drm/i915/bdw: add support for BDW DP voltage swings and pre-emphasis
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
... / ...
CommitLineData
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/dmi.h>
28#include <linux/module.h>
29#include <linux/input.h>
30#include <linux/i2c.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/vgaarb.h>
34#include <drm/drm_edid.h>
35#include <drm/drmP.h>
36#include "intel_drv.h"
37#include <drm/i915_drm.h>
38#include "i915_drv.h"
39#include "i915_trace.h"
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
42#include <linux/dma_remapping.h>
43
44static void intel_increase_pllclock(struct drm_crtc *crtc);
45static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54
55
56typedef struct {
57 int min, max;
58} intel_range_t;
59
60typedef struct {
61 int dot_limit;
62 int p2_slow, p2_fast;
63} intel_p2_t;
64
65typedef struct intel_limit intel_limit_t;
66struct intel_limit {
67 intel_range_t dot, vco, n, m, m1, m2, p, p1;
68 intel_p2_t p2;
69};
70
71int
72intel_pch_rawclk(struct drm_device *dev)
73{
74 struct drm_i915_private *dev_priv = dev->dev_private;
75
76 WARN_ON(!HAS_PCH_SPLIT(dev));
77
78 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79}
80
81static inline u32 /* units of 100MHz */
82intel_fdi_link_freq(struct drm_device *dev)
83{
84 if (IS_GEN5(dev)) {
85 struct drm_i915_private *dev_priv = dev->dev_private;
86 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87 } else
88 return 27;
89}
90
91static const intel_limit_t intel_limits_i8xx_dac = {
92 .dot = { .min = 25000, .max = 350000 },
93 .vco = { .min = 930000, .max = 1400000 },
94 .n = { .min = 3, .max = 16 },
95 .m = { .min = 96, .max = 140 },
96 .m1 = { .min = 18, .max = 26 },
97 .m2 = { .min = 6, .max = 16 },
98 .p = { .min = 4, .max = 128 },
99 .p1 = { .min = 2, .max = 33 },
100 .p2 = { .dot_limit = 165000,
101 .p2_slow = 4, .p2_fast = 2 },
102};
103
104static const intel_limit_t intel_limits_i8xx_dvo = {
105 .dot = { .min = 25000, .max = 350000 },
106 .vco = { .min = 930000, .max = 1400000 },
107 .n = { .min = 3, .max = 16 },
108 .m = { .min = 96, .max = 140 },
109 .m1 = { .min = 18, .max = 26 },
110 .m2 = { .min = 6, .max = 16 },
111 .p = { .min = 4, .max = 128 },
112 .p1 = { .min = 2, .max = 33 },
113 .p2 = { .dot_limit = 165000,
114 .p2_slow = 4, .p2_fast = 4 },
115};
116
117static const intel_limit_t intel_limits_i8xx_lvds = {
118 .dot = { .min = 25000, .max = 350000 },
119 .vco = { .min = 930000, .max = 1400000 },
120 .n = { .min = 3, .max = 16 },
121 .m = { .min = 96, .max = 140 },
122 .m1 = { .min = 18, .max = 26 },
123 .m2 = { .min = 6, .max = 16 },
124 .p = { .min = 4, .max = 128 },
125 .p1 = { .min = 1, .max = 6 },
126 .p2 = { .dot_limit = 165000,
127 .p2_slow = 14, .p2_fast = 7 },
128};
129
130static const intel_limit_t intel_limits_i9xx_sdvo = {
131 .dot = { .min = 20000, .max = 400000 },
132 .vco = { .min = 1400000, .max = 2800000 },
133 .n = { .min = 1, .max = 6 },
134 .m = { .min = 70, .max = 120 },
135 .m1 = { .min = 8, .max = 18 },
136 .m2 = { .min = 3, .max = 7 },
137 .p = { .min = 5, .max = 80 },
138 .p1 = { .min = 1, .max = 8 },
139 .p2 = { .dot_limit = 200000,
140 .p2_slow = 10, .p2_fast = 5 },
141};
142
143static const intel_limit_t intel_limits_i9xx_lvds = {
144 .dot = { .min = 20000, .max = 400000 },
145 .vco = { .min = 1400000, .max = 2800000 },
146 .n = { .min = 1, .max = 6 },
147 .m = { .min = 70, .max = 120 },
148 .m1 = { .min = 8, .max = 18 },
149 .m2 = { .min = 3, .max = 7 },
150 .p = { .min = 7, .max = 98 },
151 .p1 = { .min = 1, .max = 8 },
152 .p2 = { .dot_limit = 112000,
153 .p2_slow = 14, .p2_fast = 7 },
154};
155
156
157static const intel_limit_t intel_limits_g4x_sdvo = {
158 .dot = { .min = 25000, .max = 270000 },
159 .vco = { .min = 1750000, .max = 3500000},
160 .n = { .min = 1, .max = 4 },
161 .m = { .min = 104, .max = 138 },
162 .m1 = { .min = 17, .max = 23 },
163 .m2 = { .min = 5, .max = 11 },
164 .p = { .min = 10, .max = 30 },
165 .p1 = { .min = 1, .max = 3},
166 .p2 = { .dot_limit = 270000,
167 .p2_slow = 10,
168 .p2_fast = 10
169 },
170};
171
172static const intel_limit_t intel_limits_g4x_hdmi = {
173 .dot = { .min = 22000, .max = 400000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 16, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 5, .max = 80 },
180 .p1 = { .min = 1, .max = 8},
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 10, .p2_fast = 5 },
183};
184
185static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186 .dot = { .min = 20000, .max = 115000 },
187 .vco = { .min = 1750000, .max = 3500000 },
188 .n = { .min = 1, .max = 3 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 17, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 28, .max = 112 },
193 .p1 = { .min = 2, .max = 8 },
194 .p2 = { .dot_limit = 0,
195 .p2_slow = 14, .p2_fast = 14
196 },
197};
198
199static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200 .dot = { .min = 80000, .max = 224000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 14, .max = 42 },
207 .p1 = { .min = 2, .max = 6 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 7, .p2_fast = 7
210 },
211};
212
213static const intel_limit_t intel_limits_pineview_sdvo = {
214 .dot = { .min = 20000, .max = 400000},
215 .vco = { .min = 1700000, .max = 3500000 },
216 /* Pineview's Ncounter is a ring counter */
217 .n = { .min = 3, .max = 6 },
218 .m = { .min = 2, .max = 256 },
219 /* Pineview only has one combined m divider, which we treat as m2. */
220 .m1 = { .min = 0, .max = 0 },
221 .m2 = { .min = 0, .max = 254 },
222 .p = { .min = 5, .max = 80 },
223 .p1 = { .min = 1, .max = 8 },
224 .p2 = { .dot_limit = 200000,
225 .p2_slow = 10, .p2_fast = 5 },
226};
227
228static const intel_limit_t intel_limits_pineview_lvds = {
229 .dot = { .min = 20000, .max = 400000 },
230 .vco = { .min = 1700000, .max = 3500000 },
231 .n = { .min = 3, .max = 6 },
232 .m = { .min = 2, .max = 256 },
233 .m1 = { .min = 0, .max = 0 },
234 .m2 = { .min = 0, .max = 254 },
235 .p = { .min = 7, .max = 112 },
236 .p1 = { .min = 1, .max = 8 },
237 .p2 = { .dot_limit = 112000,
238 .p2_slow = 14, .p2_fast = 14 },
239};
240
241/* Ironlake / Sandybridge
242 *
243 * We calculate clock using (register_value + 2) for N/M1/M2, so here
244 * the range value for them is (actual_value - 2).
245 */
246static const intel_limit_t intel_limits_ironlake_dac = {
247 .dot = { .min = 25000, .max = 350000 },
248 .vco = { .min = 1760000, .max = 3510000 },
249 .n = { .min = 1, .max = 5 },
250 .m = { .min = 79, .max = 127 },
251 .m1 = { .min = 12, .max = 22 },
252 .m2 = { .min = 5, .max = 9 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 225000,
256 .p2_slow = 10, .p2_fast = 5 },
257};
258
259static const intel_limit_t intel_limits_ironlake_single_lvds = {
260 .dot = { .min = 25000, .max = 350000 },
261 .vco = { .min = 1760000, .max = 3510000 },
262 .n = { .min = 1, .max = 3 },
263 .m = { .min = 79, .max = 118 },
264 .m1 = { .min = 12, .max = 22 },
265 .m2 = { .min = 5, .max = 9 },
266 .p = { .min = 28, .max = 112 },
267 .p1 = { .min = 2, .max = 8 },
268 .p2 = { .dot_limit = 225000,
269 .p2_slow = 14, .p2_fast = 14 },
270};
271
272static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 3 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 14, .max = 56 },
280 .p1 = { .min = 2, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 7, .p2_fast = 7 },
283};
284
285/* LVDS 100mhz refclk limits. */
286static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 2 },
290 .m = { .min = 79, .max = 126 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297};
298
299static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 126 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 42 },
307 .p1 = { .min = 2, .max = 6 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310};
311
312static const intel_limit_t intel_limits_vlv = {
313 /*
314 * These are the data rate limits (measured in fast clocks)
315 * since those are the strictest limits we have. The fast
316 * clock and actual rate limits are more relaxed, so checking
317 * them would make no difference.
318 */
319 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320 .vco = { .min = 4000000, .max = 6000000 },
321 .n = { .min = 1, .max = 7 },
322 .m1 = { .min = 2, .max = 3 },
323 .m2 = { .min = 11, .max = 156 },
324 .p1 = { .min = 2, .max = 3 },
325 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326};
327
328static void vlv_clock(int refclk, intel_clock_t *clock)
329{
330 clock->m = clock->m1 * clock->m2;
331 clock->p = clock->p1 * clock->p2;
332 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
333 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
334}
335
336/**
337 * Returns whether any output on the specified pipe is of the specified type
338 */
339static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
340{
341 struct drm_device *dev = crtc->dev;
342 struct intel_encoder *encoder;
343
344 for_each_encoder_on_crtc(dev, crtc, encoder)
345 if (encoder->type == type)
346 return true;
347
348 return false;
349}
350
351static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
352 int refclk)
353{
354 struct drm_device *dev = crtc->dev;
355 const intel_limit_t *limit;
356
357 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
358 if (intel_is_dual_link_lvds(dev)) {
359 if (refclk == 100000)
360 limit = &intel_limits_ironlake_dual_lvds_100m;
361 else
362 limit = &intel_limits_ironlake_dual_lvds;
363 } else {
364 if (refclk == 100000)
365 limit = &intel_limits_ironlake_single_lvds_100m;
366 else
367 limit = &intel_limits_ironlake_single_lvds;
368 }
369 } else
370 limit = &intel_limits_ironlake_dac;
371
372 return limit;
373}
374
375static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
376{
377 struct drm_device *dev = crtc->dev;
378 const intel_limit_t *limit;
379
380 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
381 if (intel_is_dual_link_lvds(dev))
382 limit = &intel_limits_g4x_dual_channel_lvds;
383 else
384 limit = &intel_limits_g4x_single_channel_lvds;
385 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
386 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
387 limit = &intel_limits_g4x_hdmi;
388 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
389 limit = &intel_limits_g4x_sdvo;
390 } else /* The option is for other outputs */
391 limit = &intel_limits_i9xx_sdvo;
392
393 return limit;
394}
395
396static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
397{
398 struct drm_device *dev = crtc->dev;
399 const intel_limit_t *limit;
400
401 if (HAS_PCH_SPLIT(dev))
402 limit = intel_ironlake_limit(crtc, refclk);
403 else if (IS_G4X(dev)) {
404 limit = intel_g4x_limit(crtc);
405 } else if (IS_PINEVIEW(dev)) {
406 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
407 limit = &intel_limits_pineview_lvds;
408 else
409 limit = &intel_limits_pineview_sdvo;
410 } else if (IS_VALLEYVIEW(dev)) {
411 limit = &intel_limits_vlv;
412 } else if (!IS_GEN2(dev)) {
413 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
414 limit = &intel_limits_i9xx_lvds;
415 else
416 limit = &intel_limits_i9xx_sdvo;
417 } else {
418 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
419 limit = &intel_limits_i8xx_lvds;
420 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
421 limit = &intel_limits_i8xx_dvo;
422 else
423 limit = &intel_limits_i8xx_dac;
424 }
425 return limit;
426}
427
428/* m1 is reserved as 0 in Pineview, n is a ring counter */
429static void pineview_clock(int refclk, intel_clock_t *clock)
430{
431 clock->m = clock->m2 + 2;
432 clock->p = clock->p1 * clock->p2;
433 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
434 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
435}
436
437static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
438{
439 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
440}
441
442static void i9xx_clock(int refclk, intel_clock_t *clock)
443{
444 clock->m = i9xx_dpll_compute_m(clock);
445 clock->p = clock->p1 * clock->p2;
446 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
447 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
448}
449
450#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
451/**
452 * Returns whether the given set of divisors are valid for a given refclk with
453 * the given connectors.
454 */
455
456static bool intel_PLL_is_valid(struct drm_device *dev,
457 const intel_limit_t *limit,
458 const intel_clock_t *clock)
459{
460 if (clock->n < limit->n.min || limit->n.max < clock->n)
461 INTELPllInvalid("n out of range\n");
462 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
463 INTELPllInvalid("p1 out of range\n");
464 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
465 INTELPllInvalid("m2 out of range\n");
466 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
467 INTELPllInvalid("m1 out of range\n");
468
469 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
470 if (clock->m1 <= clock->m2)
471 INTELPllInvalid("m1 <= m2\n");
472
473 if (!IS_VALLEYVIEW(dev)) {
474 if (clock->p < limit->p.min || limit->p.max < clock->p)
475 INTELPllInvalid("p out of range\n");
476 if (clock->m < limit->m.min || limit->m.max < clock->m)
477 INTELPllInvalid("m out of range\n");
478 }
479
480 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
481 INTELPllInvalid("vco out of range\n");
482 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
483 * connector, etc., rather than just a single range.
484 */
485 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
486 INTELPllInvalid("dot out of range\n");
487
488 return true;
489}
490
491static bool
492i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
493 int target, int refclk, intel_clock_t *match_clock,
494 intel_clock_t *best_clock)
495{
496 struct drm_device *dev = crtc->dev;
497 intel_clock_t clock;
498 int err = target;
499
500 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
501 /*
502 * For LVDS just rely on its current settings for dual-channel.
503 * We haven't figured out how to reliably set up different
504 * single/dual channel state, if we even can.
505 */
506 if (intel_is_dual_link_lvds(dev))
507 clock.p2 = limit->p2.p2_fast;
508 else
509 clock.p2 = limit->p2.p2_slow;
510 } else {
511 if (target < limit->p2.dot_limit)
512 clock.p2 = limit->p2.p2_slow;
513 else
514 clock.p2 = limit->p2.p2_fast;
515 }
516
517 memset(best_clock, 0, sizeof(*best_clock));
518
519 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
520 clock.m1++) {
521 for (clock.m2 = limit->m2.min;
522 clock.m2 <= limit->m2.max; clock.m2++) {
523 if (clock.m2 >= clock.m1)
524 break;
525 for (clock.n = limit->n.min;
526 clock.n <= limit->n.max; clock.n++) {
527 for (clock.p1 = limit->p1.min;
528 clock.p1 <= limit->p1.max; clock.p1++) {
529 int this_err;
530
531 i9xx_clock(refclk, &clock);
532 if (!intel_PLL_is_valid(dev, limit,
533 &clock))
534 continue;
535 if (match_clock &&
536 clock.p != match_clock->p)
537 continue;
538
539 this_err = abs(clock.dot - target);
540 if (this_err < err) {
541 *best_clock = clock;
542 err = this_err;
543 }
544 }
545 }
546 }
547 }
548
549 return (err != target);
550}
551
552static bool
553pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
554 int target, int refclk, intel_clock_t *match_clock,
555 intel_clock_t *best_clock)
556{
557 struct drm_device *dev = crtc->dev;
558 intel_clock_t clock;
559 int err = target;
560
561 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
562 /*
563 * For LVDS just rely on its current settings for dual-channel.
564 * We haven't figured out how to reliably set up different
565 * single/dual channel state, if we even can.
566 */
567 if (intel_is_dual_link_lvds(dev))
568 clock.p2 = limit->p2.p2_fast;
569 else
570 clock.p2 = limit->p2.p2_slow;
571 } else {
572 if (target < limit->p2.dot_limit)
573 clock.p2 = limit->p2.p2_slow;
574 else
575 clock.p2 = limit->p2.p2_fast;
576 }
577
578 memset(best_clock, 0, sizeof(*best_clock));
579
580 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
581 clock.m1++) {
582 for (clock.m2 = limit->m2.min;
583 clock.m2 <= limit->m2.max; clock.m2++) {
584 for (clock.n = limit->n.min;
585 clock.n <= limit->n.max; clock.n++) {
586 for (clock.p1 = limit->p1.min;
587 clock.p1 <= limit->p1.max; clock.p1++) {
588 int this_err;
589
590 pineview_clock(refclk, &clock);
591 if (!intel_PLL_is_valid(dev, limit,
592 &clock))
593 continue;
594 if (match_clock &&
595 clock.p != match_clock->p)
596 continue;
597
598 this_err = abs(clock.dot - target);
599 if (this_err < err) {
600 *best_clock = clock;
601 err = this_err;
602 }
603 }
604 }
605 }
606 }
607
608 return (err != target);
609}
610
611static bool
612g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
613 int target, int refclk, intel_clock_t *match_clock,
614 intel_clock_t *best_clock)
615{
616 struct drm_device *dev = crtc->dev;
617 intel_clock_t clock;
618 int max_n;
619 bool found;
620 /* approximately equals target * 0.00585 */
621 int err_most = (target >> 8) + (target >> 9);
622 found = false;
623
624 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
625 if (intel_is_dual_link_lvds(dev))
626 clock.p2 = limit->p2.p2_fast;
627 else
628 clock.p2 = limit->p2.p2_slow;
629 } else {
630 if (target < limit->p2.dot_limit)
631 clock.p2 = limit->p2.p2_slow;
632 else
633 clock.p2 = limit->p2.p2_fast;
634 }
635
636 memset(best_clock, 0, sizeof(*best_clock));
637 max_n = limit->n.max;
638 /* based on hardware requirement, prefer smaller n to precision */
639 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
640 /* based on hardware requirement, prefere larger m1,m2 */
641 for (clock.m1 = limit->m1.max;
642 clock.m1 >= limit->m1.min; clock.m1--) {
643 for (clock.m2 = limit->m2.max;
644 clock.m2 >= limit->m2.min; clock.m2--) {
645 for (clock.p1 = limit->p1.max;
646 clock.p1 >= limit->p1.min; clock.p1--) {
647 int this_err;
648
649 i9xx_clock(refclk, &clock);
650 if (!intel_PLL_is_valid(dev, limit,
651 &clock))
652 continue;
653
654 this_err = abs(clock.dot - target);
655 if (this_err < err_most) {
656 *best_clock = clock;
657 err_most = this_err;
658 max_n = clock.n;
659 found = true;
660 }
661 }
662 }
663 }
664 }
665 return found;
666}
667
668static bool
669vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
670 int target, int refclk, intel_clock_t *match_clock,
671 intel_clock_t *best_clock)
672{
673 struct drm_device *dev = crtc->dev;
674 intel_clock_t clock;
675 unsigned int bestppm = 1000000;
676 /* min update 19.2 MHz */
677 int max_n = min(limit->n.max, refclk / 19200);
678 bool found = false;
679
680 target *= 5; /* fast clock */
681
682 memset(best_clock, 0, sizeof(*best_clock));
683
684 /* based on hardware requirement, prefer smaller n to precision */
685 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
686 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
687 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
688 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
689 clock.p = clock.p1 * clock.p2;
690 /* based on hardware requirement, prefer bigger m1,m2 values */
691 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
692 unsigned int ppm, diff;
693
694 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
695 refclk * clock.m1);
696
697 vlv_clock(refclk, &clock);
698
699 if (!intel_PLL_is_valid(dev, limit,
700 &clock))
701 continue;
702
703 diff = abs(clock.dot - target);
704 ppm = div_u64(1000000ULL * diff, target);
705
706 if (ppm < 100 && clock.p > best_clock->p) {
707 bestppm = 0;
708 *best_clock = clock;
709 found = true;
710 }
711
712 if (bestppm >= 10 && ppm < bestppm - 10) {
713 bestppm = ppm;
714 *best_clock = clock;
715 found = true;
716 }
717 }
718 }
719 }
720 }
721
722 return found;
723}
724
725bool intel_crtc_active(struct drm_crtc *crtc)
726{
727 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
728
729 /* Be paranoid as we can arrive here with only partial
730 * state retrieved from the hardware during setup.
731 *
732 * We can ditch the adjusted_mode.crtc_clock check as soon
733 * as Haswell has gained clock readout/fastboot support.
734 *
735 * We can ditch the crtc->fb check as soon as we can
736 * properly reconstruct framebuffers.
737 */
738 return intel_crtc->active && crtc->fb &&
739 intel_crtc->config.adjusted_mode.crtc_clock;
740}
741
742enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
743 enum pipe pipe)
744{
745 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
747
748 return intel_crtc->config.cpu_transcoder;
749}
750
751static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
752{
753 struct drm_i915_private *dev_priv = dev->dev_private;
754 u32 frame, frame_reg = PIPEFRAME(pipe);
755
756 frame = I915_READ(frame_reg);
757
758 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
759 DRM_DEBUG_KMS("vblank wait timed out\n");
760}
761
762/**
763 * intel_wait_for_vblank - wait for vblank on a given pipe
764 * @dev: drm device
765 * @pipe: pipe to wait for
766 *
767 * Wait for vblank to occur on a given pipe. Needed for various bits of
768 * mode setting code.
769 */
770void intel_wait_for_vblank(struct drm_device *dev, int pipe)
771{
772 struct drm_i915_private *dev_priv = dev->dev_private;
773 int pipestat_reg = PIPESTAT(pipe);
774
775 if (INTEL_INFO(dev)->gen >= 5) {
776 ironlake_wait_for_vblank(dev, pipe);
777 return;
778 }
779
780 /* Clear existing vblank status. Note this will clear any other
781 * sticky status fields as well.
782 *
783 * This races with i915_driver_irq_handler() with the result
784 * that either function could miss a vblank event. Here it is not
785 * fatal, as we will either wait upon the next vblank interrupt or
786 * timeout. Generally speaking intel_wait_for_vblank() is only
787 * called during modeset at which time the GPU should be idle and
788 * should *not* be performing page flips and thus not waiting on
789 * vblanks...
790 * Currently, the result of us stealing a vblank from the irq
791 * handler is that a single frame will be skipped during swapbuffers.
792 */
793 I915_WRITE(pipestat_reg,
794 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
795
796 /* Wait for vblank interrupt bit to set */
797 if (wait_for(I915_READ(pipestat_reg) &
798 PIPE_VBLANK_INTERRUPT_STATUS,
799 50))
800 DRM_DEBUG_KMS("vblank wait timed out\n");
801}
802
803static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
804{
805 struct drm_i915_private *dev_priv = dev->dev_private;
806 u32 reg = PIPEDSL(pipe);
807 u32 line1, line2;
808 u32 line_mask;
809
810 if (IS_GEN2(dev))
811 line_mask = DSL_LINEMASK_GEN2;
812 else
813 line_mask = DSL_LINEMASK_GEN3;
814
815 line1 = I915_READ(reg) & line_mask;
816 mdelay(5);
817 line2 = I915_READ(reg) & line_mask;
818
819 return line1 == line2;
820}
821
822/*
823 * intel_wait_for_pipe_off - wait for pipe to turn off
824 * @dev: drm device
825 * @pipe: pipe to wait for
826 *
827 * After disabling a pipe, we can't wait for vblank in the usual way,
828 * spinning on the vblank interrupt status bit, since we won't actually
829 * see an interrupt when the pipe is disabled.
830 *
831 * On Gen4 and above:
832 * wait for the pipe register state bit to turn off
833 *
834 * Otherwise:
835 * wait for the display line value to settle (it usually
836 * ends up stopping at the start of the next frame).
837 *
838 */
839void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
840{
841 struct drm_i915_private *dev_priv = dev->dev_private;
842 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
843 pipe);
844
845 if (INTEL_INFO(dev)->gen >= 4) {
846 int reg = PIPECONF(cpu_transcoder);
847
848 /* Wait for the Pipe State to go off */
849 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
850 100))
851 WARN(1, "pipe_off wait timed out\n");
852 } else {
853 /* Wait for the display line to settle */
854 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
855 WARN(1, "pipe_off wait timed out\n");
856 }
857}
858
859/*
860 * ibx_digital_port_connected - is the specified port connected?
861 * @dev_priv: i915 private structure
862 * @port: the port to test
863 *
864 * Returns true if @port is connected, false otherwise.
865 */
866bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
867 struct intel_digital_port *port)
868{
869 u32 bit;
870
871 if (HAS_PCH_IBX(dev_priv->dev)) {
872 switch(port->port) {
873 case PORT_B:
874 bit = SDE_PORTB_HOTPLUG;
875 break;
876 case PORT_C:
877 bit = SDE_PORTC_HOTPLUG;
878 break;
879 case PORT_D:
880 bit = SDE_PORTD_HOTPLUG;
881 break;
882 default:
883 return true;
884 }
885 } else {
886 switch(port->port) {
887 case PORT_B:
888 bit = SDE_PORTB_HOTPLUG_CPT;
889 break;
890 case PORT_C:
891 bit = SDE_PORTC_HOTPLUG_CPT;
892 break;
893 case PORT_D:
894 bit = SDE_PORTD_HOTPLUG_CPT;
895 break;
896 default:
897 return true;
898 }
899 }
900
901 return I915_READ(SDEISR) & bit;
902}
903
904static const char *state_string(bool enabled)
905{
906 return enabled ? "on" : "off";
907}
908
909/* Only for pre-ILK configs */
910void assert_pll(struct drm_i915_private *dev_priv,
911 enum pipe pipe, bool state)
912{
913 int reg;
914 u32 val;
915 bool cur_state;
916
917 reg = DPLL(pipe);
918 val = I915_READ(reg);
919 cur_state = !!(val & DPLL_VCO_ENABLE);
920 WARN(cur_state != state,
921 "PLL state assertion failure (expected %s, current %s)\n",
922 state_string(state), state_string(cur_state));
923}
924
925/* XXX: the dsi pll is shared between MIPI DSI ports */
926static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
927{
928 u32 val;
929 bool cur_state;
930
931 mutex_lock(&dev_priv->dpio_lock);
932 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
933 mutex_unlock(&dev_priv->dpio_lock);
934
935 cur_state = val & DSI_PLL_VCO_EN;
936 WARN(cur_state != state,
937 "DSI PLL state assertion failure (expected %s, current %s)\n",
938 state_string(state), state_string(cur_state));
939}
940#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
941#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
942
943struct intel_shared_dpll *
944intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
945{
946 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
947
948 if (crtc->config.shared_dpll < 0)
949 return NULL;
950
951 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
952}
953
954/* For ILK+ */
955void assert_shared_dpll(struct drm_i915_private *dev_priv,
956 struct intel_shared_dpll *pll,
957 bool state)
958{
959 bool cur_state;
960 struct intel_dpll_hw_state hw_state;
961
962 if (HAS_PCH_LPT(dev_priv->dev)) {
963 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
964 return;
965 }
966
967 if (WARN (!pll,
968 "asserting DPLL %s with no DPLL\n", state_string(state)))
969 return;
970
971 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
972 WARN(cur_state != state,
973 "%s assertion failure (expected %s, current %s)\n",
974 pll->name, state_string(state), state_string(cur_state));
975}
976
977static void assert_fdi_tx(struct drm_i915_private *dev_priv,
978 enum pipe pipe, bool state)
979{
980 int reg;
981 u32 val;
982 bool cur_state;
983 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
984 pipe);
985
986 if (HAS_DDI(dev_priv->dev)) {
987 /* DDI does not have a specific FDI_TX register */
988 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
989 val = I915_READ(reg);
990 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
991 } else {
992 reg = FDI_TX_CTL(pipe);
993 val = I915_READ(reg);
994 cur_state = !!(val & FDI_TX_ENABLE);
995 }
996 WARN(cur_state != state,
997 "FDI TX state assertion failure (expected %s, current %s)\n",
998 state_string(state), state_string(cur_state));
999}
1000#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1001#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1002
1003static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1004 enum pipe pipe, bool state)
1005{
1006 int reg;
1007 u32 val;
1008 bool cur_state;
1009
1010 reg = FDI_RX_CTL(pipe);
1011 val = I915_READ(reg);
1012 cur_state = !!(val & FDI_RX_ENABLE);
1013 WARN(cur_state != state,
1014 "FDI RX state assertion failure (expected %s, current %s)\n",
1015 state_string(state), state_string(cur_state));
1016}
1017#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1018#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1019
1020static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1021 enum pipe pipe)
1022{
1023 int reg;
1024 u32 val;
1025
1026 /* ILK FDI PLL is always enabled */
1027 if (dev_priv->info->gen == 5)
1028 return;
1029
1030 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1031 if (HAS_DDI(dev_priv->dev))
1032 return;
1033
1034 reg = FDI_TX_CTL(pipe);
1035 val = I915_READ(reg);
1036 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1037}
1038
1039void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1040 enum pipe pipe, bool state)
1041{
1042 int reg;
1043 u32 val;
1044 bool cur_state;
1045
1046 reg = FDI_RX_CTL(pipe);
1047 val = I915_READ(reg);
1048 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1049 WARN(cur_state != state,
1050 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1051 state_string(state), state_string(cur_state));
1052}
1053
1054static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1055 enum pipe pipe)
1056{
1057 int pp_reg, lvds_reg;
1058 u32 val;
1059 enum pipe panel_pipe = PIPE_A;
1060 bool locked = true;
1061
1062 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1063 pp_reg = PCH_PP_CONTROL;
1064 lvds_reg = PCH_LVDS;
1065 } else {
1066 pp_reg = PP_CONTROL;
1067 lvds_reg = LVDS;
1068 }
1069
1070 val = I915_READ(pp_reg);
1071 if (!(val & PANEL_POWER_ON) ||
1072 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1073 locked = false;
1074
1075 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1076 panel_pipe = PIPE_B;
1077
1078 WARN(panel_pipe == pipe && locked,
1079 "panel assertion failure, pipe %c regs locked\n",
1080 pipe_name(pipe));
1081}
1082
1083static void assert_cursor(struct drm_i915_private *dev_priv,
1084 enum pipe pipe, bool state)
1085{
1086 struct drm_device *dev = dev_priv->dev;
1087 bool cur_state;
1088
1089 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1090 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1091 else if (IS_845G(dev) || IS_I865G(dev))
1092 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1093 else
1094 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1095
1096 WARN(cur_state != state,
1097 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1098 pipe_name(pipe), state_string(state), state_string(cur_state));
1099}
1100#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1101#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1102
1103void assert_pipe(struct drm_i915_private *dev_priv,
1104 enum pipe pipe, bool state)
1105{
1106 int reg;
1107 u32 val;
1108 bool cur_state;
1109 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1110 pipe);
1111
1112 /* if we need the pipe A quirk it must be always on */
1113 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1114 state = true;
1115
1116 if (!intel_display_power_enabled(dev_priv->dev,
1117 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1118 cur_state = false;
1119 } else {
1120 reg = PIPECONF(cpu_transcoder);
1121 val = I915_READ(reg);
1122 cur_state = !!(val & PIPECONF_ENABLE);
1123 }
1124
1125 WARN(cur_state != state,
1126 "pipe %c assertion failure (expected %s, current %s)\n",
1127 pipe_name(pipe), state_string(state), state_string(cur_state));
1128}
1129
1130static void assert_plane(struct drm_i915_private *dev_priv,
1131 enum plane plane, bool state)
1132{
1133 int reg;
1134 u32 val;
1135 bool cur_state;
1136
1137 reg = DSPCNTR(plane);
1138 val = I915_READ(reg);
1139 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1140 WARN(cur_state != state,
1141 "plane %c assertion failure (expected %s, current %s)\n",
1142 plane_name(plane), state_string(state), state_string(cur_state));
1143}
1144
1145#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1146#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1147
1148static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1149 enum pipe pipe)
1150{
1151 struct drm_device *dev = dev_priv->dev;
1152 int reg, i;
1153 u32 val;
1154 int cur_pipe;
1155
1156 /* Primary planes are fixed to pipes on gen4+ */
1157 if (INTEL_INFO(dev)->gen >= 4) {
1158 reg = DSPCNTR(pipe);
1159 val = I915_READ(reg);
1160 WARN((val & DISPLAY_PLANE_ENABLE),
1161 "plane %c assertion failure, should be disabled but not\n",
1162 plane_name(pipe));
1163 return;
1164 }
1165
1166 /* Need to check both planes against the pipe */
1167 for_each_pipe(i) {
1168 reg = DSPCNTR(i);
1169 val = I915_READ(reg);
1170 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1171 DISPPLANE_SEL_PIPE_SHIFT;
1172 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1173 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1174 plane_name(i), pipe_name(pipe));
1175 }
1176}
1177
1178static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1179 enum pipe pipe)
1180{
1181 struct drm_device *dev = dev_priv->dev;
1182 int reg, i;
1183 u32 val;
1184
1185 if (IS_VALLEYVIEW(dev)) {
1186 for (i = 0; i < dev_priv->num_plane; i++) {
1187 reg = SPCNTR(pipe, i);
1188 val = I915_READ(reg);
1189 WARN((val & SP_ENABLE),
1190 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1191 sprite_name(pipe, i), pipe_name(pipe));
1192 }
1193 } else if (INTEL_INFO(dev)->gen >= 7) {
1194 reg = SPRCTL(pipe);
1195 val = I915_READ(reg);
1196 WARN((val & SPRITE_ENABLE),
1197 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1198 plane_name(pipe), pipe_name(pipe));
1199 } else if (INTEL_INFO(dev)->gen >= 5) {
1200 reg = DVSCNTR(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & DVS_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 }
1206}
1207
1208static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1209{
1210 u32 val;
1211 bool enabled;
1212
1213 if (HAS_PCH_LPT(dev_priv->dev)) {
1214 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1215 return;
1216 }
1217
1218 val = I915_READ(PCH_DREF_CONTROL);
1219 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1220 DREF_SUPERSPREAD_SOURCE_MASK));
1221 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1222}
1223
1224static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1225 enum pipe pipe)
1226{
1227 int reg;
1228 u32 val;
1229 bool enabled;
1230
1231 reg = PCH_TRANSCONF(pipe);
1232 val = I915_READ(reg);
1233 enabled = !!(val & TRANS_ENABLE);
1234 WARN(enabled,
1235 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1236 pipe_name(pipe));
1237}
1238
1239static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1240 enum pipe pipe, u32 port_sel, u32 val)
1241{
1242 if ((val & DP_PORT_EN) == 0)
1243 return false;
1244
1245 if (HAS_PCH_CPT(dev_priv->dev)) {
1246 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1247 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1248 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1249 return false;
1250 } else {
1251 if ((val & DP_PIPE_MASK) != (pipe << 30))
1252 return false;
1253 }
1254 return true;
1255}
1256
1257static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1258 enum pipe pipe, u32 val)
1259{
1260 if ((val & SDVO_ENABLE) == 0)
1261 return false;
1262
1263 if (HAS_PCH_CPT(dev_priv->dev)) {
1264 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1265 return false;
1266 } else {
1267 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1268 return false;
1269 }
1270 return true;
1271}
1272
1273static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1274 enum pipe pipe, u32 val)
1275{
1276 if ((val & LVDS_PORT_EN) == 0)
1277 return false;
1278
1279 if (HAS_PCH_CPT(dev_priv->dev)) {
1280 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1281 return false;
1282 } else {
1283 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1284 return false;
1285 }
1286 return true;
1287}
1288
1289static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1290 enum pipe pipe, u32 val)
1291{
1292 if ((val & ADPA_DAC_ENABLE) == 0)
1293 return false;
1294 if (HAS_PCH_CPT(dev_priv->dev)) {
1295 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1296 return false;
1297 } else {
1298 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1299 return false;
1300 }
1301 return true;
1302}
1303
1304static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1305 enum pipe pipe, int reg, u32 port_sel)
1306{
1307 u32 val = I915_READ(reg);
1308 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1309 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1310 reg, pipe_name(pipe));
1311
1312 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1313 && (val & DP_PIPEB_SELECT),
1314 "IBX PCH dp port still using transcoder B\n");
1315}
1316
1317static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1318 enum pipe pipe, int reg)
1319{
1320 u32 val = I915_READ(reg);
1321 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1322 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1323 reg, pipe_name(pipe));
1324
1325 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1326 && (val & SDVO_PIPE_B_SELECT),
1327 "IBX PCH hdmi port still using transcoder B\n");
1328}
1329
1330static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1331 enum pipe pipe)
1332{
1333 int reg;
1334 u32 val;
1335
1336 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1337 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1338 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1339
1340 reg = PCH_ADPA;
1341 val = I915_READ(reg);
1342 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1343 "PCH VGA enabled on transcoder %c, should be disabled\n",
1344 pipe_name(pipe));
1345
1346 reg = PCH_LVDS;
1347 val = I915_READ(reg);
1348 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1349 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1350 pipe_name(pipe));
1351
1352 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1353 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1354 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1355}
1356
1357static void intel_init_dpio(struct drm_device *dev)
1358{
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360
1361 if (!IS_VALLEYVIEW(dev))
1362 return;
1363
1364 /*
1365 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1366 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1367 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1368 * b. The other bits such as sfr settings / modesel may all be set
1369 * to 0.
1370 *
1371 * This should only be done on init and resume from S3 with both
1372 * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1373 */
1374 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1375}
1376
1377static void vlv_enable_pll(struct intel_crtc *crtc)
1378{
1379 struct drm_device *dev = crtc->base.dev;
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 int reg = DPLL(crtc->pipe);
1382 u32 dpll = crtc->config.dpll_hw_state.dpll;
1383
1384 assert_pipe_disabled(dev_priv, crtc->pipe);
1385
1386 /* No really, not for ILK+ */
1387 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1388
1389 /* PLL is protected by panel, make sure we can write it */
1390 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1391 assert_panel_unlocked(dev_priv, crtc->pipe);
1392
1393 I915_WRITE(reg, dpll);
1394 POSTING_READ(reg);
1395 udelay(150);
1396
1397 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1398 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1399
1400 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1401 POSTING_READ(DPLL_MD(crtc->pipe));
1402
1403 /* We do this three times for luck */
1404 I915_WRITE(reg, dpll);
1405 POSTING_READ(reg);
1406 udelay(150); /* wait for warmup */
1407 I915_WRITE(reg, dpll);
1408 POSTING_READ(reg);
1409 udelay(150); /* wait for warmup */
1410 I915_WRITE(reg, dpll);
1411 POSTING_READ(reg);
1412 udelay(150); /* wait for warmup */
1413}
1414
1415static void i9xx_enable_pll(struct intel_crtc *crtc)
1416{
1417 struct drm_device *dev = crtc->base.dev;
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 int reg = DPLL(crtc->pipe);
1420 u32 dpll = crtc->config.dpll_hw_state.dpll;
1421
1422 assert_pipe_disabled(dev_priv, crtc->pipe);
1423
1424 /* No really, not for ILK+ */
1425 BUG_ON(dev_priv->info->gen >= 5);
1426
1427 /* PLL is protected by panel, make sure we can write it */
1428 if (IS_MOBILE(dev) && !IS_I830(dev))
1429 assert_panel_unlocked(dev_priv, crtc->pipe);
1430
1431 I915_WRITE(reg, dpll);
1432
1433 /* Wait for the clocks to stabilize. */
1434 POSTING_READ(reg);
1435 udelay(150);
1436
1437 if (INTEL_INFO(dev)->gen >= 4) {
1438 I915_WRITE(DPLL_MD(crtc->pipe),
1439 crtc->config.dpll_hw_state.dpll_md);
1440 } else {
1441 /* The pixel multiplier can only be updated once the
1442 * DPLL is enabled and the clocks are stable.
1443 *
1444 * So write it again.
1445 */
1446 I915_WRITE(reg, dpll);
1447 }
1448
1449 /* We do this three times for luck */
1450 I915_WRITE(reg, dpll);
1451 POSTING_READ(reg);
1452 udelay(150); /* wait for warmup */
1453 I915_WRITE(reg, dpll);
1454 POSTING_READ(reg);
1455 udelay(150); /* wait for warmup */
1456 I915_WRITE(reg, dpll);
1457 POSTING_READ(reg);
1458 udelay(150); /* wait for warmup */
1459}
1460
1461/**
1462 * i9xx_disable_pll - disable a PLL
1463 * @dev_priv: i915 private structure
1464 * @pipe: pipe PLL to disable
1465 *
1466 * Disable the PLL for @pipe, making sure the pipe is off first.
1467 *
1468 * Note! This is for pre-ILK only.
