drm/i915: Introduce new intel_output_name()
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_display.c
... / ...
CommitLineData
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27#include <linux/dmi.h>
28#include <linux/module.h>
29#include <linux/input.h>
30#include <linux/i2c.h>
31#include <linux/kernel.h>
32#include <linux/slab.h>
33#include <linux/vgaarb.h>
34#include <drm/drm_edid.h>
35#include <drm/drmP.h>
36#include "intel_drv.h"
37#include <drm/i915_drm.h>
38#include "i915_drv.h"
39#include "i915_trace.h"
40#include <drm/drm_dp_helper.h>
41#include <drm/drm_crtc_helper.h>
42#include <linux/dma_remapping.h>
43
44static void intel_increase_pllclock(struct drm_crtc *crtc);
45static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
46
47static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
48 struct intel_crtc_config *pipe_config);
49static void ironlake_pch_clock_get(struct intel_crtc *crtc,
50 struct intel_crtc_config *pipe_config);
51
52static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
53 int x, int y, struct drm_framebuffer *old_fb);
54
55
56typedef struct {
57 int min, max;
58} intel_range_t;
59
60typedef struct {
61 int dot_limit;
62 int p2_slow, p2_fast;
63} intel_p2_t;
64
65typedef struct intel_limit intel_limit_t;
66struct intel_limit {
67 intel_range_t dot, vco, n, m, m1, m2, p, p1;
68 intel_p2_t p2;
69};
70
71int
72intel_pch_rawclk(struct drm_device *dev)
73{
74 struct drm_i915_private *dev_priv = dev->dev_private;
75
76 WARN_ON(!HAS_PCH_SPLIT(dev));
77
78 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
79}
80
81static inline u32 /* units of 100MHz */
82intel_fdi_link_freq(struct drm_device *dev)
83{
84 if (IS_GEN5(dev)) {
85 struct drm_i915_private *dev_priv = dev->dev_private;
86 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
87 } else
88 return 27;
89}
90
91static const intel_limit_t intel_limits_i8xx_dac = {
92 .dot = { .min = 25000, .max = 350000 },
93 .vco = { .min = 908000, .max = 1512000 },
94 .n = { .min = 2, .max = 16 },
95 .m = { .min = 96, .max = 140 },
96 .m1 = { .min = 18, .max = 26 },
97 .m2 = { .min = 6, .max = 16 },
98 .p = { .min = 4, .max = 128 },
99 .p1 = { .min = 2, .max = 33 },
100 .p2 = { .dot_limit = 165000,
101 .p2_slow = 4, .p2_fast = 2 },
102};
103
104static const intel_limit_t intel_limits_i8xx_dvo = {
105 .dot = { .min = 25000, .max = 350000 },
106 .vco = { .min = 908000, .max = 1512000 },
107 .n = { .min = 2, .max = 16 },
108 .m = { .min = 96, .max = 140 },
109 .m1 = { .min = 18, .max = 26 },
110 .m2 = { .min = 6, .max = 16 },
111 .p = { .min = 4, .max = 128 },
112 .p1 = { .min = 2, .max = 33 },
113 .p2 = { .dot_limit = 165000,
114 .p2_slow = 4, .p2_fast = 4 },
115};
116
117static const intel_limit_t intel_limits_i8xx_lvds = {
118 .dot = { .min = 25000, .max = 350000 },
119 .vco = { .min = 908000, .max = 1512000 },
120 .n = { .min = 2, .max = 16 },
121 .m = { .min = 96, .max = 140 },
122 .m1 = { .min = 18, .max = 26 },
123 .m2 = { .min = 6, .max = 16 },
124 .p = { .min = 4, .max = 128 },
125 .p1 = { .min = 1, .max = 6 },
126 .p2 = { .dot_limit = 165000,
127 .p2_slow = 14, .p2_fast = 7 },
128};
129
130static const intel_limit_t intel_limits_i9xx_sdvo = {
131 .dot = { .min = 20000, .max = 400000 },
132 .vco = { .min = 1400000, .max = 2800000 },
133 .n = { .min = 1, .max = 6 },
134 .m = { .min = 70, .max = 120 },
135 .m1 = { .min = 8, .max = 18 },
136 .m2 = { .min = 3, .max = 7 },
137 .p = { .min = 5, .max = 80 },
138 .p1 = { .min = 1, .max = 8 },
139 .p2 = { .dot_limit = 200000,
140 .p2_slow = 10, .p2_fast = 5 },
141};
142
143static const intel_limit_t intel_limits_i9xx_lvds = {
144 .dot = { .min = 20000, .max = 400000 },
145 .vco = { .min = 1400000, .max = 2800000 },
146 .n = { .min = 1, .max = 6 },
147 .m = { .min = 70, .max = 120 },
148 .m1 = { .min = 8, .max = 18 },
149 .m2 = { .min = 3, .max = 7 },
150 .p = { .min = 7, .max = 98 },
151 .p1 = { .min = 1, .max = 8 },
152 .p2 = { .dot_limit = 112000,
153 .p2_slow = 14, .p2_fast = 7 },
154};
155
156
157static const intel_limit_t intel_limits_g4x_sdvo = {
158 .dot = { .min = 25000, .max = 270000 },
159 .vco = { .min = 1750000, .max = 3500000},
160 .n = { .min = 1, .max = 4 },
161 .m = { .min = 104, .max = 138 },
162 .m1 = { .min = 17, .max = 23 },
163 .m2 = { .min = 5, .max = 11 },
164 .p = { .min = 10, .max = 30 },
165 .p1 = { .min = 1, .max = 3},
166 .p2 = { .dot_limit = 270000,
167 .p2_slow = 10,
168 .p2_fast = 10
169 },
170};
171
172static const intel_limit_t intel_limits_g4x_hdmi = {
173 .dot = { .min = 22000, .max = 400000 },
174 .vco = { .min = 1750000, .max = 3500000},
175 .n = { .min = 1, .max = 4 },
176 .m = { .min = 104, .max = 138 },
177 .m1 = { .min = 16, .max = 23 },
178 .m2 = { .min = 5, .max = 11 },
179 .p = { .min = 5, .max = 80 },
180 .p1 = { .min = 1, .max = 8},
181 .p2 = { .dot_limit = 165000,
182 .p2_slow = 10, .p2_fast = 5 },
183};
184
185static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
186 .dot = { .min = 20000, .max = 115000 },
187 .vco = { .min = 1750000, .max = 3500000 },
188 .n = { .min = 1, .max = 3 },
189 .m = { .min = 104, .max = 138 },
190 .m1 = { .min = 17, .max = 23 },
191 .m2 = { .min = 5, .max = 11 },
192 .p = { .min = 28, .max = 112 },
193 .p1 = { .min = 2, .max = 8 },
194 .p2 = { .dot_limit = 0,
195 .p2_slow = 14, .p2_fast = 14
196 },
197};
198
199static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
200 .dot = { .min = 80000, .max = 224000 },
201 .vco = { .min = 1750000, .max = 3500000 },
202 .n = { .min = 1, .max = 3 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 17, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 14, .max = 42 },
207 .p1 = { .min = 2, .max = 6 },
208 .p2 = { .dot_limit = 0,
209 .p2_slow = 7, .p2_fast = 7
210 },
211};
212
213static const intel_limit_t intel_limits_pineview_sdvo = {
214 .dot = { .min = 20000, .max = 400000},
215 .vco = { .min = 1700000, .max = 3500000 },
216 /* Pineview's Ncounter is a ring counter */
217 .n = { .min = 3, .max = 6 },
218 .m = { .min = 2, .max = 256 },
219 /* Pineview only has one combined m divider, which we treat as m2. */
220 .m1 = { .min = 0, .max = 0 },
221 .m2 = { .min = 0, .max = 254 },
222 .p = { .min = 5, .max = 80 },
223 .p1 = { .min = 1, .max = 8 },
224 .p2 = { .dot_limit = 200000,
225 .p2_slow = 10, .p2_fast = 5 },
226};
227
228static const intel_limit_t intel_limits_pineview_lvds = {
229 .dot = { .min = 20000, .max = 400000 },
230 .vco = { .min = 1700000, .max = 3500000 },
231 .n = { .min = 3, .max = 6 },
232 .m = { .min = 2, .max = 256 },
233 .m1 = { .min = 0, .max = 0 },
234 .m2 = { .min = 0, .max = 254 },
235 .p = { .min = 7, .max = 112 },
236 .p1 = { .min = 1, .max = 8 },
237 .p2 = { .dot_limit = 112000,
238 .p2_slow = 14, .p2_fast = 14 },
239};
240
241/* Ironlake / Sandybridge
242 *
243 * We calculate clock using (register_value + 2) for N/M1/M2, so here
244 * the range value for them is (actual_value - 2).
245 */
246static const intel_limit_t intel_limits_ironlake_dac = {
247 .dot = { .min = 25000, .max = 350000 },
248 .vco = { .min = 1760000, .max = 3510000 },
249 .n = { .min = 1, .max = 5 },
250 .m = { .min = 79, .max = 127 },
251 .m1 = { .min = 12, .max = 22 },
252 .m2 = { .min = 5, .max = 9 },
253 .p = { .min = 5, .max = 80 },
254 .p1 = { .min = 1, .max = 8 },
255 .p2 = { .dot_limit = 225000,
256 .p2_slow = 10, .p2_fast = 5 },
257};
258
259static const intel_limit_t intel_limits_ironlake_single_lvds = {
260 .dot = { .min = 25000, .max = 350000 },
261 .vco = { .min = 1760000, .max = 3510000 },
262 .n = { .min = 1, .max = 3 },
263 .m = { .min = 79, .max = 118 },
264 .m1 = { .min = 12, .max = 22 },
265 .m2 = { .min = 5, .max = 9 },
266 .p = { .min = 28, .max = 112 },
267 .p1 = { .min = 2, .max = 8 },
268 .p2 = { .dot_limit = 225000,
269 .p2_slow = 14, .p2_fast = 14 },
270};
271
272static const intel_limit_t intel_limits_ironlake_dual_lvds = {
273 .dot = { .min = 25000, .max = 350000 },
274 .vco = { .min = 1760000, .max = 3510000 },
275 .n = { .min = 1, .max = 3 },
276 .m = { .min = 79, .max = 127 },
277 .m1 = { .min = 12, .max = 22 },
278 .m2 = { .min = 5, .max = 9 },
279 .p = { .min = 14, .max = 56 },
280 .p1 = { .min = 2, .max = 8 },
281 .p2 = { .dot_limit = 225000,
282 .p2_slow = 7, .p2_fast = 7 },
283};
284
285/* LVDS 100mhz refclk limits. */
286static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
287 .dot = { .min = 25000, .max = 350000 },
288 .vco = { .min = 1760000, .max = 3510000 },
289 .n = { .min = 1, .max = 2 },
290 .m = { .min = 79, .max = 126 },
291 .m1 = { .min = 12, .max = 22 },
292 .m2 = { .min = 5, .max = 9 },
293 .p = { .min = 28, .max = 112 },
294 .p1 = { .min = 2, .max = 8 },
295 .p2 = { .dot_limit = 225000,
296 .p2_slow = 14, .p2_fast = 14 },
297};
298
299static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
300 .dot = { .min = 25000, .max = 350000 },
301 .vco = { .min = 1760000, .max = 3510000 },
302 .n = { .min = 1, .max = 3 },
303 .m = { .min = 79, .max = 126 },
304 .m1 = { .min = 12, .max = 22 },
305 .m2 = { .min = 5, .max = 9 },
306 .p = { .min = 14, .max = 42 },
307 .p1 = { .min = 2, .max = 6 },
308 .p2 = { .dot_limit = 225000,
309 .p2_slow = 7, .p2_fast = 7 },
310};
311
312static const intel_limit_t intel_limits_vlv = {
313 /*
314 * These are the data rate limits (measured in fast clocks)
315 * since those are the strictest limits we have. The fast
316 * clock and actual rate limits are more relaxed, so checking
317 * them would make no difference.
318 */
319 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
320 .vco = { .min = 4000000, .max = 6000000 },
321 .n = { .min = 1, .max = 7 },
322 .m1 = { .min = 2, .max = 3 },
323 .m2 = { .min = 11, .max = 156 },
324 .p1 = { .min = 2, .max = 3 },
325 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
326};
327
328static void vlv_clock(int refclk, intel_clock_t *clock)
329{
330 clock->m = clock->m1 * clock->m2;
331 clock->p = clock->p1 * clock->p2;
332 if (WARN_ON(clock->n == 0 || clock->p == 0))
333 return;
334 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
335 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
336}
337
338/**
339 * Returns whether any output on the specified pipe is of the specified type
340 */
341static bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
342{
343 struct drm_device *dev = crtc->dev;
344 struct intel_encoder *encoder;
345
346 for_each_encoder_on_crtc(dev, crtc, encoder)
347 if (encoder->type == type)
348 return true;
349
350 return false;
351}
352
353static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
354 int refclk)
355{
356 struct drm_device *dev = crtc->dev;
357 const intel_limit_t *limit;
358
359 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
360 if (intel_is_dual_link_lvds(dev)) {
361 if (refclk == 100000)
362 limit = &intel_limits_ironlake_dual_lvds_100m;
363 else
364 limit = &intel_limits_ironlake_dual_lvds;
365 } else {
366 if (refclk == 100000)
367 limit = &intel_limits_ironlake_single_lvds_100m;
368 else
369 limit = &intel_limits_ironlake_single_lvds;
370 }
371 } else
372 limit = &intel_limits_ironlake_dac;
373
374 return limit;
375}
376
377static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
378{
379 struct drm_device *dev = crtc->dev;
380 const intel_limit_t *limit;
381
382 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
383 if (intel_is_dual_link_lvds(dev))
384 limit = &intel_limits_g4x_dual_channel_lvds;
385 else
386 limit = &intel_limits_g4x_single_channel_lvds;
387 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
388 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
389 limit = &intel_limits_g4x_hdmi;
390 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
391 limit = &intel_limits_g4x_sdvo;
392 } else /* The option is for other outputs */
393 limit = &intel_limits_i9xx_sdvo;
394
395 return limit;
396}
397
398static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
399{
400 struct drm_device *dev = crtc->dev;
401 const intel_limit_t *limit;
402
403 if (HAS_PCH_SPLIT(dev))
404 limit = intel_ironlake_limit(crtc, refclk);
405 else if (IS_G4X(dev)) {
406 limit = intel_g4x_limit(crtc);
407 } else if (IS_PINEVIEW(dev)) {
408 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
409 limit = &intel_limits_pineview_lvds;
410 else
411 limit = &intel_limits_pineview_sdvo;
412 } else if (IS_VALLEYVIEW(dev)) {
413 limit = &intel_limits_vlv;
414 } else if (!IS_GEN2(dev)) {
415 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
416 limit = &intel_limits_i9xx_lvds;
417 else
418 limit = &intel_limits_i9xx_sdvo;
419 } else {
420 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
421 limit = &intel_limits_i8xx_lvds;
422 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
423 limit = &intel_limits_i8xx_dvo;
424 else
425 limit = &intel_limits_i8xx_dac;
426 }
427 return limit;
428}
429
430/* m1 is reserved as 0 in Pineview, n is a ring counter */
431static void pineview_clock(int refclk, intel_clock_t *clock)
432{
433 clock->m = clock->m2 + 2;
434 clock->p = clock->p1 * clock->p2;
435 if (WARN_ON(clock->n == 0 || clock->p == 0))
436 return;
437 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
438 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
439}
440
441static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
442{
443 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
444}
445
446static void i9xx_clock(int refclk, intel_clock_t *clock)
447{
448 clock->m = i9xx_dpll_compute_m(clock);
449 clock->p = clock->p1 * clock->p2;
450 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
451 return;
452 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
453 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
454}
455
456#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
457/**
458 * Returns whether the given set of divisors are valid for a given refclk with
459 * the given connectors.
460 */
461
462static bool intel_PLL_is_valid(struct drm_device *dev,
463 const intel_limit_t *limit,
464 const intel_clock_t *clock)
465{
466 if (clock->n < limit->n.min || limit->n.max < clock->n)
467 INTELPllInvalid("n out of range\n");
468 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
469 INTELPllInvalid("p1 out of range\n");
470 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
471 INTELPllInvalid("m2 out of range\n");
472 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
473 INTELPllInvalid("m1 out of range\n");
474
475 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev))
476 if (clock->m1 <= clock->m2)
477 INTELPllInvalid("m1 <= m2\n");
478
479 if (!IS_VALLEYVIEW(dev)) {
480 if (clock->p < limit->p.min || limit->p.max < clock->p)
481 INTELPllInvalid("p out of range\n");
482 if (clock->m < limit->m.min || limit->m.max < clock->m)
483 INTELPllInvalid("m out of range\n");
484 }
485
486 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
487 INTELPllInvalid("vco out of range\n");
488 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
489 * connector, etc., rather than just a single range.
490 */
491 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
492 INTELPllInvalid("dot out of range\n");
493
494 return true;
495}
496
497static bool
498i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
499 int target, int refclk, intel_clock_t *match_clock,
500 intel_clock_t *best_clock)
501{
502 struct drm_device *dev = crtc->dev;
503 intel_clock_t clock;
504 int err = target;
505
506 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
507 /*
508 * For LVDS just rely on its current settings for dual-channel.
509 * We haven't figured out how to reliably set up different
510 * single/dual channel state, if we even can.
511 */
512 if (intel_is_dual_link_lvds(dev))
513 clock.p2 = limit->p2.p2_fast;
514 else
515 clock.p2 = limit->p2.p2_slow;
516 } else {
517 if (target < limit->p2.dot_limit)
518 clock.p2 = limit->p2.p2_slow;
519 else
520 clock.p2 = limit->p2.p2_fast;
521 }
522
523 memset(best_clock, 0, sizeof(*best_clock));
524
525 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
526 clock.m1++) {
527 for (clock.m2 = limit->m2.min;
528 clock.m2 <= limit->m2.max; clock.m2++) {
529 if (clock.m2 >= clock.m1)
530 break;
531 for (clock.n = limit->n.min;
532 clock.n <= limit->n.max; clock.n++) {
533 for (clock.p1 = limit->p1.min;
534 clock.p1 <= limit->p1.max; clock.p1++) {
535 int this_err;
536
537 i9xx_clock(refclk, &clock);
538 if (!intel_PLL_is_valid(dev, limit,
539 &clock))
540 continue;
541 if (match_clock &&
542 clock.p != match_clock->p)
543 continue;
544
545 this_err = abs(clock.dot - target);
546 if (this_err < err) {
547 *best_clock = clock;
548 err = this_err;
549 }
550 }
551 }
552 }
553 }
554
555 return (err != target);
556}
557
558static bool
559pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
560 int target, int refclk, intel_clock_t *match_clock,
561 intel_clock_t *best_clock)
562{
563 struct drm_device *dev = crtc->dev;
564 intel_clock_t clock;
565 int err = target;
566
567 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
568 /*
569 * For LVDS just rely on its current settings for dual-channel.
570 * We haven't figured out how to reliably set up different
571 * single/dual channel state, if we even can.
572 */
573 if (intel_is_dual_link_lvds(dev))
574 clock.p2 = limit->p2.p2_fast;
575 else
576 clock.p2 = limit->p2.p2_slow;
577 } else {
578 if (target < limit->p2.dot_limit)
579 clock.p2 = limit->p2.p2_slow;
580 else
581 clock.p2 = limit->p2.p2_fast;
582 }
583
584 memset(best_clock, 0, sizeof(*best_clock));
585
586 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
587 clock.m1++) {
588 for (clock.m2 = limit->m2.min;
589 clock.m2 <= limit->m2.max; clock.m2++) {
590 for (clock.n = limit->n.min;
591 clock.n <= limit->n.max; clock.n++) {
592 for (clock.p1 = limit->p1.min;
593 clock.p1 <= limit->p1.max; clock.p1++) {
594 int this_err;
595
596 pineview_clock(refclk, &clock);
597 if (!intel_PLL_is_valid(dev, limit,
598 &clock))
599 continue;
600 if (match_clock &&
601 clock.p != match_clock->p)
602 continue;
603
604 this_err = abs(clock.dot - target);
605 if (this_err < err) {
606 *best_clock = clock;
607 err = this_err;
608 }
609 }
610 }
611 }
612 }
613
614 return (err != target);
615}
616
617static bool
618g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
619 int target, int refclk, intel_clock_t *match_clock,
620 intel_clock_t *best_clock)
621{
622 struct drm_device *dev = crtc->dev;
623 intel_clock_t clock;
624 int max_n;
625 bool found;
626 /* approximately equals target * 0.00585 */
627 int err_most = (target >> 8) + (target >> 9);
628 found = false;
629
630 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
631 if (intel_is_dual_link_lvds(dev))
632 clock.p2 = limit->p2.p2_fast;
633 else
634 clock.p2 = limit->p2.p2_slow;
635 } else {
636 if (target < limit->p2.dot_limit)
637 clock.p2 = limit->p2.p2_slow;
638 else
639 clock.p2 = limit->p2.p2_fast;
640 }
641
642 memset(best_clock, 0, sizeof(*best_clock));
643 max_n = limit->n.max;
644 /* based on hardware requirement, prefer smaller n to precision */
645 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
646 /* based on hardware requirement, prefere larger m1,m2 */
647 for (clock.m1 = limit->m1.max;
648 clock.m1 >= limit->m1.min; clock.m1--) {
649 for (clock.m2 = limit->m2.max;
650 clock.m2 >= limit->m2.min; clock.m2--) {
651 for (clock.p1 = limit->p1.max;
652 clock.p1 >= limit->p1.min; clock.p1--) {
653 int this_err;
654
655 i9xx_clock(refclk, &clock);
656 if (!intel_PLL_is_valid(dev, limit,
657 &clock))
658 continue;
659
660 this_err = abs(clock.dot - target);
661 if (this_err < err_most) {
662 *best_clock = clock;
663 err_most = this_err;
664 max_n = clock.n;
665 found = true;
666 }
667 }
668 }
669 }
670 }
671 return found;
672}
673
674static bool
675vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
676 int target, int refclk, intel_clock_t *match_clock,
677 intel_clock_t *best_clock)
678{
679 struct drm_device *dev = crtc->dev;
680 intel_clock_t clock;
681 unsigned int bestppm = 1000000;
682 /* min update 19.2 MHz */
683 int max_n = min(limit->n.max, refclk / 19200);
684 bool found = false;
685
686 target *= 5; /* fast clock */
687
688 memset(best_clock, 0, sizeof(*best_clock));
689
690 /* based on hardware requirement, prefer smaller n to precision */
691 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
692 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
693 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
694 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
695 clock.p = clock.p1 * clock.p2;
696 /* based on hardware requirement, prefer bigger m1,m2 values */
697 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
698 unsigned int ppm, diff;
699
700 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
701 refclk * clock.m1);
702
703 vlv_clock(refclk, &clock);
704
705 if (!intel_PLL_is_valid(dev, limit,
706 &clock))
707 continue;
708
709 diff = abs(clock.dot - target);
710 ppm = div_u64(1000000ULL * diff, target);
711
712 if (ppm < 100 && clock.p > best_clock->p) {
713 bestppm = 0;
714 *best_clock = clock;
715 found = true;
716 }
717
718 if (bestppm >= 10 && ppm < bestppm - 10) {
719 bestppm = ppm;
720 *best_clock = clock;
721 found = true;
722 }
723 }
724 }
725 }
726 }
727
728 return found;
729}
730
731bool intel_crtc_active(struct drm_crtc *crtc)
732{
733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
734
735 /* Be paranoid as we can arrive here with only partial
736 * state retrieved from the hardware during setup.
737 *
738 * We can ditch the adjusted_mode.crtc_clock check as soon
739 * as Haswell has gained clock readout/fastboot support.
740 *
741 * We can ditch the crtc->fb check as soon as we can
742 * properly reconstruct framebuffers.
743 */
744 return intel_crtc->active && crtc->fb &&
745 intel_crtc->config.adjusted_mode.crtc_clock;
746}
747
748enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
749 enum pipe pipe)
750{
751 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
753
754 return intel_crtc->config.cpu_transcoder;
755}
756
757static void g4x_wait_for_vblank(struct drm_device *dev, int pipe)
758{
759 struct drm_i915_private *dev_priv = dev->dev_private;
760 u32 frame, frame_reg = PIPE_FRMCOUNT_GM45(pipe);
761
762 frame = I915_READ(frame_reg);
763
764 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
765 DRM_DEBUG_KMS("vblank wait timed out\n");
766}
767
768/**
769 * intel_wait_for_vblank - wait for vblank on a given pipe
770 * @dev: drm device
771 * @pipe: pipe to wait for
772 *
773 * Wait for vblank to occur on a given pipe. Needed for various bits of
774 * mode setting code.
775 */
776void intel_wait_for_vblank(struct drm_device *dev, int pipe)
777{
778 struct drm_i915_private *dev_priv = dev->dev_private;
779 int pipestat_reg = PIPESTAT(pipe);
780
781 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
782 g4x_wait_for_vblank(dev, pipe);
783 return;
784 }
785
786 /* Clear existing vblank status. Note this will clear any other
787 * sticky status fields as well.
788 *
789 * This races with i915_driver_irq_handler() with the result
790 * that either function could miss a vblank event. Here it is not
791 * fatal, as we will either wait upon the next vblank interrupt or
792 * timeout. Generally speaking intel_wait_for_vblank() is only
793 * called during modeset at which time the GPU should be idle and
794 * should *not* be performing page flips and thus not waiting on
795 * vblanks...
796 * Currently, the result of us stealing a vblank from the irq
797 * handler is that a single frame will be skipped during swapbuffers.
798 */
799 I915_WRITE(pipestat_reg,
800 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
801
802 /* Wait for vblank interrupt bit to set */
803 if (wait_for(I915_READ(pipestat_reg) &
804 PIPE_VBLANK_INTERRUPT_STATUS,
805 50))
806 DRM_DEBUG_KMS("vblank wait timed out\n");
807}
808
809static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
810{
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 u32 reg = PIPEDSL(pipe);
813 u32 line1, line2;
814 u32 line_mask;
815
816 if (IS_GEN2(dev))
817 line_mask = DSL_LINEMASK_GEN2;
818 else
819 line_mask = DSL_LINEMASK_GEN3;
820
821 line1 = I915_READ(reg) & line_mask;
822 mdelay(5);
823 line2 = I915_READ(reg) & line_mask;
824
825 return line1 == line2;
826}
827
828/*
829 * intel_wait_for_pipe_off - wait for pipe to turn off
830 * @dev: drm device
831 * @pipe: pipe to wait for
832 *
833 * After disabling a pipe, we can't wait for vblank in the usual way,
834 * spinning on the vblank interrupt status bit, since we won't actually
835 * see an interrupt when the pipe is disabled.
836 *
837 * On Gen4 and above:
838 * wait for the pipe register state bit to turn off
839 *
840 * Otherwise:
841 * wait for the display line value to settle (it usually
842 * ends up stopping at the start of the next frame).
843 *
844 */
845void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
846{
847 struct drm_i915_private *dev_priv = dev->dev_private;
848 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
849 pipe);
850
851 if (INTEL_INFO(dev)->gen >= 4) {
852 int reg = PIPECONF(cpu_transcoder);
853
854 /* Wait for the Pipe State to go off */
855 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
856 100))
857 WARN(1, "pipe_off wait timed out\n");
858 } else {
859 /* Wait for the display line to settle */
860 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
861 WARN(1, "pipe_off wait timed out\n");
862 }
863}
864
865/*
866 * ibx_digital_port_connected - is the specified port connected?
867 * @dev_priv: i915 private structure
868 * @port: the port to test
869 *
870 * Returns true if @port is connected, false otherwise.
871 */
872bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
873 struct intel_digital_port *port)
874{
875 u32 bit;
876
877 if (HAS_PCH_IBX(dev_priv->dev)) {
878 switch(port->port) {
879 case PORT_B:
880 bit = SDE_PORTB_HOTPLUG;
881 break;
882 case PORT_C:
883 bit = SDE_PORTC_HOTPLUG;
884 break;
885 case PORT_D:
886 bit = SDE_PORTD_HOTPLUG;
887 break;
888 default:
889 return true;
890 }
891 } else {
892 switch(port->port) {
893 case PORT_B:
894 bit = SDE_PORTB_HOTPLUG_CPT;
895 break;
896 case PORT_C:
897 bit = SDE_PORTC_HOTPLUG_CPT;
898 break;
899 case PORT_D:
900 bit = SDE_PORTD_HOTPLUG_CPT;
901 break;
902 default:
903 return true;
904 }
905 }
906
907 return I915_READ(SDEISR) & bit;
908}
909
910static const char *state_string(bool enabled)
911{
912 return enabled ? "on" : "off";
913}
914
915/* Only for pre-ILK configs */
916void assert_pll(struct drm_i915_private *dev_priv,
917 enum pipe pipe, bool state)
918{
919 int reg;
920 u32 val;
921 bool cur_state;
922
923 reg = DPLL(pipe);
924 val = I915_READ(reg);
925 cur_state = !!(val & DPLL_VCO_ENABLE);
926 WARN(cur_state != state,
927 "PLL state assertion failure (expected %s, current %s)\n",
928 state_string(state), state_string(cur_state));
929}
930
931/* XXX: the dsi pll is shared between MIPI DSI ports */
932static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
933{
934 u32 val;
935 bool cur_state;
936
937 mutex_lock(&dev_priv->dpio_lock);
938 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
939 mutex_unlock(&dev_priv->dpio_lock);
940
941 cur_state = val & DSI_PLL_VCO_EN;
942 WARN(cur_state != state,
943 "DSI PLL state assertion failure (expected %s, current %s)\n",
944 state_string(state), state_string(cur_state));
945}
946#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
947#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
948
949struct intel_shared_dpll *
950intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
951{
952 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
953
954 if (crtc->config.shared_dpll < 0)
955 return NULL;
956
957 return &dev_priv->shared_dplls[crtc->config.shared_dpll];
958}
959
960/* For ILK+ */
961void assert_shared_dpll(struct drm_i915_private *dev_priv,
962 struct intel_shared_dpll *pll,
963 bool state)
964{
965 bool cur_state;
966 struct intel_dpll_hw_state hw_state;
967
968 if (HAS_PCH_LPT(dev_priv->dev)) {
969 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
970 return;
971 }
972
973 if (WARN (!pll,
974 "asserting DPLL %s with no DPLL\n", state_string(state)))
975 return;
976
977 cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
978 WARN(cur_state != state,
979 "%s assertion failure (expected %s, current %s)\n",
980 pll->name, state_string(state), state_string(cur_state));
981}
982
983static void assert_fdi_tx(struct drm_i915_private *dev_priv,
984 enum pipe pipe, bool state)
985{
986 int reg;
987 u32 val;
988 bool cur_state;
989 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
990 pipe);
991
992 if (HAS_DDI(dev_priv->dev)) {
993 /* DDI does not have a specific FDI_TX register */
994 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
995 val = I915_READ(reg);
996 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
997 } else {
998 reg = FDI_TX_CTL(pipe);
999 val = I915_READ(reg);
1000 cur_state = !!(val & FDI_TX_ENABLE);
1001 }
1002 WARN(cur_state != state,
1003 "FDI TX state assertion failure (expected %s, current %s)\n",
1004 state_string(state), state_string(cur_state));
1005}
1006#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1007#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1008
1009static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1010 enum pipe pipe, bool state)
1011{
1012 int reg;
1013 u32 val;
1014 bool cur_state;
1015
1016 reg = FDI_RX_CTL(pipe);
1017 val = I915_READ(reg);
1018 cur_state = !!(val & FDI_RX_ENABLE);
1019 WARN(cur_state != state,
1020 "FDI RX state assertion failure (expected %s, current %s)\n",
1021 state_string(state), state_string(cur_state));
1022}
1023#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1024#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1025
1026static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1027 enum pipe pipe)
1028{
1029 int reg;
1030 u32 val;
1031
1032 /* ILK FDI PLL is always enabled */
1033 if (dev_priv->info->gen == 5)
1034 return;
1035
1036 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1037 if (HAS_DDI(dev_priv->dev))
1038 return;
1039
1040 reg = FDI_TX_CTL(pipe);
1041 val = I915_READ(reg);
1042 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1043}
1044
1045void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, bool state)
1047{
1048 int reg;
1049 u32 val;
1050 bool cur_state;
1051
1052 reg = FDI_RX_CTL(pipe);
1053 val = I915_READ(reg);
1054 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1055 WARN(cur_state != state,
1056 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1057 state_string(state), state_string(cur_state));
1058}
1059
1060static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1061 enum pipe pipe)
1062{
1063 int pp_reg, lvds_reg;
1064 u32 val;
1065 enum pipe panel_pipe = PIPE_A;
1066 bool locked = true;
1067
1068 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1069 pp_reg = PCH_PP_CONTROL;
1070 lvds_reg = PCH_LVDS;
1071 } else {
1072 pp_reg = PP_CONTROL;
1073 lvds_reg = LVDS;
1074 }
1075
1076 val = I915_READ(pp_reg);
1077 if (!(val & PANEL_POWER_ON) ||
1078 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1079 locked = false;
1080
1081 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1082 panel_pipe = PIPE_B;
1083
1084 WARN(panel_pipe == pipe && locked,
1085 "panel assertion failure, pipe %c regs locked\n",
1086 pipe_name(pipe));
1087}
1088
1089static void assert_cursor(struct drm_i915_private *dev_priv,
1090 enum pipe pipe, bool state)
1091{
1092 struct drm_device *dev = dev_priv->dev;
1093 bool cur_state;
1094
1095 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
1096 cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
1097 else if (IS_845G(dev) || IS_I865G(dev))
1098 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1099 else
1100 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1101
1102 WARN(cur_state != state,
1103 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1104 pipe_name(pipe), state_string(state), state_string(cur_state));
1105}
1106#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1107#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1108
1109void assert_pipe(struct drm_i915_private *dev_priv,
1110 enum pipe pipe, bool state)
1111{
1112 int reg;
1113 u32 val;
1114 bool cur_state;
1115 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1116 pipe);
1117
1118 /* if we need the pipe A quirk it must be always on */
1119 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1120 state = true;
1121
1122 if (!intel_display_power_enabled(dev_priv->dev,
1123 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1124 cur_state = false;
1125 } else {
1126 reg = PIPECONF(cpu_transcoder);
1127 val = I915_READ(reg);
1128 cur_state = !!(val & PIPECONF_ENABLE);
1129 }
1130
1131 WARN(cur_state != state,
1132 "pipe %c assertion failure (expected %s, current %s)\n",
1133 pipe_name(pipe), state_string(state), state_string(cur_state));
1134}
1135
1136static void assert_plane(struct drm_i915_private *dev_priv,
1137 enum plane plane, bool state)
1138{
1139 int reg;
1140 u32 val;
1141 bool cur_state;
1142
1143 reg = DSPCNTR(plane);
1144 val = I915_READ(reg);
1145 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1146 WARN(cur_state != state,
1147 "plane %c assertion failure (expected %s, current %s)\n",
1148 plane_name(plane), state_string(state), state_string(cur_state));
1149}
1150
1151#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1152#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1153
1154static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1155 enum pipe pipe)
1156{
1157 struct drm_device *dev = dev_priv->dev;
1158 int reg, i;
1159 u32 val;
1160 int cur_pipe;
1161
1162 /* Primary planes are fixed to pipes on gen4+ */
1163 if (INTEL_INFO(dev)->gen >= 4) {
1164 reg = DSPCNTR(pipe);
1165 val = I915_READ(reg);
1166 WARN((val & DISPLAY_PLANE_ENABLE),
1167 "plane %c assertion failure, should be disabled but not\n",
1168 plane_name(pipe));
1169 return;
1170 }
1171
1172 /* Need to check both planes against the pipe */
1173 for_each_pipe(i) {
1174 reg = DSPCNTR(i);
1175 val = I915_READ(reg);
1176 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1177 DISPPLANE_SEL_PIPE_SHIFT;
1178 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1179 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1180 plane_name(i), pipe_name(pipe));
1181 }
1182}
1183
1184static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1185 enum pipe pipe)
1186{
1187 struct drm_device *dev = dev_priv->dev;
1188 int reg, i;
1189 u32 val;
1190
1191 if (IS_VALLEYVIEW(dev)) {
1192 for (i = 0; i < dev_priv->num_plane; i++) {
1193 reg = SPCNTR(pipe, i);
1194 val = I915_READ(reg);
1195 WARN((val & SP_ENABLE),
1196 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1197 sprite_name(pipe, i), pipe_name(pipe));
1198 }
1199 } else if (INTEL_INFO(dev)->gen >= 7) {
1200 reg = SPRCTL(pipe);
1201 val = I915_READ(reg);
1202 WARN((val & SPRITE_ENABLE),
1203 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1204 plane_name(pipe), pipe_name(pipe));
1205 } else if (INTEL_INFO(dev)->gen >= 5) {
1206 reg = DVSCNTR(pipe);
1207 val = I915_READ(reg);
1208 WARN((val & DVS_ENABLE),
1209 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1210 plane_name(pipe), pipe_name(pipe));
1211 }
1212}
1213
1214static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1215{
1216 u32 val;
1217 bool enabled;
1218
1219 WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1220
1221 val = I915_READ(PCH_DREF_CONTROL);
1222 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1223 DREF_SUPERSPREAD_SOURCE_MASK));
1224 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1225}
1226
1227static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1228 enum pipe pipe)
1229{
1230 int reg;
1231 u32 val;
1232 bool enabled;
1233
1234 reg = PCH_TRANSCONF(pipe);
1235 val = I915_READ(reg);
1236 enabled = !!(val & TRANS_ENABLE);
1237 WARN(enabled,
1238 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1239 pipe_name(pipe));
1240}
1241
1242static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1243 enum pipe pipe, u32 port_sel, u32 val)
1244{
1245 if ((val & DP_PORT_EN) == 0)
1246 return false;
1247
1248 if (HAS_PCH_CPT(dev_priv->dev)) {
1249 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1250 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1251 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1252 return false;
1253 } else {
1254 if ((val & DP_PIPE_MASK) != (pipe << 30))
1255 return false;
1256 }
1257 return true;
1258}
1259
1260static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1261 enum pipe pipe, u32 val)
1262{
1263 if ((val & SDVO_ENABLE) == 0)
1264 return false;
1265
1266 if (HAS_PCH_CPT(dev_priv->dev)) {
1267 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1268 return false;
1269 } else {
1270 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1271 return false;
1272 }
1273 return true;
1274}
1275
1276static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1277 enum pipe pipe, u32 val)
1278{
1279 if ((val & LVDS_PORT_EN) == 0)
1280 return false;
1281
1282 if (HAS_PCH_CPT(dev_priv->dev)) {
1283 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1284 return false;
1285 } else {
1286 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1287 return false;
1288 }
1289 return true;
1290}
1291
1292static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1293 enum pipe pipe, u32 val)
1294{
1295 if ((val & ADPA_DAC_ENABLE) == 0)
1296 return false;
1297 if (HAS_PCH_CPT(dev_priv->dev)) {
1298 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1299 return false;
1300 } else {
1301 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1302 return false;
1303 }
1304 return true;
1305}
1306
1307static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1308 enum pipe pipe, int reg, u32 port_sel)
1309{
1310 u32 val = I915_READ(reg);
1311 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1312 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1313 reg, pipe_name(pipe));
1314
1315 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1316 && (val & DP_PIPEB_SELECT),
1317 "IBX PCH dp port still using transcoder B\n");
1318}
1319
1320static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe, int reg)
1322{
1323 u32 val = I915_READ(reg);
1324 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1325 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1326 reg, pipe_name(pipe));
1327
1328 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1329 && (val & SDVO_PIPE_B_SELECT),
1330 "IBX PCH hdmi port still using transcoder B\n");
1331}
1332
1333static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1334 enum pipe pipe)
1335{
1336 int reg;
1337 u32 val;
1338
1339 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1340 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1341 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1342
1343 reg = PCH_ADPA;
1344 val = I915_READ(reg);
1345 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1346 "PCH VGA enabled on transcoder %c, should be disabled\n",
1347 pipe_name(pipe));
1348
1349 reg = PCH_LVDS;
1350 val = I915_READ(reg);
1351 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1352 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1353 pipe_name(pipe));
1354
1355 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1356 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1357 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1358}
1359
1360static void intel_init_dpio(struct drm_device *dev)
1361{
1362 struct drm_i915_private *dev_priv = dev->dev_private;
1363
1364 if (!IS_VALLEYVIEW(dev))
1365 return;
1366
1367 /* Enable the CRI clock source so we can get at the display */
1368 I915_WRITE(DPLL(PIPE_B), I915_READ(DPLL(PIPE_B)) |
1369 DPLL_INTEGRATED_CRI_CLK_VLV);
1370
1371 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1372}
1373
1374static void intel_reset_dpio(struct drm_device *dev)
1375{
1376 struct drm_i915_private *dev_priv = dev->dev_private;
1377
1378 if (!IS_VALLEYVIEW(dev))
1379 return;
1380
1381 /*
1382 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
1383 * 6. De-assert cmn_reset/side_reset. Same as VLV X0.
1384 * a. GUnit 0x2110 bit[0] set to 1 (def 0)
1385 * b. The other bits such as sfr settings / modesel may all be set
1386 * to 0.
1387 *
1388 * This should only be done on init and resume from S3 with both
1389 * PLLs disabled, or we risk losing DPIO and PLL synchronization.
