8 },
299 .p2 = { .dot_limit = 225000,
300 .p2_slow = 10, .p2_fast = 5 },
301 .find_pll = intel_g4x_find_best_PLL,
302};
303
304static const intel_limit_t intel_limits_ironlake_single_lvds = {
305 .dot = { .min = 25000, .max = 350000 },
306 .vco = { .min = 1760000, .max = 3510000 },
307 .n = { .min = 1, .max = 3 },
308 .m = { .min = 79, .max = 118 },
309 .m1 = { .min = 12, .max = 22 },
310 .m2 = { .min = 5, .max = 9 },
311 .p = { .min = 28, .max = 112 },
312 .p1 = { .min = 2, .max = 8 },
313 .p2 = { .dot_limit = 225000,
314 .p2_slow = 14, .p2_fast = 14 },
315 .find_pll = intel_g4x_find_best_PLL,
316};
317
318static const intel_limit_t intel_limits_ironlake_dual_lvds = {
319 .dot = { .min = 25000, .max = 350000 },
320 .vco = { .min = 1760000, .max = 3510000 },
321 .n = { .min = 1, .max = 3 },
322 .m = { .min = 79, .max = 127 },
323 .m1 = { .min = 12, .max = 22 },
324 .m2 = { .min = 5, .max = 9 },
325 .p = { .min = 14, .max = 56 },
326 .p1 = { .min = 2, .max = 8 },
327 .p2 = { .dot_limit = 225000,
328 .p2_slow = 7, .p2_fast = 7 },
329 .find_pll = intel_g4x_find_best_PLL,
330};
331
332/* LVDS 100mhz refclk limits. */
333static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
334 .dot = { .min = 25000, .max = 350000 },
335 .vco = { .min = 1760000, .max = 3510000 },
336 .n = { .min = 1, .max = 2 },
337 .m = { .min = 79, .max = 126 },
338 .m1 = { .min = 12, .max = 22 },
339 .m2 = { .min = 5, .max = 9 },
340 .p = { .min = 28, .max = 112 },
341 .p1 = { .min = 2, .max = 8 },
342 .p2 = { .dot_limit = 225000,
343 .p2_slow = 14, .p2_fast = 14 },
344 .find_pll = intel_g4x_find_best_PLL,
345};
346
347static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
348 .dot = { .min = 25000, .max = 350000 },
349 .vco = { .min = 1760000, .max = 3510000 },
350 .n = { .min = 1, .max = 3 },
351 .m = { .min = 79, .max = 126 },
352 .m1 = { .min = 12, .max = 22 },
353 .m2 = { .min = 5, .max = 9 },
354 .p = { .min = 14, .max = 42 },
355 .p1 = { .min = 2, .max = 6 },
356 .p2 = { .dot_limit = 225000,
357 .p2_slow = 7, .p2_fast = 7 },
358 .find_pll = intel_g4x_find_best_PLL,
359};
360
361static const intel_limit_t intel_limits_ironlake_display_port = {
362 .dot = { .min = 25000, .max = 350000 },
363 .vco = { .min = 1760000, .max = 3510000},
364 .n = { .min = 1, .max = 2 },
365 .m = { .min = 81, .max = 90 },
366 .m1 = { .min = 12, .max = 22 },
367 .m2 = { .min = 5, .max = 9 },
368 .p = { .min = 10, .max = 20 },
369 .p1 = { .min = 1, .max = 2},
370 .p2 = { .dot_limit = 0,
371 .p2_slow = 10, .p2_fast = 10 },
372 .find_pll = intel_find_pll_ironlake_dp,
373};
374
375static const intel_limit_t intel_limits_vlv_dac = {
376 .dot = { .min = 25000, .max = 270000 },
377 .vco = { .min = 4000000, .max = 6000000 },
378 .n = { .min = 1, .max = 7 },
379 .m = { .min = 22, .max = 450 }, /* guess */
380 .m1 = { .min = 2, .max = 3 },
381 .m2 = { .min = 11, .max = 156 },
382 .p = { .min = 10, .max = 30 },
383 .p1 = { .min = 2, .max = 3 },
384 .p2 = { .dot_limit = 270000,
385 .p2_slow = 2, .p2_fast = 20 },
386 .find_pll = intel_vlv_find_best_pll,
387};
388
389static const intel_limit_t intel_limits_vlv_hdmi = {
390 .dot = { .min = 20000, .max = 165000 },
391 .vco = { .min = 4000000, .max = 5994000},
392 .n = { .min = 1, .max = 7 },
393 .m = { .min = 60, .max = 300 }, /* guess */
394 .m1 = { .min = 2, .max = 3 },
395 .m2 = { .min = 11, .max = 156 },
396 .p = { .min = 10, .max = 30 },
397 .p1 = { .min = 2, .max = 3 },
398 .p2 = { .dot_limit = 270000,
399 .p2_slow = 2, .p2_fast = 20 },
400 .find_pll = intel_vlv_find_best_pll,
401};
402
403static const intel_limit_t intel_limits_vlv_dp = {
404 .dot = { .min = 25000, .max = 270000 },
405 .vco = { .min = 4000000, .max = 6000000 },
406 .n = { .min = 1, .max = 7 },
407 .m = { .min = 22, .max = 450 },
408 .m1 = { .min = 2, .max = 3 },
409 .m2 = { .min = 11, .max = 156 },
410 .p = { .min = 10, .max = 30 },
411 .p1 = { .min = 2, .max = 3 },
412 .p2 = { .dot_limit = 270000,
413 .p2_slow = 2, .p2_fast = 20 },
414 .find_pll = intel_vlv_find_best_pll,
415};
416
417u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
418{
419 unsigned long flags;
420 u32 val = 0;
421
422 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
423 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
424 DRM_ERROR("DPIO idle wait timed out\n");
425 goto out_unlock;
426 }
427
428 I915_WRITE(DPIO_REG, reg);
429 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
430 DPIO_BYTE);
431 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
432 DRM_ERROR("DPIO read wait timed out\n");
433 goto out_unlock;
434 }
435 val = I915_READ(DPIO_DATA);
436
437out_unlock:
438 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
439 return val;
440}
441
442static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
443 u32 val)
444{
445 unsigned long flags;
446
447 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
448 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
449 DRM_ERROR("DPIO idle wait timed out\n");
450 goto out_unlock;
451 }
452
453 I915_WRITE(DPIO_DATA, val);
454 I915_WRITE(DPIO_REG, reg);
455 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
456 DPIO_BYTE);
457 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
458 DRM_ERROR("DPIO write wait timed out\n");
459
460out_unlock:
461 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
462}
463
464static void vlv_init_dpio(struct drm_device *dev)
465{
466 struct drm_i915_private *dev_priv = dev->dev_private;
467
468 /* Reset the DPIO config */
469 I915_WRITE(DPIO_CTL, 0);
470 POSTING_READ(DPIO_CTL);
471 I915_WRITE(DPIO_CTL, 1);
472 POSTING_READ(DPIO_CTL);
473}
474
475static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
476 int refclk)
477{
478 struct drm_device *dev = crtc->dev;
479 const intel_limit_t *limit;
480
481 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
482 if (intel_is_dual_link_lvds(dev)) {
483 /* LVDS dual channel */
484 if (refclk == 100000)
485 limit = &intel_limits_ironlake_dual_lvds_100m;
486 else
487 limit = &intel_limits_ironlake_dual_lvds;
488 } else {
489 if (refclk == 100000)
490 limit = &intel_limits_ironlake_single_lvds_100m;
491 else
492 limit = &intel_limits_ironlake_single_lvds;
493 }
494 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
495 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
496 limit = &intel_limits_ironlake_display_port;
497 else
498 limit = &intel_limits_ironlake_dac;
499
500 return limit;
501}
502
503static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
504{
505 struct drm_device *dev = crtc->dev;
506 const intel_limit_t *limit;
507
508 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
509 if (intel_is_dual_link_lvds(dev))
510 /* LVDS with dual channel */
511 limit = &intel_limits_g4x_dual_channel_lvds;
512 else
513 /* LVDS with dual channel */
514 limit = &intel_limits_g4x_single_channel_lvds;
515 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
516 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
517 limit = &intel_limits_g4x_hdmi;
518 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
519 limit = &intel_limits_g4x_sdvo;
520 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
521 limit = &intel_limits_g4x_display_port;
522 } else /* The option is for other outputs */
523 limit = &intel_limits_i9xx_sdvo;
524
525 return limit;
526}
527
528static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
529{
530 struct drm_device *dev = crtc->dev;
531 const intel_limit_t *limit;
532
533 if (HAS_PCH_SPLIT(dev))
534 limit = intel_ironlake_limit(crtc, refclk);
535 else if (IS_G4X(dev)) {
536 limit = intel_g4x_limit(crtc);
537 } else if (IS_PINEVIEW(dev)) {
538 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
539 limit = &intel_limits_pineview_lvds;
540 else
541 limit = &intel_limits_pineview_sdvo;
542 } else if (IS_VALLEYVIEW(dev)) {
543 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
544 limit = &intel_limits_vlv_dac;
545 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
546 limit = &intel_limits_vlv_hdmi;
547 else
548 limit = &intel_limits_vlv_dp;
549 } else if (!IS_GEN2(dev)) {
550 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
551 limit = &intel_limits_i9xx_lvds;
552 else
553 limit = &intel_limits_i9xx_sdvo;
554 } else {
555 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
556 limit = &intel_limits_i8xx_lvds;
557 else
558 limit = &intel_limits_i8xx_dvo;
559 }
560 return limit;
561}
562
563/* m1 is reserved as 0 in Pineview, n is a ring counter */
564static void pineview_clock(int refclk, intel_clock_t *clock)
565{
566 clock->m = clock->m2 + 2;
567 clock->p = clock->p1 * clock->p2;
568 clock->vco = refclk * clock->m / clock->n;
569 clock->dot = clock->vco / clock->p;
570}
571
572static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
573{
574 if (IS_PINEVIEW(dev)) {
575 pineview_clock(refclk, clock);
576 return;
577 }
578 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
579 clock->p = clock->p1 * clock->p2;
580 clock->vco = refclk * clock->m / (clock->n + 2);
581 clock->dot = clock->vco / clock->p;
582}
583
584/**
585 * Returns whether any output on the specified pipe is of the specified type
586 */
587bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
588{
589 struct drm_device *dev = crtc->dev;
590 struct intel_encoder *encoder;
591
592 for_each_encoder_on_crtc(dev, crtc, encoder)
593 if (encoder->type == type)
594 return true;
595
596 return false;
597}
598
599#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
600/**
601 * Returns whether the given set of divisors are valid for a given refclk with
602 * the given connectors.
603 */
604
605static bool intel_PLL_is_valid(struct drm_device *dev,
606 const intel_limit_t *limit,
607 const intel_clock_t *clock)
608{
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->p < limit->p.min || limit->p.max < clock->p)
612 INTELPllInvalid("p out of range\n");
613 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
614 INTELPllInvalid("m2 out of range\n");
615 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
616 INTELPllInvalid("m1 out of range\n");
617 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
618 INTELPllInvalid("m1 <= m2\n");
619 if (clock->m < limit->m.min || limit->m.max < clock->m)
620 INTELPllInvalid("m out of range\n");
621 if (clock->n < limit->n.min || limit->n.max < clock->n)
622 INTELPllInvalid("n out of range\n");
623 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
624 INTELPllInvalid("vco out of range\n");
625 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
626 * connector, etc., rather than just a single range.
627 */
628 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
629 INTELPllInvalid("dot out of range\n");
630
631 return true;
632}
633
634static bool
635intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
636 int target, int refclk, intel_clock_t *match_clock,
637 intel_clock_t *best_clock)
638
639{
640 struct drm_device *dev = crtc->dev;
641 intel_clock_t clock;
642 int err = target;
643
644 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
645 /*
646 * For LVDS just rely on its current settings for dual-channel.
647 * We haven't figured out how to reliably set up different
648 * single/dual channel state, if we even can.
649 */
650 if (intel_is_dual_link_lvds(dev))
651 clock.p2 = limit->p2.p2_fast;
652 else
653 clock.p2 = limit->p2.p2_slow;
654 } else {
655 if (target < limit->p2.dot_limit)
656 clock.p2 = limit->p2.p2_slow;
657 else
658 clock.p2 = limit->p2.p2_fast;
659 }
660
661 memset(best_clock, 0, sizeof(*best_clock));
662
663 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
664 clock.m1++) {
665 for (clock.m2 = limit->m2.min;
666 clock.m2 <= limit->m2.max; clock.m2++) {
667 /* m1 is always 0 in Pineview */
668 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
669 break;
670 for (clock.n = limit->n.min;
671 clock.n <= limit->n.max; clock.n++) {
672 for (clock.p1 = limit->p1.min;
673 clock.p1 <= limit->p1.max; clock.p1++) {
674 int this_err;
675
676 intel_clock(dev, refclk, &clock);
677 if (!intel_PLL_is_valid(dev, limit,
678 &clock))
679 continue;
680 if (match_clock &&
681 clock.p != match_clock->p)
682 continue;
683
684 this_err = abs(clock.dot - target);
685 if (this_err < err) {
686 *best_clock = clock;
687 err = this_err;
688 }
689 }
690 }
691 }
692 }
693
694 return (err != target);
695}
696
697static bool
698intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
699 int target, int refclk, intel_clock_t *match_clock,
700 intel_clock_t *best_clock)
701{
702 struct drm_device *dev = crtc->dev;
703 intel_clock_t clock;
704 int max_n;
705 bool found;
706 /* approximately equals target * 0.00585 */
707 int err_most = (target >> 8) + (target >> 9);
708 found = false;
709
710 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
711 int lvds_reg;
712
713 if (HAS_PCH_SPLIT(dev))
714 lvds_reg = PCH_LVDS;
715 else
716 lvds_reg = LVDS;
717 if (intel_is_dual_link_lvds(dev))
718 clock.p2 = limit->p2.p2_fast;
719 else
720 clock.p2 = limit->p2.p2_slow;
721 } else {
722 if (target < limit->p2.dot_limit)
723 clock.p2 = limit->p2.p2_slow;
724 else
725 clock.p2 = limit->p2.p2_fast;
726 }
727
728 memset(best_clock, 0, sizeof(*best_clock));
729 max_n = limit->n.max;
730 /* based on hardware requirement, prefer smaller n to precision */
731 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
732 /* based on hardware requirement, prefere larger m1,m2 */
733 for (clock.m1 = limit->m1.max;
734 clock.m1 >= limit->m1.min; clock.m1--) {
735 for (clock.m2 = limit->m2.max;
736 clock.m2 >= limit->m2.min; clock.m2--) {
737 for (clock.p1 = limit->p1.max;
738 clock.p1 >= limit->p1.min; clock.p1--) {
739 int this_err;
740
741 intel_clock(dev, refclk, &clock);
742 if (!intel_PLL_is_valid(dev, limit,
743 &clock))
744 continue;
745 if (match_clock &&
746 clock.p != match_clock->p)
747 continue;
748
749 this_err = abs(clock.dot - target);
750 if (this_err < err_most) {
751 *best_clock = clock;
752 err_most = this_err;
753 max_n = clock.n;
754 found = true;
755 }
756 }
757 }
758 }
759 }
760 return found;
761}
762
763static bool
764intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
765 int target, int refclk, intel_clock_t *match_clock,
766 intel_clock_t *best_clock)
767{
768 struct drm_device *dev = crtc->dev;
769 intel_clock_t clock;
770
771 if (target < 200000) {
772 clock.n = 1;
773 clock.p1 = 2;
774 clock.p2 = 10;
775 clock.m1 = 12;
776 clock.m2 = 9;
777 } else {
778 clock.n = 2;
779 clock.p1 = 1;
780 clock.p2 = 10;
781 clock.m1 = 14;
782 clock.m2 = 8;
783 }
784 intel_clock(dev, refclk, &clock);
785 memcpy(best_clock, &clock, sizeof(intel_clock_t));
786 return true;
787}
788
789/* DisplayPort has only two frequencies, 162MHz and 270MHz */
790static bool
791intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
792 int target, int refclk, intel_clock_t *match_clock,
793 intel_clock_t *best_clock)
794{
795 intel_clock_t clock;
796 if (target < 200000) {
797 clock.p1 = 2;
798 clock.p2 = 10;
799 clock.n = 2;
800 clock.m1 = 23;
801 clock.m2 = 8;
802 } else {
803 clock.p1 = 1;
804 clock.p2 = 10;
805 clock.n = 1;
806 clock.m1 = 14;
807 clock.m2 = 2;
808 }
809 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
810 clock.p = (clock.p1 * clock.p2);
811 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
812 clock.vco = 0;
813 memcpy(best_clock, &clock, sizeof(intel_clock_t));
814 return true;
815}
816static bool
817intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
818 int target, int refclk, intel_clock_t *match_clock,
819 intel_clock_t *best_clock)
820{
821 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
822 u32 m, n, fastclk;
823 u32 updrate, minupdate, fracbits, p;
824 unsigned long bestppm, ppm, absppm;
825 int dotclk, flag;
826
827 flag = 0;
828 dotclk = target * 1000;
829 bestppm = 1000000;
830 ppm = absppm = 0;
831 fastclk = dotclk / (2*100);
832 updrate = 0;
833 minupdate = 19200;
834 fracbits = 1;
835 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
836 bestm1 = bestm2 = bestp1 = bestp2 = 0;
837
838 /* based on hardware requirement, prefer smaller n to precision */
839 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
840 updrate = refclk / n;
841 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
842 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
843 if (p2 > 10)
844 p2 = p2 - 1;
845 p = p1 * p2;
846 /* based on hardware requirement, prefer bigger m1,m2 values */
847 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
848 m2 = (((2*(fastclk * p * n / m1 )) +
849 refclk) / (2*refclk));
850 m = m1 * m2;
851 vco = updrate * m;
852 if (vco >= limit->vco.min && vco < limit->vco.max) {
853 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
854 absppm = (ppm > 0) ? ppm : (-ppm);
855 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
856 bestppm = 0;
857 flag = 1;
858 }
859 if (absppm < bestppm - 10) {
860 bestppm = absppm;
861 flag = 1;
862 }
863 if (flag) {
864 bestn = n;
865 bestm1 = m1;
866 bestm2 = m2;
867 bestp1 = p1;
868 bestp2 = p2;
869 flag = 0;
870 }
871 }
872 }
873 }
874 }
875 }
876 best_clock->n = bestn;
877 best_clock->m1 = bestm1;
878 best_clock->m2 = bestm2;
879 best_clock->p1 = bestp1;
880 best_clock->p2 = bestp2;
881
882 return true;
883}
884
885enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
886 enum pipe pipe)
887{
888 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
889 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
890
891 return intel_crtc->cpu_transcoder;
892}
893
894static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
895{
896 struct drm_i915_private *dev_priv = dev->dev_private;
897 u32 frame, frame_reg = PIPEFRAME(pipe);
898
899 frame = I915_READ(frame_reg);
900
901 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
902 DRM_DEBUG_KMS("vblank wait timed out\n");
903}
904
905/**
906 * intel_wait_for_vblank - wait for vblank on a given pipe
907 * @dev: drm device
908 * @pipe: pipe to wait for
909 *
910 * Wait for vblank to occur on a given pipe. Needed for various bits of
911 * mode setting code.
912 */
913void intel_wait_for_vblank(struct drm_device *dev, int pipe)
914{
915 struct drm_i915_private *dev_priv = dev->dev_private;
916 int pipestat_reg = PIPESTAT(pipe);
917
918 if (INTEL_INFO(dev)->gen >= 5) {
919 ironlake_wait_for_vblank(dev, pipe);
920 return;
921 }
922
923 /* Clear existing vblank status. Note this will clear any other
924 * sticky status fields as well.
925 *
926 * This races with i915_driver_irq_handler() with the result
927 * that either function could miss a vblank event. Here it is not
928 * fatal, as we will either wait upon the next vblank interrupt or
929 * timeout. Generally speaking intel_wait_for_vblank() is only
930 * called during modeset at which time the GPU should be idle and
931 * should *not* be performing page flips and thus not waiting on
932 * vblanks...
933 * Currently, the result of us stealing a vblank from the irq
934 * handler is that a single frame will be skipped during swapbuffers.
935 */
936 I915_WRITE(pipestat_reg,
937 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
938
939 /* Wait for vblank interrupt bit to set */
940 if (wait_for(I915_READ(pipestat_reg) &
941 PIPE_VBLANK_INTERRUPT_STATUS,
942 50))
943 DRM_DEBUG_KMS("vblank wait timed out\n");
944}
945
946/*
947 * intel_wait_for_pipe_off - wait for pipe to turn off
948 * @dev: drm device
949 * @pipe: pipe to wait for
950 *
951 * After disabling a pipe, we can't wait for vblank in the usual way,
952 * spinning on the vblank interrupt status bit, since we won't actually
953 * see an interrupt when the pipe is disabled.
954 *
955 * On Gen4 and above:
956 * wait for the pipe register state bit to turn off
957 *
958 * Otherwise:
959 * wait for the display line value to settle (it usually
960 * ends up stopping at the start of the next frame).
961 *
962 */
963void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
964{
965 struct drm_i915_private *dev_priv = dev->dev_private;
966 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
967 pipe);
968
969 if (INTEL_INFO(dev)->gen >= 4) {
970 int reg = PIPECONF(cpu_transcoder);
971
972 /* Wait for the Pipe State to go off */
973 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
974 100))
975 WARN(1, "pipe_off wait timed out\n");
976 } else {
977 u32 last_line, line_mask;
978 int reg = PIPEDSL(pipe);
979 unsigned long timeout = jiffies + msecs_to_jiffies(100);
980
981 if (IS_GEN2(dev))
982 line_mask = DSL_LINEMASK_GEN2;
983 else
984 line_mask = DSL_LINEMASK_GEN3;
985
986 /* Wait for the display line to settle */
987 do {
988 last_line = I915_READ(reg) & line_mask;
989 mdelay(5);
990 } while (((I915_READ(reg) & line_mask) != last_line) &&
991 time_after(timeout, jiffies));
992 if (time_after(jiffies, timeout))
993 WARN(1, "pipe_off wait timed out\n");
994 }
995}
996
997static const char *state_string(bool enabled)
998{
999 return enabled ? "on" : "off";
1000}
1001
1002/* Only for pre-ILK configs */
1003static void assert_pll(struct drm_i915_private *dev_priv,
1004 enum pipe pipe, bool state)
1005{
1006 int reg;
1007 u32 val;
1008 bool cur_state;
1009
1010 reg = DPLL(pipe);
1011 val = I915_READ(reg);
1012 cur_state = !!(val & DPLL_VCO_ENABLE);
1013 WARN(cur_state != state,
1014 "PLL state assertion failure (expected %s, current %s)\n",
1015 state_string(state), state_string(cur_state));
1016}
1017#define assert_pll_enabled(d, p) assert_pll(d, p, true)
1018#define assert_pll_disabled(d, p) assert_pll(d, p, false)
1019
1020/* For ILK+ */
1021static void assert_pch_pll(struct drm_i915_private *dev_priv,
1022 struct intel_pch_pll *pll,
1023 struct intel_crtc *crtc,
1024 bool state)
1025{
1026 u32 val;
1027 bool cur_state;
1028
1029 if (HAS_PCH_LPT(dev_priv->dev)) {
1030 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1031 return;
1032 }
1033
1034 if (WARN (!pll,
1035 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1036 return;
1037
1038 val = I915_READ(pll->pll_reg);
1039 cur_state = !!(val & DPLL_VCO_ENABLE);
1040 WARN(cur_state != state,
1041 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1042 pll->pll_reg, state_string(state), state_string(cur_state), val);
1043
1044 /* Make sure the selected PLL is correctly attached to the transcoder */
1045 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1046 u32 pch_dpll;
1047
1048 pch_dpll = I915_READ(PCH_DPLL_SEL);
1049 cur_state = pll->pll_reg == _PCH_DPLL_B;
1050 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1051 "PLL[%d] not attached to this transcoder %d: %08x\n",
1052 cur_state, crtc->pipe, pch_dpll)) {
1053 cur_state = !!(val >> (4*crtc->pipe + 3));
1054 WARN(cur_state != state,
1055 "PLL[%d] not %s on this transcoder %d: %08x\n",
1056 pll->pll_reg == _PCH_DPLL_B,
1057 state_string(state),
1058 crtc->pipe,
1059 val);
1060 }
1061 }
1062}
1063#define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1064#define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1065
1066static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1067 enum pipe pipe, bool state)
1068{
1069 int reg;
1070 u32 val;
1071 bool cur_state;
1072 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1073 pipe);
1074
1075 if (HAS_DDI(dev_priv->dev)) {
1076 /* DDI does not have a specific FDI_TX register */
1077 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1078 val = I915_READ(reg);
1079 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1080 } else {
1081 reg = FDI_TX_CTL(pipe);
1082 val = I915_READ(reg);
1083 cur_state = !!(val & FDI_TX_ENABLE);
1084 }
1085 WARN(cur_state != state,
1086 "FDI TX state assertion failure (expected %s, current %s)\n",
1087 state_string(state), state_string(cur_state));
1088}
1089#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1090#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1091
1092static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1093 enum pipe pipe, bool state)
1094{
1095 int reg;
1096 u32 val;
1097 bool cur_state;
1098
1099 reg = FDI_RX_CTL(pipe);
1100 val = I915_READ(reg);
1101 cur_state = !!(val & FDI_RX_ENABLE);
1102 WARN(cur_state != state,
1103 "FDI RX state assertion failure (expected %s, current %s)\n",
1104 state_string(state), state_string(cur_state));
1105}
1106#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1107#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1108
1109static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1110 enum pipe pipe)
1111{
1112 int reg;
1113 u32 val;
1114
1115 /* ILK FDI PLL is always enabled */
1116 if (dev_priv->info->gen == 5)
1117 return;
1118
1119 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1120 if (HAS_DDI(dev_priv->dev))
1121 return;
1122
1123 reg = FDI_TX_CTL(pipe);
1124 val = I915_READ(reg);
1125 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1126}
1127
1128static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1129 enum pipe pipe)
1130{
1131 int reg;
1132 u32 val;
1133
1134 reg = FDI_RX_CTL(pipe);
1135 val = I915_READ(reg);
1136 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1137}
1138
1139static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1140 enum pipe pipe)
1141{
1142 int pp_reg, lvds_reg;
1143 u32 val;
1144 enum pipe panel_pipe = PIPE_A;
1145 bool locked = true;
1146
1147 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1148 pp_reg = PCH_PP_CONTROL;
1149 lvds_reg = PCH_LVDS;
1150 } else {
1151 pp_reg = PP_CONTROL;
1152 lvds_reg = LVDS;
1153 }
1154
1155 val = I915_READ(pp_reg);
1156 if (!(val & PANEL_POWER_ON) ||
1157 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1158 locked = false;
1159
1160 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1161 panel_pipe = PIPE_B;
1162
1163 WARN(panel_pipe == pipe && locked,
1164 "panel assertion failure, pipe %c regs locked\n",
1165 pipe_name(pipe));
1166}
1167
1168void assert_pipe(struct drm_i915_private *dev_priv,
1169 enum pipe pipe, bool state)
1170{
1171 int reg;
1172 u32 val;
1173 bool cur_state;
1174 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1175 pipe);
1176
1177 /* if we need the pipe A quirk it must be always on */
1178 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1179 state = true;
1180
1181 reg = PIPECONF(cpu_transcoder);
1182 val = I915_READ(reg);
1183 cur_state = !!(val & PIPECONF_ENABLE);
1184 WARN(cur_state != state,
1185 "pipe %c assertion failure (expected %s, current %s)\n",
1186 pipe_name(pipe), state_string(state), state_string(cur_state));
1187}
1188
1189static void assert_plane(struct drm_i915_private *dev_priv,
1190 enum plane plane, bool state)
1191{
1192 int reg;
1193 u32 val;
1194 bool cur_state;
1195
1196 reg = DSPCNTR(plane);
1197 val = I915_READ(reg);
1198 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1199 WARN(cur_state != state,
1200 "plane %c assertion failure (expected %s, current %s)\n",
1201 plane_name(plane), state_string(state), state_string(cur_state));
1202}
1203
1204#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1205#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1206
1207static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1208 enum pipe pipe)
1209{
1210 int reg, i;
1211 u32 val;
1212 int cur_pipe;
1213
1214 /* Planes are fixed to pipes on ILK+ */
1215 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1216 reg = DSPCNTR(pipe);
1217 val = I915_READ(reg);
1218 WARN((val & DISPLAY_PLANE_ENABLE),
1219 "plane %c assertion failure, should be disabled but not\n",
1220 plane_name(pipe));
1221 return;
1222 }
1223
1224 /* Need to check both planes against the pipe */
1225 for (i = 0; i < 2; i++) {
1226 reg = DSPCNTR(i);
1227 val = I915_READ(reg);
1228 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1229 DISPPLANE_SEL_PIPE_SHIFT;
1230 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1231 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1232 plane_name(i), pipe_name(pipe));
1233 }
1234}
1235
1236static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1237{
1238 u32 val;
1239 bool enabled;
1240
1241 if (HAS_PCH_LPT(dev_priv->dev)) {
1242 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1243 return;
1244 }
1245
1246 val = I915_READ(PCH_DREF_CONTROL);
1247 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1248 DREF_SUPERSPREAD_SOURCE_MASK));
1249 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1250}
1251
1252static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1253 enum pipe pipe)
1254{
1255 int reg;
1256 u32 val;
1257 bool enabled;
1258
1259 reg = TRANSCONF(pipe);
1260 val = I915_READ(reg);
1261 enabled = !!(val & TRANS_ENABLE);
1262 WARN(enabled,
1263 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1264 pipe_name(pipe));
1265}
1266
1267static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1268 enum pipe pipe, u32 port_sel, u32 val)
1269{
1270 if ((val & DP_PORT_EN) == 0)
1271 return false;
1272
1273 if (HAS_PCH_CPT(dev_priv->dev)) {
1274 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1275 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1276 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1277 return false;
1278 } else {
1279 if ((val & DP_PIPE_MASK) != (pipe << 30))
1280 return false;
1281 }
1282 return true;
1283}
1284
1285static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1286 enum pipe pipe, u32 val)
1287{
1288 if ((val & PORT_ENABLE) == 0)
1289 return false;
1290
1291 if (HAS_PCH_CPT(dev_priv->dev)) {
1292 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1293 return false;
1294 } else {
1295 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1296 return false;
1297 }
1298 return true;
1299}
1300
1301static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1302 enum pipe pipe, u32 val)
1303{
1304 if ((val & LVDS_PORT_EN) == 0)
1305 return false;
1306
1307 if (HAS_PCH_CPT(dev_priv->dev)) {
1308 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1309 return false;
1310 } else {
1311 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1312 return false;
1313 }
1314 return true;
1315}
1316
1317static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, u32 val)
1319{
1320 if ((val & ADPA_DAC_ENABLE) == 0)
1321 return false;
1322 if (HAS_PCH_CPT(dev_priv->dev)) {
1323 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1324 return false;
1325 } else {
1326 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1327 return false;
1328 }
1329 return true;
1330}
1331
1332static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1333 enum pipe pipe, int reg, u32 port_sel)
1334{
1335 u32 val = I915_READ(reg);
1336 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1337 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1338 reg, pipe_name(pipe));
1339
1340 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1341 && (val & DP_PIPEB_SELECT),
1342 "IBX PCH dp port still using transcoder B\n");
1343}
1344
1345static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1346 enum pipe pipe, int reg)
1347{
1348 u32 val = I915_READ(reg);
1349 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1350 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1351 reg, pipe_name(pipe));
1352
1353 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1354 && (val & SDVO_PIPE_B_SELECT),
1355 "IBX PCH hdmi port still using transcoder B\n");
1356}
1357
1358static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
1360{
1361 int reg;
1362 u32 val;
1363
1364 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1365 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1366 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1367
1368 reg = PCH_ADPA;
1369 val = I915_READ(reg);
1370 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1371 "PCH VGA enabled on transcoder %c, should be disabled\n",
1372 pipe_name(pipe));
1373
1374 reg = PCH_LVDS;
1375 val = I915_READ(reg);
1376 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1377 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1378 pipe_name(pipe));
1379
1380 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1381 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1382 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1383}
1384
1385/**
1386 * intel_enable_pll - enable a PLL
1387 * @dev_priv: i915 private structure
1388 * @pipe: pipe PLL to enable
1389 *
1390 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1391 * make sure the PLL reg is writable first though, since the panel write
1392 * protect mechanism may be enabled.
1393 *
1394 * Note! This is for pre-ILK only.