1469 */
1470static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1471{
1472 /* Don't disable pipe A or pipe A PLLs if needed */
1473 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1474 return;
1475
1476 /* Make sure the pipe isn't still relying on us */
1477 assert_pipe_disabled(dev_priv, pipe);
1478
1479 I915_WRITE(DPLL(pipe), 0);
1480 POSTING_READ(DPLL(pipe));
1481}
1482
1483static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1484{
1485 u32 val = 0;
1486
1487 /* Make sure the pipe isn't still relying on us */
1488 assert_pipe_disabled(dev_priv, pipe);
1489
1490 /* Leave integrated clock source enabled */
1491 if (pipe == PIPE_B)
1492 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1493 I915_WRITE(DPLL(pipe), val);
1494 POSTING_READ(DPLL(pipe));
1495}
1496
1497void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
1498{
1499 u32 port_mask;
1500
1501 if (!port)
1502 port_mask = DPLL_PORTB_READY_MASK;
1503 else
1504 port_mask = DPLL_PORTC_READY_MASK;
1505
1506 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1507 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1508 'B' + port, I915_READ(DPLL(0)));
1509}
1510
1511/**
1512 * ironlake_enable_shared_dpll - enable PCH PLL
1513 * @dev_priv: i915 private structure
1514 * @pipe: pipe PLL to enable
1515 *
1516 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1517 * drives the transcoder clock.
1518 */
1519static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1520{
1521 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1522 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1523
1524 /* PCH PLLs only available on ILK, SNB and IVB */
1525 BUG_ON(dev_priv->info->gen < 5);
1526 if (WARN_ON(pll == NULL))
1527 return;
1528
1529 if (WARN_ON(pll->refcount == 0))
1530 return;
1531
1532 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1533 pll->name, pll->active, pll->on,
1534 crtc->base.base.id);
1535
1536 if (pll->active++) {
1537 WARN_ON(!pll->on);
1538 assert_shared_dpll_enabled(dev_priv, pll);
1539 return;
1540 }
1541 WARN_ON(pll->on);
1542
1543 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1544 pll->enable(dev_priv, pll);
1545 pll->on = true;
1546}
1547
1548static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1549{
1550 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1551 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1552
1553 /* PCH only available on ILK+ */
1554 BUG_ON(dev_priv->info->gen < 5);
1555 if (WARN_ON(pll == NULL))
1556 return;
1557
1558 if (WARN_ON(pll->refcount == 0))
1559 return;
1560
1561 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1562 pll->name, pll->active, pll->on,
1563 crtc->base.base.id);
1564
1565 if (WARN_ON(pll->active == 0)) {
1566 assert_shared_dpll_disabled(dev_priv, pll);
1567 return;
1568 }
1569
1570 assert_shared_dpll_enabled(dev_priv, pll);
1571 WARN_ON(!pll->on);
1572 if (--pll->active)
1573 return;
1574
1575 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1576 pll->disable(dev_priv, pll);
1577 pll->on = false;
1578}
1579
1580static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1581 enum pipe pipe)
1582{
1583 struct drm_device *dev = dev_priv->dev;
1584 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1585 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1586 uint32_t reg, val, pipeconf_val;
1587
1588 /* PCH only available on ILK+ */
1589 BUG_ON(dev_priv->info->gen < 5);
1590
1591 /* Make sure PCH DPLL is enabled */
1592 assert_shared_dpll_enabled(dev_priv,
1593 intel_crtc_to_shared_dpll(intel_crtc));
1594
1595 /* FDI must be feeding us bits for PCH ports */
1596 assert_fdi_tx_enabled(dev_priv, pipe);
1597 assert_fdi_rx_enabled(dev_priv, pipe);
1598
1599 if (HAS_PCH_CPT(dev)) {
1600 /* Workaround: Set the timing override bit before enabling the
1601 * pch transcoder. */
1602 reg = TRANS_CHICKEN2(pipe);
1603 val = I915_READ(reg);
1604 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1605 I915_WRITE(reg, val);
1606 }
1607
1608 reg = PCH_TRANSCONF(pipe);
1609 val = I915_READ(reg);
1610 pipeconf_val = I915_READ(PIPECONF(pipe));
1611
1612 if (HAS_PCH_IBX(dev_priv->dev)) {
1613 /*
1614 * make the BPC in transcoder be consistent with
1615 * that in pipeconf reg.
1616 */
1617 val &= ~PIPECONF_BPC_MASK;
1618 val |= pipeconf_val & PIPECONF_BPC_MASK;
1619 }
1620
1621 val &= ~TRANS_INTERLACE_MASK;
1622 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1623 if (HAS_PCH_IBX(dev_priv->dev) &&
1624 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1625 val |= TRANS_LEGACY_INTERLACED_ILK;
1626 else
1627 val |= TRANS_INTERLACED;
1628 else
1629 val |= TRANS_PROGRESSIVE;
1630
1631 I915_WRITE(reg, val | TRANS_ENABLE);
1632 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1633 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1634}
1635
1636static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1637 enum transcoder cpu_transcoder)
1638{
1639 u32 val, pipeconf_val;
1640
1641 /* PCH only available on ILK+ */
1642 BUG_ON(dev_priv->info->gen < 5);
1643
1644 /* FDI must be feeding us bits for PCH ports */
1645 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1646 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1647
1648 /* Workaround: set timing override bit. */
1649 val = I915_READ(_TRANSA_CHICKEN2);
1650 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1651 I915_WRITE(_TRANSA_CHICKEN2, val);
1652
1653 val = TRANS_ENABLE;
1654 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1655
1656 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1657 PIPECONF_INTERLACED_ILK)
1658 val |= TRANS_INTERLACED;
1659 else
1660 val |= TRANS_PROGRESSIVE;
1661
1662 I915_WRITE(LPT_TRANSCONF, val);
1663 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1664 DRM_ERROR("Failed to enable PCH transcoder\n");
1665}
1666
1667static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1668 enum pipe pipe)
1669{
1670 struct drm_device *dev = dev_priv->dev;
1671 uint32_t reg, val;
1672
1673 /* FDI relies on the transcoder */
1674 assert_fdi_tx_disabled(dev_priv, pipe);
1675 assert_fdi_rx_disabled(dev_priv, pipe);
1676
1677 /* Ports must be off as well */
1678 assert_pch_ports_disabled(dev_priv, pipe);
1679
1680 reg = PCH_TRANSCONF(pipe);
1681 val = I915_READ(reg);
1682 val &= ~TRANS_ENABLE;
1683 I915_WRITE(reg, val);
1684 /* wait for PCH transcoder off, transcoder state */
1685 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1686 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1687
1688 if (!HAS_PCH_IBX(dev)) {
1689 /* Workaround: Clear the timing override chicken bit again. */
1690 reg = TRANS_CHICKEN2(pipe);
1691 val = I915_READ(reg);
1692 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1693 I915_WRITE(reg, val);
1694 }
1695}
1696
1697static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1698{
1699 u32 val;
1700
1701 val = I915_READ(LPT_TRANSCONF);
1702 val &= ~TRANS_ENABLE;
1703 I915_WRITE(LPT_TRANSCONF, val);
1704 /* wait for PCH transcoder off, transcoder state */
1705 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1706 DRM_ERROR("Failed to disable PCH transcoder\n");
1707
1708 /* Workaround: clear timing override bit. */
1709 val = I915_READ(_TRANSA_CHICKEN2);
1710 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1711 I915_WRITE(_TRANSA_CHICKEN2, val);
1712}
1713
1714/**
1715 * intel_enable_pipe - enable a pipe, asserting requirements
1716 * @dev_priv: i915 private structure
1717 * @pipe: pipe to enable
1718 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1719 *
1720 * Enable @pipe, making sure that various hardware specific requirements
1721 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1722 *
1723 * @pipe should be %PIPE_A or %PIPE_B.
1724 *
1725 * Will wait until the pipe is actually running (i.e. first vblank) before
1726 * returning.
1727 */
1728static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1729 bool pch_port, bool dsi)
1730{
1731 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1732 pipe);
1733 enum pipe pch_transcoder;
1734 int reg;
1735 u32 val;
1736
1737 assert_planes_disabled(dev_priv, pipe);
1738 assert_cursor_disabled(dev_priv, pipe);
1739 assert_sprites_disabled(dev_priv, pipe);
1740
1741 if (HAS_PCH_LPT(dev_priv->dev))
1742 pch_transcoder = TRANSCODER_A;
1743 else
1744 pch_transcoder = pipe;
1745
1746 /*
1747 * A pipe without a PLL won't actually be able to drive bits from
1748 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1749 * need the check.
1750 */
1751 if (!HAS_PCH_SPLIT(dev_priv->dev))
1752 if (dsi)
1753 assert_dsi_pll_enabled(dev_priv);
1754 else
1755 assert_pll_enabled(dev_priv, pipe);
1756 else {
1757 if (pch_port) {
1758 /* if driving the PCH, we need FDI enabled */
1759 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1760 assert_fdi_tx_pll_enabled(dev_priv,
1761 (enum pipe) cpu_transcoder);
1762 }
1763 /* FIXME: assert CPU port conditions for SNB+ */
1764 }
1765
1766 reg = PIPECONF(cpu_transcoder);
1767 val = I915_READ(reg);
1768 if (val & PIPECONF_ENABLE)
1769 return;
1770
1771 I915_WRITE(reg, val | PIPECONF_ENABLE);
1772 intel_wait_for_vblank(dev_priv->dev, pipe);
1773}
1774
1775/**
1776 * intel_disable_pipe - disable a pipe, asserting requirements
1777 * @dev_priv: i915 private structure
1778 * @pipe: pipe to disable
1779 *
1780 * Disable @pipe, making sure that various hardware specific requirements
1781 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1782 *
1783 * @pipe should be %PIPE_A or %PIPE_B.
1784 *
1785 * Will wait until the pipe has shut down before returning.
1786 */
1787static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1788 enum pipe pipe)
1789{
1790 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1791 pipe);
1792 int reg;
1793 u32 val;
1794
1795 /*
1796 * Make sure planes won't keep trying to pump pixels to us,
1797 * or we might hang the display.
1798 */
1799 assert_planes_disabled(dev_priv, pipe);
1800 assert_cursor_disabled(dev_priv, pipe);
1801 assert_sprites_disabled(dev_priv, pipe);
1802
1803 /* Don't disable pipe A or pipe A PLLs if needed */
1804 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1805 return;
1806
1807 reg = PIPECONF(cpu_transcoder);
1808 val = I915_READ(reg);
1809 if ((val & PIPECONF_ENABLE) == 0)
1810 return;
1811
1812 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1813 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1814}
1815
1816/*
1817 * Plane regs are double buffered, going from enabled->disabled needs a
1818 * trigger in order to latch. The display address reg provides this.
1819 */
1820void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1821 enum plane plane)
1822{
1823 u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1824
1825 I915_WRITE(reg, I915_READ(reg));
1826 POSTING_READ(reg);
1827}
1828
1829/**
1830 * intel_enable_primary_plane - enable the primary plane on a given pipe
1831 * @dev_priv: i915 private structure
1832 * @plane: plane to enable
1833 * @pipe: pipe being fed
1834 *
1835 * Enable @plane on @pipe, making sure that @pipe is running first.
1836 */
1837static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1838 enum plane plane, enum pipe pipe)
1839{
1840 struct intel_crtc *intel_crtc =
1841 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1842 int reg;
1843 u32 val;
1844
1845 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1846 assert_pipe_enabled(dev_priv, pipe);
1847
1848 WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1849
1850 intel_crtc->primary_enabled = true;
1851
1852 reg = DSPCNTR(plane);
1853 val = I915_READ(reg);
1854 if (val & DISPLAY_PLANE_ENABLE)
1855 return;
1856
1857 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1858 intel_flush_primary_plane(dev_priv, plane);
1859 intel_wait_for_vblank(dev_priv->dev, pipe);
1860}
1861
1862/**
1863 * intel_disable_primary_plane - disable the primary plane
1864 * @dev_priv: i915 private structure
1865 * @plane: plane to disable
1866 * @pipe: pipe consuming the data
1867 *
1868 * Disable @plane; should be an independent operation.
1869 */
1870static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1871 enum plane plane, enum pipe pipe)
1872{
1873 struct intel_crtc *intel_crtc =
1874 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1875 int reg;
1876 u32 val;
1877
1878 WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1879
1880 intel_crtc->primary_enabled = false;
1881
1882 reg = DSPCNTR(plane);
1883 val = I915_READ(reg);
1884 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1885 return;
1886
1887 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1888 intel_flush_primary_plane(dev_priv, plane);
1889 intel_wait_for_vblank(dev_priv->dev, pipe);
1890}
1891
1892static bool need_vtd_wa(struct drm_device *dev)
1893{
1894#ifdef CONFIG_INTEL_IOMMU
1895 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1896 return true;
1897#endif
1898 return false;
1899}
1900
1901int
1902intel_pin_and_fence_fb_obj(struct drm_device *dev,
1903 struct drm_i915_gem_object *obj,
1904 struct intel_ring_buffer *pipelined)
1905{
1906 struct drm_i915_private *dev_priv = dev->dev_private;
1907 u32 alignment;
1908 int ret;
1909
1910 switch (obj->tiling_mode) {
1911 case I915_TILING_NONE:
1912 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1913 alignment = 128 * 1024;
1914 else if (INTEL_INFO(dev)->gen >= 4)
1915 alignment = 4 * 1024;
1916 else
1917 alignment = 64 * 1024;
1918 break;
1919 case I915_TILING_X:
1920 /* pin() will align the object as required by fence */
1921 alignment = 0;
1922 break;
1923 case I915_TILING_Y:
1924 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1925 return -EINVAL;
1926 default:
1927 BUG();
1928 }
1929
1930 /* Note that the w/a also requires 64 PTE of padding following the
1931 * bo. We currently fill all unused PTE with the shadow page and so
1932 * we should always have valid PTE following the scanout preventing
1933 * the VT-d warning.
1934 */
1935 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1936 alignment = 256 * 1024;
1937
1938 dev_priv->mm.interruptible = false;
1939 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1940 if (ret)
1941 goto err_interruptible;
1942
1943 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1944 * fence, whereas 965+ only requires a fence if using
1945 * framebuffer compression. For simplicity, we always install
1946 * a fence as the cost is not that onerous.
1947 */
1948 ret = i915_gem_object_get_fence(obj);
1949 if (ret)
1950 goto err_unpin;
1951
1952 i915_gem_object_pin_fence(obj);
1953
1954 dev_priv->mm.interruptible = true;
1955 return 0;
1956
1957err_unpin:
1958 i915_gem_object_unpin_from_display_plane(obj);
1959err_interruptible:
1960 dev_priv->mm.interruptible = true;
1961 return ret;
1962}
1963
1964void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1965{
1966 i915_gem_object_unpin_fence(obj);
1967 i915_gem_object_unpin_from_display_plane(obj);
1968}
1969
1970/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1971 * is assumed to be a power-of-two. */
1972unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1973 unsigned int tiling_mode,
1974 unsigned int cpp,
1975 unsigned int pitch)
1976{
1977 if (tiling_mode != I915_TILING_NONE) {
1978 unsigned int tile_rows, tiles;
1979
1980 tile_rows = *y / 8;
1981 *y %= 8;
1982
1983 tiles = *x / (512/cpp);
1984 *x %= 512/cpp;
1985
1986 return tile_rows * pitch * 8 + tiles * 4096;
1987 } else {
1988 unsigned int offset;
1989
1990 offset = *y * pitch + *x * cpp;
1991 *y = 0;
1992 *x = (offset & 4095) / cpp;
1993 return offset & -4096;
1994 }
1995}
1996
1997static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1998 int x, int y)
1999{
2000 struct drm_device *dev = crtc->dev;
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2003 struct intel_framebuffer *intel_fb;
2004 struct drm_i915_gem_object *obj;
2005 int plane = intel_crtc->plane;
2006 unsigned long linear_offset;
2007 u32 dspcntr;
2008 u32 reg;
2009
2010 switch (plane) {
2011 case 0:
2012 case 1:
2013 break;
2014 default:
2015 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2016 return -EINVAL;
2017 }
2018
2019 intel_fb = to_intel_framebuffer(fb);
2020 obj = intel_fb->obj;
2021
2022 reg = DSPCNTR(plane);
2023 dspcntr = I915_READ(reg);
2024 /* Mask out pixel format bits in case we change it */
2025 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2026 switch (fb->pixel_format) {
2027 case DRM_FORMAT_C8:
2028 dspcntr |= DISPPLANE_8BPP;
2029 break;
2030 case DRM_FORMAT_XRGB1555:
2031 case DRM_FORMAT_ARGB1555:
2032 dspcntr |= DISPPLANE_BGRX555;
2033 break;
2034 case DRM_FORMAT_RGB565:
2035 dspcntr |= DISPPLANE_BGRX565;
2036 break;
2037 case DRM_FORMAT_XRGB8888:
2038 case DRM_FORMAT_ARGB8888:
2039 dspcntr |= DISPPLANE_BGRX888;
2040 break;
2041 case DRM_FORMAT_XBGR8888:
2042 case DRM_FORMAT_ABGR8888:
2043 dspcntr |= DISPPLANE_RGBX888;
2044 break;
2045 case DRM_FORMAT_XRGB2101010:
2046 case DRM_FORMAT_ARGB2101010:
2047 dspcntr |= DISPPLANE_BGRX101010;
2048 break;
2049 case DRM_FORMAT_XBGR2101010:
2050 case DRM_FORMAT_ABGR2101010:
2051 dspcntr |= DISPPLANE_RGBX101010;
2052 break;
2053 default:
2054 BUG();
2055 }
2056
2057 if (INTEL_INFO(dev)->gen >= 4) {
2058 if (obj->tiling_mode != I915_TILING_NONE)
2059 dspcntr |= DISPPLANE_TILED;
2060 else
2061 dspcntr &= ~DISPPLANE_TILED;
2062 }
2063
2064 if (IS_G4X(dev))
2065 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2066
2067 I915_WRITE(reg, dspcntr);
2068
2069 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2070
2071 if (INTEL_INFO(dev)->gen >= 4) {
2072 intel_crtc->dspaddr_offset =
2073 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2074 fb->bits_per_pixel / 8,
2075 fb->pitches[0]);
2076 linear_offset -= intel_crtc->dspaddr_offset;
2077 } else {
2078 intel_crtc->dspaddr_offset = linear_offset;
2079 }
2080
2081 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2082 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2083 fb->pitches[0]);
2084 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2085 if (INTEL_INFO(dev)->gen >= 4) {
2086 I915_MODIFY_DISPBASE(DSPSURF(plane),
2087 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2088 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2089 I915_WRITE(DSPLINOFF(plane), linear_offset);
2090 } else
2091 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2092 POSTING_READ(reg);
2093
2094 return 0;
2095}
2096
2097static int ironlake_update_plane(struct drm_crtc *crtc,
2098 struct drm_framebuffer *fb, int x, int y)
2099{
2100 struct drm_device *dev = crtc->dev;
2101 struct drm_i915_private *dev_priv = dev->dev_private;
2102 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2103 struct intel_framebuffer *intel_fb;
2104 struct drm_i915_gem_object *obj;
2105 int plane = intel_crtc->plane;
2106 unsigned long linear_offset;
2107 u32 dspcntr;
2108 u32 reg;
2109
2110 switch (plane) {
2111 case 0:
2112 case 1:
2113 case 2:
2114 break;
2115 default:
2116 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2117 return -EINVAL;
2118 }
2119
2120 intel_fb = to_intel_framebuffer(fb);
2121 obj = intel_fb->obj;
2122
2123 reg = DSPCNTR(plane);
2124 dspcntr = I915_READ(reg);
2125 /* Mask out pixel format bits in case we change it */
2126 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2127 switch (fb->pixel_format) {
2128 case DRM_FORMAT_C8:
2129 dspcntr |= DISPPLANE_8BPP;
2130 break;
2131 case DRM_FORMAT_RGB565:
2132 dspcntr |= DISPPLANE_BGRX565;
2133 break;
2134 case DRM_FORMAT_XRGB8888:
2135 case DRM_FORMAT_ARGB8888:
2136 dspcntr |= DISPPLANE_BGRX888;
2137 break;
2138 case DRM_FORMAT_XBGR8888:
2139 case DRM_FORMAT_ABGR8888:
2140 dspcntr |= DISPPLANE_RGBX888;
2141 break;
2142 case DRM_FORMAT_XRGB2101010:
2143 case DRM_FORMAT_ARGB2101010:
2144 dspcntr |= DISPPLANE_BGRX101010;
2145 break;
2146 case DRM_FORMAT_XBGR2101010:
2147 case DRM_FORMAT_ABGR2101010:
2148 dspcntr |= DISPPLANE_RGBX101010;
2149 break;
2150 default:
2151 BUG();
2152 }
2153
2154 if (obj->tiling_mode != I915_TILING_NONE)
2155 dspcntr |= DISPPLANE_TILED;
2156 else
2157 dspcntr &= ~DISPPLANE_TILED;
2158
2159 if (IS_HASWELL(dev))
2160 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2161 else
2162 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2163
2164 I915_WRITE(reg, dspcntr);
2165
2166 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2167 intel_crtc->dspaddr_offset =
2168 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2169 fb->bits_per_pixel / 8,
2170 fb->pitches[0]);
2171 linear_offset -= intel_crtc->dspaddr_offset;
2172
2173 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2174 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2175 fb->pitches[0]);
2176 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2177 I915_MODIFY_DISPBASE(DSPSURF(plane),
2178 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2179 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2180 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2181 } else {
2182 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2183 I915_WRITE(DSPLINOFF(plane), linear_offset);
2184 }
2185 POSTING_READ(reg);
2186
2187 return 0;
2188}
2189
2190/* Assume fb object is pinned & idle & fenced and just update base pointers */
2191static int
2192intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2193 int x, int y, enum mode_set_atomic state)
2194{
2195 struct drm_device *dev = crtc->dev;
2196 struct drm_i915_private *dev_priv = dev->dev_private;
2197
2198 if (dev_priv->display.disable_fbc)
2199 dev_priv->display.disable_fbc(dev);
2200 intel_increase_pllclock(crtc);
2201
2202 return dev_priv->display.update_plane(crtc, fb, x, y);
2203}
2204
2205void intel_display_handle_reset(struct drm_device *dev)
2206{
2207 struct drm_i915_private *dev_priv = dev->dev_private;
2208 struct drm_crtc *crtc;
2209
2210 /*
2211 * Flips in the rings have been nuked by the reset,
2212 * so complete all pending flips so that user space
2213 * will get its events and not get stuck.
2214 *
2215 * Also update the base address of all primary
2216 * planes to the the last fb to make sure we're
2217 * showing the correct fb after a reset.
2218 *
2219 * Need to make two loops over the crtcs so that we
2220 * don't try to grab a crtc mutex before the
2221 * pending_flip_queue really got woken up.
2222 */
2223
2224 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2225 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2226 enum plane plane = intel_crtc->plane;
2227
2228 intel_prepare_page_flip(dev, plane);
2229 intel_finish_page_flip_plane(dev, plane);
2230 }
2231
2232 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2233 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2234
2235 mutex_lock(&crtc->mutex);
2236 if (intel_crtc->active)
2237 dev_priv->display.update_plane(crtc, crtc->fb,
2238 crtc->x, crtc->y);
2239 mutex_unlock(&crtc->mutex);
2240 }
2241}
2242
2243static int
2244intel_finish_fb(struct drm_framebuffer *old_fb)
2245{
2246 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2247 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2248 bool was_interruptible = dev_priv->mm.interruptible;
2249 int ret;
2250
2251 /* Big Hammer, we also need to ensure that any pending
2252 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2253 * current scanout is retired before unpinning the old
2254 * framebuffer.
2255 *
2256 * This should only fail upon a hung GPU, in which case we
2257 * can safely continue.
2258 */
2259 dev_priv->mm.interruptible = false;
2260 ret = i915_gem_object_finish_gpu(obj);
2261 dev_priv->mm.interruptible = was_interruptible;
2262
2263 return ret;
2264}
2265
2266static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2267{
2268 struct drm_device *dev = crtc->dev;
2269 struct drm_i915_master_private *master_priv;
2270 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2271
2272 if (!dev->primary->master)
2273 return;
2274
2275 master_priv = dev->primary->master->driver_priv;
2276 if (!master_priv->sarea_priv)
2277 return;
2278
2279 switch (intel_crtc->pipe) {
2280 case 0:
2281 master_priv->sarea_priv->pipeA_x = x;
2282 master_priv->sarea_priv->pipeA_y = y;
2283 break;
2284 case 1:
2285 master_priv->sarea_priv->pipeB_x = x;
2286 master_priv->sarea_priv->pipeB_y = y;
2287 break;
2288 default:
2289 break;
2290 }
2291}
2292
2293static int
2294intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2295 struct drm_framebuffer *fb)
2296{
2297 struct drm_device *dev = crtc->dev;
2298 struct drm_i915_private *dev_priv = dev->dev_private;
2299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300 struct drm_framebuffer *old_fb;
2301 int ret;
2302
2303 /* no fb bound */
2304 if (!fb) {
2305 DRM_ERROR("No FB bound\n");
2306 return 0;
2307 }
2308
2309 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2310 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2311 plane_name(intel_crtc->plane),
2312 INTEL_INFO(dev)->num_pipes);
2313 return -EINVAL;
2314 }
2315
2316 mutex_lock(&dev->struct_mutex);
2317 ret = intel_pin_and_fence_fb_obj(dev,
2318 to_intel_framebuffer(fb)->obj,
2319 NULL);
2320 if (ret != 0) {
2321 mutex_unlock(&dev->struct_mutex);
2322 DRM_ERROR("pin & fence failed\n");
2323 return ret;
2324 }
2325
2326 /*
2327 * Update pipe size and adjust fitter if needed: the reason for this is
2328 * that in compute_mode_changes we check the native mode (not the pfit
2329 * mode) to see if we can flip rather than do a full mode set. In the
2330 * fastboot case, we'll flip, but if we don't update the pipesrc and
2331 * pfit state, we'll end up with a big fb scanned out into the wrong
2332 * sized surface.
2333 *
2334 * To fix this properly, we need to hoist the checks up into
2335 * compute_mode_changes (or above), check the actual pfit state and
2336 * whether the platform allows pfit disable with pipe active, and only
2337 * then update the pipesrc and pfit state, even on the flip path.
2338 */
2339 if (i915_fastboot) {
2340 const struct drm_display_mode *adjusted_mode =
2341 &intel_crtc->config.adjusted_mode;
2342
2343 I915_WRITE(PIPESRC(intel_crtc->pipe),
2344 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2345 (adjusted_mode->crtc_vdisplay - 1));
2346 if (!intel_crtc->config.pch_pfit.enabled &&
2347 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2348 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2349 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2350 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2351 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2352 }
2353 }
2354
2355 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2356 if (ret) {
2357 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2358 mutex_unlock(&dev->struct_mutex);
2359 DRM_ERROR("failed to update base address\n");
2360 return ret;
2361 }
2362
2363 old_fb = crtc->fb;
2364 crtc->fb = fb;
2365 crtc->x = x;
2366 crtc->y = y;
2367
2368 if (old_fb) {
2369 if (intel_crtc->active && old_fb != fb)
2370 intel_wait_for_vblank(dev, intel_crtc->pipe);
2371 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2372 }
2373
2374 intel_update_fbc(dev);
2375 intel_edp_psr_update(dev);
2376 mutex_unlock(&dev->struct_mutex);
2377
2378 intel_crtc_update_sarea_pos(crtc, x, y);
2379
2380 return 0;
2381}
2382
2383static void intel_fdi_normal_train(struct drm_crtc *crtc)
2384{
2385 struct drm_device *dev = crtc->dev;
2386 struct drm_i915_private *dev_priv = dev->dev_private;
2387 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2388 int pipe = intel_crtc->pipe;
2389 u32 reg, temp;
2390
2391 /* enable normal train */
2392 reg = FDI_TX_CTL(pipe);
2393 temp = I915_READ(reg);
2394 if (IS_IVYBRIDGE(dev)) {
2395 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2396 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2397 } else {
2398 temp &= ~FDI_LINK_TRAIN_NONE;
2399 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2400 }
2401 I915_WRITE(reg, temp);
2402
2403 reg = FDI_RX_CTL(pipe);
2404 temp = I915_READ(reg);
2405 if (HAS_PCH_CPT(dev)) {
2406 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2407 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2408 } else {
2409 temp &= ~FDI_LINK_TRAIN_NONE;
2410 temp |= FDI_LINK_TRAIN_NONE;
2411 }
2412 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2413
2414 /* wait one idle pattern time */
2415 POSTING_READ(reg);
2416 udelay(1000);
2417
2418 /* IVB wants error correction enabled */
2419 if (IS_IVYBRIDGE(dev))
2420 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2421 FDI_FE_ERRC_ENABLE);
2422}
2423
2424static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2425{
2426 return crtc->base.enabled && crtc->active &&
2427 crtc->config.has_pch_encoder;
2428}
2429
2430static void ivb_modeset_global_resources(struct drm_device *dev)
2431{
2432 struct drm_i915_private *dev_priv = dev->dev_private;
2433 struct intel_crtc *pipe_B_crtc =
2434 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2435 struct intel_crtc *pipe_C_crtc =
2436 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2437 uint32_t temp;
2438
2439 /*
2440 * When everything is off disable fdi C so that we could enable fdi B
2441 * with all lanes. Note that we don't care about enabled pipes without
2442 * an enabled pch encoder.
2443 */
2444 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2445 !pipe_has_enabled_pch(pipe_C_crtc)) {
2446 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2447 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2448
2449 temp = I915_READ(SOUTH_CHICKEN1);
2450 temp &= ~FDI_BC_BIFURCATION_SELECT;
2451 DRM_DEBUG_KMS("disabling fdi C rx\n");
2452 I915_WRITE(SOUTH_CHICKEN1, temp);
2453 }
2454}
2455
2456/* The FDI link training functions for ILK/Ibexpeak. */
2457static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2458{
2459 struct drm_device *dev = crtc->dev;
2460 struct drm_i915_private *dev_priv = dev->dev_private;
2461 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2462 int pipe = intel_crtc->pipe;
2463 int plane = intel_crtc->plane;
2464 u32 reg, temp, tries;
2465
2466 /* FDI needs bits from pipe & plane first */
2467 assert_pipe_enabled(dev_priv, pipe);
2468 assert_plane_enabled(dev_priv, plane);
2469
2470 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2471 for train result */
2472 reg = FDI_RX_IMR(pipe);
2473 temp = I915_READ(reg);
2474 temp &= ~FDI_RX_SYMBOL_LOCK;
2475 temp &= ~FDI_RX_BIT_LOCK;
2476 I915_WRITE(reg, temp);
2477 I915_READ(reg);
2478 udelay(150);
2479
2480 /* enable CPU FDI TX and PCH FDI RX */
2481 reg = FDI_TX_CTL(pipe);
2482 temp = I915_READ(reg);
2483 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2484 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2485 temp &= ~FDI_LINK_TRAIN_NONE;
2486 temp |= FDI_LINK_TRAIN_PATTERN_1;
2487 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2488
2489 reg = FDI_RX_CTL(pipe);
2490 temp = I915_READ(reg);
2491 temp &= ~FDI_LINK_TRAIN_NONE;
2492 temp |= FDI_LINK_TRAIN_PATTERN_1;
2493 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2494
2495 POSTING_READ(reg);
2496 udelay(150);
2497
2498 /* Ironlake workaround, enable clock pointer after FDI enable*/
2499 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2500 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2501 FDI_RX_PHASE_SYNC_POINTER_EN);
2502
2503 reg = FDI_RX_IIR(pipe);
2504 for (tries = 0; tries < 5; tries++) {
2505 temp = I915_READ(reg);
2506 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2507
2508 if ((temp & FDI_RX_BIT_LOCK)) {
2509 DRM_DEBUG_KMS("FDI train 1 done.\n");
2510 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2511 break;
2512 }
2513 }
2514 if (tries == 5)
2515 DRM_ERROR("FDI train 1 fail!\n");
2516
2517 /* Train 2 */
2518 reg = FDI_TX_CTL(pipe);
2519 temp = I915_READ(reg);
2520 temp &= ~FDI_LINK_TRAIN_NONE;
2521 temp |= FDI_LINK_TRAIN_PATTERN_2;
2522 I915_WRITE(reg, temp);
2523
2524 reg = FDI_RX_CTL(pipe);
2525 temp = I915_READ(reg);
2526 temp &= ~FDI_LINK_TRAIN_NONE;
2527 temp |= FDI_LINK_TRAIN_PATTERN_2;
2528 I915_WRITE(reg, temp);
2529
2530 POSTING_READ(reg);
2531 udelay(150);
2532
2533 reg = FDI_RX_IIR(pipe);
2534 for (tries = 0; tries < 5; tries++) {
2535 temp = I915_READ(reg);
2536 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2537
2538 if (temp & FDI_RX_SYMBOL_LOCK) {
2539 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2540 DRM_DEBUG_KMS("FDI train 2 done.\n");
2541 break;
2542 }
2543 }
2544 if (tries == 5)
2545 DRM_ERROR("FDI train 2 fail!\n");
2546
2547 DRM_DEBUG_KMS("FDI train done\n");
2548
2549}
2550
2551static const int snb_b_fdi_train_param[] = {
2552 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2553 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2554 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2555 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2556};
2557
2558/* The FDI link training functions for SNB/Cougarpoint. */
2559static void gen6_fdi_link_train(struct drm_crtc *crtc)
2560{
2561 struct drm_device *dev = crtc->dev;
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2564 int pipe = intel_crtc->pipe;
2565 u32 reg, temp, i, retry;
2566
2567 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2568 for train result */
2569 reg = FDI_RX_IMR(pipe);
2570 temp = I915_READ(reg);
2571 temp &= ~FDI_RX_SYMBOL_LOCK;
2572 temp &= ~FDI_RX_BIT_LOCK;
2573 I915_WRITE(reg, temp);
2574
2575 POSTING_READ(reg);
2576 udelay(150);
2577
2578 /* enable CPU FDI TX and PCH FDI RX */
2579 reg = FDI_TX_CTL(pipe);
2580 temp = I915_READ(reg);
2581 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2582 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2583 temp &= ~FDI_LINK_TRAIN_NONE;
2584 temp |= FDI_LINK_TRAIN_PATTERN_1;
2585 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2586 /* SNB-B */
2587 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2588 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2589
2590 I915_WRITE(FDI_RX_MISC(pipe),
2591 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2592
2593 reg = FDI_RX_CTL(pipe);
2594 temp = I915_READ(reg);
2595 if (HAS_PCH_CPT(dev)) {
2596 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2597 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2598 } else {
2599 temp &= ~FDI_LINK_TRAIN_NONE;
2600 temp |= FDI_LINK_TRAIN_PATTERN_1;
2601 }
2602 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2603
2604 POSTING_READ(reg);
2605 udelay(150);
2606
2607 for (i = 0; i < 4; i++) {
2608 reg = FDI_TX_CTL(pipe);
2609 temp = I915_READ(reg);
2610 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2611 temp |= snb_b_fdi_train_param[i];
2612 I915_WRITE(reg, temp);
2613
2614 POSTING_READ(reg);
2615 udelay(500);
2616
2617 for (retry = 0; retry < 5; retry++) {
2618 reg = FDI_RX_IIR(pipe);
2619 temp = I915_READ(reg);
2620 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2621 if (temp & FDI_RX_BIT_LOCK) {
2622 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2623 DRM_DEBUG_KMS("FDI train 1 done.\n");
2624 break;
2625 }
2626 udelay(50);
2627 }
2628 if (retry < 5)
2629 break;
2630 }
2631 if (i == 4)
2632 DRM_ERROR("FDI train 1 fail!\n");
2633
2634 /* Train 2 */
2635 reg = FDI_TX_CTL(pipe);
2636 temp = I915_READ(reg);
2637 temp &= ~FDI_LINK_TRAIN_NONE;
2638 temp |= FDI_LINK_TRAIN_PATTERN_2;
2639 if (IS_GEN6(dev)) {
2640 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2641 /* SNB-B */
2642 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2643 }
2644 I915_WRITE(reg, temp);
2645
2646 reg = FDI_RX_CTL(pipe);
2647 temp = I915_READ(reg);
2648 if (HAS_PCH_CPT(dev)) {
2649 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2650 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2651 } else {
2652 temp &= ~FDI_LINK_TRAIN_NONE;
2653 temp |= FDI_LINK_TRAIN_PATTERN_2;
2654 }
2655 I915_WRITE(reg, temp);
2656
2657 POSTING_READ(reg);
2658 udelay(150);
2659
2660 for (i = 0; i < 4; i++) {
2661 reg = FDI_TX_CTL(pipe);
2662 temp = I915_READ(reg);
2663 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2664 temp |= snb_b_fdi_train_param[i];
2665 I915_WRITE(reg, temp);
2666
2667 POSTING_READ(reg);
2668 udelay(500);
2669
2670 for (retry = 0; retry < 5; retry++) {
2671 reg = FDI_RX_IIR(pipe);
2672 temp = I915_READ(reg);
2673 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2674 if (temp & FDI_RX_SYMBOL_LOCK) {
2675 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2676 DRM_DEBUG_KMS("FDI train 2 done.\n");
2677 break;
2678 }
2679 udelay(50);
2680 }
2681 if (retry < 5)
2682 break;
2683 }
2684 if (i == 4)
2685 DRM_ERROR("FDI train 2 fail!\n");
2686
2687 DRM_DEBUG_KMS("FDI train done.\n");
2688}
2689
2690/* Manual link training for Ivy Bridge A0 parts */
2691static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2692{
2693 struct drm_device *dev = crtc->dev;
2694 struct drm_i915_private *dev_priv = dev->dev_private;
2695 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2696 int pipe = intel_crtc->pipe;
2697 u32 reg, temp, i, j;
2698
2699 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2700 for train result */
2701 reg = FDI_RX_IMR(pipe);
2702 temp = I915_READ(reg);
2703 temp &= ~FDI_RX_SYMBOL_LOCK;
2704 temp &= ~FDI_RX_BIT_LOCK;
2705 I915_WRITE(reg, temp);
2706
2707 POSTING_READ(reg);
2708 udelay(150);
2709
2710 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2711 I915_READ(FDI_RX_IIR(pipe)));
2712
2713 /* Try each vswing and preemphasis setting twice before moving on */
2714 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2715 /* disable first in case we need to retry */
2716 reg = FDI_TX_CTL(pipe);
2717 temp = I915_READ(reg);
2718 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2719 temp &= ~FDI_TX_ENABLE;
2720 I915_WRITE(reg, temp);
2721
2722 reg = FDI_RX_CTL(pipe);
2723 temp = I915_READ(reg);
2724 temp &= ~FDI_LINK_TRAIN_AUTO;
2725 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2726 temp &= ~FDI_RX_ENABLE;
2727 I915_WRITE(reg, temp);
2728
2729 /* enable CPU FDI TX and PCH FDI RX */
2730 reg = FDI_TX_CTL(pipe);
2731 temp = I915_READ(reg);
2732 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2733 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2734 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2735 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2736 temp |= snb_b_fdi_train_param[j/2];
2737 temp |= FDI_COMPOSITE_SYNC;
2738 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2739
2740 I915_WRITE(FDI_RX_MISC(pipe),
2741 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2742
2743 reg = FDI_RX_CTL(pipe);
2744 temp = I915_READ(reg);
2745 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2746 temp |= FDI_COMPOSITE_SYNC;
2747 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2748
2749 POSTING_READ(reg);
2750 udelay(1); /* should be 0.5us */
2751
2752 for (i = 0; i < 4; i++) {
2753 reg = FDI_RX_IIR(pipe);
2754 temp = I915_READ(reg);
2755 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2756
2757 if (temp & FDI_RX_BIT_LOCK ||
2758 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2759 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2760 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2761 i);
2762 break;
2763 }
2764 udelay(1); /* should be 0.5us */
2765 }
2766 if (i == 4) {
2767 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2768 continue;
2769 }
2770
2771 /* Train 2 */
2772 reg = FDI_TX_CTL(pipe);
2773 temp = I915_READ(reg);
2774 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2775 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2776 I915_WRITE(reg, temp);
2777
2778 reg = FDI_RX_CTL(pipe);
2779 temp = I915_READ(reg);
2780 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2781 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2782 I915_WRITE(reg, temp);
2783
2784 POSTING_READ(reg);
2785 udelay(2); /* should be 1.5us */
2786
2787 for (i = 0; i < 4; i++) {
2788 reg = FDI_RX_IIR(pipe);
2789 temp = I915_READ(reg);
2790 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2791
2792 if (temp & FDI_RX_SYMBOL_LOCK ||
2793 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2794 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2795 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2796 i);
2797 goto train_done;
2798 }
2799 udelay(2); /* should be 1.5us */
2800 }
2801 if (i == 4)
2802 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2803 }
2804
2805train_done:
2806 DRM_DEBUG_KMS("FDI train done.\n");
2807}
2808
2809static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2810{
2811 struct drm_device *dev = intel_crtc->base.dev;
2812 struct drm_i915_private *dev_priv = dev->dev_private;
2813 int pipe = intel_crtc->pipe;
2814 u32 reg, temp;
2815
2816
2817 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2818 reg = FDI_RX_CTL(pipe);
2819 temp = I915_READ(reg);
2820 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2821 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2822 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2823 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2824
2825 POSTING_READ(reg);
2826 udelay(200);
2827
2828 /* Switch from Rawclk to PCDclk */
2829 temp = I915_READ(reg);
2830 I915_WRITE(reg, temp | FDI_PCDCLK);
2831
2832 POSTING_READ(reg);
2833 udelay(200);
2834
2835 /* Enable CPU FDI TX PLL, always on for Ironlake */
2836 reg = FDI_TX_CTL(pipe);
2837 temp = I915_READ(reg);
2838 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2839 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2840
2841 POSTING_READ(reg);
2842 udelay(100);
2843 }
2844}
2845
2846static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2847{
2848 struct drm_device *dev = intel_crtc->base.dev;
2849 struct drm_i915_private *dev_priv = dev->dev_private;
2850 int pipe = intel_crtc->pipe;
2851 u32 reg, temp;
2852
2853 /* Switch from PCDclk to Rawclk */
2854 reg = FDI_RX_CTL(pipe);
2855 temp = I915_READ(reg);
2856 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2857
2858 /* Disable CPU FDI TX PLL */
2859 reg = FDI_TX_CTL(pipe);
2860 temp = I915_READ(reg);
2861 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2862
2863 POSTING_READ(reg);
2864 udelay(100);
2865
2866 reg = FDI_RX_CTL(pipe);
2867 temp = I915_READ(reg);
2868 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2869
2870 /* Wait for the clocks to turn off. */
2871 POSTING_READ(reg);
2872 udelay(100);
2873}
2874
2875static void ironlake_fdi_disable(struct drm_crtc *crtc)
2876{
2877 struct drm_device *dev = crtc->dev;
2878 struct drm_i915_private *dev_priv = dev->dev_private;
2879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2880 int pipe = intel_crtc->pipe;
2881 u32 reg, temp;
2882
2883 /* disable CPU FDI tx and PCH FDI rx */
2884 reg = FDI_TX_CTL(pipe);
2885 temp = I915_READ(reg);
2886 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2887 POSTING_READ(reg);
2888
2889 reg = FDI_RX_CTL(pipe);
2890 temp = I915_READ(reg);
2891 temp &= ~(0x7 << 16);
2892 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2893 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2894
2895 POSTING_READ(reg);
2896 udelay(100);
2897
2898 /* Ironlake workaround, disable clock pointer after downing FDI */
2899 if (HAS_PCH_IBX(dev)) {
2900 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2901 }
2902
2903 /* still set train pattern 1 */
2904 reg = FDI_TX_CTL(pipe);
2905 temp = I915_READ(reg);
2906 temp &= ~FDI_LINK_TRAIN_NONE;
2907 temp |= FDI_LINK_TRAIN_PATTERN_1;
2908 I915_WRITE(reg, temp);
2909
2910 reg = FDI_RX_CTL(pipe);
2911 temp = I915_READ(reg);
2912 if (HAS_PCH_CPT(dev)) {
2913 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2914 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2915 } else {
2916 temp &= ~FDI_LINK_TRAIN_NONE;
2917 temp |= FDI_LINK_TRAIN_PATTERN_1;
2918 }
2919 /* BPC in FDI rx is consistent with that in PIPECONF */
2920 temp &= ~(0x07 << 16);
2921 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2922 I915_WRITE(reg, temp);
2923
2924 POSTING_READ(reg);
2925 udelay(100);
2926}
2927
2928static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2929{
2930 struct drm_device *dev = crtc->dev;
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2933 unsigned long flags;
2934 bool pending;
2935
2936 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2937 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2938 return false;
2939
2940 spin_lock_irqsave(&dev->event_lock, flags);
2941 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2942 spin_unlock_irqrestore(&dev->event_lock, flags);
2943
2944 return pending;
2945}
2946
2947static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2948{
2949 struct drm_device *dev = crtc->dev;
2950 struct drm_i915_private *dev_priv = dev->dev_private;
2951
2952 if (crtc->fb == NULL)
2953 return;
2954
2955 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2956
2957 wait_event(dev_priv->pending_flip_queue,
2958 !intel_crtc_has_pending_flip(crtc));
2959
2960 mutex_lock(&dev->struct_mutex);
2961 intel_finish_fb(crtc->fb);
2962 mutex_unlock(&dev->struct_mutex);
2963}
2964
2965/* Program iCLKIP clock to the desired frequency */
2966static void lpt_program_iclkip(struct drm_crtc *crtc)
2967{
2968 struct drm_device *dev = crtc->dev;
2969 struct drm_i915_private *dev_priv = dev->dev_private;
2970 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
2971 u32 divsel, phaseinc, auxdiv, phasedir = 0;
2972 u32 temp;
2973
2974 mutex_lock(&dev_priv->dpio_lock);
2975
2976 /* It is necessary to ungate the pixclk gate prior to programming
2977 * the divisors, and gate it back when it is done.