1390 */
1391 I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
1392}
1393
1394static void vlv_enable_pll(struct intel_crtc *crtc)
1395{
1396 struct drm_device *dev = crtc->base.dev;
1397 struct drm_i915_private *dev_priv = dev->dev_private;
1398 int reg = DPLL(crtc->pipe);
1399 u32 dpll = crtc->config.dpll_hw_state.dpll;
1400
1401 assert_pipe_disabled(dev_priv, crtc->pipe);
1402
1403 /* No really, not for ILK+ */
1404 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1405
1406 /* PLL is protected by panel, make sure we can write it */
1407 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1408 assert_panel_unlocked(dev_priv, crtc->pipe);
1409
1410 I915_WRITE(reg, dpll);
1411 POSTING_READ(reg);
1412 udelay(150);
1413
1414 if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1415 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1416
1417 I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
1418 POSTING_READ(DPLL_MD(crtc->pipe));
1419
1420 /* We do this three times for luck */
1421 I915_WRITE(reg, dpll);
1422 POSTING_READ(reg);
1423 udelay(150); /* wait for warmup */
1424 I915_WRITE(reg, dpll);
1425 POSTING_READ(reg);
1426 udelay(150); /* wait for warmup */
1427 I915_WRITE(reg, dpll);
1428 POSTING_READ(reg);
1429 udelay(150); /* wait for warmup */
1430}
1431
1432static void i9xx_enable_pll(struct intel_crtc *crtc)
1433{
1434 struct drm_device *dev = crtc->base.dev;
1435 struct drm_i915_private *dev_priv = dev->dev_private;
1436 int reg = DPLL(crtc->pipe);
1437 u32 dpll = crtc->config.dpll_hw_state.dpll;
1438
1439 assert_pipe_disabled(dev_priv, crtc->pipe);
1440
1441 /* No really, not for ILK+ */
1442 BUG_ON(dev_priv->info->gen >= 5);
1443
1444 /* PLL is protected by panel, make sure we can write it */
1445 if (IS_MOBILE(dev) && !IS_I830(dev))
1446 assert_panel_unlocked(dev_priv, crtc->pipe);
1447
1448 I915_WRITE(reg, dpll);
1449
1450 /* Wait for the clocks to stabilize. */
1451 POSTING_READ(reg);
1452 udelay(150);
1453
1454 if (INTEL_INFO(dev)->gen >= 4) {
1455 I915_WRITE(DPLL_MD(crtc->pipe),
1456 crtc->config.dpll_hw_state.dpll_md);
1457 } else {
1458 /* The pixel multiplier can only be updated once the
1459 * DPLL is enabled and the clocks are stable.
1460 *
1461 * So write it again.
1462 */
1463 I915_WRITE(reg, dpll);
1464 }
1465
1466 /* We do this three times for luck */
1467 I915_WRITE(reg, dpll);
1468 POSTING_READ(reg);
1469 udelay(150); /* wait for warmup */
1470 I915_WRITE(reg, dpll);
1471 POSTING_READ(reg);
1472 udelay(150); /* wait for warmup */
1473 I915_WRITE(reg, dpll);
1474 POSTING_READ(reg);
1475 udelay(150); /* wait for warmup */
1476}
1477
1478/**
1479 * i9xx_disable_pll - disable a PLL
1480 * @dev_priv: i915 private structure
1481 * @pipe: pipe PLL to disable
1482 *
1483 * Disable the PLL for @pipe, making sure the pipe is off first.
1484 *
1485 * Note! This is for pre-ILK only.
1486 */
1487static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1488{
1489 /* Don't disable pipe A or pipe A PLLs if needed */
1490 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1491 return;
1492
1493 /* Make sure the pipe isn't still relying on us */
1494 assert_pipe_disabled(dev_priv, pipe);
1495
1496 I915_WRITE(DPLL(pipe), 0);
1497 POSTING_READ(DPLL(pipe));
1498}
1499
1500static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1501{
1502 u32 val = 0;
1503
1504 /* Make sure the pipe isn't still relying on us */
1505 assert_pipe_disabled(dev_priv, pipe);
1506
1507 /* Leave integrated clock source enabled */
1508 if (pipe == PIPE_B)
1509 val = DPLL_INTEGRATED_CRI_CLK_VLV;
1510 I915_WRITE(DPLL(pipe), val);
1511 POSTING_READ(DPLL(pipe));
1512}
1513
1514void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1515 struct intel_digital_port *dport)
1516{
1517 u32 port_mask;
1518
1519 switch (dport->port) {
1520 case PORT_B:
1521 port_mask = DPLL_PORTB_READY_MASK;
1522 break;
1523 case PORT_C:
1524 port_mask = DPLL_PORTC_READY_MASK;
1525 break;
1526 default:
1527 BUG();
1528 }
1529
1530 if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
1531 WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
1532 port_name(dport->port), I915_READ(DPLL(0)));
1533}
1534
1535/**
1536 * ironlake_enable_shared_dpll - enable PCH PLL
1537 * @dev_priv: i915 private structure
1538 * @pipe: pipe PLL to enable
1539 *
1540 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1541 * drives the transcoder clock.
1542 */
1543static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
1544{
1545 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1546 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1547
1548 /* PCH PLLs only available on ILK, SNB and IVB */
1549 BUG_ON(dev_priv->info->gen < 5);
1550 if (WARN_ON(pll == NULL))
1551 return;
1552
1553 if (WARN_ON(pll->refcount == 0))
1554 return;
1555
1556 DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
1557 pll->name, pll->active, pll->on,
1558 crtc->base.base.id);
1559
1560 if (pll->active++) {
1561 WARN_ON(!pll->on);
1562 assert_shared_dpll_enabled(dev_priv, pll);
1563 return;
1564 }
1565 WARN_ON(pll->on);
1566
1567 DRM_DEBUG_KMS("enabling %s\n", pll->name);
1568 pll->enable(dev_priv, pll);
1569 pll->on = true;
1570}
1571
1572static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1573{
1574 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1575 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1576
1577 /* PCH only available on ILK+ */
1578 BUG_ON(dev_priv->info->gen < 5);
1579 if (WARN_ON(pll == NULL))
1580 return;
1581
1582 if (WARN_ON(pll->refcount == 0))
1583 return;
1584
1585 DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1586 pll->name, pll->active, pll->on,
1587 crtc->base.base.id);
1588
1589 if (WARN_ON(pll->active == 0)) {
1590 assert_shared_dpll_disabled(dev_priv, pll);
1591 return;
1592 }
1593
1594 assert_shared_dpll_enabled(dev_priv, pll);
1595 WARN_ON(!pll->on);
1596 if (--pll->active)
1597 return;
1598
1599 DRM_DEBUG_KMS("disabling %s\n", pll->name);
1600 pll->disable(dev_priv, pll);
1601 pll->on = false;
1602}
1603
1604static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1605 enum pipe pipe)
1606{
1607 struct drm_device *dev = dev_priv->dev;
1608 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1609 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1610 uint32_t reg, val, pipeconf_val;
1611
1612 /* PCH only available on ILK+ */
1613 BUG_ON(dev_priv->info->gen < 5);
1614
1615 /* Make sure PCH DPLL is enabled */
1616 assert_shared_dpll_enabled(dev_priv,
1617 intel_crtc_to_shared_dpll(intel_crtc));
1618
1619 /* FDI must be feeding us bits for PCH ports */
1620 assert_fdi_tx_enabled(dev_priv, pipe);
1621 assert_fdi_rx_enabled(dev_priv, pipe);
1622
1623 if (HAS_PCH_CPT(dev)) {
1624 /* Workaround: Set the timing override bit before enabling the
1625 * pch transcoder. */
1626 reg = TRANS_CHICKEN2(pipe);
1627 val = I915_READ(reg);
1628 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1629 I915_WRITE(reg, val);
1630 }
1631
1632 reg = PCH_TRANSCONF(pipe);
1633 val = I915_READ(reg);
1634 pipeconf_val = I915_READ(PIPECONF(pipe));
1635
1636 if (HAS_PCH_IBX(dev_priv->dev)) {
1637 /*
1638 * make the BPC in transcoder be consistent with
1639 * that in pipeconf reg.
1640 */
1641 val &= ~PIPECONF_BPC_MASK;
1642 val |= pipeconf_val & PIPECONF_BPC_MASK;
1643 }
1644
1645 val &= ~TRANS_INTERLACE_MASK;
1646 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1647 if (HAS_PCH_IBX(dev_priv->dev) &&
1648 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1649 val |= TRANS_LEGACY_INTERLACED_ILK;
1650 else
1651 val |= TRANS_INTERLACED;
1652 else
1653 val |= TRANS_PROGRESSIVE;
1654
1655 I915_WRITE(reg, val | TRANS_ENABLE);
1656 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1657 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1658}
1659
1660static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1661 enum transcoder cpu_transcoder)
1662{
1663 u32 val, pipeconf_val;
1664
1665 /* PCH only available on ILK+ */
1666 BUG_ON(dev_priv->info->gen < 5);
1667
1668 /* FDI must be feeding us bits for PCH ports */
1669 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1670 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1671
1672 /* Workaround: set timing override bit. */
1673 val = I915_READ(_TRANSA_CHICKEN2);
1674 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1675 I915_WRITE(_TRANSA_CHICKEN2, val);
1676
1677 val = TRANS_ENABLE;
1678 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1679
1680 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1681 PIPECONF_INTERLACED_ILK)
1682 val |= TRANS_INTERLACED;
1683 else
1684 val |= TRANS_PROGRESSIVE;
1685
1686 I915_WRITE(LPT_TRANSCONF, val);
1687 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
1688 DRM_ERROR("Failed to enable PCH transcoder\n");
1689}
1690
1691static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1692 enum pipe pipe)
1693{
1694 struct drm_device *dev = dev_priv->dev;
1695 uint32_t reg, val;
1696
1697 /* FDI relies on the transcoder */
1698 assert_fdi_tx_disabled(dev_priv, pipe);
1699 assert_fdi_rx_disabled(dev_priv, pipe);
1700
1701 /* Ports must be off as well */
1702 assert_pch_ports_disabled(dev_priv, pipe);
1703
1704 reg = PCH_TRANSCONF(pipe);
1705 val = I915_READ(reg);
1706 val &= ~TRANS_ENABLE;
1707 I915_WRITE(reg, val);
1708 /* wait for PCH transcoder off, transcoder state */
1709 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1710 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1711
1712 if (!HAS_PCH_IBX(dev)) {
1713 /* Workaround: Clear the timing override chicken bit again. */
1714 reg = TRANS_CHICKEN2(pipe);
1715 val = I915_READ(reg);
1716 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1717 I915_WRITE(reg, val);
1718 }
1719}
1720
1721static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1722{
1723 u32 val;
1724
1725 val = I915_READ(LPT_TRANSCONF);
1726 val &= ~TRANS_ENABLE;
1727 I915_WRITE(LPT_TRANSCONF, val);
1728 /* wait for PCH transcoder off, transcoder state */
1729 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
1730 DRM_ERROR("Failed to disable PCH transcoder\n");
1731
1732 /* Workaround: clear timing override bit. */
1733 val = I915_READ(_TRANSA_CHICKEN2);
1734 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1735 I915_WRITE(_TRANSA_CHICKEN2, val);
1736}
1737
1738/**
1739 * intel_enable_pipe - enable a pipe, asserting requirements
1740 * @dev_priv: i915 private structure
1741 * @pipe: pipe to enable
1742 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1743 *
1744 * Enable @pipe, making sure that various hardware specific requirements
1745 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1746 *
1747 * @pipe should be %PIPE_A or %PIPE_B.
1748 *
1749 * Will wait until the pipe is actually running (i.e. first vblank) before
1750 * returning.
1751 */
1752static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1753 bool pch_port, bool dsi)
1754{
1755 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1756 pipe);
1757 enum pipe pch_transcoder;
1758 int reg;
1759 u32 val;
1760
1761 assert_planes_disabled(dev_priv, pipe);
1762 assert_cursor_disabled(dev_priv, pipe);
1763 assert_sprites_disabled(dev_priv, pipe);
1764
1765 if (HAS_PCH_LPT(dev_priv->dev))
1766 pch_transcoder = TRANSCODER_A;
1767 else
1768 pch_transcoder = pipe;
1769
1770 /*
1771 * A pipe without a PLL won't actually be able to drive bits from
1772 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1773 * need the check.
1774 */
1775 if (!HAS_PCH_SPLIT(dev_priv->dev))
1776 if (dsi)
1777 assert_dsi_pll_enabled(dev_priv);
1778 else
1779 assert_pll_enabled(dev_priv, pipe);
1780 else {
1781 if (pch_port) {
1782 /* if driving the PCH, we need FDI enabled */
1783 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1784 assert_fdi_tx_pll_enabled(dev_priv,
1785 (enum pipe) cpu_transcoder);
1786 }
1787 /* FIXME: assert CPU port conditions for SNB+ */
1788 }
1789
1790 reg = PIPECONF(cpu_transcoder);
1791 val = I915_READ(reg);
1792 if (val & PIPECONF_ENABLE)
1793 return;
1794
1795 I915_WRITE(reg, val | PIPECONF_ENABLE);
1796 intel_wait_for_vblank(dev_priv->dev, pipe);
1797}
1798
1799/**
1800 * intel_disable_pipe - disable a pipe, asserting requirements
1801 * @dev_priv: i915 private structure
1802 * @pipe: pipe to disable
1803 *
1804 * Disable @pipe, making sure that various hardware specific requirements
1805 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1806 *
1807 * @pipe should be %PIPE_A or %PIPE_B.
1808 *
1809 * Will wait until the pipe has shut down before returning.
1810 */
1811static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1812 enum pipe pipe)
1813{
1814 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1815 pipe);
1816 int reg;
1817 u32 val;
1818
1819 /*
1820 * Make sure planes won't keep trying to pump pixels to us,
1821 * or we might hang the display.
1822 */
1823 assert_planes_disabled(dev_priv, pipe);
1824 assert_cursor_disabled(dev_priv, pipe);
1825 assert_sprites_disabled(dev_priv, pipe);
1826
1827 /* Don't disable pipe A or pipe A PLLs if needed */
1828 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1829 return;
1830
1831 reg = PIPECONF(cpu_transcoder);
1832 val = I915_READ(reg);
1833 if ((val & PIPECONF_ENABLE) == 0)
1834 return;
1835
1836 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1837 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1838}
1839
1840/*
1841 * Plane regs are double buffered, going from enabled->disabled needs a
1842 * trigger in order to latch. The display address reg provides this.
1843 */
1844void intel_flush_primary_plane(struct drm_i915_private *dev_priv,
1845 enum plane plane)
1846{
1847 u32 reg = dev_priv->info->gen >= 4 ? DSPSURF(plane) : DSPADDR(plane);
1848
1849 I915_WRITE(reg, I915_READ(reg));
1850 POSTING_READ(reg);
1851}
1852
1853/**
1854 * intel_enable_primary_plane - enable the primary plane on a given pipe
1855 * @dev_priv: i915 private structure
1856 * @plane: plane to enable
1857 * @pipe: pipe being fed
1858 *
1859 * Enable @plane on @pipe, making sure that @pipe is running first.
1860 */
1861static void intel_enable_primary_plane(struct drm_i915_private *dev_priv,
1862 enum plane plane, enum pipe pipe)
1863{
1864 struct intel_crtc *intel_crtc =
1865 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1866 int reg;
1867 u32 val;
1868
1869 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1870 assert_pipe_enabled(dev_priv, pipe);
1871
1872 WARN(intel_crtc->primary_enabled, "Primary plane already enabled\n");
1873
1874 intel_crtc->primary_enabled = true;
1875
1876 reg = DSPCNTR(plane);
1877 val = I915_READ(reg);
1878 if (val & DISPLAY_PLANE_ENABLE)
1879 return;
1880
1881 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1882 intel_flush_primary_plane(dev_priv, plane);
1883 intel_wait_for_vblank(dev_priv->dev, pipe);
1884}
1885
1886/**
1887 * intel_disable_primary_plane - disable the primary plane
1888 * @dev_priv: i915 private structure
1889 * @plane: plane to disable
1890 * @pipe: pipe consuming the data
1891 *
1892 * Disable @plane; should be an independent operation.
1893 */
1894static void intel_disable_primary_plane(struct drm_i915_private *dev_priv,
1895 enum plane plane, enum pipe pipe)
1896{
1897 struct intel_crtc *intel_crtc =
1898 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
1899 int reg;
1900 u32 val;
1901
1902 WARN(!intel_crtc->primary_enabled, "Primary plane already disabled\n");
1903
1904 intel_crtc->primary_enabled = false;
1905
1906 reg = DSPCNTR(plane);
1907 val = I915_READ(reg);
1908 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1909 return;
1910
1911 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1912 intel_flush_primary_plane(dev_priv, plane);
1913 intel_wait_for_vblank(dev_priv->dev, pipe);
1914}
1915
1916static bool need_vtd_wa(struct drm_device *dev)
1917{
1918#ifdef CONFIG_INTEL_IOMMU
1919 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
1920 return true;
1921#endif
1922 return false;
1923}
1924
1925int
1926intel_pin_and_fence_fb_obj(struct drm_device *dev,
1927 struct drm_i915_gem_object *obj,
1928 struct intel_ring_buffer *pipelined)
1929{
1930 struct drm_i915_private *dev_priv = dev->dev_private;
1931 u32 alignment;
1932 int ret;
1933
1934 switch (obj->tiling_mode) {
1935 case I915_TILING_NONE:
1936 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1937 alignment = 128 * 1024;
1938 else if (INTEL_INFO(dev)->gen >= 4)
1939 alignment = 4 * 1024;
1940 else
1941 alignment = 64 * 1024;
1942 break;
1943 case I915_TILING_X:
1944 /* pin() will align the object as required by fence */
1945 alignment = 0;
1946 break;
1947 case I915_TILING_Y:
1948 WARN(1, "Y tiled bo slipped through, driver bug!\n");
1949 return -EINVAL;
1950 default:
1951 BUG();
1952 }
1953
1954 /* Note that the w/a also requires 64 PTE of padding following the
1955 * bo. We currently fill all unused PTE with the shadow page and so
1956 * we should always have valid PTE following the scanout preventing
1957 * the VT-d warning.
1958 */
1959 if (need_vtd_wa(dev) && alignment < 256 * 1024)
1960 alignment = 256 * 1024;
1961
1962 dev_priv->mm.interruptible = false;
1963 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1964 if (ret)
1965 goto err_interruptible;
1966
1967 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1968 * fence, whereas 965+ only requires a fence if using
1969 * framebuffer compression. For simplicity, we always install
1970 * a fence as the cost is not that onerous.
1971 */
1972 ret = i915_gem_object_get_fence(obj);
1973 if (ret)
1974 goto err_unpin;
1975
1976 i915_gem_object_pin_fence(obj);
1977
1978 dev_priv->mm.interruptible = true;
1979 return 0;
1980
1981err_unpin:
1982 i915_gem_object_unpin_from_display_plane(obj);
1983err_interruptible:
1984 dev_priv->mm.interruptible = true;
1985 return ret;
1986}
1987
1988void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1989{
1990 i915_gem_object_unpin_fence(obj);
1991 i915_gem_object_unpin_from_display_plane(obj);
1992}
1993
1994/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
1995 * is assumed to be a power-of-two. */
1996unsigned long intel_gen4_compute_page_offset(int *x, int *y,
1997 unsigned int tiling_mode,
1998 unsigned int cpp,
1999 unsigned int pitch)
2000{
2001 if (tiling_mode != I915_TILING_NONE) {
2002 unsigned int tile_rows, tiles;
2003
2004 tile_rows = *y / 8;
2005 *y %= 8;
2006
2007 tiles = *x / (512/cpp);
2008 *x %= 512/cpp;
2009
2010 return tile_rows * pitch * 8 + tiles * 4096;
2011 } else {
2012 unsigned int offset;
2013
2014 offset = *y * pitch + *x * cpp;
2015 *y = 0;
2016 *x = (offset & 4095) / cpp;
2017 return offset & -4096;
2018 }
2019}
2020
2021static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2022 int x, int y)
2023{
2024 struct drm_device *dev = crtc->dev;
2025 struct drm_i915_private *dev_priv = dev->dev_private;
2026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2027 struct intel_framebuffer *intel_fb;
2028 struct drm_i915_gem_object *obj;
2029 int plane = intel_crtc->plane;
2030 unsigned long linear_offset;
2031 u32 dspcntr;
2032 u32 reg;
2033
2034 switch (plane) {
2035 case 0:
2036 case 1:
2037 break;
2038 default:
2039 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2040 return -EINVAL;
2041 }
2042
2043 intel_fb = to_intel_framebuffer(fb);
2044 obj = intel_fb->obj;
2045
2046 reg = DSPCNTR(plane);
2047 dspcntr = I915_READ(reg);
2048 /* Mask out pixel format bits in case we change it */
2049 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2050 switch (fb->pixel_format) {
2051 case DRM_FORMAT_C8:
2052 dspcntr |= DISPPLANE_8BPP;
2053 break;
2054 case DRM_FORMAT_XRGB1555:
2055 case DRM_FORMAT_ARGB1555:
2056 dspcntr |= DISPPLANE_BGRX555;
2057 break;
2058 case DRM_FORMAT_RGB565:
2059 dspcntr |= DISPPLANE_BGRX565;
2060 break;
2061 case DRM_FORMAT_XRGB8888:
2062 case DRM_FORMAT_ARGB8888:
2063 dspcntr |= DISPPLANE_BGRX888;
2064 break;
2065 case DRM_FORMAT_XBGR8888:
2066 case DRM_FORMAT_ABGR8888:
2067 dspcntr |= DISPPLANE_RGBX888;
2068 break;
2069 case DRM_FORMAT_XRGB2101010:
2070 case DRM_FORMAT_ARGB2101010:
2071 dspcntr |= DISPPLANE_BGRX101010;
2072 break;
2073 case DRM_FORMAT_XBGR2101010:
2074 case DRM_FORMAT_ABGR2101010:
2075 dspcntr |= DISPPLANE_RGBX101010;
2076 break;
2077 default:
2078 BUG();
2079 }
2080
2081 if (INTEL_INFO(dev)->gen >= 4) {
2082 if (obj->tiling_mode != I915_TILING_NONE)
2083 dspcntr |= DISPPLANE_TILED;
2084 else
2085 dspcntr &= ~DISPPLANE_TILED;
2086 }
2087
2088 if (IS_G4X(dev))
2089 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2090
2091 I915_WRITE(reg, dspcntr);
2092
2093 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2094
2095 if (INTEL_INFO(dev)->gen >= 4) {
2096 intel_crtc->dspaddr_offset =
2097 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2098 fb->bits_per_pixel / 8,
2099 fb->pitches[0]);
2100 linear_offset -= intel_crtc->dspaddr_offset;
2101 } else {
2102 intel_crtc->dspaddr_offset = linear_offset;
2103 }
2104
2105 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2106 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2107 fb->pitches[0]);
2108 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2109 if (INTEL_INFO(dev)->gen >= 4) {
2110 I915_MODIFY_DISPBASE(DSPSURF(plane),
2111 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2112 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2113 I915_WRITE(DSPLINOFF(plane), linear_offset);
2114 } else
2115 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2116 POSTING_READ(reg);
2117
2118 return 0;
2119}
2120
2121static int ironlake_update_plane(struct drm_crtc *crtc,
2122 struct drm_framebuffer *fb, int x, int y)
2123{
2124 struct drm_device *dev = crtc->dev;
2125 struct drm_i915_private *dev_priv = dev->dev_private;
2126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2127 struct intel_framebuffer *intel_fb;
2128 struct drm_i915_gem_object *obj;
2129 int plane = intel_crtc->plane;
2130 unsigned long linear_offset;
2131 u32 dspcntr;
2132 u32 reg;
2133
2134 switch (plane) {
2135 case 0:
2136 case 1:
2137 case 2:
2138 break;
2139 default:
2140 DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
2141 return -EINVAL;
2142 }
2143
2144 intel_fb = to_intel_framebuffer(fb);
2145 obj = intel_fb->obj;
2146
2147 reg = DSPCNTR(plane);
2148 dspcntr = I915_READ(reg);
2149 /* Mask out pixel format bits in case we change it */
2150 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2151 switch (fb->pixel_format) {
2152 case DRM_FORMAT_C8:
2153 dspcntr |= DISPPLANE_8BPP;
2154 break;
2155 case DRM_FORMAT_RGB565:
2156 dspcntr |= DISPPLANE_BGRX565;
2157 break;
2158 case DRM_FORMAT_XRGB8888:
2159 case DRM_FORMAT_ARGB8888:
2160 dspcntr |= DISPPLANE_BGRX888;
2161 break;
2162 case DRM_FORMAT_XBGR8888:
2163 case DRM_FORMAT_ABGR8888:
2164 dspcntr |= DISPPLANE_RGBX888;
2165 break;
2166 case DRM_FORMAT_XRGB2101010:
2167 case DRM_FORMAT_ARGB2101010:
2168 dspcntr |= DISPPLANE_BGRX101010;
2169 break;
2170 case DRM_FORMAT_XBGR2101010:
2171 case DRM_FORMAT_ABGR2101010:
2172 dspcntr |= DISPPLANE_RGBX101010;
2173 break;
2174 default:
2175 BUG();
2176 }
2177
2178 if (obj->tiling_mode != I915_TILING_NONE)
2179 dspcntr |= DISPPLANE_TILED;
2180 else
2181 dspcntr &= ~DISPPLANE_TILED;
2182
2183 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2184 dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
2185 else
2186 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2187
2188 I915_WRITE(reg, dspcntr);
2189
2190 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2191 intel_crtc->dspaddr_offset =
2192 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2193 fb->bits_per_pixel / 8,
2194 fb->pitches[0]);
2195 linear_offset -= intel_crtc->dspaddr_offset;
2196
2197 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2198 i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
2199 fb->pitches[0]);
2200 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2201 I915_MODIFY_DISPBASE(DSPSURF(plane),
2202 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2203 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2204 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2205 } else {
2206 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2207 I915_WRITE(DSPLINOFF(plane), linear_offset);
2208 }
2209 POSTING_READ(reg);
2210
2211 return 0;
2212}
2213
2214/* Assume fb object is pinned & idle & fenced and just update base pointers */
2215static int
2216intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2217 int x, int y, enum mode_set_atomic state)
2218{
2219 struct drm_device *dev = crtc->dev;
2220 struct drm_i915_private *dev_priv = dev->dev_private;
2221
2222 if (dev_priv->display.disable_fbc)
2223 dev_priv->display.disable_fbc(dev);
2224 intel_increase_pllclock(crtc);
2225
2226 return dev_priv->display.update_plane(crtc, fb, x, y);
2227}
2228
2229void intel_display_handle_reset(struct drm_device *dev)
2230{
2231 struct drm_i915_private *dev_priv = dev->dev_private;
2232 struct drm_crtc *crtc;
2233
2234 /*
2235 * Flips in the rings have been nuked by the reset,
2236 * so complete all pending flips so that user space
2237 * will get its events and not get stuck.
2238 *
2239 * Also update the base address of all primary
2240 * planes to the the last fb to make sure we're
2241 * showing the correct fb after a reset.
2242 *
2243 * Need to make two loops over the crtcs so that we
2244 * don't try to grab a crtc mutex before the
2245 * pending_flip_queue really got woken up.
2246 */
2247
2248 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2249 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2250 enum plane plane = intel_crtc->plane;
2251
2252 intel_prepare_page_flip(dev, plane);
2253 intel_finish_page_flip_plane(dev, plane);
2254 }
2255
2256 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2257 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2258
2259 mutex_lock(&crtc->mutex);
2260 /*
2261 * FIXME: Once we have proper support for primary planes (and
2262 * disabling them without disabling the entire crtc) allow again
2263 * a NULL crtc->fb.
2264 */
2265 if (intel_crtc->active && crtc->fb)
2266 dev_priv->display.update_plane(crtc, crtc->fb,
2267 crtc->x, crtc->y);
2268 mutex_unlock(&crtc->mutex);
2269 }
2270}
2271
2272static int
2273intel_finish_fb(struct drm_framebuffer *old_fb)
2274{
2275 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2276 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2277 bool was_interruptible = dev_priv->mm.interruptible;
2278 int ret;
2279
2280 /* Big Hammer, we also need to ensure that any pending
2281 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2282 * current scanout is retired before unpinning the old
2283 * framebuffer.
2284 *
2285 * This should only fail upon a hung GPU, in which case we
2286 * can safely continue.
2287 */
2288 dev_priv->mm.interruptible = false;
2289 ret = i915_gem_object_finish_gpu(obj);
2290 dev_priv->mm.interruptible = was_interruptible;
2291
2292 return ret;
2293}
2294
2295static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2296{
2297 struct drm_device *dev = crtc->dev;
2298 struct drm_i915_master_private *master_priv;
2299 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2300
2301 if (!dev->primary->master)
2302 return;
2303
2304 master_priv = dev->primary->master->driver_priv;
2305 if (!master_priv->sarea_priv)
2306 return;
2307
2308 switch (intel_crtc->pipe) {
2309 case 0:
2310 master_priv->sarea_priv->pipeA_x = x;
2311 master_priv->sarea_priv->pipeA_y = y;
2312 break;
2313 case 1:
2314 master_priv->sarea_priv->pipeB_x = x;
2315 master_priv->sarea_priv->pipeB_y = y;
2316 break;
2317 default:
2318 break;
2319 }
2320}
2321
2322static int
2323intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2324 struct drm_framebuffer *fb)
2325{
2326 struct drm_device *dev = crtc->dev;
2327 struct drm_i915_private *dev_priv = dev->dev_private;
2328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2329 struct drm_framebuffer *old_fb;
2330 int ret;
2331
2332 /* no fb bound */
2333 if (!fb) {
2334 DRM_ERROR("No FB bound\n");
2335 return 0;
2336 }
2337
2338 if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
2339 DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
2340 plane_name(intel_crtc->plane),
2341 INTEL_INFO(dev)->num_pipes);
2342 return -EINVAL;
2343 }
2344
2345 mutex_lock(&dev->struct_mutex);
2346 ret = intel_pin_and_fence_fb_obj(dev,
2347 to_intel_framebuffer(fb)->obj,
2348 NULL);
2349 if (ret != 0) {
2350 mutex_unlock(&dev->struct_mutex);
2351 DRM_ERROR("pin & fence failed\n");
2352 return ret;
2353 }
2354
2355 /*
2356 * Update pipe size and adjust fitter if needed: the reason for this is
2357 * that in compute_mode_changes we check the native mode (not the pfit
2358 * mode) to see if we can flip rather than do a full mode set. In the
2359 * fastboot case, we'll flip, but if we don't update the pipesrc and
2360 * pfit state, we'll end up with a big fb scanned out into the wrong
2361 * sized surface.
2362 *
2363 * To fix this properly, we need to hoist the checks up into
2364 * compute_mode_changes (or above), check the actual pfit state and
2365 * whether the platform allows pfit disable with pipe active, and only
2366 * then update the pipesrc and pfit state, even on the flip path.
2367 */
2368 if (i915_fastboot) {
2369 const struct drm_display_mode *adjusted_mode =
2370 &intel_crtc->config.adjusted_mode;
2371
2372 I915_WRITE(PIPESRC(intel_crtc->pipe),
2373 ((adjusted_mode->crtc_hdisplay - 1) << 16) |
2374 (adjusted_mode->crtc_vdisplay - 1));
2375 if (!intel_crtc->config.pch_pfit.enabled &&
2376 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
2377 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2378 I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
2379 I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
2380 I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
2381 }
2382 intel_crtc->config.pipe_src_w = adjusted_mode->crtc_hdisplay;
2383 intel_crtc->config.pipe_src_h = adjusted_mode->crtc_vdisplay;
2384 }
2385
2386 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2387 if (ret) {
2388 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2389 mutex_unlock(&dev->struct_mutex);
2390 DRM_ERROR("failed to update base address\n");
2391 return ret;
2392 }
2393
2394 old_fb = crtc->fb;
2395 crtc->fb = fb;
2396 crtc->x = x;
2397 crtc->y = y;
2398
2399 if (old_fb) {
2400 if (intel_crtc->active && old_fb != fb)
2401 intel_wait_for_vblank(dev, intel_crtc->pipe);
2402 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2403 }
2404
2405 intel_update_fbc(dev);
2406 intel_edp_psr_update(dev);
2407 mutex_unlock(&dev->struct_mutex);
2408
2409 intel_crtc_update_sarea_pos(crtc, x, y);
2410
2411 return 0;
2412}
2413
2414static void intel_fdi_normal_train(struct drm_crtc *crtc)
2415{
2416 struct drm_device *dev = crtc->dev;
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2419 int pipe = intel_crtc->pipe;
2420 u32 reg, temp;
2421
2422 /* enable normal train */
2423 reg = FDI_TX_CTL(pipe);
2424 temp = I915_READ(reg);
2425 if (IS_IVYBRIDGE(dev)) {
2426 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2427 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2428 } else {
2429 temp &= ~FDI_LINK_TRAIN_NONE;
2430 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2431 }
2432 I915_WRITE(reg, temp);
2433
2434 reg = FDI_RX_CTL(pipe);
2435 temp = I915_READ(reg);
2436 if (HAS_PCH_CPT(dev)) {
2437 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2438 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2439 } else {
2440 temp &= ~FDI_LINK_TRAIN_NONE;
2441 temp |= FDI_LINK_TRAIN_NONE;
2442 }
2443 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2444
2445 /* wait one idle pattern time */
2446 POSTING_READ(reg);
2447 udelay(1000);
2448
2449 /* IVB wants error correction enabled */
2450 if (IS_IVYBRIDGE(dev))
2451 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2452 FDI_FE_ERRC_ENABLE);
2453}
2454
2455static bool pipe_has_enabled_pch(struct intel_crtc *crtc)
2456{
2457 return crtc->base.enabled && crtc->active &&
2458 crtc->config.has_pch_encoder;
2459}
2460
2461static void ivb_modeset_global_resources(struct drm_device *dev)
2462{
2463 struct drm_i915_private *dev_priv = dev->dev_private;
2464 struct intel_crtc *pipe_B_crtc =
2465 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2466 struct intel_crtc *pipe_C_crtc =
2467 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2468 uint32_t temp;
2469
2470 /*
2471 * When everything is off disable fdi C so that we could enable fdi B
2472 * with all lanes. Note that we don't care about enabled pipes without
2473 * an enabled pch encoder.