1395 *
1396 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1397 */
1398static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1399{
1400 int reg;
1401 u32 val;
1402
1403 /* No really, not for ILK+ */
1404 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1405
1406 /* PLL is protected by panel, make sure we can write it */
1407 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1408 assert_panel_unlocked(dev_priv, pipe);
1409
1410 reg = DPLL(pipe);
1411 val = I915_READ(reg);
1412 val |= DPLL_VCO_ENABLE;
1413
1414 /* We do this three times for luck */
1415 I915_WRITE(reg, val);
1416 POSTING_READ(reg);
1417 udelay(150); /* wait for warmup */
1418 I915_WRITE(reg, val);
1419 POSTING_READ(reg);
1420 udelay(150); /* wait for warmup */
1421 I915_WRITE(reg, val);
1422 POSTING_READ(reg);
1423 udelay(150); /* wait for warmup */
1424}
1425
1426/**
1427 * intel_disable_pll - disable a PLL
1428 * @dev_priv: i915 private structure
1429 * @pipe: pipe PLL to disable
1430 *
1431 * Disable the PLL for @pipe, making sure the pipe is off first.
1432 *
1433 * Note! This is for pre-ILK only.
1434 */
1435static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1436{
1437 int reg;
1438 u32 val;
1439
1440 /* Don't disable pipe A or pipe A PLLs if needed */
1441 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1442 return;
1443
1444 /* Make sure the pipe isn't still relying on us */
1445 assert_pipe_disabled(dev_priv, pipe);
1446
1447 reg = DPLL(pipe);
1448 val = I915_READ(reg);
1449 val &= ~DPLL_VCO_ENABLE;
1450 I915_WRITE(reg, val);
1451 POSTING_READ(reg);
1452}
1453
1454/* SBI access */
1455static void
1456intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1457{
1458 unsigned long flags;
1459
1460 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1461 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1462 100)) {
1463 DRM_ERROR("timeout waiting for SBI to become ready\n");
1464 goto out_unlock;
1465 }
1466
1467 I915_WRITE(SBI_ADDR,
1468 (reg << 16));
1469 I915_WRITE(SBI_DATA,
1470 value);
1471 I915_WRITE(SBI_CTL_STAT,
1472 SBI_BUSY |
1473 SBI_CTL_OP_CRWR);
1474
1475 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1476 100)) {
1477 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1478 goto out_unlock;
1479 }
1480
1481out_unlock:
1482 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1483}
1484
1485static u32
1486intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1487{
1488 unsigned long flags;
1489 u32 value = 0;
1490
1491 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1492 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1493 100)) {
1494 DRM_ERROR("timeout waiting for SBI to become ready\n");
1495 goto out_unlock;
1496 }
1497
1498 I915_WRITE(SBI_ADDR,
1499 (reg << 16));
1500 I915_WRITE(SBI_CTL_STAT,
1501 SBI_BUSY |
1502 SBI_CTL_OP_CRRD);
1503
1504 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1505 100)) {
1506 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1507 goto out_unlock;
1508 }
1509
1510 value = I915_READ(SBI_DATA);
1511
1512out_unlock:
1513 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1514 return value;
1515}
1516
1517/**
1518 * ironlake_enable_pch_pll - enable PCH PLL
1519 * @dev_priv: i915 private structure
1520 * @pipe: pipe PLL to enable
1521 *
1522 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1523 * drives the transcoder clock.
1524 */
1525static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1526{
1527 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1528 struct intel_pch_pll *pll;
1529 int reg;
1530 u32 val;
1531
1532 /* PCH PLLs only available on ILK, SNB and IVB */
1533 BUG_ON(dev_priv->info->gen < 5);
1534 pll = intel_crtc->pch_pll;
1535 if (pll == NULL)
1536 return;
1537
1538 if (WARN_ON(pll->refcount == 0))
1539 return;
1540
1541 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1542 pll->pll_reg, pll->active, pll->on,
1543 intel_crtc->base.base.id);
1544
1545 /* PCH refclock must be enabled first */
1546 assert_pch_refclk_enabled(dev_priv);
1547
1548 if (pll->active++ && pll->on) {
1549 assert_pch_pll_enabled(dev_priv, pll, NULL);
1550 return;
1551 }
1552
1553 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1554
1555 reg = pll->pll_reg;
1556 val = I915_READ(reg);
1557 val |= DPLL_VCO_ENABLE;
1558 I915_WRITE(reg, val);
1559 POSTING_READ(reg);
1560 udelay(200);
1561
1562 pll->on = true;
1563}
1564
1565static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1566{
1567 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1568 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1569 int reg;
1570 u32 val;
1571
1572 /* PCH only available on ILK+ */
1573 BUG_ON(dev_priv->info->gen < 5);
1574 if (pll == NULL)
1575 return;
1576
1577 if (WARN_ON(pll->refcount == 0))
1578 return;
1579
1580 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1581 pll->pll_reg, pll->active, pll->on,
1582 intel_crtc->base.base.id);
1583
1584 if (WARN_ON(pll->active == 0)) {
1585 assert_pch_pll_disabled(dev_priv, pll, NULL);
1586 return;
1587 }
1588
1589 if (--pll->active) {
1590 assert_pch_pll_enabled(dev_priv, pll, NULL);
1591 return;
1592 }
1593
1594 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1595
1596 /* Make sure transcoder isn't still depending on us */
1597 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1598
1599 reg = pll->pll_reg;
1600 val = I915_READ(reg);
1601 val &= ~DPLL_VCO_ENABLE;
1602 I915_WRITE(reg, val);
1603 POSTING_READ(reg);
1604 udelay(200);
1605
1606 pll->on = false;
1607}
1608
1609static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1610 enum pipe pipe)
1611{
1612 struct drm_device *dev = dev_priv->dev;
1613 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1614 uint32_t reg, val, pipeconf_val;
1615
1616 /* PCH only available on ILK+ */
1617 BUG_ON(dev_priv->info->gen < 5);
1618
1619 /* Make sure PCH DPLL is enabled */
1620 assert_pch_pll_enabled(dev_priv,
1621 to_intel_crtc(crtc)->pch_pll,
1622 to_intel_crtc(crtc));
1623
1624 /* FDI must be feeding us bits for PCH ports */
1625 assert_fdi_tx_enabled(dev_priv, pipe);
1626 assert_fdi_rx_enabled(dev_priv, pipe);
1627
1628 if (HAS_PCH_CPT(dev)) {
1629 /* Workaround: Set the timing override bit before enabling the
1630 * pch transcoder. */
1631 reg = TRANS_CHICKEN2(pipe);
1632 val = I915_READ(reg);
1633 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1634 I915_WRITE(reg, val);
1635 }
1636
1637 reg = TRANSCONF(pipe);
1638 val = I915_READ(reg);
1639 pipeconf_val = I915_READ(PIPECONF(pipe));
1640
1641 if (HAS_PCH_IBX(dev_priv->dev)) {
1642 /*
1643 * make the BPC in transcoder be consistent with
1644 * that in pipeconf reg.
1645 */
1646 val &= ~PIPE_BPC_MASK;
1647 val |= pipeconf_val & PIPE_BPC_MASK;
1648 }
1649
1650 val &= ~TRANS_INTERLACE_MASK;
1651 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1652 if (HAS_PCH_IBX(dev_priv->dev) &&
1653 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1654 val |= TRANS_LEGACY_INTERLACED_ILK;
1655 else
1656 val |= TRANS_INTERLACED;
1657 else
1658 val |= TRANS_PROGRESSIVE;
1659
1660 I915_WRITE(reg, val | TRANS_ENABLE);
1661 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1662 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1663}
1664
1665static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1666 enum transcoder cpu_transcoder)
1667{
1668 u32 val, pipeconf_val;
1669
1670 /* PCH only available on ILK+ */
1671 BUG_ON(dev_priv->info->gen < 5);
1672
1673 /* FDI must be feeding us bits for PCH ports */
1674 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1675 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1676
1677 /* Workaround: set timing override bit. */
1678 val = I915_READ(_TRANSA_CHICKEN2);
1679 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1680 I915_WRITE(_TRANSA_CHICKEN2, val);
1681
1682 val = TRANS_ENABLE;
1683 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1684
1685 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1686 PIPECONF_INTERLACED_ILK)
1687 val |= TRANS_INTERLACED;
1688 else
1689 val |= TRANS_PROGRESSIVE;
1690
1691 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1692 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1693 DRM_ERROR("Failed to enable PCH transcoder\n");
1694}
1695
1696static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1697 enum pipe pipe)
1698{
1699 struct drm_device *dev = dev_priv->dev;
1700 uint32_t reg, val;
1701
1702 /* FDI relies on the transcoder */
1703 assert_fdi_tx_disabled(dev_priv, pipe);
1704 assert_fdi_rx_disabled(dev_priv, pipe);
1705
1706 /* Ports must be off as well */
1707 assert_pch_ports_disabled(dev_priv, pipe);
1708
1709 reg = TRANSCONF(pipe);
1710 val = I915_READ(reg);
1711 val &= ~TRANS_ENABLE;
1712 I915_WRITE(reg, val);
1713 /* wait for PCH transcoder off, transcoder state */
1714 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1715 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1716
1717 if (!HAS_PCH_IBX(dev)) {
1718 /* Workaround: Clear the timing override chicken bit again. */
1719 reg = TRANS_CHICKEN2(pipe);
1720 val = I915_READ(reg);
1721 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1722 I915_WRITE(reg, val);
1723 }
1724}
1725
1726static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1727{
1728 u32 val;
1729
1730 val = I915_READ(_TRANSACONF);
1731 val &= ~TRANS_ENABLE;
1732 I915_WRITE(_TRANSACONF, val);
1733 /* wait for PCH transcoder off, transcoder state */
1734 if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
1735 DRM_ERROR("Failed to disable PCH transcoder\n");
1736
1737 /* Workaround: clear timing override bit. */
1738 val = I915_READ(_TRANSA_CHICKEN2);
1739 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1740 I915_WRITE(_TRANSA_CHICKEN2, val);
1741}
1742
1743/**
1744 * intel_enable_pipe - enable a pipe, asserting requirements
1745 * @dev_priv: i915 private structure
1746 * @pipe: pipe to enable
1747 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1748 *
1749 * Enable @pipe, making sure that various hardware specific requirements
1750 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1751 *
1752 * @pipe should be %PIPE_A or %PIPE_B.
1753 *
1754 * Will wait until the pipe is actually running (i.e. first vblank) before
1755 * returning.
1756 */
1757static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1758 bool pch_port)
1759{
1760 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1761 pipe);
1762 enum pipe pch_transcoder;
1763 int reg;
1764 u32 val;
1765
1766 if (IS_HASWELL(dev_priv->dev))
1767 pch_transcoder = TRANSCODER_A;
1768 else
1769 pch_transcoder = pipe;
1770
1771 /*
1772 * A pipe without a PLL won't actually be able to drive bits from
1773 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1774 * need the check.
1775 */
1776 if (!HAS_PCH_SPLIT(dev_priv->dev))
1777 assert_pll_enabled(dev_priv, pipe);
1778 else {
1779 if (pch_port) {
1780 /* if driving the PCH, we need FDI enabled */
1781 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1782 assert_fdi_tx_pll_enabled(dev_priv,
1783 (enum pipe) cpu_transcoder);
1784 }
1785 /* FIXME: assert CPU port conditions for SNB+ */
1786 }
1787
1788 reg = PIPECONF(cpu_transcoder);
1789 val = I915_READ(reg);
1790 if (val & PIPECONF_ENABLE)
1791 return;
1792
1793 I915_WRITE(reg, val | PIPECONF_ENABLE);
1794 intel_wait_for_vblank(dev_priv->dev, pipe);
1795}
1796
1797/**
1798 * intel_disable_pipe - disable a pipe, asserting requirements
1799 * @dev_priv: i915 private structure
1800 * @pipe: pipe to disable
1801 *
1802 * Disable @pipe, making sure that various hardware specific requirements
1803 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1804 *
1805 * @pipe should be %PIPE_A or %PIPE_B.
1806 *
1807 * Will wait until the pipe has shut down before returning.
1808 */
1809static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1810 enum pipe pipe)
1811{
1812 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1813 pipe);
1814 int reg;
1815 u32 val;
1816
1817 /*
1818 * Make sure planes won't keep trying to pump pixels to us,
1819 * or we might hang the display.
1820 */
1821 assert_planes_disabled(dev_priv, pipe);
1822
1823 /* Don't disable pipe A or pipe A PLLs if needed */
1824 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1825 return;
1826
1827 reg = PIPECONF(cpu_transcoder);
1828 val = I915_READ(reg);
1829 if ((val & PIPECONF_ENABLE) == 0)
1830 return;
1831
1832 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1833 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1834}
1835
1836/*
1837 * Plane regs are double buffered, going from enabled->disabled needs a
1838 * trigger in order to latch. The display address reg provides this.
1839 */
1840void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1841 enum plane plane)
1842{
1843 if (dev_priv->info->gen >= 4)
1844 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1845 else
1846 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1847}
1848
1849/**
1850 * intel_enable_plane - enable a display plane on a given pipe
1851 * @dev_priv: i915 private structure
1852 * @plane: plane to enable
1853 * @pipe: pipe being fed
1854 *
1855 * Enable @plane on @pipe, making sure that @pipe is running first.
1856 */
1857static void intel_enable_plane(struct drm_i915_private *dev_priv,
1858 enum plane plane, enum pipe pipe)
1859{
1860 int reg;
1861 u32 val;
1862
1863 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1864 assert_pipe_enabled(dev_priv, pipe);
1865
1866 reg = DSPCNTR(plane);
1867 val = I915_READ(reg);
1868 if (val & DISPLAY_PLANE_ENABLE)
1869 return;
1870
1871 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1872 intel_flush_display_plane(dev_priv, plane);
1873 intel_wait_for_vblank(dev_priv->dev, pipe);
1874}
1875
1876/**
1877 * intel_disable_plane - disable a display plane
1878 * @dev_priv: i915 private structure
1879 * @plane: plane to disable
1880 * @pipe: pipe consuming the data
1881 *
1882 * Disable @plane; should be an independent operation.
1883 */
1884static void intel_disable_plane(struct drm_i915_private *dev_priv,
1885 enum plane plane, enum pipe pipe)
1886{
1887 int reg;
1888 u32 val;
1889
1890 reg = DSPCNTR(plane);
1891 val = I915_READ(reg);
1892 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1893 return;
1894
1895 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1896 intel_flush_display_plane(dev_priv, plane);
1897 intel_wait_for_vblank(dev_priv->dev, pipe);
1898}
1899
1900int
1901intel_pin_and_fence_fb_obj(struct drm_device *dev,
1902 struct drm_i915_gem_object *obj,
1903 struct intel_ring_buffer *pipelined)
1904{
1905 struct drm_i915_private *dev_priv = dev->dev_private;
1906 u32 alignment;
1907 int ret;
1908
1909 switch (obj->tiling_mode) {
1910 case I915_TILING_NONE:
1911 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1912 alignment = 128 * 1024;
1913 else if (INTEL_INFO(dev)->gen >= 4)
1914 alignment = 4 * 1024;
1915 else
1916 alignment = 64 * 1024;
1917 break;
1918 case I915_TILING_X:
1919 /* pin() will align the object as required by fence */
1920 alignment = 0;
1921 break;
1922 case I915_TILING_Y:
1923 /* FIXME: Is this true? */
1924 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1925 return -EINVAL;
1926 default:
1927 BUG();
1928 }
1929
1930 dev_priv->mm.interruptible = false;
1931 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1932 if (ret)
1933 goto err_interruptible;
1934
1935 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1936 * fence, whereas 965+ only requires a fence if using
1937 * framebuffer compression. For simplicity, we always install
1938 * a fence as the cost is not that onerous.
1939 */
1940 ret = i915_gem_object_get_fence(obj);
1941 if (ret)
1942 goto err_unpin;
1943
1944 i915_gem_object_pin_fence(obj);
1945
1946 dev_priv->mm.interruptible = true;
1947 return 0;
1948
1949err_unpin:
1950 i915_gem_object_unpin(obj);
1951err_interruptible:
1952 dev_priv->mm.interruptible = true;
1953 return ret;
1954}
1955
1956void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1957{
1958 i915_gem_object_unpin_fence(obj);
1959 i915_gem_object_unpin(obj);
1960}
1961
1962/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1963 * is assumed to be a power-of-two. */
1964unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
1965 unsigned int bpp,
1966 unsigned int pitch)
1967{
1968 int tile_rows, tiles;
1969
1970 tile_rows = *y / 8;
1971 *y %= 8;
1972 tiles = *x / (512/bpp);
1973 *x %= 512/bpp;
1974
1975 return tile_rows * pitch * 8 + tiles * 4096;
1976}
1977
1978static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1979 int x, int y)
1980{
1981 struct drm_device *dev = crtc->dev;
1982 struct drm_i915_private *dev_priv = dev->dev_private;
1983 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1984 struct intel_framebuffer *intel_fb;
1985 struct drm_i915_gem_object *obj;
1986 int plane = intel_crtc->plane;
1987 unsigned long linear_offset;
1988 u32 dspcntr;
1989 u32 reg;
1990
1991 switch (plane) {
1992 case 0:
1993 case 1:
1994 break;
1995 default:
1996 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1997 return -EINVAL;
1998 }
1999
2000 intel_fb = to_intel_framebuffer(fb);
2001 obj = intel_fb->obj;
2002
2003 reg = DSPCNTR(plane);
2004 dspcntr = I915_READ(reg);
2005 /* Mask out pixel format bits in case we change it */
2006 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2007 switch (fb->pixel_format) {
2008 case DRM_FORMAT_C8:
2009 dspcntr |= DISPPLANE_8BPP;
2010 break;
2011 case DRM_FORMAT_XRGB1555:
2012 case DRM_FORMAT_ARGB1555:
2013 dspcntr |= DISPPLANE_BGRX555;
2014 break;
2015 case DRM_FORMAT_RGB565:
2016 dspcntr |= DISPPLANE_BGRX565;
2017 break;
2018 case DRM_FORMAT_XRGB8888:
2019 case DRM_FORMAT_ARGB8888:
2020 dspcntr |= DISPPLANE_BGRX888;
2021 break;
2022 case DRM_FORMAT_XBGR8888:
2023 case DRM_FORMAT_ABGR8888:
2024 dspcntr |= DISPPLANE_RGBX888;
2025 break;
2026 case DRM_FORMAT_XRGB2101010:
2027 case DRM_FORMAT_ARGB2101010:
2028 dspcntr |= DISPPLANE_BGRX101010;
2029 break;
2030 case DRM_FORMAT_XBGR2101010:
2031 case DRM_FORMAT_ABGR2101010:
2032 dspcntr |= DISPPLANE_RGBX101010;
2033 break;
2034 default:
2035 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2036 return -EINVAL;
2037 }
2038
2039 if (INTEL_INFO(dev)->gen >= 4) {
2040 if (obj->tiling_mode != I915_TILING_NONE)
2041 dspcntr |= DISPPLANE_TILED;
2042 else
2043 dspcntr &= ~DISPPLANE_TILED;
2044 }
2045
2046 I915_WRITE(reg, dspcntr);
2047
2048 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2049
2050 if (INTEL_INFO(dev)->gen >= 4) {
2051 intel_crtc->dspaddr_offset =
2052 intel_gen4_compute_offset_xtiled(&x, &y,
2053 fb->bits_per_pixel / 8,
2054 fb->pitches[0]);
2055 linear_offset -= intel_crtc->dspaddr_offset;
2056 } else {
2057 intel_crtc->dspaddr_offset = linear_offset;
2058 }
2059
2060 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2061 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2062 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2063 if (INTEL_INFO(dev)->gen >= 4) {
2064 I915_MODIFY_DISPBASE(DSPSURF(plane),
2065 obj->gtt_offset + intel_crtc->dspaddr_offset);
2066 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2067 I915_WRITE(DSPLINOFF(plane), linear_offset);
2068 } else
2069 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2070 POSTING_READ(reg);
2071
2072 return 0;
2073}
2074
2075static int ironlake_update_plane(struct drm_crtc *crtc,
2076 struct drm_framebuffer *fb, int x, int y)
2077{
2078 struct drm_device *dev = crtc->dev;
2079 struct drm_i915_private *dev_priv = dev->dev_private;
2080 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2081 struct intel_framebuffer *intel_fb;
2082 struct drm_i915_gem_object *obj;
2083 int plane = intel_crtc->plane;
2084 unsigned long linear_offset;
2085 u32 dspcntr;
2086 u32 reg;
2087
2088 switch (plane) {
2089 case 0:
2090 case 1:
2091 case 2:
2092 break;
2093 default:
2094 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2095 return -EINVAL;
2096 }
2097
2098 intel_fb = to_intel_framebuffer(fb);
2099 obj = intel_fb->obj;
2100
2101 reg = DSPCNTR(plane);
2102 dspcntr = I915_READ(reg);
2103 /* Mask out pixel format bits in case we change it */
2104 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2105 switch (fb->pixel_format) {
2106 case DRM_FORMAT_C8:
2107 dspcntr |= DISPPLANE_8BPP;
2108 break;
2109 case DRM_FORMAT_RGB565:
2110 dspcntr |= DISPPLANE_BGRX565;
2111 break;
2112 case DRM_FORMAT_XRGB8888:
2113 case DRM_FORMAT_ARGB8888:
2114 dspcntr |= DISPPLANE_BGRX888;
2115 break;
2116 case DRM_FORMAT_XBGR8888:
2117 case DRM_FORMAT_ABGR8888:
2118 dspcntr |= DISPPLANE_RGBX888;
2119 break;
2120 case DRM_FORMAT_XRGB2101010:
2121 case DRM_FORMAT_ARGB2101010:
2122 dspcntr |= DISPPLANE_BGRX101010;
2123 break;
2124 case DRM_FORMAT_XBGR2101010:
2125 case DRM_FORMAT_ABGR2101010:
2126 dspcntr |= DISPPLANE_RGBX101010;
2127 break;
2128 default:
2129 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2130 return -EINVAL;
2131 }
2132
2133 if (obj->tiling_mode != I915_TILING_NONE)
2134 dspcntr |= DISPPLANE_TILED;
2135 else
2136 dspcntr &= ~DISPPLANE_TILED;
2137
2138 /* must disable */
2139 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2140
2141 I915_WRITE(reg, dspcntr);
2142
2143 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2144 intel_crtc->dspaddr_offset =
2145 intel_gen4_compute_offset_xtiled(&x, &y,
2146 fb->bits_per_pixel / 8,
2147 fb->pitches[0]);
2148 linear_offset -= intel_crtc->dspaddr_offset;
2149
2150 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2151 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2152 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2153 I915_MODIFY_DISPBASE(DSPSURF(plane),
2154 obj->gtt_offset + intel_crtc->dspaddr_offset);
2155 if (IS_HASWELL(dev)) {
2156 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2157 } else {
2158 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2159 I915_WRITE(DSPLINOFF(plane), linear_offset);
2160 }
2161 POSTING_READ(reg);
2162
2163 return 0;
2164}
2165
2166/* Assume fb object is pinned & idle & fenced and just update base pointers */
2167static int
2168intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2169 int x, int y, enum mode_set_atomic state)
2170{
2171 struct drm_device *dev = crtc->dev;
2172 struct drm_i915_private *dev_priv = dev->dev_private;
2173
2174 if (dev_priv->display.disable_fbc)
2175 dev_priv->display.disable_fbc(dev);
2176 intel_increase_pllclock(crtc);
2177
2178 return dev_priv->display.update_plane(crtc, fb, x, y);
2179}
2180
2181static int
2182intel_finish_fb(struct drm_framebuffer *old_fb)
2183{
2184 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2185 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2186 bool was_interruptible = dev_priv->mm.interruptible;
2187 int ret;
2188
2189 wait_event(dev_priv->pending_flip_queue,
2190 atomic_read(&dev_priv->mm.wedged) ||
2191 atomic_read(&obj->pending_flip) == 0);
2192
2193 /* Big Hammer, we also need to ensure that any pending
2194 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2195 * current scanout is retired before unpinning the old
2196 * framebuffer.
2197 *
2198 * This should only fail upon a hung GPU, in which case we
2199 * can safely continue.