2978 */
2979 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
2980
2981 /* Disable SSCCTL */
2982 intel_sbi_write(dev_priv, SBI_SSCCTL6,
2983 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
2984 SBI_SSCCTL_DISABLE,
2985 SBI_ICLK);
2986
2987 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
2988 if (clock == 20000) {
2989 auxdiv = 1;
2990 divsel = 0x41;
2991 phaseinc = 0x20;
2992 } else {
2993 /* The iCLK virtual clock root frequency is in MHz,
2994 * but the adjusted_mode->crtc_clock in in KHz. To get the
2995 * divisors, it is necessary to divide one by another, so we
2996 * convert the virtual clock precision to KHz here for higher
2997 * precision.
2998 */
2999 u32 iclk_virtual_root_freq = 172800 * 1000;
3000 u32 iclk_pi_range = 64;
3001 u32 desired_divisor, msb_divisor_value, pi_value;
3002
3003 desired_divisor = (iclk_virtual_root_freq / clock);
3004 msb_divisor_value = desired_divisor / iclk_pi_range;
3005 pi_value = desired_divisor % iclk_pi_range;
3006
3007 auxdiv = 0;
3008 divsel = msb_divisor_value - 2;
3009 phaseinc = pi_value;
3010 }
3011
3012 /* This should not happen with any sane values */
3013 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3014 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3015 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3016 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3017
3018 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3019 clock,
3020 auxdiv,
3021 divsel,
3022 phasedir,
3023 phaseinc);
3024
3025 /* Program SSCDIVINTPHASE6 */
3026 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3027 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3028 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3029 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3030 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3031 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3032 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3033 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3034
3035 /* Program SSCAUXDIV */
3036 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3037 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3038 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3039 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3040
3041 /* Enable modulator and associated divider */
3042 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3043 temp &= ~SBI_SSCCTL_DISABLE;
3044 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3045
3046 /* Wait for initialization time */
3047 udelay(24);
3048
3049 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3050
3051 mutex_unlock(&dev_priv->dpio_lock);
3052}
3053
3054static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3055 enum pipe pch_transcoder)
3056{
3057 struct drm_device *dev = crtc->base.dev;
3058 struct drm_i915_private *dev_priv = dev->dev_private;
3059 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3060
3061 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3062 I915_READ(HTOTAL(cpu_transcoder)));
3063 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3064 I915_READ(HBLANK(cpu_transcoder)));
3065 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3066 I915_READ(HSYNC(cpu_transcoder)));
3067
3068 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3069 I915_READ(VTOTAL(cpu_transcoder)));
3070 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3071 I915_READ(VBLANK(cpu_transcoder)));
3072 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3073 I915_READ(VSYNC(cpu_transcoder)));
3074 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3075 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3076}
3077
3078static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3079{
3080 struct drm_i915_private *dev_priv = dev->dev_private;
3081 uint32_t temp;
3082
3083 temp = I915_READ(SOUTH_CHICKEN1);
3084 if (temp & FDI_BC_BIFURCATION_SELECT)
3085 return;
3086
3087 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3088 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3089
3090 temp |= FDI_BC_BIFURCATION_SELECT;
3091 DRM_DEBUG_KMS("enabling fdi C rx\n");
3092 I915_WRITE(SOUTH_CHICKEN1, temp);
3093 POSTING_READ(SOUTH_CHICKEN1);
3094}
3095
3096static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3097{
3098 struct drm_device *dev = intel_crtc->base.dev;
3099 struct drm_i915_private *dev_priv = dev->dev_private;
3100
3101 switch (intel_crtc->pipe) {
3102 case PIPE_A:
3103 break;
3104 case PIPE_B:
3105 if (intel_crtc->config.fdi_lanes > 2)
3106 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3107 else
3108 cpt_enable_fdi_bc_bifurcation(dev);
3109
3110 break;
3111 case PIPE_C:
3112 cpt_enable_fdi_bc_bifurcation(dev);
3113
3114 break;
3115 default:
3116 BUG();
3117 }
3118}
3119
3120/*
3121 * Enable PCH resources required for PCH ports:
3122 * - PCH PLLs
3123 * - FDI training & RX/TX
3124 * - update transcoder timings
3125 * - DP transcoding bits
3126 * - transcoder
3127 */
3128static void ironlake_pch_enable(struct drm_crtc *crtc)
3129{
3130 struct drm_device *dev = crtc->dev;
3131 struct drm_i915_private *dev_priv = dev->dev_private;
3132 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3133 int pipe = intel_crtc->pipe;
3134 u32 reg, temp;
3135
3136 assert_pch_transcoder_disabled(dev_priv, pipe);
3137
3138 if (IS_IVYBRIDGE(dev))
3139 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3140
3141 /* Write the TU size bits before fdi link training, so that error
3142 * detection works. */
3143 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3144 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3145
3146 /* For PCH output, training FDI link */
3147 dev_priv->display.fdi_link_train(crtc);
3148
3149 /* We need to program the right clock selection before writing the pixel
3150 * mutliplier into the DPLL. */
3151 if (HAS_PCH_CPT(dev)) {
3152 u32 sel;
3153
3154 temp = I915_READ(PCH_DPLL_SEL);
3155 temp |= TRANS_DPLL_ENABLE(pipe);
3156 sel = TRANS_DPLLB_SEL(pipe);
3157 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3158 temp |= sel;
3159 else
3160 temp &= ~sel;
3161 I915_WRITE(PCH_DPLL_SEL, temp);
3162 }
3163
3164 /* XXX: pch pll's can be enabled any time before we enable the PCH
3165 * transcoder, and we actually should do this to not upset any PCH
3166 * transcoder that already use the clock when we share it.
3167 *
3168 * Note that enable_shared_dpll tries to do the right thing, but
3169 * get_shared_dpll unconditionally resets the pll - we need that to have
3170 * the right LVDS enable sequence. */
3171 ironlake_enable_shared_dpll(intel_crtc);
3172
3173 /* set transcoder timing, panel must allow it */
3174 assert_panel_unlocked(dev_priv, pipe);
3175 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3176
3177 intel_fdi_normal_train(crtc);
3178
3179 /* For PCH DP, enable TRANS_DP_CTL */
3180 if (HAS_PCH_CPT(dev) &&
3181 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3182 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3183 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3184 reg = TRANS_DP_CTL(pipe);
3185 temp = I915_READ(reg);
3186 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3187 TRANS_DP_SYNC_MASK |
3188 TRANS_DP_BPC_MASK);
3189 temp |= (TRANS_DP_OUTPUT_ENABLE |
3190 TRANS_DP_ENH_FRAMING);
3191 temp |= bpc << 9; /* same format but at 11:9 */
3192
3193 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3194 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3195 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3196 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3197
3198 switch (intel_trans_dp_port_sel(crtc)) {
3199 case PCH_DP_B:
3200 temp |= TRANS_DP_PORT_SEL_B;
3201 break;
3202 case PCH_DP_C:
3203 temp |= TRANS_DP_PORT_SEL_C;
3204 break;
3205 case PCH_DP_D:
3206 temp |= TRANS_DP_PORT_SEL_D;
3207 break;
3208 default:
3209 BUG();
3210 }
3211
3212 I915_WRITE(reg, temp);
3213 }
3214
3215 ironlake_enable_pch_transcoder(dev_priv, pipe);
3216}
3217
3218static void lpt_pch_enable(struct drm_crtc *crtc)
3219{
3220 struct drm_device *dev = crtc->dev;
3221 struct drm_i915_private *dev_priv = dev->dev_private;
3222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3223 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3224
3225 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3226
3227 lpt_program_iclkip(crtc);
3228
3229 /* Set transcoder timing. */
3230 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3231
3232 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3233}
3234
3235static void intel_put_shared_dpll(struct intel_crtc *crtc)
3236{
3237 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3238
3239 if (pll == NULL)
3240 return;
3241
3242 if (pll->refcount == 0) {
3243 WARN(1, "bad %s refcount\n", pll->name);
3244 return;
3245 }
3246
3247 if (--pll->refcount == 0) {
3248 WARN_ON(pll->on);
3249 WARN_ON(pll->active);
3250 }
3251
3252 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3253}
3254
3255static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3256{
3257 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3258 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3259 enum intel_dpll_id i;
3260
3261 if (pll) {
3262 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3263 crtc->base.base.id, pll->name);
3264 intel_put_shared_dpll(crtc);
3265 }
3266
3267 if (HAS_PCH_IBX(dev_priv->dev)) {
3268 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3269 i = (enum intel_dpll_id) crtc->pipe;
3270 pll = &dev_priv->shared_dplls[i];
3271
3272 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3273 crtc->base.base.id, pll->name);
3274
3275 goto found;
3276 }
3277
3278 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3279 pll = &dev_priv->shared_dplls[i];
3280
3281 /* Only want to check enabled timings first */
3282 if (pll->refcount == 0)
3283 continue;
3284
3285 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3286 sizeof(pll->hw_state)) == 0) {
3287 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3288 crtc->base.base.id,
3289 pll->name, pll->refcount, pll->active);
3290
3291 goto found;
3292 }
3293 }
3294
3295 /* Ok no matching timings, maybe there's a free one? */
3296 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3297 pll = &dev_priv->shared_dplls[i];
3298 if (pll->refcount == 0) {
3299 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3300 crtc->base.base.id, pll->name);
3301 goto found;
3302 }
3303 }
3304
3305 return NULL;
3306
3307found:
3308 crtc->config.shared_dpll = i;
3309 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3310 pipe_name(crtc->pipe));
3311
3312 if (pll->active == 0) {
3313 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3314 sizeof(pll->hw_state));
3315
3316 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3317 WARN_ON(pll->on);
3318 assert_shared_dpll_disabled(dev_priv, pll);
3319
3320 pll->mode_set(dev_priv, pll);
3321 }
3322 pll->refcount++;
3323
3324 return pll;
3325}
3326
3327static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3328{
3329 struct drm_i915_private *dev_priv = dev->dev_private;
3330 int dslreg = PIPEDSL(pipe);
3331 u32 temp;
3332
3333 temp = I915_READ(dslreg);
3334 udelay(500);
3335 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3336 if (wait_for(I915_READ(dslreg) != temp, 5))
3337 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3338 }
3339}
3340
3341static void ironlake_pfit_enable(struct intel_crtc *crtc)
3342{
3343 struct drm_device *dev = crtc->base.dev;
3344 struct drm_i915_private *dev_priv = dev->dev_private;
3345 int pipe = crtc->pipe;
3346
3347 if (crtc->config.pch_pfit.enabled) {
3348 /* Force use of hard-coded filter coefficients
3349 * as some pre-programmed values are broken,
3350 * e.g. x201.
3351 */
3352 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3353 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3354 PF_PIPE_SEL_IVB(pipe));
3355 else
3356 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3357 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3358 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3359 }
3360}
3361
3362static void intel_enable_planes(struct drm_crtc *crtc)
3363{
3364 struct drm_device *dev = crtc->dev;
3365 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3366 struct intel_plane *intel_plane;
3367
3368 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3369 if (intel_plane->pipe == pipe)
3370 intel_plane_restore(&intel_plane->base);
3371}
3372
3373static void intel_disable_planes(struct drm_crtc *crtc)
3374{
3375 struct drm_device *dev = crtc->dev;
3376 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3377 struct intel_plane *intel_plane;
3378
3379 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3380 if (intel_plane->pipe == pipe)
3381 intel_plane_disable(&intel_plane->base);
3382}
3383
3384void hsw_enable_ips(struct intel_crtc *crtc)
3385{
3386 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3387
3388 if (!crtc->config.ips_enabled)
3389 return;
3390
3391 /* We can only enable IPS after we enable a plane and wait for a vblank.
3392 * We guarantee that the plane is enabled by calling intel_enable_ips
3393 * only after intel_enable_plane. And intel_enable_plane already waits
3394 * for a vblank, so all we need to do here is to enable the IPS bit. */
3395 assert_plane_enabled(dev_priv, crtc->plane);
3396 I915_WRITE(IPS_CTL, IPS_ENABLE);
3397
3398 /* The bit only becomes 1 in the next vblank, so this wait here is
3399 * essentially intel_wait_for_vblank. If we don't have this and don't
3400 * wait for vblanks until the end of crtc_enable, then the HW state
3401 * readout code will complain that the expected IPS_CTL value is not the
3402 * one we read. */
3403 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3404 DRM_ERROR("Timed out waiting for IPS enable\n");
3405}
3406
3407void hsw_disable_ips(struct intel_crtc *crtc)
3408{
3409 struct drm_device *dev = crtc->base.dev;
3410 struct drm_i915_private *dev_priv = dev->dev_private;
3411
3412 if (!crtc->config.ips_enabled)
3413 return;
3414
3415 assert_plane_enabled(dev_priv, crtc->plane);
3416 I915_WRITE(IPS_CTL, 0);
3417 POSTING_READ(IPS_CTL);
3418
3419 /* We need to wait for a vblank before we can disable the plane. */
3420 intel_wait_for_vblank(dev, crtc->pipe);
3421}
3422
3423/** Loads the palette/gamma unit for the CRTC with the prepared values */
3424static void intel_crtc_load_lut(struct drm_crtc *crtc)
3425{
3426 struct drm_device *dev = crtc->dev;
3427 struct drm_i915_private *dev_priv = dev->dev_private;
3428 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3429 enum pipe pipe = intel_crtc->pipe;
3430 int palreg = PALETTE(pipe);
3431 int i;
3432 bool reenable_ips = false;
3433
3434 /* The clocks have to be on to load the palette. */
3435 if (!crtc->enabled || !intel_crtc->active)
3436 return;
3437
3438 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3439 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3440 assert_dsi_pll_enabled(dev_priv);
3441 else
3442 assert_pll_enabled(dev_priv, pipe);
3443 }
3444
3445 /* use legacy palette for Ironlake */
3446 if (HAS_PCH_SPLIT(dev))
3447 palreg = LGC_PALETTE(pipe);
3448
3449 /* Workaround : Do not read or write the pipe palette/gamma data while
3450 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3451 */
3452 if (intel_crtc->config.ips_enabled &&
3453 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3454 GAMMA_MODE_MODE_SPLIT)) {
3455 hsw_disable_ips(intel_crtc);
3456 reenable_ips = true;
3457 }
3458
3459 for (i = 0; i < 256; i++) {
3460 I915_WRITE(palreg + 4 * i,
3461 (intel_crtc->lut_r[i] << 16) |
3462 (intel_crtc->lut_g[i] << 8) |
3463 intel_crtc->lut_b[i]);
3464 }
3465
3466 if (reenable_ips)
3467 hsw_enable_ips(intel_crtc);
3468}
3469
3470static void ironlake_crtc_enable(struct drm_crtc *crtc)
3471{
3472 struct drm_device *dev = crtc->dev;
3473 struct drm_i915_private *dev_priv = dev->dev_private;
3474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3475 struct intel_encoder *encoder;
3476 int pipe = intel_crtc->pipe;
3477 int plane = intel_crtc->plane;
3478
3479 WARN_ON(!crtc->enabled);
3480
3481 if (intel_crtc->active)
3482 return;
3483
3484 intel_crtc->active = true;
3485
3486 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3487 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3488
3489 for_each_encoder_on_crtc(dev, crtc, encoder)
3490 if (encoder->pre_enable)
3491 encoder->pre_enable(encoder);
3492
3493 if (intel_crtc->config.has_pch_encoder) {
3494 /* Note: FDI PLL enabling _must_ be done before we enable the
3495 * cpu pipes, hence this is separate from all the other fdi/pch
3496 * enabling. */
3497 ironlake_fdi_pll_enable(intel_crtc);
3498 } else {
3499 assert_fdi_tx_disabled(dev_priv, pipe);
3500 assert_fdi_rx_disabled(dev_priv, pipe);
3501 }
3502
3503 ironlake_pfit_enable(intel_crtc);
3504
3505 /*
3506 * On ILK+ LUT must be loaded before the pipe is running but with
3507 * clocks enabled
3508 */
3509 intel_crtc_load_lut(crtc);
3510
3511 intel_update_watermarks(crtc);
3512 intel_enable_pipe(dev_priv, pipe,
3513 intel_crtc->config.has_pch_encoder, false);
3514 intel_enable_primary_plane(dev_priv, plane, pipe);
3515 intel_enable_planes(crtc);
3516 intel_crtc_update_cursor(crtc, true);
3517
3518 if (intel_crtc->config.has_pch_encoder)
3519 ironlake_pch_enable(crtc);
3520
3521 mutex_lock(&dev->struct_mutex);
3522 intel_update_fbc(dev);
3523 mutex_unlock(&dev->struct_mutex);
3524
3525 for_each_encoder_on_crtc(dev, crtc, encoder)
3526 encoder->enable(encoder);
3527
3528 if (HAS_PCH_CPT(dev))
3529 cpt_verify_modeset(dev, intel_crtc->pipe);
3530
3531 /*
3532 * There seems to be a race in PCH platform hw (at least on some
3533 * outputs) where an enabled pipe still completes any pageflip right
3534 * away (as if the pipe is off) instead of waiting for vblank. As soon
3535 * as the first vblank happend, everything works as expected. Hence just
3536 * wait for one vblank before returning to avoid strange things
3537 * happening.
3538 */
3539 intel_wait_for_vblank(dev, intel_crtc->pipe);
3540}
3541
3542/* IPS only exists on ULT machines and is tied to pipe A. */
3543static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3544{
3545 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3546}
3547
3548static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3549{
3550 struct drm_device *dev = crtc->dev;
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553 int pipe = intel_crtc->pipe;
3554 int plane = intel_crtc->plane;
3555
3556 intel_enable_primary_plane(dev_priv, plane, pipe);
3557 intel_enable_planes(crtc);
3558 intel_crtc_update_cursor(crtc, true);
3559
3560 hsw_enable_ips(intel_crtc);
3561
3562 mutex_lock(&dev->struct_mutex);
3563 intel_update_fbc(dev);
3564 mutex_unlock(&dev->struct_mutex);
3565}
3566
3567static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3568{
3569 struct drm_device *dev = crtc->dev;
3570 struct drm_i915_private *dev_priv = dev->dev_private;
3571 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3572 int pipe = intel_crtc->pipe;
3573 int plane = intel_crtc->plane;
3574
3575 intel_crtc_wait_for_pending_flips(crtc);
3576 drm_vblank_off(dev, pipe);
3577
3578 /* FBC must be disabled before disabling the plane on HSW. */
3579 if (dev_priv->fbc.plane == plane)
3580 intel_disable_fbc(dev);
3581
3582 hsw_disable_ips(intel_crtc);
3583
3584 intel_crtc_update_cursor(crtc, false);
3585 intel_disable_planes(crtc);
3586 intel_disable_primary_plane(dev_priv, plane, pipe);
3587}
3588
3589/*
3590 * This implements the workaround described in the "notes" section of the mode
3591 * set sequence documentation. When going from no pipes or single pipe to
3592 * multiple pipes, and planes are enabled after the pipe, we need to wait at
3593 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3594 */
3595static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3596{
3597 struct drm_device *dev = crtc->base.dev;
3598 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3599
3600 /* We want to get the other_active_crtc only if there's only 1 other
3601 * active crtc. */
3602 list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3603 if (!crtc_it->active || crtc_it == crtc)
3604 continue;
3605
3606 if (other_active_crtc)
3607 return;
3608
3609 other_active_crtc = crtc_it;
3610 }
3611 if (!other_active_crtc)
3612 return;
3613
3614 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3615 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3616}
3617
3618static void haswell_crtc_enable(struct drm_crtc *crtc)
3619{
3620 struct drm_device *dev = crtc->dev;
3621 struct drm_i915_private *dev_priv = dev->dev_private;
3622 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3623 struct intel_encoder *encoder;
3624 int pipe = intel_crtc->pipe;
3625
3626 WARN_ON(!crtc->enabled);
3627
3628 if (intel_crtc->active)
3629 return;
3630
3631 intel_crtc->active = true;
3632
3633 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3634 if (intel_crtc->config.has_pch_encoder)
3635 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3636
3637 if (intel_crtc->config.has_pch_encoder)
3638 dev_priv->display.fdi_link_train(crtc);
3639
3640 for_each_encoder_on_crtc(dev, crtc, encoder)
3641 if (encoder->pre_enable)
3642 encoder->pre_enable(encoder);
3643
3644 intel_ddi_enable_pipe_clock(intel_crtc);
3645
3646 ironlake_pfit_enable(intel_crtc);
3647
3648 /*
3649 * On ILK+ LUT must be loaded before the pipe is running but with
3650 * clocks enabled
3651 */
3652 intel_crtc_load_lut(crtc);
3653
3654 intel_ddi_set_pipe_settings(crtc);
3655 intel_ddi_enable_transcoder_func(crtc);
3656
3657 intel_update_watermarks(crtc);
3658 intel_enable_pipe(dev_priv, pipe,
3659 intel_crtc->config.has_pch_encoder, false);
3660
3661 if (intel_crtc->config.has_pch_encoder)
3662 lpt_pch_enable(crtc);
3663
3664 for_each_encoder_on_crtc(dev, crtc, encoder) {
3665 encoder->enable(encoder);
3666 intel_opregion_notify_encoder(encoder, true);
3667 }
3668
3669 /* If we change the relative order between pipe/planes enabling, we need
3670 * to change the workaround. */
3671 haswell_mode_set_planes_workaround(intel_crtc);
3672 haswell_crtc_enable_planes(crtc);
3673
3674 /*
3675 * There seems to be a race in PCH platform hw (at least on some
3676 * outputs) where an enabled pipe still completes any pageflip right
3677 * away (as if the pipe is off) instead of waiting for vblank. As soon
3678 * as the first vblank happend, everything works as expected. Hence just
3679 * wait for one vblank before returning to avoid strange things
3680 * happening.
3681 */
3682 intel_wait_for_vblank(dev, intel_crtc->pipe);
3683}
3684
3685static void ironlake_pfit_disable(struct intel_crtc *crtc)
3686{
3687 struct drm_device *dev = crtc->base.dev;
3688 struct drm_i915_private *dev_priv = dev->dev_private;
3689 int pipe = crtc->pipe;
3690
3691 /* To avoid upsetting the power well on haswell only disable the pfit if
3692 * it's in use. The hw state code will make sure we get this right. */
3693 if (crtc->config.pch_pfit.enabled) {
3694 I915_WRITE(PF_CTL(pipe), 0);
3695 I915_WRITE(PF_WIN_POS(pipe), 0);
3696 I915_WRITE(PF_WIN_SZ(pipe), 0);
3697 }
3698}
3699
3700static void ironlake_crtc_disable(struct drm_crtc *crtc)
3701{
3702 struct drm_device *dev = crtc->dev;
3703 struct drm_i915_private *dev_priv = dev->dev_private;
3704 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3705 struct intel_encoder *encoder;
3706 int pipe = intel_crtc->pipe;
3707 int plane = intel_crtc->plane;
3708 u32 reg, temp;
3709
3710
3711 if (!intel_crtc->active)
3712 return;
3713
3714 for_each_encoder_on_crtc(dev, crtc, encoder)
3715 encoder->disable(encoder);
3716
3717 intel_crtc_wait_for_pending_flips(crtc);
3718 drm_vblank_off(dev, pipe);
3719
3720 if (dev_priv->fbc.plane == plane)
3721 intel_disable_fbc(dev);
3722
3723 intel_crtc_update_cursor(crtc, false);
3724 intel_disable_planes(crtc);
3725 intel_disable_primary_plane(dev_priv, plane, pipe);
3726
3727 if (intel_crtc->config.has_pch_encoder)
3728 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3729
3730 intel_disable_pipe(dev_priv, pipe);
3731
3732 ironlake_pfit_disable(intel_crtc);
3733
3734 for_each_encoder_on_crtc(dev, crtc, encoder)
3735 if (encoder->post_disable)
3736 encoder->post_disable(encoder);
3737
3738 if (intel_crtc->config.has_pch_encoder) {
3739 ironlake_fdi_disable(crtc);
3740
3741 ironlake_disable_pch_transcoder(dev_priv, pipe);
3742 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3743
3744 if (HAS_PCH_CPT(dev)) {
3745 /* disable TRANS_DP_CTL */
3746 reg = TRANS_DP_CTL(pipe);
3747 temp = I915_READ(reg);
3748 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3749 TRANS_DP_PORT_SEL_MASK);
3750 temp |= TRANS_DP_PORT_SEL_NONE;
3751 I915_WRITE(reg, temp);
3752
3753 /* disable DPLL_SEL */
3754 temp = I915_READ(PCH_DPLL_SEL);
3755 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3756 I915_WRITE(PCH_DPLL_SEL, temp);
3757 }
3758
3759 /* disable PCH DPLL */
3760 intel_disable_shared_dpll(intel_crtc);
3761
3762 ironlake_fdi_pll_disable(intel_crtc);
3763 }
3764
3765 intel_crtc->active = false;
3766 intel_update_watermarks(crtc);
3767
3768 mutex_lock(&dev->struct_mutex);
3769 intel_update_fbc(dev);
3770 mutex_unlock(&dev->struct_mutex);
3771}
3772
3773static void haswell_crtc_disable(struct drm_crtc *crtc)
3774{
3775 struct drm_device *dev = crtc->dev;
3776 struct drm_i915_private *dev_priv = dev->dev_private;
3777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3778 struct intel_encoder *encoder;
3779 int pipe = intel_crtc->pipe;
3780 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3781
3782 if (!intel_crtc->active)
3783 return;
3784
3785 haswell_crtc_disable_planes(crtc);
3786
3787 for_each_encoder_on_crtc(dev, crtc, encoder) {
3788 intel_opregion_notify_encoder(encoder, false);
3789 encoder->disable(encoder);
3790 }
3791
3792 if (intel_crtc->config.has_pch_encoder)
3793 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3794 intel_disable_pipe(dev_priv, pipe);
3795
3796 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3797
3798 ironlake_pfit_disable(intel_crtc);
3799
3800 intel_ddi_disable_pipe_clock(intel_crtc);
3801
3802 for_each_encoder_on_crtc(dev, crtc, encoder)
3803 if (encoder->post_disable)
3804 encoder->post_disable(encoder);
3805
3806 if (intel_crtc->config.has_pch_encoder) {
3807 lpt_disable_pch_transcoder(dev_priv);
3808 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3809 intel_ddi_fdi_disable(crtc);
3810 }
3811
3812 intel_crtc->active = false;
3813 intel_update_watermarks(crtc);
3814
3815 mutex_lock(&dev->struct_mutex);
3816 intel_update_fbc(dev);
3817 mutex_unlock(&dev->struct_mutex);
3818}
3819
3820static void ironlake_crtc_off(struct drm_crtc *crtc)
3821{
3822 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3823 intel_put_shared_dpll(intel_crtc);
3824}
3825
3826static void haswell_crtc_off(struct drm_crtc *crtc)
3827{
3828 intel_ddi_put_crtc_pll(crtc);
3829}
3830
3831static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3832{
3833 if (!enable && intel_crtc->overlay) {
3834 struct drm_device *dev = intel_crtc->base.dev;
3835 struct drm_i915_private *dev_priv = dev->dev_private;
3836
3837 mutex_lock(&dev->struct_mutex);
3838 dev_priv->mm.interruptible = false;
3839 (void) intel_overlay_switch_off(intel_crtc->overlay);
3840 dev_priv->mm.interruptible = true;
3841 mutex_unlock(&dev->struct_mutex);
3842 }
3843
3844 /* Let userspace switch the overlay on again. In most cases userspace
3845 * has to recompute where to put it anyway.
3846 */
3847}
3848
3849/**
3850 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3851 * cursor plane briefly if not already running after enabling the display
3852 * plane.
3853 * This workaround avoids occasional blank screens when self refresh is
3854 * enabled.
3855 */
3856static void
3857g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3858{
3859 u32 cntl = I915_READ(CURCNTR(pipe));
3860
3861 if ((cntl & CURSOR_MODE) == 0) {
3862 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3863
3864 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3865 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3866 intel_wait_for_vblank(dev_priv->dev, pipe);
3867 I915_WRITE(CURCNTR(pipe), cntl);
3868 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3869 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3870 }
3871}
3872
3873static void i9xx_pfit_enable(struct intel_crtc *crtc)
3874{
3875 struct drm_device *dev = crtc->base.dev;
3876 struct drm_i915_private *dev_priv = dev->dev_private;
3877 struct intel_crtc_config *pipe_config = &crtc->config;
3878
3879 if (!crtc->config.gmch_pfit.control)
3880 return;
3881
3882 /*
3883 * The panel fitter should only be adjusted whilst the pipe is disabled,
3884 * according to register description and PRM.
3885 */
3886 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3887 assert_pipe_disabled(dev_priv, crtc->pipe);
3888
3889 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3890 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3891
3892 /* Border color in case we don't scale up to the full screen. Black by
3893 * default, change to something else for debugging. */
3894 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3895}
3896
3897static void valleyview_crtc_enable(struct drm_crtc *crtc)
3898{
3899 struct drm_device *dev = crtc->dev;
3900 struct drm_i915_private *dev_priv = dev->dev_private;
3901 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3902 struct intel_encoder *encoder;
3903 int pipe = intel_crtc->pipe;
3904 int plane = intel_crtc->plane;
3905 bool is_dsi;
3906
3907 WARN_ON(!crtc->enabled);
3908
3909 if (intel_crtc->active)
3910 return;
3911
3912 intel_crtc->active = true;
3913
3914 for_each_encoder_on_crtc(dev, crtc, encoder)
3915 if (encoder->pre_pll_enable)
3916 encoder->pre_pll_enable(encoder);
3917
3918 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
3919
3920 if (!is_dsi)
3921 vlv_enable_pll(intel_crtc);
3922
3923 for_each_encoder_on_crtc(dev, crtc, encoder)
3924 if (encoder->pre_enable)
3925 encoder->pre_enable(encoder);
3926
3927 i9xx_pfit_enable(intel_crtc);
3928
3929 intel_crtc_load_lut(crtc);
3930
3931 intel_update_watermarks(crtc);
3932 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
3933 intel_enable_primary_plane(dev_priv, plane, pipe);
3934 intel_enable_planes(crtc);
3935 intel_crtc_update_cursor(crtc, true);
3936
3937 intel_update_fbc(dev);
3938
3939 for_each_encoder_on_crtc(dev, crtc, encoder)
3940 encoder->enable(encoder);
3941}
3942
3943static void i9xx_crtc_enable(struct drm_crtc *crtc)
3944{
3945 struct drm_device *dev = crtc->dev;
3946 struct drm_i915_private *dev_priv = dev->dev_private;
3947 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3948 struct intel_encoder *encoder;
3949 int pipe = intel_crtc->pipe;
3950 int plane = intel_crtc->plane;
3951
3952 WARN_ON(!crtc->enabled);
3953
3954 if (intel_crtc->active)
3955 return;
3956
3957 intel_crtc->active = true;
3958
3959 for_each_encoder_on_crtc(dev, crtc, encoder)
3960 if (encoder->pre_enable)
3961 encoder->pre_enable(encoder);
3962
3963 i9xx_enable_pll(intel_crtc);
3964
3965 i9xx_pfit_enable(intel_crtc);
3966
3967 intel_crtc_load_lut(crtc);
3968
3969 intel_update_watermarks(crtc);
3970 intel_enable_pipe(dev_priv, pipe, false, false);
3971 intel_enable_primary_plane(dev_priv, plane, pipe);
3972 intel_enable_planes(crtc);
3973 /* The fixup needs to happen before cursor is enabled */
3974 if (IS_G4X(dev))
3975 g4x_fixup_plane(dev_priv, pipe);
3976 intel_crtc_update_cursor(crtc, true);
3977
3978 /* Give the overlay scaler a chance to enable if it's on this pipe */
3979 intel_crtc_dpms_overlay(intel_crtc, true);
3980
3981 intel_update_fbc(dev);
3982
3983 for_each_encoder_on_crtc(dev, crtc, encoder)
3984 encoder->enable(encoder);
3985}
3986
3987static void i9xx_pfit_disable(struct intel_crtc *crtc)
3988{
3989 struct drm_device *dev = crtc->base.dev;
3990 struct drm_i915_private *dev_priv = dev->dev_private;
3991
3992 if (!crtc->config.gmch_pfit.control)
3993 return;
3994
3995 assert_pipe_disabled(dev_priv, crtc->pipe);
3996
3997 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
3998 I915_READ(PFIT_CONTROL));
3999 I915_WRITE(PFIT_CONTROL, 0);
4000}
4001
4002static void i9xx_crtc_disable(struct drm_crtc *crtc)
4003{
4004 struct drm_device *dev = crtc->dev;
4005 struct drm_i915_private *dev_priv = dev->dev_private;
4006 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4007 struct intel_encoder *encoder;
4008 int pipe = intel_crtc->pipe;
4009 int plane = intel_crtc->plane;
4010
4011 if (!intel_crtc->active)
4012 return;
4013
4014 for_each_encoder_on_crtc(dev, crtc, encoder)
4015 encoder->disable(encoder);
4016
4017 /* Give the overlay scaler a chance to disable if it's on this pipe */
4018 intel_crtc_wait_for_pending_flips(crtc);
4019 drm_vblank_off(dev, pipe);
4020
4021 if (dev_priv->fbc.plane == plane)
4022 intel_disable_fbc(dev);
4023
4024 intel_crtc_dpms_overlay(intel_crtc, false);
4025 intel_crtc_update_cursor(crtc, false);
4026 intel_disable_planes(crtc);
4027 intel_disable_primary_plane(dev_priv, plane, pipe);
4028
4029 intel_disable_pipe(dev_priv, pipe);
4030
4031 i9xx_pfit_disable(intel_crtc);
4032
4033 for_each_encoder_on_crtc(dev, crtc, encoder)
4034 if (encoder->post_disable)
4035 encoder->post_disable(encoder);
4036
4037 if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4038 vlv_disable_pll(dev_priv, pipe);
4039 else if (!IS_VALLEYVIEW(dev))
4040 i9xx_disable_pll(dev_priv, pipe);
4041
4042 intel_crtc->active = false;
4043 intel_update_watermarks(crtc);
4044
4045 intel_update_fbc(dev);
4046}
4047
4048static void i9xx_crtc_off(struct drm_crtc *crtc)
4049{
4050}
4051
4052static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4053 bool enabled)
4054{
4055 struct drm_device *dev = crtc->dev;
4056 struct drm_i915_master_private *master_priv;
4057 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4058 int pipe = intel_crtc->pipe;
4059
4060 if (!dev->primary->master)
4061 return;
4062
4063 master_priv = dev->primary->master->driver_priv;
4064 if (!master_priv->sarea_priv)
4065 return;
4066
4067 switch (pipe) {
4068 case 0:
4069 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4070 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4071 break;
4072 case 1:
4073 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4074 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4075 break;
4076 default:
4077 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4078 break;
4079 }
4080}
4081
4082/**
4083 * Sets the power management mode of the pipe and plane.