2474 */
2475 if (!pipe_has_enabled_pch(pipe_B_crtc) &&
2476 !pipe_has_enabled_pch(pipe_C_crtc)) {
2477 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2478 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2479
2480 temp = I915_READ(SOUTH_CHICKEN1);
2481 temp &= ~FDI_BC_BIFURCATION_SELECT;
2482 DRM_DEBUG_KMS("disabling fdi C rx\n");
2483 I915_WRITE(SOUTH_CHICKEN1, temp);
2484 }
2485}
2486
2487/* The FDI link training functions for ILK/Ibexpeak. */
2488static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2489{
2490 struct drm_device *dev = crtc->dev;
2491 struct drm_i915_private *dev_priv = dev->dev_private;
2492 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2493 int pipe = intel_crtc->pipe;
2494 int plane = intel_crtc->plane;
2495 u32 reg, temp, tries;
2496
2497 /* FDI needs bits from pipe & plane first */
2498 assert_pipe_enabled(dev_priv, pipe);
2499 assert_plane_enabled(dev_priv, plane);
2500
2501 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2502 for train result */
2503 reg = FDI_RX_IMR(pipe);
2504 temp = I915_READ(reg);
2505 temp &= ~FDI_RX_SYMBOL_LOCK;
2506 temp &= ~FDI_RX_BIT_LOCK;
2507 I915_WRITE(reg, temp);
2508 I915_READ(reg);
2509 udelay(150);
2510
2511 /* enable CPU FDI TX and PCH FDI RX */
2512 reg = FDI_TX_CTL(pipe);
2513 temp = I915_READ(reg);
2514 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2515 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2516 temp &= ~FDI_LINK_TRAIN_NONE;
2517 temp |= FDI_LINK_TRAIN_PATTERN_1;
2518 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2519
2520 reg = FDI_RX_CTL(pipe);
2521 temp = I915_READ(reg);
2522 temp &= ~FDI_LINK_TRAIN_NONE;
2523 temp |= FDI_LINK_TRAIN_PATTERN_1;
2524 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2525
2526 POSTING_READ(reg);
2527 udelay(150);
2528
2529 /* Ironlake workaround, enable clock pointer after FDI enable*/
2530 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2531 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2532 FDI_RX_PHASE_SYNC_POINTER_EN);
2533
2534 reg = FDI_RX_IIR(pipe);
2535 for (tries = 0; tries < 5; tries++) {
2536 temp = I915_READ(reg);
2537 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2538
2539 if ((temp & FDI_RX_BIT_LOCK)) {
2540 DRM_DEBUG_KMS("FDI train 1 done.\n");
2541 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2542 break;
2543 }
2544 }
2545 if (tries == 5)
2546 DRM_ERROR("FDI train 1 fail!\n");
2547
2548 /* Train 2 */
2549 reg = FDI_TX_CTL(pipe);
2550 temp = I915_READ(reg);
2551 temp &= ~FDI_LINK_TRAIN_NONE;
2552 temp |= FDI_LINK_TRAIN_PATTERN_2;
2553 I915_WRITE(reg, temp);
2554
2555 reg = FDI_RX_CTL(pipe);
2556 temp = I915_READ(reg);
2557 temp &= ~FDI_LINK_TRAIN_NONE;
2558 temp |= FDI_LINK_TRAIN_PATTERN_2;
2559 I915_WRITE(reg, temp);
2560
2561 POSTING_READ(reg);
2562 udelay(150);
2563
2564 reg = FDI_RX_IIR(pipe);
2565 for (tries = 0; tries < 5; tries++) {
2566 temp = I915_READ(reg);
2567 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2568
2569 if (temp & FDI_RX_SYMBOL_LOCK) {
2570 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2571 DRM_DEBUG_KMS("FDI train 2 done.\n");
2572 break;
2573 }
2574 }
2575 if (tries == 5)
2576 DRM_ERROR("FDI train 2 fail!\n");
2577
2578 DRM_DEBUG_KMS("FDI train done\n");
2579
2580}
2581
2582static const int snb_b_fdi_train_param[] = {
2583 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2584 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2585 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2586 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2587};
2588
2589/* The FDI link training functions for SNB/Cougarpoint. */
2590static void gen6_fdi_link_train(struct drm_crtc *crtc)
2591{
2592 struct drm_device *dev = crtc->dev;
2593 struct drm_i915_private *dev_priv = dev->dev_private;
2594 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2595 int pipe = intel_crtc->pipe;
2596 u32 reg, temp, i, retry;
2597
2598 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2599 for train result */
2600 reg = FDI_RX_IMR(pipe);
2601 temp = I915_READ(reg);
2602 temp &= ~FDI_RX_SYMBOL_LOCK;
2603 temp &= ~FDI_RX_BIT_LOCK;
2604 I915_WRITE(reg, temp);
2605
2606 POSTING_READ(reg);
2607 udelay(150);
2608
2609 /* enable CPU FDI TX and PCH FDI RX */
2610 reg = FDI_TX_CTL(pipe);
2611 temp = I915_READ(reg);
2612 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2613 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2614 temp &= ~FDI_LINK_TRAIN_NONE;
2615 temp |= FDI_LINK_TRAIN_PATTERN_1;
2616 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2617 /* SNB-B */
2618 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2619 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2620
2621 I915_WRITE(FDI_RX_MISC(pipe),
2622 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2623
2624 reg = FDI_RX_CTL(pipe);
2625 temp = I915_READ(reg);
2626 if (HAS_PCH_CPT(dev)) {
2627 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2628 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2629 } else {
2630 temp &= ~FDI_LINK_TRAIN_NONE;
2631 temp |= FDI_LINK_TRAIN_PATTERN_1;
2632 }
2633 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2634
2635 POSTING_READ(reg);
2636 udelay(150);
2637
2638 for (i = 0; i < 4; i++) {
2639 reg = FDI_TX_CTL(pipe);
2640 temp = I915_READ(reg);
2641 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2642 temp |= snb_b_fdi_train_param[i];
2643 I915_WRITE(reg, temp);
2644
2645 POSTING_READ(reg);
2646 udelay(500);
2647
2648 for (retry = 0; retry < 5; retry++) {
2649 reg = FDI_RX_IIR(pipe);
2650 temp = I915_READ(reg);
2651 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2652 if (temp & FDI_RX_BIT_LOCK) {
2653 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2654 DRM_DEBUG_KMS("FDI train 1 done.\n");
2655 break;
2656 }
2657 udelay(50);
2658 }
2659 if (retry < 5)
2660 break;
2661 }
2662 if (i == 4)
2663 DRM_ERROR("FDI train 1 fail!\n");
2664
2665 /* Train 2 */
2666 reg = FDI_TX_CTL(pipe);
2667 temp = I915_READ(reg);
2668 temp &= ~FDI_LINK_TRAIN_NONE;
2669 temp |= FDI_LINK_TRAIN_PATTERN_2;
2670 if (IS_GEN6(dev)) {
2671 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2672 /* SNB-B */
2673 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2674 }
2675 I915_WRITE(reg, temp);
2676
2677 reg = FDI_RX_CTL(pipe);
2678 temp = I915_READ(reg);
2679 if (HAS_PCH_CPT(dev)) {
2680 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2681 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2682 } else {
2683 temp &= ~FDI_LINK_TRAIN_NONE;
2684 temp |= FDI_LINK_TRAIN_PATTERN_2;
2685 }
2686 I915_WRITE(reg, temp);
2687
2688 POSTING_READ(reg);
2689 udelay(150);
2690
2691 for (i = 0; i < 4; i++) {
2692 reg = FDI_TX_CTL(pipe);
2693 temp = I915_READ(reg);
2694 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2695 temp |= snb_b_fdi_train_param[i];
2696 I915_WRITE(reg, temp);
2697
2698 POSTING_READ(reg);
2699 udelay(500);
2700
2701 for (retry = 0; retry < 5; retry++) {
2702 reg = FDI_RX_IIR(pipe);
2703 temp = I915_READ(reg);
2704 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2705 if (temp & FDI_RX_SYMBOL_LOCK) {
2706 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2707 DRM_DEBUG_KMS("FDI train 2 done.\n");
2708 break;
2709 }
2710 udelay(50);
2711 }
2712 if (retry < 5)
2713 break;
2714 }
2715 if (i == 4)
2716 DRM_ERROR("FDI train 2 fail!\n");
2717
2718 DRM_DEBUG_KMS("FDI train done.\n");
2719}
2720
2721/* Manual link training for Ivy Bridge A0 parts */
2722static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2723{
2724 struct drm_device *dev = crtc->dev;
2725 struct drm_i915_private *dev_priv = dev->dev_private;
2726 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2727 int pipe = intel_crtc->pipe;
2728 u32 reg, temp, i, j;
2729
2730 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2731 for train result */
2732 reg = FDI_RX_IMR(pipe);
2733 temp = I915_READ(reg);
2734 temp &= ~FDI_RX_SYMBOL_LOCK;
2735 temp &= ~FDI_RX_BIT_LOCK;
2736 I915_WRITE(reg, temp);
2737
2738 POSTING_READ(reg);
2739 udelay(150);
2740
2741 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2742 I915_READ(FDI_RX_IIR(pipe)));
2743
2744 /* Try each vswing and preemphasis setting twice before moving on */
2745 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
2746 /* disable first in case we need to retry */
2747 reg = FDI_TX_CTL(pipe);
2748 temp = I915_READ(reg);
2749 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2750 temp &= ~FDI_TX_ENABLE;
2751 I915_WRITE(reg, temp);
2752
2753 reg = FDI_RX_CTL(pipe);
2754 temp = I915_READ(reg);
2755 temp &= ~FDI_LINK_TRAIN_AUTO;
2756 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2757 temp &= ~FDI_RX_ENABLE;
2758 I915_WRITE(reg, temp);
2759
2760 /* enable CPU FDI TX and PCH FDI RX */
2761 reg = FDI_TX_CTL(pipe);
2762 temp = I915_READ(reg);
2763 temp &= ~FDI_DP_PORT_WIDTH_MASK;
2764 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2765 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2766 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2767 temp |= snb_b_fdi_train_param[j/2];
2768 temp |= FDI_COMPOSITE_SYNC;
2769 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2770
2771 I915_WRITE(FDI_RX_MISC(pipe),
2772 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2773
2774 reg = FDI_RX_CTL(pipe);
2775 temp = I915_READ(reg);
2776 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2777 temp |= FDI_COMPOSITE_SYNC;
2778 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2779
2780 POSTING_READ(reg);
2781 udelay(1); /* should be 0.5us */
2782
2783 for (i = 0; i < 4; i++) {
2784 reg = FDI_RX_IIR(pipe);
2785 temp = I915_READ(reg);
2786 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2787
2788 if (temp & FDI_RX_BIT_LOCK ||
2789 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2790 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2791 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
2792 i);
2793 break;
2794 }
2795 udelay(1); /* should be 0.5us */
2796 }
2797 if (i == 4) {
2798 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
2799 continue;
2800 }
2801
2802 /* Train 2 */
2803 reg = FDI_TX_CTL(pipe);
2804 temp = I915_READ(reg);
2805 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2806 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2807 I915_WRITE(reg, temp);
2808
2809 reg = FDI_RX_CTL(pipe);
2810 temp = I915_READ(reg);
2811 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2812 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2813 I915_WRITE(reg, temp);
2814
2815 POSTING_READ(reg);
2816 udelay(2); /* should be 1.5us */
2817
2818 for (i = 0; i < 4; i++) {
2819 reg = FDI_RX_IIR(pipe);
2820 temp = I915_READ(reg);
2821 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2822
2823 if (temp & FDI_RX_SYMBOL_LOCK ||
2824 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
2825 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2826 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
2827 i);
2828 goto train_done;
2829 }
2830 udelay(2); /* should be 1.5us */
2831 }
2832 if (i == 4)
2833 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
2834 }
2835
2836train_done:
2837 DRM_DEBUG_KMS("FDI train done.\n");
2838}
2839
2840static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2841{
2842 struct drm_device *dev = intel_crtc->base.dev;
2843 struct drm_i915_private *dev_priv = dev->dev_private;
2844 int pipe = intel_crtc->pipe;
2845 u32 reg, temp;
2846
2847
2848 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2849 reg = FDI_RX_CTL(pipe);
2850 temp = I915_READ(reg);
2851 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
2852 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
2853 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2854 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2855
2856 POSTING_READ(reg);
2857 udelay(200);
2858
2859 /* Switch from Rawclk to PCDclk */
2860 temp = I915_READ(reg);
2861 I915_WRITE(reg, temp | FDI_PCDCLK);
2862
2863 POSTING_READ(reg);
2864 udelay(200);
2865
2866 /* Enable CPU FDI TX PLL, always on for Ironlake */
2867 reg = FDI_TX_CTL(pipe);
2868 temp = I915_READ(reg);
2869 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2870 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2871
2872 POSTING_READ(reg);
2873 udelay(100);
2874 }
2875}
2876
2877static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2878{
2879 struct drm_device *dev = intel_crtc->base.dev;
2880 struct drm_i915_private *dev_priv = dev->dev_private;
2881 int pipe = intel_crtc->pipe;
2882 u32 reg, temp;
2883
2884 /* Switch from PCDclk to Rawclk */
2885 reg = FDI_RX_CTL(pipe);
2886 temp = I915_READ(reg);
2887 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2888
2889 /* Disable CPU FDI TX PLL */
2890 reg = FDI_TX_CTL(pipe);
2891 temp = I915_READ(reg);
2892 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2893
2894 POSTING_READ(reg);
2895 udelay(100);
2896
2897 reg = FDI_RX_CTL(pipe);
2898 temp = I915_READ(reg);
2899 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2900
2901 /* Wait for the clocks to turn off. */
2902 POSTING_READ(reg);
2903 udelay(100);
2904}
2905
2906static void ironlake_fdi_disable(struct drm_crtc *crtc)
2907{
2908 struct drm_device *dev = crtc->dev;
2909 struct drm_i915_private *dev_priv = dev->dev_private;
2910 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2911 int pipe = intel_crtc->pipe;
2912 u32 reg, temp;
2913
2914 /* disable CPU FDI tx and PCH FDI rx */
2915 reg = FDI_TX_CTL(pipe);
2916 temp = I915_READ(reg);
2917 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2918 POSTING_READ(reg);
2919
2920 reg = FDI_RX_CTL(pipe);
2921 temp = I915_READ(reg);
2922 temp &= ~(0x7 << 16);
2923 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2924 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2925
2926 POSTING_READ(reg);
2927 udelay(100);
2928
2929 /* Ironlake workaround, disable clock pointer after downing FDI */
2930 if (HAS_PCH_IBX(dev)) {
2931 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2932 }
2933
2934 /* still set train pattern 1 */
2935 reg = FDI_TX_CTL(pipe);
2936 temp = I915_READ(reg);
2937 temp &= ~FDI_LINK_TRAIN_NONE;
2938 temp |= FDI_LINK_TRAIN_PATTERN_1;
2939 I915_WRITE(reg, temp);
2940
2941 reg = FDI_RX_CTL(pipe);
2942 temp = I915_READ(reg);
2943 if (HAS_PCH_CPT(dev)) {
2944 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2945 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2946 } else {
2947 temp &= ~FDI_LINK_TRAIN_NONE;
2948 temp |= FDI_LINK_TRAIN_PATTERN_1;
2949 }
2950 /* BPC in FDI rx is consistent with that in PIPECONF */
2951 temp &= ~(0x07 << 16);
2952 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
2953 I915_WRITE(reg, temp);
2954
2955 POSTING_READ(reg);
2956 udelay(100);
2957}
2958
2959static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2960{
2961 struct drm_device *dev = crtc->dev;
2962 struct drm_i915_private *dev_priv = dev->dev_private;
2963 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2964 unsigned long flags;
2965 bool pending;
2966
2967 if (i915_reset_in_progress(&dev_priv->gpu_error) ||
2968 intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
2969 return false;
2970
2971 spin_lock_irqsave(&dev->event_lock, flags);
2972 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2973 spin_unlock_irqrestore(&dev->event_lock, flags);
2974
2975 return pending;
2976}
2977
2978static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2979{
2980 struct drm_device *dev = crtc->dev;
2981 struct drm_i915_private *dev_priv = dev->dev_private;
2982
2983 if (crtc->fb == NULL)
2984 return;
2985
2986 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
2987
2988 wait_event(dev_priv->pending_flip_queue,
2989 !intel_crtc_has_pending_flip(crtc));
2990
2991 mutex_lock(&dev->struct_mutex);
2992 intel_finish_fb(crtc->fb);
2993 mutex_unlock(&dev->struct_mutex);
2994}
2995
2996/* Program iCLKIP clock to the desired frequency */
2997static void lpt_program_iclkip(struct drm_crtc *crtc)
2998{
2999 struct drm_device *dev = crtc->dev;
3000 struct drm_i915_private *dev_priv = dev->dev_private;
3001 int clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
3002 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3003 u32 temp;
3004
3005 mutex_lock(&dev_priv->dpio_lock);
3006
3007 /* It is necessary to ungate the pixclk gate prior to programming
3008 * the divisors, and gate it back when it is done.
3009 */
3010 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3011
3012 /* Disable SSCCTL */
3013 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3014 intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3015 SBI_SSCCTL_DISABLE,
3016 SBI_ICLK);
3017
3018 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3019 if (clock == 20000) {
3020 auxdiv = 1;
3021 divsel = 0x41;
3022 phaseinc = 0x20;
3023 } else {
3024 /* The iCLK virtual clock root frequency is in MHz,
3025 * but the adjusted_mode->crtc_clock in in KHz. To get the
3026 * divisors, it is necessary to divide one by another, so we
3027 * convert the virtual clock precision to KHz here for higher
3028 * precision.
3029 */
3030 u32 iclk_virtual_root_freq = 172800 * 1000;
3031 u32 iclk_pi_range = 64;
3032 u32 desired_divisor, msb_divisor_value, pi_value;
3033
3034 desired_divisor = (iclk_virtual_root_freq / clock);
3035 msb_divisor_value = desired_divisor / iclk_pi_range;
3036 pi_value = desired_divisor % iclk_pi_range;
3037
3038 auxdiv = 0;
3039 divsel = msb_divisor_value - 2;
3040 phaseinc = pi_value;
3041 }
3042
3043 /* This should not happen with any sane values */
3044 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3045 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3046 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3047 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3048
3049 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3050 clock,
3051 auxdiv,
3052 divsel,
3053 phasedir,
3054 phaseinc);
3055
3056 /* Program SSCDIVINTPHASE6 */
3057 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3058 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3059 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3060 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3061 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3062 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3063 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3064 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3065
3066 /* Program SSCAUXDIV */
3067 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3068 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3069 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3070 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3071
3072 /* Enable modulator and associated divider */
3073 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3074 temp &= ~SBI_SSCCTL_DISABLE;
3075 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3076
3077 /* Wait for initialization time */
3078 udelay(24);
3079
3080 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3081
3082 mutex_unlock(&dev_priv->dpio_lock);
3083}
3084
3085static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3086 enum pipe pch_transcoder)
3087{
3088 struct drm_device *dev = crtc->base.dev;
3089 struct drm_i915_private *dev_priv = dev->dev_private;
3090 enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
3091
3092 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
3093 I915_READ(HTOTAL(cpu_transcoder)));
3094 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
3095 I915_READ(HBLANK(cpu_transcoder)));
3096 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
3097 I915_READ(HSYNC(cpu_transcoder)));
3098
3099 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
3100 I915_READ(VTOTAL(cpu_transcoder)));
3101 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
3102 I915_READ(VBLANK(cpu_transcoder)));
3103 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
3104 I915_READ(VSYNC(cpu_transcoder)));
3105 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
3106 I915_READ(VSYNCSHIFT(cpu_transcoder)));
3107}
3108
3109static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
3110{
3111 struct drm_i915_private *dev_priv = dev->dev_private;
3112 uint32_t temp;
3113
3114 temp = I915_READ(SOUTH_CHICKEN1);
3115 if (temp & FDI_BC_BIFURCATION_SELECT)
3116 return;
3117
3118 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
3119 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
3120
3121 temp |= FDI_BC_BIFURCATION_SELECT;
3122 DRM_DEBUG_KMS("enabling fdi C rx\n");
3123 I915_WRITE(SOUTH_CHICKEN1, temp);
3124 POSTING_READ(SOUTH_CHICKEN1);
3125}
3126
3127static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
3128{
3129 struct drm_device *dev = intel_crtc->base.dev;
3130 struct drm_i915_private *dev_priv = dev->dev_private;
3131
3132 switch (intel_crtc->pipe) {
3133 case PIPE_A:
3134 break;
3135 case PIPE_B:
3136 if (intel_crtc->config.fdi_lanes > 2)
3137 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
3138 else
3139 cpt_enable_fdi_bc_bifurcation(dev);
3140
3141 break;
3142 case PIPE_C:
3143 cpt_enable_fdi_bc_bifurcation(dev);
3144
3145 break;
3146 default:
3147 BUG();
3148 }
3149}
3150
3151/*
3152 * Enable PCH resources required for PCH ports:
3153 * - PCH PLLs
3154 * - FDI training & RX/TX
3155 * - update transcoder timings
3156 * - DP transcoding bits
3157 * - transcoder
3158 */
3159static void ironlake_pch_enable(struct drm_crtc *crtc)
3160{
3161 struct drm_device *dev = crtc->dev;
3162 struct drm_i915_private *dev_priv = dev->dev_private;
3163 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3164 int pipe = intel_crtc->pipe;
3165 u32 reg, temp;
3166
3167 assert_pch_transcoder_disabled(dev_priv, pipe);
3168
3169 if (IS_IVYBRIDGE(dev))
3170 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
3171
3172 /* Write the TU size bits before fdi link training, so that error
3173 * detection works. */
3174 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3175 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3176
3177 /* For PCH output, training FDI link */
3178 dev_priv->display.fdi_link_train(crtc);
3179
3180 /* We need to program the right clock selection before writing the pixel
3181 * mutliplier into the DPLL. */
3182 if (HAS_PCH_CPT(dev)) {
3183 u32 sel;
3184
3185 temp = I915_READ(PCH_DPLL_SEL);
3186 temp |= TRANS_DPLL_ENABLE(pipe);
3187 sel = TRANS_DPLLB_SEL(pipe);
3188 if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
3189 temp |= sel;
3190 else
3191 temp &= ~sel;
3192 I915_WRITE(PCH_DPLL_SEL, temp);
3193 }
3194
3195 /* XXX: pch pll's can be enabled any time before we enable the PCH
3196 * transcoder, and we actually should do this to not upset any PCH
3197 * transcoder that already use the clock when we share it.
3198 *
3199 * Note that enable_shared_dpll tries to do the right thing, but
3200 * get_shared_dpll unconditionally resets the pll - we need that to have
3201 * the right LVDS enable sequence. */
3202 ironlake_enable_shared_dpll(intel_crtc);
3203
3204 /* set transcoder timing, panel must allow it */
3205 assert_panel_unlocked(dev_priv, pipe);
3206 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
3207
3208 intel_fdi_normal_train(crtc);
3209
3210 /* For PCH DP, enable TRANS_DP_CTL */
3211 if (HAS_PCH_CPT(dev) &&
3212 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3213 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3214 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
3215 reg = TRANS_DP_CTL(pipe);
3216 temp = I915_READ(reg);
3217 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3218 TRANS_DP_SYNC_MASK |
3219 TRANS_DP_BPC_MASK);
3220 temp |= (TRANS_DP_OUTPUT_ENABLE |
3221 TRANS_DP_ENH_FRAMING);
3222 temp |= bpc << 9; /* same format but at 11:9 */
3223
3224 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3225 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3226 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3227 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3228
3229 switch (intel_trans_dp_port_sel(crtc)) {
3230 case PCH_DP_B:
3231 temp |= TRANS_DP_PORT_SEL_B;
3232 break;
3233 case PCH_DP_C:
3234 temp |= TRANS_DP_PORT_SEL_C;
3235 break;
3236 case PCH_DP_D:
3237 temp |= TRANS_DP_PORT_SEL_D;
3238 break;
3239 default:
3240 BUG();
3241 }
3242
3243 I915_WRITE(reg, temp);
3244 }
3245
3246 ironlake_enable_pch_transcoder(dev_priv, pipe);
3247}
3248
3249static void lpt_pch_enable(struct drm_crtc *crtc)
3250{
3251 struct drm_device *dev = crtc->dev;
3252 struct drm_i915_private *dev_priv = dev->dev_private;
3253 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3254 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3255
3256 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
3257
3258 lpt_program_iclkip(crtc);
3259
3260 /* Set transcoder timing. */
3261 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
3262
3263 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3264}
3265
3266static void intel_put_shared_dpll(struct intel_crtc *crtc)
3267{
3268 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3269
3270 if (pll == NULL)
3271 return;
3272
3273 if (pll->refcount == 0) {
3274 WARN(1, "bad %s refcount\n", pll->name);
3275 return;
3276 }
3277
3278 if (--pll->refcount == 0) {
3279 WARN_ON(pll->on);
3280 WARN_ON(pll->active);
3281 }
3282
3283 crtc->config.shared_dpll = DPLL_ID_PRIVATE;
3284}
3285
3286static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
3287{
3288 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3289 struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
3290 enum intel_dpll_id i;
3291
3292 if (pll) {
3293 DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
3294 crtc->base.base.id, pll->name);
3295 intel_put_shared_dpll(crtc);
3296 }
3297
3298 if (HAS_PCH_IBX(dev_priv->dev)) {
3299 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3300 i = (enum intel_dpll_id) crtc->pipe;
3301 pll = &dev_priv->shared_dplls[i];
3302
3303 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
3304 crtc->base.base.id, pll->name);
3305
3306 goto found;
3307 }
3308
3309 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3310 pll = &dev_priv->shared_dplls[i];
3311
3312 /* Only want to check enabled timings first */
3313 if (pll->refcount == 0)
3314 continue;
3315
3316 if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
3317 sizeof(pll->hw_state)) == 0) {
3318 DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
3319 crtc->base.base.id,
3320 pll->name, pll->refcount, pll->active);
3321
3322 goto found;
3323 }
3324 }
3325
3326 /* Ok no matching timings, maybe there's a free one? */
3327 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3328 pll = &dev_priv->shared_dplls[i];
3329 if (pll->refcount == 0) {
3330 DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
3331 crtc->base.base.id, pll->name);
3332 goto found;
3333 }
3334 }
3335
3336 return NULL;
3337
3338found:
3339 crtc->config.shared_dpll = i;
3340 DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
3341 pipe_name(crtc->pipe));
3342
3343 if (pll->active == 0) {
3344 memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
3345 sizeof(pll->hw_state));
3346
3347 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
3348 WARN_ON(pll->on);
3349 assert_shared_dpll_disabled(dev_priv, pll);
3350
3351 pll->mode_set(dev_priv, pll);
3352 }
3353 pll->refcount++;
3354
3355 return pll;
3356}
3357
3358static void cpt_verify_modeset(struct drm_device *dev, int pipe)
3359{
3360 struct drm_i915_private *dev_priv = dev->dev_private;
3361 int dslreg = PIPEDSL(pipe);
3362 u32 temp;
3363
3364 temp = I915_READ(dslreg);
3365 udelay(500);
3366 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3367 if (wait_for(I915_READ(dslreg) != temp, 5))
3368 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
3369 }
3370}
3371
3372static void ironlake_pfit_enable(struct intel_crtc *crtc)
3373{
3374 struct drm_device *dev = crtc->base.dev;
3375 struct drm_i915_private *dev_priv = dev->dev_private;
3376 int pipe = crtc->pipe;
3377
3378 if (crtc->config.pch_pfit.enabled) {
3379 /* Force use of hard-coded filter coefficients
3380 * as some pre-programmed values are broken,
3381 * e.g. x201.
3382 */
3383 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
3384 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
3385 PF_PIPE_SEL_IVB(pipe));
3386 else
3387 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3388 I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
3389 I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
3390 }
3391}
3392
3393static void intel_enable_planes(struct drm_crtc *crtc)
3394{
3395 struct drm_device *dev = crtc->dev;
3396 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3397 struct intel_plane *intel_plane;
3398
3399 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3400 if (intel_plane->pipe == pipe)
3401 intel_plane_restore(&intel_plane->base);
3402}
3403
3404static void intel_disable_planes(struct drm_crtc *crtc)
3405{
3406 struct drm_device *dev = crtc->dev;
3407 enum pipe pipe = to_intel_crtc(crtc)->pipe;
3408 struct intel_plane *intel_plane;
3409
3410 list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
3411 if (intel_plane->pipe == pipe)
3412 intel_plane_disable(&intel_plane->base);
3413}
3414
3415void hsw_enable_ips(struct intel_crtc *crtc)
3416{
3417 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
3418
3419 if (!crtc->config.ips_enabled)
3420 return;
3421
3422 /* We can only enable IPS after we enable a plane and wait for a vblank.
3423 * We guarantee that the plane is enabled by calling intel_enable_ips
3424 * only after intel_enable_plane. And intel_enable_plane already waits
3425 * for a vblank, so all we need to do here is to enable the IPS bit. */
3426 assert_plane_enabled(dev_priv, crtc->plane);
3427 if (IS_BROADWELL(crtc->base.dev)) {
3428 mutex_lock(&dev_priv->rps.hw_lock);
3429 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
3430 mutex_unlock(&dev_priv->rps.hw_lock);
3431 /* Quoting Art Runyan: "its not safe to expect any particular
3432 * value in IPS_CTL bit 31 after enabling IPS through the
3433 * mailbox." Moreover, the mailbox may return a bogus state,
3434 * so we need to just enable it and continue on.
3435 */
3436 } else {
3437 I915_WRITE(IPS_CTL, IPS_ENABLE);
3438 /* The bit only becomes 1 in the next vblank, so this wait here
3439 * is essentially intel_wait_for_vblank. If we don't have this
3440 * and don't wait for vblanks until the end of crtc_enable, then
3441 * the HW state readout code will complain that the expected
3442 * IPS_CTL value is not the one we read. */
3443 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
3444 DRM_ERROR("Timed out waiting for IPS enable\n");
3445 }
3446}
3447
3448void hsw_disable_ips(struct intel_crtc *crtc)
3449{
3450 struct drm_device *dev = crtc->base.dev;
3451 struct drm_i915_private *dev_priv = dev->dev_private;
3452
3453 if (!crtc->config.ips_enabled)
3454 return;
3455
3456 assert_plane_enabled(dev_priv, crtc->plane);
3457 if (IS_BROADWELL(crtc->base.dev)) {
3458 mutex_lock(&dev_priv->rps.hw_lock);
3459 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
3460 mutex_unlock(&dev_priv->rps.hw_lock);
3461 } else {
3462 I915_WRITE(IPS_CTL, 0);
3463 POSTING_READ(IPS_CTL);
3464 }
3465
3466 /* We need to wait for a vblank before we can disable the plane. */
3467 intel_wait_for_vblank(dev, crtc->pipe);
3468}
3469
3470/** Loads the palette/gamma unit for the CRTC with the prepared values */
3471static void intel_crtc_load_lut(struct drm_crtc *crtc)
3472{
3473 struct drm_device *dev = crtc->dev;
3474 struct drm_i915_private *dev_priv = dev->dev_private;
3475 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3476 enum pipe pipe = intel_crtc->pipe;
3477 int palreg = PALETTE(pipe);
3478 int i;
3479 bool reenable_ips = false;
3480
3481 /* The clocks have to be on to load the palette. */
3482 if (!crtc->enabled || !intel_crtc->active)
3483 return;
3484
3485 if (!HAS_PCH_SPLIT(dev_priv->dev)) {
3486 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
3487 assert_dsi_pll_enabled(dev_priv);
3488 else
3489 assert_pll_enabled(dev_priv, pipe);
3490 }
3491
3492 /* use legacy palette for Ironlake */
3493 if (HAS_PCH_SPLIT(dev))
3494 palreg = LGC_PALETTE(pipe);
3495
3496 /* Workaround : Do not read or write the pipe palette/gamma data while
3497 * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
3498 */
3499 if (intel_crtc->config.ips_enabled &&
3500 ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
3501 GAMMA_MODE_MODE_SPLIT)) {
3502 hsw_disable_ips(intel_crtc);
3503 reenable_ips = true;
3504 }
3505
3506 for (i = 0; i < 256; i++) {
3507 I915_WRITE(palreg + 4 * i,
3508 (intel_crtc->lut_r[i] << 16) |
3509 (intel_crtc->lut_g[i] << 8) |
3510 intel_crtc->lut_b[i]);
3511 }
3512
3513 if (reenable_ips)
3514 hsw_enable_ips(intel_crtc);
3515}
3516
3517static void ironlake_crtc_enable(struct drm_crtc *crtc)
3518{
3519 struct drm_device *dev = crtc->dev;
3520 struct drm_i915_private *dev_priv = dev->dev_private;
3521 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3522 struct intel_encoder *encoder;
3523 int pipe = intel_crtc->pipe;
3524 int plane = intel_crtc->plane;
3525
3526 WARN_ON(!crtc->enabled);
3527
3528 if (intel_crtc->active)
3529 return;
3530
3531 intel_crtc->active = true;
3532
3533 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3534 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3535
3536 for_each_encoder_on_crtc(dev, crtc, encoder)
3537 if (encoder->pre_enable)
3538 encoder->pre_enable(encoder);
3539
3540 if (intel_crtc->config.has_pch_encoder) {
3541 /* Note: FDI PLL enabling _must_ be done before we enable the
3542 * cpu pipes, hence this is separate from all the other fdi/pch
3543 * enabling. */
3544 ironlake_fdi_pll_enable(intel_crtc);
3545 } else {
3546 assert_fdi_tx_disabled(dev_priv, pipe);
3547 assert_fdi_rx_disabled(dev_priv, pipe);
3548 }
3549
3550 ironlake_pfit_enable(intel_crtc);
3551
3552 /*
3553 * On ILK+ LUT must be loaded before the pipe is running but with
3554 * clocks enabled
3555 */
3556 intel_crtc_load_lut(crtc);
3557
3558 intel_update_watermarks(crtc);
3559 intel_enable_pipe(dev_priv, pipe,
3560 intel_crtc->config.has_pch_encoder, false);
3561 intel_enable_primary_plane(dev_priv, plane, pipe);
3562 intel_enable_planes(crtc);
3563 intel_crtc_update_cursor(crtc, true);
3564
3565 if (intel_crtc->config.has_pch_encoder)
3566 ironlake_pch_enable(crtc);
3567
3568 mutex_lock(&dev->struct_mutex);
3569 intel_update_fbc(dev);
3570 mutex_unlock(&dev->struct_mutex);
3571
3572 for_each_encoder_on_crtc(dev, crtc, encoder)
3573 encoder->enable(encoder);
3574
3575 if (HAS_PCH_CPT(dev))
3576 cpt_verify_modeset(dev, intel_crtc->pipe);
3577
3578 /*
3579 * There seems to be a race in PCH platform hw (at least on some
3580 * outputs) where an enabled pipe still completes any pageflip right
3581 * away (as if the pipe is off) instead of waiting for vblank. As soon
3582 * as the first vblank happend, everything works as expected. Hence just
3583 * wait for one vblank before returning to avoid strange things
3584 * happening.
3585 */
3586 intel_wait_for_vblank(dev, intel_crtc->pipe);
3587}
3588
3589/* IPS only exists on ULT machines and is tied to pipe A. */
3590static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
3591{
3592 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
3593}
3594
3595static void haswell_crtc_enable_planes(struct drm_crtc *crtc)
3596{
3597 struct drm_device *dev = crtc->dev;
3598 struct drm_i915_private *dev_priv = dev->dev_private;
3599 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3600 int pipe = intel_crtc->pipe;
3601 int plane = intel_crtc->plane;
3602
3603 intel_enable_primary_plane(dev_priv, plane, pipe);
3604 intel_enable_planes(crtc);
3605 intel_crtc_update_cursor(crtc, true);
3606
3607 hsw_enable_ips(intel_crtc);
3608
3609 mutex_lock(&dev->struct_mutex);
3610 intel_update_fbc(dev);
3611 mutex_unlock(&dev->struct_mutex);
3612}
3613
3614static void haswell_crtc_disable_planes(struct drm_crtc *crtc)
3615{
3616 struct drm_device *dev = crtc->dev;
3617 struct drm_i915_private *dev_priv = dev->dev_private;
3618 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3619 int pipe = intel_crtc->pipe;
3620 int plane = intel_crtc->plane;
3621
3622 intel_crtc_wait_for_pending_flips(crtc);
3623 drm_vblank_off(dev, pipe);
3624
3625 /* FBC must be disabled before disabling the plane on HSW. */
3626 if (dev_priv->fbc.plane == plane)
3627 intel_disable_fbc(dev);
3628
3629 hsw_disable_ips(intel_crtc);
3630
3631 intel_crtc_update_cursor(crtc, false);
3632 intel_disable_planes(crtc);
3633 intel_disable_primary_plane(dev_priv, plane, pipe);
3634}
3635
3636/*
3637 * This implements the workaround described in the "notes" section of the mode
3638 * set sequence documentation. When going from no pipes or single pipe to
3639 * multiple pipes, and planes are enabled after the pipe, we need to wait at
3640 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
3641 */
3642static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
3643{
3644 struct drm_device *dev = crtc->base.dev;
3645 struct intel_crtc *crtc_it, *other_active_crtc = NULL;
3646
3647 /* We want to get the other_active_crtc only if there's only 1 other
3648 * active crtc. */
3649 list_for_each_entry(crtc_it, &dev->mode_config.crtc_list, base.head) {
3650 if (!crtc_it->active || crtc_it == crtc)
3651 continue;
3652
3653 if (other_active_crtc)
3654 return;
3655
3656 other_active_crtc = crtc_it;
3657 }
3658 if (!other_active_crtc)
3659 return;
3660
3661 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3662 intel_wait_for_vblank(dev, other_active_crtc->pipe);
3663}
3664
3665static void haswell_crtc_enable(struct drm_crtc *crtc)
3666{
3667 struct drm_device *dev = crtc->dev;
3668 struct drm_i915_private *dev_priv = dev->dev_private;
3669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3670 struct intel_encoder *encoder;
3671 int pipe = intel_crtc->pipe;
3672
3673 WARN_ON(!crtc->enabled);
3674
3675 if (intel_crtc->active)
3676 return;
3677
3678 intel_crtc->active = true;
3679
3680 intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
3681 if (intel_crtc->config.has_pch_encoder)
3682 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3683
3684 if (intel_crtc->config.has_pch_encoder)
3685 dev_priv->display.fdi_link_train(crtc);
3686
3687 for_each_encoder_on_crtc(dev, crtc, encoder)
3688 if (encoder->pre_enable)
3689 encoder->pre_enable(encoder);
3690
3691 intel_ddi_enable_pipe_clock(intel_crtc);
3692
3693 ironlake_pfit_enable(intel_crtc);
3694
3695 /*
3696 * On ILK+ LUT must be loaded before the pipe is running but with
3697 * clocks enabled
3698 */
3699 intel_crtc_load_lut(crtc);
3700
3701 intel_ddi_set_pipe_settings(crtc);
3702 intel_ddi_enable_transcoder_func(crtc);
3703
3704 intel_update_watermarks(crtc);
3705 intel_enable_pipe(dev_priv, pipe,
3706 intel_crtc->config.has_pch_encoder, false);
3707
3708 if (intel_crtc->config.has_pch_encoder)
3709 lpt_pch_enable(crtc);
3710
3711 for_each_encoder_on_crtc(dev, crtc, encoder) {
3712 encoder->enable(encoder);
3713 intel_opregion_notify_encoder(encoder, true);
3714 }
3715
3716 /* If we change the relative order between pipe/planes enabling, we need
3717 * to change the workaround. */
3718 haswell_mode_set_planes_workaround(intel_crtc);
3719 haswell_crtc_enable_planes(crtc);
3720
3721 /*
3722 * There seems to be a race in PCH platform hw (at least on some
3723 * outputs) where an enabled pipe still completes any pageflip right
3724 * away (as if the pipe is off) instead of waiting for vblank. As soon
3725 * as the first vblank happend, everything works as expected. Hence just
3726 * wait for one vblank before returning to avoid strange things
3727 * happening.
3728 */
3729 intel_wait_for_vblank(dev, intel_crtc->pipe);
3730}
3731
3732static void ironlake_pfit_disable(struct intel_crtc *crtc)
3733{
3734 struct drm_device *dev = crtc->base.dev;
3735 struct drm_i915_private *dev_priv = dev->dev_private;
3736 int pipe = crtc->pipe;
3737
3738 /* To avoid upsetting the power well on haswell only disable the pfit if
3739 * it's in use. The hw state code will make sure we get this right. */
3740 if (crtc->config.pch_pfit.enabled) {
3741 I915_WRITE(PF_CTL(pipe), 0);
3742 I915_WRITE(PF_WIN_POS(pipe), 0);
3743 I915_WRITE(PF_WIN_SZ(pipe), 0);
3744 }
3745}
3746
3747static void ironlake_crtc_disable(struct drm_crtc *crtc)
3748{
3749 struct drm_device *dev = crtc->dev;
3750 struct drm_i915_private *dev_priv = dev->dev_private;
3751 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3752 struct intel_encoder *encoder;
3753 int pipe = intel_crtc->pipe;
3754 int plane = intel_crtc->plane;
3755 u32 reg, temp;
3756
3757
3758 if (!intel_crtc->active)
3759 return;
3760
3761 for_each_encoder_on_crtc(dev, crtc, encoder)
3762 encoder->disable(encoder);
3763
3764 intel_crtc_wait_for_pending_flips(crtc);
3765 drm_vblank_off(dev, pipe);
3766
3767 if (dev_priv->fbc.plane == plane)
3768 intel_disable_fbc(dev);
3769
3770 intel_crtc_update_cursor(crtc, false);
3771 intel_disable_planes(crtc);
3772 intel_disable_primary_plane(dev_priv, plane, pipe);
3773
3774 if (intel_crtc->config.has_pch_encoder)
3775 intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
3776
3777 intel_disable_pipe(dev_priv, pipe);
3778
3779 ironlake_pfit_disable(intel_crtc);
3780
3781 for_each_encoder_on_crtc(dev, crtc, encoder)
3782 if (encoder->post_disable)
3783 encoder->post_disable(encoder);
3784
3785 if (intel_crtc->config.has_pch_encoder) {
3786 ironlake_fdi_disable(crtc);
3787
3788 ironlake_disable_pch_transcoder(dev_priv, pipe);
3789 intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
3790
3791 if (HAS_PCH_CPT(dev)) {
3792 /* disable TRANS_DP_CTL */
3793 reg = TRANS_DP_CTL(pipe);
3794 temp = I915_READ(reg);
3795 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
3796 TRANS_DP_PORT_SEL_MASK);
3797 temp |= TRANS_DP_PORT_SEL_NONE;
3798 I915_WRITE(reg, temp);
3799
3800 /* disable DPLL_SEL */
3801 temp = I915_READ(PCH_DPLL_SEL);
3802 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
3803 I915_WRITE(PCH_DPLL_SEL, temp);
3804 }
3805
3806 /* disable PCH DPLL */
3807 intel_disable_shared_dpll(intel_crtc);
3808
3809 ironlake_fdi_pll_disable(intel_crtc);
3810 }
3811
3812 intel_crtc->active = false;
3813 intel_update_watermarks(crtc);
3814
3815 mutex_lock(&dev->struct_mutex);
3816 intel_update_fbc(dev);
3817 mutex_unlock(&dev->struct_mutex);
3818}
3819
3820static void haswell_crtc_disable(struct drm_crtc *crtc)
3821{
3822 struct drm_device *dev = crtc->dev;
3823 struct drm_i915_private *dev_priv = dev->dev_private;
3824 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3825 struct intel_encoder *encoder;
3826 int pipe = intel_crtc->pipe;
3827 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
3828
3829 if (!intel_crtc->active)
3830 return;
3831
3832 haswell_crtc_disable_planes(crtc);
3833
3834 for_each_encoder_on_crtc(dev, crtc, encoder) {
3835 intel_opregion_notify_encoder(encoder, false);
3836 encoder->disable(encoder);
3837 }
3838
3839 if (intel_crtc->config.has_pch_encoder)
3840 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
3841 intel_disable_pipe(dev_priv, pipe);
3842
3843 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3844
3845 ironlake_pfit_disable(intel_crtc);
3846
3847 intel_ddi_disable_pipe_clock(intel_crtc);
3848
3849 for_each_encoder_on_crtc(dev, crtc, encoder)
3850 if (encoder->post_disable)
3851 encoder->post_disable(encoder);
3852
3853 if (intel_crtc->config.has_pch_encoder) {
3854 lpt_disable_pch_transcoder(dev_priv);
3855 intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
3856 intel_ddi_fdi_disable(crtc);
3857 }
3858
3859 intel_crtc->active = false;
3860 intel_update_watermarks(crtc);
3861
3862 mutex_lock(&dev->struct_mutex);
3863 intel_update_fbc(dev);
3864 mutex_unlock(&dev->struct_mutex);
3865}
3866
3867static void ironlake_crtc_off(struct drm_crtc *crtc)
3868{
3869 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3870 intel_put_shared_dpll(intel_crtc);
3871}
3872
3873static void haswell_crtc_off(struct drm_crtc *crtc)
3874{
3875 intel_ddi_put_crtc_pll(crtc);
3876}
3877
3878static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3879{
3880 if (!enable && intel_crtc->overlay) {
3881 struct drm_device *dev = intel_crtc->base.dev;
3882 struct drm_i915_private *dev_priv = dev->dev_private;
3883
3884 mutex_lock(&dev->struct_mutex);
3885 dev_priv->mm.interruptible = false;
3886 (void) intel_overlay_switch_off(intel_crtc->overlay);
3887 dev_priv->mm.interruptible = true;
3888 mutex_unlock(&dev->struct_mutex);
3889 }
3890
3891 /* Let userspace switch the overlay on again. In most cases userspace
3892 * has to recompute where to put it anyway.
3893 */
3894}
3895
3896/**
3897 * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
3898 * cursor plane briefly if not already running after enabling the display
3899 * plane.
3900 * This workaround avoids occasional blank screens when self refresh is
3901 * enabled.
3902 */
3903static void
3904g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
3905{
3906 u32 cntl = I915_READ(CURCNTR(pipe));
3907
3908 if ((cntl & CURSOR_MODE) == 0) {
3909 u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
3910
3911 I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
3912 I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
3913 intel_wait_for_vblank(dev_priv->dev, pipe);
3914 I915_WRITE(CURCNTR(pipe), cntl);
3915 I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3916 I915_WRITE(FW_BLC_SELF, fw_bcl_self);
3917 }
3918}
3919
3920static void i9xx_pfit_enable(struct intel_crtc *crtc)
3921{
3922 struct drm_device *dev = crtc->base.dev;
3923 struct drm_i915_private *dev_priv = dev->dev_private;
3924 struct intel_crtc_config *pipe_config = &crtc->config;
3925
3926 if (!crtc->config.gmch_pfit.control)
3927 return;
3928
3929 /*
3930 * The panel fitter should only be adjusted whilst the pipe is disabled,
3931 * according to register description and PRM.
3932 */
3933 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
3934 assert_pipe_disabled(dev_priv, crtc->pipe);
3935
3936 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
3937 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
3938
3939 /* Border color in case we don't scale up to the full screen. Black by
3940 * default, change to something else for debugging. */
3941 I915_WRITE(BCLRPAT(crtc->pipe), 0);
3942}
3943
3944int valleyview_get_vco(struct drm_i915_private *dev_priv)
3945{
3946 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
3947
3948 /* Obtain SKU information */
3949 mutex_lock(&dev_priv->dpio_lock);
3950 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
3951 CCK_FUSE_HPLL_FREQ_MASK;
3952 mutex_unlock(&dev_priv->dpio_lock);
3953
3954 return vco_freq[hpll_freq];
3955}
3956
3957/* Adjust CDclk dividers to allow high res or save power if possible */
3958static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
3959{
3960 struct drm_i915_private *dev_priv = dev->dev_private;
3961 u32 val, cmd;
3962
3963 if (cdclk >= 320) /* jump to highest voltage for 400MHz too */
3964 cmd = 2;
3965 else if (cdclk == 266)
3966 cmd = 1;
3967 else
3968 cmd = 0;
3969
3970 mutex_lock(&dev_priv->rps.hw_lock);
3971 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
3972 val &= ~DSPFREQGUAR_MASK;
3973 val |= (cmd << DSPFREQGUAR_SHIFT);
3974 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
3975 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
3976 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
3977 50)) {
3978 DRM_ERROR("timed out waiting for CDclk change\n");
3979 }
3980 mutex_unlock(&dev_priv->rps.hw_lock);
3981
3982 if (cdclk == 400) {
3983 u32 divider, vco;
3984
3985 vco = valleyview_get_vco(dev_priv);
3986 divider = ((vco << 1) / cdclk) - 1;
3987
3988 mutex_lock(&dev_priv->dpio_lock);
3989 /* adjust cdclk divider */
3990 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
3991 val &= ~0xf;
3992 val |= divider;
3993 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
3994 mutex_unlock(&dev_priv->dpio_lock);
3995 }
3996
3997 mutex_lock(&dev_priv->dpio_lock);
3998 /* adjust self-refresh exit latency value */
3999 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
4000 val &= ~0x7f;
4001
4002 /*
4003 * For high bandwidth configs, we set a higher latency in the bunit
4004 * so that the core display fetch happens in time to avoid underruns.