2200 */
2201 dev_priv->mm.interruptible = false;
2202 ret = i915_gem_object_finish_gpu(obj);
2203 dev_priv->mm.interruptible = was_interruptible;
2204
2205 return ret;
2206}
2207
2208static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2209{
2210 struct drm_device *dev = crtc->dev;
2211 struct drm_i915_master_private *master_priv;
2212 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2213
2214 if (!dev->primary->master)
2215 return;
2216
2217 master_priv = dev->primary->master->driver_priv;
2218 if (!master_priv->sarea_priv)
2219 return;
2220
2221 switch (intel_crtc->pipe) {
2222 case 0:
2223 master_priv->sarea_priv->pipeA_x = x;
2224 master_priv->sarea_priv->pipeA_y = y;
2225 break;
2226 case 1:
2227 master_priv->sarea_priv->pipeB_x = x;
2228 master_priv->sarea_priv->pipeB_y = y;
2229 break;
2230 default:
2231 break;
2232 }
2233}
2234
2235static int
2236intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2237 struct drm_framebuffer *fb)
2238{
2239 struct drm_device *dev = crtc->dev;
2240 struct drm_i915_private *dev_priv = dev->dev_private;
2241 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2242 struct drm_framebuffer *old_fb;
2243 int ret;
2244
2245 /* no fb bound */
2246 if (!fb) {
2247 DRM_ERROR("No FB bound\n");
2248 return 0;
2249 }
2250
2251 if(intel_crtc->plane > dev_priv->num_pipe) {
2252 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2253 intel_crtc->plane,
2254 dev_priv->num_pipe);
2255 return -EINVAL;
2256 }
2257
2258 mutex_lock(&dev->struct_mutex);
2259 ret = intel_pin_and_fence_fb_obj(dev,
2260 to_intel_framebuffer(fb)->obj,
2261 NULL);
2262 if (ret != 0) {
2263 mutex_unlock(&dev->struct_mutex);
2264 DRM_ERROR("pin & fence failed\n");
2265 return ret;
2266 }
2267
2268 if (crtc->fb)
2269 intel_finish_fb(crtc->fb);
2270
2271 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2272 if (ret) {
2273 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2274 mutex_unlock(&dev->struct_mutex);
2275 DRM_ERROR("failed to update base address\n");
2276 return ret;
2277 }
2278
2279 old_fb = crtc->fb;
2280 crtc->fb = fb;
2281 crtc->x = x;
2282 crtc->y = y;
2283
2284 if (old_fb) {
2285 intel_wait_for_vblank(dev, intel_crtc->pipe);
2286 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2287 }
2288
2289 intel_update_fbc(dev);
2290 mutex_unlock(&dev->struct_mutex);
2291
2292 intel_crtc_update_sarea_pos(crtc, x, y);
2293
2294 return 0;
2295}
2296
2297static void intel_fdi_normal_train(struct drm_crtc *crtc)
2298{
2299 struct drm_device *dev = crtc->dev;
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2302 int pipe = intel_crtc->pipe;
2303 u32 reg, temp;
2304
2305 /* enable normal train */
2306 reg = FDI_TX_CTL(pipe);
2307 temp = I915_READ(reg);
2308 if (IS_IVYBRIDGE(dev)) {
2309 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2310 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2311 } else {
2312 temp &= ~FDI_LINK_TRAIN_NONE;
2313 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2314 }
2315 I915_WRITE(reg, temp);
2316
2317 reg = FDI_RX_CTL(pipe);
2318 temp = I915_READ(reg);
2319 if (HAS_PCH_CPT(dev)) {
2320 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2321 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2322 } else {
2323 temp &= ~FDI_LINK_TRAIN_NONE;
2324 temp |= FDI_LINK_TRAIN_NONE;
2325 }
2326 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2327
2328 /* wait one idle pattern time */
2329 POSTING_READ(reg);
2330 udelay(1000);
2331
2332 /* IVB wants error correction enabled */
2333 if (IS_IVYBRIDGE(dev))
2334 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2335 FDI_FE_ERRC_ENABLE);
2336}
2337
2338static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2339{
2340 struct drm_i915_private *dev_priv = dev->dev_private;
2341 u32 flags = I915_READ(SOUTH_CHICKEN1);
2342
2343 flags |= FDI_PHASE_SYNC_OVR(pipe);
2344 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2345 flags |= FDI_PHASE_SYNC_EN(pipe);
2346 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2347 POSTING_READ(SOUTH_CHICKEN1);
2348}
2349
2350static void ivb_modeset_global_resources(struct drm_device *dev)
2351{
2352 struct drm_i915_private *dev_priv = dev->dev_private;
2353 struct intel_crtc *pipe_B_crtc =
2354 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2355 struct intel_crtc *pipe_C_crtc =
2356 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2357 uint32_t temp;
2358
2359 /* When everything is off disable fdi C so that we could enable fdi B
2360 * with all lanes. XXX: This misses the case where a pipe is not using
2361 * any pch resources and so doesn't need any fdi lanes. */
2362 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2363 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2364 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2365
2366 temp = I915_READ(SOUTH_CHICKEN1);
2367 temp &= ~FDI_BC_BIFURCATION_SELECT;
2368 DRM_DEBUG_KMS("disabling fdi C rx\n");
2369 I915_WRITE(SOUTH_CHICKEN1, temp);
2370 }
2371}
2372
2373/* The FDI link training functions for ILK/Ibexpeak. */
2374static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2375{
2376 struct drm_device *dev = crtc->dev;
2377 struct drm_i915_private *dev_priv = dev->dev_private;
2378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2379 int pipe = intel_crtc->pipe;
2380 int plane = intel_crtc->plane;
2381 u32 reg, temp, tries;
2382
2383 /* FDI needs bits from pipe & plane first */
2384 assert_pipe_enabled(dev_priv, pipe);
2385 assert_plane_enabled(dev_priv, plane);
2386
2387 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2388 for train result */
2389 reg = FDI_RX_IMR(pipe);
2390 temp = I915_READ(reg);
2391 temp &= ~FDI_RX_SYMBOL_LOCK;
2392 temp &= ~FDI_RX_BIT_LOCK;
2393 I915_WRITE(reg, temp);
2394 I915_READ(reg);
2395 udelay(150);
2396
2397 /* enable CPU FDI TX and PCH FDI RX */
2398 reg = FDI_TX_CTL(pipe);
2399 temp = I915_READ(reg);
2400 temp &= ~(7 << 19);
2401 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2402 temp &= ~FDI_LINK_TRAIN_NONE;
2403 temp |= FDI_LINK_TRAIN_PATTERN_1;
2404 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2405
2406 reg = FDI_RX_CTL(pipe);
2407 temp = I915_READ(reg);
2408 temp &= ~FDI_LINK_TRAIN_NONE;
2409 temp |= FDI_LINK_TRAIN_PATTERN_1;
2410 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2411
2412 POSTING_READ(reg);
2413 udelay(150);
2414
2415 /* Ironlake workaround, enable clock pointer after FDI enable*/
2416 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2417 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2418 FDI_RX_PHASE_SYNC_POINTER_EN);
2419
2420 reg = FDI_RX_IIR(pipe);
2421 for (tries = 0; tries < 5; tries++) {
2422 temp = I915_READ(reg);
2423 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2424
2425 if ((temp & FDI_RX_BIT_LOCK)) {
2426 DRM_DEBUG_KMS("FDI train 1 done.\n");
2427 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2428 break;
2429 }
2430 }
2431 if (tries == 5)
2432 DRM_ERROR("FDI train 1 fail!\n");
2433
2434 /* Train 2 */
2435 reg = FDI_TX_CTL(pipe);
2436 temp = I915_READ(reg);
2437 temp &= ~FDI_LINK_TRAIN_NONE;
2438 temp |= FDI_LINK_TRAIN_PATTERN_2;
2439 I915_WRITE(reg, temp);
2440
2441 reg = FDI_RX_CTL(pipe);
2442 temp = I915_READ(reg);
2443 temp &= ~FDI_LINK_TRAIN_NONE;
2444 temp |= FDI_LINK_TRAIN_PATTERN_2;
2445 I915_WRITE(reg, temp);
2446
2447 POSTING_READ(reg);
2448 udelay(150);
2449
2450 reg = FDI_RX_IIR(pipe);
2451 for (tries = 0; tries < 5; tries++) {
2452 temp = I915_READ(reg);
2453 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2454
2455 if (temp & FDI_RX_SYMBOL_LOCK) {
2456 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2457 DRM_DEBUG_KMS("FDI train 2 done.\n");
2458 break;
2459 }
2460 }
2461 if (tries == 5)
2462 DRM_ERROR("FDI train 2 fail!\n");
2463
2464 DRM_DEBUG_KMS("FDI train done\n");
2465
2466}
2467
2468static const int snb_b_fdi_train_param[] = {
2469 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2470 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2471 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2472 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2473};
2474
2475/* The FDI link training functions for SNB/Cougarpoint. */
2476static void gen6_fdi_link_train(struct drm_crtc *crtc)
2477{
2478 struct drm_device *dev = crtc->dev;
2479 struct drm_i915_private *dev_priv = dev->dev_private;
2480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2481 int pipe = intel_crtc->pipe;
2482 u32 reg, temp, i, retry;
2483
2484 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2485 for train result */
2486 reg = FDI_RX_IMR(pipe);
2487 temp = I915_READ(reg);
2488 temp &= ~FDI_RX_SYMBOL_LOCK;
2489 temp &= ~FDI_RX_BIT_LOCK;
2490 I915_WRITE(reg, temp);
2491
2492 POSTING_READ(reg);
2493 udelay(150);
2494
2495 /* enable CPU FDI TX and PCH FDI RX */
2496 reg = FDI_TX_CTL(pipe);
2497 temp = I915_READ(reg);
2498 temp &= ~(7 << 19);
2499 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2500 temp &= ~FDI_LINK_TRAIN_NONE;
2501 temp |= FDI_LINK_TRAIN_PATTERN_1;
2502 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2503 /* SNB-B */
2504 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2505 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2506
2507 I915_WRITE(FDI_RX_MISC(pipe),
2508 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2509
2510 reg = FDI_RX_CTL(pipe);
2511 temp = I915_READ(reg);
2512 if (HAS_PCH_CPT(dev)) {
2513 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2514 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2515 } else {
2516 temp &= ~FDI_LINK_TRAIN_NONE;
2517 temp |= FDI_LINK_TRAIN_PATTERN_1;
2518 }
2519 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2520
2521 POSTING_READ(reg);
2522 udelay(150);
2523
2524 cpt_phase_pointer_enable(dev, pipe);
2525
2526 for (i = 0; i < 4; i++) {
2527 reg = FDI_TX_CTL(pipe);
2528 temp = I915_READ(reg);
2529 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2530 temp |= snb_b_fdi_train_param[i];
2531 I915_WRITE(reg, temp);
2532
2533 POSTING_READ(reg);
2534 udelay(500);
2535
2536 for (retry = 0; retry < 5; retry++) {
2537 reg = FDI_RX_IIR(pipe);
2538 temp = I915_READ(reg);
2539 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2540 if (temp & FDI_RX_BIT_LOCK) {
2541 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2542 DRM_DEBUG_KMS("FDI train 1 done.\n");
2543 break;
2544 }
2545 udelay(50);
2546 }
2547 if (retry < 5)
2548 break;
2549 }
2550 if (i == 4)
2551 DRM_ERROR("FDI train 1 fail!\n");
2552
2553 /* Train 2 */
2554 reg = FDI_TX_CTL(pipe);
2555 temp = I915_READ(reg);
2556 temp &= ~FDI_LINK_TRAIN_NONE;
2557 temp |= FDI_LINK_TRAIN_PATTERN_2;
2558 if (IS_GEN6(dev)) {
2559 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2560 /* SNB-B */
2561 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2562 }
2563 I915_WRITE(reg, temp);
2564
2565 reg = FDI_RX_CTL(pipe);
2566 temp = I915_READ(reg);
2567 if (HAS_PCH_CPT(dev)) {
2568 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2569 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2570 } else {
2571 temp &= ~FDI_LINK_TRAIN_NONE;
2572 temp |= FDI_LINK_TRAIN_PATTERN_2;
2573 }
2574 I915_WRITE(reg, temp);
2575
2576 POSTING_READ(reg);
2577 udelay(150);
2578
2579 for (i = 0; i < 4; i++) {
2580 reg = FDI_TX_CTL(pipe);
2581 temp = I915_READ(reg);
2582 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2583 temp |= snb_b_fdi_train_param[i];
2584 I915_WRITE(reg, temp);
2585
2586 POSTING_READ(reg);
2587 udelay(500);
2588
2589 for (retry = 0; retry < 5; retry++) {
2590 reg = FDI_RX_IIR(pipe);
2591 temp = I915_READ(reg);
2592 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2593 if (temp & FDI_RX_SYMBOL_LOCK) {
2594 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2595 DRM_DEBUG_KMS("FDI train 2 done.\n");
2596 break;
2597 }
2598 udelay(50);
2599 }
2600 if (retry < 5)
2601 break;
2602 }
2603 if (i == 4)
2604 DRM_ERROR("FDI train 2 fail!\n");
2605
2606 DRM_DEBUG_KMS("FDI train done.\n");
2607}
2608
2609/* Manual link training for Ivy Bridge A0 parts */
2610static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2611{
2612 struct drm_device *dev = crtc->dev;
2613 struct drm_i915_private *dev_priv = dev->dev_private;
2614 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2615 int pipe = intel_crtc->pipe;
2616 u32 reg, temp, i;
2617
2618 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2619 for train result */
2620 reg = FDI_RX_IMR(pipe);
2621 temp = I915_READ(reg);
2622 temp &= ~FDI_RX_SYMBOL_LOCK;
2623 temp &= ~FDI_RX_BIT_LOCK;
2624 I915_WRITE(reg, temp);
2625
2626 POSTING_READ(reg);
2627 udelay(150);
2628
2629 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2630 I915_READ(FDI_RX_IIR(pipe)));
2631
2632 /* enable CPU FDI TX and PCH FDI RX */
2633 reg = FDI_TX_CTL(pipe);
2634 temp = I915_READ(reg);
2635 temp &= ~(7 << 19);
2636 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2637 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2638 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2639 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2640 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2641 temp |= FDI_COMPOSITE_SYNC;
2642 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2643
2644 I915_WRITE(FDI_RX_MISC(pipe),
2645 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2646
2647 reg = FDI_RX_CTL(pipe);
2648 temp = I915_READ(reg);
2649 temp &= ~FDI_LINK_TRAIN_AUTO;
2650 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2651 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2652 temp |= FDI_COMPOSITE_SYNC;
2653 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2654
2655 POSTING_READ(reg);
2656 udelay(150);
2657
2658 cpt_phase_pointer_enable(dev, pipe);
2659
2660 for (i = 0; i < 4; i++) {
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664 temp |= snb_b_fdi_train_param[i];
2665 I915_WRITE(reg, temp);
2666
2667 POSTING_READ(reg);
2668 udelay(500);
2669
2670 reg = FDI_RX_IIR(pipe);
2671 temp = I915_READ(reg);
2672 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2673
2674 if (temp & FDI_RX_BIT_LOCK ||
2675 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2676 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2677 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2678 break;
2679 }
2680 }
2681 if (i == 4)
2682 DRM_ERROR("FDI train 1 fail!\n");
2683
2684 /* Train 2 */
2685 reg = FDI_TX_CTL(pipe);
2686 temp = I915_READ(reg);
2687 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2688 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2689 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2690 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2691 I915_WRITE(reg, temp);
2692
2693 reg = FDI_RX_CTL(pipe);
2694 temp = I915_READ(reg);
2695 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2696 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2697 I915_WRITE(reg, temp);
2698
2699 POSTING_READ(reg);
2700 udelay(150);
2701
2702 for (i = 0; i < 4; i++) {
2703 reg = FDI_TX_CTL(pipe);
2704 temp = I915_READ(reg);
2705 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2706 temp |= snb_b_fdi_train_param[i];
2707 I915_WRITE(reg, temp);
2708
2709 POSTING_READ(reg);
2710 udelay(500);
2711
2712 reg = FDI_RX_IIR(pipe);
2713 temp = I915_READ(reg);
2714 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2715
2716 if (temp & FDI_RX_SYMBOL_LOCK) {
2717 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2718 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2719 break;
2720 }
2721 }
2722 if (i == 4)
2723 DRM_ERROR("FDI train 2 fail!\n");
2724
2725 DRM_DEBUG_KMS("FDI train done.\n");
2726}
2727
2728static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2729{
2730 struct drm_device *dev = intel_crtc->base.dev;
2731 struct drm_i915_private *dev_priv = dev->dev_private;
2732 int pipe = intel_crtc->pipe;
2733 u32 reg, temp;
2734
2735
2736 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2737 reg = FDI_RX_CTL(pipe);
2738 temp = I915_READ(reg);
2739 temp &= ~((0x7 << 19) | (0x7 << 16));
2740 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2741 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2742 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2743
2744 POSTING_READ(reg);
2745 udelay(200);
2746
2747 /* Switch from Rawclk to PCDclk */
2748 temp = I915_READ(reg);
2749 I915_WRITE(reg, temp | FDI_PCDCLK);
2750
2751 POSTING_READ(reg);
2752 udelay(200);
2753
2754 /* Enable CPU FDI TX PLL, always on for Ironlake */
2755 reg = FDI_TX_CTL(pipe);
2756 temp = I915_READ(reg);
2757 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2758 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2759
2760 POSTING_READ(reg);
2761 udelay(100);
2762 }
2763}
2764
2765static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2766{
2767 struct drm_device *dev = intel_crtc->base.dev;
2768 struct drm_i915_private *dev_priv = dev->dev_private;
2769 int pipe = intel_crtc->pipe;
2770 u32 reg, temp;
2771
2772 /* Switch from PCDclk to Rawclk */
2773 reg = FDI_RX_CTL(pipe);
2774 temp = I915_READ(reg);
2775 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2776
2777 /* Disable CPU FDI TX PLL */
2778 reg = FDI_TX_CTL(pipe);
2779 temp = I915_READ(reg);
2780 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2781
2782 POSTING_READ(reg);
2783 udelay(100);
2784
2785 reg = FDI_RX_CTL(pipe);
2786 temp = I915_READ(reg);
2787 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2788
2789 /* Wait for the clocks to turn off. */
2790 POSTING_READ(reg);
2791 udelay(100);
2792}
2793
2794static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2795{
2796 struct drm_i915_private *dev_priv = dev->dev_private;
2797 u32 flags = I915_READ(SOUTH_CHICKEN1);
2798
2799 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2800 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2801 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2802 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2803 POSTING_READ(SOUTH_CHICKEN1);
2804}
2805static void ironlake_fdi_disable(struct drm_crtc *crtc)
2806{
2807 struct drm_device *dev = crtc->dev;
2808 struct drm_i915_private *dev_priv = dev->dev_private;
2809 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2810 int pipe = intel_crtc->pipe;
2811 u32 reg, temp;
2812
2813 /* disable CPU FDI tx and PCH FDI rx */
2814 reg = FDI_TX_CTL(pipe);
2815 temp = I915_READ(reg);
2816 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2817 POSTING_READ(reg);
2818
2819 reg = FDI_RX_CTL(pipe);
2820 temp = I915_READ(reg);
2821 temp &= ~(0x7 << 16);
2822 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2823 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2824
2825 POSTING_READ(reg);
2826 udelay(100);
2827
2828 /* Ironlake workaround, disable clock pointer after downing FDI */
2829 if (HAS_PCH_IBX(dev)) {
2830 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2831 } else if (HAS_PCH_CPT(dev)) {
2832 cpt_phase_pointer_disable(dev, pipe);
2833 }
2834
2835 /* still set train pattern 1 */
2836 reg = FDI_TX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 temp &= ~FDI_LINK_TRAIN_NONE;
2839 temp |= FDI_LINK_TRAIN_PATTERN_1;
2840 I915_WRITE(reg, temp);
2841
2842 reg = FDI_RX_CTL(pipe);
2843 temp = I915_READ(reg);
2844 if (HAS_PCH_CPT(dev)) {
2845 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2846 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2847 } else {
2848 temp &= ~FDI_LINK_TRAIN_NONE;
2849 temp |= FDI_LINK_TRAIN_PATTERN_1;
2850 }
2851 /* BPC in FDI rx is consistent with that in PIPECONF */
2852 temp &= ~(0x07 << 16);
2853 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2854 I915_WRITE(reg, temp);
2855
2856 POSTING_READ(reg);
2857 udelay(100);
2858}
2859
2860static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2861{
2862 struct drm_device *dev = crtc->dev;
2863 struct drm_i915_private *dev_priv = dev->dev_private;
2864 unsigned long flags;
2865 bool pending;
2866
2867 if (atomic_read(&dev_priv->mm.wedged))
2868 return false;
2869
2870 spin_lock_irqsave(&dev->event_lock, flags);
2871 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2872 spin_unlock_irqrestore(&dev->event_lock, flags);
2873
2874 return pending;
2875}
2876
2877static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2878{
2879 struct drm_device *dev = crtc->dev;
2880 struct drm_i915_private *dev_priv = dev->dev_private;
2881
2882 if (crtc->fb == NULL)
2883 return;
2884
2885 wait_event(dev_priv->pending_flip_queue,
2886 !intel_crtc_has_pending_flip(crtc));
2887
2888 mutex_lock(&dev->struct_mutex);
2889 intel_finish_fb(crtc->fb);
2890 mutex_unlock(&dev->struct_mutex);
2891}
2892
2893static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2894{
2895 struct drm_device *dev = crtc->dev;
2896 struct intel_encoder *intel_encoder;
2897
2898 /*
2899 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2900 * must be driven by its own crtc; no sharing is possible.
2901 */
2902 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2903 switch (intel_encoder->type) {
2904 case INTEL_OUTPUT_EDP:
2905 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2906 return false;
2907 continue;
2908 }
2909 }
2910
2911 return true;
2912}
2913
2914static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
2915{
2916 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
2917}
2918
2919/* Program iCLKIP clock to the desired frequency */
2920static void lpt_program_iclkip(struct drm_crtc *crtc)
2921{
2922 struct drm_device *dev = crtc->dev;
2923 struct drm_i915_private *dev_priv = dev->dev_private;
2924 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2925 u32 temp;
2926
2927 /* It is necessary to ungate the pixclk gate prior to programming
2928 * the divisors, and gate it back when it is done.
2929 */
2930 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2931
2932 /* Disable SSCCTL */
2933 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2934 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
2935 SBI_SSCCTL_DISABLE);
2936
2937 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2938 if (crtc->mode.clock == 20000) {
2939 auxdiv = 1;
2940 divsel = 0x41;
2941 phaseinc = 0x20;
2942 } else {
2943 /* The iCLK virtual clock root frequency is in MHz,
2944 * but the crtc->mode.clock in in KHz. To get the divisors,
2945 * it is necessary to divide one by another, so we
2946 * convert the virtual clock precision to KHz here for higher
2947 * precision.
2948 */
2949 u32 iclk_virtual_root_freq = 172800 * 1000;
2950 u32 iclk_pi_range = 64;
2951 u32 desired_divisor, msb_divisor_value, pi_value;
2952
2953 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
2954 msb_divisor_value = desired_divisor / iclk_pi_range;
2955 pi_value = desired_divisor % iclk_pi_range;
2956
2957 auxdiv = 0;
2958 divsel = msb_divisor_value - 2;
2959 phaseinc = pi_value;
2960 }
2961
2962 /* This should not happen with any sane values */
2963 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
2964 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
2965 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
2966 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
2967
2968 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
2969 crtc->mode.clock,
2970 auxdiv,
2971 divsel,
2972 phasedir,
2973 phaseinc);
2974
2975 /* Program SSCDIVINTPHASE6 */
2976 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
2977 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
2978 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
2979 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
2980 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
2981 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
2982 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
2983
2984 intel_sbi_write(dev_priv,
2985 SBI_SSCDIVINTPHASE6,
2986 temp);
2987
2988 /* Program SSCAUXDIV */
2989 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
2990 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
2991 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
2992 intel_sbi_write(dev_priv,
2993 SBI_SSCAUXDIV6,
2994 temp);
2995
2996
2997 /* Enable modulator and associated divider */
2998 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
2999 temp &= ~SBI_SSCCTL_DISABLE;
3000 intel_sbi_write(dev_priv,
3001 SBI_SSCCTL6,
3002 temp);
3003
3004 /* Wait for initialization time */
3005 udelay(24);
3006
3007 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3008}
3009
3010/*
3011 * Enable PCH resources required for PCH ports:
3012 * - PCH PLLs
3013 * - FDI training & RX/TX
3014 * - update transcoder timings
3015 * - DP transcoding bits
3016 * - transcoder
3017 */
3018static void ironlake_pch_enable(struct drm_crtc *crtc)
3019{
3020 struct drm_device *dev = crtc->dev;
3021 struct drm_i915_private *dev_priv = dev->dev_private;
3022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3023 int pipe = intel_crtc->pipe;
3024 u32 reg, temp;
3025
3026 assert_transcoder_disabled(dev_priv, pipe);
3027
3028 /* Write the TU size bits before fdi link training, so that error
3029 * detection works. */
3030 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3031 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3032
3033 /* For PCH output, training FDI link */
3034 dev_priv->display.fdi_link_train(crtc);
3035
3036 /* XXX: pch pll's can be enabled any time before we enable the PCH
3037 * transcoder, and we actually should do this to not upset any PCH
3038 * transcoder that already use the clock when we share it.
3039 *
3040 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3041 * unconditionally resets the pll - we need that to have the right LVDS
3042 * enable sequence. */
3043 ironlake_enable_pch_pll(intel_crtc);
3044
3045 if (HAS_PCH_CPT(dev)) {
3046 u32 sel;
3047
3048 temp = I915_READ(PCH_DPLL_SEL);
3049 switch (pipe) {
3050 default:
3051 case 0:
3052 temp |= TRANSA_DPLL_ENABLE;
3053 sel = TRANSA_DPLLB_SEL;
3054 break;
3055 case 1:
3056 temp |= TRANSB_DPLL_ENABLE;
3057 sel = TRANSB_DPLLB_SEL;
3058 break;
3059 case 2:
3060 temp |= TRANSC_DPLL_ENABLE;
3061 sel = TRANSC_DPLLB_SEL;
3062 break;
3063 }
3064 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3065 temp |= sel;
3066 else
3067 temp &= ~sel;
3068 I915_WRITE(PCH_DPLL_SEL, temp);
3069 }
3070
3071 /* set transcoder timing, panel must allow it */
3072 assert_panel_unlocked(dev_priv, pipe);
3073 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3074 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3075 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3076
3077 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3078 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3079 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3080 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3081
3082 intel_fdi_normal_train(crtc);
3083
3084 /* For PCH DP, enable TRANS_DP_CTL */
3085 if (HAS_PCH_CPT(dev) &&
3086 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3087 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3088 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3089 reg = TRANS_DP_CTL(pipe);
3090 temp = I915_READ(reg);
3091 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3092 TRANS_DP_SYNC_MASK |
3093 TRANS_DP_BPC_MASK);
3094 temp |= (TRANS_DP_OUTPUT_ENABLE |
3095 TRANS_DP_ENH_FRAMING);
3096 temp |= bpc << 9; /* same format but at 11:9 */
3097
3098 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3099 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3100 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3101 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3102
3103 switch (intel_trans_dp_port_sel(crtc)) {
3104 case PCH_DP_B:
3105 temp |= TRANS_DP_PORT_SEL_B;
3106 break;
3107 case PCH_DP_C:
3108 temp |= TRANS_DP_PORT_SEL_C;
3109 break;
3110 case PCH_DP_D:
3111 temp |= TRANS_DP_PORT_SEL_D;
3112 break;
3113 default:
3114 BUG();
3115 }
3116
3117 I915_WRITE(reg, temp);
3118 }
3119
3120 ironlake_enable_pch_transcoder(dev_priv, pipe);
3121}
3122
3123static void lpt_pch_enable(struct drm_crtc *crtc)
3124{
3125 struct drm_device *dev = crtc->dev;
3126 struct drm_i915_private *dev_priv = dev->dev_private;
3127 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3128 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3129
3130 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3131
3132 lpt_program_iclkip(crtc);
3133
3134 /* Set transcoder timing. */
3135 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3136 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3137 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3138
3139 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3140 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3141 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3142 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3143
3144 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3145}
3146
3147static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3148{
3149 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3150
3151 if (pll == NULL)
3152 return;
3153
3154 if (pll->refcount == 0) {
3155 WARN(1, "bad PCH PLL refcount\n");
3156 return;
3157 }
3158
3159 --pll->refcount;
3160 intel_crtc->pch_pll = NULL;
3161}
3162
3163static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3164{
3165 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3166 struct intel_pch_pll *pll;
3167 int i;
3168
3169 pll = intel_crtc->pch_pll;
3170 if (pll) {
3171 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3172 intel_crtc->base.base.id, pll->pll_reg);
3173 goto prepare;
3174 }
3175
3176 if (HAS_PCH_IBX(dev_priv->dev)) {
3177 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3178 i = intel_crtc->pipe;
3179 pll = &dev_priv->pch_plls[i];
3180
3181 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3182 intel_crtc->base.base.id, pll->pll_reg);
3183
3184 goto found;
3185 }
3186
3187 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3188 pll = &dev_priv->pch_plls[i];
3189
3190 /* Only want to check enabled timings first */
3191 if (pll->refcount == 0)
3192 continue;
3193
3194 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3195 fp == I915_READ(pll->fp0_reg)) {
3196 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3197 intel_crtc->base.base.id,
3198 pll->pll_reg, pll->refcount, pll->active);
3199
3200 goto found;
3201 }
3202 }
3203
3204 /* Ok no matching timings, maybe there's a free one? */
3205 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3206 pll = &dev_priv->pch_plls[i];
3207 if (pll->refcount == 0) {
3208 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3209 intel_crtc->base.base.id, pll->pll_reg);
3210 goto found;
3211 }
3212 }
3213
3214 return NULL;
3215
3216found:
3217 intel_crtc->pch_pll = pll;
3218 pll->refcount++;
3219 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3220prepare: /* separate function? */
3221 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3222
3223 /* Wait for the clocks to stabilize before rewriting the regs */
3224 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3225 POSTING_READ(pll->pll_reg);
3226 udelay(150);
3227
3228 I915_WRITE(pll->fp0_reg, fp);
3229 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3230 pll->on = false;
3231 return pll;
3232}
3233
3234void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3235{
3236 struct drm_i915_private *dev_priv = dev->dev_private;
3237 int dslreg = PIPEDSL(pipe);
3238 u32 temp;
3239
3240 temp = I915_READ(dslreg);
3241 udelay(500);
3242 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3243 if (wait_for(I915_READ(dslreg) != temp, 5))
3244 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3245 }
3246}
3247
3248static void ironlake_crtc_enable(struct drm_crtc *crtc)
3249{
3250 struct drm_device *dev = crtc->dev;
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3252 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3253 struct intel_encoder *encoder;
3254 int pipe = intel_crtc->pipe;
3255 int plane = intel_crtc->plane;
3256 u32 temp;
3257 bool is_pch_port;
3258
3259 WARN_ON(!crtc->enabled);
3260
3261 if (intel_crtc->active)
3262 return;
3263
3264 intel_crtc->active = true;
3265 intel_update_watermarks(dev);
3266
3267 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3268 temp = I915_READ(PCH_LVDS);
3269 if ((temp & LVDS_PORT_EN) == 0)
3270 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3271 }
3272
3273 is_pch_port = ironlake_crtc_driving_pch(crtc);
3274
3275 if (is_pch_port) {
3276 /* Note: FDI PLL enabling _must_ be done before we enable the
3277 * cpu pipes, hence this is separate from all the other fdi/pch
3278 * enabling. */
3279 ironlake_fdi_pll_enable(intel_crtc);
3280 } else {
3281 assert_fdi_tx_disabled(dev_priv, pipe);
3282 assert_fdi_rx_disabled(dev_priv, pipe);
3283 }
3284
3285 for_each_encoder_on_crtc(dev, crtc, encoder)
3286 if (encoder->pre_enable)
3287 encoder->pre_enable(encoder);
3288
3289 /* Enable panel fitting for LVDS */
3290 if (dev_priv->pch_pf_size &&
3291 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3292 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3293 /* Force use of hard-coded filter coefficients
3294 * as some pre-programmed values are broken,
3295 * e.g. x201.
3296 */
3297 if (IS_IVYBRIDGE(dev))
3298 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3299 PF_PIPE_SEL_IVB(pipe));
3300 else
3301 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3302 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3303 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3304 }
3305
3306 /*
3307 * On ILK+ LUT must be loaded before the pipe is running but with
3308 * clocks enabled
3309 */
3310 intel_crtc_load_lut(crtc);
3311
3312 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3313 intel_enable_plane(dev_priv, plane, pipe);
3314
3315 if (is_pch_port)
3316 ironlake_pch_enable(crtc);
3317
3318 mutex_lock(&dev->struct_mutex);
3319 intel_update_fbc(dev);
3320 mutex_unlock(&dev->struct_mutex);
3321
3322 intel_crtc_update_cursor(crtc, true);
3323
3324 for_each_encoder_on_crtc(dev, crtc, encoder)
3325 encoder->enable(encoder);
3326
3327 if (HAS_PCH_CPT(dev))
3328 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3329
3330 /*
3331 * There seems to be a race in PCH platform hw (at least on some
3332 * outputs) where an enabled pipe still completes any pageflip right
3333 * away (as if the pipe is off) instead of waiting for vblank. As soon
3334 * as the first vblank happend, everything works as expected. Hence just
3335 * wait for one vblank before returning to avoid strange things
3336 * happening.
3337 */
3338 intel_wait_for_vblank(dev, intel_crtc->pipe);
3339}
3340
3341static void haswell_crtc_enable(struct drm_crtc *crtc)
3342{
3343 struct drm_device *dev = crtc->dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3346 struct intel_encoder *encoder;
3347 int pipe = intel_crtc->pipe;
3348 int plane = intel_crtc->plane;
3349 bool is_pch_port;
3350
3351 WARN_ON(!crtc->enabled);
3352
3353 if (intel_crtc->active)
3354 return;
3355
3356 intel_crtc->active = true;
3357 intel_update_watermarks(dev);
3358
3359 is_pch_port = haswell_crtc_driving_pch(crtc);
3360
3361 if (is_pch_port)
3362 dev_priv->display.fdi_link_train(crtc);
3363
3364 for_each_encoder_on_crtc(dev, crtc, encoder)
3365 if (encoder->pre_enable)
3366 encoder->pre_enable(encoder);
3367
3368 intel_ddi_enable_pipe_clock(intel_crtc);
3369
3370 /* Enable panel fitting for eDP */
3371 if (dev_priv->pch_pf_size &&
3372 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
3373 /* Force use of hard-coded filter coefficients
3374 * as some pre-programmed values are broken,
3375 * e.g. x201.
3376 */
3377 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3378 PF_PIPE_SEL_IVB(pipe));
3379 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3380 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3381 }
3382
3383 /*
3384 * On ILK+ LUT must be loaded before the pipe is running but with
3385 * clocks enabled
3386 */
3387 intel_crtc_load_lut(crtc);
3388
3389 intel_ddi_set_pipe_settings(crtc);
3390 intel_ddi_enable_pipe_func(crtc);
3391
3392 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3393 intel_enable_plane(dev_priv, plane, pipe);
3394
3395 if (is_pch_port)
3396 lpt_pch_enable(crtc);
3397
3398 mutex_lock(&dev->struct_mutex);
3399 intel_update_fbc(dev);
3400 mutex_unlock(&dev->struct_mutex);
3401
3402 intel_crtc_update_cursor(crtc, true);
3403
3404 for_each_encoder_on_crtc(dev, crtc, encoder)
3405 encoder->enable(encoder);
3406
3407 /*
3408 * There seems to be a race in PCH platform hw (at least on some
3409 * outputs) where an enabled pipe still completes any pageflip right
3410 * away (as if the pipe is off) instead of waiting for vblank. As soon
3411 * as the first vblank happend, everything works as expected. Hence just
3412 * wait for one vblank before returning to avoid strange things
3413 * happening.
3414 */
3415 intel_wait_for_vblank(dev, intel_crtc->pipe);
3416}
3417
3418static void ironlake_crtc_disable(struct drm_crtc *crtc)
3419{
3420 struct drm_device *dev = crtc->dev;
3421 struct drm_i915_private *dev_priv = dev->dev_private;
3422 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3423 struct intel_encoder *encoder;
3424 int pipe = intel_crtc->pipe;
3425 int plane = intel_crtc->plane;
3426 u32 reg, temp;
3427
3428
3429 if (!intel_crtc->active)
3430 return;
3431
3432 for_each_encoder_on_crtc(dev, crtc, encoder)
3433 encoder->disable(encoder);
3434
3435 intel_crtc_wait_for_pending_flips(crtc);
3436 drm_vblank_off(dev, pipe);
3437 intel_crtc_update_cursor(crtc, false);
3438
3439 intel_disable_plane(dev_priv, plane, pipe);
3440
3441 if (dev_priv->cfb_plane == plane)
3442 intel_disable_fbc(dev);
3443
3444 intel_disable_pipe(dev_priv, pipe);
3445
3446 /* Disable PF */
3447 I915_WRITE(PF_CTL(pipe), 0);
3448 I915_WRITE(PF_WIN_SZ(pipe), 0);
3449
3450 for_each_encoder_on_crtc(dev, crtc, encoder)
3451 if (encoder->post_disable)
3452 encoder->post_disable(encoder);
3453
3454 ironlake_fdi_disable(crtc);
3455
3456 ironlake_disable_pch_transcoder(dev_priv, pipe);
3457
3458 if (HAS_PCH_CPT(dev)) {
3459 /* disable TRANS_DP_CTL */
3460 reg = TRANS_DP_CTL(pipe);
3461 temp = I915_READ(reg);
3462 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3463 temp |= TRANS_DP_PORT_SEL_NONE;
3464 I915_WRITE(reg, temp);
3465
3466 /* disable DPLL_SEL */
3467 temp = I915_READ(PCH_DPLL_SEL);
3468 switch (pipe) {
3469 case 0:
3470 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3471 break;
3472 case 1:
3473 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3474 break;
3475 case 2:
3476 /* C shares PLL A or B */
3477 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3478 break;
3479 default:
3480 BUG(); /* wtf */
3481 }
3482 I915_WRITE(PCH_DPLL_SEL, temp);
3483 }
3484
3485 /* disable PCH DPLL */
3486 intel_disable_pch_pll(intel_crtc);
3487
3488 ironlake_fdi_pll_disable(intel_crtc);
3489
3490 intel_crtc->active = false;
3491 intel_update_watermarks(dev);
3492
3493 mutex_lock(&dev->struct_mutex);
3494 intel_update_fbc(dev);
3495 mutex_unlock(&dev->struct_mutex);
3496}
3497
3498static void haswell_crtc_disable(struct drm_crtc *crtc)
3499{
3500 struct drm_device *dev = crtc->dev;
3501 struct drm_i915_private *dev_priv = dev->dev_private;
3502 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3503 struct intel_encoder *encoder;
3504 int pipe = intel_crtc->pipe;
3505 int plane = intel_crtc->plane;
3506 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3507 bool is_pch_port;
3508
3509 if (!intel_crtc->active)
3510 return;
3511
3512 is_pch_port = haswell_crtc_driving_pch(crtc);
3513
3514 for_each_encoder_on_crtc(dev, crtc, encoder)
3515 encoder->disable(encoder);
3516
3517 intel_crtc_wait_for_pending_flips(crtc);
3518 drm_vblank_off(dev, pipe);
3519 intel_crtc_update_cursor(crtc, false);
3520
3521 intel_disable_plane(dev_priv, plane, pipe);
3522
3523 if (dev_priv->cfb_plane == plane)
3524 intel_disable_fbc(dev);
3525
3526 intel_disable_pipe(dev_priv, pipe);
3527
3528 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3529
3530 /* Disable PF */
3531 I915_WRITE(PF_CTL(pipe), 0);
3532 I915_WRITE(PF_WIN_SZ(pipe), 0);
3533
3534 intel_ddi_disable_pipe_clock(intel_crtc);
3535
3536 for_each_encoder_on_crtc(dev, crtc, encoder)
3537 if (encoder->post_disable)
3538 encoder->post_disable(encoder);
3539
3540 if (is_pch_port) {
3541 lpt_disable_pch_transcoder(dev_priv);
3542 intel_ddi_fdi_disable(crtc);
3543 }
3544
3545 intel_crtc->active = false;
3546 intel_update_watermarks(dev);
3547
3548 mutex_lock(&dev->struct_mutex);
3549 intel_update_fbc(dev);
3550 mutex_unlock(&dev->struct_mutex);
3551}
3552
3553static void ironlake_crtc_off(struct drm_crtc *crtc)
3554{
3555 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3556 intel_put_pch_pll(intel_crtc);
3557}
3558
3559static void haswell_crtc_off(struct drm_crtc *crtc)
3560{
3561 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3562
3563 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3564 * start using it. */
3565 intel_crtc->cpu_transcoder = (enum transcoder) intel_crtc->pipe;
3566
3567 intel_ddi_put_crtc_pll(crtc);
3568}
3569
3570static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3571{
3572 if (!enable && intel_crtc->overlay) {
3573 struct drm_device *dev = intel_crtc->base.dev;
3574 struct drm_i915_private *dev_priv = dev->dev_private;
3575
3576 mutex_lock(&dev->struct_mutex);
3577 dev_priv->mm.interruptible = false;
3578 (void) intel_overlay_switch_off(intel_crtc->overlay);
3579 dev_priv->mm.interruptible = true;
3580 mutex_unlock(&dev->struct_mutex);
3581 }
3582
3583 /* Let userspace switch the overlay on again. In most cases userspace
3584 * has to recompute where to put it anyway.