4084 */
4085void intel_crtc_update_dpms(struct drm_crtc *crtc)
4086{
4087 struct drm_device *dev = crtc->dev;
4088 struct drm_i915_private *dev_priv = dev->dev_private;
4089 struct intel_encoder *intel_encoder;
4090 bool enable = false;
4091
4092 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4093 enable |= intel_encoder->connectors_active;
4094
4095 if (enable)
4096 dev_priv->display.crtc_enable(crtc);
4097 else
4098 dev_priv->display.crtc_disable(crtc);
4099
4100 intel_crtc_update_sarea(crtc, enable);
4101}
4102
4103static void intel_crtc_disable(struct drm_crtc *crtc)
4104{
4105 struct drm_device *dev = crtc->dev;
4106 struct drm_connector *connector;
4107 struct drm_i915_private *dev_priv = dev->dev_private;
4108 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4109
4110 /* crtc should still be enabled when we disable it. */
4111 WARN_ON(!crtc->enabled);
4112
4113 dev_priv->display.crtc_disable(crtc);
4114 intel_crtc->eld_vld = false;
4115 intel_crtc_update_sarea(crtc, false);
4116 dev_priv->display.off(crtc);
4117
4118 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4119 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4120 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4121
4122 if (crtc->fb) {
4123 mutex_lock(&dev->struct_mutex);
4124 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4125 mutex_unlock(&dev->struct_mutex);
4126 crtc->fb = NULL;
4127 }
4128
4129 /* Update computed state. */
4130 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4131 if (!connector->encoder || !connector->encoder->crtc)
4132 continue;
4133
4134 if (connector->encoder->crtc != crtc)
4135 continue;
4136
4137 connector->dpms = DRM_MODE_DPMS_OFF;
4138 to_intel_encoder(connector->encoder)->connectors_active = false;
4139 }
4140}
4141
4142void intel_encoder_destroy(struct drm_encoder *encoder)
4143{
4144 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4145
4146 drm_encoder_cleanup(encoder);
4147 kfree(intel_encoder);
4148}
4149
4150/* Simple dpms helper for encoders with just one connector, no cloning and only
4151 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4152 * state of the entire output pipe. */
4153static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4154{
4155 if (mode == DRM_MODE_DPMS_ON) {
4156 encoder->connectors_active = true;
4157
4158 intel_crtc_update_dpms(encoder->base.crtc);
4159 } else {
4160 encoder->connectors_active = false;
4161
4162 intel_crtc_update_dpms(encoder->base.crtc);
4163 }
4164}
4165
4166/* Cross check the actual hw state with our own modeset state tracking (and it's
4167 * internal consistency). */
4168static void intel_connector_check_state(struct intel_connector *connector)
4169{
4170 if (connector->get_hw_state(connector)) {
4171 struct intel_encoder *encoder = connector->encoder;
4172 struct drm_crtc *crtc;
4173 bool encoder_enabled;
4174 enum pipe pipe;
4175
4176 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4177 connector->base.base.id,
4178 drm_get_connector_name(&connector->base));
4179
4180 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4181 "wrong connector dpms state\n");
4182 WARN(connector->base.encoder != &encoder->base,
4183 "active connector not linked to encoder\n");
4184 WARN(!encoder->connectors_active,
4185 "encoder->connectors_active not set\n");
4186
4187 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4188 WARN(!encoder_enabled, "encoder not enabled\n");
4189 if (WARN_ON(!encoder->base.crtc))
4190 return;
4191
4192 crtc = encoder->base.crtc;
4193
4194 WARN(!crtc->enabled, "crtc not enabled\n");
4195 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4196 WARN(pipe != to_intel_crtc(crtc)->pipe,
4197 "encoder active on the wrong pipe\n");
4198 }
4199}
4200
4201/* Even simpler default implementation, if there's really no special case to
4202 * consider. */
4203void intel_connector_dpms(struct drm_connector *connector, int mode)
4204{
4205 /* All the simple cases only support two dpms states. */
4206 if (mode != DRM_MODE_DPMS_ON)
4207 mode = DRM_MODE_DPMS_OFF;
4208
4209 if (mode == connector->dpms)
4210 return;
4211
4212 connector->dpms = mode;
4213
4214 /* Only need to change hw state when actually enabled */
4215 if (connector->encoder)
4216 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4217
4218 intel_modeset_check_state(connector->dev);
4219}
4220
4221/* Simple connector->get_hw_state implementation for encoders that support only
4222 * one connector and no cloning and hence the encoder state determines the state
4223 * of the connector. */
4224bool intel_connector_get_hw_state(struct intel_connector *connector)
4225{
4226 enum pipe pipe = 0;
4227 struct intel_encoder *encoder = connector->encoder;
4228
4229 return encoder->get_hw_state(encoder, &pipe);
4230}
4231
4232static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4233 struct intel_crtc_config *pipe_config)
4234{
4235 struct drm_i915_private *dev_priv = dev->dev_private;
4236 struct intel_crtc *pipe_B_crtc =
4237 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4238
4239 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4240 pipe_name(pipe), pipe_config->fdi_lanes);
4241 if (pipe_config->fdi_lanes > 4) {
4242 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4243 pipe_name(pipe), pipe_config->fdi_lanes);
4244 return false;
4245 }
4246
4247 if (IS_HASWELL(dev)) {
4248 if (pipe_config->fdi_lanes > 2) {
4249 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4250 pipe_config->fdi_lanes);
4251 return false;
4252 } else {
4253 return true;
4254 }
4255 }
4256
4257 if (INTEL_INFO(dev)->num_pipes == 2)
4258 return true;
4259
4260 /* Ivybridge 3 pipe is really complicated */
4261 switch (pipe) {
4262 case PIPE_A:
4263 return true;
4264 case PIPE_B:
4265 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4266 pipe_config->fdi_lanes > 2) {
4267 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4268 pipe_name(pipe), pipe_config->fdi_lanes);
4269 return false;
4270 }
4271 return true;
4272 case PIPE_C:
4273 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4274 pipe_B_crtc->config.fdi_lanes <= 2) {
4275 if (pipe_config->fdi_lanes > 2) {
4276 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4277 pipe_name(pipe), pipe_config->fdi_lanes);
4278 return false;
4279 }
4280 } else {
4281 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4282 return false;
4283 }
4284 return true;
4285 default:
4286 BUG();
4287 }
4288}
4289
4290#define RETRY 1
4291static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4292 struct intel_crtc_config *pipe_config)
4293{
4294 struct drm_device *dev = intel_crtc->base.dev;
4295 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4296 int lane, link_bw, fdi_dotclock;
4297 bool setup_ok, needs_recompute = false;
4298
4299retry:
4300 /* FDI is a binary signal running at ~2.7GHz, encoding
4301 * each output octet as 10 bits. The actual frequency
4302 * is stored as a divider into a 100MHz clock, and the
4303 * mode pixel clock is stored in units of 1KHz.
4304 * Hence the bw of each lane in terms of the mode signal
4305 * is:
4306 */
4307 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4308
4309 fdi_dotclock = adjusted_mode->crtc_clock;
4310
4311 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4312 pipe_config->pipe_bpp);
4313
4314 pipe_config->fdi_lanes = lane;
4315
4316 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4317 link_bw, &pipe_config->fdi_m_n);
4318
4319 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4320 intel_crtc->pipe, pipe_config);
4321 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4322 pipe_config->pipe_bpp -= 2*3;
4323 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4324 pipe_config->pipe_bpp);
4325 needs_recompute = true;
4326 pipe_config->bw_constrained = true;
4327
4328 goto retry;
4329 }
4330
4331 if (needs_recompute)
4332 return RETRY;
4333
4334 return setup_ok ? 0 : -EINVAL;
4335}
4336
4337static void hsw_compute_ips_config(struct intel_crtc *crtc,
4338 struct intel_crtc_config *pipe_config)
4339{
4340 pipe_config->ips_enabled = i915_enable_ips &&
4341 hsw_crtc_supports_ips(crtc) &&
4342 pipe_config->pipe_bpp <= 24;
4343}
4344
4345static int intel_crtc_compute_config(struct intel_crtc *crtc,
4346 struct intel_crtc_config *pipe_config)
4347{
4348 struct drm_device *dev = crtc->base.dev;
4349 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4350
4351 /* FIXME should check pixel clock limits on all platforms */
4352 if (INTEL_INFO(dev)->gen < 4) {
4353 struct drm_i915_private *dev_priv = dev->dev_private;
4354 int clock_limit =
4355 dev_priv->display.get_display_clock_speed(dev);
4356
4357 /*
4358 * Enable pixel doubling when the dot clock
4359 * is > 90% of the (display) core speed.
4360 *
4361 * GDG double wide on either pipe,
4362 * otherwise pipe A only.
4363 */
4364 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4365 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4366 clock_limit *= 2;
4367 pipe_config->double_wide = true;
4368 }
4369
4370 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4371 return -EINVAL;
4372 }
4373
4374 /*
4375 * Pipe horizontal size must be even in:
4376 * - DVO ganged mode
4377 * - LVDS dual channel mode
4378 * - Double wide pipe
4379 */
4380 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4381 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4382 pipe_config->pipe_src_w &= ~1;
4383
4384 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4385 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4386 */
4387 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4388 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4389 return -EINVAL;
4390
4391 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4392 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4393 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4394 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4395 * for lvds. */
4396 pipe_config->pipe_bpp = 8*3;
4397 }
4398
4399 if (HAS_IPS(dev))
4400 hsw_compute_ips_config(crtc, pipe_config);
4401
4402 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4403 * clock survives for now. */
4404 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4405 pipe_config->shared_dpll = crtc->config.shared_dpll;
4406
4407 if (pipe_config->has_pch_encoder)
4408 return ironlake_fdi_compute_config(crtc, pipe_config);
4409
4410 return 0;
4411}
4412
4413static int valleyview_get_display_clock_speed(struct drm_device *dev)
4414{
4415 return 400000; /* FIXME */
4416}
4417
4418static int i945_get_display_clock_speed(struct drm_device *dev)
4419{
4420 return 400000;
4421}
4422
4423static int i915_get_display_clock_speed(struct drm_device *dev)
4424{
4425 return 333000;
4426}
4427
4428static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4429{
4430 return 200000;
4431}
4432
4433static int pnv_get_display_clock_speed(struct drm_device *dev)
4434{
4435 u16 gcfgc = 0;
4436
4437 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4438
4439 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4440 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4441 return 267000;
4442 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4443 return 333000;
4444 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4445 return 444000;
4446 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4447 return 200000;
4448 default:
4449 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4450 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4451 return 133000;
4452 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4453 return 167000;
4454 }
4455}
4456
4457static int i915gm_get_display_clock_speed(struct drm_device *dev)
4458{
4459 u16 gcfgc = 0;
4460
4461 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4462
4463 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4464 return 133000;
4465 else {
4466 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4467 case GC_DISPLAY_CLOCK_333_MHZ:
4468 return 333000;
4469 default:
4470 case GC_DISPLAY_CLOCK_190_200_MHZ:
4471 return 190000;
4472 }
4473 }
4474}
4475
4476static int i865_get_display_clock_speed(struct drm_device *dev)
4477{
4478 return 266000;
4479}
4480
4481static int i855_get_display_clock_speed(struct drm_device *dev)
4482{
4483 u16 hpllcc = 0;
4484 /* Assume that the hardware is in the high speed state. This
4485 * should be the default.
4486 */
4487 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4488 case GC_CLOCK_133_200:
4489 case GC_CLOCK_100_200:
4490 return 200000;
4491 case GC_CLOCK_166_250:
4492 return 250000;
4493 case GC_CLOCK_100_133:
4494 return 133000;
4495 }
4496
4497 /* Shouldn't happen */
4498 return 0;
4499}
4500
4501static int i830_get_display_clock_speed(struct drm_device *dev)
4502{
4503 return 133000;
4504}
4505
4506static void
4507intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4508{
4509 while (*num > DATA_LINK_M_N_MASK ||
4510 *den > DATA_LINK_M_N_MASK) {
4511 *num >>= 1;
4512 *den >>= 1;
4513 }
4514}
4515
4516static void compute_m_n(unsigned int m, unsigned int n,
4517 uint32_t *ret_m, uint32_t *ret_n)
4518{
4519 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4520 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4521 intel_reduce_m_n_ratio(ret_m, ret_n);
4522}
4523
4524void
4525intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4526 int pixel_clock, int link_clock,
4527 struct intel_link_m_n *m_n)
4528{
4529 m_n->tu = 64;
4530
4531 compute_m_n(bits_per_pixel * pixel_clock,
4532 link_clock * nlanes * 8,
4533 &m_n->gmch_m, &m_n->gmch_n);
4534
4535 compute_m_n(pixel_clock, link_clock,
4536 &m_n->link_m, &m_n->link_n);
4537}
4538
4539static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4540{
4541 if (i915_panel_use_ssc >= 0)
4542 return i915_panel_use_ssc != 0;
4543 return dev_priv->vbt.lvds_use_ssc
4544 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4545}
4546
4547static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4548{
4549 struct drm_device *dev = crtc->dev;
4550 struct drm_i915_private *dev_priv = dev->dev_private;
4551 int refclk;
4552
4553 if (IS_VALLEYVIEW(dev)) {
4554 refclk = 100000;
4555 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4556 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4557 refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
4558 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4559 refclk / 1000);
4560 } else if (!IS_GEN2(dev)) {
4561 refclk = 96000;
4562 } else {
4563 refclk = 48000;
4564 }
4565
4566 return refclk;
4567}
4568
4569static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4570{
4571 return (1 << dpll->n) << 16 | dpll->m2;
4572}
4573
4574static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4575{
4576 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4577}
4578
4579static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4580 intel_clock_t *reduced_clock)
4581{
4582 struct drm_device *dev = crtc->base.dev;
4583 struct drm_i915_private *dev_priv = dev->dev_private;
4584 int pipe = crtc->pipe;
4585 u32 fp, fp2 = 0;
4586
4587 if (IS_PINEVIEW(dev)) {
4588 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4589 if (reduced_clock)
4590 fp2 = pnv_dpll_compute_fp(reduced_clock);
4591 } else {
4592 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4593 if (reduced_clock)
4594 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4595 }
4596
4597 I915_WRITE(FP0(pipe), fp);
4598 crtc->config.dpll_hw_state.fp0 = fp;
4599
4600 crtc->lowfreq_avail = false;
4601 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4602 reduced_clock && i915_powersave) {
4603 I915_WRITE(FP1(pipe), fp2);
4604 crtc->config.dpll_hw_state.fp1 = fp2;
4605 crtc->lowfreq_avail = true;
4606 } else {
4607 I915_WRITE(FP1(pipe), fp);
4608 crtc->config.dpll_hw_state.fp1 = fp;
4609 }
4610}
4611
4612static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4613 pipe)
4614{
4615 u32 reg_val;
4616
4617 /*
4618 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4619 * and set it to a reasonable value instead.
4620 */
4621 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4622 reg_val &= 0xffffff00;
4623 reg_val |= 0x00000030;
4624 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4625
4626 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4627 reg_val &= 0x8cffffff;
4628 reg_val = 0x8c000000;
4629 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4630
4631 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
4632 reg_val &= 0xffffff00;
4633 vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
4634
4635 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
4636 reg_val &= 0x00ffffff;
4637 reg_val |= 0xb0000000;
4638 vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
4639}
4640
4641static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4642 struct intel_link_m_n *m_n)
4643{
4644 struct drm_device *dev = crtc->base.dev;
4645 struct drm_i915_private *dev_priv = dev->dev_private;
4646 int pipe = crtc->pipe;
4647
4648 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4649 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4650 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4651 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4652}
4653
4654static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4655 struct intel_link_m_n *m_n)
4656{
4657 struct drm_device *dev = crtc->base.dev;
4658 struct drm_i915_private *dev_priv = dev->dev_private;
4659 int pipe = crtc->pipe;
4660 enum transcoder transcoder = crtc->config.cpu_transcoder;
4661
4662 if (INTEL_INFO(dev)->gen >= 5) {
4663 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4664 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4665 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4666 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4667 } else {
4668 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4669 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4670 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4671 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4672 }
4673}
4674
4675static void intel_dp_set_m_n(struct intel_crtc *crtc)
4676{
4677 if (crtc->config.has_pch_encoder)
4678 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4679 else
4680 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4681}
4682
4683static void vlv_update_pll(struct intel_crtc *crtc)
4684{
4685 struct drm_device *dev = crtc->base.dev;
4686 struct drm_i915_private *dev_priv = dev->dev_private;
4687 int pipe = crtc->pipe;
4688 u32 dpll, mdiv;
4689 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4690 u32 coreclk, reg_val, dpll_md;
4691
4692 mutex_lock(&dev_priv->dpio_lock);
4693
4694 bestn = crtc->config.dpll.n;
4695 bestm1 = crtc->config.dpll.m1;
4696 bestm2 = crtc->config.dpll.m2;
4697 bestp1 = crtc->config.dpll.p1;
4698 bestp2 = crtc->config.dpll.p2;
4699
4700 /* See eDP HDMI DPIO driver vbios notes doc */
4701
4702 /* PLL B needs special handling */
4703 if (pipe)
4704 vlv_pllb_recal_opamp(dev_priv, pipe);
4705
4706 /* Set up Tx target for periodic Rcomp update */
4707 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
4708
4709 /* Disable target IRef on PLL */
4710 reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
4711 reg_val &= 0x00ffffff;
4712 vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
4713
4714 /* Disable fast lock */
4715 vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
4716
4717 /* Set idtafcrecal before PLL is enabled */
4718 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4719 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4720 mdiv |= ((bestn << DPIO_N_SHIFT));
4721 mdiv |= (1 << DPIO_K_SHIFT);
4722
4723 /*
4724 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4725 * but we don't support that).
4726 * Note: don't use the DAC post divider as it seems unstable.
4727 */
4728 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4729 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4730
4731 mdiv |= DPIO_ENABLE_CALIBRATION;
4732 vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
4733
4734 /* Set HBR and RBR LPF coefficients */
4735 if (crtc->config.port_clock == 162000 ||
4736 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4737 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4738 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4739 0x009f0003);
4740 else
4741 vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
4742 0x00d0000f);
4743
4744 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4745 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4746 /* Use SSC source */
4747 if (!pipe)
4748 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4749 0x0df40000);
4750 else
4751 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4752 0x0df70000);
4753 } else { /* HDMI or VGA */
4754 /* Use bend source */
4755 if (!pipe)
4756 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4757 0x0df70000);
4758 else
4759 vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
4760 0x0df40000);
4761 }
4762
4763 coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
4764 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4765 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4766 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4767 coreclk |= 0x01000000;
4768 vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
4769
4770 vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
4771
4772 /* Enable DPIO clock input */
4773 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4774 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4775 /* We should never disable this, set it here for state tracking */
4776 if (pipe == PIPE_B)
4777 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4778 dpll |= DPLL_VCO_ENABLE;
4779 crtc->config.dpll_hw_state.dpll = dpll;
4780
4781 dpll_md = (crtc->config.pixel_multiplier - 1)
4782 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4783 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4784
4785 if (crtc->config.has_dp_encoder)
4786 intel_dp_set_m_n(crtc);
4787
4788 mutex_unlock(&dev_priv->dpio_lock);
4789}
4790
4791static void i9xx_update_pll(struct intel_crtc *crtc,
4792 intel_clock_t *reduced_clock,
4793 int num_connectors)
4794{
4795 struct drm_device *dev = crtc->base.dev;
4796 struct drm_i915_private *dev_priv = dev->dev_private;
4797 u32 dpll;
4798 bool is_sdvo;
4799 struct dpll *clock = &crtc->config.dpll;
4800
4801 i9xx_update_pll_dividers(crtc, reduced_clock);
4802
4803 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
4804 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
4805
4806 dpll = DPLL_VGA_MODE_DIS;
4807
4808 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
4809 dpll |= DPLLB_MODE_LVDS;
4810 else
4811 dpll |= DPLLB_MODE_DAC_SERIAL;
4812
4813 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
4814 dpll |= (crtc->config.pixel_multiplier - 1)
4815 << SDVO_MULTIPLIER_SHIFT_HIRES;
4816 }
4817
4818 if (is_sdvo)
4819 dpll |= DPLL_SDVO_HIGH_SPEED;
4820
4821 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
4822 dpll |= DPLL_SDVO_HIGH_SPEED;
4823
4824 /* compute bitmask from p1 value */
4825 if (IS_PINEVIEW(dev))
4826 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4827 else {
4828 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4829 if (IS_G4X(dev) && reduced_clock)
4830 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4831 }
4832 switch (clock->p2) {
4833 case 5:
4834 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4835 break;
4836 case 7:
4837 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4838 break;
4839 case 10:
4840 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4841 break;
4842 case 14:
4843 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4844 break;
4845 }
4846 if (INTEL_INFO(dev)->gen >= 4)
4847 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4848
4849 if (crtc->config.sdvo_tv_clock)
4850 dpll |= PLL_REF_INPUT_TVCLKINBC;
4851 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4852 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4853 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4854 else
4855 dpll |= PLL_REF_INPUT_DREFCLK;
4856
4857 dpll |= DPLL_VCO_ENABLE;
4858 crtc->config.dpll_hw_state.dpll = dpll;
4859
4860 if (INTEL_INFO(dev)->gen >= 4) {
4861 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
4862 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4863 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4864 }
4865
4866 if (crtc->config.has_dp_encoder)
4867 intel_dp_set_m_n(crtc);
4868}
4869
4870static void i8xx_update_pll(struct intel_crtc *crtc,
4871 intel_clock_t *reduced_clock,
4872 int num_connectors)
4873{
4874 struct drm_device *dev = crtc->base.dev;
4875 struct drm_i915_private *dev_priv = dev->dev_private;
4876 u32 dpll;
4877 struct dpll *clock = &crtc->config.dpll;
4878
4879 i9xx_update_pll_dividers(crtc, reduced_clock);
4880
4881 dpll = DPLL_VGA_MODE_DIS;
4882
4883 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
4884 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4885 } else {
4886 if (clock->p1 == 2)
4887 dpll |= PLL_P1_DIVIDE_BY_TWO;
4888 else
4889 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4890 if (clock->p2 == 4)
4891 dpll |= PLL_P2_DIVIDE_BY_4;
4892 }
4893
4894 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
4895 dpll |= DPLL_DVO_2X_MODE;
4896
4897 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4898 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4899 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4900 else
4901 dpll |= PLL_REF_INPUT_DREFCLK;
4902
4903 dpll |= DPLL_VCO_ENABLE;
4904 crtc->config.dpll_hw_state.dpll = dpll;
4905}
4906
4907static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
4908{
4909 struct drm_device *dev = intel_crtc->base.dev;
4910 struct drm_i915_private *dev_priv = dev->dev_private;
4911 enum pipe pipe = intel_crtc->pipe;
4912 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
4913 struct drm_display_mode *adjusted_mode =
4914 &intel_crtc->config.adjusted_mode;
4915 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
4916
4917 /* We need to be careful not to changed the adjusted mode, for otherwise
4918 * the hw state checker will get angry at the mismatch. */
4919 crtc_vtotal = adjusted_mode->crtc_vtotal;
4920 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
4921
4922 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4923 /* the chip adds 2 halflines automatically */
4924 crtc_vtotal -= 1;
4925 crtc_vblank_end -= 1;
4926 vsyncshift = adjusted_mode->crtc_hsync_start
4927 - adjusted_mode->crtc_htotal / 2;
4928 } else {
4929 vsyncshift = 0;
4930 }
4931
4932 if (INTEL_INFO(dev)->gen > 3)
4933 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4934
4935 I915_WRITE(HTOTAL(cpu_transcoder),
4936 (adjusted_mode->crtc_hdisplay - 1) |
4937 ((adjusted_mode->crtc_htotal - 1) << 16));
4938 I915_WRITE(HBLANK(cpu_transcoder),
4939 (adjusted_mode->crtc_hblank_start - 1) |
4940 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4941 I915_WRITE(HSYNC(cpu_transcoder),
4942 (adjusted_mode->crtc_hsync_start - 1) |
4943 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4944
4945 I915_WRITE(VTOTAL(cpu_transcoder),
4946 (adjusted_mode->crtc_vdisplay - 1) |
4947 ((crtc_vtotal - 1) << 16));
4948 I915_WRITE(VBLANK(cpu_transcoder),
4949 (adjusted_mode->crtc_vblank_start - 1) |
4950 ((crtc_vblank_end - 1) << 16));
4951 I915_WRITE(VSYNC(cpu_transcoder),
4952 (adjusted_mode->crtc_vsync_start - 1) |
4953 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4954
4955 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4956 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4957 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4958 * bits. */
4959 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4960 (pipe == PIPE_B || pipe == PIPE_C))
4961 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4962
4963 /* pipesrc controls the size that is scaled from, which should
4964 * always be the user's requested size.
4965 */
4966 I915_WRITE(PIPESRC(pipe),
4967 ((intel_crtc->config.pipe_src_w - 1) << 16) |
4968 (intel_crtc->config.pipe_src_h - 1));
4969}
4970
4971static void intel_get_pipe_timings(struct intel_crtc *crtc,
4972 struct intel_crtc_config *pipe_config)
4973{
4974 struct drm_device *dev = crtc->base.dev;
4975 struct drm_i915_private *dev_priv = dev->dev_private;
4976 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
4977 uint32_t tmp;
4978
4979 tmp = I915_READ(HTOTAL(cpu_transcoder));
4980 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
4981 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
4982 tmp = I915_READ(HBLANK(cpu_transcoder));
4983 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
4984 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
4985 tmp = I915_READ(HSYNC(cpu_transcoder));
4986 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
4987 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
4988
4989 tmp = I915_READ(VTOTAL(cpu_transcoder));
4990 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
4991 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
4992 tmp = I915_READ(VBLANK(cpu_transcoder));
4993 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
4994 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
4995 tmp = I915_READ(VSYNC(cpu_transcoder));
4996 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
4997 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
4998
4999 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5000 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5001 pipe_config->adjusted_mode.crtc_vtotal += 1;
5002 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5003 }
5004
5005 tmp = I915_READ(PIPESRC(crtc->pipe));
5006 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5007 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5008
5009 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5010 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5011}
5012
5013static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5014 struct intel_crtc_config *pipe_config)
5015{
5016 struct drm_crtc *crtc = &intel_crtc->base;
5017
5018 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5019 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5020 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5021 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5022
5023 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5024 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5025 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5026 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5027
5028 crtc->mode.flags = pipe_config->adjusted_mode.flags;
5029
5030 crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5031 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5032}
5033
5034static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5035{
5036 struct drm_device *dev = intel_crtc->base.dev;
5037 struct drm_i915_private *dev_priv = dev->dev_private;
5038 uint32_t pipeconf;
5039
5040 pipeconf = 0;
5041
5042 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5043 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5044 pipeconf |= PIPECONF_ENABLE;
5045
5046 if (intel_crtc->config.double_wide)
5047 pipeconf |= PIPECONF_DOUBLE_WIDE;
5048
5049 /* only g4x and later have fancy bpc/dither controls */
5050 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5051 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5052 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5053 pipeconf |= PIPECONF_DITHER_EN |
5054 PIPECONF_DITHER_TYPE_SP;
5055
5056 switch (intel_crtc->config.pipe_bpp) {
5057 case 18:
5058 pipeconf |= PIPECONF_6BPC;
5059 break;
5060 case 24:
5061 pipeconf |= PIPECONF_8BPC;
5062 break;
5063 case 30:
5064 pipeconf |= PIPECONF_10BPC;
5065 break;
5066 default:
5067 /* Case prevented by intel_choose_pipe_bpp_dither. */
5068 BUG();
5069 }
5070 }
5071
5072 if (HAS_PIPE_CXSR(dev)) {
5073 if (intel_crtc->lowfreq_avail) {
5074 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5075 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5076 } else {
5077 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5078 }
5079 }
5080
5081 if (!IS_GEN2(dev) &&
5082 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5083 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5084 else
5085 pipeconf |= PIPECONF_PROGRESSIVE;
5086
5087 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5088 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5089
5090 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5091 POSTING_READ(PIPECONF(intel_crtc->pipe));
5092}
5093
5094static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5095 int x, int y,
5096 struct drm_framebuffer *fb)
5097{
5098 struct drm_device *dev = crtc->dev;
5099 struct drm_i915_private *dev_priv = dev->dev_private;
5100 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5101 int pipe = intel_crtc->pipe;
5102 int plane = intel_crtc->plane;
5103 int refclk, num_connectors = 0;
5104 intel_clock_t clock, reduced_clock;
5105 u32 dspcntr;
5106 bool ok, has_reduced_clock = false;
5107 bool is_lvds = false, is_dsi = false;
5108 struct intel_encoder *encoder;
5109 const intel_limit_t *limit;
5110 int ret;
5111
5112 for_each_encoder_on_crtc(dev, crtc, encoder) {
5113 switch (encoder->type) {
5114 case INTEL_OUTPUT_LVDS:
5115 is_lvds = true;
5116 break;
5117 case INTEL_OUTPUT_DSI:
5118 is_dsi = true;
5119 break;
5120 }
5121
5122 num_connectors++;
5123 }
5124
5125 if (is_dsi)
5126 goto skip_dpll;
5127
5128 if (!intel_crtc->config.clock_set) {
5129 refclk = i9xx_get_refclk(crtc, num_connectors);
5130
5131 /*
5132 * Returns a set of divisors for the desired target clock with
5133 * the given refclk, or FALSE. The returned values represent
5134 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5135 * 2) / p1 / p2.
5136 */
5137 limit = intel_limit(crtc, refclk);
5138 ok = dev_priv->display.find_dpll(limit, crtc,
5139 intel_crtc->config.port_clock,
5140 refclk, NULL, &clock);
5141 if (!ok) {
5142 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5143 return -EINVAL;
5144 }
5145
5146 if (is_lvds && dev_priv->lvds_downclock_avail) {
5147 /*
5148 * Ensure we match the reduced clock's P to the target
5149 * clock. If the clocks don't match, we can't switch
5150 * the display clock by using the FP0/FP1. In such case
5151 * we will disable the LVDS downclock feature.
5152 */
5153 has_reduced_clock =
5154 dev_priv->display.find_dpll(limit, crtc,
5155 dev_priv->lvds_downclock,
5156 refclk, &clock,
5157 &reduced_clock);
5158 }
5159 /* Compat-code for transition, will disappear. */
5160 intel_crtc->config.dpll.n = clock.n;
5161 intel_crtc->config.dpll.m1 = clock.m1;
5162 intel_crtc->config.dpll.m2 = clock.m2;
5163 intel_crtc->config.dpll.p1 = clock.p1;
5164 intel_crtc->config.dpll.p2 = clock.p2;
5165 }
5166
5167 if (IS_GEN2(dev)) {
5168 i8xx_update_pll(intel_crtc,
5169 has_reduced_clock ? &reduced_clock : NULL,
5170 num_connectors);
5171 } else if (IS_VALLEYVIEW(dev)) {
5172 vlv_update_pll(intel_crtc);
5173 } else {
5174 i9xx_update_pll(intel_crtc,
5175 has_reduced_clock ? &reduced_clock : NULL,
5176 num_connectors);
5177 }
5178
5179skip_dpll:
5180 /* Set up the display plane register */
5181 dspcntr = DISPPLANE_GAMMA_ENABLE;
5182
5183 if (!IS_VALLEYVIEW(dev)) {
5184 if (pipe == 0)
5185 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5186 else
5187 dspcntr |= DISPPLANE_SEL_PIPE_B;
5188 }
5189
5190 intel_set_pipe_timings(intel_crtc);
5191
5192 /* pipesrc and dspsize control the size that is scaled from,
5193 * which should always be the user's requested size.
5194 */
5195 I915_WRITE(DSPSIZE(plane),
5196 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5197 (intel_crtc->config.pipe_src_w - 1));
5198 I915_WRITE(DSPPOS(plane), 0);
5199
5200 i9xx_set_pipeconf(intel_crtc);
5201
5202 I915_WRITE(DSPCNTR(plane), dspcntr);
5203 POSTING_READ(DSPCNTR(plane));
5204
5205 ret = intel_pipe_set_base(crtc, x, y, fb);
5206
5207 return ret;
5208}
5209
5210static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5211 struct intel_crtc_config *pipe_config)
5212{
5213 struct drm_device *dev = crtc->base.dev;
5214 struct drm_i915_private *dev_priv = dev->dev_private;
5215 uint32_t tmp;
5216
5217 tmp = I915_READ(PFIT_CONTROL);
5218 if (!(tmp & PFIT_ENABLE))
5219 return;
5220
5221 /* Check whether the pfit is attached to our pipe. */
5222 if (INTEL_INFO(dev)->gen < 4) {
5223 if (crtc->pipe != PIPE_B)
5224 return;
5225 } else {
5226 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5227 return;
5228 }
5229
5230 pipe_config->gmch_pfit.control = tmp;
5231 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5232 if (INTEL_INFO(dev)->gen < 5)
5233 pipe_config->gmch_pfit.lvds_border_bits =
5234 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5235}
5236
5237static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5238 struct intel_crtc_config *pipe_config)
5239{
5240 struct drm_device *dev = crtc->base.dev;
5241 struct drm_i915_private *dev_priv = dev->dev_private;
5242 int pipe = pipe_config->cpu_transcoder;
5243 intel_clock_t clock;
5244 u32 mdiv;
5245 int refclk = 100000;
5246
5247 mutex_lock(&dev_priv->dpio_lock);
5248 mdiv = vlv_dpio_read(dev_priv, pipe, DPIO_DIV(pipe));
5249 mutex_unlock(&dev_priv->dpio_lock);
5250
5251 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5252 clock.m2 = mdiv & DPIO_M2DIV_MASK;
5253 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5254 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5255 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5256
5257 vlv_clock(refclk, &clock);
5258
5259 /* clock.dot is the fast clock */
5260 pipe_config->port_clock = clock.dot / 5;
5261}
5262
5263static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5264 struct intel_crtc_config *pipe_config)
5265{
5266 struct drm_device *dev = crtc->base.dev;
5267 struct drm_i915_private *dev_priv = dev->dev_private;
5268 uint32_t tmp;
5269
5270 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5271 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5272
5273 tmp = I915_READ(PIPECONF(crtc->pipe));
5274 if (!(tmp & PIPECONF_ENABLE))
5275 return false;
5276
5277 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5278 switch (tmp & PIPECONF_BPC_MASK) {
5279 case PIPECONF_6BPC:
5280 pipe_config->pipe_bpp = 18;
5281 break;
5282 case PIPECONF_8BPC:
5283 pipe_config->pipe_bpp = 24;
5284 break;
5285 case PIPECONF_10BPC:
5286 pipe_config->pipe_bpp = 30;
5287 break;
5288 default:
5289 break;
5290 }
5291 }
5292
5293 if (INTEL_INFO(dev)->gen < 4)
5294 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5295
5296 intel_get_pipe_timings(crtc, pipe_config);
5297
5298 i9xx_get_pfit_config(crtc, pipe_config);
5299
5300 if (INTEL_INFO(dev)->gen >= 4) {
5301 tmp = I915_READ(DPLL_MD(crtc->pipe));
5302 pipe_config->pixel_multiplier =
5303 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5304 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5305 pipe_config->dpll_hw_state.dpll_md = tmp;
5306 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5307 tmp = I915_READ(DPLL(crtc->pipe));
5308 pipe_config->pixel_multiplier =
5309 ((tmp & SDVO_MULTIPLIER_MASK)
5310 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5311 } else {
5312 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5313 * port and will be fixed up in the encoder->get_config
5314 * function. */
5315 pipe_config->pixel_multiplier = 1;
5316 }
5317 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5318 if (!IS_VALLEYVIEW(dev)) {
5319 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5320 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5321 } else {
5322 /* Mask out read-only status bits. */
5323 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5324 DPLL_PORTC_READY_MASK |
5325 DPLL_PORTB_READY_MASK);
5326 }
5327
5328 if (IS_VALLEYVIEW(dev))
5329 vlv_crtc_clock_get(crtc, pipe_config);
5330 else
5331 i9xx_crtc_clock_get(crtc, pipe_config);
5332
5333 return true;
5334}
5335
5336static void ironlake_init_pch_refclk(struct drm_device *dev)
5337{
5338 struct drm_i915_private *dev_priv = dev->dev_private;
5339 struct drm_mode_config *mode_config = &dev->mode_config;
5340 struct intel_encoder *encoder;
5341 u32 val, final;
5342 bool has_lvds = false;
5343 bool has_cpu_edp = false;
5344 bool has_panel = false;
5345 bool has_ck505 = false;
5346 bool can_ssc = false;
5347
5348 /* We need to take the global config into account */
5349 list_for_each_entry(encoder, &mode_config->encoder_list,
5350 base.head) {
5351 switch (encoder->type) {
5352 case INTEL_OUTPUT_LVDS:
5353 has_panel = true;
5354 has_lvds = true;
5355 break;
5356 case INTEL_OUTPUT_EDP:
5357 has_panel = true;
5358 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5359 has_cpu_edp = true;
5360 break;
5361 }
5362 }
5363
5364 if (HAS_PCH_IBX(dev)) {
5365 has_ck505 = dev_priv->vbt.display_clock_mode;
5366 can_ssc = has_ck505;
5367 } else {
5368 has_ck505 = false;
5369 can_ssc = true;
5370 }
5371
5372 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5373 has_panel, has_lvds, has_ck505);
5374
5375 /* Ironlake: try to setup display ref clock before DPLL
5376 * enabling. This is only under driver's control after
5377 * PCH B stepping, previous chipset stepping should be
5378 * ignoring this setting.
5379 */
5380 val = I915_READ(PCH_DREF_CONTROL);
5381
5382 /* As we must carefully and slowly disable/enable each source in turn,
5383 * compute the final state we want first and check if we need to
5384 * make any changes at all.
5385 */
5386 final = val;
5387 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5388 if (has_ck505)
5389 final |= DREF_NONSPREAD_CK505_ENABLE;
5390 else
5391 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5392
5393 final &= ~DREF_SSC_SOURCE_MASK;
5394 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5395 final &= ~DREF_SSC1_ENABLE;
5396
5397 if (has_panel) {
5398 final |= DREF_SSC_SOURCE_ENABLE;
5399
5400 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5401 final |= DREF_SSC1_ENABLE;
5402
5403 if (has_cpu_edp) {
5404 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5405 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5406 else
5407 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5408 } else
5409 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5410 } else {
5411 final |= DREF_SSC_SOURCE_DISABLE;
5412 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5413 }
5414
5415 if (final == val)
5416 return;
5417
5418 /* Always enable nonspread source */
5419 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5420
5421 if (has_ck505)
5422 val |= DREF_NONSPREAD_CK505_ENABLE;
5423 else
5424 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5425
5426 if (has_panel) {
5427 val &= ~DREF_SSC_SOURCE_MASK;
5428 val |= DREF_SSC_SOURCE_ENABLE;
5429
5430 /* SSC must be turned on before enabling the CPU output */
5431 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5432 DRM_DEBUG_KMS("Using SSC on panel\n");
5433 val |= DREF_SSC1_ENABLE;
5434 } else
5435 val &= ~DREF_SSC1_ENABLE;
5436
5437 /* Get SSC going before enabling the outputs */
5438 I915_WRITE(PCH_DREF_CONTROL, val);
5439 POSTING_READ(PCH_DREF_CONTROL);
5440 udelay(200);
5441
5442 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5443
5444 /* Enable CPU source on CPU attached eDP */
5445 if (has_cpu_edp) {
5446 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5447 DRM_DEBUG_KMS("Using SSC on eDP\n");
5448 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5449 }
5450 else
5451 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5452 } else
5453 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5454
5455 I915_WRITE(PCH_DREF_CONTROL, val);
5456 POSTING_READ(PCH_DREF_CONTROL);
5457 udelay(200);
5458 } else {
5459 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5460
5461 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5462
5463 /* Turn off CPU output */
5464 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5465
5466 I915_WRITE(PCH_DREF_CONTROL, val);
5467 POSTING_READ(PCH_DREF_CONTROL);
5468 udelay(200);
5469
5470 /* Turn off the SSC source */
5471 val &= ~DREF_SSC_SOURCE_MASK;
5472 val |= DREF_SSC_SOURCE_DISABLE;
5473
5474 /* Turn off SSC1 */
5475 val &= ~DREF_SSC1_ENABLE;
5476
5477 I915_WRITE(PCH_DREF_CONTROL, val);
5478 POSTING_READ(PCH_DREF_CONTROL);
5479 udelay(200);
5480 }
5481
5482 BUG_ON(val != final);
5483}
5484
5485static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5486{
5487 uint32_t tmp;
5488
5489 tmp = I915_READ(SOUTH_CHICKEN2);
5490 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5491 I915_WRITE(SOUTH_CHICKEN2, tmp);
5492
5493 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5494 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5495 DRM_ERROR("FDI mPHY reset assert timeout\n");
5496
5497 tmp = I915_READ(SOUTH_CHICKEN2);
5498 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5499 I915_WRITE(SOUTH_CHICKEN2, tmp);
5500
5501 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5502 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5503 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5504}
5505
5506/* WaMPhyProgramming:hsw */
5507static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5508{
5509 uint32_t tmp;
5510
5511 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5512 tmp &= ~(0xFF << 24);
5513 tmp |= (0x12 << 24);
5514 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5515
5516 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5517 tmp |= (1 << 11);
5518 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5519
5520 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5521 tmp |= (1 << 11);
5522 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5523
5524 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5525 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5526 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5527
5528 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5529 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5530 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5531
5532 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5533 tmp &= ~(7 << 13);
5534 tmp |= (5 << 13);
5535 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5536
5537 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5538 tmp &= ~(7 << 13);
5539 tmp |= (5 << 13);
5540 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5541
5542 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5543 tmp &= ~0xFF;
5544 tmp |= 0x1C;
5545 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5546
5547 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5548 tmp &= ~0xFF;
5549 tmp |= 0x1C;
5550 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5551
5552 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5553 tmp &= ~(0xFF << 16);
5554 tmp |= (0x1C << 16);
5555 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5556
5557 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5558 tmp &= ~(0xFF << 16);
5559 tmp |= (0x1C << 16);
5560 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5561
5562 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5563 tmp |= (1 << 27);
5564 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5565
5566 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5567 tmp |= (1 << 27);
5568 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5569
5570 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5571 tmp &= ~(0xF << 28);
5572 tmp |= (4 << 28);
5573 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5574
5575 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5576 tmp &= ~(0xF << 28);
5577 tmp |= (4 << 28);
5578 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5579}
5580
5581/* Implements 3 different sequences from BSpec chapter "Display iCLK
5582 * Programming" based on the parameters passed:
5583 * - Sequence to enable CLKOUT_DP
5584 * - Sequence to enable CLKOUT_DP without spread
5585 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5586 */
5587static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5588 bool with_fdi)
5589{
5590 struct drm_i915_private *dev_priv = dev->dev_private;
5591 uint32_t reg, tmp;
5592
5593 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5594 with_spread = true;
5595 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5596 with_fdi, "LP PCH doesn't have FDI\n"))
5597 with_fdi = false;
5598
5599 mutex_lock(&dev_priv->dpio_lock);
5600
5601 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5602 tmp &= ~SBI_SSCCTL_DISABLE;
5603 tmp |= SBI_SSCCTL_PATHALT;
5604 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5605
5606 udelay(24);
5607
5608 if (with_spread) {
5609 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5610 tmp &= ~SBI_SSCCTL_PATHALT;
5611 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5612
5613 if (with_fdi) {
5614 lpt_reset_fdi_mphy(dev_priv);
5615 lpt_program_fdi_mphy(dev_priv);
5616 }
5617 }
5618
5619 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5620 SBI_GEN0 : SBI_DBUFF0;
5621 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5622 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5623 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5624
5625 mutex_unlock(&dev_priv->dpio_lock);
5626}
5627
5628/* Sequence to disable CLKOUT_DP */
5629static void lpt_disable_clkout_dp(struct drm_device *dev)
5630{
5631 struct drm_i915_private *dev_priv = dev->dev_private;
5632 uint32_t reg, tmp;
5633
5634 mutex_lock(&dev_priv->dpio_lock);
5635
5636 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5637 SBI_GEN0 : SBI_DBUFF0;
5638 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5639 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5640 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5641
5642 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5643 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5644 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5645 tmp |= SBI_SSCCTL_PATHALT;
5646 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5647 udelay(32);
5648 }
5649 tmp |= SBI_SSCCTL_DISABLE;
5650 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5651 }
5652
5653 mutex_unlock(&dev_priv->dpio_lock);
5654}
5655
5656static void lpt_init_pch_refclk(struct drm_device *dev)
5657{
5658 struct drm_mode_config *mode_config = &dev->mode_config;
5659 struct intel_encoder *encoder;
5660 bool has_vga = false;
5661
5662 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5663 switch (encoder->type) {
5664 case INTEL_OUTPUT_ANALOG:
5665 has_vga = true;
5666 break;
5667 }
5668 }
5669
5670 if (has_vga)
5671 lpt_enable_clkout_dp(dev, true, true);
5672 else
5673 lpt_disable_clkout_dp(dev);
5674}
5675
5676/*
5677 * Initialize reference clocks when the driver loads
5678 */
5679void intel_init_pch_refclk(struct drm_device *dev)
5680{
5681 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5682 ironlake_init_pch_refclk(dev);
5683 else if (HAS_PCH_LPT(dev))
5684 lpt_init_pch_refclk(dev);
5685}
5686
5687static int ironlake_get_refclk(struct drm_crtc *crtc)
5688{
5689 struct drm_device *dev = crtc->dev;
5690 struct drm_i915_private *dev_priv = dev->dev_private;
5691 struct intel_encoder *encoder;
5692 int num_connectors = 0;
5693 bool is_lvds = false;
5694
5695 for_each_encoder_on_crtc(dev, crtc, encoder) {
5696 switch (encoder->type) {
5697 case INTEL_OUTPUT_LVDS:
5698 is_lvds = true;
5699 break;
5700 }
5701 num_connectors++;
5702 }
5703
5704 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5705 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5706 dev_priv->vbt.lvds_ssc_freq);
5707 return dev_priv->vbt.lvds_ssc_freq * 1000;
5708 }
5709
5710 return 120000;
5711}
5712
5713static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5714{
5715 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5716 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5717 int pipe = intel_crtc->pipe;
5718 uint32_t val;
5719
5720 val = 0;
5721
5722 switch (intel_crtc->config.pipe_bpp) {
5723 case 18:
5724 val |= PIPECONF_6BPC;
5725 break;
5726 case 24:
5727 val |= PIPECONF_8BPC;
5728 break;
5729 case 30:
5730 val |= PIPECONF_10BPC;
5731 break;
5732 case 36:
5733 val |= PIPECONF_12BPC;
5734 break;
5735 default:
5736 /* Case prevented by intel_choose_pipe_bpp_dither. */
5737 BUG();
5738 }
5739
5740 if (intel_crtc->config.dither)
5741 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5742
5743 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5744 val |= PIPECONF_INTERLACED_ILK;
5745 else
5746 val |= PIPECONF_PROGRESSIVE;
5747
5748 if (intel_crtc->config.limited_color_range)
5749 val |= PIPECONF_COLOR_RANGE_SELECT;
5750
5751 I915_WRITE(PIPECONF(pipe), val);
5752 POSTING_READ(PIPECONF(pipe));
5753}
5754
5755/*
5756 * Set up the pipe CSC unit.