4005 */
4006 if (cdclk == 400)
4007 val |= 4500 / 250; /* 4.5 usec */
4008 else
4009 val |= 3000 / 250; /* 3.0 usec */
4010 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
4011 mutex_unlock(&dev_priv->dpio_lock);
4012
4013 /* Since we changed the CDclk, we need to update the GMBUSFREQ too */
4014 intel_i2c_reset(dev);
4015}
4016
4017static int valleyview_cur_cdclk(struct drm_i915_private *dev_priv)
4018{
4019 int cur_cdclk, vco;
4020 int divider;
4021
4022 vco = valleyview_get_vco(dev_priv);
4023
4024 mutex_lock(&dev_priv->dpio_lock);
4025 divider = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
4026 mutex_unlock(&dev_priv->dpio_lock);
4027
4028 divider &= 0xf;
4029
4030 cur_cdclk = (vco << 1) / (divider + 1);
4031
4032 return cur_cdclk;
4033}
4034
4035static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
4036 int max_pixclk)
4037{
4038 int cur_cdclk;
4039
4040 cur_cdclk = valleyview_cur_cdclk(dev_priv);
4041
4042 /*
4043 * Really only a few cases to deal with, as only 4 CDclks are supported:
4044 * 200MHz
4045 * 267MHz
4046 * 320MHz
4047 * 400MHz
4048 * So we check to see whether we're above 90% of the lower bin and
4049 * adjust if needed.
4050 */
4051 if (max_pixclk > 288000) {
4052 return 400;
4053 } else if (max_pixclk > 240000) {
4054 return 320;
4055 } else
4056 return 266;
4057 /* Looks like the 200MHz CDclk freq doesn't work on some configs */
4058}
4059
4060static int intel_mode_max_pixclk(struct drm_i915_private *dev_priv,
4061 unsigned modeset_pipes,
4062 struct intel_crtc_config *pipe_config)
4063{
4064 struct drm_device *dev = dev_priv->dev;
4065 struct intel_crtc *intel_crtc;
4066 int max_pixclk = 0;
4067
4068 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4069 base.head) {
4070 if (modeset_pipes & (1 << intel_crtc->pipe))
4071 max_pixclk = max(max_pixclk,
4072 pipe_config->adjusted_mode.crtc_clock);
4073 else if (intel_crtc->base.enabled)
4074 max_pixclk = max(max_pixclk,
4075 intel_crtc->config.adjusted_mode.crtc_clock);
4076 }
4077
4078 return max_pixclk;
4079}
4080
4081static void valleyview_modeset_global_pipes(struct drm_device *dev,
4082 unsigned *prepare_pipes,
4083 unsigned modeset_pipes,
4084 struct intel_crtc_config *pipe_config)
4085{
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 struct intel_crtc *intel_crtc;
4088 int max_pixclk = intel_mode_max_pixclk(dev_priv, modeset_pipes,
4089 pipe_config);
4090 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4091
4092 if (valleyview_calc_cdclk(dev_priv, max_pixclk) == cur_cdclk)
4093 return;
4094
4095 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
4096 base.head)
4097 if (intel_crtc->base.enabled)
4098 *prepare_pipes |= (1 << intel_crtc->pipe);
4099}
4100
4101static void valleyview_modeset_global_resources(struct drm_device *dev)
4102{
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104 int max_pixclk = intel_mode_max_pixclk(dev_priv, 0, NULL);
4105 int cur_cdclk = valleyview_cur_cdclk(dev_priv);
4106 int req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
4107
4108 if (req_cdclk != cur_cdclk)
4109 valleyview_set_cdclk(dev, req_cdclk);
4110}
4111
4112static void valleyview_crtc_enable(struct drm_crtc *crtc)
4113{
4114 struct drm_device *dev = crtc->dev;
4115 struct drm_i915_private *dev_priv = dev->dev_private;
4116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4117 struct intel_encoder *encoder;
4118 int pipe = intel_crtc->pipe;
4119 int plane = intel_crtc->plane;
4120 bool is_dsi;
4121
4122 WARN_ON(!crtc->enabled);
4123
4124 if (intel_crtc->active)
4125 return;
4126
4127 intel_crtc->active = true;
4128
4129 for_each_encoder_on_crtc(dev, crtc, encoder)
4130 if (encoder->pre_pll_enable)
4131 encoder->pre_pll_enable(encoder);
4132
4133 is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
4134
4135 if (!is_dsi)
4136 vlv_enable_pll(intel_crtc);
4137
4138 for_each_encoder_on_crtc(dev, crtc, encoder)
4139 if (encoder->pre_enable)
4140 encoder->pre_enable(encoder);
4141
4142 i9xx_pfit_enable(intel_crtc);
4143
4144 intel_crtc_load_lut(crtc);
4145
4146 intel_update_watermarks(crtc);
4147 intel_enable_pipe(dev_priv, pipe, false, is_dsi);
4148 intel_enable_primary_plane(dev_priv, plane, pipe);
4149 intel_enable_planes(crtc);
4150 intel_crtc_update_cursor(crtc, true);
4151
4152 intel_update_fbc(dev);
4153
4154 for_each_encoder_on_crtc(dev, crtc, encoder)
4155 encoder->enable(encoder);
4156}
4157
4158static void i9xx_crtc_enable(struct drm_crtc *crtc)
4159{
4160 struct drm_device *dev = crtc->dev;
4161 struct drm_i915_private *dev_priv = dev->dev_private;
4162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4163 struct intel_encoder *encoder;
4164 int pipe = intel_crtc->pipe;
4165 int plane = intel_crtc->plane;
4166
4167 WARN_ON(!crtc->enabled);
4168
4169 if (intel_crtc->active)
4170 return;
4171
4172 intel_crtc->active = true;
4173
4174 for_each_encoder_on_crtc(dev, crtc, encoder)
4175 if (encoder->pre_enable)
4176 encoder->pre_enable(encoder);
4177
4178 i9xx_enable_pll(intel_crtc);
4179
4180 i9xx_pfit_enable(intel_crtc);
4181
4182 intel_crtc_load_lut(crtc);
4183
4184 intel_update_watermarks(crtc);
4185 intel_enable_pipe(dev_priv, pipe, false, false);
4186 intel_enable_primary_plane(dev_priv, plane, pipe);
4187 intel_enable_planes(crtc);
4188 /* The fixup needs to happen before cursor is enabled */
4189 if (IS_G4X(dev))
4190 g4x_fixup_plane(dev_priv, pipe);
4191 intel_crtc_update_cursor(crtc, true);
4192
4193 /* Give the overlay scaler a chance to enable if it's on this pipe */
4194 intel_crtc_dpms_overlay(intel_crtc, true);
4195
4196 intel_update_fbc(dev);
4197
4198 for_each_encoder_on_crtc(dev, crtc, encoder)
4199 encoder->enable(encoder);
4200}
4201
4202static void i9xx_pfit_disable(struct intel_crtc *crtc)
4203{
4204 struct drm_device *dev = crtc->base.dev;
4205 struct drm_i915_private *dev_priv = dev->dev_private;
4206
4207 if (!crtc->config.gmch_pfit.control)
4208 return;
4209
4210 assert_pipe_disabled(dev_priv, crtc->pipe);
4211
4212 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
4213 I915_READ(PFIT_CONTROL));
4214 I915_WRITE(PFIT_CONTROL, 0);
4215}
4216
4217static void i9xx_crtc_disable(struct drm_crtc *crtc)
4218{
4219 struct drm_device *dev = crtc->dev;
4220 struct drm_i915_private *dev_priv = dev->dev_private;
4221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4222 struct intel_encoder *encoder;
4223 int pipe = intel_crtc->pipe;
4224 int plane = intel_crtc->plane;
4225
4226 if (!intel_crtc->active)
4227 return;
4228
4229 for_each_encoder_on_crtc(dev, crtc, encoder)
4230 encoder->disable(encoder);
4231
4232 /* Give the overlay scaler a chance to disable if it's on this pipe */
4233 intel_crtc_wait_for_pending_flips(crtc);
4234 drm_vblank_off(dev, pipe);
4235
4236 if (dev_priv->fbc.plane == plane)
4237 intel_disable_fbc(dev);
4238
4239 intel_crtc_dpms_overlay(intel_crtc, false);
4240 intel_crtc_update_cursor(crtc, false);
4241 intel_disable_planes(crtc);
4242 intel_disable_primary_plane(dev_priv, plane, pipe);
4243
4244 intel_disable_pipe(dev_priv, pipe);
4245
4246 i9xx_pfit_disable(intel_crtc);
4247
4248 for_each_encoder_on_crtc(dev, crtc, encoder)
4249 if (encoder->post_disable)
4250 encoder->post_disable(encoder);
4251
4252 if (IS_VALLEYVIEW(dev) && !intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
4253 vlv_disable_pll(dev_priv, pipe);
4254 else if (!IS_VALLEYVIEW(dev))
4255 i9xx_disable_pll(dev_priv, pipe);
4256
4257 intel_crtc->active = false;
4258 intel_update_watermarks(crtc);
4259
4260 intel_update_fbc(dev);
4261}
4262
4263static void i9xx_crtc_off(struct drm_crtc *crtc)
4264{
4265}
4266
4267static void intel_crtc_update_sarea(struct drm_crtc *crtc,
4268 bool enabled)
4269{
4270 struct drm_device *dev = crtc->dev;
4271 struct drm_i915_master_private *master_priv;
4272 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4273 int pipe = intel_crtc->pipe;
4274
4275 if (!dev->primary->master)
4276 return;
4277
4278 master_priv = dev->primary->master->driver_priv;
4279 if (!master_priv->sarea_priv)
4280 return;
4281
4282 switch (pipe) {
4283 case 0:
4284 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
4285 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
4286 break;
4287 case 1:
4288 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
4289 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
4290 break;
4291 default:
4292 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
4293 break;
4294 }
4295}
4296
4297/**
4298 * Sets the power management mode of the pipe and plane.
4299 */
4300void intel_crtc_update_dpms(struct drm_crtc *crtc)
4301{
4302 struct drm_device *dev = crtc->dev;
4303 struct drm_i915_private *dev_priv = dev->dev_private;
4304 struct intel_encoder *intel_encoder;
4305 bool enable = false;
4306
4307 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
4308 enable |= intel_encoder->connectors_active;
4309
4310 if (enable)
4311 dev_priv->display.crtc_enable(crtc);
4312 else
4313 dev_priv->display.crtc_disable(crtc);
4314
4315 intel_crtc_update_sarea(crtc, enable);
4316}
4317
4318static void intel_crtc_disable(struct drm_crtc *crtc)
4319{
4320 struct drm_device *dev = crtc->dev;
4321 struct drm_connector *connector;
4322 struct drm_i915_private *dev_priv = dev->dev_private;
4323 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4324
4325 /* crtc should still be enabled when we disable it. */
4326 WARN_ON(!crtc->enabled);
4327
4328 dev_priv->display.crtc_disable(crtc);
4329 intel_crtc->eld_vld = false;
4330 intel_crtc_update_sarea(crtc, false);
4331 dev_priv->display.off(crtc);
4332
4333 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
4334 assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
4335 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
4336
4337 if (crtc->fb) {
4338 mutex_lock(&dev->struct_mutex);
4339 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
4340 mutex_unlock(&dev->struct_mutex);
4341 crtc->fb = NULL;
4342 }
4343
4344 /* Update computed state. */
4345 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4346 if (!connector->encoder || !connector->encoder->crtc)
4347 continue;
4348
4349 if (connector->encoder->crtc != crtc)
4350 continue;
4351
4352 connector->dpms = DRM_MODE_DPMS_OFF;
4353 to_intel_encoder(connector->encoder)->connectors_active = false;
4354 }
4355}
4356
4357void intel_encoder_destroy(struct drm_encoder *encoder)
4358{
4359 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4360
4361 drm_encoder_cleanup(encoder);
4362 kfree(intel_encoder);
4363}
4364
4365/* Simple dpms helper for encoders with just one connector, no cloning and only
4366 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
4367 * state of the entire output pipe. */
4368static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
4369{
4370 if (mode == DRM_MODE_DPMS_ON) {
4371 encoder->connectors_active = true;
4372
4373 intel_crtc_update_dpms(encoder->base.crtc);
4374 } else {
4375 encoder->connectors_active = false;
4376
4377 intel_crtc_update_dpms(encoder->base.crtc);
4378 }
4379}
4380
4381/* Cross check the actual hw state with our own modeset state tracking (and it's
4382 * internal consistency). */
4383static void intel_connector_check_state(struct intel_connector *connector)
4384{
4385 if (connector->get_hw_state(connector)) {
4386 struct intel_encoder *encoder = connector->encoder;
4387 struct drm_crtc *crtc;
4388 bool encoder_enabled;
4389 enum pipe pipe;
4390
4391 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4392 connector->base.base.id,
4393 drm_get_connector_name(&connector->base));
4394
4395 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
4396 "wrong connector dpms state\n");
4397 WARN(connector->base.encoder != &encoder->base,
4398 "active connector not linked to encoder\n");
4399 WARN(!encoder->connectors_active,
4400 "encoder->connectors_active not set\n");
4401
4402 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
4403 WARN(!encoder_enabled, "encoder not enabled\n");
4404 if (WARN_ON(!encoder->base.crtc))
4405 return;
4406
4407 crtc = encoder->base.crtc;
4408
4409 WARN(!crtc->enabled, "crtc not enabled\n");
4410 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
4411 WARN(pipe != to_intel_crtc(crtc)->pipe,
4412 "encoder active on the wrong pipe\n");
4413 }
4414}
4415
4416/* Even simpler default implementation, if there's really no special case to
4417 * consider. */
4418void intel_connector_dpms(struct drm_connector *connector, int mode)
4419{
4420 /* All the simple cases only support two dpms states. */
4421 if (mode != DRM_MODE_DPMS_ON)
4422 mode = DRM_MODE_DPMS_OFF;
4423
4424 if (mode == connector->dpms)
4425 return;
4426
4427 connector->dpms = mode;
4428
4429 /* Only need to change hw state when actually enabled */
4430 if (connector->encoder)
4431 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
4432
4433 intel_modeset_check_state(connector->dev);
4434}
4435
4436/* Simple connector->get_hw_state implementation for encoders that support only
4437 * one connector and no cloning and hence the encoder state determines the state
4438 * of the connector. */
4439bool intel_connector_get_hw_state(struct intel_connector *connector)
4440{
4441 enum pipe pipe = 0;
4442 struct intel_encoder *encoder = connector->encoder;
4443
4444 return encoder->get_hw_state(encoder, &pipe);
4445}
4446
4447static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
4448 struct intel_crtc_config *pipe_config)
4449{
4450 struct drm_i915_private *dev_priv = dev->dev_private;
4451 struct intel_crtc *pipe_B_crtc =
4452 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
4453
4454 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
4455 pipe_name(pipe), pipe_config->fdi_lanes);
4456 if (pipe_config->fdi_lanes > 4) {
4457 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
4458 pipe_name(pipe), pipe_config->fdi_lanes);
4459 return false;
4460 }
4461
4462 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4463 if (pipe_config->fdi_lanes > 2) {
4464 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
4465 pipe_config->fdi_lanes);
4466 return false;
4467 } else {
4468 return true;
4469 }
4470 }
4471
4472 if (INTEL_INFO(dev)->num_pipes == 2)
4473 return true;
4474
4475 /* Ivybridge 3 pipe is really complicated */
4476 switch (pipe) {
4477 case PIPE_A:
4478 return true;
4479 case PIPE_B:
4480 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
4481 pipe_config->fdi_lanes > 2) {
4482 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4483 pipe_name(pipe), pipe_config->fdi_lanes);
4484 return false;
4485 }
4486 return true;
4487 case PIPE_C:
4488 if (!pipe_has_enabled_pch(pipe_B_crtc) ||
4489 pipe_B_crtc->config.fdi_lanes <= 2) {
4490 if (pipe_config->fdi_lanes > 2) {
4491 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
4492 pipe_name(pipe), pipe_config->fdi_lanes);
4493 return false;
4494 }
4495 } else {
4496 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
4497 return false;
4498 }
4499 return true;
4500 default:
4501 BUG();
4502 }
4503}
4504
4505#define RETRY 1
4506static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
4507 struct intel_crtc_config *pipe_config)
4508{
4509 struct drm_device *dev = intel_crtc->base.dev;
4510 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4511 int lane, link_bw, fdi_dotclock;
4512 bool setup_ok, needs_recompute = false;
4513
4514retry:
4515 /* FDI is a binary signal running at ~2.7GHz, encoding
4516 * each output octet as 10 bits. The actual frequency
4517 * is stored as a divider into a 100MHz clock, and the
4518 * mode pixel clock is stored in units of 1KHz.
4519 * Hence the bw of each lane in terms of the mode signal
4520 * is:
4521 */
4522 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4523
4524 fdi_dotclock = adjusted_mode->crtc_clock;
4525
4526 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
4527 pipe_config->pipe_bpp);
4528
4529 pipe_config->fdi_lanes = lane;
4530
4531 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
4532 link_bw, &pipe_config->fdi_m_n);
4533
4534 setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
4535 intel_crtc->pipe, pipe_config);
4536 if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
4537 pipe_config->pipe_bpp -= 2*3;
4538 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
4539 pipe_config->pipe_bpp);
4540 needs_recompute = true;
4541 pipe_config->bw_constrained = true;
4542
4543 goto retry;
4544 }
4545
4546 if (needs_recompute)
4547 return RETRY;
4548
4549 return setup_ok ? 0 : -EINVAL;
4550}
4551
4552static void hsw_compute_ips_config(struct intel_crtc *crtc,
4553 struct intel_crtc_config *pipe_config)
4554{
4555 pipe_config->ips_enabled = i915_enable_ips &&
4556 hsw_crtc_supports_ips(crtc) &&
4557 pipe_config->pipe_bpp <= 24;
4558}
4559
4560static int intel_crtc_compute_config(struct intel_crtc *crtc,
4561 struct intel_crtc_config *pipe_config)
4562{
4563 struct drm_device *dev = crtc->base.dev;
4564 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
4565
4566 /* FIXME should check pixel clock limits on all platforms */
4567 if (INTEL_INFO(dev)->gen < 4) {
4568 struct drm_i915_private *dev_priv = dev->dev_private;
4569 int clock_limit =
4570 dev_priv->display.get_display_clock_speed(dev);
4571
4572 /*
4573 * Enable pixel doubling when the dot clock
4574 * is > 90% of the (display) core speed.
4575 *
4576 * GDG double wide on either pipe,
4577 * otherwise pipe A only.
4578 */
4579 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
4580 adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
4581 clock_limit *= 2;
4582 pipe_config->double_wide = true;
4583 }
4584
4585 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
4586 return -EINVAL;
4587 }
4588
4589 /*
4590 * Pipe horizontal size must be even in:
4591 * - DVO ganged mode
4592 * - LVDS dual channel mode
4593 * - Double wide pipe
4594 */
4595 if ((intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4596 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
4597 pipe_config->pipe_src_w &= ~1;
4598
4599 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
4600 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
4601 */
4602 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
4603 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
4604 return -EINVAL;
4605
4606 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
4607 pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
4608 } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
4609 /* only a 8bpc pipe, with 6bpc dither through the panel fitter
4610 * for lvds. */
4611 pipe_config->pipe_bpp = 8*3;
4612 }
4613
4614 if (HAS_IPS(dev))
4615 hsw_compute_ips_config(crtc, pipe_config);
4616
4617 /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
4618 * clock survives for now. */
4619 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
4620 pipe_config->shared_dpll = crtc->config.shared_dpll;
4621
4622 if (pipe_config->has_pch_encoder)
4623 return ironlake_fdi_compute_config(crtc, pipe_config);
4624
4625 return 0;
4626}
4627
4628static int valleyview_get_display_clock_speed(struct drm_device *dev)
4629{
4630 return 400000; /* FIXME */
4631}
4632
4633static int i945_get_display_clock_speed(struct drm_device *dev)
4634{
4635 return 400000;
4636}
4637
4638static int i915_get_display_clock_speed(struct drm_device *dev)
4639{
4640 return 333000;
4641}
4642
4643static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
4644{
4645 return 200000;
4646}
4647
4648static int pnv_get_display_clock_speed(struct drm_device *dev)
4649{
4650 u16 gcfgc = 0;
4651
4652 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4653
4654 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4655 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
4656 return 267000;
4657 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
4658 return 333000;
4659 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
4660 return 444000;
4661 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
4662 return 200000;
4663 default:
4664 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
4665 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
4666 return 133000;
4667 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
4668 return 167000;
4669 }
4670}
4671
4672static int i915gm_get_display_clock_speed(struct drm_device *dev)
4673{
4674 u16 gcfgc = 0;
4675
4676 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4677
4678 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4679 return 133000;
4680 else {
4681 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4682 case GC_DISPLAY_CLOCK_333_MHZ:
4683 return 333000;
4684 default:
4685 case GC_DISPLAY_CLOCK_190_200_MHZ:
4686 return 190000;
4687 }
4688 }
4689}
4690
4691static int i865_get_display_clock_speed(struct drm_device *dev)
4692{
4693 return 266000;
4694}
4695
4696static int i855_get_display_clock_speed(struct drm_device *dev)
4697{
4698 u16 hpllcc = 0;
4699 /* Assume that the hardware is in the high speed state. This
4700 * should be the default.
4701 */
4702 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4703 case GC_CLOCK_133_200:
4704 case GC_CLOCK_100_200:
4705 return 200000;
4706 case GC_CLOCK_166_250:
4707 return 250000;
4708 case GC_CLOCK_100_133:
4709 return 133000;
4710 }
4711
4712 /* Shouldn't happen */
4713 return 0;
4714}
4715
4716static int i830_get_display_clock_speed(struct drm_device *dev)
4717{
4718 return 133000;
4719}
4720
4721static void
4722intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
4723{
4724 while (*num > DATA_LINK_M_N_MASK ||
4725 *den > DATA_LINK_M_N_MASK) {
4726 *num >>= 1;
4727 *den >>= 1;
4728 }
4729}
4730
4731static void compute_m_n(unsigned int m, unsigned int n,
4732 uint32_t *ret_m, uint32_t *ret_n)
4733{
4734 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
4735 *ret_m = div_u64((uint64_t) m * *ret_n, n);
4736 intel_reduce_m_n_ratio(ret_m, ret_n);
4737}
4738
4739void
4740intel_link_compute_m_n(int bits_per_pixel, int nlanes,
4741 int pixel_clock, int link_clock,
4742 struct intel_link_m_n *m_n)
4743{
4744 m_n->tu = 64;
4745
4746 compute_m_n(bits_per_pixel * pixel_clock,
4747 link_clock * nlanes * 8,
4748 &m_n->gmch_m, &m_n->gmch_n);
4749
4750 compute_m_n(pixel_clock, link_clock,
4751 &m_n->link_m, &m_n->link_n);
4752}
4753
4754static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4755{
4756 if (i915_panel_use_ssc >= 0)
4757 return i915_panel_use_ssc != 0;
4758 return dev_priv->vbt.lvds_use_ssc
4759 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4760}
4761
4762static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4763{
4764 struct drm_device *dev = crtc->dev;
4765 struct drm_i915_private *dev_priv = dev->dev_private;
4766 int refclk;
4767
4768 if (IS_VALLEYVIEW(dev)) {
4769 refclk = 100000;
4770 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4771 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4772 refclk = dev_priv->vbt.lvds_ssc_freq;
4773 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
4774 } else if (!IS_GEN2(dev)) {
4775 refclk = 96000;
4776 } else {
4777 refclk = 48000;
4778 }
4779
4780 return refclk;
4781}
4782
4783static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
4784{
4785 return (1 << dpll->n) << 16 | dpll->m2;
4786}
4787
4788static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
4789{
4790 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
4791}
4792
4793static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
4794 intel_clock_t *reduced_clock)
4795{
4796 struct drm_device *dev = crtc->base.dev;
4797 struct drm_i915_private *dev_priv = dev->dev_private;
4798 int pipe = crtc->pipe;
4799 u32 fp, fp2 = 0;
4800
4801 if (IS_PINEVIEW(dev)) {
4802 fp = pnv_dpll_compute_fp(&crtc->config.dpll);
4803 if (reduced_clock)
4804 fp2 = pnv_dpll_compute_fp(reduced_clock);
4805 } else {
4806 fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
4807 if (reduced_clock)
4808 fp2 = i9xx_dpll_compute_fp(reduced_clock);
4809 }
4810
4811 I915_WRITE(FP0(pipe), fp);
4812 crtc->config.dpll_hw_state.fp0 = fp;
4813
4814 crtc->lowfreq_avail = false;
4815 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
4816 reduced_clock && i915_powersave) {
4817 I915_WRITE(FP1(pipe), fp2);
4818 crtc->config.dpll_hw_state.fp1 = fp2;
4819 crtc->lowfreq_avail = true;
4820 } else {
4821 I915_WRITE(FP1(pipe), fp);
4822 crtc->config.dpll_hw_state.fp1 = fp;
4823 }
4824}
4825
4826static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
4827 pipe)
4828{
4829 u32 reg_val;
4830
4831 /*
4832 * PLLB opamp always calibrates to max value of 0x3f, force enable it
4833 * and set it to a reasonable value instead.
4834 */
4835 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4836 reg_val &= 0xffffff00;
4837 reg_val |= 0x00000030;
4838 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4839
4840 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4841 reg_val &= 0x8cffffff;
4842 reg_val = 0x8c000000;
4843 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4844
4845 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
4846 reg_val &= 0xffffff00;
4847 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
4848
4849 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
4850 reg_val &= 0x00ffffff;
4851 reg_val |= 0xb0000000;
4852 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
4853}
4854
4855static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
4856 struct intel_link_m_n *m_n)
4857{
4858 struct drm_device *dev = crtc->base.dev;
4859 struct drm_i915_private *dev_priv = dev->dev_private;
4860 int pipe = crtc->pipe;
4861
4862 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4863 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
4864 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
4865 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
4866}
4867
4868static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
4869 struct intel_link_m_n *m_n)
4870{
4871 struct drm_device *dev = crtc->base.dev;
4872 struct drm_i915_private *dev_priv = dev->dev_private;
4873 int pipe = crtc->pipe;
4874 enum transcoder transcoder = crtc->config.cpu_transcoder;
4875
4876 if (INTEL_INFO(dev)->gen >= 5) {
4877 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
4878 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
4879 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
4880 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
4881 } else {
4882 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
4883 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
4884 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
4885 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
4886 }
4887}
4888
4889static void intel_dp_set_m_n(struct intel_crtc *crtc)
4890{
4891 if (crtc->config.has_pch_encoder)
4892 intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4893 else
4894 intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
4895}
4896
4897static void vlv_update_pll(struct intel_crtc *crtc)
4898{
4899 struct drm_device *dev = crtc->base.dev;
4900 struct drm_i915_private *dev_priv = dev->dev_private;
4901 int pipe = crtc->pipe;
4902 u32 dpll, mdiv;
4903 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4904 u32 coreclk, reg_val, dpll_md;
4905
4906 mutex_lock(&dev_priv->dpio_lock);
4907
4908 bestn = crtc->config.dpll.n;
4909 bestm1 = crtc->config.dpll.m1;
4910 bestm2 = crtc->config.dpll.m2;
4911 bestp1 = crtc->config.dpll.p1;
4912 bestp2 = crtc->config.dpll.p2;
4913
4914 /* See eDP HDMI DPIO driver vbios notes doc */
4915
4916 /* PLL B needs special handling */
4917 if (pipe)
4918 vlv_pllb_recal_opamp(dev_priv, pipe);
4919
4920 /* Set up Tx target for periodic Rcomp update */
4921 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
4922
4923 /* Disable target IRef on PLL */
4924 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
4925 reg_val &= 0x00ffffff;
4926 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
4927
4928 /* Disable fast lock */
4929 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
4930
4931 /* Set idtafcrecal before PLL is enabled */
4932 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4933 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4934 mdiv |= ((bestn << DPIO_N_SHIFT));
4935 mdiv |= (1 << DPIO_K_SHIFT);
4936
4937 /*
4938 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
4939 * but we don't support that).
4940 * Note: don't use the DAC post divider as it seems unstable.
4941 */
4942 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
4943 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4944
4945 mdiv |= DPIO_ENABLE_CALIBRATION;
4946 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
4947
4948 /* Set HBR and RBR LPF coefficients */
4949 if (crtc->config.port_clock == 162000 ||
4950 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
4951 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
4952 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4953 0x009f0003);
4954 else
4955 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
4956 0x00d0000f);
4957
4958 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
4959 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
4960 /* Use SSC source */
4961 if (!pipe)
4962 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4963 0x0df40000);
4964 else
4965 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4966 0x0df70000);
4967 } else { /* HDMI or VGA */
4968 /* Use bend source */
4969 if (!pipe)
4970 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4971 0x0df70000);
4972 else
4973 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
4974 0x0df40000);
4975 }
4976
4977 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
4978 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
4979 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
4980 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
4981 coreclk |= 0x01000000;
4982 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
4983
4984 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
4985
4986 /* Enable DPIO clock input */
4987 dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
4988 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
4989 /* We should never disable this, set it here for state tracking */
4990 if (pipe == PIPE_B)
4991 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
4992 dpll |= DPLL_VCO_ENABLE;
4993 crtc->config.dpll_hw_state.dpll = dpll;
4994
4995 dpll_md = (crtc->config.pixel_multiplier - 1)
4996 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4997 crtc->config.dpll_hw_state.dpll_md = dpll_md;
4998
4999 if (crtc->config.has_dp_encoder)
5000 intel_dp_set_m_n(crtc);
5001
5002 mutex_unlock(&dev_priv->dpio_lock);
5003}
5004
5005static void i9xx_update_pll(struct intel_crtc *crtc,
5006 intel_clock_t *reduced_clock,
5007 int num_connectors)
5008{
5009 struct drm_device *dev = crtc->base.dev;
5010 struct drm_i915_private *dev_priv = dev->dev_private;
5011 u32 dpll;
5012 bool is_sdvo;
5013 struct dpll *clock = &crtc->config.dpll;
5014
5015 i9xx_update_pll_dividers(crtc, reduced_clock);
5016
5017 is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
5018 intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
5019
5020 dpll = DPLL_VGA_MODE_DIS;
5021
5022 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
5023 dpll |= DPLLB_MODE_LVDS;
5024 else
5025 dpll |= DPLLB_MODE_DAC_SERIAL;
5026
5027 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5028 dpll |= (crtc->config.pixel_multiplier - 1)
5029 << SDVO_MULTIPLIER_SHIFT_HIRES;
5030 }
5031
5032 if (is_sdvo)
5033 dpll |= DPLL_SDVO_HIGH_SPEED;
5034
5035 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
5036 dpll |= DPLL_SDVO_HIGH_SPEED;
5037
5038 /* compute bitmask from p1 value */
5039 if (IS_PINEVIEW(dev))
5040 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5041 else {
5042 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5043 if (IS_G4X(dev) && reduced_clock)
5044 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5045 }
5046 switch (clock->p2) {
5047 case 5:
5048 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5049 break;
5050 case 7:
5051 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5052 break;
5053 case 10:
5054 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5055 break;
5056 case 14:
5057 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5058 break;
5059 }
5060 if (INTEL_INFO(dev)->gen >= 4)
5061 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5062
5063 if (crtc->config.sdvo_tv_clock)
5064 dpll |= PLL_REF_INPUT_TVCLKINBC;
5065 else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5066 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5067 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5068 else
5069 dpll |= PLL_REF_INPUT_DREFCLK;
5070
5071 dpll |= DPLL_VCO_ENABLE;
5072 crtc->config.dpll_hw_state.dpll = dpll;
5073
5074 if (INTEL_INFO(dev)->gen >= 4) {
5075 u32 dpll_md = (crtc->config.pixel_multiplier - 1)
5076 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5077 crtc->config.dpll_hw_state.dpll_md = dpll_md;
5078 }
5079
5080 if (crtc->config.has_dp_encoder)
5081 intel_dp_set_m_n(crtc);
5082}
5083
5084static void i8xx_update_pll(struct intel_crtc *crtc,
5085 intel_clock_t *reduced_clock,
5086 int num_connectors)
5087{
5088 struct drm_device *dev = crtc->base.dev;
5089 struct drm_i915_private *dev_priv = dev->dev_private;
5090 u32 dpll;
5091 struct dpll *clock = &crtc->config.dpll;
5092
5093 i9xx_update_pll_dividers(crtc, reduced_clock);
5094
5095 dpll = DPLL_VGA_MODE_DIS;
5096
5097 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
5098 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5099 } else {
5100 if (clock->p1 == 2)
5101 dpll |= PLL_P1_DIVIDE_BY_TWO;
5102 else
5103 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5104 if (clock->p2 == 4)
5105 dpll |= PLL_P2_DIVIDE_BY_4;
5106 }
5107
5108 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
5109 dpll |= DPLL_DVO_2X_MODE;
5110
5111 if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
5112 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5113 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5114 else
5115 dpll |= PLL_REF_INPUT_DREFCLK;
5116
5117 dpll |= DPLL_VCO_ENABLE;
5118 crtc->config.dpll_hw_state.dpll = dpll;
5119}
5120
5121static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
5122{
5123 struct drm_device *dev = intel_crtc->base.dev;
5124 struct drm_i915_private *dev_priv = dev->dev_private;
5125 enum pipe pipe = intel_crtc->pipe;
5126 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
5127 struct drm_display_mode *adjusted_mode =
5128 &intel_crtc->config.adjusted_mode;
5129 uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
5130
5131 /* We need to be careful not to changed the adjusted mode, for otherwise
5132 * the hw state checker will get angry at the mismatch. */
5133 crtc_vtotal = adjusted_mode->crtc_vtotal;
5134 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
5135
5136 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5137 /* the chip adds 2 halflines automatically */
5138 crtc_vtotal -= 1;
5139 crtc_vblank_end -= 1;
5140 vsyncshift = adjusted_mode->crtc_hsync_start
5141 - adjusted_mode->crtc_htotal / 2;
5142 } else {
5143 vsyncshift = 0;
5144 }
5145
5146 if (INTEL_INFO(dev)->gen > 3)
5147 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
5148
5149 I915_WRITE(HTOTAL(cpu_transcoder),
5150 (adjusted_mode->crtc_hdisplay - 1) |
5151 ((adjusted_mode->crtc_htotal - 1) << 16));
5152 I915_WRITE(HBLANK(cpu_transcoder),
5153 (adjusted_mode->crtc_hblank_start - 1) |
5154 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5155 I915_WRITE(HSYNC(cpu_transcoder),
5156 (adjusted_mode->crtc_hsync_start - 1) |
5157 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5158
5159 I915_WRITE(VTOTAL(cpu_transcoder),
5160 (adjusted_mode->crtc_vdisplay - 1) |
5161 ((crtc_vtotal - 1) << 16));
5162 I915_WRITE(VBLANK(cpu_transcoder),
5163 (adjusted_mode->crtc_vblank_start - 1) |
5164 ((crtc_vblank_end - 1) << 16));
5165 I915_WRITE(VSYNC(cpu_transcoder),
5166 (adjusted_mode->crtc_vsync_start - 1) |
5167 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5168
5169 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
5170 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
5171 * documented on the DDI_FUNC_CTL register description, EDP Input Select
5172 * bits. */
5173 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
5174 (pipe == PIPE_B || pipe == PIPE_C))
5175 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
5176
5177 /* pipesrc controls the size that is scaled from, which should
5178 * always be the user's requested size.
5179 */
5180 I915_WRITE(PIPESRC(pipe),
5181 ((intel_crtc->config.pipe_src_w - 1) << 16) |
5182 (intel_crtc->config.pipe_src_h - 1));
5183}
5184
5185static void intel_get_pipe_timings(struct intel_crtc *crtc,
5186 struct intel_crtc_config *pipe_config)
5187{
5188 struct drm_device *dev = crtc->base.dev;
5189 struct drm_i915_private *dev_priv = dev->dev_private;
5190 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
5191 uint32_t tmp;
5192
5193 tmp = I915_READ(HTOTAL(cpu_transcoder));
5194 pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
5195 pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
5196 tmp = I915_READ(HBLANK(cpu_transcoder));
5197 pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
5198 pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
5199 tmp = I915_READ(HSYNC(cpu_transcoder));
5200 pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
5201 pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
5202
5203 tmp = I915_READ(VTOTAL(cpu_transcoder));
5204 pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
5205 pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
5206 tmp = I915_READ(VBLANK(cpu_transcoder));
5207 pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
5208 pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
5209 tmp = I915_READ(VSYNC(cpu_transcoder));
5210 pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
5211 pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
5212
5213 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
5214 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
5215 pipe_config->adjusted_mode.crtc_vtotal += 1;
5216 pipe_config->adjusted_mode.crtc_vblank_end += 1;
5217 }
5218
5219 tmp = I915_READ(PIPESRC(crtc->pipe));
5220 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
5221 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
5222
5223 pipe_config->requested_mode.vdisplay = pipe_config->pipe_src_h;
5224 pipe_config->requested_mode.hdisplay = pipe_config->pipe_src_w;
5225}
5226
5227static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
5228 struct intel_crtc_config *pipe_config)
5229{
5230 struct drm_crtc *crtc = &intel_crtc->base;
5231
5232 crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
5233 crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
5234 crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
5235 crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
5236
5237 crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
5238 crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
5239 crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
5240 crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
5241
5242 crtc->mode.flags = pipe_config->adjusted_mode.flags;
5243
5244 crtc->mode.clock = pipe_config->adjusted_mode.crtc_clock;
5245 crtc->mode.flags |= pipe_config->adjusted_mode.flags;
5246}
5247
5248static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
5249{
5250 struct drm_device *dev = intel_crtc->base.dev;
5251 struct drm_i915_private *dev_priv = dev->dev_private;
5252 uint32_t pipeconf;
5253
5254 pipeconf = 0;
5255
5256 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
5257 I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
5258 pipeconf |= PIPECONF_ENABLE;
5259
5260 if (intel_crtc->config.double_wide)
5261 pipeconf |= PIPECONF_DOUBLE_WIDE;
5262
5263 /* only g4x and later have fancy bpc/dither controls */
5264 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5265 /* Bspec claims that we can't use dithering for 30bpp pipes. */
5266 if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
5267 pipeconf |= PIPECONF_DITHER_EN |
5268 PIPECONF_DITHER_TYPE_SP;
5269
5270 switch (intel_crtc->config.pipe_bpp) {
5271 case 18:
5272 pipeconf |= PIPECONF_6BPC;
5273 break;
5274 case 24:
5275 pipeconf |= PIPECONF_8BPC;
5276 break;
5277 case 30:
5278 pipeconf |= PIPECONF_10BPC;
5279 break;
5280 default:
5281 /* Case prevented by intel_choose_pipe_bpp_dither. */
5282 BUG();
5283 }
5284 }
5285
5286 if (HAS_PIPE_CXSR(dev)) {
5287 if (intel_crtc->lowfreq_avail) {
5288 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5289 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5290 } else {
5291 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5292 }
5293 }
5294
5295 if (!IS_GEN2(dev) &&
5296 intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5297 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5298 else
5299 pipeconf |= PIPECONF_PROGRESSIVE;
5300
5301 if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
5302 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
5303
5304 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
5305 POSTING_READ(PIPECONF(intel_crtc->pipe));
5306}
5307
5308static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5309 int x, int y,
5310 struct drm_framebuffer *fb)
5311{
5312 struct drm_device *dev = crtc->dev;
5313 struct drm_i915_private *dev_priv = dev->dev_private;
5314 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5315 int pipe = intel_crtc->pipe;
5316 int plane = intel_crtc->plane;
5317 int refclk, num_connectors = 0;
5318 intel_clock_t clock, reduced_clock;
5319 u32 dspcntr;
5320 bool ok, has_reduced_clock = false;
5321 bool is_lvds = false, is_dsi = false;
5322 struct intel_encoder *encoder;
5323 const intel_limit_t *limit;
5324 int ret;
5325
5326 for_each_encoder_on_crtc(dev, crtc, encoder) {
5327 switch (encoder->type) {
5328 case INTEL_OUTPUT_LVDS:
5329 is_lvds = true;
5330 break;
5331 case INTEL_OUTPUT_DSI:
5332 is_dsi = true;
5333 break;
5334 }
5335
5336 num_connectors++;
5337 }
5338
5339 if (is_dsi)
5340 goto skip_dpll;
5341
5342 if (!intel_crtc->config.clock_set) {
5343 refclk = i9xx_get_refclk(crtc, num_connectors);
5344
5345 /*
5346 * Returns a set of divisors for the desired target clock with
5347 * the given refclk, or FALSE. The returned values represent
5348 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
5349 * 2) / p1 / p2.
5350 */
5351 limit = intel_limit(crtc, refclk);
5352 ok = dev_priv->display.find_dpll(limit, crtc,
5353 intel_crtc->config.port_clock,
5354 refclk, NULL, &clock);
5355 if (!ok) {
5356 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5357 return -EINVAL;
5358 }
5359
5360 if (is_lvds && dev_priv->lvds_downclock_avail) {
5361 /*
5362 * Ensure we match the reduced clock's P to the target
5363 * clock. If the clocks don't match, we can't switch
5364 * the display clock by using the FP0/FP1. In such case
5365 * we will disable the LVDS downclock feature.
5366 */
5367 has_reduced_clock =
5368 dev_priv->display.find_dpll(limit, crtc,
5369 dev_priv->lvds_downclock,
5370 refclk, &clock,
5371 &reduced_clock);
5372 }
5373 /* Compat-code for transition, will disappear. */
5374 intel_crtc->config.dpll.n = clock.n;
5375 intel_crtc->config.dpll.m1 = clock.m1;
5376 intel_crtc->config.dpll.m2 = clock.m2;
5377 intel_crtc->config.dpll.p1 = clock.p1;
5378 intel_crtc->config.dpll.p2 = clock.p2;
5379 }
5380
5381 if (IS_GEN2(dev)) {
5382 i8xx_update_pll(intel_crtc,
5383 has_reduced_clock ? &reduced_clock : NULL,
5384 num_connectors);
5385 } else if (IS_VALLEYVIEW(dev)) {
5386 vlv_update_pll(intel_crtc);
5387 } else {
5388 i9xx_update_pll(intel_crtc,
5389 has_reduced_clock ? &reduced_clock : NULL,
5390 num_connectors);
5391 }
5392
5393skip_dpll:
5394 /* Set up the display plane register */
5395 dspcntr = DISPPLANE_GAMMA_ENABLE;
5396
5397 if (!IS_VALLEYVIEW(dev)) {
5398 if (pipe == 0)
5399 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5400 else
5401 dspcntr |= DISPPLANE_SEL_PIPE_B;
5402 }
5403
5404 intel_set_pipe_timings(intel_crtc);
5405
5406 /* pipesrc and dspsize control the size that is scaled from,
5407 * which should always be the user's requested size.