3585 */
3586}
3587
3588static void i9xx_crtc_enable(struct drm_crtc *crtc)
3589{
3590 struct drm_device *dev = crtc->dev;
3591 struct drm_i915_private *dev_priv = dev->dev_private;
3592 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3593 struct intel_encoder *encoder;
3594 int pipe = intel_crtc->pipe;
3595 int plane = intel_crtc->plane;
3596
3597 WARN_ON(!crtc->enabled);
3598
3599 if (intel_crtc->active)
3600 return;
3601
3602 intel_crtc->active = true;
3603 intel_update_watermarks(dev);
3604
3605 intel_enable_pll(dev_priv, pipe);
3606 intel_enable_pipe(dev_priv, pipe, false);
3607 intel_enable_plane(dev_priv, plane, pipe);
3608
3609 intel_crtc_load_lut(crtc);
3610 intel_update_fbc(dev);
3611
3612 /* Give the overlay scaler a chance to enable if it's on this pipe */
3613 intel_crtc_dpms_overlay(intel_crtc, true);
3614 intel_crtc_update_cursor(crtc, true);
3615
3616 for_each_encoder_on_crtc(dev, crtc, encoder)
3617 encoder->enable(encoder);
3618}
3619
3620static void i9xx_crtc_disable(struct drm_crtc *crtc)
3621{
3622 struct drm_device *dev = crtc->dev;
3623 struct drm_i915_private *dev_priv = dev->dev_private;
3624 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3625 struct intel_encoder *encoder;
3626 int pipe = intel_crtc->pipe;
3627 int plane = intel_crtc->plane;
3628
3629
3630 if (!intel_crtc->active)
3631 return;
3632
3633 for_each_encoder_on_crtc(dev, crtc, encoder)
3634 encoder->disable(encoder);
3635
3636 /* Give the overlay scaler a chance to disable if it's on this pipe */
3637 intel_crtc_wait_for_pending_flips(crtc);
3638 drm_vblank_off(dev, pipe);
3639 intel_crtc_dpms_overlay(intel_crtc, false);
3640 intel_crtc_update_cursor(crtc, false);
3641
3642 if (dev_priv->cfb_plane == plane)
3643 intel_disable_fbc(dev);
3644
3645 intel_disable_plane(dev_priv, plane, pipe);
3646 intel_disable_pipe(dev_priv, pipe);
3647 intel_disable_pll(dev_priv, pipe);
3648
3649 intel_crtc->active = false;
3650 intel_update_fbc(dev);
3651 intel_update_watermarks(dev);
3652}
3653
3654static void i9xx_crtc_off(struct drm_crtc *crtc)
3655{
3656}
3657
3658static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3659 bool enabled)
3660{
3661 struct drm_device *dev = crtc->dev;
3662 struct drm_i915_master_private *master_priv;
3663 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3664 int pipe = intel_crtc->pipe;
3665
3666 if (!dev->primary->master)
3667 return;
3668
3669 master_priv = dev->primary->master->driver_priv;
3670 if (!master_priv->sarea_priv)
3671 return;
3672
3673 switch (pipe) {
3674 case 0:
3675 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3676 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3677 break;
3678 case 1:
3679 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3680 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3681 break;
3682 default:
3683 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3684 break;
3685 }
3686}
3687
3688/**
3689 * Sets the power management mode of the pipe and plane.
3690 */
3691void intel_crtc_update_dpms(struct drm_crtc *crtc)
3692{
3693 struct drm_device *dev = crtc->dev;
3694 struct drm_i915_private *dev_priv = dev->dev_private;
3695 struct intel_encoder *intel_encoder;
3696 bool enable = false;
3697
3698 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3699 enable |= intel_encoder->connectors_active;
3700
3701 if (enable)
3702 dev_priv->display.crtc_enable(crtc);
3703 else
3704 dev_priv->display.crtc_disable(crtc);
3705
3706 intel_crtc_update_sarea(crtc, enable);
3707}
3708
3709static void intel_crtc_noop(struct drm_crtc *crtc)
3710{
3711}
3712
3713static void intel_crtc_disable(struct drm_crtc *crtc)
3714{
3715 struct drm_device *dev = crtc->dev;
3716 struct drm_connector *connector;
3717 struct drm_i915_private *dev_priv = dev->dev_private;
3718
3719 /* crtc should still be enabled when we disable it. */
3720 WARN_ON(!crtc->enabled);
3721
3722 dev_priv->display.crtc_disable(crtc);
3723 intel_crtc_update_sarea(crtc, false);
3724 dev_priv->display.off(crtc);
3725
3726 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3727 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3728
3729 if (crtc->fb) {
3730 mutex_lock(&dev->struct_mutex);
3731 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3732 mutex_unlock(&dev->struct_mutex);
3733 crtc->fb = NULL;
3734 }
3735
3736 /* Update computed state. */
3737 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3738 if (!connector->encoder || !connector->encoder->crtc)
3739 continue;
3740
3741 if (connector->encoder->crtc != crtc)
3742 continue;
3743
3744 connector->dpms = DRM_MODE_DPMS_OFF;
3745 to_intel_encoder(connector->encoder)->connectors_active = false;
3746 }
3747}
3748
3749void intel_modeset_disable(struct drm_device *dev)
3750{
3751 struct drm_crtc *crtc;
3752
3753 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3754 if (crtc->enabled)
3755 intel_crtc_disable(crtc);
3756 }
3757}
3758
3759void intel_encoder_noop(struct drm_encoder *encoder)
3760{
3761}
3762
3763void intel_encoder_destroy(struct drm_encoder *encoder)
3764{
3765 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3766
3767 drm_encoder_cleanup(encoder);
3768 kfree(intel_encoder);
3769}
3770
3771/* Simple dpms helper for encodres with just one connector, no cloning and only
3772 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3773 * state of the entire output pipe. */
3774void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3775{
3776 if (mode == DRM_MODE_DPMS_ON) {
3777 encoder->connectors_active = true;
3778
3779 intel_crtc_update_dpms(encoder->base.crtc);
3780 } else {
3781 encoder->connectors_active = false;
3782
3783 intel_crtc_update_dpms(encoder->base.crtc);
3784 }
3785}
3786
3787/* Cross check the actual hw state with our own modeset state tracking (and it's
3788 * internal consistency). */
3789static void intel_connector_check_state(struct intel_connector *connector)
3790{
3791 if (connector->get_hw_state(connector)) {
3792 struct intel_encoder *encoder = connector->encoder;
3793 struct drm_crtc *crtc;
3794 bool encoder_enabled;
3795 enum pipe pipe;
3796
3797 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3798 connector->base.base.id,
3799 drm_get_connector_name(&connector->base));
3800
3801 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3802 "wrong connector dpms state\n");
3803 WARN(connector->base.encoder != &encoder->base,
3804 "active connector not linked to encoder\n");
3805 WARN(!encoder->connectors_active,
3806 "encoder->connectors_active not set\n");
3807
3808 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3809 WARN(!encoder_enabled, "encoder not enabled\n");
3810 if (WARN_ON(!encoder->base.crtc))
3811 return;
3812
3813 crtc = encoder->base.crtc;
3814
3815 WARN(!crtc->enabled, "crtc not enabled\n");
3816 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3817 WARN(pipe != to_intel_crtc(crtc)->pipe,
3818 "encoder active on the wrong pipe\n");
3819 }
3820}
3821
3822/* Even simpler default implementation, if there's really no special case to
3823 * consider. */
3824void intel_connector_dpms(struct drm_connector *connector, int mode)
3825{
3826 struct intel_encoder *encoder = intel_attached_encoder(connector);
3827
3828 /* All the simple cases only support two dpms states. */
3829 if (mode != DRM_MODE_DPMS_ON)
3830 mode = DRM_MODE_DPMS_OFF;
3831
3832 if (mode == connector->dpms)
3833 return;
3834
3835 connector->dpms = mode;
3836
3837 /* Only need to change hw state when actually enabled */
3838 if (encoder->base.crtc)
3839 intel_encoder_dpms(encoder, mode);
3840 else
3841 WARN_ON(encoder->connectors_active != false);
3842
3843 intel_modeset_check_state(connector->dev);
3844}
3845
3846/* Simple connector->get_hw_state implementation for encoders that support only
3847 * one connector and no cloning and hence the encoder state determines the state
3848 * of the connector. */
3849bool intel_connector_get_hw_state(struct intel_connector *connector)
3850{
3851 enum pipe pipe = 0;
3852 struct intel_encoder *encoder = connector->encoder;
3853
3854 return encoder->get_hw_state(encoder, &pipe);
3855}
3856
3857static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3858 const struct drm_display_mode *mode,
3859 struct drm_display_mode *adjusted_mode)
3860{
3861 struct drm_device *dev = crtc->dev;
3862
3863 if (HAS_PCH_SPLIT(dev)) {
3864 /* FDI link clock is fixed at 2.7G */
3865 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3866 return false;
3867 }
3868
3869 /* All interlaced capable intel hw wants timings in frames. Note though
3870 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3871 * timings, so we need to be careful not to clobber these.*/
3872 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3873 drm_mode_set_crtcinfo(adjusted_mode, 0);
3874
3875 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3876 * with a hsync front porch of 0.
3877 */
3878 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3879 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3880 return false;
3881
3882 return true;
3883}
3884
3885static int valleyview_get_display_clock_speed(struct drm_device *dev)
3886{
3887 return 400000; /* FIXME */
3888}
3889
3890static int i945_get_display_clock_speed(struct drm_device *dev)
3891{
3892 return 400000;
3893}
3894
3895static int i915_get_display_clock_speed(struct drm_device *dev)
3896{
3897 return 333000;
3898}
3899
3900static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3901{
3902 return 200000;
3903}
3904
3905static int i915gm_get_display_clock_speed(struct drm_device *dev)
3906{
3907 u16 gcfgc = 0;
3908
3909 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3910
3911 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3912 return 133000;
3913 else {
3914 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3915 case GC_DISPLAY_CLOCK_333_MHZ:
3916 return 333000;
3917 default:
3918 case GC_DISPLAY_CLOCK_190_200_MHZ:
3919 return 190000;
3920 }
3921 }
3922}
3923
3924static int i865_get_display_clock_speed(struct drm_device *dev)
3925{
3926 return 266000;
3927}
3928
3929static int i855_get_display_clock_speed(struct drm_device *dev)
3930{
3931 u16 hpllcc = 0;
3932 /* Assume that the hardware is in the high speed state. This
3933 * should be the default.
3934 */
3935 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3936 case GC_CLOCK_133_200:
3937 case GC_CLOCK_100_200:
3938 return 200000;
3939 case GC_CLOCK_166_250:
3940 return 250000;
3941 case GC_CLOCK_100_133:
3942 return 133000;
3943 }
3944
3945 /* Shouldn't happen */
3946 return 0;
3947}
3948
3949static int i830_get_display_clock_speed(struct drm_device *dev)
3950{
3951 return 133000;
3952}
3953
3954static void
3955intel_reduce_ratio(uint32_t *num, uint32_t *den)
3956{
3957 while (*num > 0xffffff || *den > 0xffffff) {
3958 *num >>= 1;
3959 *den >>= 1;
3960 }
3961}
3962
3963void
3964intel_link_compute_m_n(int bits_per_pixel, int nlanes,
3965 int pixel_clock, int link_clock,
3966 struct intel_link_m_n *m_n)
3967{
3968 m_n->tu = 64;
3969 m_n->gmch_m = bits_per_pixel * pixel_clock;
3970 m_n->gmch_n = link_clock * nlanes * 8;
3971 intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3972 m_n->link_m = pixel_clock;
3973 m_n->link_n = link_clock;
3974 intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
3975}
3976
3977static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
3978{
3979 if (i915_panel_use_ssc >= 0)
3980 return i915_panel_use_ssc != 0;
3981 return dev_priv->lvds_use_ssc
3982 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
3983}
3984
3985/**
3986 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
3987 * @crtc: CRTC structure
3988 * @mode: requested mode
3989 *
3990 * A pipe may be connected to one or more outputs. Based on the depth of the
3991 * attached framebuffer, choose a good color depth to use on the pipe.
3992 *
3993 * If possible, match the pipe depth to the fb depth. In some cases, this
3994 * isn't ideal, because the connected output supports a lesser or restricted
3995 * set of depths. Resolve that here:
3996 * LVDS typically supports only 6bpc, so clamp down in that case
3997 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
3998 * Displays may support a restricted set as well, check EDID and clamp as
3999 * appropriate.
4000 * DP may want to dither down to 6bpc to fit larger modes
4001 *
4002 * RETURNS:
4003 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4004 * true if they don't match).
4005 */
4006static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4007 struct drm_framebuffer *fb,
4008 unsigned int *pipe_bpp,
4009 struct drm_display_mode *mode)
4010{
4011 struct drm_device *dev = crtc->dev;
4012 struct drm_i915_private *dev_priv = dev->dev_private;
4013 struct drm_connector *connector;
4014 struct intel_encoder *intel_encoder;
4015 unsigned int display_bpc = UINT_MAX, bpc;
4016
4017 /* Walk the encoders & connectors on this crtc, get min bpc */
4018 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4019
4020 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4021 unsigned int lvds_bpc;
4022
4023 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4024 LVDS_A3_POWER_UP)
4025 lvds_bpc = 8;
4026 else
4027 lvds_bpc = 6;
4028
4029 if (lvds_bpc < display_bpc) {
4030 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4031 display_bpc = lvds_bpc;
4032 }
4033 continue;
4034 }
4035
4036 /* Not one of the known troublemakers, check the EDID */
4037 list_for_each_entry(connector, &dev->mode_config.connector_list,
4038 head) {
4039 if (connector->encoder != &intel_encoder->base)
4040 continue;
4041
4042 /* Don't use an invalid EDID bpc value */
4043 if (connector->display_info.bpc &&
4044 connector->display_info.bpc < display_bpc) {
4045 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4046 display_bpc = connector->display_info.bpc;
4047 }
4048 }
4049
4050 /*
4051 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4052 * through, clamp it down. (Note: >12bpc will be caught below.)
4053 */
4054 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4055 if (display_bpc > 8 && display_bpc < 12) {
4056 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4057 display_bpc = 12;
4058 } else {
4059 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4060 display_bpc = 8;
4061 }
4062 }
4063 }
4064
4065 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4066 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4067 display_bpc = 6;
4068 }
4069
4070 /*
4071 * We could just drive the pipe at the highest bpc all the time and
4072 * enable dithering as needed, but that costs bandwidth. So choose
4073 * the minimum value that expresses the full color range of the fb but
4074 * also stays within the max display bpc discovered above.
4075 */
4076
4077 switch (fb->depth) {
4078 case 8:
4079 bpc = 8; /* since we go through a colormap */
4080 break;
4081 case 15:
4082 case 16:
4083 bpc = 6; /* min is 18bpp */
4084 break;
4085 case 24:
4086 bpc = 8;
4087 break;
4088 case 30:
4089 bpc = 10;
4090 break;
4091 case 48:
4092 bpc = 12;
4093 break;
4094 default:
4095 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4096 bpc = min((unsigned int)8, display_bpc);
4097 break;
4098 }
4099
4100 display_bpc = min(display_bpc, bpc);
4101
4102 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4103 bpc, display_bpc);
4104
4105 *pipe_bpp = display_bpc * 3;
4106
4107 return display_bpc != bpc;
4108}
4109
4110static int vlv_get_refclk(struct drm_crtc *crtc)
4111{
4112 struct drm_device *dev = crtc->dev;
4113 struct drm_i915_private *dev_priv = dev->dev_private;
4114 int refclk = 27000; /* for DP & HDMI */
4115
4116 return 100000; /* only one validated so far */
4117
4118 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4119 refclk = 96000;
4120 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4121 if (intel_panel_use_ssc(dev_priv))
4122 refclk = 100000;
4123 else
4124 refclk = 96000;
4125 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4126 refclk = 100000;
4127 }
4128
4129 return refclk;
4130}
4131
4132static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4133{
4134 struct drm_device *dev = crtc->dev;
4135 struct drm_i915_private *dev_priv = dev->dev_private;
4136 int refclk;
4137
4138 if (IS_VALLEYVIEW(dev)) {
4139 refclk = vlv_get_refclk(crtc);
4140 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4141 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4142 refclk = dev_priv->lvds_ssc_freq * 1000;
4143 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4144 refclk / 1000);
4145 } else if (!IS_GEN2(dev)) {
4146 refclk = 96000;
4147 } else {
4148 refclk = 48000;
4149 }
4150
4151 return refclk;
4152}
4153
4154static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4155 intel_clock_t *clock)
4156{
4157 /* SDVO TV has fixed PLL values depend on its clock range,
4158 this mirrors vbios setting. */
4159 if (adjusted_mode->clock >= 100000
4160 && adjusted_mode->clock < 140500) {
4161 clock->p1 = 2;
4162 clock->p2 = 10;
4163 clock->n = 3;
4164 clock->m1 = 16;
4165 clock->m2 = 8;
4166 } else if (adjusted_mode->clock >= 140500
4167 && adjusted_mode->clock <= 200000) {
4168 clock->p1 = 1;
4169 clock->p2 = 10;
4170 clock->n = 6;
4171 clock->m1 = 12;
4172 clock->m2 = 8;
4173 }
4174}
4175
4176static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4177 intel_clock_t *clock,
4178 intel_clock_t *reduced_clock)
4179{
4180 struct drm_device *dev = crtc->dev;
4181 struct drm_i915_private *dev_priv = dev->dev_private;
4182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4183 int pipe = intel_crtc->pipe;
4184 u32 fp, fp2 = 0;
4185
4186 if (IS_PINEVIEW(dev)) {
4187 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4188 if (reduced_clock)
4189 fp2 = (1 << reduced_clock->n) << 16 |
4190 reduced_clock->m1 << 8 | reduced_clock->m2;
4191 } else {
4192 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4193 if (reduced_clock)
4194 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4195 reduced_clock->m2;
4196 }
4197
4198 I915_WRITE(FP0(pipe), fp);
4199
4200 intel_crtc->lowfreq_avail = false;
4201 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4202 reduced_clock && i915_powersave) {
4203 I915_WRITE(FP1(pipe), fp2);
4204 intel_crtc->lowfreq_avail = true;
4205 } else {
4206 I915_WRITE(FP1(pipe), fp);
4207 }
4208}
4209
4210static void vlv_update_pll(struct drm_crtc *crtc,
4211 struct drm_display_mode *mode,
4212 struct drm_display_mode *adjusted_mode,
4213 intel_clock_t *clock, intel_clock_t *reduced_clock,
4214 int num_connectors)
4215{
4216 struct drm_device *dev = crtc->dev;
4217 struct drm_i915_private *dev_priv = dev->dev_private;
4218 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4219 int pipe = intel_crtc->pipe;
4220 u32 dpll, mdiv, pdiv;
4221 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4222 bool is_sdvo;
4223 u32 temp;
4224
4225 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4226 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4227
4228 dpll = DPLL_VGA_MODE_DIS;
4229 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4230 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4231 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4232
4233 I915_WRITE(DPLL(pipe), dpll);
4234 POSTING_READ(DPLL(pipe));
4235
4236 bestn = clock->n;
4237 bestm1 = clock->m1;
4238 bestm2 = clock->m2;
4239 bestp1 = clock->p1;
4240 bestp2 = clock->p2;
4241
4242 /*
4243 * In Valleyview PLL and program lane counter registers are exposed
4244 * through DPIO interface
4245 */
4246 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4247 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4248 mdiv |= ((bestn << DPIO_N_SHIFT));
4249 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4250 mdiv |= (1 << DPIO_K_SHIFT);
4251 mdiv |= DPIO_ENABLE_CALIBRATION;
4252 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4253
4254 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4255
4256 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4257 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4258 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4259 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4260 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4261
4262 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4263
4264 dpll |= DPLL_VCO_ENABLE;
4265 I915_WRITE(DPLL(pipe), dpll);
4266 POSTING_READ(DPLL(pipe));
4267 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4268 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4269
4270 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4271
4272 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4273 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4274
4275 I915_WRITE(DPLL(pipe), dpll);
4276
4277 /* Wait for the clocks to stabilize. */
4278 POSTING_READ(DPLL(pipe));
4279 udelay(150);
4280
4281 temp = 0;
4282 if (is_sdvo) {
4283 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4284 if (temp > 1)
4285 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4286 else
4287 temp = 0;
4288 }
4289 I915_WRITE(DPLL_MD(pipe), temp);
4290 POSTING_READ(DPLL_MD(pipe));
4291
4292 /* Now program lane control registers */
4293 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4294 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4295 {
4296 temp = 0x1000C4;
4297 if(pipe == 1)
4298 temp |= (1 << 21);
4299 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4300 }
4301 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4302 {
4303 temp = 0x1000C4;
4304 if(pipe == 1)
4305 temp |= (1 << 21);
4306 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4307 }
4308}
4309
4310static void i9xx_update_pll(struct drm_crtc *crtc,
4311 struct drm_display_mode *mode,
4312 struct drm_display_mode *adjusted_mode,
4313 intel_clock_t *clock, intel_clock_t *reduced_clock,
4314 int num_connectors)
4315{
4316 struct drm_device *dev = crtc->dev;
4317 struct drm_i915_private *dev_priv = dev->dev_private;
4318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4319 struct intel_encoder *encoder;
4320 int pipe = intel_crtc->pipe;
4321 u32 dpll;
4322 bool is_sdvo;
4323
4324 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4325
4326 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4327 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4328
4329 dpll = DPLL_VGA_MODE_DIS;
4330
4331 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4332 dpll |= DPLLB_MODE_LVDS;
4333 else
4334 dpll |= DPLLB_MODE_DAC_SERIAL;
4335 if (is_sdvo) {
4336 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4337 if (pixel_multiplier > 1) {
4338 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4339 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4340 }
4341 dpll |= DPLL_DVO_HIGH_SPEED;
4342 }
4343 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4344 dpll |= DPLL_DVO_HIGH_SPEED;
4345
4346 /* compute bitmask from p1 value */
4347 if (IS_PINEVIEW(dev))
4348 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4349 else {
4350 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4351 if (IS_G4X(dev) && reduced_clock)
4352 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4353 }
4354 switch (clock->p2) {
4355 case 5:
4356 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4357 break;
4358 case 7:
4359 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4360 break;
4361 case 10:
4362 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4363 break;
4364 case 14:
4365 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4366 break;
4367 }
4368 if (INTEL_INFO(dev)->gen >= 4)
4369 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4370
4371 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4372 dpll |= PLL_REF_INPUT_TVCLKINBC;
4373 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4374 /* XXX: just matching BIOS for now */
4375 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4376 dpll |= 3;
4377 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4378 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4379 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4380 else
4381 dpll |= PLL_REF_INPUT_DREFCLK;
4382
4383 dpll |= DPLL_VCO_ENABLE;
4384 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4385 POSTING_READ(DPLL(pipe));
4386 udelay(150);
4387
4388 for_each_encoder_on_crtc(dev, crtc, encoder)
4389 if (encoder->pre_pll_enable)
4390 encoder->pre_pll_enable(encoder);
4391
4392 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4393 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4394
4395 I915_WRITE(DPLL(pipe), dpll);
4396
4397 /* Wait for the clocks to stabilize. */
4398 POSTING_READ(DPLL(pipe));
4399 udelay(150);
4400
4401 if (INTEL_INFO(dev)->gen >= 4) {
4402 u32 temp = 0;
4403 if (is_sdvo) {
4404 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4405 if (temp > 1)
4406 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4407 else
4408 temp = 0;
4409 }
4410 I915_WRITE(DPLL_MD(pipe), temp);
4411 } else {
4412 /* The pixel multiplier can only be updated once the
4413 * DPLL is enabled and the clocks are stable.
4414 *
4415 * So write it again.
4416 */
4417 I915_WRITE(DPLL(pipe), dpll);
4418 }
4419}
4420
4421static void i8xx_update_pll(struct drm_crtc *crtc,
4422 struct drm_display_mode *adjusted_mode,
4423 intel_clock_t *clock, intel_clock_t *reduced_clock,
4424 int num_connectors)
4425{
4426 struct drm_device *dev = crtc->dev;
4427 struct drm_i915_private *dev_priv = dev->dev_private;
4428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4429 struct intel_encoder *encoder;
4430 int pipe = intel_crtc->pipe;
4431 u32 dpll;
4432
4433 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4434
4435 dpll = DPLL_VGA_MODE_DIS;
4436
4437 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4438 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4439 } else {
4440 if (clock->p1 == 2)
4441 dpll |= PLL_P1_DIVIDE_BY_TWO;
4442 else
4443 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4444 if (clock->p2 == 4)
4445 dpll |= PLL_P2_DIVIDE_BY_4;
4446 }
4447
4448 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4449 /* XXX: just matching BIOS for now */
4450 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4451 dpll |= 3;
4452 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4453 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4454 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4455 else
4456 dpll |= PLL_REF_INPUT_DREFCLK;
4457
4458 dpll |= DPLL_VCO_ENABLE;
4459 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4460 POSTING_READ(DPLL(pipe));
4461 udelay(150);
4462
4463 for_each_encoder_on_crtc(dev, crtc, encoder)
4464 if (encoder->pre_pll_enable)
4465 encoder->pre_pll_enable(encoder);
4466
4467 I915_WRITE(DPLL(pipe), dpll);
4468
4469 /* Wait for the clocks to stabilize. */
4470 POSTING_READ(DPLL(pipe));
4471 udelay(150);
4472
4473 /* The pixel multiplier can only be updated once the
4474 * DPLL is enabled and the clocks are stable.
4475 *
4476 * So write it again.
4477 */
4478 I915_WRITE(DPLL(pipe), dpll);
4479}
4480
4481static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4482 struct drm_display_mode *mode,
4483 struct drm_display_mode *adjusted_mode)
4484{
4485 struct drm_device *dev = intel_crtc->base.dev;
4486 struct drm_i915_private *dev_priv = dev->dev_private;
4487 enum pipe pipe = intel_crtc->pipe;
4488 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4489 uint32_t vsyncshift;
4490
4491 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4492 /* the chip adds 2 halflines automatically */
4493 adjusted_mode->crtc_vtotal -= 1;
4494 adjusted_mode->crtc_vblank_end -= 1;
4495 vsyncshift = adjusted_mode->crtc_hsync_start
4496 - adjusted_mode->crtc_htotal / 2;
4497 } else {
4498 vsyncshift = 0;
4499 }
4500
4501 if (INTEL_INFO(dev)->gen > 3)
4502 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4503
4504 I915_WRITE(HTOTAL(cpu_transcoder),
4505 (adjusted_mode->crtc_hdisplay - 1) |
4506 ((adjusted_mode->crtc_htotal - 1) << 16));
4507 I915_WRITE(HBLANK(cpu_transcoder),
4508 (adjusted_mode->crtc_hblank_start - 1) |
4509 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4510 I915_WRITE(HSYNC(cpu_transcoder),
4511 (adjusted_mode->crtc_hsync_start - 1) |
4512 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4513
4514 I915_WRITE(VTOTAL(cpu_transcoder),
4515 (adjusted_mode->crtc_vdisplay - 1) |
4516 ((adjusted_mode->crtc_vtotal - 1) << 16));
4517 I915_WRITE(VBLANK(cpu_transcoder),
4518 (adjusted_mode->crtc_vblank_start - 1) |
4519 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4520 I915_WRITE(VSYNC(cpu_transcoder),
4521 (adjusted_mode->crtc_vsync_start - 1) |
4522 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4523
4524 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4525 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4526 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4527 * bits. */
4528 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4529 (pipe == PIPE_B || pipe == PIPE_C))
4530 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4531
4532 /* pipesrc controls the size that is scaled from, which should
4533 * always be the user's requested size.
4534 */
4535 I915_WRITE(PIPESRC(pipe),
4536 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4537}
4538
4539static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4540 struct drm_display_mode *mode,
4541 struct drm_display_mode *adjusted_mode,
4542 int x, int y,
4543 struct drm_framebuffer *fb)
4544{
4545 struct drm_device *dev = crtc->dev;
4546 struct drm_i915_private *dev_priv = dev->dev_private;
4547 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4548 int pipe = intel_crtc->pipe;
4549 int plane = intel_crtc->plane;
4550 int refclk, num_connectors = 0;
4551 intel_clock_t clock, reduced_clock;
4552 u32 dspcntr, pipeconf;
4553 bool ok, has_reduced_clock = false, is_sdvo = false;
4554 bool is_lvds = false, is_tv = false, is_dp = false;
4555 struct intel_encoder *encoder;
4556 const intel_limit_t *limit;
4557 int ret;
4558
4559 for_each_encoder_on_crtc(dev, crtc, encoder) {
4560 switch (encoder->type) {
4561 case INTEL_OUTPUT_LVDS:
4562 is_lvds = true;
4563 break;
4564 case INTEL_OUTPUT_SDVO:
4565 case INTEL_OUTPUT_HDMI:
4566 is_sdvo = true;
4567 if (encoder->needs_tv_clock)
4568 is_tv = true;
4569 break;
4570 case INTEL_OUTPUT_TVOUT:
4571 is_tv = true;
4572 break;
4573 case INTEL_OUTPUT_DISPLAYPORT:
4574 is_dp = true;
4575 break;
4576 }
4577
4578 num_connectors++;
4579 }
4580
4581 refclk = i9xx_get_refclk(crtc, num_connectors);
4582
4583 /*
4584 * Returns a set of divisors for the desired target clock with the given
4585 * refclk, or FALSE. The returned values represent the clock equation:
4586 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4587 */
4588 limit = intel_limit(crtc, refclk);
4589 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4590 &clock);
4591 if (!ok) {
4592 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4593 return -EINVAL;
4594 }
4595
4596 /* Ensure that the cursor is valid for the new mode before changing... */
4597 intel_crtc_update_cursor(crtc, true);
4598
4599 if (is_lvds && dev_priv->lvds_downclock_avail) {
4600 /*
4601 * Ensure we match the reduced clock's P to the target clock.
4602 * If the clocks don't match, we can't switch the display clock
4603 * by using the FP0/FP1. In such case we will disable the LVDS
4604 * downclock feature.
4605 */
4606 has_reduced_clock = limit->find_pll(limit, crtc,
4607 dev_priv->lvds_downclock,
4608 refclk,
4609 &clock,
4610 &reduced_clock);
4611 }
4612
4613 if (is_sdvo && is_tv)
4614 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4615
4616 if (IS_GEN2(dev))
4617 i8xx_update_pll(crtc, adjusted_mode, &clock,
4618 has_reduced_clock ? &reduced_clock : NULL,
4619 num_connectors);
4620 else if (IS_VALLEYVIEW(dev))
4621 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4622 has_reduced_clock ? &reduced_clock : NULL,
4623 num_connectors);
4624 else
4625 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4626 has_reduced_clock ? &reduced_clock : NULL,
4627 num_connectors);
4628
4629 /* setup pipeconf */
4630 pipeconf = I915_READ(PIPECONF(pipe));
4631
4632 /* Set up the display plane register */
4633 dspcntr = DISPPLANE_GAMMA_ENABLE;
4634
4635 if (pipe == 0)
4636 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4637 else
4638 dspcntr |= DISPPLANE_SEL_PIPE_B;
4639
4640 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4641 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4642 * core speed.
4643 *
4644 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4645 * pipe == 0 check?