5757 *
5758 * Currently only full range RGB to limited range RGB conversion
5759 * is supported, but eventually this should handle various
5760 * RGB<->YCbCr scenarios as well.
5761 */
5762static void intel_set_pipe_csc(struct drm_crtc *crtc)
5763{
5764 struct drm_device *dev = crtc->dev;
5765 struct drm_i915_private *dev_priv = dev->dev_private;
5766 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5767 int pipe = intel_crtc->pipe;
5768 uint16_t coeff = 0x7800; /* 1.0 */
5769
5770 /*
5771 * TODO: Check what kind of values actually come out of the pipe
5772 * with these coeff/postoff values and adjust to get the best
5773 * accuracy. Perhaps we even need to take the bpc value into
5774 * consideration.
5775 */
5776
5777 if (intel_crtc->config.limited_color_range)
5778 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5779
5780 /*
5781 * GY/GU and RY/RU should be the other way around according
5782 * to BSpec, but reality doesn't agree. Just set them up in
5783 * a way that results in the correct picture.
5784 */
5785 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
5786 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
5787
5788 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
5789 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
5790
5791 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
5792 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
5793
5794 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
5795 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
5796 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
5797
5798 if (INTEL_INFO(dev)->gen > 6) {
5799 uint16_t postoff = 0;
5800
5801 if (intel_crtc->config.limited_color_range)
5802 postoff = (16 * (1 << 13) / 255) & 0x1fff;
5803
5804 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
5805 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
5806 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
5807
5808 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
5809 } else {
5810 uint32_t mode = CSC_MODE_YUV_TO_RGB;
5811
5812 if (intel_crtc->config.limited_color_range)
5813 mode |= CSC_BLACK_SCREEN_OFFSET;
5814
5815 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
5816 }
5817}
5818
5819static void haswell_set_pipeconf(struct drm_crtc *crtc)
5820{
5821 struct drm_device *dev = crtc->dev;
5822 struct drm_i915_private *dev_priv = dev->dev_private;
5823 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5824 enum pipe pipe = intel_crtc->pipe;
5825 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5826 uint32_t val;
5827
5828 val = 0;
5829
5830 if (IS_HASWELL(dev) && intel_crtc->config.dither)
5831 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5832
5833 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5834 val |= PIPECONF_INTERLACED_ILK;
5835 else
5836 val |= PIPECONF_PROGRESSIVE;
5837
5838 I915_WRITE(PIPECONF(cpu_transcoder), val);
5839 POSTING_READ(PIPECONF(cpu_transcoder));
5840
5841 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
5842 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
5843
5844 if (IS_BROADWELL(dev)) {
5845 val = 0;
5846
5847 switch (intel_crtc->config.pipe_bpp) {
5848 case 18:
5849 val |= PIPEMISC_DITHER_6_BPC;
5850 break;
5851 case 24:
5852 val |= PIPEMISC_DITHER_8_BPC;
5853 break;
5854 case 30:
5855 val |= PIPEMISC_DITHER_10_BPC;
5856 break;
5857 case 36:
5858 val |= PIPEMISC_DITHER_12_BPC;
5859 break;
5860 default:
5861 /* Case prevented by pipe_config_set_bpp. */
5862 BUG();
5863 }
5864
5865 if (intel_crtc->config.dither)
5866 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
5867
5868 I915_WRITE(PIPEMISC(pipe), val);
5869 }
5870}
5871
5872static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5873 intel_clock_t *clock,
5874 bool *has_reduced_clock,
5875 intel_clock_t *reduced_clock)
5876{
5877 struct drm_device *dev = crtc->dev;
5878 struct drm_i915_private *dev_priv = dev->dev_private;
5879 struct intel_encoder *intel_encoder;
5880 int refclk;
5881 const intel_limit_t *limit;
5882 bool ret, is_lvds = false;
5883
5884 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5885 switch (intel_encoder->type) {
5886 case INTEL_OUTPUT_LVDS:
5887 is_lvds = true;
5888 break;
5889 }
5890 }
5891
5892 refclk = ironlake_get_refclk(crtc);
5893
5894 /*
5895 * Returns a set of divisors for the desired target clock with the given
5896 * refclk, or FALSE. The returned values represent the clock equation:
5897 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5898 */
5899 limit = intel_limit(crtc, refclk);
5900 ret = dev_priv->display.find_dpll(limit, crtc,
5901 to_intel_crtc(crtc)->config.port_clock,
5902 refclk, NULL, clock);
5903 if (!ret)
5904 return false;
5905
5906 if (is_lvds && dev_priv->lvds_downclock_avail) {
5907 /*
5908 * Ensure we match the reduced clock's P to the target clock.
5909 * If the clocks don't match, we can't switch the display clock
5910 * by using the FP0/FP1. In such case we will disable the LVDS
5911 * downclock feature.
5912 */
5913 *has_reduced_clock =
5914 dev_priv->display.find_dpll(limit, crtc,
5915 dev_priv->lvds_downclock,
5916 refclk, clock,
5917 reduced_clock);
5918 }
5919
5920 return true;
5921}
5922
5923int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
5924{
5925 /*
5926 * Account for spread spectrum to avoid
5927 * oversubscribing the link. Max center spread
5928 * is 2.5%; use 5% for safety's sake.
5929 */
5930 u32 bps = target_clock * bpp * 21 / 20;
5931 return bps / (link_bw * 8) + 1;
5932}
5933
5934static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
5935{
5936 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
5937}
5938
5939static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5940 u32 *fp,
5941 intel_clock_t *reduced_clock, u32 *fp2)
5942{
5943 struct drm_crtc *crtc = &intel_crtc->base;
5944 struct drm_device *dev = crtc->dev;
5945 struct drm_i915_private *dev_priv = dev->dev_private;
5946 struct intel_encoder *intel_encoder;
5947 uint32_t dpll;
5948 int factor, num_connectors = 0;
5949 bool is_lvds = false, is_sdvo = false;
5950
5951 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5952 switch (intel_encoder->type) {
5953 case INTEL_OUTPUT_LVDS:
5954 is_lvds = true;
5955 break;
5956 case INTEL_OUTPUT_SDVO:
5957 case INTEL_OUTPUT_HDMI:
5958 is_sdvo = true;
5959 break;
5960 }
5961
5962 num_connectors++;
5963 }
5964
5965 /* Enable autotuning of the PLL clock (if permissible) */
5966 factor = 21;
5967 if (is_lvds) {
5968 if ((intel_panel_use_ssc(dev_priv) &&
5969 dev_priv->vbt.lvds_ssc_freq == 100) ||
5970 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
5971 factor = 25;
5972 } else if (intel_crtc->config.sdvo_tv_clock)
5973 factor = 20;
5974
5975 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
5976 *fp |= FP_CB_TUNE;
5977
5978 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
5979 *fp2 |= FP_CB_TUNE;
5980
5981 dpll = 0;
5982
5983 if (is_lvds)
5984 dpll |= DPLLB_MODE_LVDS;
5985 else
5986 dpll |= DPLLB_MODE_DAC_SERIAL;
5987
5988 dpll |= (intel_crtc->config.pixel_multiplier - 1)
5989 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5990
5991 if (is_sdvo)
5992 dpll |= DPLL_SDVO_HIGH_SPEED;
5993 if (intel_crtc->config.has_dp_encoder)
5994 dpll |= DPLL_SDVO_HIGH_SPEED;
5995
5996 /* compute bitmask from p1 value */
5997 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5998 /* also FPA1 */
5999 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6000
6001 switch (intel_crtc->config.dpll.p2) {
6002 case 5:
6003 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6004 break;
6005 case 7:
6006 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6007 break;
6008 case 10:
6009 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6010 break;
6011 case 14:
6012 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6013 break;
6014 }
6015
6016 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6017 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6018 else
6019 dpll |= PLL_REF_INPUT_DREFCLK;
6020
6021 return dpll | DPLL_VCO_ENABLE;
6022}
6023
6024static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6025 int x, int y,
6026 struct drm_framebuffer *fb)
6027{
6028 struct drm_device *dev = crtc->dev;
6029 struct drm_i915_private *dev_priv = dev->dev_private;
6030 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6031 int pipe = intel_crtc->pipe;
6032 int plane = intel_crtc->plane;
6033 int num_connectors = 0;
6034 intel_clock_t clock, reduced_clock;
6035 u32 dpll = 0, fp = 0, fp2 = 0;
6036 bool ok, has_reduced_clock = false;
6037 bool is_lvds = false;
6038 struct intel_encoder *encoder;
6039 struct intel_shared_dpll *pll;
6040 int ret;
6041
6042 for_each_encoder_on_crtc(dev, crtc, encoder) {
6043 switch (encoder->type) {
6044 case INTEL_OUTPUT_LVDS:
6045 is_lvds = true;
6046 break;
6047 }
6048
6049 num_connectors++;
6050 }
6051
6052 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6053 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6054
6055 ok = ironlake_compute_clocks(crtc, &clock,
6056 &has_reduced_clock, &reduced_clock);
6057 if (!ok && !intel_crtc->config.clock_set) {
6058 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6059 return -EINVAL;
6060 }
6061 /* Compat-code for transition, will disappear. */
6062 if (!intel_crtc->config.clock_set) {
6063 intel_crtc->config.dpll.n = clock.n;
6064 intel_crtc->config.dpll.m1 = clock.m1;
6065 intel_crtc->config.dpll.m2 = clock.m2;
6066 intel_crtc->config.dpll.p1 = clock.p1;
6067 intel_crtc->config.dpll.p2 = clock.p2;
6068 }
6069
6070 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6071 if (intel_crtc->config.has_pch_encoder) {
6072 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6073 if (has_reduced_clock)
6074 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6075
6076 dpll = ironlake_compute_dpll(intel_crtc,
6077 &fp, &reduced_clock,
6078 has_reduced_clock ? &fp2 : NULL);
6079
6080 intel_crtc->config.dpll_hw_state.dpll = dpll;
6081 intel_crtc->config.dpll_hw_state.fp0 = fp;
6082 if (has_reduced_clock)
6083 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6084 else
6085 intel_crtc->config.dpll_hw_state.fp1 = fp;
6086
6087 pll = intel_get_shared_dpll(intel_crtc);
6088 if (pll == NULL) {
6089 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6090 pipe_name(pipe));
6091 return -EINVAL;
6092 }
6093 } else
6094 intel_put_shared_dpll(intel_crtc);
6095
6096 if (intel_crtc->config.has_dp_encoder)
6097 intel_dp_set_m_n(intel_crtc);
6098
6099 if (is_lvds && has_reduced_clock && i915_powersave)
6100 intel_crtc->lowfreq_avail = true;
6101 else
6102 intel_crtc->lowfreq_avail = false;
6103
6104 intel_set_pipe_timings(intel_crtc);
6105
6106 if (intel_crtc->config.has_pch_encoder) {
6107 intel_cpu_transcoder_set_m_n(intel_crtc,
6108 &intel_crtc->config.fdi_m_n);
6109 }
6110
6111 ironlake_set_pipeconf(crtc);
6112
6113 /* Set up the display plane register */
6114 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6115 POSTING_READ(DSPCNTR(plane));
6116
6117 ret = intel_pipe_set_base(crtc, x, y, fb);
6118
6119 return ret;
6120}
6121
6122static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6123 struct intel_link_m_n *m_n)
6124{
6125 struct drm_device *dev = crtc->base.dev;
6126 struct drm_i915_private *dev_priv = dev->dev_private;
6127 enum pipe pipe = crtc->pipe;
6128
6129 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6130 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6131 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6132 & ~TU_SIZE_MASK;
6133 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6134 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6135 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6136}
6137
6138static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6139 enum transcoder transcoder,
6140 struct intel_link_m_n *m_n)
6141{
6142 struct drm_device *dev = crtc->base.dev;
6143 struct drm_i915_private *dev_priv = dev->dev_private;
6144 enum pipe pipe = crtc->pipe;
6145
6146 if (INTEL_INFO(dev)->gen >= 5) {
6147 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6148 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6149 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6150 & ~TU_SIZE_MASK;
6151 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6152 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6153 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6154 } else {
6155 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6156 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6157 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6158 & ~TU_SIZE_MASK;
6159 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6160 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6161 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6162 }
6163}
6164
6165void intel_dp_get_m_n(struct intel_crtc *crtc,
6166 struct intel_crtc_config *pipe_config)
6167{
6168 if (crtc->config.has_pch_encoder)
6169 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6170 else
6171 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6172 &pipe_config->dp_m_n);
6173}
6174
6175static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6176 struct intel_crtc_config *pipe_config)
6177{
6178 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6179 &pipe_config->fdi_m_n);
6180}
6181
6182static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6183 struct intel_crtc_config *pipe_config)
6184{
6185 struct drm_device *dev = crtc->base.dev;
6186 struct drm_i915_private *dev_priv = dev->dev_private;
6187 uint32_t tmp;
6188
6189 tmp = I915_READ(PF_CTL(crtc->pipe));
6190
6191 if (tmp & PF_ENABLE) {
6192 pipe_config->pch_pfit.enabled = true;
6193 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6194 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6195
6196 /* We currently do not free assignements of panel fitters on
6197 * ivb/hsw (since we don't use the higher upscaling modes which
6198 * differentiates them) so just WARN about this case for now. */
6199 if (IS_GEN7(dev)) {
6200 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6201 PF_PIPE_SEL_IVB(crtc->pipe));
6202 }
6203 }
6204}
6205
6206static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6207 struct intel_crtc_config *pipe_config)
6208{
6209 struct drm_device *dev = crtc->base.dev;
6210 struct drm_i915_private *dev_priv = dev->dev_private;
6211 uint32_t tmp;
6212
6213 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6214 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6215
6216 tmp = I915_READ(PIPECONF(crtc->pipe));
6217 if (!(tmp & PIPECONF_ENABLE))
6218 return false;
6219
6220 switch (tmp & PIPECONF_BPC_MASK) {
6221 case PIPECONF_6BPC:
6222 pipe_config->pipe_bpp = 18;
6223 break;
6224 case PIPECONF_8BPC:
6225 pipe_config->pipe_bpp = 24;
6226 break;
6227 case PIPECONF_10BPC:
6228 pipe_config->pipe_bpp = 30;
6229 break;
6230 case PIPECONF_12BPC:
6231 pipe_config->pipe_bpp = 36;
6232 break;
6233 default:
6234 break;
6235 }
6236
6237 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6238 struct intel_shared_dpll *pll;
6239
6240 pipe_config->has_pch_encoder = true;
6241
6242 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6243 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6244 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6245
6246 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6247
6248 if (HAS_PCH_IBX(dev_priv->dev)) {
6249 pipe_config->shared_dpll =
6250 (enum intel_dpll_id) crtc->pipe;
6251 } else {
6252 tmp = I915_READ(PCH_DPLL_SEL);
6253 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6254 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6255 else
6256 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6257 }
6258
6259 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6260
6261 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6262 &pipe_config->dpll_hw_state));
6263
6264 tmp = pipe_config->dpll_hw_state.dpll;
6265 pipe_config->pixel_multiplier =
6266 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6267 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6268
6269 ironlake_pch_clock_get(crtc, pipe_config);
6270 } else {
6271 pipe_config->pixel_multiplier = 1;
6272 }
6273
6274 intel_get_pipe_timings(crtc, pipe_config);
6275
6276 ironlake_get_pfit_config(crtc, pipe_config);
6277
6278 return true;
6279}
6280
6281static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6282{
6283 struct drm_device *dev = dev_priv->dev;
6284 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6285 struct intel_crtc *crtc;
6286 unsigned long irqflags;
6287 uint32_t val;
6288
6289 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6290 WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
6291 pipe_name(crtc->pipe));
6292
6293 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6294 WARN(plls->spll_refcount, "SPLL enabled\n");
6295 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6296 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6297 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6298 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6299 "CPU PWM1 enabled\n");
6300 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6301 "CPU PWM2 enabled\n");
6302 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6303 "PCH PWM1 enabled\n");
6304 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6305 "Utility pin enabled\n");
6306 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6307
6308 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6309 val = I915_READ(DEIMR);
6310 WARN((val & ~DE_PCH_EVENT_IVB) != val,
6311 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6312 val = I915_READ(SDEIMR);
6313 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6314 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6315 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6316}
6317
6318/*
6319 * This function implements pieces of two sequences from BSpec:
6320 * - Sequence for display software to disable LCPLL
6321 * - Sequence for display software to allow package C8+
6322 * The steps implemented here are just the steps that actually touch the LCPLL
6323 * register. Callers should take care of disabling all the display engine
6324 * functions, doing the mode unset, fixing interrupts, etc.
6325 */
6326static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6327 bool switch_to_fclk, bool allow_power_down)
6328{
6329 uint32_t val;
6330
6331 assert_can_disable_lcpll(dev_priv);
6332
6333 val = I915_READ(LCPLL_CTL);
6334
6335 if (switch_to_fclk) {
6336 val |= LCPLL_CD_SOURCE_FCLK;
6337 I915_WRITE(LCPLL_CTL, val);
6338
6339 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6340 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6341 DRM_ERROR("Switching to FCLK failed\n");
6342
6343 val = I915_READ(LCPLL_CTL);
6344 }
6345
6346 val |= LCPLL_PLL_DISABLE;
6347 I915_WRITE(LCPLL_CTL, val);
6348 POSTING_READ(LCPLL_CTL);
6349
6350 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6351 DRM_ERROR("LCPLL still locked\n");
6352
6353 val = I915_READ(D_COMP);
6354 val |= D_COMP_COMP_DISABLE;
6355 mutex_lock(&dev_priv->rps.hw_lock);
6356 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6357 DRM_ERROR("Failed to disable D_COMP\n");
6358 mutex_unlock(&dev_priv->rps.hw_lock);
6359 POSTING_READ(D_COMP);
6360 ndelay(100);
6361
6362 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6363 DRM_ERROR("D_COMP RCOMP still in progress\n");
6364
6365 if (allow_power_down) {
6366 val = I915_READ(LCPLL_CTL);
6367 val |= LCPLL_POWER_DOWN_ALLOW;
6368 I915_WRITE(LCPLL_CTL, val);
6369 POSTING_READ(LCPLL_CTL);
6370 }
6371}
6372
6373/*
6374 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6375 * source.
6376 */
6377static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6378{
6379 uint32_t val;
6380
6381 val = I915_READ(LCPLL_CTL);
6382
6383 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6384 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6385 return;
6386
6387 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6388 * we'll hang the machine! */
6389 dev_priv->uncore.funcs.force_wake_get(dev_priv);
6390
6391 if (val & LCPLL_POWER_DOWN_ALLOW) {
6392 val &= ~LCPLL_POWER_DOWN_ALLOW;
6393 I915_WRITE(LCPLL_CTL, val);
6394 POSTING_READ(LCPLL_CTL);
6395 }
6396
6397 val = I915_READ(D_COMP);
6398 val |= D_COMP_COMP_FORCE;
6399 val &= ~D_COMP_COMP_DISABLE;
6400 mutex_lock(&dev_priv->rps.hw_lock);
6401 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6402 DRM_ERROR("Failed to enable D_COMP\n");
6403 mutex_unlock(&dev_priv->rps.hw_lock);
6404 POSTING_READ(D_COMP);
6405
6406 val = I915_READ(LCPLL_CTL);
6407 val &= ~LCPLL_PLL_DISABLE;
6408 I915_WRITE(LCPLL_CTL, val);
6409
6410 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6411 DRM_ERROR("LCPLL not locked yet\n");
6412
6413 if (val & LCPLL_CD_SOURCE_FCLK) {
6414 val = I915_READ(LCPLL_CTL);
6415 val &= ~LCPLL_CD_SOURCE_FCLK;
6416 I915_WRITE(LCPLL_CTL, val);
6417
6418 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6419 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6420 DRM_ERROR("Switching back to LCPLL failed\n");
6421 }
6422
6423 dev_priv->uncore.funcs.force_wake_put(dev_priv);
6424}
6425
6426void hsw_enable_pc8_work(struct work_struct *__work)
6427{
6428 struct drm_i915_private *dev_priv =
6429 container_of(to_delayed_work(__work), struct drm_i915_private,
6430 pc8.enable_work);
6431 struct drm_device *dev = dev_priv->dev;
6432 uint32_t val;
6433
6434 if (dev_priv->pc8.enabled)
6435 return;
6436
6437 DRM_DEBUG_KMS("Enabling package C8+\n");
6438
6439 dev_priv->pc8.enabled = true;
6440
6441 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6442 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6443 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6444 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6445 }
6446
6447 lpt_disable_clkout_dp(dev);
6448 hsw_pc8_disable_interrupts(dev);
6449 hsw_disable_lcpll(dev_priv, true, true);
6450}
6451
6452static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6453{
6454 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6455 WARN(dev_priv->pc8.disable_count < 1,
6456 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6457
6458 dev_priv->pc8.disable_count--;
6459 if (dev_priv->pc8.disable_count != 0)
6460 return;
6461
6462 schedule_delayed_work(&dev_priv->pc8.enable_work,
6463 msecs_to_jiffies(i915_pc8_timeout));
6464}
6465
6466static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6467{
6468 struct drm_device *dev = dev_priv->dev;
6469 uint32_t val;
6470
6471 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6472 WARN(dev_priv->pc8.disable_count < 0,
6473 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6474
6475 dev_priv->pc8.disable_count++;
6476 if (dev_priv->pc8.disable_count != 1)
6477 return;
6478
6479 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6480 if (!dev_priv->pc8.enabled)
6481 return;
6482
6483 DRM_DEBUG_KMS("Disabling package C8+\n");
6484
6485 hsw_restore_lcpll(dev_priv);
6486 hsw_pc8_restore_interrupts(dev);
6487 lpt_init_pch_refclk(dev);
6488
6489 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6490 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6491 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6492 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6493 }
6494
6495 intel_prepare_ddi(dev);
6496 i915_gem_init_swizzling(dev);
6497 mutex_lock(&dev_priv->rps.hw_lock);
6498 gen6_update_ring_freq(dev);
6499 mutex_unlock(&dev_priv->rps.hw_lock);
6500 dev_priv->pc8.enabled = false;
6501}
6502
6503void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6504{
6505 mutex_lock(&dev_priv->pc8.lock);
6506 __hsw_enable_package_c8(dev_priv);
6507 mutex_unlock(&dev_priv->pc8.lock);
6508}
6509
6510void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6511{
6512 mutex_lock(&dev_priv->pc8.lock);
6513 __hsw_disable_package_c8(dev_priv);
6514 mutex_unlock(&dev_priv->pc8.lock);
6515}
6516
6517static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6518{
6519 struct drm_device *dev = dev_priv->dev;
6520 struct intel_crtc *crtc;
6521 uint32_t val;
6522
6523 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6524 if (crtc->base.enabled)
6525 return false;
6526
6527 /* This case is still possible since we have the i915.disable_power_well
6528 * parameter and also the KVMr or something else might be requesting the
6529 * power well. */
6530 val = I915_READ(HSW_PWR_WELL_DRIVER);
6531 if (val != 0) {
6532 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6533 return false;
6534 }
6535
6536 return true;
6537}
6538
6539/* Since we're called from modeset_global_resources there's no way to
6540 * symmetrically increase and decrease the refcount, so we use
6541 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6542 * or not.
6543 */
6544static void hsw_update_package_c8(struct drm_device *dev)
6545{
6546 struct drm_i915_private *dev_priv = dev->dev_private;
6547 bool allow;
6548
6549 if (!i915_enable_pc8)
6550 return;
6551
6552 mutex_lock(&dev_priv->pc8.lock);
6553
6554 allow = hsw_can_enable_package_c8(dev_priv);
6555
6556 if (allow == dev_priv->pc8.requirements_met)
6557 goto done;
6558
6559 dev_priv->pc8.requirements_met = allow;
6560
6561 if (allow)
6562 __hsw_enable_package_c8(dev_priv);
6563 else
6564 __hsw_disable_package_c8(dev_priv);
6565
6566done:
6567 mutex_unlock(&dev_priv->pc8.lock);
6568}
6569
6570static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6571{
6572 if (!dev_priv->pc8.gpu_idle) {
6573 dev_priv->pc8.gpu_idle = true;
6574 hsw_enable_package_c8(dev_priv);
6575 }
6576}
6577
6578static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6579{
6580 if (dev_priv->pc8.gpu_idle) {
6581 dev_priv->pc8.gpu_idle = false;
6582 hsw_disable_package_c8(dev_priv);
6583 }
6584}
6585
6586#define for_each_power_domain(domain, mask) \
6587 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
6588 if ((1 << (domain)) & (mask))
6589
6590static unsigned long get_pipe_power_domains(struct drm_device *dev,
6591 enum pipe pipe, bool pfit_enabled)
6592{
6593 unsigned long mask;
6594 enum transcoder transcoder;
6595
6596 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6597
6598 mask = BIT(POWER_DOMAIN_PIPE(pipe));
6599 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6600 if (pfit_enabled)
6601 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6602
6603 return mask;
6604}
6605
6606void intel_display_set_init_power(struct drm_device *dev, bool enable)
6607{
6608 struct drm_i915_private *dev_priv = dev->dev_private;
6609
6610 if (dev_priv->power_domains.init_power_on == enable)
6611 return;
6612
6613 if (enable)
6614 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6615 else
6616 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6617
6618 dev_priv->power_domains.init_power_on = enable;
6619}
6620
6621static void modeset_update_power_wells(struct drm_device *dev)
6622{
6623 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6624 struct intel_crtc *crtc;
6625
6626 /*
6627 * First get all needed power domains, then put all unneeded, to avoid
6628 * any unnecessary toggling of the power wells.
6629 */
6630 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6631 enum intel_display_power_domain domain;
6632
6633 if (!crtc->base.enabled)
6634 continue;
6635
6636 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6637 crtc->pipe,
6638 crtc->config.pch_pfit.enabled);
6639
6640 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6641 intel_display_power_get(dev, domain);
6642 }
6643
6644 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6645 enum intel_display_power_domain domain;
6646
6647 for_each_power_domain(domain, crtc->enabled_power_domains)
6648 intel_display_power_put(dev, domain);
6649
6650 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6651 }
6652
6653 intel_display_set_init_power(dev, false);
6654}
6655
6656static void haswell_modeset_global_resources(struct drm_device *dev)
6657{
6658 modeset_update_power_wells(dev);
6659 hsw_update_package_c8(dev);
6660}
6661
6662static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6663 int x, int y,
6664 struct drm_framebuffer *fb)
6665{
6666 struct drm_device *dev = crtc->dev;
6667 struct drm_i915_private *dev_priv = dev->dev_private;
6668 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6669 int plane = intel_crtc->plane;
6670 int ret;
6671
6672 if (!intel_ddi_pll_mode_set(crtc))
6673 return -EINVAL;
6674
6675 if (intel_crtc->config.has_dp_encoder)
6676 intel_dp_set_m_n(intel_crtc);
6677
6678 intel_crtc->lowfreq_avail = false;
6679
6680 intel_set_pipe_timings(intel_crtc);
6681
6682 if (intel_crtc->config.has_pch_encoder) {
6683 intel_cpu_transcoder_set_m_n(intel_crtc,
6684 &intel_crtc->config.fdi_m_n);
6685 }
6686
6687 haswell_set_pipeconf(crtc);
6688
6689 intel_set_pipe_csc(crtc);
6690
6691 /* Set up the display plane register */
6692 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6693 POSTING_READ(DSPCNTR(plane));
6694
6695 ret = intel_pipe_set_base(crtc, x, y, fb);
6696
6697 return ret;
6698}
6699
6700static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6701 struct intel_crtc_config *pipe_config)
6702{
6703 struct drm_device *dev = crtc->base.dev;
6704 struct drm_i915_private *dev_priv = dev->dev_private;
6705 enum intel_display_power_domain pfit_domain;
6706 uint32_t tmp;
6707
6708 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6709 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6710
6711 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6712 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6713 enum pipe trans_edp_pipe;
6714 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6715 default:
6716 WARN(1, "unknown pipe linked to edp transcoder\n");
6717 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6718 case TRANS_DDI_EDP_INPUT_A_ON:
6719 trans_edp_pipe = PIPE_A;
6720 break;
6721 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6722 trans_edp_pipe = PIPE_B;
6723 break;
6724 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6725 trans_edp_pipe = PIPE_C;
6726 break;
6727 }
6728
6729 if (trans_edp_pipe == crtc->pipe)
6730 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6731 }
6732
6733 if (!intel_display_power_enabled(dev,
6734 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6735 return false;
6736
6737 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6738 if (!(tmp & PIPECONF_ENABLE))
6739 return false;
6740
6741 /*
6742 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6743 * DDI E. So just check whether this pipe is wired to DDI E and whether
6744 * the PCH transcoder is on.
6745 */
6746 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6747 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6748 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6749 pipe_config->has_pch_encoder = true;
6750
6751 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6752 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6753 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6754
6755 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6756 }
6757
6758 intel_get_pipe_timings(crtc, pipe_config);
6759
6760 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
6761 if (intel_display_power_enabled(dev, pfit_domain))
6762 ironlake_get_pfit_config(crtc, pipe_config);
6763
6764 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
6765 (I915_READ(IPS_CTL) & IPS_ENABLE);
6766
6767 pipe_config->pixel_multiplier = 1;
6768
6769 return true;
6770}
6771
6772static int intel_crtc_mode_set(struct drm_crtc *crtc,
6773 int x, int y,
6774 struct drm_framebuffer *fb)
6775{
6776 struct drm_device *dev = crtc->dev;
6777 struct drm_i915_private *dev_priv = dev->dev_private;
6778 struct intel_encoder *encoder;
6779 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6780 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
6781 int pipe = intel_crtc->pipe;
6782 int ret;
6783
6784 drm_vblank_pre_modeset(dev, pipe);
6785
6786 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
6787
6788 drm_vblank_post_modeset(dev, pipe);
6789
6790 if (ret != 0)
6791 return ret;
6792
6793 for_each_encoder_on_crtc(dev, crtc, encoder) {
6794 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
6795 encoder->base.base.id,
6796 drm_get_encoder_name(&encoder->base),
6797 mode->base.id, mode->name);
6798 encoder->mode_set(encoder);
6799 }
6800
6801 return 0;
6802}
6803
6804static struct {
6805 int clock;
6806 u32 config;
6807} hdmi_audio_clock[] = {
6808 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
6809 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
6810 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
6811 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
6812 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
6813 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
6814 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
6815 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
6816 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
6817 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
6818};
6819
6820/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
6821static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
6822{
6823 int i;
6824
6825 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
6826 if (mode->clock == hdmi_audio_clock[i].clock)
6827 break;
6828 }
6829
6830 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
6831 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
6832 i = 1;
6833 }
6834
6835 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
6836 hdmi_audio_clock[i].clock,
6837 hdmi_audio_clock[i].config);
6838
6839 return hdmi_audio_clock[i].config;
6840}
6841
6842static bool intel_eld_uptodate(struct drm_connector *connector,
6843 int reg_eldv, uint32_t bits_eldv,
6844 int reg_elda, uint32_t bits_elda,
6845 int reg_edid)
6846{
6847 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6848 uint8_t *eld = connector->eld;
6849 uint32_t i;
6850
6851 i = I915_READ(reg_eldv);
6852 i &= bits_eldv;
6853
6854 if (!eld[0])
6855 return !i;
6856
6857 if (!i)
6858 return false;
6859
6860 i = I915_READ(reg_elda);
6861 i &= ~bits_elda;
6862 I915_WRITE(reg_elda, i);
6863
6864 for (i = 0; i < eld[2]; i++)
6865 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6866 return false;
6867
6868 return true;
6869}
6870
6871static void g4x_write_eld(struct drm_connector *connector,
6872 struct drm_crtc *crtc,
6873 struct drm_display_mode *mode)
6874{
6875 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6876 uint8_t *eld = connector->eld;
6877 uint32_t eldv;
6878 uint32_t len;
6879 uint32_t i;
6880
6881 i = I915_READ(G4X_AUD_VID_DID);
6882
6883 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6884 eldv = G4X_ELDV_DEVCL_DEVBLC;
6885 else
6886 eldv = G4X_ELDV_DEVCTG;
6887
6888 if (intel_eld_uptodate(connector,
6889 G4X_AUD_CNTL_ST, eldv,
6890 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6891 G4X_HDMIW_HDMIEDID))
6892 return;
6893
6894 i = I915_READ(G4X_AUD_CNTL_ST);
6895 i &= ~(eldv | G4X_ELD_ADDR);
6896 len = (i >> 9) & 0x1f; /* ELD buffer size */
6897 I915_WRITE(G4X_AUD_CNTL_ST, i);
6898
6899 if (!eld[0])
6900 return;
6901
6902 len = min_t(uint8_t, eld[2], len);
6903 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6904 for (i = 0; i < len; i++)
6905 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6906
6907 i = I915_READ(G4X_AUD_CNTL_ST);
6908 i |= eldv;
6909 I915_WRITE(G4X_AUD_CNTL_ST, i);
6910}
6911
6912static void haswell_write_eld(struct drm_connector *connector,
6913 struct drm_crtc *crtc,
6914 struct drm_display_mode *mode)
6915{
6916 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6917 uint8_t *eld = connector->eld;
6918 struct drm_device *dev = crtc->dev;
6919 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6920 uint32_t eldv;
6921 uint32_t i;
6922 int len;
6923 int pipe = to_intel_crtc(crtc)->pipe;
6924 int tmp;
6925
6926 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
6927 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
6928 int aud_config = HSW_AUD_CFG(pipe);
6929 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
6930
6931
6932 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
6933
6934 /* Audio output enable */
6935 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
6936 tmp = I915_READ(aud_cntrl_st2);
6937 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
6938 I915_WRITE(aud_cntrl_st2, tmp);
6939
6940 /* Wait for 1 vertical blank */
6941 intel_wait_for_vblank(dev, pipe);
6942
6943 /* Set ELD valid state */
6944 tmp = I915_READ(aud_cntrl_st2);
6945 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
6946 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
6947 I915_WRITE(aud_cntrl_st2, tmp);
6948 tmp = I915_READ(aud_cntrl_st2);
6949 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
6950
6951 /* Enable HDMI mode */
6952 tmp = I915_READ(aud_config);
6953 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
6954 /* clear N_programing_enable and N_value_index */
6955 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
6956 I915_WRITE(aud_config, tmp);
6957
6958 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6959
6960 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
6961 intel_crtc->eld_vld = true;
6962
6963 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6964 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6965 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6966 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6967 } else {
6968 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
6969 }
6970
6971 if (intel_eld_uptodate(connector,
6972 aud_cntrl_st2, eldv,
6973 aud_cntl_st, IBX_ELD_ADDRESS,
6974 hdmiw_hdmiedid))
6975 return;
6976
6977 i = I915_READ(aud_cntrl_st2);
6978 i &= ~eldv;
6979 I915_WRITE(aud_cntrl_st2, i);
6980
6981 if (!eld[0])
6982 return;
6983
6984 i = I915_READ(aud_cntl_st);
6985 i &= ~IBX_ELD_ADDRESS;
6986 I915_WRITE(aud_cntl_st, i);
6987 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6988 DRM_DEBUG_DRIVER("port num:%d\n", i);
6989
6990 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6991 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6992 for (i = 0; i < len; i++)
6993 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6994
6995 i = I915_READ(aud_cntrl_st2);
6996 i |= eldv;
6997 I915_WRITE(aud_cntrl_st2, i);
6998
6999}
7000
7001static void ironlake_write_eld(struct drm_connector *connector,
7002 struct drm_crtc *crtc,
7003 struct drm_display_mode *mode)
7004{
7005 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7006 uint8_t *eld = connector->eld;
7007 uint32_t eldv;
7008 uint32_t i;
7009 int len;
7010 int hdmiw_hdmiedid;
7011 int aud_config;
7012 int aud_cntl_st;
7013 int aud_cntrl_st2;
7014 int pipe = to_intel_crtc(crtc)->pipe;
7015
7016 if (HAS_PCH_IBX(connector->dev)) {
7017 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7018 aud_config = IBX_AUD_CFG(pipe);
7019 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7020 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7021 } else {
7022 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7023 aud_config = CPT_AUD_CFG(pipe);
7024 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7025 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7026 }
7027
7028 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7029
7030 i = I915_READ(aud_cntl_st);
7031 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7032 if (!i) {
7033 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7034 /* operate blindly on all ports */
7035 eldv = IBX_ELD_VALIDB;
7036 eldv |= IBX_ELD_VALIDB << 4;
7037 eldv |= IBX_ELD_VALIDB << 8;
7038 } else {
7039 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7040 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7041 }
7042
7043 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7044 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7045 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7046 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7047 } else {
7048 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7049 }
7050
7051 if (intel_eld_uptodate(connector,
7052 aud_cntrl_st2, eldv,
7053 aud_cntl_st, IBX_ELD_ADDRESS,
7054 hdmiw_hdmiedid))
7055 return;
7056
7057 i = I915_READ(aud_cntrl_st2);
7058 i &= ~eldv;
7059 I915_WRITE(aud_cntrl_st2, i);
7060
7061 if (!eld[0])
7062 return;
7063
7064 i = I915_READ(aud_cntl_st);
7065 i &= ~IBX_ELD_ADDRESS;
7066 I915_WRITE(aud_cntl_st, i);
7067
7068 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7069 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7070 for (i = 0; i < len; i++)
7071 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7072
7073 i = I915_READ(aud_cntrl_st2);
7074 i |= eldv;
7075 I915_WRITE(aud_cntrl_st2, i);
7076}
7077
7078void intel_write_eld(struct drm_encoder *encoder,
7079 struct drm_display_mode *mode)
7080{
7081 struct drm_crtc *crtc = encoder->crtc;
7082 struct drm_connector *connector;
7083 struct drm_device *dev = encoder->dev;
7084 struct drm_i915_private *dev_priv = dev->dev_private;
7085
7086 connector = drm_select_eld(encoder, mode);
7087 if (!connector)
7088 return;
7089
7090 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7091 connector->base.id,
7092 drm_get_connector_name(connector),
7093 connector->encoder->base.id,
7094 drm_get_encoder_name(connector->encoder));
7095
7096 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7097
7098 if (dev_priv->display.write_eld)
7099 dev_priv->display.write_eld(connector, crtc, mode);
7100}
7101
7102static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7103{
7104 struct drm_device *dev = crtc->dev;
7105 struct drm_i915_private *dev_priv = dev->dev_private;
7106 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7107 bool visible = base != 0;
7108 u32 cntl;
7109
7110 if (intel_crtc->cursor_visible == visible)
7111 return;
7112
7113 cntl = I915_READ(_CURACNTR);
7114 if (visible) {
7115 /* On these chipsets we can only modify the base whilst
7116 * the cursor is disabled.