5408 */
5409 I915_WRITE(DSPSIZE(plane),
5410 ((intel_crtc->config.pipe_src_h - 1) << 16) |
5411 (intel_crtc->config.pipe_src_w - 1));
5412 I915_WRITE(DSPPOS(plane), 0);
5413
5414 i9xx_set_pipeconf(intel_crtc);
5415
5416 I915_WRITE(DSPCNTR(plane), dspcntr);
5417 POSTING_READ(DSPCNTR(plane));
5418
5419 ret = intel_pipe_set_base(crtc, x, y, fb);
5420
5421 return ret;
5422}
5423
5424static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5425 struct intel_crtc_config *pipe_config)
5426{
5427 struct drm_device *dev = crtc->base.dev;
5428 struct drm_i915_private *dev_priv = dev->dev_private;
5429 uint32_t tmp;
5430
5431 tmp = I915_READ(PFIT_CONTROL);
5432 if (!(tmp & PFIT_ENABLE))
5433 return;
5434
5435 /* Check whether the pfit is attached to our pipe. */
5436 if (INTEL_INFO(dev)->gen < 4) {
5437 if (crtc->pipe != PIPE_B)
5438 return;
5439 } else {
5440 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
5441 return;
5442 }
5443
5444 pipe_config->gmch_pfit.control = tmp;
5445 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
5446 if (INTEL_INFO(dev)->gen < 5)
5447 pipe_config->gmch_pfit.lvds_border_bits =
5448 I915_READ(LVDS) & LVDS_BORDER_ENABLE;
5449}
5450
5451static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5452 struct intel_crtc_config *pipe_config)
5453{
5454 struct drm_device *dev = crtc->base.dev;
5455 struct drm_i915_private *dev_priv = dev->dev_private;
5456 int pipe = pipe_config->cpu_transcoder;
5457 intel_clock_t clock;
5458 u32 mdiv;
5459 int refclk = 100000;
5460
5461 mutex_lock(&dev_priv->dpio_lock);
5462 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
5463 mutex_unlock(&dev_priv->dpio_lock);
5464
5465 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
5466 clock.m2 = mdiv & DPIO_M2DIV_MASK;
5467 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
5468 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
5469 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
5470
5471 vlv_clock(refclk, &clock);
5472
5473 /* clock.dot is the fast clock */
5474 pipe_config->port_clock = clock.dot / 5;
5475}
5476
5477static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5478 struct intel_crtc_config *pipe_config)
5479{
5480 struct drm_device *dev = crtc->base.dev;
5481 struct drm_i915_private *dev_priv = dev->dev_private;
5482 uint32_t tmp;
5483
5484 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
5485 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
5486
5487 tmp = I915_READ(PIPECONF(crtc->pipe));
5488 if (!(tmp & PIPECONF_ENABLE))
5489 return false;
5490
5491 if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
5492 switch (tmp & PIPECONF_BPC_MASK) {
5493 case PIPECONF_6BPC:
5494 pipe_config->pipe_bpp = 18;
5495 break;
5496 case PIPECONF_8BPC:
5497 pipe_config->pipe_bpp = 24;
5498 break;
5499 case PIPECONF_10BPC:
5500 pipe_config->pipe_bpp = 30;
5501 break;
5502 default:
5503 break;
5504 }
5505 }
5506
5507 if (INTEL_INFO(dev)->gen < 4)
5508 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
5509
5510 intel_get_pipe_timings(crtc, pipe_config);
5511
5512 i9xx_get_pfit_config(crtc, pipe_config);
5513
5514 if (INTEL_INFO(dev)->gen >= 4) {
5515 tmp = I915_READ(DPLL_MD(crtc->pipe));
5516 pipe_config->pixel_multiplier =
5517 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
5518 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
5519 pipe_config->dpll_hw_state.dpll_md = tmp;
5520 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
5521 tmp = I915_READ(DPLL(crtc->pipe));
5522 pipe_config->pixel_multiplier =
5523 ((tmp & SDVO_MULTIPLIER_MASK)
5524 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
5525 } else {
5526 /* Note that on i915G/GM the pixel multiplier is in the sdvo
5527 * port and will be fixed up in the encoder->get_config
5528 * function. */
5529 pipe_config->pixel_multiplier = 1;
5530 }
5531 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
5532 if (!IS_VALLEYVIEW(dev)) {
5533 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
5534 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
5535 } else {
5536 /* Mask out read-only status bits. */
5537 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
5538 DPLL_PORTC_READY_MASK |
5539 DPLL_PORTB_READY_MASK);
5540 }
5541
5542 if (IS_VALLEYVIEW(dev))
5543 vlv_crtc_clock_get(crtc, pipe_config);
5544 else
5545 i9xx_crtc_clock_get(crtc, pipe_config);
5546
5547 return true;
5548}
5549
5550static void ironlake_init_pch_refclk(struct drm_device *dev)
5551{
5552 struct drm_i915_private *dev_priv = dev->dev_private;
5553 struct drm_mode_config *mode_config = &dev->mode_config;
5554 struct intel_encoder *encoder;
5555 u32 val, final;
5556 bool has_lvds = false;
5557 bool has_cpu_edp = false;
5558 bool has_panel = false;
5559 bool has_ck505 = false;
5560 bool can_ssc = false;
5561
5562 /* We need to take the global config into account */
5563 list_for_each_entry(encoder, &mode_config->encoder_list,
5564 base.head) {
5565 switch (encoder->type) {
5566 case INTEL_OUTPUT_LVDS:
5567 has_panel = true;
5568 has_lvds = true;
5569 break;
5570 case INTEL_OUTPUT_EDP:
5571 has_panel = true;
5572 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
5573 has_cpu_edp = true;
5574 break;
5575 }
5576 }
5577
5578 if (HAS_PCH_IBX(dev)) {
5579 has_ck505 = dev_priv->vbt.display_clock_mode;
5580 can_ssc = has_ck505;
5581 } else {
5582 has_ck505 = false;
5583 can_ssc = true;
5584 }
5585
5586 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
5587 has_panel, has_lvds, has_ck505);
5588
5589 /* Ironlake: try to setup display ref clock before DPLL
5590 * enabling. This is only under driver's control after
5591 * PCH B stepping, previous chipset stepping should be
5592 * ignoring this setting.
5593 */
5594 val = I915_READ(PCH_DREF_CONTROL);
5595
5596 /* As we must carefully and slowly disable/enable each source in turn,
5597 * compute the final state we want first and check if we need to
5598 * make any changes at all.
5599 */
5600 final = val;
5601 final &= ~DREF_NONSPREAD_SOURCE_MASK;
5602 if (has_ck505)
5603 final |= DREF_NONSPREAD_CK505_ENABLE;
5604 else
5605 final |= DREF_NONSPREAD_SOURCE_ENABLE;
5606
5607 final &= ~DREF_SSC_SOURCE_MASK;
5608 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5609 final &= ~DREF_SSC1_ENABLE;
5610
5611 if (has_panel) {
5612 final |= DREF_SSC_SOURCE_ENABLE;
5613
5614 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5615 final |= DREF_SSC1_ENABLE;
5616
5617 if (has_cpu_edp) {
5618 if (intel_panel_use_ssc(dev_priv) && can_ssc)
5619 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5620 else
5621 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5622 } else
5623 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5624 } else {
5625 final |= DREF_SSC_SOURCE_DISABLE;
5626 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5627 }
5628
5629 if (final == val)
5630 return;
5631
5632 /* Always enable nonspread source */
5633 val &= ~DREF_NONSPREAD_SOURCE_MASK;
5634
5635 if (has_ck505)
5636 val |= DREF_NONSPREAD_CK505_ENABLE;
5637 else
5638 val |= DREF_NONSPREAD_SOURCE_ENABLE;
5639
5640 if (has_panel) {
5641 val &= ~DREF_SSC_SOURCE_MASK;
5642 val |= DREF_SSC_SOURCE_ENABLE;
5643
5644 /* SSC must be turned on before enabling the CPU output */
5645 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5646 DRM_DEBUG_KMS("Using SSC on panel\n");
5647 val |= DREF_SSC1_ENABLE;
5648 } else
5649 val &= ~DREF_SSC1_ENABLE;
5650
5651 /* Get SSC going before enabling the outputs */
5652 I915_WRITE(PCH_DREF_CONTROL, val);
5653 POSTING_READ(PCH_DREF_CONTROL);
5654 udelay(200);
5655
5656 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5657
5658 /* Enable CPU source on CPU attached eDP */
5659 if (has_cpu_edp) {
5660 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5661 DRM_DEBUG_KMS("Using SSC on eDP\n");
5662 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5663 }
5664 else
5665 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5666 } else
5667 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5668
5669 I915_WRITE(PCH_DREF_CONTROL, val);
5670 POSTING_READ(PCH_DREF_CONTROL);
5671 udelay(200);
5672 } else {
5673 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5674
5675 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5676
5677 /* Turn off CPU output */
5678 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5679
5680 I915_WRITE(PCH_DREF_CONTROL, val);
5681 POSTING_READ(PCH_DREF_CONTROL);
5682 udelay(200);
5683
5684 /* Turn off the SSC source */
5685 val &= ~DREF_SSC_SOURCE_MASK;
5686 val |= DREF_SSC_SOURCE_DISABLE;
5687
5688 /* Turn off SSC1 */
5689 val &= ~DREF_SSC1_ENABLE;
5690
5691 I915_WRITE(PCH_DREF_CONTROL, val);
5692 POSTING_READ(PCH_DREF_CONTROL);
5693 udelay(200);
5694 }
5695
5696 BUG_ON(val != final);
5697}
5698
5699static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
5700{
5701 uint32_t tmp;
5702
5703 tmp = I915_READ(SOUTH_CHICKEN2);
5704 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
5705 I915_WRITE(SOUTH_CHICKEN2, tmp);
5706
5707 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
5708 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
5709 DRM_ERROR("FDI mPHY reset assert timeout\n");
5710
5711 tmp = I915_READ(SOUTH_CHICKEN2);
5712 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
5713 I915_WRITE(SOUTH_CHICKEN2, tmp);
5714
5715 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
5716 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
5717 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
5718}
5719
5720/* WaMPhyProgramming:hsw */
5721static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
5722{
5723 uint32_t tmp;
5724
5725 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
5726 tmp &= ~(0xFF << 24);
5727 tmp |= (0x12 << 24);
5728 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
5729
5730 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
5731 tmp |= (1 << 11);
5732 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
5733
5734 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
5735 tmp |= (1 << 11);
5736 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
5737
5738 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
5739 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5740 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
5741
5742 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
5743 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
5744 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
5745
5746 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
5747 tmp &= ~(7 << 13);
5748 tmp |= (5 << 13);
5749 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
5750
5751 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
5752 tmp &= ~(7 << 13);
5753 tmp |= (5 << 13);
5754 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
5755
5756 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
5757 tmp &= ~0xFF;
5758 tmp |= 0x1C;
5759 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
5760
5761 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
5762 tmp &= ~0xFF;
5763 tmp |= 0x1C;
5764 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
5765
5766 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
5767 tmp &= ~(0xFF << 16);
5768 tmp |= (0x1C << 16);
5769 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
5770
5771 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
5772 tmp &= ~(0xFF << 16);
5773 tmp |= (0x1C << 16);
5774 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
5775
5776 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
5777 tmp |= (1 << 27);
5778 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
5779
5780 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
5781 tmp |= (1 << 27);
5782 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
5783
5784 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
5785 tmp &= ~(0xF << 28);
5786 tmp |= (4 << 28);
5787 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
5788
5789 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
5790 tmp &= ~(0xF << 28);
5791 tmp |= (4 << 28);
5792 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
5793}
5794
5795/* Implements 3 different sequences from BSpec chapter "Display iCLK
5796 * Programming" based on the parameters passed:
5797 * - Sequence to enable CLKOUT_DP
5798 * - Sequence to enable CLKOUT_DP without spread
5799 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
5800 */
5801static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
5802 bool with_fdi)
5803{
5804 struct drm_i915_private *dev_priv = dev->dev_private;
5805 uint32_t reg, tmp;
5806
5807 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
5808 with_spread = true;
5809 if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
5810 with_fdi, "LP PCH doesn't have FDI\n"))
5811 with_fdi = false;
5812
5813 mutex_lock(&dev_priv->dpio_lock);
5814
5815 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5816 tmp &= ~SBI_SSCCTL_DISABLE;
5817 tmp |= SBI_SSCCTL_PATHALT;
5818 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5819
5820 udelay(24);
5821
5822 if (with_spread) {
5823 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5824 tmp &= ~SBI_SSCCTL_PATHALT;
5825 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5826
5827 if (with_fdi) {
5828 lpt_reset_fdi_mphy(dev_priv);
5829 lpt_program_fdi_mphy(dev_priv);
5830 }
5831 }
5832
5833 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5834 SBI_GEN0 : SBI_DBUFF0;
5835 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5836 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5837 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5838
5839 mutex_unlock(&dev_priv->dpio_lock);
5840}
5841
5842/* Sequence to disable CLKOUT_DP */
5843static void lpt_disable_clkout_dp(struct drm_device *dev)
5844{
5845 struct drm_i915_private *dev_priv = dev->dev_private;
5846 uint32_t reg, tmp;
5847
5848 mutex_lock(&dev_priv->dpio_lock);
5849
5850 reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
5851 SBI_GEN0 : SBI_DBUFF0;
5852 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
5853 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
5854 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
5855
5856 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
5857 if (!(tmp & SBI_SSCCTL_DISABLE)) {
5858 if (!(tmp & SBI_SSCCTL_PATHALT)) {
5859 tmp |= SBI_SSCCTL_PATHALT;
5860 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5861 udelay(32);
5862 }
5863 tmp |= SBI_SSCCTL_DISABLE;
5864 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
5865 }
5866
5867 mutex_unlock(&dev_priv->dpio_lock);
5868}
5869
5870static void lpt_init_pch_refclk(struct drm_device *dev)
5871{
5872 struct drm_mode_config *mode_config = &dev->mode_config;
5873 struct intel_encoder *encoder;
5874 bool has_vga = false;
5875
5876 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5877 switch (encoder->type) {
5878 case INTEL_OUTPUT_ANALOG:
5879 has_vga = true;
5880 break;
5881 }
5882 }
5883
5884 if (has_vga)
5885 lpt_enable_clkout_dp(dev, true, true);
5886 else
5887 lpt_disable_clkout_dp(dev);
5888}
5889
5890/*
5891 * Initialize reference clocks when the driver loads
5892 */
5893void intel_init_pch_refclk(struct drm_device *dev)
5894{
5895 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5896 ironlake_init_pch_refclk(dev);
5897 else if (HAS_PCH_LPT(dev))
5898 lpt_init_pch_refclk(dev);
5899}
5900
5901static int ironlake_get_refclk(struct drm_crtc *crtc)
5902{
5903 struct drm_device *dev = crtc->dev;
5904 struct drm_i915_private *dev_priv = dev->dev_private;
5905 struct intel_encoder *encoder;
5906 int num_connectors = 0;
5907 bool is_lvds = false;
5908
5909 for_each_encoder_on_crtc(dev, crtc, encoder) {
5910 switch (encoder->type) {
5911 case INTEL_OUTPUT_LVDS:
5912 is_lvds = true;
5913 break;
5914 }
5915 num_connectors++;
5916 }
5917
5918 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5919 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
5920 dev_priv->vbt.lvds_ssc_freq);
5921 return dev_priv->vbt.lvds_ssc_freq;
5922 }
5923
5924 return 120000;
5925}
5926
5927static void ironlake_set_pipeconf(struct drm_crtc *crtc)
5928{
5929 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5930 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5931 int pipe = intel_crtc->pipe;
5932 uint32_t val;
5933
5934 val = 0;
5935
5936 switch (intel_crtc->config.pipe_bpp) {
5937 case 18:
5938 val |= PIPECONF_6BPC;
5939 break;
5940 case 24:
5941 val |= PIPECONF_8BPC;
5942 break;
5943 case 30:
5944 val |= PIPECONF_10BPC;
5945 break;
5946 case 36:
5947 val |= PIPECONF_12BPC;
5948 break;
5949 default:
5950 /* Case prevented by intel_choose_pipe_bpp_dither. */
5951 BUG();
5952 }
5953
5954 if (intel_crtc->config.dither)
5955 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5956
5957 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
5958 val |= PIPECONF_INTERLACED_ILK;
5959 else
5960 val |= PIPECONF_PROGRESSIVE;
5961
5962 if (intel_crtc->config.limited_color_range)
5963 val |= PIPECONF_COLOR_RANGE_SELECT;
5964
5965 I915_WRITE(PIPECONF(pipe), val);
5966 POSTING_READ(PIPECONF(pipe));
5967}
5968
5969/*
5970 * Set up the pipe CSC unit.
5971 *
5972 * Currently only full range RGB to limited range RGB conversion
5973 * is supported, but eventually this should handle various
5974 * RGB<->YCbCr scenarios as well.
5975 */
5976static void intel_set_pipe_csc(struct drm_crtc *crtc)
5977{
5978 struct drm_device *dev = crtc->dev;
5979 struct drm_i915_private *dev_priv = dev->dev_private;
5980 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5981 int pipe = intel_crtc->pipe;
5982 uint16_t coeff = 0x7800; /* 1.0 */
5983
5984 /*
5985 * TODO: Check what kind of values actually come out of the pipe
5986 * with these coeff/postoff values and adjust to get the best
5987 * accuracy. Perhaps we even need to take the bpc value into
5988 * consideration.
5989 */
5990
5991 if (intel_crtc->config.limited_color_range)
5992 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
5993
5994 /*
5995 * GY/GU and RY/RU should be the other way around according
5996 * to BSpec, but reality doesn't agree. Just set them up in
5997 * a way that results in the correct picture.
5998 */
5999 I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
6000 I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
6001
6002 I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
6003 I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
6004
6005 I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
6006 I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
6007
6008 I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
6009 I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
6010 I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
6011
6012 if (INTEL_INFO(dev)->gen > 6) {
6013 uint16_t postoff = 0;
6014
6015 if (intel_crtc->config.limited_color_range)
6016 postoff = (16 * (1 << 13) / 255) & 0x1fff;
6017
6018 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
6019 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
6020 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
6021
6022 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
6023 } else {
6024 uint32_t mode = CSC_MODE_YUV_TO_RGB;
6025
6026 if (intel_crtc->config.limited_color_range)
6027 mode |= CSC_BLACK_SCREEN_OFFSET;
6028
6029 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
6030 }
6031}
6032
6033static void haswell_set_pipeconf(struct drm_crtc *crtc)
6034{
6035 struct drm_device *dev = crtc->dev;
6036 struct drm_i915_private *dev_priv = dev->dev_private;
6037 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6038 enum pipe pipe = intel_crtc->pipe;
6039 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
6040 uint32_t val;
6041
6042 val = 0;
6043
6044 if (IS_HASWELL(dev) && intel_crtc->config.dither)
6045 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
6046
6047 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
6048 val |= PIPECONF_INTERLACED_ILK;
6049 else
6050 val |= PIPECONF_PROGRESSIVE;
6051
6052 I915_WRITE(PIPECONF(cpu_transcoder), val);
6053 POSTING_READ(PIPECONF(cpu_transcoder));
6054
6055 I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
6056 POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
6057
6058 if (IS_BROADWELL(dev)) {
6059 val = 0;
6060
6061 switch (intel_crtc->config.pipe_bpp) {
6062 case 18:
6063 val |= PIPEMISC_DITHER_6_BPC;
6064 break;
6065 case 24:
6066 val |= PIPEMISC_DITHER_8_BPC;
6067 break;
6068 case 30:
6069 val |= PIPEMISC_DITHER_10_BPC;
6070 break;
6071 case 36:
6072 val |= PIPEMISC_DITHER_12_BPC;
6073 break;
6074 default:
6075 /* Case prevented by pipe_config_set_bpp. */
6076 BUG();
6077 }
6078
6079 if (intel_crtc->config.dither)
6080 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
6081
6082 I915_WRITE(PIPEMISC(pipe), val);
6083 }
6084}
6085
6086static bool ironlake_compute_clocks(struct drm_crtc *crtc,
6087 intel_clock_t *clock,
6088 bool *has_reduced_clock,
6089 intel_clock_t *reduced_clock)
6090{
6091 struct drm_device *dev = crtc->dev;
6092 struct drm_i915_private *dev_priv = dev->dev_private;
6093 struct intel_encoder *intel_encoder;
6094 int refclk;
6095 const intel_limit_t *limit;
6096 bool ret, is_lvds = false;
6097
6098 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6099 switch (intel_encoder->type) {
6100 case INTEL_OUTPUT_LVDS:
6101 is_lvds = true;
6102 break;
6103 }
6104 }
6105
6106 refclk = ironlake_get_refclk(crtc);
6107
6108 /*
6109 * Returns a set of divisors for the desired target clock with the given
6110 * refclk, or FALSE. The returned values represent the clock equation:
6111 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
6112 */
6113 limit = intel_limit(crtc, refclk);
6114 ret = dev_priv->display.find_dpll(limit, crtc,
6115 to_intel_crtc(crtc)->config.port_clock,
6116 refclk, NULL, clock);
6117 if (!ret)
6118 return false;
6119
6120 if (is_lvds && dev_priv->lvds_downclock_avail) {
6121 /*
6122 * Ensure we match the reduced clock's P to the target clock.
6123 * If the clocks don't match, we can't switch the display clock
6124 * by using the FP0/FP1. In such case we will disable the LVDS
6125 * downclock feature.
6126 */
6127 *has_reduced_clock =
6128 dev_priv->display.find_dpll(limit, crtc,
6129 dev_priv->lvds_downclock,
6130 refclk, clock,
6131 reduced_clock);
6132 }
6133
6134 return true;
6135}
6136
6137int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
6138{
6139 /*
6140 * Account for spread spectrum to avoid
6141 * oversubscribing the link. Max center spread
6142 * is 2.5%; use 5% for safety's sake.
6143 */
6144 u32 bps = target_clock * bpp * 21 / 20;
6145 return bps / (link_bw * 8) + 1;
6146}
6147
6148static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6149{
6150 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
6151}
6152
6153static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
6154 u32 *fp,
6155 intel_clock_t *reduced_clock, u32 *fp2)
6156{
6157 struct drm_crtc *crtc = &intel_crtc->base;
6158 struct drm_device *dev = crtc->dev;
6159 struct drm_i915_private *dev_priv = dev->dev_private;
6160 struct intel_encoder *intel_encoder;
6161 uint32_t dpll;
6162 int factor, num_connectors = 0;
6163 bool is_lvds = false, is_sdvo = false;
6164
6165 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
6166 switch (intel_encoder->type) {
6167 case INTEL_OUTPUT_LVDS:
6168 is_lvds = true;
6169 break;
6170 case INTEL_OUTPUT_SDVO:
6171 case INTEL_OUTPUT_HDMI:
6172 is_sdvo = true;
6173 break;
6174 }
6175
6176 num_connectors++;
6177 }
6178
6179 /* Enable autotuning of the PLL clock (if permissible) */
6180 factor = 21;
6181 if (is_lvds) {
6182 if ((intel_panel_use_ssc(dev_priv) &&
6183 dev_priv->vbt.lvds_ssc_freq == 100000) ||
6184 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
6185 factor = 25;
6186 } else if (intel_crtc->config.sdvo_tv_clock)
6187 factor = 20;
6188
6189 if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
6190 *fp |= FP_CB_TUNE;
6191
6192 if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
6193 *fp2 |= FP_CB_TUNE;
6194
6195 dpll = 0;
6196
6197 if (is_lvds)
6198 dpll |= DPLLB_MODE_LVDS;
6199 else
6200 dpll |= DPLLB_MODE_DAC_SERIAL;
6201
6202 dpll |= (intel_crtc->config.pixel_multiplier - 1)
6203 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
6204
6205 if (is_sdvo)
6206 dpll |= DPLL_SDVO_HIGH_SPEED;
6207 if (intel_crtc->config.has_dp_encoder)
6208 dpll |= DPLL_SDVO_HIGH_SPEED;
6209
6210 /* compute bitmask from p1 value */
6211 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
6212 /* also FPA1 */
6213 dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
6214
6215 switch (intel_crtc->config.dpll.p2) {
6216 case 5:
6217 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
6218 break;
6219 case 7:
6220 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
6221 break;
6222 case 10:
6223 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
6224 break;
6225 case 14:
6226 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
6227 break;
6228 }
6229
6230 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
6231 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
6232 else
6233 dpll |= PLL_REF_INPUT_DREFCLK;
6234
6235 return dpll | DPLL_VCO_ENABLE;
6236}
6237
6238static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
6239 int x, int y,
6240 struct drm_framebuffer *fb)
6241{
6242 struct drm_device *dev = crtc->dev;
6243 struct drm_i915_private *dev_priv = dev->dev_private;
6244 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6245 int pipe = intel_crtc->pipe;
6246 int plane = intel_crtc->plane;
6247 int num_connectors = 0;
6248 intel_clock_t clock, reduced_clock;
6249 u32 dpll = 0, fp = 0, fp2 = 0;
6250 bool ok, has_reduced_clock = false;
6251 bool is_lvds = false;
6252 struct intel_encoder *encoder;
6253 struct intel_shared_dpll *pll;
6254 int ret;
6255
6256 for_each_encoder_on_crtc(dev, crtc, encoder) {
6257 switch (encoder->type) {
6258 case INTEL_OUTPUT_LVDS:
6259 is_lvds = true;
6260 break;
6261 }
6262
6263 num_connectors++;
6264 }
6265
6266 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
6267 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
6268
6269 ok = ironlake_compute_clocks(crtc, &clock,
6270 &has_reduced_clock, &reduced_clock);
6271 if (!ok && !intel_crtc->config.clock_set) {
6272 DRM_ERROR("Couldn't find PLL settings for mode!\n");
6273 return -EINVAL;
6274 }
6275 /* Compat-code for transition, will disappear. */
6276 if (!intel_crtc->config.clock_set) {
6277 intel_crtc->config.dpll.n = clock.n;
6278 intel_crtc->config.dpll.m1 = clock.m1;
6279 intel_crtc->config.dpll.m2 = clock.m2;
6280 intel_crtc->config.dpll.p1 = clock.p1;
6281 intel_crtc->config.dpll.p2 = clock.p2;
6282 }
6283
6284 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
6285 if (intel_crtc->config.has_pch_encoder) {
6286 fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
6287 if (has_reduced_clock)
6288 fp2 = i9xx_dpll_compute_fp(&reduced_clock);
6289
6290 dpll = ironlake_compute_dpll(intel_crtc,
6291 &fp, &reduced_clock,
6292 has_reduced_clock ? &fp2 : NULL);
6293
6294 intel_crtc->config.dpll_hw_state.dpll = dpll;
6295 intel_crtc->config.dpll_hw_state.fp0 = fp;
6296 if (has_reduced_clock)
6297 intel_crtc->config.dpll_hw_state.fp1 = fp2;
6298 else
6299 intel_crtc->config.dpll_hw_state.fp1 = fp;
6300
6301 pll = intel_get_shared_dpll(intel_crtc);
6302 if (pll == NULL) {
6303 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
6304 pipe_name(pipe));
6305 return -EINVAL;
6306 }
6307 } else
6308 intel_put_shared_dpll(intel_crtc);
6309
6310 if (intel_crtc->config.has_dp_encoder)
6311 intel_dp_set_m_n(intel_crtc);
6312
6313 if (is_lvds && has_reduced_clock && i915_powersave)
6314 intel_crtc->lowfreq_avail = true;
6315 else
6316 intel_crtc->lowfreq_avail = false;
6317
6318 intel_set_pipe_timings(intel_crtc);
6319
6320 if (intel_crtc->config.has_pch_encoder) {
6321 intel_cpu_transcoder_set_m_n(intel_crtc,
6322 &intel_crtc->config.fdi_m_n);
6323 }
6324
6325 ironlake_set_pipeconf(crtc);
6326
6327 /* Set up the display plane register */
6328 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
6329 POSTING_READ(DSPCNTR(plane));
6330
6331 ret = intel_pipe_set_base(crtc, x, y, fb);
6332
6333 return ret;
6334}
6335
6336static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
6337 struct intel_link_m_n *m_n)
6338{
6339 struct drm_device *dev = crtc->base.dev;
6340 struct drm_i915_private *dev_priv = dev->dev_private;
6341 enum pipe pipe = crtc->pipe;
6342
6343 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
6344 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
6345 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
6346 & ~TU_SIZE_MASK;
6347 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
6348 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
6349 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6350}
6351
6352static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
6353 enum transcoder transcoder,
6354 struct intel_link_m_n *m_n)
6355{
6356 struct drm_device *dev = crtc->base.dev;
6357 struct drm_i915_private *dev_priv = dev->dev_private;
6358 enum pipe pipe = crtc->pipe;
6359
6360 if (INTEL_INFO(dev)->gen >= 5) {
6361 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
6362 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
6363 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
6364 & ~TU_SIZE_MASK;
6365 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
6366 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
6367 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6368 } else {
6369 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
6370 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
6371 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
6372 & ~TU_SIZE_MASK;
6373 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
6374 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
6375 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
6376 }
6377}
6378
6379void intel_dp_get_m_n(struct intel_crtc *crtc,
6380 struct intel_crtc_config *pipe_config)
6381{
6382 if (crtc->config.has_pch_encoder)
6383 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
6384 else
6385 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6386 &pipe_config->dp_m_n);
6387}
6388
6389static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
6390 struct intel_crtc_config *pipe_config)
6391{
6392 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
6393 &pipe_config->fdi_m_n);
6394}
6395
6396static void ironlake_get_pfit_config(struct intel_crtc *crtc,
6397 struct intel_crtc_config *pipe_config)
6398{
6399 struct drm_device *dev = crtc->base.dev;
6400 struct drm_i915_private *dev_priv = dev->dev_private;
6401 uint32_t tmp;
6402
6403 tmp = I915_READ(PF_CTL(crtc->pipe));
6404
6405 if (tmp & PF_ENABLE) {
6406 pipe_config->pch_pfit.enabled = true;
6407 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
6408 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
6409
6410 /* We currently do not free assignements of panel fitters on
6411 * ivb/hsw (since we don't use the higher upscaling modes which
6412 * differentiates them) so just WARN about this case for now. */
6413 if (IS_GEN7(dev)) {
6414 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
6415 PF_PIPE_SEL_IVB(crtc->pipe));
6416 }
6417 }
6418}
6419
6420static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
6421 struct intel_crtc_config *pipe_config)
6422{
6423 struct drm_device *dev = crtc->base.dev;
6424 struct drm_i915_private *dev_priv = dev->dev_private;
6425 uint32_t tmp;
6426
6427 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6428 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6429
6430 tmp = I915_READ(PIPECONF(crtc->pipe));
6431 if (!(tmp & PIPECONF_ENABLE))
6432 return false;
6433
6434 switch (tmp & PIPECONF_BPC_MASK) {
6435 case PIPECONF_6BPC:
6436 pipe_config->pipe_bpp = 18;
6437 break;
6438 case PIPECONF_8BPC:
6439 pipe_config->pipe_bpp = 24;
6440 break;
6441 case PIPECONF_10BPC:
6442 pipe_config->pipe_bpp = 30;
6443 break;
6444 case PIPECONF_12BPC:
6445 pipe_config->pipe_bpp = 36;
6446 break;
6447 default:
6448 break;
6449 }
6450
6451 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
6452 struct intel_shared_dpll *pll;
6453
6454 pipe_config->has_pch_encoder = true;
6455
6456 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
6457 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6458 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6459
6460 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6461
6462 if (HAS_PCH_IBX(dev_priv->dev)) {
6463 pipe_config->shared_dpll =
6464 (enum intel_dpll_id) crtc->pipe;
6465 } else {
6466 tmp = I915_READ(PCH_DPLL_SEL);
6467 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
6468 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
6469 else
6470 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
6471 }
6472
6473 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
6474
6475 WARN_ON(!pll->get_hw_state(dev_priv, pll,
6476 &pipe_config->dpll_hw_state));
6477
6478 tmp = pipe_config->dpll_hw_state.dpll;
6479 pipe_config->pixel_multiplier =
6480 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
6481 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
6482
6483 ironlake_pch_clock_get(crtc, pipe_config);
6484 } else {
6485 pipe_config->pixel_multiplier = 1;
6486 }
6487
6488 intel_get_pipe_timings(crtc, pipe_config);
6489
6490 ironlake_get_pfit_config(crtc, pipe_config);
6491
6492 return true;
6493}
6494
6495static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
6496{
6497 struct drm_device *dev = dev_priv->dev;
6498 struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
6499 struct intel_crtc *crtc;
6500 unsigned long irqflags;
6501 uint32_t val;
6502
6503 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6504 WARN(crtc->active, "CRTC for pipe %c enabled\n",
6505 pipe_name(crtc->pipe));
6506
6507 WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
6508 WARN(plls->spll_refcount, "SPLL enabled\n");
6509 WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
6510 WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
6511 WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
6512 WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
6513 "CPU PWM1 enabled\n");
6514 WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
6515 "CPU PWM2 enabled\n");
6516 WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
6517 "PCH PWM1 enabled\n");
6518 WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
6519 "Utility pin enabled\n");
6520 WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
6521
6522 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
6523 val = I915_READ(DEIMR);
6524 WARN((val | DE_PCH_EVENT_IVB) != 0xffffffff,
6525 "Unexpected DEIMR bits enabled: 0x%x\n", val);
6526 val = I915_READ(SDEIMR);
6527 WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
6528 "Unexpected SDEIMR bits enabled: 0x%x\n", val);
6529 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
6530}
6531
6532/*
6533 * This function implements pieces of two sequences from BSpec:
6534 * - Sequence for display software to disable LCPLL
6535 * - Sequence for display software to allow package C8+
6536 * The steps implemented here are just the steps that actually touch the LCPLL
6537 * register. Callers should take care of disabling all the display engine
6538 * functions, doing the mode unset, fixing interrupts, etc.
6539 */
6540static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
6541 bool switch_to_fclk, bool allow_power_down)
6542{
6543 uint32_t val;
6544
6545 assert_can_disable_lcpll(dev_priv);
6546
6547 val = I915_READ(LCPLL_CTL);
6548
6549 if (switch_to_fclk) {
6550 val |= LCPLL_CD_SOURCE_FCLK;
6551 I915_WRITE(LCPLL_CTL, val);
6552
6553 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
6554 LCPLL_CD_SOURCE_FCLK_DONE, 1))
6555 DRM_ERROR("Switching to FCLK failed\n");
6556
6557 val = I915_READ(LCPLL_CTL);
6558 }
6559
6560 val |= LCPLL_PLL_DISABLE;
6561 I915_WRITE(LCPLL_CTL, val);
6562 POSTING_READ(LCPLL_CTL);
6563
6564 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
6565 DRM_ERROR("LCPLL still locked\n");
6566
6567 val = I915_READ(D_COMP);
6568 val |= D_COMP_COMP_DISABLE;
6569 mutex_lock(&dev_priv->rps.hw_lock);
6570 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6571 DRM_ERROR("Failed to disable D_COMP\n");
6572 mutex_unlock(&dev_priv->rps.hw_lock);
6573 POSTING_READ(D_COMP);
6574 ndelay(100);
6575
6576 if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
6577 DRM_ERROR("D_COMP RCOMP still in progress\n");
6578
6579 if (allow_power_down) {
6580 val = I915_READ(LCPLL_CTL);
6581 val |= LCPLL_POWER_DOWN_ALLOW;
6582 I915_WRITE(LCPLL_CTL, val);
6583 POSTING_READ(LCPLL_CTL);
6584 }
6585}
6586
6587/*
6588 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
6589 * source.
6590 */
6591static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
6592{
6593 uint32_t val;
6594
6595 val = I915_READ(LCPLL_CTL);
6596
6597 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
6598 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
6599 return;
6600
6601 /* Make sure we're not on PC8 state before disabling PC8, otherwise
6602 * we'll hang the machine! */
6603 dev_priv->uncore.funcs.force_wake_get(dev_priv, FORCEWAKE_ALL);
6604
6605 if (val & LCPLL_POWER_DOWN_ALLOW) {
6606 val &= ~LCPLL_POWER_DOWN_ALLOW;
6607 I915_WRITE(LCPLL_CTL, val);
6608 POSTING_READ(LCPLL_CTL);
6609 }
6610
6611 val = I915_READ(D_COMP);
6612 val |= D_COMP_COMP_FORCE;
6613 val &= ~D_COMP_COMP_DISABLE;
6614 mutex_lock(&dev_priv->rps.hw_lock);
6615 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP, val))
6616 DRM_ERROR("Failed to enable D_COMP\n");
6617 mutex_unlock(&dev_priv->rps.hw_lock);
6618 POSTING_READ(D_COMP);
6619
6620 val = I915_READ(LCPLL_CTL);
6621 val &= ~LCPLL_PLL_DISABLE;
6622 I915_WRITE(LCPLL_CTL, val);
6623
6624 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
6625 DRM_ERROR("LCPLL not locked yet\n");
6626
6627 if (val & LCPLL_CD_SOURCE_FCLK) {
6628 val = I915_READ(LCPLL_CTL);
6629 val &= ~LCPLL_CD_SOURCE_FCLK;
6630 I915_WRITE(LCPLL_CTL, val);
6631
6632 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
6633 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
6634 DRM_ERROR("Switching back to LCPLL failed\n");
6635 }
6636
6637 dev_priv->uncore.funcs.force_wake_put(dev_priv, FORCEWAKE_ALL);
6638}
6639
6640void hsw_enable_pc8_work(struct work_struct *__work)
6641{
6642 struct drm_i915_private *dev_priv =
6643 container_of(to_delayed_work(__work), struct drm_i915_private,
6644 pc8.enable_work);
6645 struct drm_device *dev = dev_priv->dev;
6646 uint32_t val;
6647
6648 WARN_ON(!HAS_PC8(dev));
6649
6650 if (dev_priv->pc8.enabled)
6651 return;
6652
6653 DRM_DEBUG_KMS("Enabling package C8+\n");
6654
6655 dev_priv->pc8.enabled = true;
6656
6657 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6658 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6659 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6660 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6661 }
6662
6663 lpt_disable_clkout_dp(dev);
6664 hsw_pc8_disable_interrupts(dev);
6665 hsw_disable_lcpll(dev_priv, true, true);
6666
6667 intel_runtime_pm_put(dev_priv);
6668}
6669
6670static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6671{
6672 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6673 WARN(dev_priv->pc8.disable_count < 1,
6674 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6675
6676 dev_priv->pc8.disable_count--;
6677 if (dev_priv->pc8.disable_count != 0)
6678 return;
6679
6680 schedule_delayed_work(&dev_priv->pc8.enable_work,
6681 msecs_to_jiffies(i915_pc8_timeout));
6682}
6683
6684static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6685{
6686 struct drm_device *dev = dev_priv->dev;
6687 uint32_t val;
6688
6689 WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
6690 WARN(dev_priv->pc8.disable_count < 0,
6691 "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
6692
6693 dev_priv->pc8.disable_count++;
6694 if (dev_priv->pc8.disable_count != 1)
6695 return;
6696
6697 WARN_ON(!HAS_PC8(dev));
6698
6699 cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
6700 if (!dev_priv->pc8.enabled)
6701 return;
6702
6703 DRM_DEBUG_KMS("Disabling package C8+\n");
6704
6705 intel_runtime_pm_get(dev_priv);
6706
6707 hsw_restore_lcpll(dev_priv);
6708 hsw_pc8_restore_interrupts(dev);
6709 lpt_init_pch_refclk(dev);
6710
6711 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6712 val = I915_READ(SOUTH_DSPCLK_GATE_D);
6713 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
6714 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6715 }
6716
6717 intel_prepare_ddi(dev);
6718 i915_gem_init_swizzling(dev);
6719 mutex_lock(&dev_priv->rps.hw_lock);
6720 gen6_update_ring_freq(dev);
6721 mutex_unlock(&dev_priv->rps.hw_lock);
6722 dev_priv->pc8.enabled = false;
6723}
6724
6725void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
6726{
6727 if (!HAS_PC8(dev_priv->dev))
6728 return;
6729
6730 mutex_lock(&dev_priv->pc8.lock);
6731 __hsw_enable_package_c8(dev_priv);
6732 mutex_unlock(&dev_priv->pc8.lock);
6733}
6734
6735void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
6736{
6737 if (!HAS_PC8(dev_priv->dev))
6738 return;
6739
6740 mutex_lock(&dev_priv->pc8.lock);
6741 __hsw_disable_package_c8(dev_priv);
6742 mutex_unlock(&dev_priv->pc8.lock);
6743}
6744
6745static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
6746{
6747 struct drm_device *dev = dev_priv->dev;
6748 struct intel_crtc *crtc;
6749 uint32_t val;
6750
6751 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
6752 if (crtc->base.enabled)
6753 return false;
6754
6755 /* This case is still possible since we have the i915.disable_power_well
6756 * parameter and also the KVMr or something else might be requesting the
6757 * power well. */
6758 val = I915_READ(HSW_PWR_WELL_DRIVER);
6759 if (val != 0) {
6760 DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
6761 return false;
6762 }
6763
6764 return true;
6765}
6766
6767/* Since we're called from modeset_global_resources there's no way to
6768 * symmetrically increase and decrease the refcount, so we use
6769 * dev_priv->pc8.requirements_met to track whether we already have the refcount
6770 * or not.