4646 */
4647 if (mode->clock >
4648 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4649 pipeconf |= PIPECONF_DOUBLE_WIDE;
4650 else
4651 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4652 }
4653
4654 /* default to 8bpc */
4655 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4656 if (is_dp) {
4657 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4658 pipeconf |= PIPECONF_BPP_6 |
4659 PIPECONF_DITHER_EN |
4660 PIPECONF_DITHER_TYPE_SP;
4661 }
4662 }
4663
4664 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4665 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4666 pipeconf |= PIPECONF_BPP_6 |
4667 PIPECONF_ENABLE |
4668 I965_PIPECONF_ACTIVE;
4669 }
4670 }
4671
4672 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4673 drm_mode_debug_printmodeline(mode);
4674
4675 if (HAS_PIPE_CXSR(dev)) {
4676 if (intel_crtc->lowfreq_avail) {
4677 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4678 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4679 } else {
4680 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4681 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4682 }
4683 }
4684
4685 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4686 if (!IS_GEN2(dev) &&
4687 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4688 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4689 else
4690 pipeconf |= PIPECONF_PROGRESSIVE;
4691
4692 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4693
4694 /* pipesrc and dspsize control the size that is scaled from,
4695 * which should always be the user's requested size.
4696 */
4697 I915_WRITE(DSPSIZE(plane),
4698 ((mode->vdisplay - 1) << 16) |
4699 (mode->hdisplay - 1));
4700 I915_WRITE(DSPPOS(plane), 0);
4701
4702 I915_WRITE(PIPECONF(pipe), pipeconf);
4703 POSTING_READ(PIPECONF(pipe));
4704 intel_enable_pipe(dev_priv, pipe, false);
4705
4706 intel_wait_for_vblank(dev, pipe);
4707
4708 I915_WRITE(DSPCNTR(plane), dspcntr);
4709 POSTING_READ(DSPCNTR(plane));
4710
4711 ret = intel_pipe_set_base(crtc, x, y, fb);
4712
4713 intel_update_watermarks(dev);
4714
4715 return ret;
4716}
4717
4718/*
4719 * Initialize reference clocks when the driver loads
4720 */
4721void ironlake_init_pch_refclk(struct drm_device *dev)
4722{
4723 struct drm_i915_private *dev_priv = dev->dev_private;
4724 struct drm_mode_config *mode_config = &dev->mode_config;
4725 struct intel_encoder *encoder;
4726 u32 temp;
4727 bool has_lvds = false;
4728 bool has_cpu_edp = false;
4729 bool has_pch_edp = false;
4730 bool has_panel = false;
4731 bool has_ck505 = false;
4732 bool can_ssc = false;
4733
4734 /* We need to take the global config into account */
4735 list_for_each_entry(encoder, &mode_config->encoder_list,
4736 base.head) {
4737 switch (encoder->type) {
4738 case INTEL_OUTPUT_LVDS:
4739 has_panel = true;
4740 has_lvds = true;
4741 break;
4742 case INTEL_OUTPUT_EDP:
4743 has_panel = true;
4744 if (intel_encoder_is_pch_edp(&encoder->base))
4745 has_pch_edp = true;
4746 else
4747 has_cpu_edp = true;
4748 break;
4749 }
4750 }
4751
4752 if (HAS_PCH_IBX(dev)) {
4753 has_ck505 = dev_priv->display_clock_mode;
4754 can_ssc = has_ck505;
4755 } else {
4756 has_ck505 = false;
4757 can_ssc = true;
4758 }
4759
4760 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4761 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4762 has_ck505);
4763
4764 /* Ironlake: try to setup display ref clock before DPLL
4765 * enabling. This is only under driver's control after
4766 * PCH B stepping, previous chipset stepping should be
4767 * ignoring this setting.
4768 */
4769 temp = I915_READ(PCH_DREF_CONTROL);
4770 /* Always enable nonspread source */
4771 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4772
4773 if (has_ck505)
4774 temp |= DREF_NONSPREAD_CK505_ENABLE;
4775 else
4776 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4777
4778 if (has_panel) {
4779 temp &= ~DREF_SSC_SOURCE_MASK;
4780 temp |= DREF_SSC_SOURCE_ENABLE;
4781
4782 /* SSC must be turned on before enabling the CPU output */
4783 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4784 DRM_DEBUG_KMS("Using SSC on panel\n");
4785 temp |= DREF_SSC1_ENABLE;
4786 } else
4787 temp &= ~DREF_SSC1_ENABLE;
4788
4789 /* Get SSC going before enabling the outputs */
4790 I915_WRITE(PCH_DREF_CONTROL, temp);
4791 POSTING_READ(PCH_DREF_CONTROL);
4792 udelay(200);
4793
4794 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4795
4796 /* Enable CPU source on CPU attached eDP */
4797 if (has_cpu_edp) {
4798 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4799 DRM_DEBUG_KMS("Using SSC on eDP\n");
4800 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4801 }
4802 else
4803 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4804 } else
4805 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4806
4807 I915_WRITE(PCH_DREF_CONTROL, temp);
4808 POSTING_READ(PCH_DREF_CONTROL);
4809 udelay(200);
4810 } else {
4811 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4812
4813 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4814
4815 /* Turn off CPU output */
4816 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4817
4818 I915_WRITE(PCH_DREF_CONTROL, temp);
4819 POSTING_READ(PCH_DREF_CONTROL);
4820 udelay(200);
4821
4822 /* Turn off the SSC source */
4823 temp &= ~DREF_SSC_SOURCE_MASK;
4824 temp |= DREF_SSC_SOURCE_DISABLE;
4825
4826 /* Turn off SSC1 */
4827 temp &= ~ DREF_SSC1_ENABLE;
4828
4829 I915_WRITE(PCH_DREF_CONTROL, temp);
4830 POSTING_READ(PCH_DREF_CONTROL);
4831 udelay(200);
4832 }
4833}
4834
4835static int ironlake_get_refclk(struct drm_crtc *crtc)
4836{
4837 struct drm_device *dev = crtc->dev;
4838 struct drm_i915_private *dev_priv = dev->dev_private;
4839 struct intel_encoder *encoder;
4840 struct intel_encoder *edp_encoder = NULL;
4841 int num_connectors = 0;
4842 bool is_lvds = false;
4843
4844 for_each_encoder_on_crtc(dev, crtc, encoder) {
4845 switch (encoder->type) {
4846 case INTEL_OUTPUT_LVDS:
4847 is_lvds = true;
4848 break;
4849 case INTEL_OUTPUT_EDP:
4850 edp_encoder = encoder;
4851 break;
4852 }
4853 num_connectors++;
4854 }
4855
4856 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4857 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4858 dev_priv->lvds_ssc_freq);
4859 return dev_priv->lvds_ssc_freq * 1000;
4860 }
4861
4862 return 120000;
4863}
4864
4865static void ironlake_set_pipeconf(struct drm_crtc *crtc,
4866 struct drm_display_mode *adjusted_mode,
4867 bool dither)
4868{
4869 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4870 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4871 int pipe = intel_crtc->pipe;
4872 uint32_t val;
4873
4874 val = I915_READ(PIPECONF(pipe));
4875
4876 val &= ~PIPE_BPC_MASK;
4877 switch (intel_crtc->bpp) {
4878 case 18:
4879 val |= PIPE_6BPC;
4880 break;
4881 case 24:
4882 val |= PIPE_8BPC;
4883 break;
4884 case 30:
4885 val |= PIPE_10BPC;
4886 break;
4887 case 36:
4888 val |= PIPE_12BPC;
4889 break;
4890 default:
4891 /* Case prevented by intel_choose_pipe_bpp_dither. */
4892 BUG();
4893 }
4894
4895 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4896 if (dither)
4897 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4898
4899 val &= ~PIPECONF_INTERLACE_MASK;
4900 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4901 val |= PIPECONF_INTERLACED_ILK;
4902 else
4903 val |= PIPECONF_PROGRESSIVE;
4904
4905 I915_WRITE(PIPECONF(pipe), val);
4906 POSTING_READ(PIPECONF(pipe));
4907}
4908
4909static void haswell_set_pipeconf(struct drm_crtc *crtc,
4910 struct drm_display_mode *adjusted_mode,
4911 bool dither)
4912{
4913 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4914 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4915 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4916 uint32_t val;
4917
4918 val = I915_READ(PIPECONF(cpu_transcoder));
4919
4920 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
4921 if (dither)
4922 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
4923
4924 val &= ~PIPECONF_INTERLACE_MASK_HSW;
4925 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4926 val |= PIPECONF_INTERLACED_ILK;
4927 else
4928 val |= PIPECONF_PROGRESSIVE;
4929
4930 I915_WRITE(PIPECONF(cpu_transcoder), val);
4931 POSTING_READ(PIPECONF(cpu_transcoder));
4932}
4933
4934static bool ironlake_compute_clocks(struct drm_crtc *crtc,
4935 struct drm_display_mode *adjusted_mode,
4936 intel_clock_t *clock,
4937 bool *has_reduced_clock,
4938 intel_clock_t *reduced_clock)
4939{
4940 struct drm_device *dev = crtc->dev;
4941 struct drm_i915_private *dev_priv = dev->dev_private;
4942 struct intel_encoder *intel_encoder;
4943 int refclk;
4944 const intel_limit_t *limit;
4945 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
4946
4947 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4948 switch (intel_encoder->type) {
4949 case INTEL_OUTPUT_LVDS:
4950 is_lvds = true;
4951 break;
4952 case INTEL_OUTPUT_SDVO:
4953 case INTEL_OUTPUT_HDMI:
4954 is_sdvo = true;
4955 if (intel_encoder->needs_tv_clock)
4956 is_tv = true;
4957 break;
4958 case INTEL_OUTPUT_TVOUT:
4959 is_tv = true;
4960 break;
4961 }
4962 }
4963
4964 refclk = ironlake_get_refclk(crtc);
4965
4966 /*
4967 * Returns a set of divisors for the desired target clock with the given
4968 * refclk, or FALSE. The returned values represent the clock equation:
4969 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4970 */
4971 limit = intel_limit(crtc, refclk);
4972 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4973 clock);
4974 if (!ret)
4975 return false;
4976
4977 if (is_lvds && dev_priv->lvds_downclock_avail) {
4978 /*
4979 * Ensure we match the reduced clock's P to the target clock.
4980 * If the clocks don't match, we can't switch the display clock
4981 * by using the FP0/FP1. In such case we will disable the LVDS
4982 * downclock feature.
4983 */
4984 *has_reduced_clock = limit->find_pll(limit, crtc,
4985 dev_priv->lvds_downclock,
4986 refclk,
4987 clock,
4988 reduced_clock);
4989 }
4990
4991 if (is_sdvo && is_tv)
4992 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
4993
4994 return true;
4995}
4996
4997static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
4998{
4999 struct drm_i915_private *dev_priv = dev->dev_private;
5000 uint32_t temp;
5001
5002 temp = I915_READ(SOUTH_CHICKEN1);
5003 if (temp & FDI_BC_BIFURCATION_SELECT)
5004 return;
5005
5006 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5007 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5008
5009 temp |= FDI_BC_BIFURCATION_SELECT;
5010 DRM_DEBUG_KMS("enabling fdi C rx\n");
5011 I915_WRITE(SOUTH_CHICKEN1, temp);
5012 POSTING_READ(SOUTH_CHICKEN1);
5013}
5014
5015static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5016{
5017 struct drm_device *dev = intel_crtc->base.dev;
5018 struct drm_i915_private *dev_priv = dev->dev_private;
5019 struct intel_crtc *pipe_B_crtc =
5020 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5021
5022 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5023 intel_crtc->pipe, intel_crtc->fdi_lanes);
5024 if (intel_crtc->fdi_lanes > 4) {
5025 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5026 intel_crtc->pipe, intel_crtc->fdi_lanes);
5027 /* Clamp lanes to avoid programming the hw with bogus values. */
5028 intel_crtc->fdi_lanes = 4;
5029
5030 return false;
5031 }
5032
5033 if (dev_priv->num_pipe == 2)
5034 return true;
5035
5036 switch (intel_crtc->pipe) {
5037 case PIPE_A:
5038 return true;
5039 case PIPE_B:
5040 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5041 intel_crtc->fdi_lanes > 2) {
5042 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5043 intel_crtc->pipe, intel_crtc->fdi_lanes);
5044 /* Clamp lanes to avoid programming the hw with bogus values. */
5045 intel_crtc->fdi_lanes = 2;
5046
5047 return false;
5048 }
5049
5050 if (intel_crtc->fdi_lanes > 2)
5051 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5052 else
5053 cpt_enable_fdi_bc_bifurcation(dev);
5054
5055 return true;
5056 case PIPE_C:
5057 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5058 if (intel_crtc->fdi_lanes > 2) {
5059 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5060 intel_crtc->pipe, intel_crtc->fdi_lanes);
5061 /* Clamp lanes to avoid programming the hw with bogus values. */
5062 intel_crtc->fdi_lanes = 2;
5063
5064 return false;
5065 }
5066 } else {
5067 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5068 return false;
5069 }
5070
5071 cpt_enable_fdi_bc_bifurcation(dev);
5072
5073 return true;
5074 default:
5075 BUG();
5076 }
5077}
5078
5079static void ironlake_set_m_n(struct drm_crtc *crtc,
5080 struct drm_display_mode *mode,
5081 struct drm_display_mode *adjusted_mode)
5082{
5083 struct drm_device *dev = crtc->dev;
5084 struct drm_i915_private *dev_priv = dev->dev_private;
5085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5086 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5087 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5088 struct intel_link_m_n m_n = {0};
5089 int target_clock, pixel_multiplier, lane, link_bw;
5090 bool is_dp = false, is_cpu_edp = false;
5091
5092 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5093 switch (intel_encoder->type) {
5094 case INTEL_OUTPUT_DISPLAYPORT:
5095 is_dp = true;
5096 break;
5097 case INTEL_OUTPUT_EDP:
5098 is_dp = true;
5099 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5100 is_cpu_edp = true;
5101 edp_encoder = intel_encoder;
5102 break;
5103 }
5104 }
5105
5106 /* FDI link */
5107 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5108 lane = 0;
5109 /* CPU eDP doesn't require FDI link, so just set DP M/N
5110 according to current link config */
5111 if (is_cpu_edp) {
5112 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5113 } else {
5114 /* FDI is a binary signal running at ~2.7GHz, encoding
5115 * each output octet as 10 bits. The actual frequency
5116 * is stored as a divider into a 100MHz clock, and the
5117 * mode pixel clock is stored in units of 1KHz.
5118 * Hence the bw of each lane in terms of the mode signal
5119 * is:
5120 */
5121 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5122 }
5123
5124 /* [e]DP over FDI requires target mode clock instead of link clock. */
5125 if (edp_encoder)
5126 target_clock = intel_edp_target_clock(edp_encoder, mode);
5127 else if (is_dp)
5128 target_clock = mode->clock;
5129 else
5130 target_clock = adjusted_mode->clock;
5131
5132 if (!lane) {
5133 /*
5134 * Account for spread spectrum to avoid
5135 * oversubscribing the link. Max center spread
5136 * is 2.5%; use 5% for safety's sake.
5137 */
5138 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5139 lane = bps / (link_bw * 8) + 1;
5140 }
5141
5142 intel_crtc->fdi_lanes = lane;
5143
5144 if (pixel_multiplier > 1)
5145 link_bw *= pixel_multiplier;
5146 intel_link_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw, &m_n);
5147
5148 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5149 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5150 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5151 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5152}
5153
5154static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5155 struct drm_display_mode *adjusted_mode,
5156 intel_clock_t *clock, u32 fp)
5157{
5158 struct drm_crtc *crtc = &intel_crtc->base;
5159 struct drm_device *dev = crtc->dev;
5160 struct drm_i915_private *dev_priv = dev->dev_private;
5161 struct intel_encoder *intel_encoder;
5162 uint32_t dpll;
5163 int factor, pixel_multiplier, num_connectors = 0;
5164 bool is_lvds = false, is_sdvo = false, is_tv = false;
5165 bool is_dp = false, is_cpu_edp = false;
5166
5167 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5168 switch (intel_encoder->type) {
5169 case INTEL_OUTPUT_LVDS:
5170 is_lvds = true;
5171 break;
5172 case INTEL_OUTPUT_SDVO:
5173 case INTEL_OUTPUT_HDMI:
5174 is_sdvo = true;
5175 if (intel_encoder->needs_tv_clock)
5176 is_tv = true;
5177 break;
5178 case INTEL_OUTPUT_TVOUT:
5179 is_tv = true;
5180 break;
5181 case INTEL_OUTPUT_DISPLAYPORT:
5182 is_dp = true;
5183 break;
5184 case INTEL_OUTPUT_EDP:
5185 is_dp = true;
5186 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5187 is_cpu_edp = true;
5188 break;
5189 }
5190
5191 num_connectors++;
5192 }
5193
5194 /* Enable autotuning of the PLL clock (if permissible) */
5195 factor = 21;
5196 if (is_lvds) {
5197 if ((intel_panel_use_ssc(dev_priv) &&
5198 dev_priv->lvds_ssc_freq == 100) ||
5199 intel_is_dual_link_lvds(dev))
5200 factor = 25;
5201 } else if (is_sdvo && is_tv)
5202 factor = 20;
5203
5204 if (clock->m < factor * clock->n)
5205 fp |= FP_CB_TUNE;
5206
5207 dpll = 0;
5208
5209 if (is_lvds)
5210 dpll |= DPLLB_MODE_LVDS;
5211 else
5212 dpll |= DPLLB_MODE_DAC_SERIAL;
5213 if (is_sdvo) {
5214 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5215 if (pixel_multiplier > 1) {
5216 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5217 }
5218 dpll |= DPLL_DVO_HIGH_SPEED;
5219 }
5220 if (is_dp && !is_cpu_edp)
5221 dpll |= DPLL_DVO_HIGH_SPEED;
5222
5223 /* compute bitmask from p1 value */
5224 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5225 /* also FPA1 */
5226 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5227
5228 switch (clock->p2) {
5229 case 5:
5230 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5231 break;
5232 case 7:
5233 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5234 break;
5235 case 10:
5236 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5237 break;
5238 case 14:
5239 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5240 break;
5241 }
5242
5243 if (is_sdvo && is_tv)
5244 dpll |= PLL_REF_INPUT_TVCLKINBC;
5245 else if (is_tv)
5246 /* XXX: just matching BIOS for now */
5247 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5248 dpll |= 3;
5249 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5250 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5251 else
5252 dpll |= PLL_REF_INPUT_DREFCLK;
5253
5254 return dpll;
5255}
5256
5257static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5258 struct drm_display_mode *mode,
5259 struct drm_display_mode *adjusted_mode,
5260 int x, int y,
5261 struct drm_framebuffer *fb)
5262{
5263 struct drm_device *dev = crtc->dev;
5264 struct drm_i915_private *dev_priv = dev->dev_private;
5265 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5266 int pipe = intel_crtc->pipe;
5267 int plane = intel_crtc->plane;
5268 int num_connectors = 0;
5269 intel_clock_t clock, reduced_clock;
5270 u32 dpll, fp = 0, fp2 = 0;
5271 bool ok, has_reduced_clock = false;
5272 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5273 struct intel_encoder *encoder;
5274 int ret;
5275 bool dither, fdi_config_ok;
5276
5277 for_each_encoder_on_crtc(dev, crtc, encoder) {
5278 switch (encoder->type) {
5279 case INTEL_OUTPUT_LVDS:
5280 is_lvds = true;
5281 break;
5282 case INTEL_OUTPUT_DISPLAYPORT:
5283 is_dp = true;
5284 break;
5285 case INTEL_OUTPUT_EDP:
5286 is_dp = true;
5287 if (!intel_encoder_is_pch_edp(&encoder->base))
5288 is_cpu_edp = true;
5289 break;
5290 }
5291
5292 num_connectors++;
5293 }
5294
5295 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5296 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5297
5298 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5299 &has_reduced_clock, &reduced_clock);
5300 if (!ok) {
5301 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5302 return -EINVAL;
5303 }
5304
5305 /* Ensure that the cursor is valid for the new mode before changing... */
5306 intel_crtc_update_cursor(crtc, true);
5307
5308 /* determine panel color depth */
5309 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5310 adjusted_mode);
5311 if (is_lvds && dev_priv->lvds_dither)
5312 dither = true;
5313
5314 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5315 if (has_reduced_clock)
5316 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5317 reduced_clock.m2;
5318
5319 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5320
5321 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5322 drm_mode_debug_printmodeline(mode);
5323
5324 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5325 if (!is_cpu_edp) {
5326 struct intel_pch_pll *pll;
5327
5328 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5329 if (pll == NULL) {
5330 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5331 pipe);
5332 return -EINVAL;
5333 }
5334 } else
5335 intel_put_pch_pll(intel_crtc);
5336
5337 if (is_dp && !is_cpu_edp)
5338 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5339
5340 for_each_encoder_on_crtc(dev, crtc, encoder)
5341 if (encoder->pre_pll_enable)
5342 encoder->pre_pll_enable(encoder);
5343
5344 if (intel_crtc->pch_pll) {
5345 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5346
5347 /* Wait for the clocks to stabilize. */
5348 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5349 udelay(150);
5350
5351 /* The pixel multiplier can only be updated once the
5352 * DPLL is enabled and the clocks are stable.
5353 *
5354 * So write it again.
5355 */
5356 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5357 }
5358
5359 intel_crtc->lowfreq_avail = false;
5360 if (intel_crtc->pch_pll) {
5361 if (is_lvds && has_reduced_clock && i915_powersave) {
5362 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5363 intel_crtc->lowfreq_avail = true;
5364 } else {
5365 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5366 }
5367 }
5368
5369 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5370
5371 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5372 * ironlake_check_fdi_lanes. */
5373 ironlake_set_m_n(crtc, mode, adjusted_mode);
5374
5375 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5376
5377 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5378
5379 intel_wait_for_vblank(dev, pipe);
5380
5381 /* Set up the display plane register */
5382 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5383 POSTING_READ(DSPCNTR(plane));
5384
5385 ret = intel_pipe_set_base(crtc, x, y, fb);
5386
5387 intel_update_watermarks(dev);
5388
5389 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5390
5391 return fdi_config_ok ? ret : -EINVAL;
5392}
5393
5394static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5395 struct drm_display_mode *mode,
5396 struct drm_display_mode *adjusted_mode,
5397 int x, int y,
5398 struct drm_framebuffer *fb)
5399{
5400 struct drm_device *dev = crtc->dev;
5401 struct drm_i915_private *dev_priv = dev->dev_private;
5402 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5403 int pipe = intel_crtc->pipe;
5404 int plane = intel_crtc->plane;
5405 int num_connectors = 0;
5406 bool is_dp = false, is_cpu_edp = false;
5407 struct intel_encoder *encoder;
5408 int ret;
5409 bool dither;
5410
5411 for_each_encoder_on_crtc(dev, crtc, encoder) {
5412 switch (encoder->type) {
5413 case INTEL_OUTPUT_DISPLAYPORT:
5414 is_dp = true;
5415 break;
5416 case INTEL_OUTPUT_EDP:
5417 is_dp = true;
5418 if (!intel_encoder_is_pch_edp(&encoder->base))
5419 is_cpu_edp = true;
5420 break;
5421 }
5422
5423 num_connectors++;
5424 }
5425
5426 if (is_cpu_edp)
5427 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5428 else
5429 intel_crtc->cpu_transcoder = pipe;
5430
5431 /* We are not sure yet this won't happen. */
5432 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5433 INTEL_PCH_TYPE(dev));
5434
5435 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5436 num_connectors, pipe_name(pipe));
5437
5438 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5439 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5440
5441 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5442
5443 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5444 return -EINVAL;
5445
5446 /* Ensure that the cursor is valid for the new mode before changing... */
5447 intel_crtc_update_cursor(crtc, true);
5448
5449 /* determine panel color depth */
5450 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5451 adjusted_mode);
5452
5453 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5454 drm_mode_debug_printmodeline(mode);
5455
5456 if (is_dp && !is_cpu_edp)
5457 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5458
5459 intel_crtc->lowfreq_avail = false;
5460
5461 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5462
5463 if (!is_dp || is_cpu_edp)
5464 ironlake_set_m_n(crtc, mode, adjusted_mode);
5465
5466 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5467
5468 /* Set up the display plane register */
5469 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5470 POSTING_READ(DSPCNTR(plane));
5471
5472 ret = intel_pipe_set_base(crtc, x, y, fb);
5473
5474 intel_update_watermarks(dev);
5475
5476 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5477
5478 return ret;
5479}
5480
5481static int intel_crtc_mode_set(struct drm_crtc *crtc,
5482 struct drm_display_mode *mode,
5483 struct drm_display_mode *adjusted_mode,
5484 int x, int y,
5485 struct drm_framebuffer *fb)
5486{
5487 struct drm_device *dev = crtc->dev;
5488 struct drm_i915_private *dev_priv = dev->dev_private;
5489 struct drm_encoder_helper_funcs *encoder_funcs;
5490 struct intel_encoder *encoder;
5491 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5492 int pipe = intel_crtc->pipe;
5493 int ret;
5494
5495 drm_vblank_pre_modeset(dev, pipe);
5496
5497 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5498 x, y, fb);
5499 drm_vblank_post_modeset(dev, pipe);
5500
5501 if (ret != 0)
5502 return ret;
5503
5504 for_each_encoder_on_crtc(dev, crtc, encoder) {
5505 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5506 encoder->base.base.id,
5507 drm_get_encoder_name(&encoder->base),
5508 mode->base.id, mode->name);
5509 encoder_funcs = encoder->base.helper_private;
5510 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5511 }
5512
5513 return 0;
5514}
5515
5516static bool intel_eld_uptodate(struct drm_connector *connector,
5517 int reg_eldv, uint32_t bits_eldv,
5518 int reg_elda, uint32_t bits_elda,
5519 int reg_edid)
5520{
5521 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5522 uint8_t *eld = connector->eld;
5523 uint32_t i;
5524
5525 i = I915_READ(reg_eldv);
5526 i &= bits_eldv;
5527
5528 if (!eld[0])
5529 return !i;
5530
5531 if (!i)
5532 return false;
5533
5534 i = I915_READ(reg_elda);
5535 i &= ~bits_elda;
5536 I915_WRITE(reg_elda, i);
5537
5538 for (i = 0; i < eld[2]; i++)
5539 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5540 return false;
5541
5542 return true;
5543}
5544
5545static void g4x_write_eld(struct drm_connector *connector,
5546 struct drm_crtc *crtc)
5547{
5548 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5549 uint8_t *eld = connector->eld;
5550 uint32_t eldv;
5551 uint32_t len;
5552 uint32_t i;
5553
5554 i = I915_READ(G4X_AUD_VID_DID);
5555
5556 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5557 eldv = G4X_ELDV_DEVCL_DEVBLC;
5558 else
5559 eldv = G4X_ELDV_DEVCTG;
5560
5561 if (intel_eld_uptodate(connector,
5562 G4X_AUD_CNTL_ST, eldv,
5563 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5564 G4X_HDMIW_HDMIEDID))
5565 return;
5566
5567 i = I915_READ(G4X_AUD_CNTL_ST);
5568 i &= ~(eldv | G4X_ELD_ADDR);
5569 len = (i >> 9) & 0x1f; /* ELD buffer size */
5570 I915_WRITE(G4X_AUD_CNTL_ST, i);
5571
5572 if (!eld[0])
5573 return;
5574
5575 len = min_t(uint8_t, eld[2], len);
5576 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5577 for (i = 0; i < len; i++)
5578 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5579
5580 i = I915_READ(G4X_AUD_CNTL_ST);
5581 i |= eldv;
5582 I915_WRITE(G4X_AUD_CNTL_ST, i);
5583}
5584
5585static void haswell_write_eld(struct drm_connector *connector,
5586 struct drm_crtc *crtc)
5587{
5588 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5589 uint8_t *eld = connector->eld;
5590 struct drm_device *dev = crtc->dev;
5591 uint32_t eldv;
5592 uint32_t i;
5593 int len;
5594 int pipe = to_intel_crtc(crtc)->pipe;
5595 int tmp;
5596
5597 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5598 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5599 int aud_config = HSW_AUD_CFG(pipe);
5600 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5601
5602
5603 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5604
5605 /* Audio output enable */
5606 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5607 tmp = I915_READ(aud_cntrl_st2);
5608 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5609 I915_WRITE(aud_cntrl_st2, tmp);
5610
5611 /* Wait for 1 vertical blank */
5612 intel_wait_for_vblank(dev, pipe);
5613
5614 /* Set ELD valid state */
5615 tmp = I915_READ(aud_cntrl_st2);
5616 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5617 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5618 I915_WRITE(aud_cntrl_st2, tmp);
5619 tmp = I915_READ(aud_cntrl_st2);
5620 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5621
5622 /* Enable HDMI mode */
5623 tmp = I915_READ(aud_config);
5624 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5625 /* clear N_programing_enable and N_value_index */
5626 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5627 I915_WRITE(aud_config, tmp);
5628
5629 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5630
5631 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5632
5633 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5634 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5635 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5636 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5637 } else
5638 I915_WRITE(aud_config, 0);
5639
5640 if (intel_eld_uptodate(connector,
5641 aud_cntrl_st2, eldv,
5642 aud_cntl_st, IBX_ELD_ADDRESS,
5643 hdmiw_hdmiedid))
5644 return;
5645
5646 i = I915_READ(aud_cntrl_st2);
5647 i &= ~eldv;
5648 I915_WRITE(aud_cntrl_st2, i);
5649
5650 if (!eld[0])
5651 return;
5652
5653 i = I915_READ(aud_cntl_st);
5654 i &= ~IBX_ELD_ADDRESS;
5655 I915_WRITE(aud_cntl_st, i);
5656 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5657 DRM_DEBUG_DRIVER("port num:%d\n", i);
5658
5659 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5660 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5661 for (i = 0; i < len; i++)
5662 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5663
5664 i = I915_READ(aud_cntrl_st2);
5665 i |= eldv;
5666 I915_WRITE(aud_cntrl_st2, i);
5667
5668}
5669
5670static void ironlake_write_eld(struct drm_connector *connector,
5671 struct drm_crtc *crtc)
5672{
5673 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5674 uint8_t *eld = connector->eld;
5675 uint32_t eldv;
5676 uint32_t i;
5677 int len;
5678 int hdmiw_hdmiedid;
5679 int aud_config;
5680 int aud_cntl_st;
5681 int aud_cntrl_st2;
5682 int pipe = to_intel_crtc(crtc)->pipe;
5683
5684 if (HAS_PCH_IBX(connector->dev)) {
5685 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
5686 aud_config = IBX_AUD_CFG(pipe);
5687 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
5688 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
5689 } else {
5690 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
5691 aud_config = CPT_AUD_CFG(pipe);
5692 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
5693 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
5694 }
5695
5696 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5697
5698 i = I915_READ(aud_cntl_st);
5699 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5700 if (!i) {
5701 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
5702 /* operate blindly on all ports */
5703 eldv = IBX_ELD_VALIDB;
5704 eldv |= IBX_ELD_VALIDB << 4;
5705 eldv |= IBX_ELD_VALIDB << 8;
5706 } else {
5707 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
5708 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
5709 }
5710
5711 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5712 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5713 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5714 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5715 } else
5716 I915_WRITE(aud_config, 0);
5717
5718 if (intel_eld_uptodate(connector,
5719 aud_cntrl_st2, eldv,
5720 aud_cntl_st, IBX_ELD_ADDRESS,
5721 hdmiw_hdmiedid))
5722 return;
5723
5724 i = I915_READ(aud_cntrl_st2);
5725 i &= ~eldv;
5726 I915_WRITE(aud_cntrl_st2, i);
5727
5728 if (!eld[0])
5729 return;
5730
5731 i = I915_READ(aud_cntl_st);
5732 i &= ~IBX_ELD_ADDRESS;
5733 I915_WRITE(aud_cntl_st, i);
5734
5735 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5736 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5737 for (i = 0; i < len; i++)
5738 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5739
5740 i = I915_READ(aud_cntrl_st2);
5741 i |= eldv;
5742 I915_WRITE(aud_cntrl_st2, i);
5743}
5744
5745void intel_write_eld(struct drm_encoder *encoder,
5746 struct drm_display_mode *mode)
5747{
5748 struct drm_crtc *crtc = encoder->crtc;
5749 struct drm_connector *connector;
5750 struct drm_device *dev = encoder->dev;
5751 struct drm_i915_private *dev_priv = dev->dev_private;
5752
5753 connector = drm_select_eld(encoder, mode);
5754 if (!connector)
5755 return;
5756
5757 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5758 connector->base.id,
5759 drm_get_connector_name(connector),
5760 connector->encoder->base.id,
5761 drm_get_encoder_name(connector->encoder));
5762
5763 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
5764
5765 if (dev_priv->display.write_eld)
5766 dev_priv->display.write_eld(connector, crtc);
5767}
5768
5769/** Loads the palette/gamma unit for the CRTC with the prepared values */
5770void intel_crtc_load_lut(struct drm_crtc *crtc)
5771{
5772 struct drm_device *dev = crtc->dev;
5773 struct drm_i915_private *dev_priv = dev->dev_private;
5774 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5775 int palreg = PALETTE(intel_crtc->pipe);
5776 int i;
5777
5778 /* The clocks have to be on to load the palette. */
5779 if (!crtc->enabled || !intel_crtc->active)
5780 return;
5781
5782 /* use legacy palette for Ironlake */
5783 if (HAS_PCH_SPLIT(dev))
5784 palreg = LGC_PALETTE(intel_crtc->pipe);
5785
5786 for (i = 0; i < 256; i++) {
5787 I915_WRITE(palreg + 4 * i,
5788 (intel_crtc->lut_r[i] << 16) |
5789 (intel_crtc->lut_g[i] << 8) |
5790 intel_crtc->lut_b[i]);
5791 }
5792}
5793
5794static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5795{
5796 struct drm_device *dev = crtc->dev;
5797 struct drm_i915_private *dev_priv = dev->dev_private;
5798 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5799 bool visible = base != 0;
5800 u32 cntl;
5801
5802 if (intel_crtc->cursor_visible == visible)
5803 return;
5804
5805 cntl = I915_READ(_CURACNTR);
5806 if (visible) {
5807 /* On these chipsets we can only modify the base whilst
5808 * the cursor is disabled.