7117 */
7118 I915_WRITE(_CURABASE, base);
7119
7120 cntl &= ~(CURSOR_FORMAT_MASK);
7121 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7122 cntl |= CURSOR_ENABLE |
7123 CURSOR_GAMMA_ENABLE |
7124 CURSOR_FORMAT_ARGB;
7125 } else
7126 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7127 I915_WRITE(_CURACNTR, cntl);
7128
7129 intel_crtc->cursor_visible = visible;
7130}
7131
7132static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7133{
7134 struct drm_device *dev = crtc->dev;
7135 struct drm_i915_private *dev_priv = dev->dev_private;
7136 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7137 int pipe = intel_crtc->pipe;
7138 bool visible = base != 0;
7139
7140 if (intel_crtc->cursor_visible != visible) {
7141 uint32_t cntl = I915_READ(CURCNTR(pipe));
7142 if (base) {
7143 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7144 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7145 cntl |= pipe << 28; /* Connect to correct pipe */
7146 } else {
7147 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7148 cntl |= CURSOR_MODE_DISABLE;
7149 }
7150 I915_WRITE(CURCNTR(pipe), cntl);
7151
7152 intel_crtc->cursor_visible = visible;
7153 }
7154 /* and commit changes on next vblank */
7155 I915_WRITE(CURBASE(pipe), base);
7156}
7157
7158static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7159{
7160 struct drm_device *dev = crtc->dev;
7161 struct drm_i915_private *dev_priv = dev->dev_private;
7162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7163 int pipe = intel_crtc->pipe;
7164 bool visible = base != 0;
7165
7166 if (intel_crtc->cursor_visible != visible) {
7167 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7168 if (base) {
7169 cntl &= ~CURSOR_MODE;
7170 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7171 } else {
7172 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7173 cntl |= CURSOR_MODE_DISABLE;
7174 }
7175 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7176 cntl |= CURSOR_PIPE_CSC_ENABLE;
7177 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7178 }
7179 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7180
7181 intel_crtc->cursor_visible = visible;
7182 }
7183 /* and commit changes on next vblank */
7184 I915_WRITE(CURBASE_IVB(pipe), base);
7185}
7186
7187/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7188static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7189 bool on)
7190{
7191 struct drm_device *dev = crtc->dev;
7192 struct drm_i915_private *dev_priv = dev->dev_private;
7193 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7194 int pipe = intel_crtc->pipe;
7195 int x = intel_crtc->cursor_x;
7196 int y = intel_crtc->cursor_y;
7197 u32 base = 0, pos = 0;
7198 bool visible;
7199
7200 if (on)
7201 base = intel_crtc->cursor_addr;
7202
7203 if (x >= intel_crtc->config.pipe_src_w)
7204 base = 0;
7205
7206 if (y >= intel_crtc->config.pipe_src_h)
7207 base = 0;
7208
7209 if (x < 0) {
7210 if (x + intel_crtc->cursor_width <= 0)
7211 base = 0;
7212
7213 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7214 x = -x;
7215 }
7216 pos |= x << CURSOR_X_SHIFT;
7217
7218 if (y < 0) {
7219 if (y + intel_crtc->cursor_height <= 0)
7220 base = 0;
7221
7222 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7223 y = -y;
7224 }
7225 pos |= y << CURSOR_Y_SHIFT;
7226
7227 visible = base != 0;
7228 if (!visible && !intel_crtc->cursor_visible)
7229 return;
7230
7231 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7232 I915_WRITE(CURPOS_IVB(pipe), pos);
7233 ivb_update_cursor(crtc, base);
7234 } else {
7235 I915_WRITE(CURPOS(pipe), pos);
7236 if (IS_845G(dev) || IS_I865G(dev))
7237 i845_update_cursor(crtc, base);
7238 else
7239 i9xx_update_cursor(crtc, base);
7240 }
7241}
7242
7243static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7244 struct drm_file *file,
7245 uint32_t handle,
7246 uint32_t width, uint32_t height)
7247{
7248 struct drm_device *dev = crtc->dev;
7249 struct drm_i915_private *dev_priv = dev->dev_private;
7250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7251 struct drm_i915_gem_object *obj;
7252 uint32_t addr;
7253 int ret;
7254
7255 /* if we want to turn off the cursor ignore width and height */
7256 if (!handle) {
7257 DRM_DEBUG_KMS("cursor off\n");
7258 addr = 0;
7259 obj = NULL;
7260 mutex_lock(&dev->struct_mutex);
7261 goto finish;
7262 }
7263
7264 /* Currently we only support 64x64 cursors */
7265 if (width != 64 || height != 64) {
7266 DRM_ERROR("we currently only support 64x64 cursors\n");
7267 return -EINVAL;
7268 }
7269
7270 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7271 if (&obj->base == NULL)
7272 return -ENOENT;
7273
7274 if (obj->base.size < width * height * 4) {
7275 DRM_ERROR("buffer is to small\n");
7276 ret = -ENOMEM;
7277 goto fail;
7278 }
7279
7280 /* we only need to pin inside GTT if cursor is non-phy */
7281 mutex_lock(&dev->struct_mutex);
7282 if (!dev_priv->info->cursor_needs_physical) {
7283 unsigned alignment;
7284
7285 if (obj->tiling_mode) {
7286 DRM_ERROR("cursor cannot be tiled\n");
7287 ret = -EINVAL;
7288 goto fail_locked;
7289 }
7290
7291 /* Note that the w/a also requires 2 PTE of padding following
7292 * the bo. We currently fill all unused PTE with the shadow
7293 * page and so we should always have valid PTE following the
7294 * cursor preventing the VT-d warning.
7295 */
7296 alignment = 0;
7297 if (need_vtd_wa(dev))
7298 alignment = 64*1024;
7299
7300 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7301 if (ret) {
7302 DRM_ERROR("failed to move cursor bo into the GTT\n");
7303 goto fail_locked;
7304 }
7305
7306 ret = i915_gem_object_put_fence(obj);
7307 if (ret) {
7308 DRM_ERROR("failed to release fence for cursor");
7309 goto fail_unpin;
7310 }
7311
7312 addr = i915_gem_obj_ggtt_offset(obj);
7313 } else {
7314 int align = IS_I830(dev) ? 16 * 1024 : 256;
7315 ret = i915_gem_attach_phys_object(dev, obj,
7316 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7317 align);
7318 if (ret) {
7319 DRM_ERROR("failed to attach phys object\n");
7320 goto fail_locked;
7321 }
7322 addr = obj->phys_obj->handle->busaddr;
7323 }
7324
7325 if (IS_GEN2(dev))
7326 I915_WRITE(CURSIZE, (height << 12) | width);
7327
7328 finish:
7329 if (intel_crtc->cursor_bo) {
7330 if (dev_priv->info->cursor_needs_physical) {
7331 if (intel_crtc->cursor_bo != obj)
7332 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7333 } else
7334 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7335 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7336 }
7337
7338 mutex_unlock(&dev->struct_mutex);
7339
7340 intel_crtc->cursor_addr = addr;
7341 intel_crtc->cursor_bo = obj;
7342 intel_crtc->cursor_width = width;
7343 intel_crtc->cursor_height = height;
7344
7345 if (intel_crtc->active)
7346 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7347
7348 return 0;
7349fail_unpin:
7350 i915_gem_object_unpin_from_display_plane(obj);
7351fail_locked:
7352 mutex_unlock(&dev->struct_mutex);
7353fail:
7354 drm_gem_object_unreference_unlocked(&obj->base);
7355 return ret;
7356}
7357
7358static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7359{
7360 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7361
7362 intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7363 intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7364
7365 if (intel_crtc->active)
7366 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7367
7368 return 0;
7369}
7370
7371static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7372 u16 *blue, uint32_t start, uint32_t size)
7373{
7374 int end = (start + size > 256) ? 256 : start + size, i;
7375 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7376
7377 for (i = start; i < end; i++) {
7378 intel_crtc->lut_r[i] = red[i] >> 8;
7379 intel_crtc->lut_g[i] = green[i] >> 8;
7380 intel_crtc->lut_b[i] = blue[i] >> 8;
7381 }
7382
7383 intel_crtc_load_lut(crtc);
7384}
7385
7386/* VESA 640x480x72Hz mode to set on the pipe */
7387static struct drm_display_mode load_detect_mode = {
7388 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7389 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7390};
7391
7392static struct drm_framebuffer *
7393intel_framebuffer_create(struct drm_device *dev,
7394 struct drm_mode_fb_cmd2 *mode_cmd,
7395 struct drm_i915_gem_object *obj)
7396{
7397 struct intel_framebuffer *intel_fb;
7398 int ret;
7399
7400 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7401 if (!intel_fb) {
7402 drm_gem_object_unreference_unlocked(&obj->base);
7403 return ERR_PTR(-ENOMEM);
7404 }
7405
7406 ret = i915_mutex_lock_interruptible(dev);
7407 if (ret)
7408 goto err;
7409
7410 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7411 mutex_unlock(&dev->struct_mutex);
7412 if (ret)
7413 goto err;
7414
7415 return &intel_fb->base;
7416err:
7417 drm_gem_object_unreference_unlocked(&obj->base);
7418 kfree(intel_fb);
7419
7420 return ERR_PTR(ret);
7421}
7422
7423static u32
7424intel_framebuffer_pitch_for_width(int width, int bpp)
7425{
7426 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7427 return ALIGN(pitch, 64);
7428}
7429
7430static u32
7431intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7432{
7433 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7434 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7435}
7436
7437static struct drm_framebuffer *
7438intel_framebuffer_create_for_mode(struct drm_device *dev,
7439 struct drm_display_mode *mode,
7440 int depth, int bpp)
7441{
7442 struct drm_i915_gem_object *obj;
7443 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7444
7445 obj = i915_gem_alloc_object(dev,
7446 intel_framebuffer_size_for_mode(mode, bpp));
7447 if (obj == NULL)
7448 return ERR_PTR(-ENOMEM);
7449
7450 mode_cmd.width = mode->hdisplay;
7451 mode_cmd.height = mode->vdisplay;
7452 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7453 bpp);
7454 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7455
7456 return intel_framebuffer_create(dev, &mode_cmd, obj);
7457}
7458
7459static struct drm_framebuffer *
7460mode_fits_in_fbdev(struct drm_device *dev,
7461 struct drm_display_mode *mode)
7462{
7463#ifdef CONFIG_DRM_I915_FBDEV
7464 struct drm_i915_private *dev_priv = dev->dev_private;
7465 struct drm_i915_gem_object *obj;
7466 struct drm_framebuffer *fb;
7467
7468 if (dev_priv->fbdev == NULL)
7469 return NULL;
7470
7471 obj = dev_priv->fbdev->ifb.obj;
7472 if (obj == NULL)
7473 return NULL;
7474
7475 fb = &dev_priv->fbdev->ifb.base;
7476 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7477 fb->bits_per_pixel))
7478 return NULL;
7479
7480 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7481 return NULL;
7482
7483 return fb;
7484#else
7485 return NULL;
7486#endif
7487}
7488
7489bool intel_get_load_detect_pipe(struct drm_connector *connector,
7490 struct drm_display_mode *mode,
7491 struct intel_load_detect_pipe *old)
7492{
7493 struct intel_crtc *intel_crtc;
7494 struct intel_encoder *intel_encoder =
7495 intel_attached_encoder(connector);
7496 struct drm_crtc *possible_crtc;
7497 struct drm_encoder *encoder = &intel_encoder->base;
7498 struct drm_crtc *crtc = NULL;
7499 struct drm_device *dev = encoder->dev;
7500 struct drm_framebuffer *fb;
7501 int i = -1;
7502
7503 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7504 connector->base.id, drm_get_connector_name(connector),
7505 encoder->base.id, drm_get_encoder_name(encoder));
7506
7507 /*
7508 * Algorithm gets a little messy:
7509 *
7510 * - if the connector already has an assigned crtc, use it (but make
7511 * sure it's on first)
7512 *
7513 * - try to find the first unused crtc that can drive this connector,
7514 * and use that if we find one
7515 */
7516
7517 /* See if we already have a CRTC for this connector */
7518 if (encoder->crtc) {
7519 crtc = encoder->crtc;
7520
7521 mutex_lock(&crtc->mutex);
7522
7523 old->dpms_mode = connector->dpms;
7524 old->load_detect_temp = false;
7525
7526 /* Make sure the crtc and connector are running */
7527 if (connector->dpms != DRM_MODE_DPMS_ON)
7528 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7529
7530 return true;
7531 }
7532
7533 /* Find an unused one (if possible) */
7534 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7535 i++;
7536 if (!(encoder->possible_crtcs & (1 << i)))
7537 continue;
7538 if (!possible_crtc->enabled) {
7539 crtc = possible_crtc;
7540 break;
7541 }
7542 }
7543
7544 /*
7545 * If we didn't find an unused CRTC, don't use any.
7546 */
7547 if (!crtc) {
7548 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7549 return false;
7550 }
7551
7552 mutex_lock(&crtc->mutex);
7553 intel_encoder->new_crtc = to_intel_crtc(crtc);
7554 to_intel_connector(connector)->new_encoder = intel_encoder;
7555
7556 intel_crtc = to_intel_crtc(crtc);
7557 old->dpms_mode = connector->dpms;
7558 old->load_detect_temp = true;
7559 old->release_fb = NULL;
7560
7561 if (!mode)
7562 mode = &load_detect_mode;
7563
7564 /* We need a framebuffer large enough to accommodate all accesses
7565 * that the plane may generate whilst we perform load detection.
7566 * We can not rely on the fbcon either being present (we get called
7567 * during its initialisation to detect all boot displays, or it may
7568 * not even exist) or that it is large enough to satisfy the
7569 * requested mode.
7570 */
7571 fb = mode_fits_in_fbdev(dev, mode);
7572 if (fb == NULL) {
7573 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7574 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7575 old->release_fb = fb;
7576 } else
7577 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7578 if (IS_ERR(fb)) {
7579 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7580 mutex_unlock(&crtc->mutex);
7581 return false;
7582 }
7583
7584 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7585 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7586 if (old->release_fb)
7587 old->release_fb->funcs->destroy(old->release_fb);
7588 mutex_unlock(&crtc->mutex);
7589 return false;
7590 }
7591
7592 /* let the connector get through one full cycle before testing */
7593 intel_wait_for_vblank(dev, intel_crtc->pipe);
7594 return true;
7595}
7596
7597void intel_release_load_detect_pipe(struct drm_connector *connector,
7598 struct intel_load_detect_pipe *old)
7599{
7600 struct intel_encoder *intel_encoder =
7601 intel_attached_encoder(connector);
7602 struct drm_encoder *encoder = &intel_encoder->base;
7603 struct drm_crtc *crtc = encoder->crtc;
7604
7605 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7606 connector->base.id, drm_get_connector_name(connector),
7607 encoder->base.id, drm_get_encoder_name(encoder));
7608
7609 if (old->load_detect_temp) {
7610 to_intel_connector(connector)->new_encoder = NULL;
7611 intel_encoder->new_crtc = NULL;
7612 intel_set_mode(crtc, NULL, 0, 0, NULL);
7613
7614 if (old->release_fb) {
7615 drm_framebuffer_unregister_private(old->release_fb);
7616 drm_framebuffer_unreference(old->release_fb);
7617 }
7618
7619 mutex_unlock(&crtc->mutex);
7620 return;
7621 }
7622
7623 /* Switch crtc and encoder back off if necessary */
7624 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7625 connector->funcs->dpms(connector, old->dpms_mode);
7626
7627 mutex_unlock(&crtc->mutex);
7628}
7629
7630static int i9xx_pll_refclk(struct drm_device *dev,
7631 const struct intel_crtc_config *pipe_config)
7632{
7633 struct drm_i915_private *dev_priv = dev->dev_private;
7634 u32 dpll = pipe_config->dpll_hw_state.dpll;
7635
7636 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7637 return dev_priv->vbt.lvds_ssc_freq * 1000;
7638 else if (HAS_PCH_SPLIT(dev))
7639 return 120000;
7640 else if (!IS_GEN2(dev))
7641 return 96000;
7642 else
7643 return 48000;
7644}
7645
7646/* Returns the clock of the currently programmed mode of the given pipe. */
7647static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7648 struct intel_crtc_config *pipe_config)
7649{
7650 struct drm_device *dev = crtc->base.dev;
7651 struct drm_i915_private *dev_priv = dev->dev_private;
7652 int pipe = pipe_config->cpu_transcoder;
7653 u32 dpll = pipe_config->dpll_hw_state.dpll;
7654 u32 fp;
7655 intel_clock_t clock;
7656 int refclk = i9xx_pll_refclk(dev, pipe_config);
7657
7658 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7659 fp = pipe_config->dpll_hw_state.fp0;
7660 else
7661 fp = pipe_config->dpll_hw_state.fp1;
7662
7663 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7664 if (IS_PINEVIEW(dev)) {
7665 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7666 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7667 } else {
7668 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7669 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7670 }
7671
7672 if (!IS_GEN2(dev)) {
7673 if (IS_PINEVIEW(dev))
7674 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7675 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7676 else
7677 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7678 DPLL_FPA01_P1_POST_DIV_SHIFT);
7679
7680 switch (dpll & DPLL_MODE_MASK) {
7681 case DPLLB_MODE_DAC_SERIAL:
7682 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7683 5 : 10;
7684 break;
7685 case DPLLB_MODE_LVDS:
7686 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7687 7 : 14;
7688 break;
7689 default:
7690 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7691 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7692 return;
7693 }
7694
7695 if (IS_PINEVIEW(dev))
7696 pineview_clock(refclk, &clock);
7697 else
7698 i9xx_clock(refclk, &clock);
7699 } else {
7700 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
7701
7702 if (is_lvds) {
7703 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7704 DPLL_FPA01_P1_POST_DIV_SHIFT);
7705 clock.p2 = 14;
7706 } else {
7707 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7708 clock.p1 = 2;
7709 else {
7710 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7711 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7712 }
7713 if (dpll & PLL_P2_DIVIDE_BY_4)
7714 clock.p2 = 4;
7715 else
7716 clock.p2 = 2;
7717 }
7718
7719 i9xx_clock(refclk, &clock);
7720 }
7721
7722 /*
7723 * This value includes pixel_multiplier. We will use
7724 * port_clock to compute adjusted_mode.crtc_clock in the
7725 * encoder's get_config() function.
7726 */
7727 pipe_config->port_clock = clock.dot;
7728}
7729
7730int intel_dotclock_calculate(int link_freq,
7731 const struct intel_link_m_n *m_n)
7732{
7733 /*
7734 * The calculation for the data clock is:
7735 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
7736 * But we want to avoid losing precison if possible, so:
7737 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
7738 *
7739 * and the link clock is simpler:
7740 * link_clock = (m * link_clock) / n
7741 */
7742
7743 if (!m_n->link_n)
7744 return 0;
7745
7746 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
7747}
7748
7749static void ironlake_pch_clock_get(struct intel_crtc *crtc,
7750 struct intel_crtc_config *pipe_config)
7751{
7752 struct drm_device *dev = crtc->base.dev;
7753
7754 /* read out port_clock from the DPLL */
7755 i9xx_crtc_clock_get(crtc, pipe_config);
7756
7757 /*
7758 * This value does not include pixel_multiplier.
7759 * We will check that port_clock and adjusted_mode.crtc_clock
7760 * agree once we know their relationship in the encoder's
7761 * get_config() function.
7762 */
7763 pipe_config->adjusted_mode.crtc_clock =
7764 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
7765 &pipe_config->fdi_m_n);
7766}
7767
7768/** Returns the currently programmed mode of the given pipe. */
7769struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7770 struct drm_crtc *crtc)
7771{
7772 struct drm_i915_private *dev_priv = dev->dev_private;
7773 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7774 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
7775 struct drm_display_mode *mode;
7776 struct intel_crtc_config pipe_config;
7777 int htot = I915_READ(HTOTAL(cpu_transcoder));
7778 int hsync = I915_READ(HSYNC(cpu_transcoder));
7779 int vtot = I915_READ(VTOTAL(cpu_transcoder));
7780 int vsync = I915_READ(VSYNC(cpu_transcoder));
7781 enum pipe pipe = intel_crtc->pipe;
7782
7783 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
7784 if (!mode)
7785 return NULL;
7786
7787 /*
7788 * Construct a pipe_config sufficient for getting the clock info
7789 * back out of crtc_clock_get.
7790 *
7791 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
7792 * to use a real value here instead.
7793 */
7794 pipe_config.cpu_transcoder = (enum transcoder) pipe;
7795 pipe_config.pixel_multiplier = 1;
7796 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
7797 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
7798 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
7799 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
7800
7801 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
7802 mode->hdisplay = (htot & 0xffff) + 1;
7803 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7804 mode->hsync_start = (hsync & 0xffff) + 1;
7805 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7806 mode->vdisplay = (vtot & 0xffff) + 1;
7807 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7808 mode->vsync_start = (vsync & 0xffff) + 1;
7809 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7810
7811 drm_mode_set_name(mode);
7812
7813 return mode;
7814}
7815
7816static void intel_increase_pllclock(struct drm_crtc *crtc)
7817{
7818 struct drm_device *dev = crtc->dev;
7819 drm_i915_private_t *dev_priv = dev->dev_private;
7820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7821 int pipe = intel_crtc->pipe;
7822 int dpll_reg = DPLL(pipe);
7823 int dpll;
7824
7825 if (HAS_PCH_SPLIT(dev))
7826 return;
7827
7828 if (!dev_priv->lvds_downclock_avail)
7829 return;
7830
7831 dpll = I915_READ(dpll_reg);
7832 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7833 DRM_DEBUG_DRIVER("upclocking LVDS\n");
7834
7835 assert_panel_unlocked(dev_priv, pipe);
7836
7837 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7838 I915_WRITE(dpll_reg, dpll);
7839 intel_wait_for_vblank(dev, pipe);
7840
7841 dpll = I915_READ(dpll_reg);
7842 if (dpll & DISPLAY_RATE_SELECT_FPA1)
7843 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7844 }
7845}
7846
7847static void intel_decrease_pllclock(struct drm_crtc *crtc)
7848{
7849 struct drm_device *dev = crtc->dev;
7850 drm_i915_private_t *dev_priv = dev->dev_private;
7851 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7852
7853 if (HAS_PCH_SPLIT(dev))
7854 return;
7855
7856 if (!dev_priv->lvds_downclock_avail)
7857 return;
7858
7859 /*
7860 * Since this is called by a timer, we should never get here in
7861 * the manual case.
7862 */
7863 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7864 int pipe = intel_crtc->pipe;
7865 int dpll_reg = DPLL(pipe);
7866 int dpll;
7867
7868 DRM_DEBUG_DRIVER("downclocking LVDS\n");
7869
7870 assert_panel_unlocked(dev_priv, pipe);
7871
7872 dpll = I915_READ(dpll_reg);
7873 dpll |= DISPLAY_RATE_SELECT_FPA1;
7874 I915_WRITE(dpll_reg, dpll);
7875 intel_wait_for_vblank(dev, pipe);
7876 dpll = I915_READ(dpll_reg);
7877 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7878 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7879 }
7880
7881}
7882
7883void intel_mark_busy(struct drm_device *dev)
7884{
7885 struct drm_i915_private *dev_priv = dev->dev_private;
7886
7887 hsw_package_c8_gpu_busy(dev_priv);
7888 i915_update_gfx_val(dev_priv);
7889}
7890
7891void intel_mark_idle(struct drm_device *dev)
7892{
7893 struct drm_i915_private *dev_priv = dev->dev_private;
7894 struct drm_crtc *crtc;
7895
7896 hsw_package_c8_gpu_idle(dev_priv);
7897
7898 if (!i915_powersave)
7899 return;
7900
7901 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7902 if (!crtc->fb)
7903 continue;
7904
7905 intel_decrease_pllclock(crtc);
7906 }
7907
7908 if (dev_priv->info->gen >= 6)
7909 gen6_rps_idle(dev->dev_private);
7910}
7911
7912void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
7913 struct intel_ring_buffer *ring)
7914{
7915 struct drm_device *dev = obj->base.dev;
7916 struct drm_crtc *crtc;
7917
7918 if (!i915_powersave)
7919 return;
7920
7921 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7922 if (!crtc->fb)
7923 continue;
7924
7925 if (to_intel_framebuffer(crtc->fb)->obj != obj)
7926 continue;
7927
7928 intel_increase_pllclock(crtc);
7929 if (ring && intel_fbc_enabled(dev))
7930 ring->fbc_dirty = true;
7931 }
7932}
7933
7934static void intel_crtc_destroy(struct drm_crtc *crtc)
7935{
7936 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7937 struct drm_device *dev = crtc->dev;
7938 struct intel_unpin_work *work;
7939 unsigned long flags;
7940
7941 spin_lock_irqsave(&dev->event_lock, flags);
7942 work = intel_crtc->unpin_work;
7943 intel_crtc->unpin_work = NULL;
7944 spin_unlock_irqrestore(&dev->event_lock, flags);
7945
7946 if (work) {
7947 cancel_work_sync(&work->work);
7948 kfree(work);
7949 }
7950
7951 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
7952
7953 drm_crtc_cleanup(crtc);
7954
7955 kfree(intel_crtc);
7956}
7957
7958static void intel_unpin_work_fn(struct work_struct *__work)
7959{
7960 struct intel_unpin_work *work =
7961 container_of(__work, struct intel_unpin_work, work);
7962 struct drm_device *dev = work->crtc->dev;
7963
7964 mutex_lock(&dev->struct_mutex);
7965 intel_unpin_fb_obj(work->old_fb_obj);
7966 drm_gem_object_unreference(&work->pending_flip_obj->base);
7967 drm_gem_object_unreference(&work->old_fb_obj->base);
7968
7969 intel_update_fbc(dev);
7970 mutex_unlock(&dev->struct_mutex);
7971
7972 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
7973 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
7974
7975 kfree(work);
7976}
7977
7978static void do_intel_finish_page_flip(struct drm_device *dev,
7979 struct drm_crtc *crtc)
7980{
7981 drm_i915_private_t *dev_priv = dev->dev_private;
7982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7983 struct intel_unpin_work *work;
7984 unsigned long flags;
7985
7986 /* Ignore early vblank irqs */
7987 if (intel_crtc == NULL)
7988 return;
7989
7990 spin_lock_irqsave(&dev->event_lock, flags);
7991 work = intel_crtc->unpin_work;
7992
7993 /* Ensure we don't miss a work->pending update ... */
7994 smp_rmb();
7995
7996 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
7997 spin_unlock_irqrestore(&dev->event_lock, flags);
7998 return;
7999 }
8000
8001 /* and that the unpin work is consistent wrt ->pending. */
8002 smp_rmb();
8003
8004 intel_crtc->unpin_work = NULL;
8005
8006 if (work->event)
8007 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8008
8009 drm_vblank_put(dev, intel_crtc->pipe);
8010
8011 spin_unlock_irqrestore(&dev->event_lock, flags);
8012
8013 wake_up_all(&dev_priv->pending_flip_queue);
8014
8015 queue_work(dev_priv->wq, &work->work);
8016
8017 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8018}
8019
8020void intel_finish_page_flip(struct drm_device *dev, int pipe)
8021{
8022 drm_i915_private_t *dev_priv = dev->dev_private;
8023 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8024
8025 do_intel_finish_page_flip(dev, crtc);
8026}
8027
8028void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8029{
8030 drm_i915_private_t *dev_priv = dev->dev_private;
8031 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8032
8033 do_intel_finish_page_flip(dev, crtc);
8034}
8035
8036void intel_prepare_page_flip(struct drm_device *dev, int plane)
8037{
8038 drm_i915_private_t *dev_priv = dev->dev_private;
8039 struct intel_crtc *intel_crtc =
8040 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8041 unsigned long flags;
8042
8043 /* NB: An MMIO update of the plane base pointer will also
8044 * generate a page-flip completion irq, i.e. every modeset
8045 * is also accompanied by a spurious intel_prepare_page_flip().
8046 */
8047 spin_lock_irqsave(&dev->event_lock, flags);
8048 if (intel_crtc->unpin_work)
8049 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8050 spin_unlock_irqrestore(&dev->event_lock, flags);
8051}
8052
8053inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8054{
8055 /* Ensure that the work item is consistent when activating it ... */
8056 smp_wmb();
8057 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8058 /* and that it is marked active as soon as the irq could fire. */
8059 smp_wmb();
8060}
8061
8062static int intel_gen2_queue_flip(struct drm_device *dev,
8063 struct drm_crtc *crtc,
8064 struct drm_framebuffer *fb,
8065 struct drm_i915_gem_object *obj,
8066 uint32_t flags)
8067{
8068 struct drm_i915_private *dev_priv = dev->dev_private;
8069 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8070 u32 flip_mask;
8071 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8072 int ret;
8073
8074 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8075 if (ret)
8076 goto err;
8077
8078 ret = intel_ring_begin(ring, 6);
8079 if (ret)
8080 goto err_unpin;
8081
8082 /* Can't queue multiple flips, so wait for the previous
8083 * one to finish before executing the next.
8084 */
8085 if (intel_crtc->plane)
8086 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8087 else
8088 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8089 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8090 intel_ring_emit(ring, MI_NOOP);
8091 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8092 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8093 intel_ring_emit(ring, fb->pitches[0]);
8094 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8095 intel_ring_emit(ring, 0); /* aux display base address, unused */
8096
8097 intel_mark_page_flip_active(intel_crtc);
8098 __intel_ring_advance(ring);
8099 return 0;
8100
8101err_unpin:
8102 intel_unpin_fb_obj(obj);
8103err:
8104 return ret;
8105}
8106
8107static int intel_gen3_queue_flip(struct drm_device *dev,
8108 struct drm_crtc *crtc,
8109 struct drm_framebuffer *fb,
8110 struct drm_i915_gem_object *obj,
8111 uint32_t flags)
8112{
8113 struct drm_i915_private *dev_priv = dev->dev_private;
8114 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8115 u32 flip_mask;
8116 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8117 int ret;
8118
8119 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8120 if (ret)
8121 goto err;
8122
8123 ret = intel_ring_begin(ring, 6);
8124 if (ret)
8125 goto err_unpin;
8126
8127 if (intel_crtc->plane)
8128 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8129 else
8130 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8131 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8132 intel_ring_emit(ring, MI_NOOP);
8133 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8134 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8135 intel_ring_emit(ring, fb->pitches[0]);
8136 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8137 intel_ring_emit(ring, MI_NOOP);
8138
8139 intel_mark_page_flip_active(intel_crtc);
8140 __intel_ring_advance(ring);
8141 return 0;
8142
8143err_unpin:
8144 intel_unpin_fb_obj(obj);
8145err:
8146 return ret;
8147}
8148
8149static int intel_gen4_queue_flip(struct drm_device *dev,
8150 struct drm_crtc *crtc,
8151 struct drm_framebuffer *fb,
8152 struct drm_i915_gem_object *obj,
8153 uint32_t flags)
8154{
8155 struct drm_i915_private *dev_priv = dev->dev_private;
8156 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8157 uint32_t pf, pipesrc;
8158 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8159 int ret;
8160
8161 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8162 if (ret)
8163 goto err;
8164
8165 ret = intel_ring_begin(ring, 4);
8166 if (ret)
8167 goto err_unpin;
8168
8169 /* i965+ uses the linear or tiled offsets from the
8170 * Display Registers (which do not change across a page-flip)
8171 * so we need only reprogram the base address.
8172 */
8173 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8174 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8175 intel_ring_emit(ring, fb->pitches[0]);
8176 intel_ring_emit(ring,
8177 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8178 obj->tiling_mode);
8179
8180 /* XXX Enabling the panel-fitter across page-flip is so far
8181 * untested on non-native modes, so ignore it for now.
8182 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8183 */
8184 pf = 0;
8185 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8186 intel_ring_emit(ring, pf | pipesrc);
8187
8188 intel_mark_page_flip_active(intel_crtc);
8189 __intel_ring_advance(ring);
8190 return 0;
8191
8192err_unpin:
8193 intel_unpin_fb_obj(obj);
8194err:
8195 return ret;
8196}
8197
8198static int intel_gen6_queue_flip(struct drm_device *dev,
8199 struct drm_crtc *crtc,
8200 struct drm_framebuffer *fb,
8201 struct drm_i915_gem_object *obj,
8202 uint32_t flags)
8203{
8204 struct drm_i915_private *dev_priv = dev->dev_private;
8205 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8206 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8207 uint32_t pf, pipesrc;
8208 int ret;
8209
8210 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8211 if (ret)
8212 goto err;
8213
8214 ret = intel_ring_begin(ring, 4);
8215 if (ret)
8216 goto err_unpin;
8217
8218 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8219 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8220 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8221 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8222
8223 /* Contrary to the suggestions in the documentation,
8224 * "Enable Panel Fitter" does not seem to be required when page
8225 * flipping with a non-native mode, and worse causes a normal
8226 * modeset to fail.
8227 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8228 */
8229 pf = 0;
8230 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8231 intel_ring_emit(ring, pf | pipesrc);
8232
8233 intel_mark_page_flip_active(intel_crtc);
8234 __intel_ring_advance(ring);
8235 return 0;
8236
8237err_unpin:
8238 intel_unpin_fb_obj(obj);
8239err:
8240 return ret;
8241}
8242
8243static int intel_gen7_queue_flip(struct drm_device *dev,
8244 struct drm_crtc *crtc,
8245 struct drm_framebuffer *fb,
8246 struct drm_i915_gem_object *obj,
8247 uint32_t flags)
8248{
8249 struct drm_i915_private *dev_priv = dev->dev_private;
8250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8251 struct intel_ring_buffer *ring;
8252 uint32_t plane_bit = 0;
8253 int len, ret;
8254
8255 ring = obj->ring;
8256 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8257 ring = &dev_priv->ring[BCS];
8258
8259 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8260 if (ret)
8261 goto err;
8262
8263 switch(intel_crtc->plane) {
8264 case PLANE_A:
8265 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8266 break;
8267 case PLANE_B:
8268 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8269 break;
8270 case PLANE_C:
8271 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8272 break;
8273 default:
8274 WARN_ONCE(1, "unknown plane in flip command\n");
8275 ret = -ENODEV;
8276 goto err_unpin;
8277 }
8278
8279 len = 4;
8280 if (ring->id == RCS)
8281 len += 6;
8282
8283 ret = intel_ring_begin(ring, len);
8284 if (ret)
8285 goto err_unpin;
8286
8287 /* Unmask the flip-done completion message. Note that the bspec says that
8288 * we should do this for both the BCS and RCS, and that we must not unmask
8289 * more than one flip event at any time (or ensure that one flip message
8290 * can be sent by waiting for flip-done prior to queueing new flips).
8291 * Experimentation says that BCS works despite DERRMR masking all
8292 * flip-done completion events and that unmasking all planes at once
8293 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8294 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8295 */
8296 if (ring->id == RCS) {
8297 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8298 intel_ring_emit(ring, DERRMR);
8299 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8300 DERRMR_PIPEB_PRI_FLIP_DONE |
8301 DERRMR_PIPEC_PRI_FLIP_DONE));
8302 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8303 intel_ring_emit(ring, DERRMR);
8304 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8305 }
8306
8307 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8308 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8309 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8310 intel_ring_emit(ring, (MI_NOOP));
8311
8312 intel_mark_page_flip_active(intel_crtc);
8313 __intel_ring_advance(ring);
8314 return 0;
8315
8316err_unpin:
8317 intel_unpin_fb_obj(obj);
8318err:
8319 return ret;
8320}
8321
8322static int intel_default_queue_flip(struct drm_device *dev,
8323 struct drm_crtc *crtc,
8324 struct drm_framebuffer *fb,
8325 struct drm_i915_gem_object *obj,
8326 uint32_t flags)
8327{
8328 return -ENODEV;
8329}
8330
8331static int intel_crtc_page_flip(struct drm_crtc *crtc,
8332 struct drm_framebuffer *fb,
8333 struct drm_pending_vblank_event *event,
8334 uint32_t page_flip_flags)
8335{
8336 struct drm_device *dev = crtc->dev;
8337 struct drm_i915_private *dev_priv = dev->dev_private;
8338 struct drm_framebuffer *old_fb = crtc->fb;
8339 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8341 struct intel_unpin_work *work;
8342 unsigned long flags;
8343 int ret;
8344
8345 /* Can't change pixel format via MI display flips. */
8346 if (fb->pixel_format != crtc->fb->pixel_format)
8347 return -EINVAL;
8348
8349 /*
8350 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8351 * Note that pitch changes could also affect these register.
8352 */
8353 if (INTEL_INFO(dev)->gen > 3 &&
8354 (fb->offsets[0] != crtc->fb->offsets[0] ||
8355 fb->pitches[0] != crtc->fb->pitches[0]))
8356 return -EINVAL;
8357
8358 work = kzalloc(sizeof(*work), GFP_KERNEL);
8359 if (work == NULL)
8360 return -ENOMEM;
8361
8362 work->event = event;
8363 work->crtc = crtc;
8364 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8365 INIT_WORK(&work->work, intel_unpin_work_fn);
8366
8367 ret = drm_vblank_get(dev, intel_crtc->pipe);
8368 if (ret)
8369 goto free_work;
8370
8371 /* We borrow the event spin lock for protecting unpin_work */
8372 spin_lock_irqsave(&dev->event_lock, flags);
8373 if (intel_crtc->unpin_work) {
8374 spin_unlock_irqrestore(&dev->event_lock, flags);
8375 kfree(work);
8376 drm_vblank_put(dev, intel_crtc->pipe);
8377
8378 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8379 return -EBUSY;
8380 }
8381 intel_crtc->unpin_work = work;
8382 spin_unlock_irqrestore(&dev->event_lock, flags);
8383
8384 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8385 flush_workqueue(dev_priv->wq);
8386
8387 ret = i915_mutex_lock_interruptible(dev);
8388 if (ret)
8389 goto cleanup;
8390
8391 /* Reference the objects for the scheduled work. */
8392 drm_gem_object_reference(&work->old_fb_obj->base);
8393 drm_gem_object_reference(&obj->base);
8394
8395 crtc->fb = fb;
8396
8397 work->pending_flip_obj = obj;
8398
8399 work->enable_stall_check = true;
8400
8401 atomic_inc(&intel_crtc->unpin_work_count);
8402 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8403
8404 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8405 if (ret)
8406 goto cleanup_pending;
8407
8408 intel_disable_fbc(dev);
8409 intel_mark_fb_busy(obj, NULL);
8410 mutex_unlock(&dev->struct_mutex);
8411
8412 trace_i915_flip_request(intel_crtc->plane, obj);
8413
8414 return 0;
8415
8416cleanup_pending:
8417 atomic_dec(&intel_crtc->unpin_work_count);
8418 crtc->fb = old_fb;
8419 drm_gem_object_unreference(&work->old_fb_obj->base);
8420 drm_gem_object_unreference(&obj->base);
8421 mutex_unlock(&dev->struct_mutex);
8422
8423cleanup:
8424 spin_lock_irqsave(&dev->event_lock, flags);
8425 intel_crtc->unpin_work = NULL;
8426 spin_unlock_irqrestore(&dev->event_lock, flags);
8427
8428 drm_vblank_put(dev, intel_crtc->pipe);
8429free_work:
8430 kfree(work);
8431
8432 return ret;
8433}
8434
8435static struct drm_crtc_helper_funcs intel_helper_funcs = {
8436 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8437 .load_lut = intel_crtc_load_lut,
8438};
8439
8440static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8441 struct drm_crtc *crtc)
8442{
8443 struct drm_device *dev;
8444 struct drm_crtc *tmp;
8445 int crtc_mask = 1;
8446
8447 WARN(!crtc, "checking null crtc?\n");
8448
8449 dev = crtc->dev;
8450
8451 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8452 if (tmp == crtc)
8453 break;
8454 crtc_mask <<= 1;
8455 }
8456
8457 if (encoder->possible_crtcs & crtc_mask)
8458 return true;
8459 return false;
8460}
8461
8462/**
8463 * intel_modeset_update_staged_output_state
8464 *
8465 * Updates the staged output configuration state, e.g. after we've read out the
8466 * current hw state.
8467 */
8468static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8469{
8470 struct intel_encoder *encoder;
8471 struct intel_connector *connector;
8472
8473 list_for_each_entry(connector, &dev->mode_config.connector_list,
8474 base.head) {
8475 connector->new_encoder =
8476 to_intel_encoder(connector->base.encoder);
8477 }
8478
8479 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8480 base.head) {
8481 encoder->new_crtc =
8482 to_intel_crtc(encoder->base.crtc);
8483 }
8484}
8485
8486/**
8487 * intel_modeset_commit_output_state
8488 *
8489 * This function copies the stage display pipe configuration to the real one.