6771 */
6772static void hsw_update_package_c8(struct drm_device *dev)
6773{
6774 struct drm_i915_private *dev_priv = dev->dev_private;
6775 bool allow;
6776
6777 if (!HAS_PC8(dev_priv->dev))
6778 return;
6779
6780 if (!i915_enable_pc8)
6781 return;
6782
6783 mutex_lock(&dev_priv->pc8.lock);
6784
6785 allow = hsw_can_enable_package_c8(dev_priv);
6786
6787 if (allow == dev_priv->pc8.requirements_met)
6788 goto done;
6789
6790 dev_priv->pc8.requirements_met = allow;
6791
6792 if (allow)
6793 __hsw_enable_package_c8(dev_priv);
6794 else
6795 __hsw_disable_package_c8(dev_priv);
6796
6797done:
6798 mutex_unlock(&dev_priv->pc8.lock);
6799}
6800
6801static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
6802{
6803 if (!HAS_PC8(dev_priv->dev))
6804 return;
6805
6806 mutex_lock(&dev_priv->pc8.lock);
6807 if (!dev_priv->pc8.gpu_idle) {
6808 dev_priv->pc8.gpu_idle = true;
6809 __hsw_enable_package_c8(dev_priv);
6810 }
6811 mutex_unlock(&dev_priv->pc8.lock);
6812}
6813
6814static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
6815{
6816 if (!HAS_PC8(dev_priv->dev))
6817 return;
6818
6819 mutex_lock(&dev_priv->pc8.lock);
6820 if (dev_priv->pc8.gpu_idle) {
6821 dev_priv->pc8.gpu_idle = false;
6822 __hsw_disable_package_c8(dev_priv);
6823 }
6824 mutex_unlock(&dev_priv->pc8.lock);
6825}
6826
6827#define for_each_power_domain(domain, mask) \
6828 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
6829 if ((1 << (domain)) & (mask))
6830
6831static unsigned long get_pipe_power_domains(struct drm_device *dev,
6832 enum pipe pipe, bool pfit_enabled)
6833{
6834 unsigned long mask;
6835 enum transcoder transcoder;
6836
6837 transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
6838
6839 mask = BIT(POWER_DOMAIN_PIPE(pipe));
6840 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
6841 if (pfit_enabled)
6842 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6843
6844 return mask;
6845}
6846
6847void intel_display_set_init_power(struct drm_device *dev, bool enable)
6848{
6849 struct drm_i915_private *dev_priv = dev->dev_private;
6850
6851 if (dev_priv->power_domains.init_power_on == enable)
6852 return;
6853
6854 if (enable)
6855 intel_display_power_get(dev, POWER_DOMAIN_INIT);
6856 else
6857 intel_display_power_put(dev, POWER_DOMAIN_INIT);
6858
6859 dev_priv->power_domains.init_power_on = enable;
6860}
6861
6862static void modeset_update_power_wells(struct drm_device *dev)
6863{
6864 unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
6865 struct intel_crtc *crtc;
6866
6867 /*
6868 * First get all needed power domains, then put all unneeded, to avoid
6869 * any unnecessary toggling of the power wells.
6870 */
6871 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6872 enum intel_display_power_domain domain;
6873
6874 if (!crtc->base.enabled)
6875 continue;
6876
6877 pipe_domains[crtc->pipe] = get_pipe_power_domains(dev,
6878 crtc->pipe,
6879 crtc->config.pch_pfit.enabled);
6880
6881 for_each_power_domain(domain, pipe_domains[crtc->pipe])
6882 intel_display_power_get(dev, domain);
6883 }
6884
6885 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
6886 enum intel_display_power_domain domain;
6887
6888 for_each_power_domain(domain, crtc->enabled_power_domains)
6889 intel_display_power_put(dev, domain);
6890
6891 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
6892 }
6893
6894 intel_display_set_init_power(dev, false);
6895}
6896
6897static void haswell_modeset_global_resources(struct drm_device *dev)
6898{
6899 modeset_update_power_wells(dev);
6900 hsw_update_package_c8(dev);
6901}
6902
6903static int haswell_crtc_mode_set(struct drm_crtc *crtc,
6904 int x, int y,
6905 struct drm_framebuffer *fb)
6906{
6907 struct drm_device *dev = crtc->dev;
6908 struct drm_i915_private *dev_priv = dev->dev_private;
6909 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6910 int plane = intel_crtc->plane;
6911 int ret;
6912
6913 if (!intel_ddi_pll_select(intel_crtc))
6914 return -EINVAL;
6915 intel_ddi_pll_enable(intel_crtc);
6916
6917 if (intel_crtc->config.has_dp_encoder)
6918 intel_dp_set_m_n(intel_crtc);
6919
6920 intel_crtc->lowfreq_avail = false;
6921
6922 intel_set_pipe_timings(intel_crtc);
6923
6924 if (intel_crtc->config.has_pch_encoder) {
6925 intel_cpu_transcoder_set_m_n(intel_crtc,
6926 &intel_crtc->config.fdi_m_n);
6927 }
6928
6929 haswell_set_pipeconf(crtc);
6930
6931 intel_set_pipe_csc(crtc);
6932
6933 /* Set up the display plane register */
6934 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
6935 POSTING_READ(DSPCNTR(plane));
6936
6937 ret = intel_pipe_set_base(crtc, x, y, fb);
6938
6939 return ret;
6940}
6941
6942static bool haswell_get_pipe_config(struct intel_crtc *crtc,
6943 struct intel_crtc_config *pipe_config)
6944{
6945 struct drm_device *dev = crtc->base.dev;
6946 struct drm_i915_private *dev_priv = dev->dev_private;
6947 enum intel_display_power_domain pfit_domain;
6948 uint32_t tmp;
6949
6950 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
6951 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
6952
6953 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
6954 if (tmp & TRANS_DDI_FUNC_ENABLE) {
6955 enum pipe trans_edp_pipe;
6956 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
6957 default:
6958 WARN(1, "unknown pipe linked to edp transcoder\n");
6959 case TRANS_DDI_EDP_INPUT_A_ONOFF:
6960 case TRANS_DDI_EDP_INPUT_A_ON:
6961 trans_edp_pipe = PIPE_A;
6962 break;
6963 case TRANS_DDI_EDP_INPUT_B_ONOFF:
6964 trans_edp_pipe = PIPE_B;
6965 break;
6966 case TRANS_DDI_EDP_INPUT_C_ONOFF:
6967 trans_edp_pipe = PIPE_C;
6968 break;
6969 }
6970
6971 if (trans_edp_pipe == crtc->pipe)
6972 pipe_config->cpu_transcoder = TRANSCODER_EDP;
6973 }
6974
6975 if (!intel_display_power_enabled(dev,
6976 POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
6977 return false;
6978
6979 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
6980 if (!(tmp & PIPECONF_ENABLE))
6981 return false;
6982
6983 /*
6984 * Haswell has only FDI/PCH transcoder A. It is which is connected to
6985 * DDI E. So just check whether this pipe is wired to DDI E and whether
6986 * the PCH transcoder is on.
6987 */
6988 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
6989 if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
6990 I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
6991 pipe_config->has_pch_encoder = true;
6992
6993 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
6994 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
6995 FDI_DP_PORT_WIDTH_SHIFT) + 1;
6996
6997 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6998 }
6999
7000 intel_get_pipe_timings(crtc, pipe_config);
7001
7002 pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
7003 if (intel_display_power_enabled(dev, pfit_domain))
7004 ironlake_get_pfit_config(crtc, pipe_config);
7005
7006 if (IS_HASWELL(dev))
7007 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
7008 (I915_READ(IPS_CTL) & IPS_ENABLE);
7009
7010 pipe_config->pixel_multiplier = 1;
7011
7012 return true;
7013}
7014
7015static int intel_crtc_mode_set(struct drm_crtc *crtc,
7016 int x, int y,
7017 struct drm_framebuffer *fb)
7018{
7019 struct drm_device *dev = crtc->dev;
7020 struct drm_i915_private *dev_priv = dev->dev_private;
7021 struct intel_encoder *encoder;
7022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7023 struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
7024 int pipe = intel_crtc->pipe;
7025 int ret;
7026
7027 drm_vblank_pre_modeset(dev, pipe);
7028
7029 ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
7030
7031 drm_vblank_post_modeset(dev, pipe);
7032
7033 if (ret != 0)
7034 return ret;
7035
7036 for_each_encoder_on_crtc(dev, crtc, encoder) {
7037 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
7038 encoder->base.base.id,
7039 drm_get_encoder_name(&encoder->base),
7040 mode->base.id, mode->name);
7041 encoder->mode_set(encoder);
7042 }
7043
7044 return 0;
7045}
7046
7047static struct {
7048 int clock;
7049 u32 config;
7050} hdmi_audio_clock[] = {
7051 { DIV_ROUND_UP(25200 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_25175 },
7052 { 25200, AUD_CONFIG_PIXEL_CLOCK_HDMI_25200 }, /* default per bspec */
7053 { 27000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27000 },
7054 { 27000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_27027 },
7055 { 54000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54000 },
7056 { 54000 * 1001 / 1000, AUD_CONFIG_PIXEL_CLOCK_HDMI_54054 },
7057 { DIV_ROUND_UP(74250 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_74176 },
7058 { 74250, AUD_CONFIG_PIXEL_CLOCK_HDMI_74250 },
7059 { DIV_ROUND_UP(148500 * 1000, 1001), AUD_CONFIG_PIXEL_CLOCK_HDMI_148352 },
7060 { 148500, AUD_CONFIG_PIXEL_CLOCK_HDMI_148500 },
7061};
7062
7063/* get AUD_CONFIG_PIXEL_CLOCK_HDMI_* value for mode */
7064static u32 audio_config_hdmi_pixel_clock(struct drm_display_mode *mode)
7065{
7066 int i;
7067
7068 for (i = 0; i < ARRAY_SIZE(hdmi_audio_clock); i++) {
7069 if (mode->clock == hdmi_audio_clock[i].clock)
7070 break;
7071 }
7072
7073 if (i == ARRAY_SIZE(hdmi_audio_clock)) {
7074 DRM_DEBUG_KMS("HDMI audio pixel clock setting for %d not found, falling back to defaults\n", mode->clock);
7075 i = 1;
7076 }
7077
7078 DRM_DEBUG_KMS("Configuring HDMI audio for pixel clock %d (0x%08x)\n",
7079 hdmi_audio_clock[i].clock,
7080 hdmi_audio_clock[i].config);
7081
7082 return hdmi_audio_clock[i].config;
7083}
7084
7085static bool intel_eld_uptodate(struct drm_connector *connector,
7086 int reg_eldv, uint32_t bits_eldv,
7087 int reg_elda, uint32_t bits_elda,
7088 int reg_edid)
7089{
7090 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7091 uint8_t *eld = connector->eld;
7092 uint32_t i;
7093
7094 i = I915_READ(reg_eldv);
7095 i &= bits_eldv;
7096
7097 if (!eld[0])
7098 return !i;
7099
7100 if (!i)
7101 return false;
7102
7103 i = I915_READ(reg_elda);
7104 i &= ~bits_elda;
7105 I915_WRITE(reg_elda, i);
7106
7107 for (i = 0; i < eld[2]; i++)
7108 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
7109 return false;
7110
7111 return true;
7112}
7113
7114static void g4x_write_eld(struct drm_connector *connector,
7115 struct drm_crtc *crtc,
7116 struct drm_display_mode *mode)
7117{
7118 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7119 uint8_t *eld = connector->eld;
7120 uint32_t eldv;
7121 uint32_t len;
7122 uint32_t i;
7123
7124 i = I915_READ(G4X_AUD_VID_DID);
7125
7126 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
7127 eldv = G4X_ELDV_DEVCL_DEVBLC;
7128 else
7129 eldv = G4X_ELDV_DEVCTG;
7130
7131 if (intel_eld_uptodate(connector,
7132 G4X_AUD_CNTL_ST, eldv,
7133 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
7134 G4X_HDMIW_HDMIEDID))
7135 return;
7136
7137 i = I915_READ(G4X_AUD_CNTL_ST);
7138 i &= ~(eldv | G4X_ELD_ADDR);
7139 len = (i >> 9) & 0x1f; /* ELD buffer size */
7140 I915_WRITE(G4X_AUD_CNTL_ST, i);
7141
7142 if (!eld[0])
7143 return;
7144
7145 len = min_t(uint8_t, eld[2], len);
7146 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7147 for (i = 0; i < len; i++)
7148 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
7149
7150 i = I915_READ(G4X_AUD_CNTL_ST);
7151 i |= eldv;
7152 I915_WRITE(G4X_AUD_CNTL_ST, i);
7153}
7154
7155static void haswell_write_eld(struct drm_connector *connector,
7156 struct drm_crtc *crtc,
7157 struct drm_display_mode *mode)
7158{
7159 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7160 uint8_t *eld = connector->eld;
7161 struct drm_device *dev = crtc->dev;
7162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7163 uint32_t eldv;
7164 uint32_t i;
7165 int len;
7166 int pipe = to_intel_crtc(crtc)->pipe;
7167 int tmp;
7168
7169 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
7170 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
7171 int aud_config = HSW_AUD_CFG(pipe);
7172 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
7173
7174
7175 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
7176
7177 /* Audio output enable */
7178 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
7179 tmp = I915_READ(aud_cntrl_st2);
7180 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
7181 I915_WRITE(aud_cntrl_st2, tmp);
7182
7183 /* Wait for 1 vertical blank */
7184 intel_wait_for_vblank(dev, pipe);
7185
7186 /* Set ELD valid state */
7187 tmp = I915_READ(aud_cntrl_st2);
7188 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
7189 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
7190 I915_WRITE(aud_cntrl_st2, tmp);
7191 tmp = I915_READ(aud_cntrl_st2);
7192 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
7193
7194 /* Enable HDMI mode */
7195 tmp = I915_READ(aud_config);
7196 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
7197 /* clear N_programing_enable and N_value_index */
7198 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
7199 I915_WRITE(aud_config, tmp);
7200
7201 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7202
7203 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
7204 intel_crtc->eld_vld = true;
7205
7206 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7207 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7208 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7209 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7210 } else {
7211 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7212 }
7213
7214 if (intel_eld_uptodate(connector,
7215 aud_cntrl_st2, eldv,
7216 aud_cntl_st, IBX_ELD_ADDRESS,
7217 hdmiw_hdmiedid))
7218 return;
7219
7220 i = I915_READ(aud_cntrl_st2);
7221 i &= ~eldv;
7222 I915_WRITE(aud_cntrl_st2, i);
7223
7224 if (!eld[0])
7225 return;
7226
7227 i = I915_READ(aud_cntl_st);
7228 i &= ~IBX_ELD_ADDRESS;
7229 I915_WRITE(aud_cntl_st, i);
7230 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
7231 DRM_DEBUG_DRIVER("port num:%d\n", i);
7232
7233 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7234 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7235 for (i = 0; i < len; i++)
7236 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7237
7238 i = I915_READ(aud_cntrl_st2);
7239 i |= eldv;
7240 I915_WRITE(aud_cntrl_st2, i);
7241
7242}
7243
7244static void ironlake_write_eld(struct drm_connector *connector,
7245 struct drm_crtc *crtc,
7246 struct drm_display_mode *mode)
7247{
7248 struct drm_i915_private *dev_priv = connector->dev->dev_private;
7249 uint8_t *eld = connector->eld;
7250 uint32_t eldv;
7251 uint32_t i;
7252 int len;
7253 int hdmiw_hdmiedid;
7254 int aud_config;
7255 int aud_cntl_st;
7256 int aud_cntrl_st2;
7257 int pipe = to_intel_crtc(crtc)->pipe;
7258
7259 if (HAS_PCH_IBX(connector->dev)) {
7260 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
7261 aud_config = IBX_AUD_CFG(pipe);
7262 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
7263 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
7264 } else if (IS_VALLEYVIEW(connector->dev)) {
7265 hdmiw_hdmiedid = VLV_HDMIW_HDMIEDID(pipe);
7266 aud_config = VLV_AUD_CFG(pipe);
7267 aud_cntl_st = VLV_AUD_CNTL_ST(pipe);
7268 aud_cntrl_st2 = VLV_AUD_CNTL_ST2;
7269 } else {
7270 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
7271 aud_config = CPT_AUD_CFG(pipe);
7272 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
7273 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
7274 }
7275
7276 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
7277
7278 if (IS_VALLEYVIEW(connector->dev)) {
7279 struct intel_encoder *intel_encoder;
7280 struct intel_digital_port *intel_dig_port;
7281
7282 intel_encoder = intel_attached_encoder(connector);
7283 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
7284 i = intel_dig_port->port;
7285 } else {
7286 i = I915_READ(aud_cntl_st);
7287 i = (i >> 29) & DIP_PORT_SEL_MASK;
7288 /* DIP_Port_Select, 0x1 = PortB */
7289 }
7290
7291 if (!i) {
7292 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
7293 /* operate blindly on all ports */
7294 eldv = IBX_ELD_VALIDB;
7295 eldv |= IBX_ELD_VALIDB << 4;
7296 eldv |= IBX_ELD_VALIDB << 8;
7297 } else {
7298 DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
7299 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
7300 }
7301
7302 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
7303 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
7304 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
7305 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
7306 } else {
7307 I915_WRITE(aud_config, audio_config_hdmi_pixel_clock(mode));
7308 }
7309
7310 if (intel_eld_uptodate(connector,
7311 aud_cntrl_st2, eldv,
7312 aud_cntl_st, IBX_ELD_ADDRESS,
7313 hdmiw_hdmiedid))
7314 return;
7315
7316 i = I915_READ(aud_cntrl_st2);
7317 i &= ~eldv;
7318 I915_WRITE(aud_cntrl_st2, i);
7319
7320 if (!eld[0])
7321 return;
7322
7323 i = I915_READ(aud_cntl_st);
7324 i &= ~IBX_ELD_ADDRESS;
7325 I915_WRITE(aud_cntl_st, i);
7326
7327 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
7328 DRM_DEBUG_DRIVER("ELD size %d\n", len);
7329 for (i = 0; i < len; i++)
7330 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
7331
7332 i = I915_READ(aud_cntrl_st2);
7333 i |= eldv;
7334 I915_WRITE(aud_cntrl_st2, i);
7335}
7336
7337void intel_write_eld(struct drm_encoder *encoder,
7338 struct drm_display_mode *mode)
7339{
7340 struct drm_crtc *crtc = encoder->crtc;
7341 struct drm_connector *connector;
7342 struct drm_device *dev = encoder->dev;
7343 struct drm_i915_private *dev_priv = dev->dev_private;
7344
7345 connector = drm_select_eld(encoder, mode);
7346 if (!connector)
7347 return;
7348
7349 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7350 connector->base.id,
7351 drm_get_connector_name(connector),
7352 connector->encoder->base.id,
7353 drm_get_encoder_name(connector->encoder));
7354
7355 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
7356
7357 if (dev_priv->display.write_eld)
7358 dev_priv->display.write_eld(connector, crtc, mode);
7359}
7360
7361static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
7362{
7363 struct drm_device *dev = crtc->dev;
7364 struct drm_i915_private *dev_priv = dev->dev_private;
7365 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7366 bool visible = base != 0;
7367 u32 cntl;
7368
7369 if (intel_crtc->cursor_visible == visible)
7370 return;
7371
7372 cntl = I915_READ(_CURACNTR);
7373 if (visible) {
7374 /* On these chipsets we can only modify the base whilst
7375 * the cursor is disabled.
7376 */
7377 I915_WRITE(_CURABASE, base);
7378
7379 cntl &= ~(CURSOR_FORMAT_MASK);
7380 /* XXX width must be 64, stride 256 => 0x00 << 28 */
7381 cntl |= CURSOR_ENABLE |
7382 CURSOR_GAMMA_ENABLE |
7383 CURSOR_FORMAT_ARGB;
7384 } else
7385 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
7386 I915_WRITE(_CURACNTR, cntl);
7387
7388 intel_crtc->cursor_visible = visible;
7389}
7390
7391static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
7392{
7393 struct drm_device *dev = crtc->dev;
7394 struct drm_i915_private *dev_priv = dev->dev_private;
7395 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7396 int pipe = intel_crtc->pipe;
7397 bool visible = base != 0;
7398
7399 if (intel_crtc->cursor_visible != visible) {
7400 uint32_t cntl = I915_READ(CURCNTR(pipe));
7401 if (base) {
7402 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
7403 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7404 cntl |= pipe << 28; /* Connect to correct pipe */
7405 } else {
7406 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7407 cntl |= CURSOR_MODE_DISABLE;
7408 }
7409 I915_WRITE(CURCNTR(pipe), cntl);
7410
7411 intel_crtc->cursor_visible = visible;
7412 }
7413 /* and commit changes on next vblank */
7414 POSTING_READ(CURCNTR(pipe));
7415 I915_WRITE(CURBASE(pipe), base);
7416 POSTING_READ(CURBASE(pipe));
7417}
7418
7419static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
7420{
7421 struct drm_device *dev = crtc->dev;
7422 struct drm_i915_private *dev_priv = dev->dev_private;
7423 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7424 int pipe = intel_crtc->pipe;
7425 bool visible = base != 0;
7426
7427 if (intel_crtc->cursor_visible != visible) {
7428 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
7429 if (base) {
7430 cntl &= ~CURSOR_MODE;
7431 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
7432 } else {
7433 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
7434 cntl |= CURSOR_MODE_DISABLE;
7435 }
7436 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7437 cntl |= CURSOR_PIPE_CSC_ENABLE;
7438 cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
7439 }
7440 I915_WRITE(CURCNTR_IVB(pipe), cntl);
7441
7442 intel_crtc->cursor_visible = visible;
7443 }
7444 /* and commit changes on next vblank */
7445 POSTING_READ(CURCNTR_IVB(pipe));
7446 I915_WRITE(CURBASE_IVB(pipe), base);
7447 POSTING_READ(CURBASE_IVB(pipe));
7448}
7449
7450/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
7451static void intel_crtc_update_cursor(struct drm_crtc *crtc,
7452 bool on)
7453{
7454 struct drm_device *dev = crtc->dev;
7455 struct drm_i915_private *dev_priv = dev->dev_private;
7456 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7457 int pipe = intel_crtc->pipe;
7458 int x = intel_crtc->cursor_x;
7459 int y = intel_crtc->cursor_y;
7460 u32 base = 0, pos = 0;
7461 bool visible;
7462
7463 if (on)
7464 base = intel_crtc->cursor_addr;
7465
7466 if (x >= intel_crtc->config.pipe_src_w)
7467 base = 0;
7468
7469 if (y >= intel_crtc->config.pipe_src_h)
7470 base = 0;
7471
7472 if (x < 0) {
7473 if (x + intel_crtc->cursor_width <= 0)
7474 base = 0;
7475
7476 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
7477 x = -x;
7478 }
7479 pos |= x << CURSOR_X_SHIFT;
7480
7481 if (y < 0) {
7482 if (y + intel_crtc->cursor_height <= 0)
7483 base = 0;
7484
7485 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
7486 y = -y;
7487 }
7488 pos |= y << CURSOR_Y_SHIFT;
7489
7490 visible = base != 0;
7491 if (!visible && !intel_crtc->cursor_visible)
7492 return;
7493
7494 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7495 I915_WRITE(CURPOS_IVB(pipe), pos);
7496 ivb_update_cursor(crtc, base);
7497 } else {
7498 I915_WRITE(CURPOS(pipe), pos);
7499 if (IS_845G(dev) || IS_I865G(dev))
7500 i845_update_cursor(crtc, base);
7501 else
7502 i9xx_update_cursor(crtc, base);
7503 }
7504}
7505
7506static int intel_crtc_cursor_set(struct drm_crtc *crtc,
7507 struct drm_file *file,
7508 uint32_t handle,
7509 uint32_t width, uint32_t height)
7510{
7511 struct drm_device *dev = crtc->dev;
7512 struct drm_i915_private *dev_priv = dev->dev_private;
7513 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7514 struct drm_i915_gem_object *obj;
7515 uint32_t addr;
7516 int ret;
7517
7518 /* if we want to turn off the cursor ignore width and height */
7519 if (!handle) {
7520 DRM_DEBUG_KMS("cursor off\n");
7521 addr = 0;
7522 obj = NULL;
7523 mutex_lock(&dev->struct_mutex);
7524 goto finish;
7525 }
7526
7527 /* Currently we only support 64x64 cursors */
7528 if (width != 64 || height != 64) {
7529 DRM_ERROR("we currently only support 64x64 cursors\n");
7530 return -EINVAL;
7531 }
7532
7533 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
7534 if (&obj->base == NULL)
7535 return -ENOENT;
7536
7537 if (obj->base.size < width * height * 4) {
7538 DRM_ERROR("buffer is to small\n");
7539 ret = -ENOMEM;
7540 goto fail;
7541 }
7542
7543 /* we only need to pin inside GTT if cursor is non-phy */
7544 mutex_lock(&dev->struct_mutex);
7545 if (!dev_priv->info->cursor_needs_physical) {
7546 unsigned alignment;
7547
7548 if (obj->tiling_mode) {
7549 DRM_ERROR("cursor cannot be tiled\n");
7550 ret = -EINVAL;
7551 goto fail_locked;
7552 }
7553
7554 /* Note that the w/a also requires 2 PTE of padding following
7555 * the bo. We currently fill all unused PTE with the shadow
7556 * page and so we should always have valid PTE following the
7557 * cursor preventing the VT-d warning.
7558 */
7559 alignment = 0;
7560 if (need_vtd_wa(dev))
7561 alignment = 64*1024;
7562
7563 ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
7564 if (ret) {
7565 DRM_ERROR("failed to move cursor bo into the GTT\n");
7566 goto fail_locked;
7567 }
7568
7569 ret = i915_gem_object_put_fence(obj);
7570 if (ret) {
7571 DRM_ERROR("failed to release fence for cursor");
7572 goto fail_unpin;
7573 }
7574
7575 addr = i915_gem_obj_ggtt_offset(obj);
7576 } else {
7577 int align = IS_I830(dev) ? 16 * 1024 : 256;
7578 ret = i915_gem_attach_phys_object(dev, obj,
7579 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
7580 align);
7581 if (ret) {
7582 DRM_ERROR("failed to attach phys object\n");
7583 goto fail_locked;
7584 }
7585 addr = obj->phys_obj->handle->busaddr;
7586 }
7587
7588 if (IS_GEN2(dev))
7589 I915_WRITE(CURSIZE, (height << 12) | width);
7590
7591 finish:
7592 if (intel_crtc->cursor_bo) {
7593 if (dev_priv->info->cursor_needs_physical) {
7594 if (intel_crtc->cursor_bo != obj)
7595 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
7596 } else
7597 i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
7598 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
7599 }
7600
7601 mutex_unlock(&dev->struct_mutex);
7602
7603 intel_crtc->cursor_addr = addr;
7604 intel_crtc->cursor_bo = obj;
7605 intel_crtc->cursor_width = width;
7606 intel_crtc->cursor_height = height;
7607
7608 if (intel_crtc->active)
7609 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7610
7611 return 0;
7612fail_unpin:
7613 i915_gem_object_unpin_from_display_plane(obj);
7614fail_locked:
7615 mutex_unlock(&dev->struct_mutex);
7616fail:
7617 drm_gem_object_unreference_unlocked(&obj->base);
7618 return ret;
7619}
7620
7621static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
7622{
7623 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7624
7625 intel_crtc->cursor_x = clamp_t(int, x, SHRT_MIN, SHRT_MAX);
7626 intel_crtc->cursor_y = clamp_t(int, y, SHRT_MIN, SHRT_MAX);
7627
7628 if (intel_crtc->active)
7629 intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
7630
7631 return 0;
7632}
7633
7634static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
7635 u16 *blue, uint32_t start, uint32_t size)
7636{
7637 int end = (start + size > 256) ? 256 : start + size, i;
7638 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7639
7640 for (i = start; i < end; i++) {
7641 intel_crtc->lut_r[i] = red[i] >> 8;
7642 intel_crtc->lut_g[i] = green[i] >> 8;
7643 intel_crtc->lut_b[i] = blue[i] >> 8;
7644 }
7645
7646 intel_crtc_load_lut(crtc);
7647}
7648
7649/* VESA 640x480x72Hz mode to set on the pipe */
7650static struct drm_display_mode load_detect_mode = {
7651 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
7652 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
7653};
7654
7655static struct drm_framebuffer *
7656intel_framebuffer_create(struct drm_device *dev,
7657 struct drm_mode_fb_cmd2 *mode_cmd,
7658 struct drm_i915_gem_object *obj)
7659{
7660 struct intel_framebuffer *intel_fb;
7661 int ret;
7662
7663 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7664 if (!intel_fb) {
7665 drm_gem_object_unreference_unlocked(&obj->base);
7666 return ERR_PTR(-ENOMEM);
7667 }
7668
7669 ret = i915_mutex_lock_interruptible(dev);
7670 if (ret)
7671 goto err;
7672
7673 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
7674 mutex_unlock(&dev->struct_mutex);
7675 if (ret)
7676 goto err;
7677
7678 return &intel_fb->base;
7679err:
7680 drm_gem_object_unreference_unlocked(&obj->base);
7681 kfree(intel_fb);
7682
7683 return ERR_PTR(ret);
7684}
7685
7686static u32
7687intel_framebuffer_pitch_for_width(int width, int bpp)
7688{
7689 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
7690 return ALIGN(pitch, 64);
7691}
7692
7693static u32
7694intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
7695{
7696 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
7697 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
7698}
7699
7700static struct drm_framebuffer *
7701intel_framebuffer_create_for_mode(struct drm_device *dev,
7702 struct drm_display_mode *mode,
7703 int depth, int bpp)
7704{
7705 struct drm_i915_gem_object *obj;
7706 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
7707
7708 obj = i915_gem_alloc_object(dev,
7709 intel_framebuffer_size_for_mode(mode, bpp));
7710 if (obj == NULL)
7711 return ERR_PTR(-ENOMEM);
7712
7713 mode_cmd.width = mode->hdisplay;
7714 mode_cmd.height = mode->vdisplay;
7715 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
7716 bpp);
7717 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
7718
7719 return intel_framebuffer_create(dev, &mode_cmd, obj);
7720}
7721
7722static struct drm_framebuffer *
7723mode_fits_in_fbdev(struct drm_device *dev,
7724 struct drm_display_mode *mode)
7725{
7726#ifdef CONFIG_DRM_I915_FBDEV
7727 struct drm_i915_private *dev_priv = dev->dev_private;
7728 struct drm_i915_gem_object *obj;
7729 struct drm_framebuffer *fb;
7730
7731 if (dev_priv->fbdev == NULL)
7732 return NULL;
7733
7734 obj = dev_priv->fbdev->ifb.obj;
7735 if (obj == NULL)
7736 return NULL;
7737
7738 fb = &dev_priv->fbdev->ifb.base;
7739 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
7740 fb->bits_per_pixel))
7741 return NULL;
7742
7743 if (obj->base.size < mode->vdisplay * fb->pitches[0])
7744 return NULL;
7745
7746 return fb;
7747#else
7748 return NULL;
7749#endif
7750}
7751
7752bool intel_get_load_detect_pipe(struct drm_connector *connector,
7753 struct drm_display_mode *mode,
7754 struct intel_load_detect_pipe *old)
7755{
7756 struct intel_crtc *intel_crtc;
7757 struct intel_encoder *intel_encoder =
7758 intel_attached_encoder(connector);
7759 struct drm_crtc *possible_crtc;
7760 struct drm_encoder *encoder = &intel_encoder->base;
7761 struct drm_crtc *crtc = NULL;
7762 struct drm_device *dev = encoder->dev;
7763 struct drm_framebuffer *fb;
7764 int i = -1;
7765
7766 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7767 connector->base.id, drm_get_connector_name(connector),
7768 encoder->base.id, drm_get_encoder_name(encoder));
7769
7770 /*
7771 * Algorithm gets a little messy:
7772 *
7773 * - if the connector already has an assigned crtc, use it (but make
7774 * sure it's on first)
7775 *
7776 * - try to find the first unused crtc that can drive this connector,
7777 * and use that if we find one
7778 */
7779
7780 /* See if we already have a CRTC for this connector */
7781 if (encoder->crtc) {
7782 crtc = encoder->crtc;
7783
7784 mutex_lock(&crtc->mutex);
7785
7786 old->dpms_mode = connector->dpms;
7787 old->load_detect_temp = false;
7788
7789 /* Make sure the crtc and connector are running */
7790 if (connector->dpms != DRM_MODE_DPMS_ON)
7791 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
7792
7793 return true;
7794 }
7795
7796 /* Find an unused one (if possible) */
7797 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
7798 i++;
7799 if (!(encoder->possible_crtcs & (1 << i)))
7800 continue;
7801 if (!possible_crtc->enabled) {
7802 crtc = possible_crtc;
7803 break;
7804 }
7805 }
7806
7807 /*
7808 * If we didn't find an unused CRTC, don't use any.
7809 */
7810 if (!crtc) {
7811 DRM_DEBUG_KMS("no pipe available for load-detect\n");
7812 return false;
7813 }
7814
7815 mutex_lock(&crtc->mutex);
7816 intel_encoder->new_crtc = to_intel_crtc(crtc);
7817 to_intel_connector(connector)->new_encoder = intel_encoder;
7818
7819 intel_crtc = to_intel_crtc(crtc);
7820 old->dpms_mode = connector->dpms;
7821 old->load_detect_temp = true;
7822 old->release_fb = NULL;
7823
7824 if (!mode)
7825 mode = &load_detect_mode;
7826
7827 /* We need a framebuffer large enough to accommodate all accesses
7828 * that the plane may generate whilst we perform load detection.
7829 * We can not rely on the fbcon either being present (we get called
7830 * during its initialisation to detect all boot displays, or it may
7831 * not even exist) or that it is large enough to satisfy the
7832 * requested mode.
7833 */
7834 fb = mode_fits_in_fbdev(dev, mode);
7835 if (fb == NULL) {
7836 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
7837 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
7838 old->release_fb = fb;
7839 } else
7840 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
7841 if (IS_ERR(fb)) {
7842 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
7843 mutex_unlock(&crtc->mutex);
7844 return false;
7845 }
7846
7847 if (intel_set_mode(crtc, mode, 0, 0, fb)) {
7848 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
7849 if (old->release_fb)
7850 old->release_fb->funcs->destroy(old->release_fb);
7851 mutex_unlock(&crtc->mutex);
7852 return false;
7853 }
7854
7855 /* let the connector get through one full cycle before testing */
7856 intel_wait_for_vblank(dev, intel_crtc->pipe);
7857 return true;
7858}
7859
7860void intel_release_load_detect_pipe(struct drm_connector *connector,
7861 struct intel_load_detect_pipe *old)
7862{
7863 struct intel_encoder *intel_encoder =
7864 intel_attached_encoder(connector);
7865 struct drm_encoder *encoder = &intel_encoder->base;
7866 struct drm_crtc *crtc = encoder->crtc;
7867
7868 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
7869 connector->base.id, drm_get_connector_name(connector),
7870 encoder->base.id, drm_get_encoder_name(encoder));
7871
7872 if (old->load_detect_temp) {
7873 to_intel_connector(connector)->new_encoder = NULL;
7874 intel_encoder->new_crtc = NULL;
7875 intel_set_mode(crtc, NULL, 0, 0, NULL);
7876
7877 if (old->release_fb) {
7878 drm_framebuffer_unregister_private(old->release_fb);
7879 drm_framebuffer_unreference(old->release_fb);
7880 }
7881
7882 mutex_unlock(&crtc->mutex);
7883 return;
7884 }
7885
7886 /* Switch crtc and encoder back off if necessary */
7887 if (old->dpms_mode != DRM_MODE_DPMS_ON)
7888 connector->funcs->dpms(connector, old->dpms_mode);
7889
7890 mutex_unlock(&crtc->mutex);
7891}
7892
7893static int i9xx_pll_refclk(struct drm_device *dev,
7894 const struct intel_crtc_config *pipe_config)
7895{
7896 struct drm_i915_private *dev_priv = dev->dev_private;
7897 u32 dpll = pipe_config->dpll_hw_state.dpll;
7898
7899 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
7900 return dev_priv->vbt.lvds_ssc_freq;
7901 else if (HAS_PCH_SPLIT(dev))
7902 return 120000;
7903 else if (!IS_GEN2(dev))
7904 return 96000;
7905 else
7906 return 48000;
7907}
7908
7909/* Returns the clock of the currently programmed mode of the given pipe. */
7910static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
7911 struct intel_crtc_config *pipe_config)
7912{
7913 struct drm_device *dev = crtc->base.dev;
7914 struct drm_i915_private *dev_priv = dev->dev_private;
7915 int pipe = pipe_config->cpu_transcoder;
7916 u32 dpll = pipe_config->dpll_hw_state.dpll;
7917 u32 fp;
7918 intel_clock_t clock;
7919 int refclk = i9xx_pll_refclk(dev, pipe_config);
7920
7921 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
7922 fp = pipe_config->dpll_hw_state.fp0;
7923 else
7924 fp = pipe_config->dpll_hw_state.fp1;
7925
7926 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
7927 if (IS_PINEVIEW(dev)) {
7928 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
7929 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
7930 } else {
7931 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
7932 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
7933 }
7934
7935 if (!IS_GEN2(dev)) {
7936 if (IS_PINEVIEW(dev))
7937 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
7938 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
7939 else
7940 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
7941 DPLL_FPA01_P1_POST_DIV_SHIFT);
7942
7943 switch (dpll & DPLL_MODE_MASK) {
7944 case DPLLB_MODE_DAC_SERIAL:
7945 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
7946 5 : 10;
7947 break;
7948 case DPLLB_MODE_LVDS:
7949 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
7950 7 : 14;
7951 break;
7952 default:
7953 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
7954 "mode\n", (int)(dpll & DPLL_MODE_MASK));
7955 return;
7956 }
7957
7958 if (IS_PINEVIEW(dev))
7959 pineview_clock(refclk, &clock);
7960 else
7961 i9xx_clock(refclk, &clock);
7962 } else {
7963 u32 lvds = I915_READ(LVDS);
7964 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
7965
7966 if (is_lvds) {
7967 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
7968 DPLL_FPA01_P1_POST_DIV_SHIFT);
7969
7970 if (lvds & LVDS_CLKB_POWER_UP)
7971 clock.p2 = 7;
7972 else
7973 clock.p2 = 14;
7974 } else {
7975 if (dpll & PLL_P1_DIVIDE_BY_TWO)
7976 clock.p1 = 2;
7977 else {
7978 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
7979 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
7980 }
7981 if (dpll & PLL_P2_DIVIDE_BY_4)
7982 clock.p2 = 4;
7983 else
7984 clock.p2 = 2;
7985 }
7986
7987 i9xx_clock(refclk, &clock);
7988 }
7989
7990 /*
7991 * This value includes pixel_multiplier. We will use
7992 * port_clock to compute adjusted_mode.crtc_clock in the
7993 * encoder's get_config() function.
7994 */
7995 pipe_config->port_clock = clock.dot;
7996}
7997
7998int intel_dotclock_calculate(int link_freq,
7999 const struct intel_link_m_n *m_n)
8000{
8001 /*
8002 * The calculation for the data clock is:
8003 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
8004 * But we want to avoid losing precison if possible, so:
8005 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
8006 *
8007 * and the link clock is simpler:
8008 * link_clock = (m * link_clock) / n
8009 */
8010
8011 if (!m_n->link_n)
8012 return 0;
8013
8014 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
8015}
8016
8017static void ironlake_pch_clock_get(struct intel_crtc *crtc,
8018 struct intel_crtc_config *pipe_config)
8019{
8020 struct drm_device *dev = crtc->base.dev;
8021
8022 /* read out port_clock from the DPLL */
8023 i9xx_crtc_clock_get(crtc, pipe_config);
8024
8025 /*
8026 * This value does not include pixel_multiplier.
8027 * We will check that port_clock and adjusted_mode.crtc_clock
8028 * agree once we know their relationship in the encoder's
8029 * get_config() function.
8030 */
8031 pipe_config->adjusted_mode.crtc_clock =
8032 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
8033 &pipe_config->fdi_m_n);
8034}
8035
8036/** Returns the currently programmed mode of the given pipe. */
8037struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
8038 struct drm_crtc *crtc)
8039{
8040 struct drm_i915_private *dev_priv = dev->dev_private;
8041 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8042 enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
8043 struct drm_display_mode *mode;
8044 struct intel_crtc_config pipe_config;
8045 int htot = I915_READ(HTOTAL(cpu_transcoder));
8046 int hsync = I915_READ(HSYNC(cpu_transcoder));
8047 int vtot = I915_READ(VTOTAL(cpu_transcoder));
8048 int vsync = I915_READ(VSYNC(cpu_transcoder));
8049 enum pipe pipe = intel_crtc->pipe;
8050
8051 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
8052 if (!mode)
8053 return NULL;
8054
8055 /*
8056 * Construct a pipe_config sufficient for getting the clock info
8057 * back out of crtc_clock_get.
8058 *
8059 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
8060 * to use a real value here instead.