5809 */
5810 I915_WRITE(_CURABASE, base);
5811
5812 cntl &= ~(CURSOR_FORMAT_MASK);
5813 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5814 cntl |= CURSOR_ENABLE |
5815 CURSOR_GAMMA_ENABLE |
5816 CURSOR_FORMAT_ARGB;
5817 } else
5818 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5819 I915_WRITE(_CURACNTR, cntl);
5820
5821 intel_crtc->cursor_visible = visible;
5822}
5823
5824static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5825{
5826 struct drm_device *dev = crtc->dev;
5827 struct drm_i915_private *dev_priv = dev->dev_private;
5828 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5829 int pipe = intel_crtc->pipe;
5830 bool visible = base != 0;
5831
5832 if (intel_crtc->cursor_visible != visible) {
5833 uint32_t cntl = I915_READ(CURCNTR(pipe));
5834 if (base) {
5835 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5836 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5837 cntl |= pipe << 28; /* Connect to correct pipe */
5838 } else {
5839 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5840 cntl |= CURSOR_MODE_DISABLE;
5841 }
5842 I915_WRITE(CURCNTR(pipe), cntl);
5843
5844 intel_crtc->cursor_visible = visible;
5845 }
5846 /* and commit changes on next vblank */
5847 I915_WRITE(CURBASE(pipe), base);
5848}
5849
5850static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
5851{
5852 struct drm_device *dev = crtc->dev;
5853 struct drm_i915_private *dev_priv = dev->dev_private;
5854 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5855 int pipe = intel_crtc->pipe;
5856 bool visible = base != 0;
5857
5858 if (intel_crtc->cursor_visible != visible) {
5859 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
5860 if (base) {
5861 cntl &= ~CURSOR_MODE;
5862 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5863 } else {
5864 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5865 cntl |= CURSOR_MODE_DISABLE;
5866 }
5867 I915_WRITE(CURCNTR_IVB(pipe), cntl);
5868
5869 intel_crtc->cursor_visible = visible;
5870 }
5871 /* and commit changes on next vblank */
5872 I915_WRITE(CURBASE_IVB(pipe), base);
5873}
5874
5875/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5876static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5877 bool on)
5878{
5879 struct drm_device *dev = crtc->dev;
5880 struct drm_i915_private *dev_priv = dev->dev_private;
5881 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5882 int pipe = intel_crtc->pipe;
5883 int x = intel_crtc->cursor_x;
5884 int y = intel_crtc->cursor_y;
5885 u32 base, pos;
5886 bool visible;
5887
5888 pos = 0;
5889
5890 if (on && crtc->enabled && crtc->fb) {
5891 base = intel_crtc->cursor_addr;
5892 if (x > (int) crtc->fb->width)
5893 base = 0;
5894
5895 if (y > (int) crtc->fb->height)
5896 base = 0;
5897 } else
5898 base = 0;
5899
5900 if (x < 0) {
5901 if (x + intel_crtc->cursor_width < 0)
5902 base = 0;
5903
5904 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5905 x = -x;
5906 }
5907 pos |= x << CURSOR_X_SHIFT;
5908
5909 if (y < 0) {
5910 if (y + intel_crtc->cursor_height < 0)
5911 base = 0;
5912
5913 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5914 y = -y;
5915 }
5916 pos |= y << CURSOR_Y_SHIFT;
5917
5918 visible = base != 0;
5919 if (!visible && !intel_crtc->cursor_visible)
5920 return;
5921
5922 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
5923 I915_WRITE(CURPOS_IVB(pipe), pos);
5924 ivb_update_cursor(crtc, base);
5925 } else {
5926 I915_WRITE(CURPOS(pipe), pos);
5927 if (IS_845G(dev) || IS_I865G(dev))
5928 i845_update_cursor(crtc, base);
5929 else
5930 i9xx_update_cursor(crtc, base);
5931 }
5932}
5933
5934static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5935 struct drm_file *file,
5936 uint32_t handle,
5937 uint32_t width, uint32_t height)
5938{
5939 struct drm_device *dev = crtc->dev;
5940 struct drm_i915_private *dev_priv = dev->dev_private;
5941 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5942 struct drm_i915_gem_object *obj;
5943 uint32_t addr;
5944 int ret;
5945
5946 /* if we want to turn off the cursor ignore width and height */
5947 if (!handle) {
5948 DRM_DEBUG_KMS("cursor off\n");
5949 addr = 0;
5950 obj = NULL;
5951 mutex_lock(&dev->struct_mutex);
5952 goto finish;
5953 }
5954
5955 /* Currently we only support 64x64 cursors */
5956 if (width != 64 || height != 64) {
5957 DRM_ERROR("we currently only support 64x64 cursors\n");
5958 return -EINVAL;
5959 }
5960
5961 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5962 if (&obj->base == NULL)
5963 return -ENOENT;
5964
5965 if (obj->base.size < width * height * 4) {
5966 DRM_ERROR("buffer is to small\n");
5967 ret = -ENOMEM;
5968 goto fail;
5969 }
5970
5971 /* we only need to pin inside GTT if cursor is non-phy */
5972 mutex_lock(&dev->struct_mutex);
5973 if (!dev_priv->info->cursor_needs_physical) {
5974 if (obj->tiling_mode) {
5975 DRM_ERROR("cursor cannot be tiled\n");
5976 ret = -EINVAL;
5977 goto fail_locked;
5978 }
5979
5980 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
5981 if (ret) {
5982 DRM_ERROR("failed to move cursor bo into the GTT\n");
5983 goto fail_locked;
5984 }
5985
5986 ret = i915_gem_object_put_fence(obj);
5987 if (ret) {
5988 DRM_ERROR("failed to release fence for cursor");
5989 goto fail_unpin;
5990 }
5991
5992 addr = obj->gtt_offset;
5993 } else {
5994 int align = IS_I830(dev) ? 16 * 1024 : 256;
5995 ret = i915_gem_attach_phys_object(dev, obj,
5996 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5997 align);
5998 if (ret) {
5999 DRM_ERROR("failed to attach phys object\n");
6000 goto fail_locked;
6001 }
6002 addr = obj->phys_obj->handle->busaddr;
6003 }
6004
6005 if (IS_GEN2(dev))
6006 I915_WRITE(CURSIZE, (height << 12) | width);
6007
6008 finish:
6009 if (intel_crtc->cursor_bo) {
6010 if (dev_priv->info->cursor_needs_physical) {
6011 if (intel_crtc->cursor_bo != obj)
6012 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6013 } else
6014 i915_gem_object_unpin(intel_crtc->cursor_bo);
6015 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6016 }
6017
6018 mutex_unlock(&dev->struct_mutex);
6019
6020 intel_crtc->cursor_addr = addr;
6021 intel_crtc->cursor_bo = obj;
6022 intel_crtc->cursor_width = width;
6023 intel_crtc->cursor_height = height;
6024
6025 intel_crtc_update_cursor(crtc, true);
6026
6027 return 0;
6028fail_unpin:
6029 i915_gem_object_unpin(obj);
6030fail_locked:
6031 mutex_unlock(&dev->struct_mutex);
6032fail:
6033 drm_gem_object_unreference_unlocked(&obj->base);
6034 return ret;
6035}
6036
6037static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6038{
6039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6040
6041 intel_crtc->cursor_x = x;
6042 intel_crtc->cursor_y = y;
6043
6044 intel_crtc_update_cursor(crtc, true);
6045
6046 return 0;
6047}
6048
6049/** Sets the color ramps on behalf of RandR */
6050void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6051 u16 blue, int regno)
6052{
6053 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6054
6055 intel_crtc->lut_r[regno] = red >> 8;
6056 intel_crtc->lut_g[regno] = green >> 8;
6057 intel_crtc->lut_b[regno] = blue >> 8;
6058}
6059
6060void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6061 u16 *blue, int regno)
6062{
6063 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6064
6065 *red = intel_crtc->lut_r[regno] << 8;
6066 *green = intel_crtc->lut_g[regno] << 8;
6067 *blue = intel_crtc->lut_b[regno] << 8;
6068}
6069
6070static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6071 u16 *blue, uint32_t start, uint32_t size)
6072{
6073 int end = (start + size > 256) ? 256 : start + size, i;
6074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6075
6076 for (i = start; i < end; i++) {
6077 intel_crtc->lut_r[i] = red[i] >> 8;
6078 intel_crtc->lut_g[i] = green[i] >> 8;
6079 intel_crtc->lut_b[i] = blue[i] >> 8;
6080 }
6081
6082 intel_crtc_load_lut(crtc);
6083}
6084
6085/**
6086 * Get a pipe with a simple mode set on it for doing load-based monitor
6087 * detection.
6088 *
6089 * It will be up to the load-detect code to adjust the pipe as appropriate for
6090 * its requirements. The pipe will be connected to no other encoders.
6091 *
6092 * Currently this code will only succeed if there is a pipe with no encoders
6093 * configured for it. In the future, it could choose to temporarily disable
6094 * some outputs to free up a pipe for its use.
6095 *
6096 * \return crtc, or NULL if no pipes are available.
6097 */
6098
6099/* VESA 640x480x72Hz mode to set on the pipe */
6100static struct drm_display_mode load_detect_mode = {
6101 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6102 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6103};
6104
6105static struct drm_framebuffer *
6106intel_framebuffer_create(struct drm_device *dev,
6107 struct drm_mode_fb_cmd2 *mode_cmd,
6108 struct drm_i915_gem_object *obj)
6109{
6110 struct intel_framebuffer *intel_fb;
6111 int ret;
6112
6113 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6114 if (!intel_fb) {
6115 drm_gem_object_unreference_unlocked(&obj->base);
6116 return ERR_PTR(-ENOMEM);
6117 }
6118
6119 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6120 if (ret) {
6121 drm_gem_object_unreference_unlocked(&obj->base);
6122 kfree(intel_fb);
6123 return ERR_PTR(ret);
6124 }
6125
6126 return &intel_fb->base;
6127}
6128
6129static u32
6130intel_framebuffer_pitch_for_width(int width, int bpp)
6131{
6132 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6133 return ALIGN(pitch, 64);
6134}
6135
6136static u32
6137intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6138{
6139 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6140 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6141}
6142
6143static struct drm_framebuffer *
6144intel_framebuffer_create_for_mode(struct drm_device *dev,
6145 struct drm_display_mode *mode,
6146 int depth, int bpp)
6147{
6148 struct drm_i915_gem_object *obj;
6149 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
6150
6151 obj = i915_gem_alloc_object(dev,
6152 intel_framebuffer_size_for_mode(mode, bpp));
6153 if (obj == NULL)
6154 return ERR_PTR(-ENOMEM);
6155
6156 mode_cmd.width = mode->hdisplay;
6157 mode_cmd.height = mode->vdisplay;
6158 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6159 bpp);
6160 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6161
6162 return intel_framebuffer_create(dev, &mode_cmd, obj);
6163}
6164
6165static struct drm_framebuffer *
6166mode_fits_in_fbdev(struct drm_device *dev,
6167 struct drm_display_mode *mode)
6168{
6169 struct drm_i915_private *dev_priv = dev->dev_private;
6170 struct drm_i915_gem_object *obj;
6171 struct drm_framebuffer *fb;
6172
6173 if (dev_priv->fbdev == NULL)
6174 return NULL;
6175
6176 obj = dev_priv->fbdev->ifb.obj;
6177 if (obj == NULL)
6178 return NULL;
6179
6180 fb = &dev_priv->fbdev->ifb.base;
6181 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6182 fb->bits_per_pixel))
6183 return NULL;
6184
6185 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6186 return NULL;
6187
6188 return fb;
6189}
6190
6191bool intel_get_load_detect_pipe(struct drm_connector *connector,
6192 struct drm_display_mode *mode,
6193 struct intel_load_detect_pipe *old)
6194{
6195 struct intel_crtc *intel_crtc;
6196 struct intel_encoder *intel_encoder =
6197 intel_attached_encoder(connector);
6198 struct drm_crtc *possible_crtc;
6199 struct drm_encoder *encoder = &intel_encoder->base;
6200 struct drm_crtc *crtc = NULL;
6201 struct drm_device *dev = encoder->dev;
6202 struct drm_framebuffer *fb;
6203 int i = -1;
6204
6205 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6206 connector->base.id, drm_get_connector_name(connector),
6207 encoder->base.id, drm_get_encoder_name(encoder));
6208
6209 /*
6210 * Algorithm gets a little messy:
6211 *
6212 * - if the connector already has an assigned crtc, use it (but make
6213 * sure it's on first)
6214 *
6215 * - try to find the first unused crtc that can drive this connector,
6216 * and use that if we find one
6217 */
6218
6219 /* See if we already have a CRTC for this connector */
6220 if (encoder->crtc) {
6221 crtc = encoder->crtc;
6222
6223 old->dpms_mode = connector->dpms;
6224 old->load_detect_temp = false;
6225
6226 /* Make sure the crtc and connector are running */
6227 if (connector->dpms != DRM_MODE_DPMS_ON)
6228 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6229
6230 return true;
6231 }
6232
6233 /* Find an unused one (if possible) */
6234 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6235 i++;
6236 if (!(encoder->possible_crtcs & (1 << i)))
6237 continue;
6238 if (!possible_crtc->enabled) {
6239 crtc = possible_crtc;
6240 break;
6241 }
6242 }
6243
6244 /*
6245 * If we didn't find an unused CRTC, don't use any.
6246 */
6247 if (!crtc) {
6248 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6249 return false;
6250 }
6251
6252 intel_encoder->new_crtc = to_intel_crtc(crtc);
6253 to_intel_connector(connector)->new_encoder = intel_encoder;
6254
6255 intel_crtc = to_intel_crtc(crtc);
6256 old->dpms_mode = connector->dpms;
6257 old->load_detect_temp = true;
6258 old->release_fb = NULL;
6259
6260 if (!mode)
6261 mode = &load_detect_mode;
6262
6263 /* We need a framebuffer large enough to accommodate all accesses
6264 * that the plane may generate whilst we perform load detection.
6265 * We can not rely on the fbcon either being present (we get called
6266 * during its initialisation to detect all boot displays, or it may
6267 * not even exist) or that it is large enough to satisfy the
6268 * requested mode.
6269 */
6270 fb = mode_fits_in_fbdev(dev, mode);
6271 if (fb == NULL) {
6272 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6273 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6274 old->release_fb = fb;
6275 } else
6276 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6277 if (IS_ERR(fb)) {
6278 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6279 return false;
6280 }
6281
6282 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6283 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6284 if (old->release_fb)
6285 old->release_fb->funcs->destroy(old->release_fb);
6286 return false;
6287 }
6288
6289 /* let the connector get through one full cycle before testing */
6290 intel_wait_for_vblank(dev, intel_crtc->pipe);
6291 return true;
6292}
6293
6294void intel_release_load_detect_pipe(struct drm_connector *connector,
6295 struct intel_load_detect_pipe *old)
6296{
6297 struct intel_encoder *intel_encoder =
6298 intel_attached_encoder(connector);
6299 struct drm_encoder *encoder = &intel_encoder->base;
6300
6301 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6302 connector->base.id, drm_get_connector_name(connector),
6303 encoder->base.id, drm_get_encoder_name(encoder));
6304
6305 if (old->load_detect_temp) {
6306 struct drm_crtc *crtc = encoder->crtc;
6307
6308 to_intel_connector(connector)->new_encoder = NULL;
6309 intel_encoder->new_crtc = NULL;
6310 intel_set_mode(crtc, NULL, 0, 0, NULL);
6311
6312 if (old->release_fb)
6313 old->release_fb->funcs->destroy(old->release_fb);
6314
6315 return;
6316 }
6317
6318 /* Switch crtc and encoder back off if necessary */
6319 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6320 connector->funcs->dpms(connector, old->dpms_mode);
6321}
6322
6323/* Returns the clock of the currently programmed mode of the given pipe. */
6324static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6325{
6326 struct drm_i915_private *dev_priv = dev->dev_private;
6327 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6328 int pipe = intel_crtc->pipe;
6329 u32 dpll = I915_READ(DPLL(pipe));
6330 u32 fp;
6331 intel_clock_t clock;
6332
6333 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6334 fp = I915_READ(FP0(pipe));
6335 else
6336 fp = I915_READ(FP1(pipe));
6337
6338 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6339 if (IS_PINEVIEW(dev)) {
6340 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6341 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6342 } else {
6343 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6344 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6345 }
6346
6347 if (!IS_GEN2(dev)) {
6348 if (IS_PINEVIEW(dev))
6349 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6350 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6351 else
6352 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6353 DPLL_FPA01_P1_POST_DIV_SHIFT);
6354
6355 switch (dpll & DPLL_MODE_MASK) {
6356 case DPLLB_MODE_DAC_SERIAL:
6357 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6358 5 : 10;
6359 break;
6360 case DPLLB_MODE_LVDS:
6361 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6362 7 : 14;
6363 break;
6364 default:
6365 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6366 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6367 return 0;
6368 }
6369
6370 /* XXX: Handle the 100Mhz refclk */
6371 intel_clock(dev, 96000, &clock);
6372 } else {
6373 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6374
6375 if (is_lvds) {
6376 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6377 DPLL_FPA01_P1_POST_DIV_SHIFT);
6378 clock.p2 = 14;
6379
6380 if ((dpll & PLL_REF_INPUT_MASK) ==
6381 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6382 /* XXX: might not be 66MHz */
6383 intel_clock(dev, 66000, &clock);
6384 } else
6385 intel_clock(dev, 48000, &clock);
6386 } else {
6387 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6388 clock.p1 = 2;
6389 else {
6390 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6391 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6392 }
6393 if (dpll & PLL_P2_DIVIDE_BY_4)
6394 clock.p2 = 4;
6395 else
6396 clock.p2 = 2;
6397
6398 intel_clock(dev, 48000, &clock);
6399 }
6400 }
6401
6402 /* XXX: It would be nice to validate the clocks, but we can't reuse
6403 * i830PllIsValid() because it relies on the xf86_config connector
6404 * configuration being accurate, which it isn't necessarily.
6405 */
6406
6407 return clock.dot;
6408}
6409
6410/** Returns the currently programmed mode of the given pipe. */
6411struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6412 struct drm_crtc *crtc)
6413{
6414 struct drm_i915_private *dev_priv = dev->dev_private;
6415 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6416 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6417 struct drm_display_mode *mode;
6418 int htot = I915_READ(HTOTAL(cpu_transcoder));
6419 int hsync = I915_READ(HSYNC(cpu_transcoder));
6420 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6421 int vsync = I915_READ(VSYNC(cpu_transcoder));
6422
6423 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6424 if (!mode)
6425 return NULL;
6426
6427 mode->clock = intel_crtc_clock_get(dev, crtc);
6428 mode->hdisplay = (htot & 0xffff) + 1;
6429 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6430 mode->hsync_start = (hsync & 0xffff) + 1;
6431 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6432 mode->vdisplay = (vtot & 0xffff) + 1;
6433 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6434 mode->vsync_start = (vsync & 0xffff) + 1;
6435 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6436
6437 drm_mode_set_name(mode);
6438
6439 return mode;
6440}
6441
6442static void intel_increase_pllclock(struct drm_crtc *crtc)
6443{
6444 struct drm_device *dev = crtc->dev;
6445 drm_i915_private_t *dev_priv = dev->dev_private;
6446 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6447 int pipe = intel_crtc->pipe;
6448 int dpll_reg = DPLL(pipe);
6449 int dpll;
6450
6451 if (HAS_PCH_SPLIT(dev))
6452 return;
6453
6454 if (!dev_priv->lvds_downclock_avail)
6455 return;
6456
6457 dpll = I915_READ(dpll_reg);
6458 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6459 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6460
6461 assert_panel_unlocked(dev_priv, pipe);
6462
6463 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6464 I915_WRITE(dpll_reg, dpll);
6465 intel_wait_for_vblank(dev, pipe);
6466
6467 dpll = I915_READ(dpll_reg);
6468 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6469 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6470 }
6471}
6472
6473static void intel_decrease_pllclock(struct drm_crtc *crtc)
6474{
6475 struct drm_device *dev = crtc->dev;
6476 drm_i915_private_t *dev_priv = dev->dev_private;
6477 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6478
6479 if (HAS_PCH_SPLIT(dev))
6480 return;
6481
6482 if (!dev_priv->lvds_downclock_avail)
6483 return;
6484
6485 /*
6486 * Since this is called by a timer, we should never get here in
6487 * the manual case.
6488 */
6489 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6490 int pipe = intel_crtc->pipe;
6491 int dpll_reg = DPLL(pipe);
6492 int dpll;
6493
6494 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6495
6496 assert_panel_unlocked(dev_priv, pipe);
6497
6498 dpll = I915_READ(dpll_reg);
6499 dpll |= DISPLAY_RATE_SELECT_FPA1;
6500 I915_WRITE(dpll_reg, dpll);
6501 intel_wait_for_vblank(dev, pipe);
6502 dpll = I915_READ(dpll_reg);
6503 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6504 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6505 }
6506
6507}
6508
6509void intel_mark_busy(struct drm_device *dev)
6510{
6511 i915_update_gfx_val(dev->dev_private);
6512}
6513
6514void intel_mark_idle(struct drm_device *dev)
6515{
6516}
6517
6518void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6519{
6520 struct drm_device *dev = obj->base.dev;
6521 struct drm_crtc *crtc;
6522
6523 if (!i915_powersave)
6524 return;
6525
6526 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6527 if (!crtc->fb)
6528 continue;
6529
6530 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6531 intel_increase_pllclock(crtc);
6532 }
6533}
6534
6535void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6536{
6537 struct drm_device *dev = obj->base.dev;
6538 struct drm_crtc *crtc;
6539
6540 if (!i915_powersave)
6541 return;
6542
6543 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6544 if (!crtc->fb)
6545 continue;
6546
6547 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6548 intel_decrease_pllclock(crtc);
6549 }
6550}
6551
6552static void intel_crtc_destroy(struct drm_crtc *crtc)
6553{
6554 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6555 struct drm_device *dev = crtc->dev;
6556 struct intel_unpin_work *work;
6557 unsigned long flags;
6558
6559 spin_lock_irqsave(&dev->event_lock, flags);
6560 work = intel_crtc->unpin_work;
6561 intel_crtc->unpin_work = NULL;
6562 spin_unlock_irqrestore(&dev->event_lock, flags);
6563
6564 if (work) {
6565 cancel_work_sync(&work->work);
6566 kfree(work);
6567 }
6568
6569 drm_crtc_cleanup(crtc);
6570
6571 kfree(intel_crtc);
6572}
6573
6574static void intel_unpin_work_fn(struct work_struct *__work)
6575{
6576 struct intel_unpin_work *work =
6577 container_of(__work, struct intel_unpin_work, work);
6578 struct drm_device *dev = work->crtc->dev;
6579
6580 mutex_lock(&dev->struct_mutex);
6581 intel_unpin_fb_obj(work->old_fb_obj);
6582 drm_gem_object_unreference(&work->pending_flip_obj->base);
6583 drm_gem_object_unreference(&work->old_fb_obj->base);
6584
6585 intel_update_fbc(dev);
6586 mutex_unlock(&dev->struct_mutex);
6587
6588 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
6589 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
6590
6591 kfree(work);
6592}
6593
6594static void do_intel_finish_page_flip(struct drm_device *dev,
6595 struct drm_crtc *crtc)
6596{
6597 drm_i915_private_t *dev_priv = dev->dev_private;
6598 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6599 struct intel_unpin_work *work;
6600 struct drm_i915_gem_object *obj;
6601 unsigned long flags;
6602
6603 /* Ignore early vblank irqs */
6604 if (intel_crtc == NULL)
6605 return;
6606
6607 spin_lock_irqsave(&dev->event_lock, flags);
6608 work = intel_crtc->unpin_work;
6609 if (work == NULL || !work->pending) {
6610 spin_unlock_irqrestore(&dev->event_lock, flags);
6611 return;
6612 }
6613
6614 intel_crtc->unpin_work = NULL;
6615
6616 if (work->event)
6617 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
6618
6619 drm_vblank_put(dev, intel_crtc->pipe);
6620
6621 spin_unlock_irqrestore(&dev->event_lock, flags);
6622
6623 obj = work->old_fb_obj;
6624
6625 wake_up(&dev_priv->pending_flip_queue);
6626
6627 queue_work(dev_priv->wq, &work->work);
6628
6629 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6630}
6631
6632void intel_finish_page_flip(struct drm_device *dev, int pipe)
6633{
6634 drm_i915_private_t *dev_priv = dev->dev_private;
6635 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6636
6637 do_intel_finish_page_flip(dev, crtc);
6638}
6639
6640void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6641{
6642 drm_i915_private_t *dev_priv = dev->dev_private;
6643 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6644
6645 do_intel_finish_page_flip(dev, crtc);
6646}
6647
6648void intel_prepare_page_flip(struct drm_device *dev, int plane)
6649{
6650 drm_i915_private_t *dev_priv = dev->dev_private;
6651 struct intel_crtc *intel_crtc =
6652 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6653 unsigned long flags;
6654
6655 spin_lock_irqsave(&dev->event_lock, flags);
6656 if (intel_crtc->unpin_work) {
6657 if ((++intel_crtc->unpin_work->pending) > 1)
6658 DRM_ERROR("Prepared flip multiple times\n");
6659 } else {
6660 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6661 }
6662 spin_unlock_irqrestore(&dev->event_lock, flags);
6663}
6664
6665static int intel_gen2_queue_flip(struct drm_device *dev,
6666 struct drm_crtc *crtc,
6667 struct drm_framebuffer *fb,
6668 struct drm_i915_gem_object *obj)
6669{
6670 struct drm_i915_private *dev_priv = dev->dev_private;
6671 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6672 u32 flip_mask;
6673 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6674 int ret;
6675
6676 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6677 if (ret)
6678 goto err;
6679
6680 ret = intel_ring_begin(ring, 6);
6681 if (ret)
6682 goto err_unpin;
6683
6684 /* Can't queue multiple flips, so wait for the previous
6685 * one to finish before executing the next.
6686 */
6687 if (intel_crtc->plane)
6688 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6689 else
6690 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6691 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6692 intel_ring_emit(ring, MI_NOOP);
6693 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6694 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6695 intel_ring_emit(ring, fb->pitches[0]);
6696 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6697 intel_ring_emit(ring, 0); /* aux display base address, unused */
6698 intel_ring_advance(ring);
6699 return 0;
6700
6701err_unpin:
6702 intel_unpin_fb_obj(obj);
6703err:
6704 return ret;
6705}
6706
6707static int intel_gen3_queue_flip(struct drm_device *dev,
6708 struct drm_crtc *crtc,
6709 struct drm_framebuffer *fb,
6710 struct drm_i915_gem_object *obj)
6711{
6712 struct drm_i915_private *dev_priv = dev->dev_private;
6713 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6714 u32 flip_mask;
6715 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6716 int ret;
6717
6718 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6719 if (ret)
6720 goto err;
6721
6722 ret = intel_ring_begin(ring, 6);
6723 if (ret)
6724 goto err_unpin;
6725
6726 if (intel_crtc->plane)
6727 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6728 else
6729 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6730 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
6731 intel_ring_emit(ring, MI_NOOP);
6732 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
6733 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6734 intel_ring_emit(ring, fb->pitches[0]);
6735 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6736 intel_ring_emit(ring, MI_NOOP);
6737
6738 intel_ring_advance(ring);
6739 return 0;
6740
6741err_unpin:
6742 intel_unpin_fb_obj(obj);
6743err:
6744 return ret;
6745}
6746
6747static int intel_gen4_queue_flip(struct drm_device *dev,
6748 struct drm_crtc *crtc,
6749 struct drm_framebuffer *fb,
6750 struct drm_i915_gem_object *obj)
6751{
6752 struct drm_i915_private *dev_priv = dev->dev_private;
6753 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6754 uint32_t pf, pipesrc;
6755 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6756 int ret;
6757
6758 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6759 if (ret)
6760 goto err;
6761
6762 ret = intel_ring_begin(ring, 4);
6763 if (ret)
6764 goto err_unpin;
6765
6766 /* i965+ uses the linear or tiled offsets from the
6767 * Display Registers (which do not change across a page-flip)
6768 * so we need only reprogram the base address.
6769 */
6770 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6771 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6772 intel_ring_emit(ring, fb->pitches[0]);
6773 intel_ring_emit(ring,
6774 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
6775 obj->tiling_mode);
6776
6777 /* XXX Enabling the panel-fitter across page-flip is so far
6778 * untested on non-native modes, so ignore it for now.
6779 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6780 */
6781 pf = 0;
6782 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6783 intel_ring_emit(ring, pf | pipesrc);
6784 intel_ring_advance(ring);
6785 return 0;
6786
6787err_unpin:
6788 intel_unpin_fb_obj(obj);
6789err:
6790 return ret;
6791}
6792
6793static int intel_gen6_queue_flip(struct drm_device *dev,
6794 struct drm_crtc *crtc,
6795 struct drm_framebuffer *fb,
6796 struct drm_i915_gem_object *obj)
6797{
6798 struct drm_i915_private *dev_priv = dev->dev_private;
6799 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6800 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
6801 uint32_t pf, pipesrc;
6802 int ret;
6803
6804 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6805 if (ret)
6806 goto err;
6807
6808 ret = intel_ring_begin(ring, 4);
6809 if (ret)
6810 goto err_unpin;
6811
6812 intel_ring_emit(ring, MI_DISPLAY_FLIP |
6813 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6814 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
6815 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6816
6817 /* Contrary to the suggestions in the documentation,
6818 * "Enable Panel Fitter" does not seem to be required when page
6819 * flipping with a non-native mode, and worse causes a normal
6820 * modeset to fail.
6821 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
6822 */
6823 pf = 0;
6824 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
6825 intel_ring_emit(ring, pf | pipesrc);
6826 intel_ring_advance(ring);
6827 return 0;
6828
6829err_unpin:
6830 intel_unpin_fb_obj(obj);
6831err:
6832 return ret;
6833}
6834
6835/*
6836 * On gen7 we currently use the blit ring because (in early silicon at least)
6837 * the render ring doesn't give us interrpts for page flip completion, which
6838 * means clients will hang after the first flip is queued. Fortunately the
6839 * blit ring generates interrupts properly, so use it instead.