8490 */
8491static void intel_modeset_commit_output_state(struct drm_device *dev)
8492{
8493 struct intel_encoder *encoder;
8494 struct intel_connector *connector;
8495
8496 list_for_each_entry(connector, &dev->mode_config.connector_list,
8497 base.head) {
8498 connector->base.encoder = &connector->new_encoder->base;
8499 }
8500
8501 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8502 base.head) {
8503 encoder->base.crtc = &encoder->new_crtc->base;
8504 }
8505}
8506
8507static void
8508connected_sink_compute_bpp(struct intel_connector * connector,
8509 struct intel_crtc_config *pipe_config)
8510{
8511 int bpp = pipe_config->pipe_bpp;
8512
8513 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8514 connector->base.base.id,
8515 drm_get_connector_name(&connector->base));
8516
8517 /* Don't use an invalid EDID bpc value */
8518 if (connector->base.display_info.bpc &&
8519 connector->base.display_info.bpc * 3 < bpp) {
8520 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8521 bpp, connector->base.display_info.bpc*3);
8522 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8523 }
8524
8525 /* Clamp bpp to 8 on screens without EDID 1.4 */
8526 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8527 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8528 bpp);
8529 pipe_config->pipe_bpp = 24;
8530 }
8531}
8532
8533static int
8534compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8535 struct drm_framebuffer *fb,
8536 struct intel_crtc_config *pipe_config)
8537{
8538 struct drm_device *dev = crtc->base.dev;
8539 struct intel_connector *connector;
8540 int bpp;
8541
8542 switch (fb->pixel_format) {
8543 case DRM_FORMAT_C8:
8544 bpp = 8*3; /* since we go through a colormap */
8545 break;
8546 case DRM_FORMAT_XRGB1555:
8547 case DRM_FORMAT_ARGB1555:
8548 /* checked in intel_framebuffer_init already */
8549 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8550 return -EINVAL;
8551 case DRM_FORMAT_RGB565:
8552 bpp = 6*3; /* min is 18bpp */
8553 break;
8554 case DRM_FORMAT_XBGR8888:
8555 case DRM_FORMAT_ABGR8888:
8556 /* checked in intel_framebuffer_init already */
8557 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8558 return -EINVAL;
8559 case DRM_FORMAT_XRGB8888:
8560 case DRM_FORMAT_ARGB8888:
8561 bpp = 8*3;
8562 break;
8563 case DRM_FORMAT_XRGB2101010:
8564 case DRM_FORMAT_ARGB2101010:
8565 case DRM_FORMAT_XBGR2101010:
8566 case DRM_FORMAT_ABGR2101010:
8567 /* checked in intel_framebuffer_init already */
8568 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8569 return -EINVAL;
8570 bpp = 10*3;
8571 break;
8572 /* TODO: gen4+ supports 16 bpc floating point, too. */
8573 default:
8574 DRM_DEBUG_KMS("unsupported depth\n");
8575 return -EINVAL;
8576 }
8577
8578 pipe_config->pipe_bpp = bpp;
8579
8580 /* Clamp display bpp to EDID value */
8581 list_for_each_entry(connector, &dev->mode_config.connector_list,
8582 base.head) {
8583 if (!connector->new_encoder ||
8584 connector->new_encoder->new_crtc != crtc)
8585 continue;
8586
8587 connected_sink_compute_bpp(connector, pipe_config);
8588 }
8589
8590 return bpp;
8591}
8592
8593static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8594{
8595 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8596 "type: 0x%x flags: 0x%x\n",
8597 mode->crtc_clock,
8598 mode->crtc_hdisplay, mode->crtc_hsync_start,
8599 mode->crtc_hsync_end, mode->crtc_htotal,
8600 mode->crtc_vdisplay, mode->crtc_vsync_start,
8601 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8602}
8603
8604static void intel_dump_pipe_config(struct intel_crtc *crtc,
8605 struct intel_crtc_config *pipe_config,
8606 const char *context)
8607{
8608 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8609 context, pipe_name(crtc->pipe));
8610
8611 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8612 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8613 pipe_config->pipe_bpp, pipe_config->dither);
8614 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8615 pipe_config->has_pch_encoder,
8616 pipe_config->fdi_lanes,
8617 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8618 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8619 pipe_config->fdi_m_n.tu);
8620 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8621 pipe_config->has_dp_encoder,
8622 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8623 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8624 pipe_config->dp_m_n.tu);
8625 DRM_DEBUG_KMS("requested mode:\n");
8626 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8627 DRM_DEBUG_KMS("adjusted mode:\n");
8628 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8629 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8630 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8631 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8632 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8633 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8634 pipe_config->gmch_pfit.control,
8635 pipe_config->gmch_pfit.pgm_ratios,
8636 pipe_config->gmch_pfit.lvds_border_bits);
8637 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8638 pipe_config->pch_pfit.pos,
8639 pipe_config->pch_pfit.size,
8640 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8641 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8642 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8643}
8644
8645static bool check_encoder_cloning(struct drm_crtc *crtc)
8646{
8647 int num_encoders = 0;
8648 bool uncloneable_encoders = false;
8649 struct intel_encoder *encoder;
8650
8651 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8652 base.head) {
8653 if (&encoder->new_crtc->base != crtc)
8654 continue;
8655
8656 num_encoders++;
8657 if (!encoder->cloneable)
8658 uncloneable_encoders = true;
8659 }
8660
8661 return !(num_encoders > 1 && uncloneable_encoders);
8662}
8663
8664static struct intel_crtc_config *
8665intel_modeset_pipe_config(struct drm_crtc *crtc,
8666 struct drm_framebuffer *fb,
8667 struct drm_display_mode *mode)
8668{
8669 struct drm_device *dev = crtc->dev;
8670 struct intel_encoder *encoder;
8671 struct intel_crtc_config *pipe_config;
8672 int plane_bpp, ret = -EINVAL;
8673 bool retry = true;
8674
8675 if (!check_encoder_cloning(crtc)) {
8676 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8677 return ERR_PTR(-EINVAL);
8678 }
8679
8680 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8681 if (!pipe_config)
8682 return ERR_PTR(-ENOMEM);
8683
8684 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8685 drm_mode_copy(&pipe_config->requested_mode, mode);
8686
8687 pipe_config->cpu_transcoder =
8688 (enum transcoder) to_intel_crtc(crtc)->pipe;
8689 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8690
8691 /*
8692 * Sanitize sync polarity flags based on requested ones. If neither
8693 * positive or negative polarity is requested, treat this as meaning
8694 * negative polarity.
8695 */
8696 if (!(pipe_config->adjusted_mode.flags &
8697 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8698 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8699
8700 if (!(pipe_config->adjusted_mode.flags &
8701 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8702 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8703
8704 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8705 * plane pixel format and any sink constraints into account. Returns the
8706 * source plane bpp so that dithering can be selected on mismatches
8707 * after encoders and crtc also have had their say. */
8708 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8709 fb, pipe_config);
8710 if (plane_bpp < 0)
8711 goto fail;
8712
8713 /*
8714 * Determine the real pipe dimensions. Note that stereo modes can
8715 * increase the actual pipe size due to the frame doubling and
8716 * insertion of additional space for blanks between the frame. This
8717 * is stored in the crtc timings. We use the requested mode to do this
8718 * computation to clearly distinguish it from the adjusted mode, which
8719 * can be changed by the connectors in the below retry loop.
8720 */
8721 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8722 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8723 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8724
8725encoder_retry:
8726 /* Ensure the port clock defaults are reset when retrying. */
8727 pipe_config->port_clock = 0;
8728 pipe_config->pixel_multiplier = 1;
8729
8730 /* Fill in default crtc timings, allow encoders to overwrite them. */
8731 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
8732
8733 /* Pass our mode to the connectors and the CRTC to give them a chance to
8734 * adjust it according to limitations or connector properties, and also
8735 * a chance to reject the mode entirely.
8736 */
8737 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8738 base.head) {
8739
8740 if (&encoder->new_crtc->base != crtc)
8741 continue;
8742
8743 if (!(encoder->compute_config(encoder, pipe_config))) {
8744 DRM_DEBUG_KMS("Encoder config failure\n");
8745 goto fail;
8746 }
8747 }
8748
8749 /* Set default port clock if not overwritten by the encoder. Needs to be
8750 * done afterwards in case the encoder adjusts the mode. */
8751 if (!pipe_config->port_clock)
8752 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
8753 * pipe_config->pixel_multiplier;
8754
8755 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
8756 if (ret < 0) {
8757 DRM_DEBUG_KMS("CRTC fixup failed\n");
8758 goto fail;
8759 }
8760
8761 if (ret == RETRY) {
8762 if (WARN(!retry, "loop in pipe configuration computation\n")) {
8763 ret = -EINVAL;
8764 goto fail;
8765 }
8766
8767 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
8768 retry = false;
8769 goto encoder_retry;
8770 }
8771
8772 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
8773 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
8774 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
8775
8776 return pipe_config;
8777fail:
8778 kfree(pipe_config);
8779 return ERR_PTR(ret);
8780}
8781
8782/* Computes which crtcs are affected and sets the relevant bits in the mask. For
8783 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
8784static void
8785intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
8786 unsigned *prepare_pipes, unsigned *disable_pipes)
8787{
8788 struct intel_crtc *intel_crtc;
8789 struct drm_device *dev = crtc->dev;
8790 struct intel_encoder *encoder;
8791 struct intel_connector *connector;
8792 struct drm_crtc *tmp_crtc;
8793
8794 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
8795
8796 /* Check which crtcs have changed outputs connected to them, these need
8797 * to be part of the prepare_pipes mask. We don't (yet) support global
8798 * modeset across multiple crtcs, so modeset_pipes will only have one
8799 * bit set at most. */
8800 list_for_each_entry(connector, &dev->mode_config.connector_list,
8801 base.head) {
8802 if (connector->base.encoder == &connector->new_encoder->base)
8803 continue;
8804
8805 if (connector->base.encoder) {
8806 tmp_crtc = connector->base.encoder->crtc;
8807
8808 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8809 }
8810
8811 if (connector->new_encoder)
8812 *prepare_pipes |=
8813 1 << connector->new_encoder->new_crtc->pipe;
8814 }
8815
8816 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8817 base.head) {
8818 if (encoder->base.crtc == &encoder->new_crtc->base)
8819 continue;
8820
8821 if (encoder->base.crtc) {
8822 tmp_crtc = encoder->base.crtc;
8823
8824 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
8825 }
8826
8827 if (encoder->new_crtc)
8828 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
8829 }
8830
8831 /* Check for any pipes that will be fully disabled ... */
8832 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8833 base.head) {
8834 bool used = false;
8835
8836 /* Don't try to disable disabled crtcs. */
8837 if (!intel_crtc->base.enabled)
8838 continue;
8839
8840 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8841 base.head) {
8842 if (encoder->new_crtc == intel_crtc)
8843 used = true;
8844 }
8845
8846 if (!used)
8847 *disable_pipes |= 1 << intel_crtc->pipe;
8848 }
8849
8850
8851 /* set_mode is also used to update properties on life display pipes. */
8852 intel_crtc = to_intel_crtc(crtc);
8853 if (crtc->enabled)
8854 *prepare_pipes |= 1 << intel_crtc->pipe;
8855
8856 /*
8857 * For simplicity do a full modeset on any pipe where the output routing
8858 * changed. We could be more clever, but that would require us to be
8859 * more careful with calling the relevant encoder->mode_set functions.
8860 */
8861 if (*prepare_pipes)
8862 *modeset_pipes = *prepare_pipes;
8863
8864 /* ... and mask these out. */
8865 *modeset_pipes &= ~(*disable_pipes);
8866 *prepare_pipes &= ~(*disable_pipes);
8867
8868 /*
8869 * HACK: We don't (yet) fully support global modesets. intel_set_config
8870 * obies this rule, but the modeset restore mode of
8871 * intel_modeset_setup_hw_state does not.
8872 */
8873 *modeset_pipes &= 1 << intel_crtc->pipe;
8874 *prepare_pipes &= 1 << intel_crtc->pipe;
8875
8876 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
8877 *modeset_pipes, *prepare_pipes, *disable_pipes);
8878}
8879
8880static bool intel_crtc_in_use(struct drm_crtc *crtc)
8881{
8882 struct drm_encoder *encoder;
8883 struct drm_device *dev = crtc->dev;
8884
8885 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
8886 if (encoder->crtc == crtc)
8887 return true;
8888
8889 return false;
8890}
8891
8892static void
8893intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
8894{
8895 struct intel_encoder *intel_encoder;
8896 struct intel_crtc *intel_crtc;
8897 struct drm_connector *connector;
8898
8899 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
8900 base.head) {
8901 if (!intel_encoder->base.crtc)
8902 continue;
8903
8904 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
8905
8906 if (prepare_pipes & (1 << intel_crtc->pipe))
8907 intel_encoder->connectors_active = false;
8908 }
8909
8910 intel_modeset_commit_output_state(dev);
8911
8912 /* Update computed state. */
8913 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
8914 base.head) {
8915 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
8916 }
8917
8918 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
8919 if (!connector->encoder || !connector->encoder->crtc)
8920 continue;
8921
8922 intel_crtc = to_intel_crtc(connector->encoder->crtc);
8923
8924 if (prepare_pipes & (1 << intel_crtc->pipe)) {
8925 struct drm_property *dpms_property =
8926 dev->mode_config.dpms_property;
8927
8928 connector->dpms = DRM_MODE_DPMS_ON;
8929 drm_object_property_set_value(&connector->base,
8930 dpms_property,
8931 DRM_MODE_DPMS_ON);
8932
8933 intel_encoder = to_intel_encoder(connector->encoder);
8934 intel_encoder->connectors_active = true;
8935 }
8936 }
8937
8938}
8939
8940static bool intel_fuzzy_clock_check(int clock1, int clock2)
8941{
8942 int diff;
8943
8944 if (clock1 == clock2)
8945 return true;
8946
8947 if (!clock1 || !clock2)
8948 return false;
8949
8950 diff = abs(clock1 - clock2);
8951
8952 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
8953 return true;
8954
8955 return false;
8956}
8957
8958#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
8959 list_for_each_entry((intel_crtc), \
8960 &(dev)->mode_config.crtc_list, \
8961 base.head) \
8962 if (mask & (1 <<(intel_crtc)->pipe))
8963
8964static bool
8965intel_pipe_config_compare(struct drm_device *dev,
8966 struct intel_crtc_config *current_config,
8967 struct intel_crtc_config *pipe_config)
8968{
8969#define PIPE_CONF_CHECK_X(name) \
8970 if (current_config->name != pipe_config->name) { \
8971 DRM_ERROR("mismatch in " #name " " \
8972 "(expected 0x%08x, found 0x%08x)\n", \
8973 current_config->name, \
8974 pipe_config->name); \
8975 return false; \
8976 }
8977
8978#define PIPE_CONF_CHECK_I(name) \
8979 if (current_config->name != pipe_config->name) { \
8980 DRM_ERROR("mismatch in " #name " " \
8981 "(expected %i, found %i)\n", \
8982 current_config->name, \
8983 pipe_config->name); \
8984 return false; \
8985 }
8986
8987#define PIPE_CONF_CHECK_FLAGS(name, mask) \
8988 if ((current_config->name ^ pipe_config->name) & (mask)) { \
8989 DRM_ERROR("mismatch in " #name "(" #mask ") " \
8990 "(expected %i, found %i)\n", \
8991 current_config->name & (mask), \
8992 pipe_config->name & (mask)); \
8993 return false; \
8994 }
8995
8996#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
8997 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
8998 DRM_ERROR("mismatch in " #name " " \
8999 "(expected %i, found %i)\n", \
9000 current_config->name, \
9001 pipe_config->name); \
9002 return false; \
9003 }
9004
9005#define PIPE_CONF_QUIRK(quirk) \
9006 ((current_config->quirks | pipe_config->quirks) & (quirk))
9007
9008 PIPE_CONF_CHECK_I(cpu_transcoder);
9009
9010 PIPE_CONF_CHECK_I(has_pch_encoder);
9011 PIPE_CONF_CHECK_I(fdi_lanes);
9012 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9013 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9014 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9015 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9016 PIPE_CONF_CHECK_I(fdi_m_n.tu);
9017
9018 PIPE_CONF_CHECK_I(has_dp_encoder);
9019 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9020 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9021 PIPE_CONF_CHECK_I(dp_m_n.link_m);
9022 PIPE_CONF_CHECK_I(dp_m_n.link_n);
9023 PIPE_CONF_CHECK_I(dp_m_n.tu);
9024
9025 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9026 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9027 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9028 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9029 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9030 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9031
9032 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9033 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9034 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9035 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9036 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9037 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9038
9039 PIPE_CONF_CHECK_I(pixel_multiplier);
9040
9041 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9042 DRM_MODE_FLAG_INTERLACE);
9043
9044 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9045 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9046 DRM_MODE_FLAG_PHSYNC);
9047 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9048 DRM_MODE_FLAG_NHSYNC);
9049 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9050 DRM_MODE_FLAG_PVSYNC);
9051 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9052 DRM_MODE_FLAG_NVSYNC);
9053 }
9054
9055 PIPE_CONF_CHECK_I(pipe_src_w);
9056 PIPE_CONF_CHECK_I(pipe_src_h);
9057
9058 PIPE_CONF_CHECK_I(gmch_pfit.control);
9059 /* pfit ratios are autocomputed by the hw on gen4+ */
9060 if (INTEL_INFO(dev)->gen < 4)
9061 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9062 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9063 PIPE_CONF_CHECK_I(pch_pfit.enabled);
9064 if (current_config->pch_pfit.enabled) {
9065 PIPE_CONF_CHECK_I(pch_pfit.pos);
9066 PIPE_CONF_CHECK_I(pch_pfit.size);
9067 }
9068
9069 PIPE_CONF_CHECK_I(ips_enabled);
9070
9071 PIPE_CONF_CHECK_I(double_wide);
9072
9073 PIPE_CONF_CHECK_I(shared_dpll);
9074 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9075 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9076 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9077 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9078
9079 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9080 PIPE_CONF_CHECK_I(pipe_bpp);
9081
9082 if (!IS_HASWELL(dev)) {
9083 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9084 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9085 }
9086
9087#undef PIPE_CONF_CHECK_X
9088#undef PIPE_CONF_CHECK_I
9089#undef PIPE_CONF_CHECK_FLAGS
9090#undef PIPE_CONF_CHECK_CLOCK_FUZZY
9091#undef PIPE_CONF_QUIRK
9092
9093 return true;
9094}
9095
9096static void
9097check_connector_state(struct drm_device *dev)
9098{
9099 struct intel_connector *connector;
9100
9101 list_for_each_entry(connector, &dev->mode_config.connector_list,
9102 base.head) {
9103 /* This also checks the encoder/connector hw state with the
9104 * ->get_hw_state callbacks. */
9105 intel_connector_check_state(connector);
9106
9107 WARN(&connector->new_encoder->base != connector->base.encoder,
9108 "connector's staged encoder doesn't match current encoder\n");
9109 }
9110}
9111
9112static void
9113check_encoder_state(struct drm_device *dev)
9114{
9115 struct intel_encoder *encoder;
9116 struct intel_connector *connector;
9117
9118 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9119 base.head) {
9120 bool enabled = false;
9121 bool active = false;
9122 enum pipe pipe, tracked_pipe;
9123
9124 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9125 encoder->base.base.id,
9126 drm_get_encoder_name(&encoder->base));
9127
9128 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9129 "encoder's stage crtc doesn't match current crtc\n");
9130 WARN(encoder->connectors_active && !encoder->base.crtc,
9131 "encoder's active_connectors set, but no crtc\n");
9132
9133 list_for_each_entry(connector, &dev->mode_config.connector_list,
9134 base.head) {
9135 if (connector->base.encoder != &encoder->base)
9136 continue;
9137 enabled = true;
9138 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9139 active = true;
9140 }
9141 WARN(!!encoder->base.crtc != enabled,
9142 "encoder's enabled state mismatch "
9143 "(expected %i, found %i)\n",
9144 !!encoder->base.crtc, enabled);
9145 WARN(active && !encoder->base.crtc,
9146 "active encoder with no crtc\n");
9147
9148 WARN(encoder->connectors_active != active,
9149 "encoder's computed active state doesn't match tracked active state "
9150 "(expected %i, found %i)\n", active, encoder->connectors_active);
9151
9152 active = encoder->get_hw_state(encoder, &pipe);
9153 WARN(active != encoder->connectors_active,
9154 "encoder's hw state doesn't match sw tracking "
9155 "(expected %i, found %i)\n",
9156 encoder->connectors_active, active);
9157
9158 if (!encoder->base.crtc)
9159 continue;
9160
9161 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9162 WARN(active && pipe != tracked_pipe,
9163 "active encoder's pipe doesn't match"
9164 "(expected %i, found %i)\n",
9165 tracked_pipe, pipe);
9166
9167 }
9168}
9169
9170static void
9171check_crtc_state(struct drm_device *dev)
9172{
9173 drm_i915_private_t *dev_priv = dev->dev_private;
9174 struct intel_crtc *crtc;
9175 struct intel_encoder *encoder;
9176 struct intel_crtc_config pipe_config;
9177
9178 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9179 base.head) {
9180 bool enabled = false;
9181 bool active = false;
9182
9183 memset(&pipe_config, 0, sizeof(pipe_config));
9184
9185 DRM_DEBUG_KMS("[CRTC:%d]\n",
9186 crtc->base.base.id);
9187
9188 WARN(crtc->active && !crtc->base.enabled,
9189 "active crtc, but not enabled in sw tracking\n");
9190
9191 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9192 base.head) {
9193 if (encoder->base.crtc != &crtc->base)
9194 continue;
9195 enabled = true;
9196 if (encoder->connectors_active)
9197 active = true;
9198 }
9199
9200 WARN(active != crtc->active,
9201 "crtc's computed active state doesn't match tracked active state "
9202 "(expected %i, found %i)\n", active, crtc->active);
9203 WARN(enabled != crtc->base.enabled,
9204 "crtc's computed enabled state doesn't match tracked enabled state "
9205 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9206
9207 active = dev_priv->display.get_pipe_config(crtc,
9208 &pipe_config);
9209
9210 /* hw state is inconsistent with the pipe A quirk */
9211 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9212 active = crtc->active;
9213
9214 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9215 base.head) {
9216 enum pipe pipe;
9217 if (encoder->base.crtc != &crtc->base)
9218 continue;
9219 if (encoder->get_config &&
9220 encoder->get_hw_state(encoder, &pipe))
9221 encoder->get_config(encoder, &pipe_config);
9222 }
9223
9224 WARN(crtc->active != active,
9225 "crtc active state doesn't match with hw state "
9226 "(expected %i, found %i)\n", crtc->active, active);
9227
9228 if (active &&
9229 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9230 WARN(1, "pipe state doesn't match!\n");
9231 intel_dump_pipe_config(crtc, &pipe_config,
9232 "[hw state]");
9233 intel_dump_pipe_config(crtc, &crtc->config,
9234 "[sw state]");
9235 }
9236 }
9237}
9238
9239static void
9240check_shared_dpll_state(struct drm_device *dev)
9241{
9242 drm_i915_private_t *dev_priv = dev->dev_private;
9243 struct intel_crtc *crtc;
9244 struct intel_dpll_hw_state dpll_hw_state;
9245 int i;
9246
9247 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9248 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9249 int enabled_crtcs = 0, active_crtcs = 0;
9250 bool active;
9251
9252 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9253
9254 DRM_DEBUG_KMS("%s\n", pll->name);
9255
9256 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9257
9258 WARN(pll->active > pll->refcount,
9259 "more active pll users than references: %i vs %i\n",
9260 pll->active, pll->refcount);
9261 WARN(pll->active && !pll->on,
9262 "pll in active use but not on in sw tracking\n");
9263 WARN(pll->on && !pll->active,
9264 "pll in on but not on in use in sw tracking\n");
9265 WARN(pll->on != active,
9266 "pll on state mismatch (expected %i, found %i)\n",
9267 pll->on, active);
9268
9269 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9270 base.head) {
9271 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9272 enabled_crtcs++;
9273 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9274 active_crtcs++;
9275 }
9276 WARN(pll->active != active_crtcs,
9277 "pll active crtcs mismatch (expected %i, found %i)\n",
9278 pll->active, active_crtcs);
9279 WARN(pll->refcount != enabled_crtcs,
9280 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9281 pll->refcount, enabled_crtcs);
9282
9283 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9284 sizeof(dpll_hw_state)),
9285 "pll hw state mismatch\n");
9286 }
9287}
9288
9289void
9290intel_modeset_check_state(struct drm_device *dev)
9291{
9292 check_connector_state(dev);
9293 check_encoder_state(dev);
9294 check_crtc_state(dev);
9295 check_shared_dpll_state(dev);
9296}
9297
9298void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9299 int dotclock)
9300{
9301 /*
9302 * FDI already provided one idea for the dotclock.
9303 * Yell if the encoder disagrees.
9304 */
9305 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9306 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9307 pipe_config->adjusted_mode.crtc_clock, dotclock);
9308}
9309
9310static int __intel_set_mode(struct drm_crtc *crtc,
9311 struct drm_display_mode *mode,
9312 int x, int y, struct drm_framebuffer *fb)
9313{
9314 struct drm_device *dev = crtc->dev;
9315 drm_i915_private_t *dev_priv = dev->dev_private;
9316 struct drm_display_mode *saved_mode, *saved_hwmode;
9317 struct intel_crtc_config *pipe_config = NULL;
9318 struct intel_crtc *intel_crtc;
9319 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9320 int ret = 0;
9321
9322 saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9323 if (!saved_mode)
9324 return -ENOMEM;
9325 saved_hwmode = saved_mode + 1;
9326
9327 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9328 &prepare_pipes, &disable_pipes);
9329
9330 *saved_hwmode = crtc->hwmode;
9331 *saved_mode = crtc->mode;
9332
9333 /* Hack: Because we don't (yet) support global modeset on multiple
9334 * crtcs, we don't keep track of the new mode for more than one crtc.
9335 * Hence simply check whether any bit is set in modeset_pipes in all the
9336 * pieces of code that are not yet converted to deal with mutliple crtcs
9337 * changing their mode at the same time. */
9338 if (modeset_pipes) {
9339 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9340 if (IS_ERR(pipe_config)) {
9341 ret = PTR_ERR(pipe_config);
9342 pipe_config = NULL;
9343
9344 goto out;
9345 }
9346 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9347 "[modeset]");
9348 }
9349
9350 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9351 intel_crtc_disable(&intel_crtc->base);
9352
9353 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9354 if (intel_crtc->base.enabled)
9355 dev_priv->display.crtc_disable(&intel_crtc->base);
9356 }
9357
9358 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9359 * to set it here already despite that we pass it down the callchain.
9360 */
9361 if (modeset_pipes) {
9362 crtc->mode = *mode;
9363 /* mode_set/enable/disable functions rely on a correct pipe
9364 * config. */
9365 to_intel_crtc(crtc)->config = *pipe_config;
9366 }
9367
9368 /* Only after disabling all output pipelines that will be changed can we
9369 * update the the output configuration. */
9370 intel_modeset_update_state(dev, prepare_pipes);
9371
9372 if (dev_priv->display.modeset_global_resources)
9373 dev_priv->display.modeset_global_resources(dev);
9374
9375 /* Set up the DPLL and any encoders state that needs to adjust or depend
9376 * on the DPLL.
9377 */
9378 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9379 ret = intel_crtc_mode_set(&intel_crtc->base,
9380 x, y, fb);
9381 if (ret)
9382 goto done;
9383 }
9384
9385 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9386 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9387 dev_priv->display.crtc_enable(&intel_crtc->base);
9388
9389 if (modeset_pipes) {
9390 /* Store real post-adjustment hardware mode. */
9391 crtc->hwmode = pipe_config->adjusted_mode;
9392
9393 /* Calculate and store various constants which
9394 * are later needed by vblank and swap-completion
9395 * timestamping. They are derived from true hwmode.
9396 */
9397 drm_calc_timestamping_constants(crtc);
9398 }
9399
9400 /* FIXME: add subpixel order */
9401done:
9402 if (ret && crtc->enabled) {
9403 crtc->hwmode = *saved_hwmode;
9404 crtc->mode = *saved_mode;
9405 }
9406
9407out:
9408 kfree(pipe_config);
9409 kfree(saved_mode);
9410 return ret;
9411}
9412
9413static int intel_set_mode(struct drm_crtc *crtc,
9414 struct drm_display_mode *mode,
9415 int x, int y, struct drm_framebuffer *fb)
9416{
9417 int ret;
9418
9419 ret = __intel_set_mode(crtc, mode, x, y, fb);
9420
9421 if (ret == 0)
9422 intel_modeset_check_state(crtc->dev);
9423
9424 return ret;
9425}
9426
9427void intel_crtc_restore_mode(struct drm_crtc *crtc)
9428{
9429 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9430}
9431
9432#undef for_each_intel_crtc_masked
9433
9434static void intel_set_config_free(struct intel_set_config *config)
9435{
9436 if (!config)
9437 return;
9438
9439 kfree(config->save_connector_encoders);
9440 kfree(config->save_encoder_crtcs);
9441 kfree(config);
9442}
9443
9444static int intel_set_config_save_state(struct drm_device *dev,
9445 struct intel_set_config *config)
9446{
9447 struct drm_encoder *encoder;
9448 struct drm_connector *connector;
9449 int count;
9450
9451 config->save_encoder_crtcs =
9452 kcalloc(dev->mode_config.num_encoder,
9453 sizeof(struct drm_crtc *), GFP_KERNEL);
9454 if (!config->save_encoder_crtcs)
9455 return -ENOMEM;
9456
9457 config->save_connector_encoders =
9458 kcalloc(dev->mode_config.num_connector,
9459 sizeof(struct drm_encoder *), GFP_KERNEL);
9460 if (!config->save_connector_encoders)
9461 return -ENOMEM;
9462
9463 /* Copy data. Note that driver private data is not affected.
9464 * Should anything bad happen only the expected state is
9465 * restored, not the drivers personal bookkeeping.
9466 */
9467 count = 0;
9468 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9469 config->save_encoder_crtcs[count++] = encoder->crtc;
9470 }
9471
9472 count = 0;
9473 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9474 config->save_connector_encoders[count++] = connector->encoder;
9475 }
9476
9477 return 0;
9478}
9479
9480static void intel_set_config_restore_state(struct drm_device *dev,
9481 struct intel_set_config *config)
9482{
9483 struct intel_encoder *encoder;
9484 struct intel_connector *connector;
9485 int count;
9486
9487 count = 0;
9488 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9489 encoder->new_crtc =
9490 to_intel_crtc(config->save_encoder_crtcs[count++]);
9491 }
9492
9493 count = 0;
9494 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9495 connector->new_encoder =
9496 to_intel_encoder(config->save_connector_encoders[count++]);
9497 }
9498}
9499
9500static bool
9501is_crtc_connector_off(struct drm_mode_set *set)
9502{
9503 int i;
9504
9505 if (set->num_connectors == 0)
9506 return false;
9507
9508 if (WARN_ON(set->connectors == NULL))
9509 return false;
9510
9511 for (i = 0; i < set->num_connectors; i++)
9512 if (set->connectors[i]->encoder &&
9513 set->connectors[i]->encoder->crtc == set->crtc &&
9514 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9515 return true;
9516
9517 return false;
9518}
9519
9520static void
9521intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9522 struct intel_set_config *config)
9523{
9524
9525 /* We should be able to check here if the fb has the same properties
9526 * and then just flip_or_move it */
9527 if (is_crtc_connector_off(set)) {
9528 config->mode_changed = true;
9529 } else if (set->crtc->fb != set->fb) {
9530 /* If we have no fb then treat it as a full mode set */
9531 if (set->crtc->fb == NULL) {
9532 struct intel_crtc *intel_crtc =
9533 to_intel_crtc(set->crtc);
9534
9535 if (intel_crtc->active && i915_fastboot) {
9536 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9537 config->fb_changed = true;
9538 } else {
9539 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9540 config->mode_changed = true;
9541 }
9542 } else if (set->fb == NULL) {
9543 config->mode_changed = true;
9544 } else if (set->fb->pixel_format !=
9545 set->crtc->fb->pixel_format) {
9546 config->mode_changed = true;
9547 } else {
9548 config->fb_changed = true;
9549 }
9550 }
9551
9552 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9553 config->fb_changed = true;
9554
9555 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9556 DRM_DEBUG_KMS("modes are different, full mode set\n");
9557 drm_mode_debug_printmodeline(&set->crtc->mode);
9558 drm_mode_debug_printmodeline(set->mode);
9559 config->mode_changed = true;
9560 }
9561
9562 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9563 set->crtc->base.id, config->mode_changed, config->fb_changed);
9564}
9565
9566static int
9567intel_modeset_stage_output_state(struct drm_device *dev,
9568 struct drm_mode_set *set,
9569 struct intel_set_config *config)
9570{
9571 struct drm_crtc *new_crtc;
9572 struct intel_connector *connector;
9573 struct intel_encoder *encoder;
9574 int ro;
9575
9576 /* The upper layers ensure that we either disable a crtc or have a list
9577 * of connectors. For paranoia, double-check this. */
9578 WARN_ON(!set->fb && (set->num_connectors != 0));
9579 WARN_ON(set->fb && (set->num_connectors == 0));
9580
9581 list_for_each_entry(connector, &dev->mode_config.connector_list,
9582 base.head) {
9583 /* Otherwise traverse passed in connector list and get encoders
9584 * for them. */
9585 for (ro = 0; ro < set->num_connectors; ro++) {
9586 if (set->connectors[ro] == &connector->base) {
9587 connector->new_encoder = connector->encoder;
9588 break;
9589 }
9590 }
9591
9592 /* If we disable the crtc, disable all its connectors. Also, if
9593 * the connector is on the changing crtc but not on the new
9594 * connector list, disable it. */
9595 if ((!set->fb || ro == set->num_connectors) &&
9596 connector->base.encoder &&
9597 connector->base.encoder->crtc == set->crtc) {
9598 connector->new_encoder = NULL;
9599
9600 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9601 connector->base.base.id,
9602 drm_get_connector_name(&connector->base));
9603 }
9604
9605
9606 if (&connector->new_encoder->base != connector->base.encoder) {
9607 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9608 config->mode_changed = true;
9609 }
9610 }
9611 /* connector->new_encoder is now updated for all connectors. */
9612
9613 /* Update crtc of enabled connectors. */
9614 list_for_each_entry(connector, &dev->mode_config.connector_list,
9615 base.head) {
9616 if (!connector->new_encoder)
9617 continue;
9618
9619 new_crtc = connector->new_encoder->base.crtc;
9620
9621 for (ro = 0; ro < set->num_connectors; ro++) {
9622 if (set->connectors[ro] == &connector->base)
9623 new_crtc = set->crtc;
9624 }
9625
9626 /* Make sure the new CRTC will work with the encoder */
9627 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9628 new_crtc)) {
9629 return -EINVAL;
9630 }
9631 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9632
9633 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9634 connector->base.base.id,
9635 drm_get_connector_name(&connector->base),
9636 new_crtc->base.id);
9637 }
9638
9639 /* Check for any encoders that needs to be disabled. */
9640 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9641 base.head) {
9642 list_for_each_entry(connector,
9643 &dev->mode_config.connector_list,
9644 base.head) {
9645 if (connector->new_encoder == encoder) {
9646 WARN_ON(!connector->new_encoder->new_crtc);
9647
9648 goto next_encoder;
9649 }
9650 }
9651 encoder->new_crtc = NULL;
9652next_encoder:
9653 /* Only now check for crtc changes so we don't miss encoders
9654 * that will be disabled. */
9655 if (&encoder->new_crtc->base != encoder->base.crtc) {
9656 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9657 config->mode_changed = true;
9658 }
9659 }
9660 /* Now we've also updated encoder->new_crtc for all encoders. */
9661
9662 return 0;
9663}
9664
9665static int intel_crtc_set_config(struct drm_mode_set *set)
9666{
9667 struct drm_device *dev;
9668 struct drm_mode_set save_set;
9669 struct intel_set_config *config;
9670 int ret;
9671
9672 BUG_ON(!set);
9673 BUG_ON(!set->crtc);
9674 BUG_ON(!set->crtc->helper_private);
9675
9676 /* Enforce sane interface api - has been abused by the fb helper. */
9677 BUG_ON(!set->mode && set->fb);
9678 BUG_ON(set->fb && set->num_connectors == 0);
9679
9680 if (set->fb) {
9681 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9682 set->crtc->base.id, set->fb->base.id,
9683 (int)set->num_connectors, set->x, set->y);
9684 } else {
9685 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9686 }
9687
9688 dev = set->crtc->dev;
9689
9690 ret = -ENOMEM;
9691 config = kzalloc(sizeof(*config), GFP_KERNEL);
9692 if (!config)
9693 goto out_config;
9694
9695 ret = intel_set_config_save_state(dev, config);
9696 if (ret)
9697 goto out_config;
9698
9699 save_set.crtc = set->crtc;
9700 save_set.mode = &set->crtc->mode;
9701 save_set.x = set->crtc->x;
9702 save_set.y = set->crtc->y;
9703 save_set.fb = set->crtc->fb;
9704
9705 /* Compute whether we need a full modeset, only an fb base update or no
9706 * change at all. In the future we might also check whether only the
9707 * mode changed, e.g. for LVDS where we only change the panel fitter in
9708 * such cases. */
9709 intel_set_config_compute_mode_changes(set, config);
9710
9711 ret = intel_modeset_stage_output_state(dev, set, config);
9712 if (ret)
9713 goto fail;
9714
9715 if (config->mode_changed) {
9716 ret = intel_set_mode(set->crtc, set->mode,
9717 set->x, set->y, set->fb);
9718 } else if (config->fb_changed) {
9719 intel_crtc_wait_for_pending_flips(set->crtc);
9720
9721 ret = intel_pipe_set_base(set->crtc,
9722 set->x, set->y, set->fb);
9723 }
9724
9725 if (ret) {
9726 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
9727 set->crtc->base.id, ret);
9728fail:
9729 intel_set_config_restore_state(dev, config);
9730
9731 /* Try to restore the config */
9732 if (config->mode_changed &&
9733 intel_set_mode(save_set.crtc, save_set.mode,
9734 save_set.x, save_set.y, save_set.fb))
9735 DRM_ERROR("failed to restore config after modeset failure\n");
9736 }
9737
9738out_config:
9739 intel_set_config_free(config);
9740 return ret;
9741}
9742
9743static const struct drm_crtc_funcs intel_crtc_funcs = {
9744 .cursor_set = intel_crtc_cursor_set,
9745 .cursor_move = intel_crtc_cursor_move,
9746 .gamma_set = intel_crtc_gamma_set,
9747 .set_config = intel_crtc_set_config,
9748 .destroy = intel_crtc_destroy,
9749 .page_flip = intel_crtc_page_flip,
9750};
9751
9752static void intel_cpu_pll_init(struct drm_device *dev)
9753{
9754 if (HAS_DDI(dev))
9755 intel_ddi_pll_init(dev);
9756}
9757
9758static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
9759 struct intel_shared_dpll *pll,
9760 struct intel_dpll_hw_state *hw_state)
9761{
9762 uint32_t val;
9763
9764 val = I915_READ(PCH_DPLL(pll->id));
9765 hw_state->dpll = val;
9766 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
9767 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
9768
9769 return val & DPLL_VCO_ENABLE;
9770}
9771
9772static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
9773 struct intel_shared_dpll *pll)
9774{
9775 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
9776 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
9777}
9778
9779static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
9780 struct intel_shared_dpll *pll)
9781{
9782 /* PCH refclock must be enabled first */
9783 assert_pch_refclk_enabled(dev_priv);
9784
9785 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9786
9787 /* Wait for the clocks to stabilize. */
9788 POSTING_READ(PCH_DPLL(pll->id));
9789 udelay(150);
9790
9791 /* The pixel multiplier can only be updated once the
9792 * DPLL is enabled and the clocks are stable.
9793 *
9794 * So write it again.