8061 */
8062 pipe_config.cpu_transcoder = (enum transcoder) pipe;
8063 pipe_config.pixel_multiplier = 1;
8064 pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
8065 pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
8066 pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
8067 i9xx_crtc_clock_get(intel_crtc, &pipe_config);
8068
8069 mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
8070 mode->hdisplay = (htot & 0xffff) + 1;
8071 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
8072 mode->hsync_start = (hsync & 0xffff) + 1;
8073 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
8074 mode->vdisplay = (vtot & 0xffff) + 1;
8075 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
8076 mode->vsync_start = (vsync & 0xffff) + 1;
8077 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
8078
8079 drm_mode_set_name(mode);
8080
8081 return mode;
8082}
8083
8084static void intel_increase_pllclock(struct drm_crtc *crtc)
8085{
8086 struct drm_device *dev = crtc->dev;
8087 drm_i915_private_t *dev_priv = dev->dev_private;
8088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8089 int pipe = intel_crtc->pipe;
8090 int dpll_reg = DPLL(pipe);
8091 int dpll;
8092
8093 if (HAS_PCH_SPLIT(dev))
8094 return;
8095
8096 if (!dev_priv->lvds_downclock_avail)
8097 return;
8098
8099 dpll = I915_READ(dpll_reg);
8100 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
8101 DRM_DEBUG_DRIVER("upclocking LVDS\n");
8102
8103 assert_panel_unlocked(dev_priv, pipe);
8104
8105 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
8106 I915_WRITE(dpll_reg, dpll);
8107 intel_wait_for_vblank(dev, pipe);
8108
8109 dpll = I915_READ(dpll_reg);
8110 if (dpll & DISPLAY_RATE_SELECT_FPA1)
8111 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
8112 }
8113}
8114
8115static void intel_decrease_pllclock(struct drm_crtc *crtc)
8116{
8117 struct drm_device *dev = crtc->dev;
8118 drm_i915_private_t *dev_priv = dev->dev_private;
8119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8120
8121 if (HAS_PCH_SPLIT(dev))
8122 return;
8123
8124 if (!dev_priv->lvds_downclock_avail)
8125 return;
8126
8127 /*
8128 * Since this is called by a timer, we should never get here in
8129 * the manual case.
8130 */
8131 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
8132 int pipe = intel_crtc->pipe;
8133 int dpll_reg = DPLL(pipe);
8134 int dpll;
8135
8136 DRM_DEBUG_DRIVER("downclocking LVDS\n");
8137
8138 assert_panel_unlocked(dev_priv, pipe);
8139
8140 dpll = I915_READ(dpll_reg);
8141 dpll |= DISPLAY_RATE_SELECT_FPA1;
8142 I915_WRITE(dpll_reg, dpll);
8143 intel_wait_for_vblank(dev, pipe);
8144 dpll = I915_READ(dpll_reg);
8145 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
8146 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
8147 }
8148
8149}
8150
8151void intel_mark_busy(struct drm_device *dev)
8152{
8153 struct drm_i915_private *dev_priv = dev->dev_private;
8154
8155 hsw_package_c8_gpu_busy(dev_priv);
8156 i915_update_gfx_val(dev_priv);
8157}
8158
8159void intel_mark_idle(struct drm_device *dev)
8160{
8161 struct drm_i915_private *dev_priv = dev->dev_private;
8162 struct drm_crtc *crtc;
8163
8164 hsw_package_c8_gpu_idle(dev_priv);
8165
8166 if (!i915_powersave)
8167 return;
8168
8169 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8170 if (!crtc->fb)
8171 continue;
8172
8173 intel_decrease_pllclock(crtc);
8174 }
8175
8176 if (dev_priv->info->gen >= 6)
8177 gen6_rps_idle(dev->dev_private);
8178}
8179
8180void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
8181 struct intel_ring_buffer *ring)
8182{
8183 struct drm_device *dev = obj->base.dev;
8184 struct drm_crtc *crtc;
8185
8186 if (!i915_powersave)
8187 return;
8188
8189 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
8190 if (!crtc->fb)
8191 continue;
8192
8193 if (to_intel_framebuffer(crtc->fb)->obj != obj)
8194 continue;
8195
8196 intel_increase_pllclock(crtc);
8197 if (ring && intel_fbc_enabled(dev))
8198 ring->fbc_dirty = true;
8199 }
8200}
8201
8202static void intel_crtc_destroy(struct drm_crtc *crtc)
8203{
8204 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8205 struct drm_device *dev = crtc->dev;
8206 struct intel_unpin_work *work;
8207 unsigned long flags;
8208
8209 spin_lock_irqsave(&dev->event_lock, flags);
8210 work = intel_crtc->unpin_work;
8211 intel_crtc->unpin_work = NULL;
8212 spin_unlock_irqrestore(&dev->event_lock, flags);
8213
8214 if (work) {
8215 cancel_work_sync(&work->work);
8216 kfree(work);
8217 }
8218
8219 intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
8220
8221 drm_crtc_cleanup(crtc);
8222
8223 kfree(intel_crtc);
8224}
8225
8226static void intel_unpin_work_fn(struct work_struct *__work)
8227{
8228 struct intel_unpin_work *work =
8229 container_of(__work, struct intel_unpin_work, work);
8230 struct drm_device *dev = work->crtc->dev;
8231
8232 mutex_lock(&dev->struct_mutex);
8233 intel_unpin_fb_obj(work->old_fb_obj);
8234 drm_gem_object_unreference(&work->pending_flip_obj->base);
8235 drm_gem_object_unreference(&work->old_fb_obj->base);
8236
8237 intel_update_fbc(dev);
8238 mutex_unlock(&dev->struct_mutex);
8239
8240 BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
8241 atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
8242
8243 kfree(work);
8244}
8245
8246static void do_intel_finish_page_flip(struct drm_device *dev,
8247 struct drm_crtc *crtc)
8248{
8249 drm_i915_private_t *dev_priv = dev->dev_private;
8250 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8251 struct intel_unpin_work *work;
8252 unsigned long flags;
8253
8254 /* Ignore early vblank irqs */
8255 if (intel_crtc == NULL)
8256 return;
8257
8258 spin_lock_irqsave(&dev->event_lock, flags);
8259 work = intel_crtc->unpin_work;
8260
8261 /* Ensure we don't miss a work->pending update ... */
8262 smp_rmb();
8263
8264 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
8265 spin_unlock_irqrestore(&dev->event_lock, flags);
8266 return;
8267 }
8268
8269 /* and that the unpin work is consistent wrt ->pending. */
8270 smp_rmb();
8271
8272 intel_crtc->unpin_work = NULL;
8273
8274 if (work->event)
8275 drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
8276
8277 drm_vblank_put(dev, intel_crtc->pipe);
8278
8279 spin_unlock_irqrestore(&dev->event_lock, flags);
8280
8281 wake_up_all(&dev_priv->pending_flip_queue);
8282
8283 queue_work(dev_priv->wq, &work->work);
8284
8285 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
8286}
8287
8288void intel_finish_page_flip(struct drm_device *dev, int pipe)
8289{
8290 drm_i915_private_t *dev_priv = dev->dev_private;
8291 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
8292
8293 do_intel_finish_page_flip(dev, crtc);
8294}
8295
8296void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
8297{
8298 drm_i915_private_t *dev_priv = dev->dev_private;
8299 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
8300
8301 do_intel_finish_page_flip(dev, crtc);
8302}
8303
8304void intel_prepare_page_flip(struct drm_device *dev, int plane)
8305{
8306 drm_i915_private_t *dev_priv = dev->dev_private;
8307 struct intel_crtc *intel_crtc =
8308 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
8309 unsigned long flags;
8310
8311 /* NB: An MMIO update of the plane base pointer will also
8312 * generate a page-flip completion irq, i.e. every modeset
8313 * is also accompanied by a spurious intel_prepare_page_flip().
8314 */
8315 spin_lock_irqsave(&dev->event_lock, flags);
8316 if (intel_crtc->unpin_work)
8317 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
8318 spin_unlock_irqrestore(&dev->event_lock, flags);
8319}
8320
8321inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
8322{
8323 /* Ensure that the work item is consistent when activating it ... */
8324 smp_wmb();
8325 atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
8326 /* and that it is marked active as soon as the irq could fire. */
8327 smp_wmb();
8328}
8329
8330static int intel_gen2_queue_flip(struct drm_device *dev,
8331 struct drm_crtc *crtc,
8332 struct drm_framebuffer *fb,
8333 struct drm_i915_gem_object *obj,
8334 uint32_t flags)
8335{
8336 struct drm_i915_private *dev_priv = dev->dev_private;
8337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8338 u32 flip_mask;
8339 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8340 int ret;
8341
8342 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8343 if (ret)
8344 goto err;
8345
8346 ret = intel_ring_begin(ring, 6);
8347 if (ret)
8348 goto err_unpin;
8349
8350 /* Can't queue multiple flips, so wait for the previous
8351 * one to finish before executing the next.
8352 */
8353 if (intel_crtc->plane)
8354 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8355 else
8356 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8357 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8358 intel_ring_emit(ring, MI_NOOP);
8359 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8360 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8361 intel_ring_emit(ring, fb->pitches[0]);
8362 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8363 intel_ring_emit(ring, 0); /* aux display base address, unused */
8364
8365 intel_mark_page_flip_active(intel_crtc);
8366 __intel_ring_advance(ring);
8367 return 0;
8368
8369err_unpin:
8370 intel_unpin_fb_obj(obj);
8371err:
8372 return ret;
8373}
8374
8375static int intel_gen3_queue_flip(struct drm_device *dev,
8376 struct drm_crtc *crtc,
8377 struct drm_framebuffer *fb,
8378 struct drm_i915_gem_object *obj,
8379 uint32_t flags)
8380{
8381 struct drm_i915_private *dev_priv = dev->dev_private;
8382 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8383 u32 flip_mask;
8384 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8385 int ret;
8386
8387 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8388 if (ret)
8389 goto err;
8390
8391 ret = intel_ring_begin(ring, 6);
8392 if (ret)
8393 goto err_unpin;
8394
8395 if (intel_crtc->plane)
8396 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
8397 else
8398 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
8399 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
8400 intel_ring_emit(ring, MI_NOOP);
8401 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
8402 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8403 intel_ring_emit(ring, fb->pitches[0]);
8404 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8405 intel_ring_emit(ring, MI_NOOP);
8406
8407 intel_mark_page_flip_active(intel_crtc);
8408 __intel_ring_advance(ring);
8409 return 0;
8410
8411err_unpin:
8412 intel_unpin_fb_obj(obj);
8413err:
8414 return ret;
8415}
8416
8417static int intel_gen4_queue_flip(struct drm_device *dev,
8418 struct drm_crtc *crtc,
8419 struct drm_framebuffer *fb,
8420 struct drm_i915_gem_object *obj,
8421 uint32_t flags)
8422{
8423 struct drm_i915_private *dev_priv = dev->dev_private;
8424 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8425 uint32_t pf, pipesrc;
8426 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8427 int ret;
8428
8429 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8430 if (ret)
8431 goto err;
8432
8433 ret = intel_ring_begin(ring, 4);
8434 if (ret)
8435 goto err_unpin;
8436
8437 /* i965+ uses the linear or tiled offsets from the
8438 * Display Registers (which do not change across a page-flip)
8439 * so we need only reprogram the base address.
8440 */
8441 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8442 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8443 intel_ring_emit(ring, fb->pitches[0]);
8444 intel_ring_emit(ring,
8445 (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
8446 obj->tiling_mode);
8447
8448 /* XXX Enabling the panel-fitter across page-flip is so far
8449 * untested on non-native modes, so ignore it for now.
8450 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
8451 */
8452 pf = 0;
8453 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8454 intel_ring_emit(ring, pf | pipesrc);
8455
8456 intel_mark_page_flip_active(intel_crtc);
8457 __intel_ring_advance(ring);
8458 return 0;
8459
8460err_unpin:
8461 intel_unpin_fb_obj(obj);
8462err:
8463 return ret;
8464}
8465
8466static int intel_gen6_queue_flip(struct drm_device *dev,
8467 struct drm_crtc *crtc,
8468 struct drm_framebuffer *fb,
8469 struct drm_i915_gem_object *obj,
8470 uint32_t flags)
8471{
8472 struct drm_i915_private *dev_priv = dev->dev_private;
8473 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8474 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
8475 uint32_t pf, pipesrc;
8476 int ret;
8477
8478 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8479 if (ret)
8480 goto err;
8481
8482 ret = intel_ring_begin(ring, 4);
8483 if (ret)
8484 goto err_unpin;
8485
8486 intel_ring_emit(ring, MI_DISPLAY_FLIP |
8487 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
8488 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
8489 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8490
8491 /* Contrary to the suggestions in the documentation,
8492 * "Enable Panel Fitter" does not seem to be required when page
8493 * flipping with a non-native mode, and worse causes a normal
8494 * modeset to fail.
8495 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
8496 */
8497 pf = 0;
8498 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
8499 intel_ring_emit(ring, pf | pipesrc);
8500
8501 intel_mark_page_flip_active(intel_crtc);
8502 __intel_ring_advance(ring);
8503 return 0;
8504
8505err_unpin:
8506 intel_unpin_fb_obj(obj);
8507err:
8508 return ret;
8509}
8510
8511static int intel_gen7_queue_flip(struct drm_device *dev,
8512 struct drm_crtc *crtc,
8513 struct drm_framebuffer *fb,
8514 struct drm_i915_gem_object *obj,
8515 uint32_t flags)
8516{
8517 struct drm_i915_private *dev_priv = dev->dev_private;
8518 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8519 struct intel_ring_buffer *ring;
8520 uint32_t plane_bit = 0;
8521 int len, ret;
8522
8523 ring = obj->ring;
8524 if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
8525 ring = &dev_priv->ring[BCS];
8526
8527 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
8528 if (ret)
8529 goto err;
8530
8531 switch(intel_crtc->plane) {
8532 case PLANE_A:
8533 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
8534 break;
8535 case PLANE_B:
8536 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
8537 break;
8538 case PLANE_C:
8539 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
8540 break;
8541 default:
8542 WARN_ONCE(1, "unknown plane in flip command\n");
8543 ret = -ENODEV;
8544 goto err_unpin;
8545 }
8546
8547 len = 4;
8548 if (ring->id == RCS)
8549 len += 6;
8550
8551 ret = intel_ring_begin(ring, len);
8552 if (ret)
8553 goto err_unpin;
8554
8555 /* Unmask the flip-done completion message. Note that the bspec says that
8556 * we should do this for both the BCS and RCS, and that we must not unmask
8557 * more than one flip event at any time (or ensure that one flip message
8558 * can be sent by waiting for flip-done prior to queueing new flips).
8559 * Experimentation says that BCS works despite DERRMR masking all
8560 * flip-done completion events and that unmasking all planes at once
8561 * for the RCS also doesn't appear to drop events. Setting the DERRMR
8562 * to zero does lead to lockups within MI_DISPLAY_FLIP.
8563 */
8564 if (ring->id == RCS) {
8565 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
8566 intel_ring_emit(ring, DERRMR);
8567 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
8568 DERRMR_PIPEB_PRI_FLIP_DONE |
8569 DERRMR_PIPEC_PRI_FLIP_DONE));
8570 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
8571 intel_ring_emit(ring, DERRMR);
8572 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
8573 }
8574
8575 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
8576 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
8577 intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
8578 intel_ring_emit(ring, (MI_NOOP));
8579
8580 intel_mark_page_flip_active(intel_crtc);
8581 __intel_ring_advance(ring);
8582 return 0;
8583
8584err_unpin:
8585 intel_unpin_fb_obj(obj);
8586err:
8587 return ret;
8588}
8589
8590static int intel_default_queue_flip(struct drm_device *dev,
8591 struct drm_crtc *crtc,
8592 struct drm_framebuffer *fb,
8593 struct drm_i915_gem_object *obj,
8594 uint32_t flags)
8595{
8596 return -ENODEV;
8597}
8598
8599static int intel_crtc_page_flip(struct drm_crtc *crtc,
8600 struct drm_framebuffer *fb,
8601 struct drm_pending_vblank_event *event,
8602 uint32_t page_flip_flags)
8603{
8604 struct drm_device *dev = crtc->dev;
8605 struct drm_i915_private *dev_priv = dev->dev_private;
8606 struct drm_framebuffer *old_fb = crtc->fb;
8607 struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
8608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8609 struct intel_unpin_work *work;
8610 unsigned long flags;
8611 int ret;
8612
8613 /* Can't change pixel format via MI display flips. */
8614 if (fb->pixel_format != crtc->fb->pixel_format)
8615 return -EINVAL;
8616
8617 /*
8618 * TILEOFF/LINOFF registers can't be changed via MI display flips.
8619 * Note that pitch changes could also affect these register.
8620 */
8621 if (INTEL_INFO(dev)->gen > 3 &&
8622 (fb->offsets[0] != crtc->fb->offsets[0] ||
8623 fb->pitches[0] != crtc->fb->pitches[0]))
8624 return -EINVAL;
8625
8626 work = kzalloc(sizeof(*work), GFP_KERNEL);
8627 if (work == NULL)
8628 return -ENOMEM;
8629
8630 work->event = event;
8631 work->crtc = crtc;
8632 work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
8633 INIT_WORK(&work->work, intel_unpin_work_fn);
8634
8635 ret = drm_vblank_get(dev, intel_crtc->pipe);
8636 if (ret)
8637 goto free_work;
8638
8639 /* We borrow the event spin lock for protecting unpin_work */
8640 spin_lock_irqsave(&dev->event_lock, flags);
8641 if (intel_crtc->unpin_work) {
8642 spin_unlock_irqrestore(&dev->event_lock, flags);
8643 kfree(work);
8644 drm_vblank_put(dev, intel_crtc->pipe);
8645
8646 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
8647 return -EBUSY;
8648 }
8649 intel_crtc->unpin_work = work;
8650 spin_unlock_irqrestore(&dev->event_lock, flags);
8651
8652 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
8653 flush_workqueue(dev_priv->wq);
8654
8655 ret = i915_mutex_lock_interruptible(dev);
8656 if (ret)
8657 goto cleanup;
8658
8659 /* Reference the objects for the scheduled work. */
8660 drm_gem_object_reference(&work->old_fb_obj->base);
8661 drm_gem_object_reference(&obj->base);
8662
8663 crtc->fb = fb;
8664
8665 work->pending_flip_obj = obj;
8666
8667 work->enable_stall_check = true;
8668
8669 atomic_inc(&intel_crtc->unpin_work_count);
8670 intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
8671
8672 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
8673 if (ret)
8674 goto cleanup_pending;
8675
8676 intel_disable_fbc(dev);
8677 intel_mark_fb_busy(obj, NULL);
8678 mutex_unlock(&dev->struct_mutex);
8679
8680 trace_i915_flip_request(intel_crtc->plane, obj);
8681
8682 return 0;
8683
8684cleanup_pending:
8685 atomic_dec(&intel_crtc->unpin_work_count);
8686 crtc->fb = old_fb;
8687 drm_gem_object_unreference(&work->old_fb_obj->base);
8688 drm_gem_object_unreference(&obj->base);
8689 mutex_unlock(&dev->struct_mutex);
8690
8691cleanup:
8692 spin_lock_irqsave(&dev->event_lock, flags);
8693 intel_crtc->unpin_work = NULL;
8694 spin_unlock_irqrestore(&dev->event_lock, flags);
8695
8696 drm_vblank_put(dev, intel_crtc->pipe);
8697free_work:
8698 kfree(work);
8699
8700 return ret;
8701}
8702
8703static struct drm_crtc_helper_funcs intel_helper_funcs = {
8704 .mode_set_base_atomic = intel_pipe_set_base_atomic,
8705 .load_lut = intel_crtc_load_lut,
8706};
8707
8708static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
8709 struct drm_crtc *crtc)
8710{
8711 struct drm_device *dev;
8712 struct drm_crtc *tmp;
8713 int crtc_mask = 1;
8714
8715 WARN(!crtc, "checking null crtc?\n");
8716
8717 dev = crtc->dev;
8718
8719 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
8720 if (tmp == crtc)
8721 break;
8722 crtc_mask <<= 1;
8723 }
8724
8725 if (encoder->possible_crtcs & crtc_mask)
8726 return true;
8727 return false;
8728}
8729
8730/**
8731 * intel_modeset_update_staged_output_state
8732 *
8733 * Updates the staged output configuration state, e.g. after we've read out the
8734 * current hw state.
8735 */
8736static void intel_modeset_update_staged_output_state(struct drm_device *dev)
8737{
8738 struct intel_encoder *encoder;
8739 struct intel_connector *connector;
8740
8741 list_for_each_entry(connector, &dev->mode_config.connector_list,
8742 base.head) {
8743 connector->new_encoder =
8744 to_intel_encoder(connector->base.encoder);
8745 }
8746
8747 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8748 base.head) {
8749 encoder->new_crtc =
8750 to_intel_crtc(encoder->base.crtc);
8751 }
8752}
8753
8754/**
8755 * intel_modeset_commit_output_state
8756 *
8757 * This function copies the stage display pipe configuration to the real one.
8758 */
8759static void intel_modeset_commit_output_state(struct drm_device *dev)
8760{
8761 struct intel_encoder *encoder;
8762 struct intel_connector *connector;
8763
8764 list_for_each_entry(connector, &dev->mode_config.connector_list,
8765 base.head) {
8766 connector->base.encoder = &connector->new_encoder->base;
8767 }
8768
8769 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8770 base.head) {
8771 encoder->base.crtc = &encoder->new_crtc->base;
8772 }
8773}
8774
8775static void
8776connected_sink_compute_bpp(struct intel_connector * connector,
8777 struct intel_crtc_config *pipe_config)
8778{
8779 int bpp = pipe_config->pipe_bpp;
8780
8781 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
8782 connector->base.base.id,
8783 drm_get_connector_name(&connector->base));
8784
8785 /* Don't use an invalid EDID bpc value */
8786 if (connector->base.display_info.bpc &&
8787 connector->base.display_info.bpc * 3 < bpp) {
8788 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
8789 bpp, connector->base.display_info.bpc*3);
8790 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
8791 }
8792
8793 /* Clamp bpp to 8 on screens without EDID 1.4 */
8794 if (connector->base.display_info.bpc == 0 && bpp > 24) {
8795 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
8796 bpp);
8797 pipe_config->pipe_bpp = 24;
8798 }
8799}
8800
8801static int
8802compute_baseline_pipe_bpp(struct intel_crtc *crtc,
8803 struct drm_framebuffer *fb,
8804 struct intel_crtc_config *pipe_config)
8805{
8806 struct drm_device *dev = crtc->base.dev;
8807 struct intel_connector *connector;
8808 int bpp;
8809
8810 switch (fb->pixel_format) {
8811 case DRM_FORMAT_C8:
8812 bpp = 8*3; /* since we go through a colormap */
8813 break;
8814 case DRM_FORMAT_XRGB1555:
8815 case DRM_FORMAT_ARGB1555:
8816 /* checked in intel_framebuffer_init already */
8817 if (WARN_ON(INTEL_INFO(dev)->gen > 3))
8818 return -EINVAL;
8819 case DRM_FORMAT_RGB565:
8820 bpp = 6*3; /* min is 18bpp */
8821 break;
8822 case DRM_FORMAT_XBGR8888:
8823 case DRM_FORMAT_ABGR8888:
8824 /* checked in intel_framebuffer_init already */
8825 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8826 return -EINVAL;
8827 case DRM_FORMAT_XRGB8888:
8828 case DRM_FORMAT_ARGB8888:
8829 bpp = 8*3;
8830 break;
8831 case DRM_FORMAT_XRGB2101010:
8832 case DRM_FORMAT_ARGB2101010:
8833 case DRM_FORMAT_XBGR2101010:
8834 case DRM_FORMAT_ABGR2101010:
8835 /* checked in intel_framebuffer_init already */
8836 if (WARN_ON(INTEL_INFO(dev)->gen < 4))
8837 return -EINVAL;
8838 bpp = 10*3;
8839 break;
8840 /* TODO: gen4+ supports 16 bpc floating point, too. */
8841 default:
8842 DRM_DEBUG_KMS("unsupported depth\n");
8843 return -EINVAL;
8844 }
8845
8846 pipe_config->pipe_bpp = bpp;
8847
8848 /* Clamp display bpp to EDID value */
8849 list_for_each_entry(connector, &dev->mode_config.connector_list,
8850 base.head) {
8851 if (!connector->new_encoder ||
8852 connector->new_encoder->new_crtc != crtc)
8853 continue;
8854
8855 connected_sink_compute_bpp(connector, pipe_config);
8856 }
8857
8858 return bpp;
8859}
8860
8861static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
8862{
8863 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
8864 "type: 0x%x flags: 0x%x\n",
8865 mode->crtc_clock,
8866 mode->crtc_hdisplay, mode->crtc_hsync_start,
8867 mode->crtc_hsync_end, mode->crtc_htotal,
8868 mode->crtc_vdisplay, mode->crtc_vsync_start,
8869 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
8870}
8871
8872static void intel_dump_pipe_config(struct intel_crtc *crtc,
8873 struct intel_crtc_config *pipe_config,
8874 const char *context)
8875{
8876 DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
8877 context, pipe_name(crtc->pipe));
8878
8879 DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
8880 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
8881 pipe_config->pipe_bpp, pipe_config->dither);
8882 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8883 pipe_config->has_pch_encoder,
8884 pipe_config->fdi_lanes,
8885 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
8886 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
8887 pipe_config->fdi_m_n.tu);
8888 DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
8889 pipe_config->has_dp_encoder,
8890 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
8891 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
8892 pipe_config->dp_m_n.tu);
8893 DRM_DEBUG_KMS("requested mode:\n");
8894 drm_mode_debug_printmodeline(&pipe_config->requested_mode);
8895 DRM_DEBUG_KMS("adjusted mode:\n");
8896 drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
8897 intel_dump_crtc_timings(&pipe_config->adjusted_mode);
8898 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
8899 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
8900 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
8901 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
8902 pipe_config->gmch_pfit.control,
8903 pipe_config->gmch_pfit.pgm_ratios,
8904 pipe_config->gmch_pfit.lvds_border_bits);
8905 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
8906 pipe_config->pch_pfit.pos,
8907 pipe_config->pch_pfit.size,
8908 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
8909 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
8910 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
8911}
8912
8913static bool check_encoder_cloning(struct drm_crtc *crtc)
8914{
8915 int num_encoders = 0;
8916 bool uncloneable_encoders = false;
8917 struct intel_encoder *encoder;
8918
8919 list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
8920 base.head) {
8921 if (&encoder->new_crtc->base != crtc)
8922 continue;
8923
8924 num_encoders++;
8925 if (!encoder->cloneable)
8926 uncloneable_encoders = true;
8927 }
8928
8929 return !(num_encoders > 1 && uncloneable_encoders);
8930}
8931
8932static struct intel_crtc_config *
8933intel_modeset_pipe_config(struct drm_crtc *crtc,
8934 struct drm_framebuffer *fb,
8935 struct drm_display_mode *mode)
8936{
8937 struct drm_device *dev = crtc->dev;
8938 struct intel_encoder *encoder;
8939 struct intel_crtc_config *pipe_config;
8940 int plane_bpp, ret = -EINVAL;
8941 bool retry = true;
8942
8943 if (!check_encoder_cloning(crtc)) {
8944 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
8945 return ERR_PTR(-EINVAL);
8946 }
8947
8948 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8949 if (!pipe_config)
8950 return ERR_PTR(-ENOMEM);
8951
8952 drm_mode_copy(&pipe_config->adjusted_mode, mode);
8953 drm_mode_copy(&pipe_config->requested_mode, mode);
8954
8955 pipe_config->cpu_transcoder =
8956 (enum transcoder) to_intel_crtc(crtc)->pipe;
8957 pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8958
8959 /*
8960 * Sanitize sync polarity flags based on requested ones. If neither
8961 * positive or negative polarity is requested, treat this as meaning
8962 * negative polarity.
8963 */
8964 if (!(pipe_config->adjusted_mode.flags &
8965 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
8966 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
8967
8968 if (!(pipe_config->adjusted_mode.flags &
8969 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
8970 pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
8971
8972 /* Compute a starting value for pipe_config->pipe_bpp taking the source
8973 * plane pixel format and any sink constraints into account. Returns the
8974 * source plane bpp so that dithering can be selected on mismatches
8975 * after encoders and crtc also have had their say. */
8976 plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
8977 fb, pipe_config);
8978 if (plane_bpp < 0)
8979 goto fail;
8980
8981 /*
8982 * Determine the real pipe dimensions. Note that stereo modes can
8983 * increase the actual pipe size due to the frame doubling and
8984 * insertion of additional space for blanks between the frame. This
8985 * is stored in the crtc timings. We use the requested mode to do this
8986 * computation to clearly distinguish it from the adjusted mode, which
8987 * can be changed by the connectors in the below retry loop.
8988 */
8989 drm_mode_set_crtcinfo(&pipe_config->requested_mode, CRTC_STEREO_DOUBLE);
8990 pipe_config->pipe_src_w = pipe_config->requested_mode.crtc_hdisplay;
8991 pipe_config->pipe_src_h = pipe_config->requested_mode.crtc_vdisplay;
8992
8993encoder_retry:
8994 /* Ensure the port clock defaults are reset when retrying. */
8995 pipe_config->port_clock = 0;
8996 pipe_config->pixel_multiplier = 1;
8997
8998 /* Fill in default crtc timings, allow encoders to overwrite them. */
8999 drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, CRTC_STEREO_DOUBLE);
9000
9001 /* Pass our mode to the connectors and the CRTC to give them a chance to
9002 * adjust it according to limitations or connector properties, and also
9003 * a chance to reject the mode entirely.
9004 */
9005 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9006 base.head) {
9007
9008 if (&encoder->new_crtc->base != crtc)
9009 continue;
9010
9011 if (!(encoder->compute_config(encoder, pipe_config))) {
9012 DRM_DEBUG_KMS("Encoder config failure\n");
9013 goto fail;
9014 }
9015 }
9016
9017 /* Set default port clock if not overwritten by the encoder. Needs to be
9018 * done afterwards in case the encoder adjusts the mode. */
9019 if (!pipe_config->port_clock)
9020 pipe_config->port_clock = pipe_config->adjusted_mode.crtc_clock
9021 * pipe_config->pixel_multiplier;
9022
9023 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
9024 if (ret < 0) {
9025 DRM_DEBUG_KMS("CRTC fixup failed\n");
9026 goto fail;
9027 }
9028
9029 if (ret == RETRY) {
9030 if (WARN(!retry, "loop in pipe configuration computation\n")) {
9031 ret = -EINVAL;
9032 goto fail;
9033 }
9034
9035 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
9036 retry = false;
9037 goto encoder_retry;
9038 }
9039
9040 pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
9041 DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
9042 plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
9043
9044 return pipe_config;
9045fail:
9046 kfree(pipe_config);
9047 return ERR_PTR(ret);
9048}
9049
9050/* Computes which crtcs are affected and sets the relevant bits in the mask. For
9051 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
9052static void
9053intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
9054 unsigned *prepare_pipes, unsigned *disable_pipes)
9055{
9056 struct intel_crtc *intel_crtc;
9057 struct drm_device *dev = crtc->dev;
9058 struct intel_encoder *encoder;
9059 struct intel_connector *connector;
9060 struct drm_crtc *tmp_crtc;
9061
9062 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
9063
9064 /* Check which crtcs have changed outputs connected to them, these need
9065 * to be part of the prepare_pipes mask. We don't (yet) support global
9066 * modeset across multiple crtcs, so modeset_pipes will only have one
9067 * bit set at most. */
9068 list_for_each_entry(connector, &dev->mode_config.connector_list,
9069 base.head) {
9070 if (connector->base.encoder == &connector->new_encoder->base)
9071 continue;
9072
9073 if (connector->base.encoder) {
9074 tmp_crtc = connector->base.encoder->crtc;
9075
9076 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9077 }
9078
9079 if (connector->new_encoder)
9080 *prepare_pipes |=
9081 1 << connector->new_encoder->new_crtc->pipe;
9082 }
9083
9084 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9085 base.head) {
9086 if (encoder->base.crtc == &encoder->new_crtc->base)
9087 continue;
9088
9089 if (encoder->base.crtc) {
9090 tmp_crtc = encoder->base.crtc;
9091
9092 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
9093 }
9094
9095 if (encoder->new_crtc)
9096 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
9097 }
9098
9099 /* Check for any pipes that will be fully disabled ... */
9100 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9101 base.head) {
9102 bool used = false;
9103
9104 /* Don't try to disable disabled crtcs. */
9105 if (!intel_crtc->base.enabled)
9106 continue;
9107
9108 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9109 base.head) {
9110 if (encoder->new_crtc == intel_crtc)
9111 used = true;
9112 }
9113
9114 if (!used)
9115 *disable_pipes |= 1 << intel_crtc->pipe;
9116 }
9117
9118
9119 /* set_mode is also used to update properties on life display pipes. */
9120 intel_crtc = to_intel_crtc(crtc);
9121 if (crtc->enabled)
9122 *prepare_pipes |= 1 << intel_crtc->pipe;
9123
9124 /*
9125 * For simplicity do a full modeset on any pipe where the output routing
9126 * changed. We could be more clever, but that would require us to be
9127 * more careful with calling the relevant encoder->mode_set functions.
9128 */
9129 if (*prepare_pipes)
9130 *modeset_pipes = *prepare_pipes;
9131
9132 /* ... and mask these out. */
9133 *modeset_pipes &= ~(*disable_pipes);
9134 *prepare_pipes &= ~(*disable_pipes);
9135
9136 /*
9137 * HACK: We don't (yet) fully support global modesets. intel_set_config
9138 * obies this rule, but the modeset restore mode of
9139 * intel_modeset_setup_hw_state does not.
9140 */
9141 *modeset_pipes &= 1 << intel_crtc->pipe;
9142 *prepare_pipes &= 1 << intel_crtc->pipe;
9143
9144 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
9145 *modeset_pipes, *prepare_pipes, *disable_pipes);
9146}
9147
9148static bool intel_crtc_in_use(struct drm_crtc *crtc)
9149{
9150 struct drm_encoder *encoder;
9151 struct drm_device *dev = crtc->dev;
9152
9153 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
9154 if (encoder->crtc == crtc)
9155 return true;
9156
9157 return false;
9158}
9159
9160static void
9161intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
9162{
9163 struct intel_encoder *intel_encoder;
9164 struct intel_crtc *intel_crtc;
9165 struct drm_connector *connector;
9166
9167 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
9168 base.head) {
9169 if (!intel_encoder->base.crtc)
9170 continue;
9171
9172 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
9173
9174 if (prepare_pipes & (1 << intel_crtc->pipe))
9175 intel_encoder->connectors_active = false;
9176 }
9177
9178 intel_modeset_commit_output_state(dev);
9179
9180 /* Update computed state. */
9181 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
9182 base.head) {
9183 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
9184 }
9185
9186 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9187 if (!connector->encoder || !connector->encoder->crtc)
9188 continue;
9189
9190 intel_crtc = to_intel_crtc(connector->encoder->crtc);
9191
9192 if (prepare_pipes & (1 << intel_crtc->pipe)) {
9193 struct drm_property *dpms_property =
9194 dev->mode_config.dpms_property;
9195
9196 connector->dpms = DRM_MODE_DPMS_ON;
9197 drm_object_property_set_value(&connector->base,
9198 dpms_property,
9199 DRM_MODE_DPMS_ON);
9200
9201 intel_encoder = to_intel_encoder(connector->encoder);
9202 intel_encoder->connectors_active = true;
9203 }
9204 }
9205
9206}
9207
9208static bool intel_fuzzy_clock_check(int clock1, int clock2)
9209{
9210 int diff;
9211
9212 if (clock1 == clock2)
9213 return true;
9214
9215 if (!clock1 || !clock2)
9216 return false;
9217
9218 diff = abs(clock1 - clock2);
9219
9220 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
9221 return true;
9222
9223 return false;
9224}
9225
9226#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
9227 list_for_each_entry((intel_crtc), \
9228 &(dev)->mode_config.crtc_list, \
9229 base.head) \
9230 if (mask & (1 <<(intel_crtc)->pipe))
9231
9232static bool
9233intel_pipe_config_compare(struct drm_device *dev,
9234 struct intel_crtc_config *current_config,
9235 struct intel_crtc_config *pipe_config)
9236{
9237#define PIPE_CONF_CHECK_X(name) \
9238 if (current_config->name != pipe_config->name) { \
9239 DRM_ERROR("mismatch in " #name " " \
9240 "(expected 0x%08x, found 0x%08x)\n", \
9241 current_config->name, \
9242 pipe_config->name); \
9243 return false; \
9244 }
9245
9246#define PIPE_CONF_CHECK_I(name) \
9247 if (current_config->name != pipe_config->name) { \
9248 DRM_ERROR("mismatch in " #name " " \
9249 "(expected %i, found %i)\n", \
9250 current_config->name, \
9251 pipe_config->name); \
9252 return false; \
9253 }
9254
9255#define PIPE_CONF_CHECK_FLAGS(name, mask) \
9256 if ((current_config->name ^ pipe_config->name) & (mask)) { \
9257 DRM_ERROR("mismatch in " #name "(" #mask ") " \
9258 "(expected %i, found %i)\n", \
9259 current_config->name & (mask), \
9260 pipe_config->name & (mask)); \
9261 return false; \
9262 }
9263
9264#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
9265 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
9266 DRM_ERROR("mismatch in " #name " " \
9267 "(expected %i, found %i)\n", \
9268 current_config->name, \
9269 pipe_config->name); \
9270 return false; \
9271 }
9272
9273#define PIPE_CONF_QUIRK(quirk) \
9274 ((current_config->quirks | pipe_config->quirks) & (quirk))
9275
9276 PIPE_CONF_CHECK_I(cpu_transcoder);
9277
9278 PIPE_CONF_CHECK_I(has_pch_encoder);
9279 PIPE_CONF_CHECK_I(fdi_lanes);
9280 PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
9281 PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
9282 PIPE_CONF_CHECK_I(fdi_m_n.link_m);
9283 PIPE_CONF_CHECK_I(fdi_m_n.link_n);
9284 PIPE_CONF_CHECK_I(fdi_m_n.tu);
9285
9286 PIPE_CONF_CHECK_I(has_dp_encoder);
9287 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
9288 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
9289 PIPE_CONF_CHECK_I(dp_m_n.link_m);
9290 PIPE_CONF_CHECK_I(dp_m_n.link_n);
9291 PIPE_CONF_CHECK_I(dp_m_n.tu);
9292
9293 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
9294 PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
9295 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
9296 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
9297 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
9298 PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
9299
9300 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
9301 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
9302 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
9303 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
9304 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
9305 PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
9306
9307 PIPE_CONF_CHECK_I(pixel_multiplier);
9308
9309 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9310 DRM_MODE_FLAG_INTERLACE);
9311
9312 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
9313 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9314 DRM_MODE_FLAG_PHSYNC);
9315 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9316 DRM_MODE_FLAG_NHSYNC);
9317 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9318 DRM_MODE_FLAG_PVSYNC);
9319 PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
9320 DRM_MODE_FLAG_NVSYNC);
9321 }
9322
9323 PIPE_CONF_CHECK_I(pipe_src_w);
9324 PIPE_CONF_CHECK_I(pipe_src_h);
9325
9326 PIPE_CONF_CHECK_I(gmch_pfit.control);
9327 /* pfit ratios are autocomputed by the hw on gen4+ */
9328 if (INTEL_INFO(dev)->gen < 4)
9329 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
9330 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
9331 PIPE_CONF_CHECK_I(pch_pfit.enabled);
9332 if (current_config->pch_pfit.enabled) {
9333 PIPE_CONF_CHECK_I(pch_pfit.pos);
9334 PIPE_CONF_CHECK_I(pch_pfit.size);
9335 }
9336
9337 /* BDW+ don't expose a synchronous way to read the state */
9338 if (IS_HASWELL(dev))
9339 PIPE_CONF_CHECK_I(ips_enabled);
9340
9341 PIPE_CONF_CHECK_I(double_wide);
9342
9343 PIPE_CONF_CHECK_I(shared_dpll);
9344 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
9345 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
9346 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
9347 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
9348
9349 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
9350 PIPE_CONF_CHECK_I(pipe_bpp);
9351
9352 if (!IS_HASWELL(dev)) {
9353 PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.crtc_clock);
9354 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
9355 }
9356
9357#undef PIPE_CONF_CHECK_X
9358#undef PIPE_CONF_CHECK_I
9359#undef PIPE_CONF_CHECK_FLAGS
9360#undef PIPE_CONF_CHECK_CLOCK_FUZZY
9361#undef PIPE_CONF_QUIRK
9362
9363 return true;
9364}
9365
9366static void
9367check_connector_state(struct drm_device *dev)
9368{
9369 struct intel_connector *connector;
9370
9371 list_for_each_entry(connector, &dev->mode_config.connector_list,
9372 base.head) {
9373 /* This also checks the encoder/connector hw state with the
9374 * ->get_hw_state callbacks. */
9375 intel_connector_check_state(connector);
9376
9377 WARN(&connector->new_encoder->base != connector->base.encoder,
9378 "connector's staged encoder doesn't match current encoder\n");
9379 }
9380}
9381
9382static void
9383check_encoder_state(struct drm_device *dev)
9384{
9385 struct intel_encoder *encoder;
9386 struct intel_connector *connector;
9387
9388 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9389 base.head) {
9390 bool enabled = false;
9391 bool active = false;
9392 enum pipe pipe, tracked_pipe;
9393
9394 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
9395 encoder->base.base.id,
9396 drm_get_encoder_name(&encoder->base));
9397
9398 WARN(&encoder->new_crtc->base != encoder->base.crtc,
9399 "encoder's stage crtc doesn't match current crtc\n");
9400 WARN(encoder->connectors_active && !encoder->base.crtc,
9401 "encoder's active_connectors set, but no crtc\n");
9402
9403 list_for_each_entry(connector, &dev->mode_config.connector_list,
9404 base.head) {
9405 if (connector->base.encoder != &encoder->base)
9406 continue;
9407 enabled = true;
9408 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
9409 active = true;
9410 }
9411 WARN(!!encoder->base.crtc != enabled,
9412 "encoder's enabled state mismatch "
9413 "(expected %i, found %i)\n",
9414 !!encoder->base.crtc, enabled);
9415 WARN(active && !encoder->base.crtc,
9416 "active encoder with no crtc\n");
9417
9418 WARN(encoder->connectors_active != active,
9419 "encoder's computed active state doesn't match tracked active state "
9420 "(expected %i, found %i)\n", active, encoder->connectors_active);
9421
9422 active = encoder->get_hw_state(encoder, &pipe);
9423 WARN(active != encoder->connectors_active,
9424 "encoder's hw state doesn't match sw tracking "
9425 "(expected %i, found %i)\n",
9426 encoder->connectors_active, active);
9427
9428 if (!encoder->base.crtc)
9429 continue;
9430
9431 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
9432 WARN(active && pipe != tracked_pipe,
9433 "active encoder's pipe doesn't match"
9434 "(expected %i, found %i)\n",
9435 tracked_pipe, pipe);
9436
9437 }
9438}
9439
9440static void
9441check_crtc_state(struct drm_device *dev)
9442{
9443 drm_i915_private_t *dev_priv = dev->dev_private;
9444 struct intel_crtc *crtc;
9445 struct intel_encoder *encoder;
9446 struct intel_crtc_config pipe_config;
9447
9448 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9449 base.head) {
9450 bool enabled = false;
9451 bool active = false;
9452
9453 memset(&pipe_config, 0, sizeof(pipe_config));
9454
9455 DRM_DEBUG_KMS("[CRTC:%d]\n",
9456 crtc->base.base.id);
9457
9458 WARN(crtc->active && !crtc->base.enabled,
9459 "active crtc, but not enabled in sw tracking\n");
9460
9461 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9462 base.head) {
9463 if (encoder->base.crtc != &crtc->base)
9464 continue;
9465 enabled = true;
9466 if (encoder->connectors_active)
9467 active = true;
9468 }
9469
9470 WARN(active != crtc->active,
9471 "crtc's computed active state doesn't match tracked active state "
9472 "(expected %i, found %i)\n", active, crtc->active);
9473 WARN(enabled != crtc->base.enabled,
9474 "crtc's computed enabled state doesn't match tracked enabled state "
9475 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
9476
9477 active = dev_priv->display.get_pipe_config(crtc,
9478 &pipe_config);
9479
9480 /* hw state is inconsistent with the pipe A quirk */
9481 if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
9482 active = crtc->active;
9483
9484 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9485 base.head) {
9486 enum pipe pipe;
9487 if (encoder->base.crtc != &crtc->base)
9488 continue;
9489 if (encoder->get_hw_state(encoder, &pipe))
9490 encoder->get_config(encoder, &pipe_config);
9491 }
9492
9493 WARN(crtc->active != active,
9494 "crtc active state doesn't match with hw state "
9495 "(expected %i, found %i)\n", crtc->active, active);
9496
9497 if (active &&
9498 !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
9499 WARN(1, "pipe state doesn't match!\n");
9500 intel_dump_pipe_config(crtc, &pipe_config,
9501 "[hw state]");
9502 intel_dump_pipe_config(crtc, &crtc->config,
9503 "[sw state]");
9504 }
9505 }
9506}
9507
9508static void
9509check_shared_dpll_state(struct drm_device *dev)
9510{
9511 drm_i915_private_t *dev_priv = dev->dev_private;
9512 struct intel_crtc *crtc;
9513 struct intel_dpll_hw_state dpll_hw_state;
9514 int i;
9515
9516 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9517 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
9518 int enabled_crtcs = 0, active_crtcs = 0;
9519 bool active;
9520
9521 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
9522
9523 DRM_DEBUG_KMS("%s\n", pll->name);
9524
9525 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
9526
9527 WARN(pll->active > pll->refcount,
9528 "more active pll users than references: %i vs %i\n",
9529 pll->active, pll->refcount);
9530 WARN(pll->active && !pll->on,
9531 "pll in active use but not on in sw tracking\n");
9532 WARN(pll->on && !pll->active,
9533 "pll in on but not on in use in sw tracking\n");
9534 WARN(pll->on != active,
9535 "pll on state mismatch (expected %i, found %i)\n",
9536 pll->on, active);
9537
9538 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
9539 base.head) {
9540 if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
9541 enabled_crtcs++;
9542 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
9543 active_crtcs++;
9544 }
9545 WARN(pll->active != active_crtcs,
9546 "pll active crtcs mismatch (expected %i, found %i)\n",
9547 pll->active, active_crtcs);
9548 WARN(pll->refcount != enabled_crtcs,
9549 "pll enabled crtcs mismatch (expected %i, found %i)\n",
9550 pll->refcount, enabled_crtcs);
9551
9552 WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
9553 sizeof(dpll_hw_state)),
9554 "pll hw state mismatch\n");
9555 }
9556}
9557
9558void
9559intel_modeset_check_state(struct drm_device *dev)
9560{
9561 check_connector_state(dev);
9562 check_encoder_state(dev);
9563 check_crtc_state(dev);
9564 check_shared_dpll_state(dev);
9565}
9566
9567void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
9568 int dotclock)
9569{
9570 /*
9571 * FDI already provided one idea for the dotclock.