6840 */
6841static int intel_gen7_queue_flip(struct drm_device *dev,
6842 struct drm_crtc *crtc,
6843 struct drm_framebuffer *fb,
6844 struct drm_i915_gem_object *obj)
6845{
6846 struct drm_i915_private *dev_priv = dev->dev_private;
6847 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6848 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
6849 uint32_t plane_bit = 0;
6850 int ret;
6851
6852 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
6853 if (ret)
6854 goto err;
6855
6856 switch(intel_crtc->plane) {
6857 case PLANE_A:
6858 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
6859 break;
6860 case PLANE_B:
6861 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
6862 break;
6863 case PLANE_C:
6864 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
6865 break;
6866 default:
6867 WARN_ONCE(1, "unknown plane in flip command\n");
6868 ret = -ENODEV;
6869 goto err_unpin;
6870 }
6871
6872 ret = intel_ring_begin(ring, 4);
6873 if (ret)
6874 goto err_unpin;
6875
6876 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
6877 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
6878 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
6879 intel_ring_emit(ring, (MI_NOOP));
6880 intel_ring_advance(ring);
6881 return 0;
6882
6883err_unpin:
6884 intel_unpin_fb_obj(obj);
6885err:
6886 return ret;
6887}
6888
6889static int intel_default_queue_flip(struct drm_device *dev,
6890 struct drm_crtc *crtc,
6891 struct drm_framebuffer *fb,
6892 struct drm_i915_gem_object *obj)
6893{
6894 return -ENODEV;
6895}
6896
6897static int intel_crtc_page_flip(struct drm_crtc *crtc,
6898 struct drm_framebuffer *fb,
6899 struct drm_pending_vblank_event *event)
6900{
6901 struct drm_device *dev = crtc->dev;
6902 struct drm_i915_private *dev_priv = dev->dev_private;
6903 struct intel_framebuffer *intel_fb;
6904 struct drm_i915_gem_object *obj;
6905 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6906 struct intel_unpin_work *work;
6907 unsigned long flags;
6908 int ret;
6909
6910 /* Can't change pixel format via MI display flips. */
6911 if (fb->pixel_format != crtc->fb->pixel_format)
6912 return -EINVAL;
6913
6914 /*
6915 * TILEOFF/LINOFF registers can't be changed via MI display flips.
6916 * Note that pitch changes could also affect these register.
6917 */
6918 if (INTEL_INFO(dev)->gen > 3 &&
6919 (fb->offsets[0] != crtc->fb->offsets[0] ||
6920 fb->pitches[0] != crtc->fb->pitches[0]))
6921 return -EINVAL;
6922
6923 work = kzalloc(sizeof *work, GFP_KERNEL);
6924 if (work == NULL)
6925 return -ENOMEM;
6926
6927 work->event = event;
6928 work->crtc = crtc;
6929 intel_fb = to_intel_framebuffer(crtc->fb);
6930 work->old_fb_obj = intel_fb->obj;
6931 INIT_WORK(&work->work, intel_unpin_work_fn);
6932
6933 ret = drm_vblank_get(dev, intel_crtc->pipe);
6934 if (ret)
6935 goto free_work;
6936
6937 /* We borrow the event spin lock for protecting unpin_work */
6938 spin_lock_irqsave(&dev->event_lock, flags);
6939 if (intel_crtc->unpin_work) {
6940 spin_unlock_irqrestore(&dev->event_lock, flags);
6941 kfree(work);
6942 drm_vblank_put(dev, intel_crtc->pipe);
6943
6944 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6945 return -EBUSY;
6946 }
6947 intel_crtc->unpin_work = work;
6948 spin_unlock_irqrestore(&dev->event_lock, flags);
6949
6950 intel_fb = to_intel_framebuffer(fb);
6951 obj = intel_fb->obj;
6952
6953 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
6954 flush_workqueue(dev_priv->wq);
6955
6956 ret = i915_mutex_lock_interruptible(dev);
6957 if (ret)
6958 goto cleanup;
6959
6960 /* Reference the objects for the scheduled work. */
6961 drm_gem_object_reference(&work->old_fb_obj->base);
6962 drm_gem_object_reference(&obj->base);
6963
6964 crtc->fb = fb;
6965
6966 work->pending_flip_obj = obj;
6967
6968 work->enable_stall_check = true;
6969
6970 atomic_inc(&intel_crtc->unpin_work_count);
6971
6972 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
6973 if (ret)
6974 goto cleanup_pending;
6975
6976 intel_disable_fbc(dev);
6977 intel_mark_fb_busy(obj);
6978 mutex_unlock(&dev->struct_mutex);
6979
6980 trace_i915_flip_request(intel_crtc->plane, obj);
6981
6982 return 0;
6983
6984cleanup_pending:
6985 atomic_dec(&intel_crtc->unpin_work_count);
6986 drm_gem_object_unreference(&work->old_fb_obj->base);
6987 drm_gem_object_unreference(&obj->base);
6988 mutex_unlock(&dev->struct_mutex);
6989
6990cleanup:
6991 spin_lock_irqsave(&dev->event_lock, flags);
6992 intel_crtc->unpin_work = NULL;
6993 spin_unlock_irqrestore(&dev->event_lock, flags);
6994
6995 drm_vblank_put(dev, intel_crtc->pipe);
6996free_work:
6997 kfree(work);
6998
6999 return ret;
7000}
7001
7002static struct drm_crtc_helper_funcs intel_helper_funcs = {
7003 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7004 .load_lut = intel_crtc_load_lut,
7005 .disable = intel_crtc_noop,
7006};
7007
7008bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7009{
7010 struct intel_encoder *other_encoder;
7011 struct drm_crtc *crtc = &encoder->new_crtc->base;
7012
7013 if (WARN_ON(!crtc))
7014 return false;
7015
7016 list_for_each_entry(other_encoder,
7017 &crtc->dev->mode_config.encoder_list,
7018 base.head) {
7019
7020 if (&other_encoder->new_crtc->base != crtc ||
7021 encoder == other_encoder)
7022 continue;
7023 else
7024 return true;
7025 }
7026
7027 return false;
7028}
7029
7030static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7031 struct drm_crtc *crtc)
7032{
7033 struct drm_device *dev;
7034 struct drm_crtc *tmp;
7035 int crtc_mask = 1;
7036
7037 WARN(!crtc, "checking null crtc?\n");
7038
7039 dev = crtc->dev;
7040
7041 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7042 if (tmp == crtc)
7043 break;
7044 crtc_mask <<= 1;
7045 }
7046
7047 if (encoder->possible_crtcs & crtc_mask)
7048 return true;
7049 return false;
7050}
7051
7052/**
7053 * intel_modeset_update_staged_output_state
7054 *
7055 * Updates the staged output configuration state, e.g. after we've read out the
7056 * current hw state.
7057 */
7058static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7059{
7060 struct intel_encoder *encoder;
7061 struct intel_connector *connector;
7062
7063 list_for_each_entry(connector, &dev->mode_config.connector_list,
7064 base.head) {
7065 connector->new_encoder =
7066 to_intel_encoder(connector->base.encoder);
7067 }
7068
7069 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7070 base.head) {
7071 encoder->new_crtc =
7072 to_intel_crtc(encoder->base.crtc);
7073 }
7074}
7075
7076/**
7077 * intel_modeset_commit_output_state
7078 *
7079 * This function copies the stage display pipe configuration to the real one.
7080 */
7081static void intel_modeset_commit_output_state(struct drm_device *dev)
7082{
7083 struct intel_encoder *encoder;
7084 struct intel_connector *connector;
7085
7086 list_for_each_entry(connector, &dev->mode_config.connector_list,
7087 base.head) {
7088 connector->base.encoder = &connector->new_encoder->base;
7089 }
7090
7091 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7092 base.head) {
7093 encoder->base.crtc = &encoder->new_crtc->base;
7094 }
7095}
7096
7097static struct drm_display_mode *
7098intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7099 struct drm_display_mode *mode)
7100{
7101 struct drm_device *dev = crtc->dev;
7102 struct drm_display_mode *adjusted_mode;
7103 struct drm_encoder_helper_funcs *encoder_funcs;
7104 struct intel_encoder *encoder;
7105
7106 adjusted_mode = drm_mode_duplicate(dev, mode);
7107 if (!adjusted_mode)
7108 return ERR_PTR(-ENOMEM);
7109
7110 /* Pass our mode to the connectors and the CRTC to give them a chance to
7111 * adjust it according to limitations or connector properties, and also
7112 * a chance to reject the mode entirely.
7113 */
7114 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7115 base.head) {
7116
7117 if (&encoder->new_crtc->base != crtc)
7118 continue;
7119 encoder_funcs = encoder->base.helper_private;
7120 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7121 adjusted_mode))) {
7122 DRM_DEBUG_KMS("Encoder fixup failed\n");
7123 goto fail;
7124 }
7125 }
7126
7127 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7128 DRM_DEBUG_KMS("CRTC fixup failed\n");
7129 goto fail;
7130 }
7131 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7132
7133 return adjusted_mode;
7134fail:
7135 drm_mode_destroy(dev, adjusted_mode);
7136 return ERR_PTR(-EINVAL);
7137}
7138
7139/* Computes which crtcs are affected and sets the relevant bits in the mask. For
7140 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7141static void
7142intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7143 unsigned *prepare_pipes, unsigned *disable_pipes)
7144{
7145 struct intel_crtc *intel_crtc;
7146 struct drm_device *dev = crtc->dev;
7147 struct intel_encoder *encoder;
7148 struct intel_connector *connector;
7149 struct drm_crtc *tmp_crtc;
7150
7151 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7152
7153 /* Check which crtcs have changed outputs connected to them, these need
7154 * to be part of the prepare_pipes mask. We don't (yet) support global
7155 * modeset across multiple crtcs, so modeset_pipes will only have one
7156 * bit set at most. */
7157 list_for_each_entry(connector, &dev->mode_config.connector_list,
7158 base.head) {
7159 if (connector->base.encoder == &connector->new_encoder->base)
7160 continue;
7161
7162 if (connector->base.encoder) {
7163 tmp_crtc = connector->base.encoder->crtc;
7164
7165 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7166 }
7167
7168 if (connector->new_encoder)
7169 *prepare_pipes |=
7170 1 << connector->new_encoder->new_crtc->pipe;
7171 }
7172
7173 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7174 base.head) {
7175 if (encoder->base.crtc == &encoder->new_crtc->base)
7176 continue;
7177
7178 if (encoder->base.crtc) {
7179 tmp_crtc = encoder->base.crtc;
7180
7181 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7182 }
7183
7184 if (encoder->new_crtc)
7185 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7186 }
7187
7188 /* Check for any pipes that will be fully disabled ... */
7189 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7190 base.head) {
7191 bool used = false;
7192
7193 /* Don't try to disable disabled crtcs. */
7194 if (!intel_crtc->base.enabled)
7195 continue;
7196
7197 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7198 base.head) {
7199 if (encoder->new_crtc == intel_crtc)
7200 used = true;
7201 }
7202
7203 if (!used)
7204 *disable_pipes |= 1 << intel_crtc->pipe;
7205 }
7206
7207
7208 /* set_mode is also used to update properties on life display pipes. */
7209 intel_crtc = to_intel_crtc(crtc);
7210 if (crtc->enabled)
7211 *prepare_pipes |= 1 << intel_crtc->pipe;
7212
7213 /* We only support modeset on one single crtc, hence we need to do that
7214 * only for the passed in crtc iff we change anything else than just
7215 * disable crtcs.
7216 *
7217 * This is actually not true, to be fully compatible with the old crtc
7218 * helper we automatically disable _any_ output (i.e. doesn't need to be
7219 * connected to the crtc we're modesetting on) if it's disconnected.
7220 * Which is a rather nutty api (since changed the output configuration
7221 * without userspace's explicit request can lead to confusion), but
7222 * alas. Hence we currently need to modeset on all pipes we prepare. */
7223 if (*prepare_pipes)
7224 *modeset_pipes = *prepare_pipes;
7225
7226 /* ... and mask these out. */
7227 *modeset_pipes &= ~(*disable_pipes);
7228 *prepare_pipes &= ~(*disable_pipes);
7229}
7230
7231static bool intel_crtc_in_use(struct drm_crtc *crtc)
7232{
7233 struct drm_encoder *encoder;
7234 struct drm_device *dev = crtc->dev;
7235
7236 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7237 if (encoder->crtc == crtc)
7238 return true;
7239
7240 return false;
7241}
7242
7243static void
7244intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7245{
7246 struct intel_encoder *intel_encoder;
7247 struct intel_crtc *intel_crtc;
7248 struct drm_connector *connector;
7249
7250 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7251 base.head) {
7252 if (!intel_encoder->base.crtc)
7253 continue;
7254
7255 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7256
7257 if (prepare_pipes & (1 << intel_crtc->pipe))
7258 intel_encoder->connectors_active = false;
7259 }
7260
7261 intel_modeset_commit_output_state(dev);
7262
7263 /* Update computed state. */
7264 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7265 base.head) {
7266 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7267 }
7268
7269 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7270 if (!connector->encoder || !connector->encoder->crtc)
7271 continue;
7272
7273 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7274
7275 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7276 struct drm_property *dpms_property =
7277 dev->mode_config.dpms_property;
7278
7279 connector->dpms = DRM_MODE_DPMS_ON;
7280 drm_object_property_set_value(&connector->base,
7281 dpms_property,
7282 DRM_MODE_DPMS_ON);
7283
7284 intel_encoder = to_intel_encoder(connector->encoder);
7285 intel_encoder->connectors_active = true;
7286 }
7287 }
7288
7289}
7290
7291#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7292 list_for_each_entry((intel_crtc), \
7293 &(dev)->mode_config.crtc_list, \
7294 base.head) \
7295 if (mask & (1 <<(intel_crtc)->pipe)) \
7296
7297void
7298intel_modeset_check_state(struct drm_device *dev)
7299{
7300 struct intel_crtc *crtc;
7301 struct intel_encoder *encoder;
7302 struct intel_connector *connector;
7303
7304 list_for_each_entry(connector, &dev->mode_config.connector_list,
7305 base.head) {
7306 /* This also checks the encoder/connector hw state with the
7307 * ->get_hw_state callbacks. */
7308 intel_connector_check_state(connector);
7309
7310 WARN(&connector->new_encoder->base != connector->base.encoder,
7311 "connector's staged encoder doesn't match current encoder\n");
7312 }
7313
7314 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7315 base.head) {
7316 bool enabled = false;
7317 bool active = false;
7318 enum pipe pipe, tracked_pipe;
7319
7320 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7321 encoder->base.base.id,
7322 drm_get_encoder_name(&encoder->base));
7323
7324 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7325 "encoder's stage crtc doesn't match current crtc\n");
7326 WARN(encoder->connectors_active && !encoder->base.crtc,
7327 "encoder's active_connectors set, but no crtc\n");
7328
7329 list_for_each_entry(connector, &dev->mode_config.connector_list,
7330 base.head) {
7331 if (connector->base.encoder != &encoder->base)
7332 continue;
7333 enabled = true;
7334 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7335 active = true;
7336 }
7337 WARN(!!encoder->base.crtc != enabled,
7338 "encoder's enabled state mismatch "
7339 "(expected %i, found %i)\n",
7340 !!encoder->base.crtc, enabled);
7341 WARN(active && !encoder->base.crtc,
7342 "active encoder with no crtc\n");
7343
7344 WARN(encoder->connectors_active != active,
7345 "encoder's computed active state doesn't match tracked active state "
7346 "(expected %i, found %i)\n", active, encoder->connectors_active);
7347
7348 active = encoder->get_hw_state(encoder, &pipe);
7349 WARN(active != encoder->connectors_active,
7350 "encoder's hw state doesn't match sw tracking "
7351 "(expected %i, found %i)\n",
7352 encoder->connectors_active, active);
7353
7354 if (!encoder->base.crtc)
7355 continue;
7356
7357 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7358 WARN(active && pipe != tracked_pipe,
7359 "active encoder's pipe doesn't match"
7360 "(expected %i, found %i)\n",
7361 tracked_pipe, pipe);
7362
7363 }
7364
7365 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7366 base.head) {
7367 bool enabled = false;
7368 bool active = false;
7369
7370 DRM_DEBUG_KMS("[CRTC:%d]\n",
7371 crtc->base.base.id);
7372
7373 WARN(crtc->active && !crtc->base.enabled,
7374 "active crtc, but not enabled in sw tracking\n");
7375
7376 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7377 base.head) {
7378 if (encoder->base.crtc != &crtc->base)
7379 continue;
7380 enabled = true;
7381 if (encoder->connectors_active)
7382 active = true;
7383 }
7384 WARN(active != crtc->active,
7385 "crtc's computed active state doesn't match tracked active state "
7386 "(expected %i, found %i)\n", active, crtc->active);
7387 WARN(enabled != crtc->base.enabled,
7388 "crtc's computed enabled state doesn't match tracked enabled state "
7389 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7390
7391 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7392 }
7393}
7394
7395bool intel_set_mode(struct drm_crtc *crtc,
7396 struct drm_display_mode *mode,
7397 int x, int y, struct drm_framebuffer *fb)
7398{
7399 struct drm_device *dev = crtc->dev;
7400 drm_i915_private_t *dev_priv = dev->dev_private;
7401 struct drm_display_mode *adjusted_mode, *saved_mode, *saved_hwmode;
7402 struct intel_crtc *intel_crtc;
7403 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7404 bool ret = true;
7405
7406 saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
7407 if (!saved_mode) {
7408 DRM_ERROR("i915: Could not allocate saved display mode.\n");
7409 return false;
7410 }
7411 saved_hwmode = saved_mode + 1;
7412
7413 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7414 &prepare_pipes, &disable_pipes);
7415
7416 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7417 modeset_pipes, prepare_pipes, disable_pipes);
7418
7419 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7420 intel_crtc_disable(&intel_crtc->base);
7421
7422 *saved_hwmode = crtc->hwmode;
7423 *saved_mode = crtc->mode;
7424
7425 /* Hack: Because we don't (yet) support global modeset on multiple
7426 * crtcs, we don't keep track of the new mode for more than one crtc.
7427 * Hence simply check whether any bit is set in modeset_pipes in all the
7428 * pieces of code that are not yet converted to deal with mutliple crtcs
7429 * changing their mode at the same time. */
7430 adjusted_mode = NULL;
7431 if (modeset_pipes) {
7432 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7433 if (IS_ERR(adjusted_mode)) {
7434 ret = false;
7435 goto out;
7436 }
7437 }
7438
7439 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7440 if (intel_crtc->base.enabled)
7441 dev_priv->display.crtc_disable(&intel_crtc->base);
7442 }
7443
7444 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7445 * to set it here already despite that we pass it down the callchain.
7446 */
7447 if (modeset_pipes)
7448 crtc->mode = *mode;
7449
7450 /* Only after disabling all output pipelines that will be changed can we
7451 * update the the output configuration. */
7452 intel_modeset_update_state(dev, prepare_pipes);
7453
7454 if (dev_priv->display.modeset_global_resources)
7455 dev_priv->display.modeset_global_resources(dev);
7456
7457 /* Set up the DPLL and any encoders state that needs to adjust or depend
7458 * on the DPLL.
7459 */
7460 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7461 ret = !intel_crtc_mode_set(&intel_crtc->base,
7462 mode, adjusted_mode,
7463 x, y, fb);
7464 if (!ret)
7465 goto done;
7466 }
7467
7468 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7469 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7470 dev_priv->display.crtc_enable(&intel_crtc->base);
7471
7472 if (modeset_pipes) {
7473 /* Store real post-adjustment hardware mode. */
7474 crtc->hwmode = *adjusted_mode;
7475
7476 /* Calculate and store various constants which
7477 * are later needed by vblank and swap-completion
7478 * timestamping. They are derived from true hwmode.
7479 */
7480 drm_calc_timestamping_constants(crtc);
7481 }
7482
7483 /* FIXME: add subpixel order */
7484done:
7485 drm_mode_destroy(dev, adjusted_mode);
7486 if (!ret && crtc->enabled) {
7487 crtc->hwmode = *saved_hwmode;
7488 crtc->mode = *saved_mode;
7489 } else {
7490 intel_modeset_check_state(dev);
7491 }
7492
7493out:
7494 kfree(saved_mode);
7495 return ret;
7496}
7497
7498#undef for_each_intel_crtc_masked
7499
7500static void intel_set_config_free(struct intel_set_config *config)
7501{
7502 if (!config)
7503 return;
7504
7505 kfree(config->save_connector_encoders);
7506 kfree(config->save_encoder_crtcs);
7507 kfree(config);
7508}
7509
7510static int intel_set_config_save_state(struct drm_device *dev,
7511 struct intel_set_config *config)
7512{
7513 struct drm_encoder *encoder;
7514 struct drm_connector *connector;
7515 int count;
7516
7517 config->save_encoder_crtcs =
7518 kcalloc(dev->mode_config.num_encoder,
7519 sizeof(struct drm_crtc *), GFP_KERNEL);
7520 if (!config->save_encoder_crtcs)
7521 return -ENOMEM;
7522
7523 config->save_connector_encoders =
7524 kcalloc(dev->mode_config.num_connector,
7525 sizeof(struct drm_encoder *), GFP_KERNEL);
7526 if (!config->save_connector_encoders)
7527 return -ENOMEM;
7528
7529 /* Copy data. Note that driver private data is not affected.
7530 * Should anything bad happen only the expected state is
7531 * restored, not the drivers personal bookkeeping.
7532 */
7533 count = 0;
7534 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7535 config->save_encoder_crtcs[count++] = encoder->crtc;
7536 }
7537
7538 count = 0;
7539 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7540 config->save_connector_encoders[count++] = connector->encoder;
7541 }
7542
7543 return 0;
7544}
7545
7546static void intel_set_config_restore_state(struct drm_device *dev,
7547 struct intel_set_config *config)
7548{
7549 struct intel_encoder *encoder;
7550 struct intel_connector *connector;
7551 int count;
7552
7553 count = 0;
7554 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7555 encoder->new_crtc =
7556 to_intel_crtc(config->save_encoder_crtcs[count++]);
7557 }
7558
7559 count = 0;
7560 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7561 connector->new_encoder =
7562 to_intel_encoder(config->save_connector_encoders[count++]);
7563 }
7564}
7565
7566static void
7567intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7568 struct intel_set_config *config)
7569{
7570
7571 /* We should be able to check here if the fb has the same properties
7572 * and then just flip_or_move it */
7573 if (set->crtc->fb != set->fb) {
7574 /* If we have no fb then treat it as a full mode set */
7575 if (set->crtc->fb == NULL) {
7576 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7577 config->mode_changed = true;
7578 } else if (set->fb == NULL) {
7579 config->mode_changed = true;
7580 } else if (set->fb->depth != set->crtc->fb->depth) {
7581 config->mode_changed = true;
7582 } else if (set->fb->bits_per_pixel !=
7583 set->crtc->fb->bits_per_pixel) {
7584 config->mode_changed = true;
7585 } else
7586 config->fb_changed = true;
7587 }
7588
7589 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7590 config->fb_changed = true;
7591
7592 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7593 DRM_DEBUG_KMS("modes are different, full mode set\n");
7594 drm_mode_debug_printmodeline(&set->crtc->mode);
7595 drm_mode_debug_printmodeline(set->mode);
7596 config->mode_changed = true;
7597 }
7598}
7599
7600static int
7601intel_modeset_stage_output_state(struct drm_device *dev,
7602 struct drm_mode_set *set,
7603 struct intel_set_config *config)
7604{
7605 struct drm_crtc *new_crtc;
7606 struct intel_connector *connector;
7607 struct intel_encoder *encoder;
7608 int count, ro;
7609
7610 /* The upper layers ensure that we either disabl a crtc or have a list
7611 * of connectors. For paranoia, double-check this. */
7612 WARN_ON(!set->fb && (set->num_connectors != 0));
7613 WARN_ON(set->fb && (set->num_connectors == 0));
7614
7615 count = 0;
7616 list_for_each_entry(connector, &dev->mode_config.connector_list,
7617 base.head) {
7618 /* Otherwise traverse passed in connector list and get encoders
7619 * for them. */
7620 for (ro = 0; ro < set->num_connectors; ro++) {
7621 if (set->connectors[ro] == &connector->base) {
7622 connector->new_encoder = connector->encoder;
7623 break;
7624 }
7625 }
7626
7627 /* If we disable the crtc, disable all its connectors. Also, if
7628 * the connector is on the changing crtc but not on the new
7629 * connector list, disable it. */
7630 if ((!set->fb || ro == set->num_connectors) &&
7631 connector->base.encoder &&
7632 connector->base.encoder->crtc == set->crtc) {
7633 connector->new_encoder = NULL;
7634
7635 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7636 connector->base.base.id,
7637 drm_get_connector_name(&connector->base));
7638 }
7639
7640
7641 if (&connector->new_encoder->base != connector->base.encoder) {
7642 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7643 config->mode_changed = true;
7644 }
7645
7646 /* Disable all disconnected encoders. */
7647 if (connector->base.status == connector_status_disconnected)
7648 connector->new_encoder = NULL;
7649 }
7650 /* connector->new_encoder is now updated for all connectors. */
7651
7652 /* Update crtc of enabled connectors. */
7653 count = 0;
7654 list_for_each_entry(connector, &dev->mode_config.connector_list,
7655 base.head) {
7656 if (!connector->new_encoder)
7657 continue;
7658
7659 new_crtc = connector->new_encoder->base.crtc;
7660
7661 for (ro = 0; ro < set->num_connectors; ro++) {
7662 if (set->connectors[ro] == &connector->base)
7663 new_crtc = set->crtc;
7664 }
7665
7666 /* Make sure the new CRTC will work with the encoder */
7667 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7668 new_crtc)) {
7669 return -EINVAL;
7670 }
7671 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
7672
7673 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
7674 connector->base.base.id,
7675 drm_get_connector_name(&connector->base),
7676 new_crtc->base.id);
7677 }
7678
7679 /* Check for any encoders that needs to be disabled. */
7680 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7681 base.head) {
7682 list_for_each_entry(connector,
7683 &dev->mode_config.connector_list,
7684 base.head) {
7685 if (connector->new_encoder == encoder) {
7686 WARN_ON(!connector->new_encoder->new_crtc);
7687
7688 goto next_encoder;
7689 }
7690 }
7691 encoder->new_crtc = NULL;
7692next_encoder:
7693 /* Only now check for crtc changes so we don't miss encoders
7694 * that will be disabled. */
7695 if (&encoder->new_crtc->base != encoder->base.crtc) {
7696 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
7697 config->mode_changed = true;
7698 }
7699 }
7700 /* Now we've also updated encoder->new_crtc for all encoders. */
7701
7702 return 0;
7703}
7704
7705static int intel_crtc_set_config(struct drm_mode_set *set)
7706{
7707 struct drm_device *dev;
7708 struct drm_mode_set save_set;
7709 struct intel_set_config *config;
7710 int ret;
7711
7712 BUG_ON(!set);
7713 BUG_ON(!set->crtc);
7714 BUG_ON(!set->crtc->helper_private);
7715
7716 if (!set->mode)
7717 set->fb = NULL;
7718
7719 /* The fb helper likes to play gross jokes with ->mode_set_config.