9795 */
9796 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
9797 POSTING_READ(PCH_DPLL(pll->id));
9798 udelay(200);
9799}
9800
9801static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
9802 struct intel_shared_dpll *pll)
9803{
9804 struct drm_device *dev = dev_priv->dev;
9805 struct intel_crtc *crtc;
9806
9807 /* Make sure no transcoder isn't still depending on us. */
9808 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
9809 if (intel_crtc_to_shared_dpll(crtc) == pll)
9810 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
9811 }
9812
9813 I915_WRITE(PCH_DPLL(pll->id), 0);
9814 POSTING_READ(PCH_DPLL(pll->id));
9815 udelay(200);
9816}
9817
9818static char *ibx_pch_dpll_names[] = {
9819 "PCH DPLL A",
9820 "PCH DPLL B",
9821};
9822
9823static void ibx_pch_dpll_init(struct drm_device *dev)
9824{
9825 struct drm_i915_private *dev_priv = dev->dev_private;
9826 int i;
9827
9828 dev_priv->num_shared_dpll = 2;
9829
9830 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9831 dev_priv->shared_dplls[i].id = i;
9832 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
9833 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
9834 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
9835 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
9836 dev_priv->shared_dplls[i].get_hw_state =
9837 ibx_pch_dpll_get_hw_state;
9838 }
9839}
9840
9841static void intel_shared_dpll_init(struct drm_device *dev)
9842{
9843 struct drm_i915_private *dev_priv = dev->dev_private;
9844
9845 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9846 ibx_pch_dpll_init(dev);
9847 else
9848 dev_priv->num_shared_dpll = 0;
9849
9850 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
9851 DRM_DEBUG_KMS("%i shared PLLs initialized\n",
9852 dev_priv->num_shared_dpll);
9853}
9854
9855static void intel_crtc_init(struct drm_device *dev, int pipe)
9856{
9857 drm_i915_private_t *dev_priv = dev->dev_private;
9858 struct intel_crtc *intel_crtc;
9859 int i;
9860
9861 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
9862 if (intel_crtc == NULL)
9863 return;
9864
9865 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
9866
9867 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
9868 for (i = 0; i < 256; i++) {
9869 intel_crtc->lut_r[i] = i;
9870 intel_crtc->lut_g[i] = i;
9871 intel_crtc->lut_b[i] = i;
9872 }
9873
9874 /* Swap pipes & planes for FBC on pre-965 */
9875 intel_crtc->pipe = pipe;
9876 intel_crtc->plane = pipe;
9877 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
9878 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
9879 intel_crtc->plane = !pipe;
9880 }
9881
9882 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
9883 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
9884 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
9885 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
9886
9887 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
9888}
9889
9890int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
9891 struct drm_file *file)
9892{
9893 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
9894 struct drm_mode_object *drmmode_obj;
9895 struct intel_crtc *crtc;
9896
9897 if (!drm_core_check_feature(dev, DRIVER_MODESET))
9898 return -ENODEV;
9899
9900 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
9901 DRM_MODE_OBJECT_CRTC);
9902
9903 if (!drmmode_obj) {
9904 DRM_ERROR("no such CRTC id\n");
9905 return -EINVAL;
9906 }
9907
9908 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
9909 pipe_from_crtc_id->pipe = crtc->pipe;
9910
9911 return 0;
9912}
9913
9914static int intel_encoder_clones(struct intel_encoder *encoder)
9915{
9916 struct drm_device *dev = encoder->base.dev;
9917 struct intel_encoder *source_encoder;
9918 int index_mask = 0;
9919 int entry = 0;
9920
9921 list_for_each_entry(source_encoder,
9922 &dev->mode_config.encoder_list, base.head) {
9923
9924 if (encoder == source_encoder)
9925 index_mask |= (1 << entry);
9926
9927 /* Intel hw has only one MUX where enocoders could be cloned. */
9928 if (encoder->cloneable && source_encoder->cloneable)
9929 index_mask |= (1 << entry);
9930
9931 entry++;
9932 }
9933
9934 return index_mask;
9935}
9936
9937static bool has_edp_a(struct drm_device *dev)
9938{
9939 struct drm_i915_private *dev_priv = dev->dev_private;
9940
9941 if (!IS_MOBILE(dev))
9942 return false;
9943
9944 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
9945 return false;
9946
9947 if (IS_GEN5(dev) &&
9948 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
9949 return false;
9950
9951 return true;
9952}
9953
9954static void intel_setup_outputs(struct drm_device *dev)
9955{
9956 struct drm_i915_private *dev_priv = dev->dev_private;
9957 struct intel_encoder *encoder;
9958 bool dpd_is_edp = false;
9959
9960 intel_lvds_init(dev);
9961
9962 if (!IS_ULT(dev))
9963 intel_crt_init(dev);
9964
9965 if (HAS_DDI(dev)) {
9966 int found;
9967
9968 /* Haswell uses DDI functions to detect digital outputs */
9969 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
9970 /* DDI A only supports eDP */
9971 if (found)
9972 intel_ddi_init(dev, PORT_A);
9973
9974 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
9975 * register */
9976 found = I915_READ(SFUSE_STRAP);
9977
9978 if (found & SFUSE_STRAP_DDIB_DETECTED)
9979 intel_ddi_init(dev, PORT_B);
9980 if (found & SFUSE_STRAP_DDIC_DETECTED)
9981 intel_ddi_init(dev, PORT_C);
9982 if (found & SFUSE_STRAP_DDID_DETECTED)
9983 intel_ddi_init(dev, PORT_D);
9984 } else if (HAS_PCH_SPLIT(dev)) {
9985 int found;
9986 dpd_is_edp = intel_dpd_is_edp(dev);
9987
9988 if (has_edp_a(dev))
9989 intel_dp_init(dev, DP_A, PORT_A);
9990
9991 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
9992 /* PCH SDVOB multiplex with HDMIB */
9993 found = intel_sdvo_init(dev, PCH_SDVOB, true);
9994 if (!found)
9995 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
9996 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
9997 intel_dp_init(dev, PCH_DP_B, PORT_B);
9998 }
9999
10000 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10001 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10002
10003 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10004 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10005
10006 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10007 intel_dp_init(dev, PCH_DP_C, PORT_C);
10008
10009 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10010 intel_dp_init(dev, PCH_DP_D, PORT_D);
10011 } else if (IS_VALLEYVIEW(dev)) {
10012 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10013 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10014 PORT_B);
10015 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10016 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10017 }
10018
10019 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10020 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10021 PORT_C);
10022 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10023 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
10024 PORT_C);
10025 }
10026
10027 intel_dsi_init(dev);
10028 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10029 bool found = false;
10030
10031 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10032 DRM_DEBUG_KMS("probing SDVOB\n");
10033 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10034 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10035 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10036 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10037 }
10038
10039 if (!found && SUPPORTS_INTEGRATED_DP(dev))
10040 intel_dp_init(dev, DP_B, PORT_B);
10041 }
10042
10043 /* Before G4X SDVOC doesn't have its own detect register */
10044
10045 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10046 DRM_DEBUG_KMS("probing SDVOC\n");
10047 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10048 }
10049
10050 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10051
10052 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10053 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10054 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10055 }
10056 if (SUPPORTS_INTEGRATED_DP(dev))
10057 intel_dp_init(dev, DP_C, PORT_C);
10058 }
10059
10060 if (SUPPORTS_INTEGRATED_DP(dev) &&
10061 (I915_READ(DP_D) & DP_DETECTED))
10062 intel_dp_init(dev, DP_D, PORT_D);
10063 } else if (IS_GEN2(dev))
10064 intel_dvo_init(dev);
10065
10066 if (SUPPORTS_TV(dev))
10067 intel_tv_init(dev);
10068
10069 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10070 encoder->base.possible_crtcs = encoder->crtc_mask;
10071 encoder->base.possible_clones =
10072 intel_encoder_clones(encoder);
10073 }
10074
10075 intel_init_pch_refclk(dev);
10076
10077 drm_helper_move_panel_connectors_to_head(dev);
10078}
10079
10080void intel_framebuffer_fini(struct intel_framebuffer *fb)
10081{
10082 drm_framebuffer_cleanup(&fb->base);
10083 WARN_ON(!fb->obj->framebuffer_references--);
10084 drm_gem_object_unreference_unlocked(&fb->obj->base);
10085}
10086
10087static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10088{
10089 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10090
10091 intel_framebuffer_fini(intel_fb);
10092 kfree(intel_fb);
10093}
10094
10095static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10096 struct drm_file *file,
10097 unsigned int *handle)
10098{
10099 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10100 struct drm_i915_gem_object *obj = intel_fb->obj;
10101
10102 return drm_gem_handle_create(file, &obj->base, handle);
10103}
10104
10105static const struct drm_framebuffer_funcs intel_fb_funcs = {
10106 .destroy = intel_user_framebuffer_destroy,
10107 .create_handle = intel_user_framebuffer_create_handle,
10108};
10109
10110int intel_framebuffer_init(struct drm_device *dev,
10111 struct intel_framebuffer *intel_fb,
10112 struct drm_mode_fb_cmd2 *mode_cmd,
10113 struct drm_i915_gem_object *obj)
10114{
10115 int aligned_height, tile_height;
10116 int pitch_limit;
10117 int ret;
10118
10119 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10120
10121 if (obj->tiling_mode == I915_TILING_Y) {
10122 DRM_DEBUG("hardware does not support tiling Y\n");
10123 return -EINVAL;
10124 }
10125
10126 if (mode_cmd->pitches[0] & 63) {
10127 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10128 mode_cmd->pitches[0]);
10129 return -EINVAL;
10130 }
10131
10132 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10133 pitch_limit = 32*1024;
10134 } else if (INTEL_INFO(dev)->gen >= 4) {
10135 if (obj->tiling_mode)
10136 pitch_limit = 16*1024;
10137 else
10138 pitch_limit = 32*1024;
10139 } else if (INTEL_INFO(dev)->gen >= 3) {
10140 if (obj->tiling_mode)
10141 pitch_limit = 8*1024;
10142 else
10143 pitch_limit = 16*1024;
10144 } else
10145 /* XXX DSPC is limited to 4k tiled */
10146 pitch_limit = 8*1024;
10147
10148 if (mode_cmd->pitches[0] > pitch_limit) {
10149 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10150 obj->tiling_mode ? "tiled" : "linear",
10151 mode_cmd->pitches[0], pitch_limit);
10152 return -EINVAL;
10153 }
10154
10155 if (obj->tiling_mode != I915_TILING_NONE &&
10156 mode_cmd->pitches[0] != obj->stride) {
10157 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10158 mode_cmd->pitches[0], obj->stride);
10159 return -EINVAL;
10160 }
10161
10162 /* Reject formats not supported by any plane early. */
10163 switch (mode_cmd->pixel_format) {
10164 case DRM_FORMAT_C8:
10165 case DRM_FORMAT_RGB565:
10166 case DRM_FORMAT_XRGB8888:
10167 case DRM_FORMAT_ARGB8888:
10168 break;
10169 case DRM_FORMAT_XRGB1555:
10170 case DRM_FORMAT_ARGB1555:
10171 if (INTEL_INFO(dev)->gen > 3) {
10172 DRM_DEBUG("unsupported pixel format: %s\n",
10173 drm_get_format_name(mode_cmd->pixel_format));
10174 return -EINVAL;
10175 }
10176 break;
10177 case DRM_FORMAT_XBGR8888:
10178 case DRM_FORMAT_ABGR8888:
10179 case DRM_FORMAT_XRGB2101010:
10180 case DRM_FORMAT_ARGB2101010:
10181 case DRM_FORMAT_XBGR2101010:
10182 case DRM_FORMAT_ABGR2101010:
10183 if (INTEL_INFO(dev)->gen < 4) {
10184 DRM_DEBUG("unsupported pixel format: %s\n",
10185 drm_get_format_name(mode_cmd->pixel_format));
10186 return -EINVAL;
10187 }
10188 break;
10189 case DRM_FORMAT_YUYV:
10190 case DRM_FORMAT_UYVY:
10191 case DRM_FORMAT_YVYU:
10192 case DRM_FORMAT_VYUY:
10193 if (INTEL_INFO(dev)->gen < 5) {
10194 DRM_DEBUG("unsupported pixel format: %s\n",
10195 drm_get_format_name(mode_cmd->pixel_format));
10196 return -EINVAL;
10197 }
10198 break;
10199 default:
10200 DRM_DEBUG("unsupported pixel format: %s\n",
10201 drm_get_format_name(mode_cmd->pixel_format));
10202 return -EINVAL;
10203 }
10204
10205 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10206 if (mode_cmd->offsets[0] != 0)
10207 return -EINVAL;
10208
10209 tile_height = IS_GEN2(dev) ? 16 : 8;
10210 aligned_height = ALIGN(mode_cmd->height,
10211 obj->tiling_mode ? tile_height : 1);
10212 /* FIXME drm helper for size checks (especially planar formats)? */
10213 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10214 return -EINVAL;
10215
10216 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10217 intel_fb->obj = obj;
10218 intel_fb->obj->framebuffer_references++;
10219
10220 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10221 if (ret) {
10222 DRM_ERROR("framebuffer init failed %d\n", ret);
10223 return ret;
10224 }
10225
10226 return 0;
10227}
10228
10229static struct drm_framebuffer *
10230intel_user_framebuffer_create(struct drm_device *dev,
10231 struct drm_file *filp,
10232 struct drm_mode_fb_cmd2 *mode_cmd)
10233{
10234 struct drm_i915_gem_object *obj;
10235
10236 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10237 mode_cmd->handles[0]));
10238 if (&obj->base == NULL)
10239 return ERR_PTR(-ENOENT);
10240
10241 return intel_framebuffer_create(dev, mode_cmd, obj);
10242}
10243
10244#ifndef CONFIG_DRM_I915_FBDEV
10245static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10246{
10247}
10248#endif
10249
10250static const struct drm_mode_config_funcs intel_mode_funcs = {
10251 .fb_create = intel_user_framebuffer_create,
10252 .output_poll_changed = intel_fbdev_output_poll_changed,
10253};
10254
10255/* Set up chip specific display functions */
10256static void intel_init_display(struct drm_device *dev)
10257{
10258 struct drm_i915_private *dev_priv = dev->dev_private;
10259
10260 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10261 dev_priv->display.find_dpll = g4x_find_best_dpll;
10262 else if (IS_VALLEYVIEW(dev))
10263 dev_priv->display.find_dpll = vlv_find_best_dpll;
10264 else if (IS_PINEVIEW(dev))
10265 dev_priv->display.find_dpll = pnv_find_best_dpll;
10266 else
10267 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10268
10269 if (HAS_DDI(dev)) {
10270 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10271 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10272 dev_priv->display.crtc_enable = haswell_crtc_enable;
10273 dev_priv->display.crtc_disable = haswell_crtc_disable;
10274 dev_priv->display.off = haswell_crtc_off;
10275 dev_priv->display.update_plane = ironlake_update_plane;
10276 } else if (HAS_PCH_SPLIT(dev)) {
10277 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10278 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10279 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10280 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10281 dev_priv->display.off = ironlake_crtc_off;
10282 dev_priv->display.update_plane = ironlake_update_plane;
10283 } else if (IS_VALLEYVIEW(dev)) {
10284 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10285 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10286 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10287 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10288 dev_priv->display.off = i9xx_crtc_off;
10289 dev_priv->display.update_plane = i9xx_update_plane;
10290 } else {
10291 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10292 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10293 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10294 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10295 dev_priv->display.off = i9xx_crtc_off;
10296 dev_priv->display.update_plane = i9xx_update_plane;
10297 }
10298
10299 /* Returns the core display clock speed */
10300 if (IS_VALLEYVIEW(dev))
10301 dev_priv->display.get_display_clock_speed =
10302 valleyview_get_display_clock_speed;
10303 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10304 dev_priv->display.get_display_clock_speed =
10305 i945_get_display_clock_speed;
10306 else if (IS_I915G(dev))
10307 dev_priv->display.get_display_clock_speed =
10308 i915_get_display_clock_speed;
10309 else if (IS_I945GM(dev) || IS_845G(dev))
10310 dev_priv->display.get_display_clock_speed =
10311 i9xx_misc_get_display_clock_speed;
10312 else if (IS_PINEVIEW(dev))
10313 dev_priv->display.get_display_clock_speed =
10314 pnv_get_display_clock_speed;
10315 else if (IS_I915GM(dev))
10316 dev_priv->display.get_display_clock_speed =
10317 i915gm_get_display_clock_speed;
10318 else if (IS_I865G(dev))
10319 dev_priv->display.get_display_clock_speed =
10320 i865_get_display_clock_speed;
10321 else if (IS_I85X(dev))
10322 dev_priv->display.get_display_clock_speed =
10323 i855_get_display_clock_speed;
10324 else /* 852, 830 */
10325 dev_priv->display.get_display_clock_speed =
10326 i830_get_display_clock_speed;
10327
10328 if (HAS_PCH_SPLIT(dev)) {
10329 if (IS_GEN5(dev)) {
10330 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10331 dev_priv->display.write_eld = ironlake_write_eld;
10332 } else if (IS_GEN6(dev)) {
10333 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10334 dev_priv->display.write_eld = ironlake_write_eld;
10335 } else if (IS_IVYBRIDGE(dev)) {
10336 /* FIXME: detect B0+ stepping and use auto training */
10337 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10338 dev_priv->display.write_eld = ironlake_write_eld;
10339 dev_priv->display.modeset_global_resources =
10340 ivb_modeset_global_resources;
10341 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10342 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10343 dev_priv->display.write_eld = haswell_write_eld;
10344 dev_priv->display.modeset_global_resources =
10345 haswell_modeset_global_resources;
10346 }
10347 } else if (IS_G4X(dev)) {
10348 dev_priv->display.write_eld = g4x_write_eld;
10349 }
10350
10351 /* Default just returns -ENODEV to indicate unsupported */
10352 dev_priv->display.queue_flip = intel_default_queue_flip;
10353
10354 switch (INTEL_INFO(dev)->gen) {
10355 case 2:
10356 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10357 break;
10358
10359 case 3:
10360 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10361 break;
10362
10363 case 4:
10364 case 5:
10365 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10366 break;
10367
10368 case 6:
10369 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10370 break;
10371 case 7:
10372 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10373 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10374 break;
10375 }
10376}
10377
10378/*
10379 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10380 * resume, or other times. This quirk makes sure that's the case for
10381 * affected systems.
10382 */
10383static void quirk_pipea_force(struct drm_device *dev)
10384{
10385 struct drm_i915_private *dev_priv = dev->dev_private;
10386
10387 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10388 DRM_INFO("applying pipe a force quirk\n");
10389}
10390
10391/*
10392 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10393 */
10394static void quirk_ssc_force_disable(struct drm_device *dev)
10395{
10396 struct drm_i915_private *dev_priv = dev->dev_private;
10397 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10398 DRM_INFO("applying lvds SSC disable quirk\n");
10399}
10400
10401/*
10402 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10403 * brightness value
10404 */
10405static void quirk_invert_brightness(struct drm_device *dev)
10406{
10407 struct drm_i915_private *dev_priv = dev->dev_private;
10408 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10409 DRM_INFO("applying inverted panel brightness quirk\n");
10410}
10411
10412/*
10413 * Some machines (Dell XPS13) suffer broken backlight controls if
10414 * BLM_PCH_PWM_ENABLE is set.
10415 */
10416static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
10417{
10418 struct drm_i915_private *dev_priv = dev->dev_private;
10419 dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
10420 DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
10421}
10422
10423struct intel_quirk {
10424 int device;
10425 int subsystem_vendor;
10426 int subsystem_device;
10427 void (*hook)(struct drm_device *dev);
10428};
10429
10430/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10431struct intel_dmi_quirk {
10432 void (*hook)(struct drm_device *dev);
10433 const struct dmi_system_id (*dmi_id_list)[];
10434};
10435
10436static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10437{
10438 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10439 return 1;
10440}
10441
10442static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10443 {
10444 .dmi_id_list = &(const struct dmi_system_id[]) {
10445 {
10446 .callback = intel_dmi_reverse_brightness,
10447 .ident = "NCR Corporation",
10448 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10449 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10450 },
10451 },
10452 { } /* terminating entry */
10453 },
10454 .hook = quirk_invert_brightness,
10455 },
10456};
10457
10458static struct intel_quirk intel_quirks[] = {
10459 /* HP Mini needs pipe A force quirk (LP: #322104) */
10460 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10461
10462 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10463 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10464
10465 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10466 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10467
10468 /* 830 needs to leave pipe A & dpll A up */
10469 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10470
10471 /* Lenovo U160 cannot use SSC on LVDS */
10472 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10473
10474 /* Sony Vaio Y cannot use SSC on LVDS */
10475 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10476
10477 /*
10478 * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10479 * seem to use inverted backlight PWM.
10480 */
10481 { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10482
10483 /* Dell XPS13 HD Sandy Bridge */
10484 { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
10485 /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
10486 { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
10487};
10488
10489static void intel_init_quirks(struct drm_device *dev)
10490{
10491 struct pci_dev *d = dev->pdev;
10492 int i;
10493
10494 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10495 struct intel_quirk *q = &intel_quirks[i];
10496
10497 if (d->device == q->device &&
10498 (d->subsystem_vendor == q->subsystem_vendor ||
10499 q->subsystem_vendor == PCI_ANY_ID) &&
10500 (d->subsystem_device == q->subsystem_device ||
10501 q->subsystem_device == PCI_ANY_ID))
10502 q->hook(dev);
10503 }
10504 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10505 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10506 intel_dmi_quirks[i].hook(dev);
10507 }
10508}
10509
10510/* Disable the VGA plane that we never use */
10511static void i915_disable_vga(struct drm_device *dev)
10512{
10513 struct drm_i915_private *dev_priv = dev->dev_private;
10514 u8 sr1;
10515 u32 vga_reg = i915_vgacntrl_reg(dev);
10516
10517 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10518 outb(SR01, VGA_SR_INDEX);
10519 sr1 = inb(VGA_SR_DATA);
10520 outb(sr1 | 1<<5, VGA_SR_DATA);
10521 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10522 udelay(300);
10523
10524 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10525 POSTING_READ(vga_reg);
10526}
10527
10528void intel_modeset_init_hw(struct drm_device *dev)
10529{
10530 struct drm_i915_private *dev_priv = dev->dev_private;
10531
10532 intel_prepare_ddi(dev);
10533
10534 intel_init_clock_gating(dev);
10535
10536 /* Enable the CRI clock source so we can get at the display */
10537 if (IS_VALLEYVIEW(dev))
10538 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
10539 DPLL_INTEGRATED_CRI_CLK_VLV);
10540
10541 intel_init_dpio(dev);
10542
10543 mutex_lock(&dev->struct_mutex);
10544 intel_enable_gt_powersave(dev);
10545 mutex_unlock(&dev->struct_mutex);
10546}
10547
10548void intel_modeset_suspend_hw(struct drm_device *dev)
10549{
10550 intel_suspend_hw(dev);
10551}
10552
10553void intel_modeset_init(struct drm_device *dev)
10554{
10555 struct drm_i915_private *dev_priv = dev->dev_private;
10556 int i, j, ret;
10557
10558 drm_mode_config_init(dev);
10559
10560 dev->mode_config.min_width = 0;
10561 dev->mode_config.min_height = 0;
10562
10563 dev->mode_config.preferred_depth = 24;
10564 dev->mode_config.prefer_shadow = 1;
10565
10566 dev->mode_config.funcs = &intel_mode_funcs;
10567
10568 intel_init_quirks(dev);
10569
10570 intel_init_pm(dev);
10571
10572 if (INTEL_INFO(dev)->num_pipes == 0)
10573 return;
10574
10575 intel_init_display(dev);
10576
10577 if (IS_GEN2(dev)) {
10578 dev->mode_config.max_width = 2048;
10579 dev->mode_config.max_height = 2048;
10580 } else if (IS_GEN3(dev)) {
10581 dev->mode_config.max_width = 4096;
10582 dev->mode_config.max_height = 4096;
10583 } else {
10584 dev->mode_config.max_width = 8192;
10585 dev->mode_config.max_height = 8192;
10586 }
10587 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10588
10589 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10590 INTEL_INFO(dev)->num_pipes,
10591 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10592
10593 for_each_pipe(i) {
10594 intel_crtc_init(dev, i);
10595 for (j = 0; j < dev_priv->num_plane; j++) {
10596 ret = intel_plane_init(dev, i, j);
10597 if (ret)
10598 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10599 pipe_name(i), sprite_name(i, j), ret);
10600 }
10601 }
10602
10603 intel_cpu_pll_init(dev);
10604 intel_shared_dpll_init(dev);
10605
10606 /* Just disable it once at startup */
10607 i915_disable_vga(dev);
10608 intel_setup_outputs(dev);
10609
10610 /* Just in case the BIOS is doing something questionable. */
10611 intel_disable_fbc(dev);
10612}
10613
10614static void
10615intel_connector_break_all_links(struct intel_connector *connector)
10616{
10617 connector->base.dpms = DRM_MODE_DPMS_OFF;
10618 connector->base.encoder = NULL;
10619 connector->encoder->connectors_active = false;
10620 connector->encoder->base.crtc = NULL;
10621}
10622
10623static void intel_enable_pipe_a(struct drm_device *dev)
10624{
10625 struct intel_connector *connector;
10626 struct drm_connector *crt = NULL;
10627 struct intel_load_detect_pipe load_detect_temp;
10628
10629 /* We can't just switch on the pipe A, we need to set things up with a
10630 * proper mode and output configuration. As a gross hack, enable pipe A
10631 * by enabling the load detect pipe once. */
10632 list_for_each_entry(connector,
10633 &dev->mode_config.connector_list,
10634 base.head) {
10635 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10636 crt = &connector->base;
10637 break;
10638 }
10639 }
10640
10641 if (!crt)
10642 return;
10643
10644 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10645 intel_release_load_detect_pipe(crt, &load_detect_temp);
10646
10647
10648}
10649
10650static bool
10651intel_check_plane_mapping(struct intel_crtc *crtc)
10652{
10653 struct drm_device *dev = crtc->base.dev;
10654 struct drm_i915_private *dev_priv = dev->dev_private;
10655 u32 reg, val;
10656
10657 if (INTEL_INFO(dev)->num_pipes == 1)
10658 return true;
10659
10660 reg = DSPCNTR(!crtc->plane);
10661 val = I915_READ(reg);
10662
10663 if ((val & DISPLAY_PLANE_ENABLE) &&
10664 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10665 return false;
10666
10667 return true;
10668}
10669
10670static void intel_sanitize_crtc(struct intel_crtc *crtc)
10671{
10672 struct drm_device *dev = crtc->base.dev;
10673 struct drm_i915_private *dev_priv = dev->dev_private;
10674 u32 reg;
10675
10676 /* Clear any frame start delays used for debugging left by the BIOS */
10677 reg = PIPECONF(crtc->config.cpu_transcoder);
10678 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10679
10680 /* We need to sanitize the plane -> pipe mapping first because this will
10681 * disable the crtc (and hence change the state) if it is wrong. Note
10682 * that gen4+ has a fixed plane -> pipe mapping. */
10683 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
10684 struct intel_connector *connector;
10685 bool plane;
10686
10687 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
10688 crtc->base.base.id);
10689
10690 /* Pipe has the wrong plane attached and the plane is active.
10691 * Temporarily change the plane mapping and disable everything
10692 * ... */
10693 plane = crtc->plane;
10694 crtc->plane = !plane;
10695 dev_priv->display.crtc_disable(&crtc->base);
10696 crtc->plane = plane;
10697
10698 /* ... and break all links. */
10699 list_for_each_entry(connector, &dev->mode_config.connector_list,
10700 base.head) {
10701 if (connector->encoder->base.crtc != &crtc->base)
10702 continue;
10703
10704 intel_connector_break_all_links(connector);
10705 }
10706
10707 WARN_ON(crtc->active);
10708 crtc->base.enabled = false;
10709 }
10710
10711 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
10712 crtc->pipe == PIPE_A && !crtc->active) {
10713 /* BIOS forgot to enable pipe A, this mostly happens after
10714 * resume. Force-enable the pipe to fix this, the update_dpms
10715 * call below we restore the pipe to the right state, but leave
10716 * the required bits on. */
10717 intel_enable_pipe_a(dev);
10718 }
10719
10720 /* Adjust the state of the output pipe according to whether we
10721 * have active connectors/encoders. */
10722 intel_crtc_update_dpms(&crtc->base);
10723
10724 if (crtc->active != crtc->base.enabled) {
10725 struct intel_encoder *encoder;
10726
10727 /* This can happen either due to bugs in the get_hw_state
10728 * functions or because the pipe is force-enabled due to the
10729 * pipe A quirk. */
10730 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
10731 crtc->base.base.id,
10732 crtc->base.enabled ? "enabled" : "disabled",
10733 crtc->active ? "enabled" : "disabled");
10734
10735 crtc->base.enabled = crtc->active;
10736
10737 /* Because we only establish the connector -> encoder ->
10738 * crtc links if something is active, this means the
10739 * crtc is now deactivated. Break the links. connector
10740 * -> encoder links are only establish when things are
10741 * actually up, hence no need to break them. */
10742 WARN_ON(crtc->active);
10743
10744 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
10745 WARN_ON(encoder->connectors_active);
10746 encoder->base.crtc = NULL;
10747 }
10748 }
10749}
10750
10751static void intel_sanitize_encoder(struct intel_encoder *encoder)
10752{
10753 struct intel_connector *connector;
10754 struct drm_device *dev = encoder->base.dev;
10755
10756 /* We need to check both for a crtc link (meaning that the
10757 * encoder is active and trying to read from a pipe) and the
10758 * pipe itself being active. */
10759 bool has_active_crtc = encoder->base.crtc &&
10760 to_intel_crtc(encoder->base.crtc)->active;
10761
10762 if (encoder->connectors_active && !has_active_crtc) {
10763 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
10764 encoder->base.base.id,
10765 drm_get_encoder_name(&encoder->base));
10766
10767 /* Connector is active, but has no active pipe. This is
10768 * fallout from our resume register restoring. Disable
10769 * the encoder manually again. */
10770 if (encoder->base.crtc) {
10771 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
10772 encoder->base.base.id,
10773 drm_get_encoder_name(&encoder->base));
10774 encoder->disable(encoder);
10775 }
10776
10777 /* Inconsistent output/port/pipe state happens presumably due to
10778 * a bug in one of the get_hw_state functions. Or someplace else
10779 * in our code, like the register restore mess on resume. Clamp
10780 * things to off as a safer default. */
10781 list_for_each_entry(connector,
10782 &dev->mode_config.connector_list,
10783 base.head) {
10784 if (connector->encoder != encoder)
10785 continue;
10786
10787 intel_connector_break_all_links(connector);
10788 }
10789 }
10790 /* Enabled encoders without active connectors will be fixed in
10791 * the crtc fixup. */
10792}
10793
10794void i915_redisable_vga(struct drm_device *dev)
10795{
10796 struct drm_i915_private *dev_priv = dev->dev_private;
10797 u32 vga_reg = i915_vgacntrl_reg(dev);
10798
10799 /* This function can be called both from intel_modeset_setup_hw_state or
10800 * at a very early point in our resume sequence, where the power well
10801 * structures are not yet restored. Since this function is at a very
10802 * paranoid "someone might have enabled VGA while we were not looking"
10803 * level, just check if the power well is enabled instead of trying to
10804 * follow the "don't touch the power well if we don't need it" policy
10805 * the rest of the driver uses. */
10806 if (HAS_POWER_WELL(dev) &&
10807 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
10808 return;
10809
10810 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
10811 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
10812 i915_disable_vga(dev);
10813 }
10814}
10815
10816static void intel_modeset_readout_hw_state(struct drm_device *dev)
10817{
10818 struct drm_i915_private *dev_priv = dev->dev_private;
10819 enum pipe pipe;
10820 struct intel_crtc *crtc;
10821 struct intel_encoder *encoder;
10822 struct intel_connector *connector;
10823 int i;
10824
10825 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10826 base.head) {
10827 memset(&crtc->config, 0, sizeof(crtc->config));
10828
10829 crtc->active = dev_priv->display.get_pipe_config(crtc,
10830 &crtc->config);
10831
10832 crtc->base.enabled = crtc->active;
10833 crtc->primary_enabled = crtc->active;
10834
10835 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
10836 crtc->base.base.id,
10837 crtc->active ? "enabled" : "disabled");
10838 }
10839
10840 /* FIXME: Smash this into the new shared dpll infrastructure. */
10841 if (HAS_DDI(dev))
10842 intel_ddi_setup_hw_pll_state(dev);
10843
10844 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10845 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10846
10847 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
10848 pll->active = 0;
10849 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10850 base.head) {
10851 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
10852 pll->active++;
10853 }
10854 pll->refcount = pll->active;
10855
10856 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
10857 pll->name, pll->refcount, pll->on);
10858 }
10859
10860 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10861 base.head) {
10862 pipe = 0;
10863
10864 if (encoder->get_hw_state(encoder, &pipe)) {
10865 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10866 encoder->base.crtc = &crtc->base;
10867 if (encoder->get_config)
10868 encoder->get_config(encoder, &crtc->config);
10869 } else {
10870 encoder->base.crtc = NULL;
10871 }
10872
10873 encoder->connectors_active = false;
10874 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
10875 encoder->base.base.id,
10876 drm_get_encoder_name(&encoder->base),
10877 encoder->base.crtc ? "enabled" : "disabled",
10878 pipe_name(pipe));
10879 }
10880
10881 list_for_each_entry(connector, &dev->mode_config.connector_list,
10882 base.head) {
10883 if (connector->get_hw_state(connector)) {
10884 connector->base.dpms = DRM_MODE_DPMS_ON;
10885 connector->encoder->connectors_active = true;
10886 connector->base.encoder = &connector->encoder->base;
10887 } else {
10888 connector->base.dpms = DRM_MODE_DPMS_OFF;
10889 connector->base.encoder = NULL;
10890 }
10891 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
10892 connector->base.base.id,
10893 drm_get_connector_name(&connector->base),
10894 connector->base.encoder ? "enabled" : "disabled");
10895 }
10896}
10897
10898/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
10899 * and i915 state tracking structures. */
10900void intel_modeset_setup_hw_state(struct drm_device *dev,
10901 bool force_restore)
10902{
10903 struct drm_i915_private *dev_priv = dev->dev_private;
10904 enum pipe pipe;
10905 struct intel_crtc *crtc;
10906 struct intel_encoder *encoder;
10907 int i;
10908
10909 intel_modeset_readout_hw_state(dev);
10910
10911 /*
10912 * Now that we have the config, copy it to each CRTC struct
10913 * Note that this could go away if we move to using crtc_config
10914 * checking everywhere.
10915 */
10916 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
10917 base.head) {
10918 if (crtc->active && i915_fastboot) {
10919 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
10920
10921 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
10922 crtc->base.base.id);
10923 drm_mode_debug_printmodeline(&crtc->base.mode);
10924 }
10925 }
10926
10927 /* HW state is read out, now we need to sanitize this mess. */
10928 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
10929 base.head) {
10930 intel_sanitize_encoder(encoder);
10931 }
10932
10933 for_each_pipe(pipe) {
10934 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
10935 intel_sanitize_crtc(crtc);
10936 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
10937 }
10938
10939 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10940 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
10941
10942 if (!pll->on || pll->active)
10943 continue;
10944
10945 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
10946
10947 pll->disable(dev_priv, pll);
10948 pll->on = false;
10949 }
10950
10951 if (IS_HASWELL(dev))
10952 ilk_wm_get_hw_state(dev);
10953
10954 if (force_restore) {
10955 i915_redisable_vga(dev);
10956
10957 /*
10958 * We need to use raw interfaces for restoring state to avoid
10959 * checking (bogus) intermediate states.
10960 */
10961 for_each_pipe(pipe) {
10962 struct drm_crtc *crtc =
10963 dev_priv->pipe_to_crtc_mapping[pipe];
10964
10965 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
10966 crtc->fb);
10967 }
10968 } else {
10969 intel_modeset_update_staged_output_state(dev);
10970 }
10971
10972 intel_modeset_check_state(dev);
10973
10974 drm_mode_config_reset(dev);
10975}
10976
10977void intel_modeset_gem_init(struct drm_device *dev)
10978{
10979 intel_modeset_init_hw(dev);
10980
10981 intel_setup_overlay(dev);
10982
10983 intel_modeset_setup_hw_state(dev, false);
10984}
10985
10986void intel_modeset_cleanup(struct drm_device *dev)
10987{
10988 struct drm_i915_private *dev_priv = dev->dev_private;
10989 struct drm_crtc *crtc;
10990 struct drm_connector *connector;
10991
10992 /*
10993 * Interrupts and polling as the first thing to avoid creating havoc.
10994 * Too much stuff here (turning of rps, connectors, ...) would
10995 * experience fancy races otherwise.
10996 */
10997 drm_irq_uninstall(dev);
10998 cancel_work_sync(&dev_priv->hotplug_work);
10999 /*
11000 * Due to the hpd irq storm handling the hotplug work can re-arm the
11001 * poll handlers. Hence disable polling after hpd handling is shut down.
11002 */
11003 drm_kms_helper_poll_fini(dev);
11004
11005 mutex_lock(&dev->struct_mutex);
11006
11007 intel_unregister_dsm_handler();
11008
11009 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11010 /* Skip inactive CRTCs */
11011 if (!crtc->fb)
11012 continue;
11013
11014 intel_increase_pllclock(crtc);
11015 }
11016
11017 intel_disable_fbc(dev);
11018
11019 intel_disable_gt_powersave(dev);
11020
11021 ironlake_teardown_rc6(dev);
11022
11023 mutex_unlock(&dev->struct_mutex);
11024
11025 /* flush any delayed tasks or pending work */
11026 flush_scheduled_work();
11027
11028 /* destroy backlight, if any, before the connectors */
11029 intel_panel_destroy_backlight(dev);
11030
11031 /* destroy the sysfs files before encoders/connectors */
11032 list_for_each_entry(connector, &dev->mode_config.connector_list, head)
11033 drm_sysfs_connector_remove(connector);
11034
11035 drm_mode_config_cleanup(dev);
11036
11037 intel_cleanup_overlay(dev);
11038}
11039
11040/*
11041 * Return which encoder is currently attached for connector.
11042 */
11043struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11044{
11045 return &intel_attached_encoder(connector)->base;
11046}
11047
11048void intel_connector_attach_encoder(struct intel_connector *connector,
11049 struct intel_encoder *encoder)
11050{
11051 connector->encoder = encoder;
11052 drm_mode_connector_attach_encoder(&connector->base,
11053 &encoder->base);
11054}
11055
11056/*
11057 * set vga decode state - true == enable VGA decode
11058 */
11059int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11060{
11061 struct drm_i915_private *dev_priv = dev->dev_private;
11062 u16 gmch_ctrl;
11063
11064 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11065 if (state)
11066 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11067 else
11068 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11069 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11070 return 0;
11071}
11072
11073struct intel_display_error_state {
11074
11075 u32 power_well_driver;
11076
11077 int num_transcoders;
11078
11079 struct intel_cursor_error_state {
11080 u32 control;
11081 u32 position;
11082 u32 base;
11083 u32 size;
11084 } cursor[I915_MAX_PIPES];
11085
11086 struct intel_pipe_error_state {
11087 u32 source;
11088 } pipe[I915_MAX_PIPES];
11089
11090 struct intel_plane_error_state {
11091 u32 control;
11092 u32 stride;
11093 u32 size;
11094 u32 pos;
11095 u32 addr;
11096 u32 surface;
11097 u32 tile_offset;
11098 } plane[I915_MAX_PIPES];
11099
11100 struct intel_transcoder_error_state {
11101 enum transcoder cpu_transcoder;
11102
11103 u32 conf;
11104
11105 u32 htotal;
11106 u32 hblank;
11107 u32 hsync;
11108 u32 vtotal;
11109 u32 vblank;
11110 u32 vsync;
11111 } transcoder[4];
11112};
11113
11114struct intel_display_error_state *
11115intel_display_capture_error_state(struct drm_device *dev)
11116{
11117 drm_i915_private_t *dev_priv = dev->dev_private;
11118 struct intel_display_error_state *error;
11119 int transcoders[] = {
11120 TRANSCODER_A,
11121 TRANSCODER_B,
11122 TRANSCODER_C,
11123 TRANSCODER_EDP,
11124 };
11125 int i;
11126
11127 if (INTEL_INFO(dev)->num_pipes == 0)
11128 return NULL;
11129
11130 error = kzalloc(sizeof(*error), GFP_ATOMIC);
11131 if (error == NULL)
11132 return NULL;
11133
11134 if (HAS_POWER_WELL(dev))
11135 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11136
11137 for_each_pipe(i) {
11138 if (!intel_display_power_enabled(dev, POWER_DOMAIN_PIPE(i)))
11139 continue;
11140
11141 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11142 error->cursor[i].control = I915_READ(CURCNTR(i));
11143 error->cursor[i].position = I915_READ(CURPOS(i));
11144 error->cursor[i].base = I915_READ(CURBASE(i));
11145 } else {
11146 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11147 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11148 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11149 }
11150
11151 error->plane[i].control = I915_READ(DSPCNTR(i));
11152 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11153 if (INTEL_INFO(dev)->gen <= 3) {
11154 error->plane[i].size = I915_READ(DSPSIZE(i));
11155 error->plane[i].pos = I915_READ(DSPPOS(i));
11156 }
11157 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11158 error->plane[i].addr = I915_READ(DSPADDR(i));
11159 if (INTEL_INFO(dev)->gen >= 4) {
11160 error->plane[i].surface = I915_READ(DSPSURF(i));
11161 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11162 }
11163
11164 error->pipe[i].source = I915_READ(PIPESRC(i));
11165 }
11166
11167 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11168 if (HAS_DDI(dev_priv->dev))
11169 error->num_transcoders++; /* Account for eDP. */
11170
11171 for (i = 0; i < error->num_transcoders; i++) {
11172 enum transcoder cpu_transcoder = transcoders[i];
11173
11174 if (!intel_display_power_enabled(dev,
11175 POWER_DOMAIN_TRANSCODER(cpu_transcoder)))
11176 continue;
11177
11178 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11179
11180 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11181 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11182 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11183 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11184 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11185 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11186 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11187 }
11188
11189 return error;
11190}
11191
11192#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11193
11194void
11195intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11196 struct drm_device *dev,
11197 struct intel_display_error_state *error)
11198{
11199 int i;
11200
11201 if (!error)
11202 return;
11203
11204 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11205 if (HAS_POWER_WELL(dev))
11206 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11207 error->power_well_driver);
11208 for_each_pipe(i) {
11209 err_printf(m, "Pipe [%d]:\n", i);
11210 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
11211
11212 err_printf(m, "Plane [%d]:\n", i);
11213 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
11214 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
11215 if (INTEL_INFO(dev)->gen <= 3) {
11216 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
11217 err_printf(m, " POS: %08x\n", error->plane[i].pos);
11218 }
11219 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11220 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
11221 if (INTEL_INFO(dev)->gen >= 4) {
11222 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
11223 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
11224 }
11225
11226 err_printf(m, "Cursor [%d]:\n", i);
11227 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
11228 err_printf(m, " POS: %08x\n", error->cursor[i].position);
11229 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
11230 }
11231
11232 for (i = 0; i < error->num_transcoders; i++) {
11233 err_printf(m, "CPU transcoder: %c\n",
11234 transcoder_name(error->transcoder[i].cpu_transcoder));
11235 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
11236 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
11237 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
11238 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
11239 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
11240 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
11241 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
11242 }
11243}
This page took 0.075815 seconds and 5 git commands to generate.