7720 * Unfortunately the crtc helper doesn't do much at all for this case,
7721 * so we have to cope with this madness until the fb helper is fixed up. */
7722 if (set->fb && set->num_connectors == 0)
7723 return 0;
7724
7725 if (set->fb) {
7726 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
7727 set->crtc->base.id, set->fb->base.id,
7728 (int)set->num_connectors, set->x, set->y);
7729 } else {
7730 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
7731 }
7732
7733 dev = set->crtc->dev;
7734
7735 ret = -ENOMEM;
7736 config = kzalloc(sizeof(*config), GFP_KERNEL);
7737 if (!config)
7738 goto out_config;
7739
7740 ret = intel_set_config_save_state(dev, config);
7741 if (ret)
7742 goto out_config;
7743
7744 save_set.crtc = set->crtc;
7745 save_set.mode = &set->crtc->mode;
7746 save_set.x = set->crtc->x;
7747 save_set.y = set->crtc->y;
7748 save_set.fb = set->crtc->fb;
7749
7750 /* Compute whether we need a full modeset, only an fb base update or no
7751 * change at all. In the future we might also check whether only the
7752 * mode changed, e.g. for LVDS where we only change the panel fitter in
7753 * such cases. */
7754 intel_set_config_compute_mode_changes(set, config);
7755
7756 ret = intel_modeset_stage_output_state(dev, set, config);
7757 if (ret)
7758 goto fail;
7759
7760 if (config->mode_changed) {
7761 if (set->mode) {
7762 DRM_DEBUG_KMS("attempting to set mode from"
7763 " userspace\n");
7764 drm_mode_debug_printmodeline(set->mode);
7765 }
7766
7767 if (!intel_set_mode(set->crtc, set->mode,
7768 set->x, set->y, set->fb)) {
7769 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
7770 set->crtc->base.id);
7771 ret = -EINVAL;
7772 goto fail;
7773 }
7774 } else if (config->fb_changed) {
7775 ret = intel_pipe_set_base(set->crtc,
7776 set->x, set->y, set->fb);
7777 }
7778
7779 intel_set_config_free(config);
7780
7781 return 0;
7782
7783fail:
7784 intel_set_config_restore_state(dev, config);
7785
7786 /* Try to restore the config */
7787 if (config->mode_changed &&
7788 !intel_set_mode(save_set.crtc, save_set.mode,
7789 save_set.x, save_set.y, save_set.fb))
7790 DRM_ERROR("failed to restore config after modeset failure\n");
7791
7792out_config:
7793 intel_set_config_free(config);
7794 return ret;
7795}
7796
7797static const struct drm_crtc_funcs intel_crtc_funcs = {
7798 .cursor_set = intel_crtc_cursor_set,
7799 .cursor_move = intel_crtc_cursor_move,
7800 .gamma_set = intel_crtc_gamma_set,
7801 .set_config = intel_crtc_set_config,
7802 .destroy = intel_crtc_destroy,
7803 .page_flip = intel_crtc_page_flip,
7804};
7805
7806static void intel_cpu_pll_init(struct drm_device *dev)
7807{
7808 if (HAS_DDI(dev))
7809 intel_ddi_pll_init(dev);
7810}
7811
7812static void intel_pch_pll_init(struct drm_device *dev)
7813{
7814 drm_i915_private_t *dev_priv = dev->dev_private;
7815 int i;
7816
7817 if (dev_priv->num_pch_pll == 0) {
7818 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
7819 return;
7820 }
7821
7822 for (i = 0; i < dev_priv->num_pch_pll; i++) {
7823 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
7824 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
7825 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
7826 }
7827}
7828
7829static void intel_crtc_init(struct drm_device *dev, int pipe)
7830{
7831 drm_i915_private_t *dev_priv = dev->dev_private;
7832 struct intel_crtc *intel_crtc;
7833 int i;
7834
7835 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7836 if (intel_crtc == NULL)
7837 return;
7838
7839 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7840
7841 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7842 for (i = 0; i < 256; i++) {
7843 intel_crtc->lut_r[i] = i;
7844 intel_crtc->lut_g[i] = i;
7845 intel_crtc->lut_b[i] = i;
7846 }
7847
7848 /* Swap pipes & planes for FBC on pre-965 */
7849 intel_crtc->pipe = pipe;
7850 intel_crtc->plane = pipe;
7851 intel_crtc->cpu_transcoder = pipe;
7852 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7853 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7854 intel_crtc->plane = !pipe;
7855 }
7856
7857 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7858 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7859 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7860 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7861
7862 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7863
7864 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7865}
7866
7867int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7868 struct drm_file *file)
7869{
7870 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7871 struct drm_mode_object *drmmode_obj;
7872 struct intel_crtc *crtc;
7873
7874 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7875 return -ENODEV;
7876
7877 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7878 DRM_MODE_OBJECT_CRTC);
7879
7880 if (!drmmode_obj) {
7881 DRM_ERROR("no such CRTC id\n");
7882 return -EINVAL;
7883 }
7884
7885 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7886 pipe_from_crtc_id->pipe = crtc->pipe;
7887
7888 return 0;
7889}
7890
7891static int intel_encoder_clones(struct intel_encoder *encoder)
7892{
7893 struct drm_device *dev = encoder->base.dev;
7894 struct intel_encoder *source_encoder;
7895 int index_mask = 0;
7896 int entry = 0;
7897
7898 list_for_each_entry(source_encoder,
7899 &dev->mode_config.encoder_list, base.head) {
7900
7901 if (encoder == source_encoder)
7902 index_mask |= (1 << entry);
7903
7904 /* Intel hw has only one MUX where enocoders could be cloned. */
7905 if (encoder->cloneable && source_encoder->cloneable)
7906 index_mask |= (1 << entry);
7907
7908 entry++;
7909 }
7910
7911 return index_mask;
7912}
7913
7914static bool has_edp_a(struct drm_device *dev)
7915{
7916 struct drm_i915_private *dev_priv = dev->dev_private;
7917
7918 if (!IS_MOBILE(dev))
7919 return false;
7920
7921 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7922 return false;
7923
7924 if (IS_GEN5(dev) &&
7925 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7926 return false;
7927
7928 return true;
7929}
7930
7931static void intel_setup_outputs(struct drm_device *dev)
7932{
7933 struct drm_i915_private *dev_priv = dev->dev_private;
7934 struct intel_encoder *encoder;
7935 bool dpd_is_edp = false;
7936 bool has_lvds;
7937
7938 has_lvds = intel_lvds_init(dev);
7939 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7940 /* disable the panel fitter on everything but LVDS */
7941 I915_WRITE(PFIT_CONTROL, 0);
7942 }
7943
7944 if (!(HAS_DDI(dev) && (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
7945 intel_crt_init(dev);
7946
7947 if (HAS_DDI(dev)) {
7948 int found;
7949
7950 /* Haswell uses DDI functions to detect digital outputs */
7951 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
7952 /* DDI A only supports eDP */
7953 if (found)
7954 intel_ddi_init(dev, PORT_A);
7955
7956 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
7957 * register */
7958 found = I915_READ(SFUSE_STRAP);
7959
7960 if (found & SFUSE_STRAP_DDIB_DETECTED)
7961 intel_ddi_init(dev, PORT_B);
7962 if (found & SFUSE_STRAP_DDIC_DETECTED)
7963 intel_ddi_init(dev, PORT_C);
7964 if (found & SFUSE_STRAP_DDID_DETECTED)
7965 intel_ddi_init(dev, PORT_D);
7966 } else if (HAS_PCH_SPLIT(dev)) {
7967 int found;
7968 dpd_is_edp = intel_dpd_is_edp(dev);
7969
7970 if (has_edp_a(dev))
7971 intel_dp_init(dev, DP_A, PORT_A);
7972
7973 if (I915_READ(HDMIB) & PORT_DETECTED) {
7974 /* PCH SDVOB multiplex with HDMIB */
7975 found = intel_sdvo_init(dev, PCH_SDVOB, true);
7976 if (!found)
7977 intel_hdmi_init(dev, HDMIB, PORT_B);
7978 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7979 intel_dp_init(dev, PCH_DP_B, PORT_B);
7980 }
7981
7982 if (I915_READ(HDMIC) & PORT_DETECTED)
7983 intel_hdmi_init(dev, HDMIC, PORT_C);
7984
7985 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
7986 intel_hdmi_init(dev, HDMID, PORT_D);
7987
7988 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7989 intel_dp_init(dev, PCH_DP_C, PORT_C);
7990
7991 if (I915_READ(PCH_DP_D) & DP_DETECTED)
7992 intel_dp_init(dev, PCH_DP_D, PORT_D);
7993 } else if (IS_VALLEYVIEW(dev)) {
7994 int found;
7995
7996 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
7997 if (I915_READ(DP_C) & DP_DETECTED)
7998 intel_dp_init(dev, DP_C, PORT_C);
7999
8000 if (I915_READ(SDVOB) & PORT_DETECTED) {
8001 /* SDVOB multiplex with HDMIB */
8002 found = intel_sdvo_init(dev, SDVOB, true);
8003 if (!found)
8004 intel_hdmi_init(dev, SDVOB, PORT_B);
8005 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8006 intel_dp_init(dev, DP_B, PORT_B);
8007 }
8008
8009 if (I915_READ(SDVOC) & PORT_DETECTED)
8010 intel_hdmi_init(dev, SDVOC, PORT_C);
8011
8012 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8013 bool found = false;
8014
8015 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8016 DRM_DEBUG_KMS("probing SDVOB\n");
8017 found = intel_sdvo_init(dev, SDVOB, true);
8018 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8019 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8020 intel_hdmi_init(dev, SDVOB, PORT_B);
8021 }
8022
8023 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8024 DRM_DEBUG_KMS("probing DP_B\n");
8025 intel_dp_init(dev, DP_B, PORT_B);
8026 }
8027 }
8028
8029 /* Before G4X SDVOC doesn't have its own detect register */
8030
8031 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8032 DRM_DEBUG_KMS("probing SDVOC\n");
8033 found = intel_sdvo_init(dev, SDVOC, false);
8034 }
8035
8036 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8037
8038 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8039 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8040 intel_hdmi_init(dev, SDVOC, PORT_C);
8041 }
8042 if (SUPPORTS_INTEGRATED_DP(dev)) {
8043 DRM_DEBUG_KMS("probing DP_C\n");
8044 intel_dp_init(dev, DP_C, PORT_C);
8045 }
8046 }
8047
8048 if (SUPPORTS_INTEGRATED_DP(dev) &&
8049 (I915_READ(DP_D) & DP_DETECTED)) {
8050 DRM_DEBUG_KMS("probing DP_D\n");
8051 intel_dp_init(dev, DP_D, PORT_D);
8052 }
8053 } else if (IS_GEN2(dev))
8054 intel_dvo_init(dev);
8055
8056 if (SUPPORTS_TV(dev))
8057 intel_tv_init(dev);
8058
8059 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8060 encoder->base.possible_crtcs = encoder->crtc_mask;
8061 encoder->base.possible_clones =
8062 intel_encoder_clones(encoder);
8063 }
8064
8065 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8066 ironlake_init_pch_refclk(dev);
8067
8068 drm_helper_move_panel_connectors_to_head(dev);
8069}
8070
8071static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8072{
8073 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8074
8075 drm_framebuffer_cleanup(fb);
8076 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8077
8078 kfree(intel_fb);
8079}
8080
8081static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8082 struct drm_file *file,
8083 unsigned int *handle)
8084{
8085 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8086 struct drm_i915_gem_object *obj = intel_fb->obj;
8087
8088 return drm_gem_handle_create(file, &obj->base, handle);
8089}
8090
8091static const struct drm_framebuffer_funcs intel_fb_funcs = {
8092 .destroy = intel_user_framebuffer_destroy,
8093 .create_handle = intel_user_framebuffer_create_handle,
8094};
8095
8096int intel_framebuffer_init(struct drm_device *dev,
8097 struct intel_framebuffer *intel_fb,
8098 struct drm_mode_fb_cmd2 *mode_cmd,
8099 struct drm_i915_gem_object *obj)
8100{
8101 int ret;
8102
8103 if (obj->tiling_mode == I915_TILING_Y)
8104 return -EINVAL;
8105
8106 if (mode_cmd->pitches[0] & 63)
8107 return -EINVAL;
8108
8109 /* FIXME <= Gen4 stride limits are bit unclear */
8110 if (mode_cmd->pitches[0] > 32768)
8111 return -EINVAL;
8112
8113 if (obj->tiling_mode != I915_TILING_NONE &&
8114 mode_cmd->pitches[0] != obj->stride)
8115 return -EINVAL;
8116
8117 /* Reject formats not supported by any plane early. */
8118 switch (mode_cmd->pixel_format) {
8119 case DRM_FORMAT_C8:
8120 case DRM_FORMAT_RGB565:
8121 case DRM_FORMAT_XRGB8888:
8122 case DRM_FORMAT_ARGB8888:
8123 break;
8124 case DRM_FORMAT_XRGB1555:
8125 case DRM_FORMAT_ARGB1555:
8126 if (INTEL_INFO(dev)->gen > 3)
8127 return -EINVAL;
8128 break;
8129 case DRM_FORMAT_XBGR8888:
8130 case DRM_FORMAT_ABGR8888:
8131 case DRM_FORMAT_XRGB2101010:
8132 case DRM_FORMAT_ARGB2101010:
8133 case DRM_FORMAT_XBGR2101010:
8134 case DRM_FORMAT_ABGR2101010:
8135 if (INTEL_INFO(dev)->gen < 4)
8136 return -EINVAL;
8137 break;
8138 case DRM_FORMAT_YUYV:
8139 case DRM_FORMAT_UYVY:
8140 case DRM_FORMAT_YVYU:
8141 case DRM_FORMAT_VYUY:
8142 if (INTEL_INFO(dev)->gen < 6)
8143 return -EINVAL;
8144 break;
8145 default:
8146 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8147 return -EINVAL;
8148 }
8149
8150 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8151 if (mode_cmd->offsets[0] != 0)
8152 return -EINVAL;
8153
8154 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8155 if (ret) {
8156 DRM_ERROR("framebuffer init failed %d\n", ret);
8157 return ret;
8158 }
8159
8160 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8161 intel_fb->obj = obj;
8162 return 0;
8163}
8164
8165static struct drm_framebuffer *
8166intel_user_framebuffer_create(struct drm_device *dev,
8167 struct drm_file *filp,
8168 struct drm_mode_fb_cmd2 *mode_cmd)
8169{
8170 struct drm_i915_gem_object *obj;
8171
8172 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8173 mode_cmd->handles[0]));
8174 if (&obj->base == NULL)
8175 return ERR_PTR(-ENOENT);
8176
8177 return intel_framebuffer_create(dev, mode_cmd, obj);
8178}
8179
8180static const struct drm_mode_config_funcs intel_mode_funcs = {
8181 .fb_create = intel_user_framebuffer_create,
8182 .output_poll_changed = intel_fb_output_poll_changed,
8183};
8184
8185/* Set up chip specific display functions */
8186static void intel_init_display(struct drm_device *dev)
8187{
8188 struct drm_i915_private *dev_priv = dev->dev_private;
8189
8190 /* We always want a DPMS function */
8191 if (HAS_DDI(dev)) {
8192 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8193 dev_priv->display.crtc_enable = haswell_crtc_enable;
8194 dev_priv->display.crtc_disable = haswell_crtc_disable;
8195 dev_priv->display.off = haswell_crtc_off;
8196 dev_priv->display.update_plane = ironlake_update_plane;
8197 } else if (HAS_PCH_SPLIT(dev)) {
8198 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8199 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8200 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8201 dev_priv->display.off = ironlake_crtc_off;
8202 dev_priv->display.update_plane = ironlake_update_plane;
8203 } else {
8204 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8205 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8206 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8207 dev_priv->display.off = i9xx_crtc_off;
8208 dev_priv->display.update_plane = i9xx_update_plane;
8209 }
8210
8211 /* Returns the core display clock speed */
8212 if (IS_VALLEYVIEW(dev))
8213 dev_priv->display.get_display_clock_speed =
8214 valleyview_get_display_clock_speed;
8215 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8216 dev_priv->display.get_display_clock_speed =
8217 i945_get_display_clock_speed;
8218 else if (IS_I915G(dev))
8219 dev_priv->display.get_display_clock_speed =
8220 i915_get_display_clock_speed;
8221 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8222 dev_priv->display.get_display_clock_speed =
8223 i9xx_misc_get_display_clock_speed;
8224 else if (IS_I915GM(dev))
8225 dev_priv->display.get_display_clock_speed =
8226 i915gm_get_display_clock_speed;
8227 else if (IS_I865G(dev))
8228 dev_priv->display.get_display_clock_speed =
8229 i865_get_display_clock_speed;
8230 else if (IS_I85X(dev))
8231 dev_priv->display.get_display_clock_speed =
8232 i855_get_display_clock_speed;
8233 else /* 852, 830 */
8234 dev_priv->display.get_display_clock_speed =
8235 i830_get_display_clock_speed;
8236
8237 if (HAS_PCH_SPLIT(dev)) {
8238 if (IS_GEN5(dev)) {
8239 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8240 dev_priv->display.write_eld = ironlake_write_eld;
8241 } else if (IS_GEN6(dev)) {
8242 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8243 dev_priv->display.write_eld = ironlake_write_eld;
8244 } else if (IS_IVYBRIDGE(dev)) {
8245 /* FIXME: detect B0+ stepping and use auto training */
8246 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8247 dev_priv->display.write_eld = ironlake_write_eld;
8248 dev_priv->display.modeset_global_resources =
8249 ivb_modeset_global_resources;
8250 } else if (IS_HASWELL(dev)) {
8251 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8252 dev_priv->display.write_eld = haswell_write_eld;
8253 } else
8254 dev_priv->display.update_wm = NULL;
8255 } else if (IS_G4X(dev)) {
8256 dev_priv->display.write_eld = g4x_write_eld;
8257 }
8258
8259 /* Default just returns -ENODEV to indicate unsupported */
8260 dev_priv->display.queue_flip = intel_default_queue_flip;
8261
8262 switch (INTEL_INFO(dev)->gen) {
8263 case 2:
8264 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8265 break;
8266
8267 case 3:
8268 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8269 break;
8270
8271 case 4:
8272 case 5:
8273 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8274 break;
8275
8276 case 6:
8277 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8278 break;
8279 case 7:
8280 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8281 break;
8282 }
8283}
8284
8285/*
8286 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8287 * resume, or other times. This quirk makes sure that's the case for
8288 * affected systems.
8289 */
8290static void quirk_pipea_force(struct drm_device *dev)
8291{
8292 struct drm_i915_private *dev_priv = dev->dev_private;
8293
8294 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8295 DRM_INFO("applying pipe a force quirk\n");
8296}
8297
8298/*
8299 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8300 */
8301static void quirk_ssc_force_disable(struct drm_device *dev)
8302{
8303 struct drm_i915_private *dev_priv = dev->dev_private;
8304 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8305 DRM_INFO("applying lvds SSC disable quirk\n");
8306}
8307
8308/*
8309 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8310 * brightness value
8311 */
8312static void quirk_invert_brightness(struct drm_device *dev)
8313{
8314 struct drm_i915_private *dev_priv = dev->dev_private;
8315 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8316 DRM_INFO("applying inverted panel brightness quirk\n");
8317}
8318
8319struct intel_quirk {
8320 int device;
8321 int subsystem_vendor;
8322 int subsystem_device;
8323 void (*hook)(struct drm_device *dev);
8324};
8325
8326/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
8327struct intel_dmi_quirk {
8328 void (*hook)(struct drm_device *dev);
8329 const struct dmi_system_id (*dmi_id_list)[];
8330};
8331
8332static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
8333{
8334 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
8335 return 1;
8336}
8337
8338static const struct intel_dmi_quirk intel_dmi_quirks[] = {
8339 {
8340 .dmi_id_list = &(const struct dmi_system_id[]) {
8341 {
8342 .callback = intel_dmi_reverse_brightness,
8343 .ident = "NCR Corporation",
8344 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
8345 DMI_MATCH(DMI_PRODUCT_NAME, ""),
8346 },
8347 },
8348 { } /* terminating entry */
8349 },
8350 .hook = quirk_invert_brightness,
8351 },
8352};
8353
8354static struct intel_quirk intel_quirks[] = {
8355 /* HP Mini needs pipe A force quirk (LP: #322104) */
8356 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8357
8358 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8359 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8360
8361 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8362 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8363
8364 /* 830/845 need to leave pipe A & dpll A up */
8365 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8366 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8367
8368 /* Lenovo U160 cannot use SSC on LVDS */
8369 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8370
8371 /* Sony Vaio Y cannot use SSC on LVDS */
8372 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8373
8374 /* Acer Aspire 5734Z must invert backlight brightness */
8375 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8376};
8377
8378static void intel_init_quirks(struct drm_device *dev)
8379{
8380 struct pci_dev *d = dev->pdev;
8381 int i;
8382
8383 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8384 struct intel_quirk *q = &intel_quirks[i];
8385
8386 if (d->device == q->device &&
8387 (d->subsystem_vendor == q->subsystem_vendor ||
8388 q->subsystem_vendor == PCI_ANY_ID) &&
8389 (d->subsystem_device == q->subsystem_device ||
8390 q->subsystem_device == PCI_ANY_ID))
8391 q->hook(dev);
8392 }
8393 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
8394 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
8395 intel_dmi_quirks[i].hook(dev);
8396 }
8397}
8398
8399/* Disable the VGA plane that we never use */
8400static void i915_disable_vga(struct drm_device *dev)
8401{
8402 struct drm_i915_private *dev_priv = dev->dev_private;
8403 u8 sr1;
8404 u32 vga_reg;
8405
8406 if (HAS_PCH_SPLIT(dev))
8407 vga_reg = CPU_VGACNTRL;
8408 else
8409 vga_reg = VGACNTRL;
8410
8411 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8412 outb(SR01, VGA_SR_INDEX);
8413 sr1 = inb(VGA_SR_DATA);
8414 outb(sr1 | 1<<5, VGA_SR_DATA);
8415 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8416 udelay(300);
8417
8418 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8419 POSTING_READ(vga_reg);
8420}
8421
8422void intel_modeset_init_hw(struct drm_device *dev)
8423{
8424 /* We attempt to init the necessary power wells early in the initialization
8425 * time, so the subsystems that expect power to be enabled can work.
8426 */
8427 intel_init_power_wells(dev);
8428
8429 intel_prepare_ddi(dev);
8430
8431 intel_init_clock_gating(dev);
8432
8433 mutex_lock(&dev->struct_mutex);
8434 intel_enable_gt_powersave(dev);
8435 mutex_unlock(&dev->struct_mutex);
8436}
8437
8438void intel_modeset_init(struct drm_device *dev)
8439{
8440 struct drm_i915_private *dev_priv = dev->dev_private;
8441 int i, ret;
8442
8443 drm_mode_config_init(dev);
8444
8445 dev->mode_config.min_width = 0;
8446 dev->mode_config.min_height = 0;
8447
8448 dev->mode_config.preferred_depth = 24;
8449 dev->mode_config.prefer_shadow = 1;
8450
8451 dev->mode_config.funcs = &intel_mode_funcs;
8452
8453 intel_init_quirks(dev);
8454
8455 intel_init_pm(dev);
8456
8457 intel_init_display(dev);
8458
8459 if (IS_GEN2(dev)) {
8460 dev->mode_config.max_width = 2048;
8461 dev->mode_config.max_height = 2048;
8462 } else if (IS_GEN3(dev)) {
8463 dev->mode_config.max_width = 4096;
8464 dev->mode_config.max_height = 4096;
8465 } else {
8466 dev->mode_config.max_width = 8192;
8467 dev->mode_config.max_height = 8192;
8468 }
8469 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8470
8471 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8472 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8473
8474 for (i = 0; i < dev_priv->num_pipe; i++) {
8475 intel_crtc_init(dev, i);
8476 ret = intel_plane_init(dev, i);
8477 if (ret)
8478 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8479 }
8480
8481 intel_cpu_pll_init(dev);
8482 intel_pch_pll_init(dev);
8483
8484 /* Just disable it once at startup */
8485 i915_disable_vga(dev);
8486 intel_setup_outputs(dev);
8487
8488 /* Just in case the BIOS is doing something questionable. */
8489 intel_disable_fbc(dev);
8490}
8491
8492static void
8493intel_connector_break_all_links(struct intel_connector *connector)
8494{
8495 connector->base.dpms = DRM_MODE_DPMS_OFF;
8496 connector->base.encoder = NULL;
8497 connector->encoder->connectors_active = false;
8498 connector->encoder->base.crtc = NULL;
8499}
8500
8501static void intel_enable_pipe_a(struct drm_device *dev)
8502{
8503 struct intel_connector *connector;
8504 struct drm_connector *crt = NULL;
8505 struct intel_load_detect_pipe load_detect_temp;
8506
8507 /* We can't just switch on the pipe A, we need to set things up with a
8508 * proper mode and output configuration. As a gross hack, enable pipe A
8509 * by enabling the load detect pipe once. */
8510 list_for_each_entry(connector,
8511 &dev->mode_config.connector_list,
8512 base.head) {
8513 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8514 crt = &connector->base;
8515 break;
8516 }
8517 }
8518
8519 if (!crt)
8520 return;
8521
8522 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8523 intel_release_load_detect_pipe(crt, &load_detect_temp);
8524
8525
8526}
8527
8528static bool
8529intel_check_plane_mapping(struct intel_crtc *crtc)
8530{
8531 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8532 u32 reg, val;
8533
8534 if (dev_priv->num_pipe == 1)
8535 return true;
8536
8537 reg = DSPCNTR(!crtc->plane);
8538 val = I915_READ(reg);
8539
8540 if ((val & DISPLAY_PLANE_ENABLE) &&
8541 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8542 return false;
8543
8544 return true;
8545}
8546
8547static void intel_sanitize_crtc(struct intel_crtc *crtc)
8548{
8549 struct drm_device *dev = crtc->base.dev;
8550 struct drm_i915_private *dev_priv = dev->dev_private;
8551 u32 reg;
8552
8553 /* Clear any frame start delays used for debugging left by the BIOS */
8554 reg = PIPECONF(crtc->cpu_transcoder);
8555 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8556
8557 /* We need to sanitize the plane -> pipe mapping first because this will
8558 * disable the crtc (and hence change the state) if it is wrong. Note
8559 * that gen4+ has a fixed plane -> pipe mapping. */
8560 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8561 struct intel_connector *connector;
8562 bool plane;
8563
8564 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8565 crtc->base.base.id);
8566
8567 /* Pipe has the wrong plane attached and the plane is active.
8568 * Temporarily change the plane mapping and disable everything
8569 * ... */
8570 plane = crtc->plane;
8571 crtc->plane = !plane;
8572 dev_priv->display.crtc_disable(&crtc->base);
8573 crtc->plane = plane;
8574
8575 /* ... and break all links. */
8576 list_for_each_entry(connector, &dev->mode_config.connector_list,
8577 base.head) {
8578 if (connector->encoder->base.crtc != &crtc->base)
8579 continue;
8580
8581 intel_connector_break_all_links(connector);
8582 }
8583
8584 WARN_ON(crtc->active);
8585 crtc->base.enabled = false;
8586 }
8587
8588 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8589 crtc->pipe == PIPE_A && !crtc->active) {
8590 /* BIOS forgot to enable pipe A, this mostly happens after
8591 * resume. Force-enable the pipe to fix this, the update_dpms
8592 * call below we restore the pipe to the right state, but leave
8593 * the required bits on. */
8594 intel_enable_pipe_a(dev);
8595 }
8596
8597 /* Adjust the state of the output pipe according to whether we
8598 * have active connectors/encoders. */
8599 intel_crtc_update_dpms(&crtc->base);
8600
8601 if (crtc->active != crtc->base.enabled) {
8602 struct intel_encoder *encoder;
8603
8604 /* This can happen either due to bugs in the get_hw_state
8605 * functions or because the pipe is force-enabled due to the
8606 * pipe A quirk. */
8607 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8608 crtc->base.base.id,
8609 crtc->base.enabled ? "enabled" : "disabled",
8610 crtc->active ? "enabled" : "disabled");
8611
8612 crtc->base.enabled = crtc->active;
8613
8614 /* Because we only establish the connector -> encoder ->
8615 * crtc links if something is active, this means the
8616 * crtc is now deactivated. Break the links. connector
8617 * -> encoder links are only establish when things are
8618 * actually up, hence no need to break them. */
8619 WARN_ON(crtc->active);
8620
8621 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8622 WARN_ON(encoder->connectors_active);
8623 encoder->base.crtc = NULL;
8624 }
8625 }
8626}
8627
8628static void intel_sanitize_encoder(struct intel_encoder *encoder)
8629{
8630 struct intel_connector *connector;
8631 struct drm_device *dev = encoder->base.dev;
8632
8633 /* We need to check both for a crtc link (meaning that the
8634 * encoder is active and trying to read from a pipe) and the
8635 * pipe itself being active. */
8636 bool has_active_crtc = encoder->base.crtc &&
8637 to_intel_crtc(encoder->base.crtc)->active;
8638
8639 if (encoder->connectors_active && !has_active_crtc) {
8640 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8641 encoder->base.base.id,
8642 drm_get_encoder_name(&encoder->base));
8643
8644 /* Connector is active, but has no active pipe. This is
8645 * fallout from our resume register restoring. Disable
8646 * the encoder manually again. */
8647 if (encoder->base.crtc) {
8648 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8649 encoder->base.base.id,
8650 drm_get_encoder_name(&encoder->base));
8651 encoder->disable(encoder);
8652 }
8653
8654 /* Inconsistent output/port/pipe state happens presumably due to
8655 * a bug in one of the get_hw_state functions. Or someplace else
8656 * in our code, like the register restore mess on resume. Clamp
8657 * things to off as a safer default. */
8658 list_for_each_entry(connector,
8659 &dev->mode_config.connector_list,
8660 base.head) {
8661 if (connector->encoder != encoder)
8662 continue;
8663
8664 intel_connector_break_all_links(connector);
8665 }
8666 }
8667 /* Enabled encoders without active connectors will be fixed in
8668 * the crtc fixup. */
8669}
8670
8671/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8672 * and i915 state tracking structures. */
8673void intel_modeset_setup_hw_state(struct drm_device *dev,
8674 bool force_restore)
8675{
8676 struct drm_i915_private *dev_priv = dev->dev_private;
8677 enum pipe pipe;
8678 u32 tmp;
8679 struct intel_crtc *crtc;
8680 struct intel_encoder *encoder;
8681 struct intel_connector *connector;
8682
8683 if (HAS_DDI(dev)) {
8684 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8685
8686 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8687 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8688 case TRANS_DDI_EDP_INPUT_A_ON:
8689 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8690 pipe = PIPE_A;
8691 break;
8692 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8693 pipe = PIPE_B;
8694 break;
8695 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8696 pipe = PIPE_C;
8697 break;
8698 }
8699
8700 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8701 crtc->cpu_transcoder = TRANSCODER_EDP;
8702
8703 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8704 pipe_name(pipe));
8705 }
8706 }
8707
8708 for_each_pipe(pipe) {
8709 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8710
8711 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
8712 if (tmp & PIPECONF_ENABLE)
8713 crtc->active = true;
8714 else
8715 crtc->active = false;
8716
8717 crtc->base.enabled = crtc->active;
8718
8719 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
8720 crtc->base.base.id,
8721 crtc->active ? "enabled" : "disabled");
8722 }
8723
8724 if (HAS_DDI(dev))
8725 intel_ddi_setup_hw_pll_state(dev);
8726
8727 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8728 base.head) {
8729 pipe = 0;
8730
8731 if (encoder->get_hw_state(encoder, &pipe)) {
8732 encoder->base.crtc =
8733 dev_priv->pipe_to_crtc_mapping[pipe];
8734 } else {
8735 encoder->base.crtc = NULL;
8736 }
8737
8738 encoder->connectors_active = false;
8739 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
8740 encoder->base.base.id,
8741 drm_get_encoder_name(&encoder->base),
8742 encoder->base.crtc ? "enabled" : "disabled",
8743 pipe);
8744 }
8745
8746 list_for_each_entry(connector, &dev->mode_config.connector_list,
8747 base.head) {
8748 if (connector->get_hw_state(connector)) {
8749 connector->base.dpms = DRM_MODE_DPMS_ON;
8750 connector->encoder->connectors_active = true;
8751 connector->base.encoder = &connector->encoder->base;
8752 } else {
8753 connector->base.dpms = DRM_MODE_DPMS_OFF;
8754 connector->base.encoder = NULL;
8755 }
8756 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
8757 connector->base.base.id,
8758 drm_get_connector_name(&connector->base),
8759 connector->base.encoder ? "enabled" : "disabled");
8760 }
8761
8762 /* HW state is read out, now we need to sanitize this mess. */
8763 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8764 base.head) {
8765 intel_sanitize_encoder(encoder);
8766 }
8767
8768 for_each_pipe(pipe) {
8769 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8770 intel_sanitize_crtc(crtc);
8771 }
8772
8773 if (force_restore) {
8774 for_each_pipe(pipe) {
8775 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8776 intel_set_mode(&crtc->base, &crtc->base.mode,
8777 crtc->base.x, crtc->base.y, crtc->base.fb);
8778 }
8779 } else {
8780 intel_modeset_update_staged_output_state(dev);
8781 }
8782
8783 intel_modeset_check_state(dev);
8784
8785 drm_mode_config_reset(dev);
8786}
8787
8788void intel_modeset_gem_init(struct drm_device *dev)
8789{
8790 intel_modeset_init_hw(dev);
8791
8792 intel_setup_overlay(dev);
8793
8794 intel_modeset_setup_hw_state(dev, false);
8795}
8796
8797void intel_modeset_cleanup(struct drm_device *dev)
8798{
8799 struct drm_i915_private *dev_priv = dev->dev_private;
8800 struct drm_crtc *crtc;
8801 struct intel_crtc *intel_crtc;
8802
8803 drm_kms_helper_poll_fini(dev);
8804 mutex_lock(&dev->struct_mutex);
8805
8806 intel_unregister_dsm_handler();
8807
8808
8809 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8810 /* Skip inactive CRTCs */
8811 if (!crtc->fb)
8812 continue;
8813
8814 intel_crtc = to_intel_crtc(crtc);
8815 intel_increase_pllclock(crtc);
8816 }
8817
8818 intel_disable_fbc(dev);
8819
8820 intel_disable_gt_powersave(dev);
8821
8822 ironlake_teardown_rc6(dev);
8823
8824 if (IS_VALLEYVIEW(dev))
8825 vlv_init_dpio(dev);
8826
8827 mutex_unlock(&dev->struct_mutex);
8828
8829 /* Disable the irq before mode object teardown, for the irq might
8830 * enqueue unpin/hotplug work. */
8831 drm_irq_uninstall(dev);
8832 cancel_work_sync(&dev_priv->hotplug_work);
8833 cancel_work_sync(&dev_priv->rps.work);
8834
8835 /* flush any delayed tasks or pending work */
8836 flush_scheduled_work();
8837
8838 drm_mode_config_cleanup(dev);
8839}
8840
8841/*
8842 * Return which encoder is currently attached for connector.
8843 */
8844struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
8845{
8846 return &intel_attached_encoder(connector)->base;
8847}
8848
8849void intel_connector_attach_encoder(struct intel_connector *connector,
8850 struct intel_encoder *encoder)
8851{
8852 connector->encoder = encoder;
8853 drm_mode_connector_attach_encoder(&connector->base,
8854 &encoder->base);
8855}
8856
8857/*
8858 * set vga decode state - true == enable VGA decode
8859 */
8860int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
8861{
8862 struct drm_i915_private *dev_priv = dev->dev_private;
8863 u16 gmch_ctrl;
8864
8865 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
8866 if (state)
8867 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
8868 else
8869 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
8870 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
8871 return 0;
8872}
8873
8874#ifdef CONFIG_DEBUG_FS
8875#include <linux/seq_file.h>
8876
8877struct intel_display_error_state {
8878 struct intel_cursor_error_state {
8879 u32 control;
8880 u32 position;
8881 u32 base;
8882 u32 size;
8883 } cursor[I915_MAX_PIPES];
8884
8885 struct intel_pipe_error_state {
8886 u32 conf;
8887 u32 source;
8888
8889 u32 htotal;
8890 u32 hblank;
8891 u32 hsync;
8892 u32 vtotal;
8893 u32 vblank;
8894 u32 vsync;
8895 } pipe[I915_MAX_PIPES];
8896
8897 struct intel_plane_error_state {
8898 u32 control;
8899 u32 stride;
8900 u32 size;
8901 u32 pos;
8902 u32 addr;
8903 u32 surface;
8904 u32 tile_offset;
8905 } plane[I915_MAX_PIPES];
8906};
8907
8908struct intel_display_error_state *
8909intel_display_capture_error_state(struct drm_device *dev)
8910{
8911 drm_i915_private_t *dev_priv = dev->dev_private;
8912 struct intel_display_error_state *error;
8913 enum transcoder cpu_transcoder;
8914 int i;
8915
8916 error = kmalloc(sizeof(*error), GFP_ATOMIC);
8917 if (error == NULL)
8918 return NULL;
8919
8920 for_each_pipe(i) {
8921 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
8922
8923 error->cursor[i].control = I915_READ(CURCNTR(i));
8924 error->cursor[i].position = I915_READ(CURPOS(i));
8925 error->cursor[i].base = I915_READ(CURBASE(i));
8926
8927 error->plane[i].control = I915_READ(DSPCNTR(i));
8928 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
8929 error->plane[i].size = I915_READ(DSPSIZE(i));
8930 error->plane[i].pos = I915_READ(DSPPOS(i));
8931 error->plane[i].addr = I915_READ(DSPADDR(i));
8932 if (INTEL_INFO(dev)->gen >= 4) {
8933 error->plane[i].surface = I915_READ(DSPSURF(i));
8934 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
8935 }
8936
8937 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
8938 error->pipe[i].source = I915_READ(PIPESRC(i));
8939 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
8940 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
8941 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
8942 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
8943 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
8944 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
8945 }
8946
8947 return error;
8948}
8949
8950void
8951intel_display_print_error_state(struct seq_file *m,
8952 struct drm_device *dev,
8953 struct intel_display_error_state *error)
8954{
8955 drm_i915_private_t *dev_priv = dev->dev_private;
8956 int i;
8957
8958 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
8959 for_each_pipe(i) {
8960 seq_printf(m, "Pipe [%d]:\n", i);
8961 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
8962 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
8963 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
8964 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
8965 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
8966 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
8967 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
8968 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
8969
8970 seq_printf(m, "Plane [%d]:\n", i);
8971 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
8972 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
8973 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
8974 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
8975 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
8976 if (INTEL_INFO(dev)->gen >= 4) {
8977 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
8978 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
8979 }
8980
8981 seq_printf(m, "Cursor [%d]:\n", i);
8982 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
8983 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
8984 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
8985 }
8986}
8987#endif
This page took 0.060998 seconds and 5 git commands to generate.