9572 * Yell if the encoder disagrees.
9573 */
9574 WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.crtc_clock, dotclock),
9575 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
9576 pipe_config->adjusted_mode.crtc_clock, dotclock);
9577}
9578
9579static int __intel_set_mode(struct drm_crtc *crtc,
9580 struct drm_display_mode *mode,
9581 int x, int y, struct drm_framebuffer *fb)
9582{
9583 struct drm_device *dev = crtc->dev;
9584 drm_i915_private_t *dev_priv = dev->dev_private;
9585 struct drm_display_mode *saved_mode, *saved_hwmode;
9586 struct intel_crtc_config *pipe_config = NULL;
9587 struct intel_crtc *intel_crtc;
9588 unsigned disable_pipes, prepare_pipes, modeset_pipes;
9589 int ret = 0;
9590
9591 saved_mode = kcalloc(2, sizeof(*saved_mode), GFP_KERNEL);
9592 if (!saved_mode)
9593 return -ENOMEM;
9594 saved_hwmode = saved_mode + 1;
9595
9596 intel_modeset_affected_pipes(crtc, &modeset_pipes,
9597 &prepare_pipes, &disable_pipes);
9598
9599 *saved_hwmode = crtc->hwmode;
9600 *saved_mode = crtc->mode;
9601
9602 /* Hack: Because we don't (yet) support global modeset on multiple
9603 * crtcs, we don't keep track of the new mode for more than one crtc.
9604 * Hence simply check whether any bit is set in modeset_pipes in all the
9605 * pieces of code that are not yet converted to deal with mutliple crtcs
9606 * changing their mode at the same time. */
9607 if (modeset_pipes) {
9608 pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
9609 if (IS_ERR(pipe_config)) {
9610 ret = PTR_ERR(pipe_config);
9611 pipe_config = NULL;
9612
9613 goto out;
9614 }
9615 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
9616 "[modeset]");
9617 }
9618
9619 /*
9620 * See if the config requires any additional preparation, e.g.
9621 * to adjust global state with pipes off. We need to do this
9622 * here so we can get the modeset_pipe updated config for the new
9623 * mode set on this crtc. For other crtcs we need to use the
9624 * adjusted_mode bits in the crtc directly.
9625 */
9626 if (IS_VALLEYVIEW(dev)) {
9627 valleyview_modeset_global_pipes(dev, &prepare_pipes,
9628 modeset_pipes, pipe_config);
9629
9630 /* may have added more to prepare_pipes than we should */
9631 prepare_pipes &= ~disable_pipes;
9632 }
9633
9634 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
9635 intel_crtc_disable(&intel_crtc->base);
9636
9637 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
9638 if (intel_crtc->base.enabled)
9639 dev_priv->display.crtc_disable(&intel_crtc->base);
9640 }
9641
9642 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
9643 * to set it here already despite that we pass it down the callchain.
9644 */
9645 if (modeset_pipes) {
9646 crtc->mode = *mode;
9647 /* mode_set/enable/disable functions rely on a correct pipe
9648 * config. */
9649 to_intel_crtc(crtc)->config = *pipe_config;
9650 }
9651
9652 /* Only after disabling all output pipelines that will be changed can we
9653 * update the the output configuration. */
9654 intel_modeset_update_state(dev, prepare_pipes);
9655
9656 if (dev_priv->display.modeset_global_resources)
9657 dev_priv->display.modeset_global_resources(dev);
9658
9659 /* Set up the DPLL and any encoders state that needs to adjust or depend
9660 * on the DPLL.
9661 */
9662 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
9663 ret = intel_crtc_mode_set(&intel_crtc->base,
9664 x, y, fb);
9665 if (ret)
9666 goto done;
9667 }
9668
9669 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
9670 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
9671 dev_priv->display.crtc_enable(&intel_crtc->base);
9672
9673 if (modeset_pipes) {
9674 /* Store real post-adjustment hardware mode. */
9675 crtc->hwmode = pipe_config->adjusted_mode;
9676
9677 /* Calculate and store various constants which
9678 * are later needed by vblank and swap-completion
9679 * timestamping. They are derived from true hwmode.
9680 */
9681 drm_calc_timestamping_constants(crtc);
9682 }
9683
9684 /* FIXME: add subpixel order */
9685done:
9686 if (ret && crtc->enabled) {
9687 crtc->hwmode = *saved_hwmode;
9688 crtc->mode = *saved_mode;
9689 }
9690
9691out:
9692 kfree(pipe_config);
9693 kfree(saved_mode);
9694 return ret;
9695}
9696
9697static int intel_set_mode(struct drm_crtc *crtc,
9698 struct drm_display_mode *mode,
9699 int x, int y, struct drm_framebuffer *fb)
9700{
9701 int ret;
9702
9703 ret = __intel_set_mode(crtc, mode, x, y, fb);
9704
9705 if (ret == 0)
9706 intel_modeset_check_state(crtc->dev);
9707
9708 return ret;
9709}
9710
9711void intel_crtc_restore_mode(struct drm_crtc *crtc)
9712{
9713 intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
9714}
9715
9716#undef for_each_intel_crtc_masked
9717
9718static void intel_set_config_free(struct intel_set_config *config)
9719{
9720 if (!config)
9721 return;
9722
9723 kfree(config->save_connector_encoders);
9724 kfree(config->save_encoder_crtcs);
9725 kfree(config);
9726}
9727
9728static int intel_set_config_save_state(struct drm_device *dev,
9729 struct intel_set_config *config)
9730{
9731 struct drm_encoder *encoder;
9732 struct drm_connector *connector;
9733 int count;
9734
9735 config->save_encoder_crtcs =
9736 kcalloc(dev->mode_config.num_encoder,
9737 sizeof(struct drm_crtc *), GFP_KERNEL);
9738 if (!config->save_encoder_crtcs)
9739 return -ENOMEM;
9740
9741 config->save_connector_encoders =
9742 kcalloc(dev->mode_config.num_connector,
9743 sizeof(struct drm_encoder *), GFP_KERNEL);
9744 if (!config->save_connector_encoders)
9745 return -ENOMEM;
9746
9747 /* Copy data. Note that driver private data is not affected.
9748 * Should anything bad happen only the expected state is
9749 * restored, not the drivers personal bookkeeping.
9750 */
9751 count = 0;
9752 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
9753 config->save_encoder_crtcs[count++] = encoder->crtc;
9754 }
9755
9756 count = 0;
9757 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
9758 config->save_connector_encoders[count++] = connector->encoder;
9759 }
9760
9761 return 0;
9762}
9763
9764static void intel_set_config_restore_state(struct drm_device *dev,
9765 struct intel_set_config *config)
9766{
9767 struct intel_encoder *encoder;
9768 struct intel_connector *connector;
9769 int count;
9770
9771 count = 0;
9772 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
9773 encoder->new_crtc =
9774 to_intel_crtc(config->save_encoder_crtcs[count++]);
9775 }
9776
9777 count = 0;
9778 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
9779 connector->new_encoder =
9780 to_intel_encoder(config->save_connector_encoders[count++]);
9781 }
9782}
9783
9784static bool
9785is_crtc_connector_off(struct drm_mode_set *set)
9786{
9787 int i;
9788
9789 if (set->num_connectors == 0)
9790 return false;
9791
9792 if (WARN_ON(set->connectors == NULL))
9793 return false;
9794
9795 for (i = 0; i < set->num_connectors; i++)
9796 if (set->connectors[i]->encoder &&
9797 set->connectors[i]->encoder->crtc == set->crtc &&
9798 set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
9799 return true;
9800
9801 return false;
9802}
9803
9804static void
9805intel_set_config_compute_mode_changes(struct drm_mode_set *set,
9806 struct intel_set_config *config)
9807{
9808
9809 /* We should be able to check here if the fb has the same properties
9810 * and then just flip_or_move it */
9811 if (is_crtc_connector_off(set)) {
9812 config->mode_changed = true;
9813 } else if (set->crtc->fb != set->fb) {
9814 /* If we have no fb then treat it as a full mode set */
9815 if (set->crtc->fb == NULL) {
9816 struct intel_crtc *intel_crtc =
9817 to_intel_crtc(set->crtc);
9818
9819 if (intel_crtc->active && i915_fastboot) {
9820 DRM_DEBUG_KMS("crtc has no fb, will flip\n");
9821 config->fb_changed = true;
9822 } else {
9823 DRM_DEBUG_KMS("inactive crtc, full mode set\n");
9824 config->mode_changed = true;
9825 }
9826 } else if (set->fb == NULL) {
9827 config->mode_changed = true;
9828 } else if (set->fb->pixel_format !=
9829 set->crtc->fb->pixel_format) {
9830 config->mode_changed = true;
9831 } else {
9832 config->fb_changed = true;
9833 }
9834 }
9835
9836 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
9837 config->fb_changed = true;
9838
9839 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
9840 DRM_DEBUG_KMS("modes are different, full mode set\n");
9841 drm_mode_debug_printmodeline(&set->crtc->mode);
9842 drm_mode_debug_printmodeline(set->mode);
9843 config->mode_changed = true;
9844 }
9845
9846 DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
9847 set->crtc->base.id, config->mode_changed, config->fb_changed);
9848}
9849
9850static int
9851intel_modeset_stage_output_state(struct drm_device *dev,
9852 struct drm_mode_set *set,
9853 struct intel_set_config *config)
9854{
9855 struct drm_crtc *new_crtc;
9856 struct intel_connector *connector;
9857 struct intel_encoder *encoder;
9858 int ro;
9859
9860 /* The upper layers ensure that we either disable a crtc or have a list
9861 * of connectors. For paranoia, double-check this. */
9862 WARN_ON(!set->fb && (set->num_connectors != 0));
9863 WARN_ON(set->fb && (set->num_connectors == 0));
9864
9865 list_for_each_entry(connector, &dev->mode_config.connector_list,
9866 base.head) {
9867 /* Otherwise traverse passed in connector list and get encoders
9868 * for them. */
9869 for (ro = 0; ro < set->num_connectors; ro++) {
9870 if (set->connectors[ro] == &connector->base) {
9871 connector->new_encoder = connector->encoder;
9872 break;
9873 }
9874 }
9875
9876 /* If we disable the crtc, disable all its connectors. Also, if
9877 * the connector is on the changing crtc but not on the new
9878 * connector list, disable it. */
9879 if ((!set->fb || ro == set->num_connectors) &&
9880 connector->base.encoder &&
9881 connector->base.encoder->crtc == set->crtc) {
9882 connector->new_encoder = NULL;
9883
9884 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
9885 connector->base.base.id,
9886 drm_get_connector_name(&connector->base));
9887 }
9888
9889
9890 if (&connector->new_encoder->base != connector->base.encoder) {
9891 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
9892 config->mode_changed = true;
9893 }
9894 }
9895 /* connector->new_encoder is now updated for all connectors. */
9896
9897 /* Update crtc of enabled connectors. */
9898 list_for_each_entry(connector, &dev->mode_config.connector_list,
9899 base.head) {
9900 if (!connector->new_encoder)
9901 continue;
9902
9903 new_crtc = connector->new_encoder->base.crtc;
9904
9905 for (ro = 0; ro < set->num_connectors; ro++) {
9906 if (set->connectors[ro] == &connector->base)
9907 new_crtc = set->crtc;
9908 }
9909
9910 /* Make sure the new CRTC will work with the encoder */
9911 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
9912 new_crtc)) {
9913 return -EINVAL;
9914 }
9915 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
9916
9917 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
9918 connector->base.base.id,
9919 drm_get_connector_name(&connector->base),
9920 new_crtc->base.id);
9921 }
9922
9923 /* Check for any encoders that needs to be disabled. */
9924 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9925 base.head) {
9926 int num_connectors = 0;
9927 list_for_each_entry(connector,
9928 &dev->mode_config.connector_list,
9929 base.head) {
9930 if (connector->new_encoder == encoder) {
9931 WARN_ON(!connector->new_encoder->new_crtc);
9932 num_connectors++;
9933 }
9934 }
9935
9936 if (num_connectors == 0)
9937 encoder->new_crtc = NULL;
9938 else if (num_connectors > 1)
9939 return -EINVAL;
9940
9941 /* Only now check for crtc changes so we don't miss encoders
9942 * that will be disabled. */
9943 if (&encoder->new_crtc->base != encoder->base.crtc) {
9944 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
9945 config->mode_changed = true;
9946 }
9947 }
9948 /* Now we've also updated encoder->new_crtc for all encoders. */
9949
9950 return 0;
9951}
9952
9953static int intel_crtc_set_config(struct drm_mode_set *set)
9954{
9955 struct drm_device *dev;
9956 struct drm_mode_set save_set;
9957 struct intel_set_config *config;
9958 int ret;
9959
9960 BUG_ON(!set);
9961 BUG_ON(!set->crtc);
9962 BUG_ON(!set->crtc->helper_private);
9963
9964 /* Enforce sane interface api - has been abused by the fb helper. */
9965 BUG_ON(!set->mode && set->fb);
9966 BUG_ON(set->fb && set->num_connectors == 0);
9967
9968 if (set->fb) {
9969 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
9970 set->crtc->base.id, set->fb->base.id,
9971 (int)set->num_connectors, set->x, set->y);
9972 } else {
9973 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
9974 }
9975
9976 dev = set->crtc->dev;
9977
9978 ret = -ENOMEM;
9979 config = kzalloc(sizeof(*config), GFP_KERNEL);
9980 if (!config)
9981 goto out_config;
9982
9983 ret = intel_set_config_save_state(dev, config);
9984 if (ret)
9985 goto out_config;
9986
9987 save_set.crtc = set->crtc;
9988 save_set.mode = &set->crtc->mode;
9989 save_set.x = set->crtc->x;
9990 save_set.y = set->crtc->y;
9991 save_set.fb = set->crtc->fb;
9992
9993 /* Compute whether we need a full modeset, only an fb base update or no
9994 * change at all. In the future we might also check whether only the
9995 * mode changed, e.g. for LVDS where we only change the panel fitter in
9996 * such cases. */
9997 intel_set_config_compute_mode_changes(set, config);
9998
9999 ret = intel_modeset_stage_output_state(dev, set, config);
10000 if (ret)
10001 goto fail;
10002
10003 if (config->mode_changed) {
10004 ret = intel_set_mode(set->crtc, set->mode,
10005 set->x, set->y, set->fb);
10006 } else if (config->fb_changed) {
10007 intel_crtc_wait_for_pending_flips(set->crtc);
10008
10009 ret = intel_pipe_set_base(set->crtc,
10010 set->x, set->y, set->fb);
10011 /*
10012 * In the fastboot case this may be our only check of the
10013 * state after boot. It would be better to only do it on
10014 * the first update, but we don't have a nice way of doing that
10015 * (and really, set_config isn't used much for high freq page
10016 * flipping, so increasing its cost here shouldn't be a big
10017 * deal).
10018 */
10019 if (i915_fastboot && ret == 0)
10020 intel_modeset_check_state(set->crtc->dev);
10021 }
10022
10023 if (ret) {
10024 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
10025 set->crtc->base.id, ret);
10026fail:
10027 intel_set_config_restore_state(dev, config);
10028
10029 /* Try to restore the config */
10030 if (config->mode_changed &&
10031 intel_set_mode(save_set.crtc, save_set.mode,
10032 save_set.x, save_set.y, save_set.fb))
10033 DRM_ERROR("failed to restore config after modeset failure\n");
10034 }
10035
10036out_config:
10037 intel_set_config_free(config);
10038 return ret;
10039}
10040
10041static const struct drm_crtc_funcs intel_crtc_funcs = {
10042 .cursor_set = intel_crtc_cursor_set,
10043 .cursor_move = intel_crtc_cursor_move,
10044 .gamma_set = intel_crtc_gamma_set,
10045 .set_config = intel_crtc_set_config,
10046 .destroy = intel_crtc_destroy,
10047 .page_flip = intel_crtc_page_flip,
10048};
10049
10050static void intel_cpu_pll_init(struct drm_device *dev)
10051{
10052 if (HAS_DDI(dev))
10053 intel_ddi_pll_init(dev);
10054}
10055
10056static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
10057 struct intel_shared_dpll *pll,
10058 struct intel_dpll_hw_state *hw_state)
10059{
10060 uint32_t val;
10061
10062 val = I915_READ(PCH_DPLL(pll->id));
10063 hw_state->dpll = val;
10064 hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
10065 hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
10066
10067 return val & DPLL_VCO_ENABLE;
10068}
10069
10070static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
10071 struct intel_shared_dpll *pll)
10072{
10073 I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
10074 I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
10075}
10076
10077static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
10078 struct intel_shared_dpll *pll)
10079{
10080 /* PCH refclock must be enabled first */
10081 ibx_assert_pch_refclk_enabled(dev_priv);
10082
10083 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10084
10085 /* Wait for the clocks to stabilize. */
10086 POSTING_READ(PCH_DPLL(pll->id));
10087 udelay(150);
10088
10089 /* The pixel multiplier can only be updated once the
10090 * DPLL is enabled and the clocks are stable.
10091 *
10092 * So write it again.
10093 */
10094 I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
10095 POSTING_READ(PCH_DPLL(pll->id));
10096 udelay(200);
10097}
10098
10099static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
10100 struct intel_shared_dpll *pll)
10101{
10102 struct drm_device *dev = dev_priv->dev;
10103 struct intel_crtc *crtc;
10104
10105 /* Make sure no transcoder isn't still depending on us. */
10106 list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
10107 if (intel_crtc_to_shared_dpll(crtc) == pll)
10108 assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
10109 }
10110
10111 I915_WRITE(PCH_DPLL(pll->id), 0);
10112 POSTING_READ(PCH_DPLL(pll->id));
10113 udelay(200);
10114}
10115
10116static char *ibx_pch_dpll_names[] = {
10117 "PCH DPLL A",
10118 "PCH DPLL B",
10119};
10120
10121static void ibx_pch_dpll_init(struct drm_device *dev)
10122{
10123 struct drm_i915_private *dev_priv = dev->dev_private;
10124 int i;
10125
10126 dev_priv->num_shared_dpll = 2;
10127
10128 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
10129 dev_priv->shared_dplls[i].id = i;
10130 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
10131 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
10132 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
10133 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
10134 dev_priv->shared_dplls[i].get_hw_state =
10135 ibx_pch_dpll_get_hw_state;
10136 }
10137}
10138
10139static void intel_shared_dpll_init(struct drm_device *dev)
10140{
10141 struct drm_i915_private *dev_priv = dev->dev_private;
10142
10143 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
10144 ibx_pch_dpll_init(dev);
10145 else
10146 dev_priv->num_shared_dpll = 0;
10147
10148 BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
10149}
10150
10151static void intel_crtc_init(struct drm_device *dev, int pipe)
10152{
10153 drm_i915_private_t *dev_priv = dev->dev_private;
10154 struct intel_crtc *intel_crtc;
10155 int i;
10156
10157 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
10158 if (intel_crtc == NULL)
10159 return;
10160
10161 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
10162
10163 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
10164 for (i = 0; i < 256; i++) {
10165 intel_crtc->lut_r[i] = i;
10166 intel_crtc->lut_g[i] = i;
10167 intel_crtc->lut_b[i] = i;
10168 }
10169
10170 /*
10171 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
10172 * is hooked to plane B. Hence we want plane A feeding pipe B.
10173 */
10174 intel_crtc->pipe = pipe;
10175 intel_crtc->plane = pipe;
10176 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
10177 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
10178 intel_crtc->plane = !pipe;
10179 }
10180
10181 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
10182 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
10183 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
10184 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
10185
10186 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
10187}
10188
10189enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
10190{
10191 struct drm_encoder *encoder = connector->base.encoder;
10192
10193 WARN_ON(!mutex_is_locked(&connector->base.dev->mode_config.mutex));
10194
10195 if (!encoder)
10196 return INVALID_PIPE;
10197
10198 return to_intel_crtc(encoder->crtc)->pipe;
10199}
10200
10201int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
10202 struct drm_file *file)
10203{
10204 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
10205 struct drm_mode_object *drmmode_obj;
10206 struct intel_crtc *crtc;
10207
10208 if (!drm_core_check_feature(dev, DRIVER_MODESET))
10209 return -ENODEV;
10210
10211 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
10212 DRM_MODE_OBJECT_CRTC);
10213
10214 if (!drmmode_obj) {
10215 DRM_ERROR("no such CRTC id\n");
10216 return -ENOENT;
10217 }
10218
10219 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
10220 pipe_from_crtc_id->pipe = crtc->pipe;
10221
10222 return 0;
10223}
10224
10225static int intel_encoder_clones(struct intel_encoder *encoder)
10226{
10227 struct drm_device *dev = encoder->base.dev;
10228 struct intel_encoder *source_encoder;
10229 int index_mask = 0;
10230 int entry = 0;
10231
10232 list_for_each_entry(source_encoder,
10233 &dev->mode_config.encoder_list, base.head) {
10234
10235 if (encoder == source_encoder)
10236 index_mask |= (1 << entry);
10237
10238 /* Intel hw has only one MUX where enocoders could be cloned. */
10239 if (encoder->cloneable && source_encoder->cloneable)
10240 index_mask |= (1 << entry);
10241
10242 entry++;
10243 }
10244
10245 return index_mask;
10246}
10247
10248static bool has_edp_a(struct drm_device *dev)
10249{
10250 struct drm_i915_private *dev_priv = dev->dev_private;
10251
10252 if (!IS_MOBILE(dev))
10253 return false;
10254
10255 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
10256 return false;
10257
10258 if (IS_GEN5(dev) &&
10259 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
10260 return false;
10261
10262 return true;
10263}
10264
10265const char *intel_output_name(int output)
10266{
10267 static const char *names[] = {
10268 [INTEL_OUTPUT_UNUSED] = "Unused",
10269 [INTEL_OUTPUT_ANALOG] = "Analog",
10270 [INTEL_OUTPUT_DVO] = "DVO",
10271 [INTEL_OUTPUT_SDVO] = "SDVO",
10272 [INTEL_OUTPUT_LVDS] = "LVDS",
10273 [INTEL_OUTPUT_TVOUT] = "TV",
10274 [INTEL_OUTPUT_HDMI] = "HDMI",
10275 [INTEL_OUTPUT_DISPLAYPORT] = "DisplayPort",
10276 [INTEL_OUTPUT_EDP] = "eDP",
10277 [INTEL_OUTPUT_DSI] = "DSI",
10278 [INTEL_OUTPUT_UNKNOWN] = "Unknown",
10279 };
10280
10281 if (output < 0 || output >= ARRAY_SIZE(names) || !names[output])
10282 return "Invalid";
10283
10284 return names[output];
10285}
10286
10287static void intel_setup_outputs(struct drm_device *dev)
10288{
10289 struct drm_i915_private *dev_priv = dev->dev_private;
10290 struct intel_encoder *encoder;
10291 bool dpd_is_edp = false;
10292
10293 intel_lvds_init(dev);
10294
10295 if (!IS_ULT(dev))
10296 intel_crt_init(dev);
10297
10298 if (HAS_DDI(dev)) {
10299 int found;
10300
10301 /* Haswell uses DDI functions to detect digital outputs */
10302 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
10303 /* DDI A only supports eDP */
10304 if (found)
10305 intel_ddi_init(dev, PORT_A);
10306
10307 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
10308 * register */
10309 found = I915_READ(SFUSE_STRAP);
10310
10311 if (found & SFUSE_STRAP_DDIB_DETECTED)
10312 intel_ddi_init(dev, PORT_B);
10313 if (found & SFUSE_STRAP_DDIC_DETECTED)
10314 intel_ddi_init(dev, PORT_C);
10315 if (found & SFUSE_STRAP_DDID_DETECTED)
10316 intel_ddi_init(dev, PORT_D);
10317 } else if (HAS_PCH_SPLIT(dev)) {
10318 int found;
10319 dpd_is_edp = intel_dpd_is_edp(dev);
10320
10321 if (has_edp_a(dev))
10322 intel_dp_init(dev, DP_A, PORT_A);
10323
10324 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
10325 /* PCH SDVOB multiplex with HDMIB */
10326 found = intel_sdvo_init(dev, PCH_SDVOB, true);
10327 if (!found)
10328 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
10329 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
10330 intel_dp_init(dev, PCH_DP_B, PORT_B);
10331 }
10332
10333 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
10334 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
10335
10336 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
10337 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
10338
10339 if (I915_READ(PCH_DP_C) & DP_DETECTED)
10340 intel_dp_init(dev, PCH_DP_C, PORT_C);
10341
10342 if (I915_READ(PCH_DP_D) & DP_DETECTED)
10343 intel_dp_init(dev, PCH_DP_D, PORT_D);
10344 } else if (IS_VALLEYVIEW(dev)) {
10345 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
10346 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
10347 PORT_B);
10348 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
10349 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
10350 }
10351
10352 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
10353 intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
10354 PORT_C);
10355 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
10356 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
10357 PORT_C);
10358 }
10359
10360 intel_dsi_init(dev);
10361 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
10362 bool found = false;
10363
10364 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10365 DRM_DEBUG_KMS("probing SDVOB\n");
10366 found = intel_sdvo_init(dev, GEN3_SDVOB, true);
10367 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
10368 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
10369 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
10370 }
10371
10372 if (!found && SUPPORTS_INTEGRATED_DP(dev))
10373 intel_dp_init(dev, DP_B, PORT_B);
10374 }
10375
10376 /* Before G4X SDVOC doesn't have its own detect register */
10377
10378 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
10379 DRM_DEBUG_KMS("probing SDVOC\n");
10380 found = intel_sdvo_init(dev, GEN3_SDVOC, false);
10381 }
10382
10383 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
10384
10385 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
10386 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
10387 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
10388 }
10389 if (SUPPORTS_INTEGRATED_DP(dev))
10390 intel_dp_init(dev, DP_C, PORT_C);
10391 }
10392
10393 if (SUPPORTS_INTEGRATED_DP(dev) &&
10394 (I915_READ(DP_D) & DP_DETECTED))
10395 intel_dp_init(dev, DP_D, PORT_D);
10396 } else if (IS_GEN2(dev))
10397 intel_dvo_init(dev);
10398
10399 if (SUPPORTS_TV(dev))
10400 intel_tv_init(dev);
10401
10402 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
10403 encoder->base.possible_crtcs = encoder->crtc_mask;
10404 encoder->base.possible_clones =
10405 intel_encoder_clones(encoder);
10406 }
10407
10408 intel_init_pch_refclk(dev);
10409
10410 drm_helper_move_panel_connectors_to_head(dev);
10411}
10412
10413void intel_framebuffer_fini(struct intel_framebuffer *fb)
10414{
10415 drm_framebuffer_cleanup(&fb->base);
10416 WARN_ON(!fb->obj->framebuffer_references--);
10417 drm_gem_object_unreference_unlocked(&fb->obj->base);
10418}
10419
10420static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
10421{
10422 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10423
10424 intel_framebuffer_fini(intel_fb);
10425 kfree(intel_fb);
10426}
10427
10428static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
10429 struct drm_file *file,
10430 unsigned int *handle)
10431{
10432 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
10433 struct drm_i915_gem_object *obj = intel_fb->obj;
10434
10435 return drm_gem_handle_create(file, &obj->base, handle);
10436}
10437
10438static const struct drm_framebuffer_funcs intel_fb_funcs = {
10439 .destroy = intel_user_framebuffer_destroy,
10440 .create_handle = intel_user_framebuffer_create_handle,
10441};
10442
10443int intel_framebuffer_init(struct drm_device *dev,
10444 struct intel_framebuffer *intel_fb,
10445 struct drm_mode_fb_cmd2 *mode_cmd,
10446 struct drm_i915_gem_object *obj)
10447{
10448 int aligned_height, tile_height;
10449 int pitch_limit;
10450 int ret;
10451
10452 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
10453
10454 if (obj->tiling_mode == I915_TILING_Y) {
10455 DRM_DEBUG("hardware does not support tiling Y\n");
10456 return -EINVAL;
10457 }
10458
10459 if (mode_cmd->pitches[0] & 63) {
10460 DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
10461 mode_cmd->pitches[0]);
10462 return -EINVAL;
10463 }
10464
10465 if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
10466 pitch_limit = 32*1024;
10467 } else if (INTEL_INFO(dev)->gen >= 4) {
10468 if (obj->tiling_mode)
10469 pitch_limit = 16*1024;
10470 else
10471 pitch_limit = 32*1024;
10472 } else if (INTEL_INFO(dev)->gen >= 3) {
10473 if (obj->tiling_mode)
10474 pitch_limit = 8*1024;
10475 else
10476 pitch_limit = 16*1024;
10477 } else
10478 /* XXX DSPC is limited to 4k tiled */
10479 pitch_limit = 8*1024;
10480
10481 if (mode_cmd->pitches[0] > pitch_limit) {
10482 DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
10483 obj->tiling_mode ? "tiled" : "linear",
10484 mode_cmd->pitches[0], pitch_limit);
10485 return -EINVAL;
10486 }
10487
10488 if (obj->tiling_mode != I915_TILING_NONE &&
10489 mode_cmd->pitches[0] != obj->stride) {
10490 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
10491 mode_cmd->pitches[0], obj->stride);
10492 return -EINVAL;
10493 }
10494
10495 /* Reject formats not supported by any plane early. */
10496 switch (mode_cmd->pixel_format) {
10497 case DRM_FORMAT_C8:
10498 case DRM_FORMAT_RGB565:
10499 case DRM_FORMAT_XRGB8888:
10500 case DRM_FORMAT_ARGB8888:
10501 break;
10502 case DRM_FORMAT_XRGB1555:
10503 case DRM_FORMAT_ARGB1555:
10504 if (INTEL_INFO(dev)->gen > 3) {
10505 DRM_DEBUG("unsupported pixel format: %s\n",
10506 drm_get_format_name(mode_cmd->pixel_format));
10507 return -EINVAL;
10508 }
10509 break;
10510 case DRM_FORMAT_XBGR8888:
10511 case DRM_FORMAT_ABGR8888:
10512 case DRM_FORMAT_XRGB2101010:
10513 case DRM_FORMAT_ARGB2101010:
10514 case DRM_FORMAT_XBGR2101010:
10515 case DRM_FORMAT_ABGR2101010:
10516 if (INTEL_INFO(dev)->gen < 4) {
10517 DRM_DEBUG("unsupported pixel format: %s\n",
10518 drm_get_format_name(mode_cmd->pixel_format));
10519 return -EINVAL;
10520 }
10521 break;
10522 case DRM_FORMAT_YUYV:
10523 case DRM_FORMAT_UYVY:
10524 case DRM_FORMAT_YVYU:
10525 case DRM_FORMAT_VYUY:
10526 if (INTEL_INFO(dev)->gen < 5) {
10527 DRM_DEBUG("unsupported pixel format: %s\n",
10528 drm_get_format_name(mode_cmd->pixel_format));
10529 return -EINVAL;
10530 }
10531 break;
10532 default:
10533 DRM_DEBUG("unsupported pixel format: %s\n",
10534 drm_get_format_name(mode_cmd->pixel_format));
10535 return -EINVAL;
10536 }
10537
10538 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
10539 if (mode_cmd->offsets[0] != 0)
10540 return -EINVAL;
10541
10542 tile_height = IS_GEN2(dev) ? 16 : 8;
10543 aligned_height = ALIGN(mode_cmd->height,
10544 obj->tiling_mode ? tile_height : 1);
10545 /* FIXME drm helper for size checks (especially planar formats)? */
10546 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
10547 return -EINVAL;
10548
10549 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
10550 intel_fb->obj = obj;
10551 intel_fb->obj->framebuffer_references++;
10552
10553 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
10554 if (ret) {
10555 DRM_ERROR("framebuffer init failed %d\n", ret);
10556 return ret;
10557 }
10558
10559 return 0;
10560}
10561
10562static struct drm_framebuffer *
10563intel_user_framebuffer_create(struct drm_device *dev,
10564 struct drm_file *filp,
10565 struct drm_mode_fb_cmd2 *mode_cmd)
10566{
10567 struct drm_i915_gem_object *obj;
10568
10569 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
10570 mode_cmd->handles[0]));
10571 if (&obj->base == NULL)
10572 return ERR_PTR(-ENOENT);
10573
10574 return intel_framebuffer_create(dev, mode_cmd, obj);
10575}
10576
10577#ifndef CONFIG_DRM_I915_FBDEV
10578static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
10579{
10580}
10581#endif
10582
10583static const struct drm_mode_config_funcs intel_mode_funcs = {
10584 .fb_create = intel_user_framebuffer_create,
10585 .output_poll_changed = intel_fbdev_output_poll_changed,
10586};
10587
10588/* Set up chip specific display functions */
10589static void intel_init_display(struct drm_device *dev)
10590{
10591 struct drm_i915_private *dev_priv = dev->dev_private;
10592
10593 if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
10594 dev_priv->display.find_dpll = g4x_find_best_dpll;
10595 else if (IS_VALLEYVIEW(dev))
10596 dev_priv->display.find_dpll = vlv_find_best_dpll;
10597 else if (IS_PINEVIEW(dev))
10598 dev_priv->display.find_dpll = pnv_find_best_dpll;
10599 else
10600 dev_priv->display.find_dpll = i9xx_find_best_dpll;
10601
10602 if (HAS_DDI(dev)) {
10603 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
10604 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
10605 dev_priv->display.crtc_enable = haswell_crtc_enable;
10606 dev_priv->display.crtc_disable = haswell_crtc_disable;
10607 dev_priv->display.off = haswell_crtc_off;
10608 dev_priv->display.update_plane = ironlake_update_plane;
10609 } else if (HAS_PCH_SPLIT(dev)) {
10610 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
10611 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
10612 dev_priv->display.crtc_enable = ironlake_crtc_enable;
10613 dev_priv->display.crtc_disable = ironlake_crtc_disable;
10614 dev_priv->display.off = ironlake_crtc_off;
10615 dev_priv->display.update_plane = ironlake_update_plane;
10616 } else if (IS_VALLEYVIEW(dev)) {
10617 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10618 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10619 dev_priv->display.crtc_enable = valleyview_crtc_enable;
10620 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10621 dev_priv->display.off = i9xx_crtc_off;
10622 dev_priv->display.update_plane = i9xx_update_plane;
10623 } else {
10624 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
10625 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
10626 dev_priv->display.crtc_enable = i9xx_crtc_enable;
10627 dev_priv->display.crtc_disable = i9xx_crtc_disable;
10628 dev_priv->display.off = i9xx_crtc_off;
10629 dev_priv->display.update_plane = i9xx_update_plane;
10630 }
10631
10632 /* Returns the core display clock speed */
10633 if (IS_VALLEYVIEW(dev))
10634 dev_priv->display.get_display_clock_speed =
10635 valleyview_get_display_clock_speed;
10636 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
10637 dev_priv->display.get_display_clock_speed =
10638 i945_get_display_clock_speed;
10639 else if (IS_I915G(dev))
10640 dev_priv->display.get_display_clock_speed =
10641 i915_get_display_clock_speed;
10642 else if (IS_I945GM(dev) || IS_845G(dev))
10643 dev_priv->display.get_display_clock_speed =
10644 i9xx_misc_get_display_clock_speed;
10645 else if (IS_PINEVIEW(dev))
10646 dev_priv->display.get_display_clock_speed =
10647 pnv_get_display_clock_speed;
10648 else if (IS_I915GM(dev))
10649 dev_priv->display.get_display_clock_speed =
10650 i915gm_get_display_clock_speed;
10651 else if (IS_I865G(dev))
10652 dev_priv->display.get_display_clock_speed =
10653 i865_get_display_clock_speed;
10654 else if (IS_I85X(dev))
10655 dev_priv->display.get_display_clock_speed =
10656 i855_get_display_clock_speed;
10657 else /* 852, 830 */
10658 dev_priv->display.get_display_clock_speed =
10659 i830_get_display_clock_speed;
10660
10661 if (HAS_PCH_SPLIT(dev)) {
10662 if (IS_GEN5(dev)) {
10663 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
10664 dev_priv->display.write_eld = ironlake_write_eld;
10665 } else if (IS_GEN6(dev)) {
10666 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
10667 dev_priv->display.write_eld = ironlake_write_eld;
10668 } else if (IS_IVYBRIDGE(dev)) {
10669 /* FIXME: detect B0+ stepping and use auto training */
10670 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
10671 dev_priv->display.write_eld = ironlake_write_eld;
10672 dev_priv->display.modeset_global_resources =
10673 ivb_modeset_global_resources;
10674 } else if (IS_HASWELL(dev) || IS_GEN8(dev)) {
10675 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
10676 dev_priv->display.write_eld = haswell_write_eld;
10677 dev_priv->display.modeset_global_resources =
10678 haswell_modeset_global_resources;
10679 }
10680 } else if (IS_G4X(dev)) {
10681 dev_priv->display.write_eld = g4x_write_eld;
10682 } else if (IS_VALLEYVIEW(dev)) {
10683 dev_priv->display.modeset_global_resources =
10684 valleyview_modeset_global_resources;
10685 dev_priv->display.write_eld = ironlake_write_eld;
10686 }
10687
10688 /* Default just returns -ENODEV to indicate unsupported */
10689 dev_priv->display.queue_flip = intel_default_queue_flip;
10690
10691 switch (INTEL_INFO(dev)->gen) {
10692 case 2:
10693 dev_priv->display.queue_flip = intel_gen2_queue_flip;
10694 break;
10695
10696 case 3:
10697 dev_priv->display.queue_flip = intel_gen3_queue_flip;
10698 break;
10699
10700 case 4:
10701 case 5:
10702 dev_priv->display.queue_flip = intel_gen4_queue_flip;
10703 break;
10704
10705 case 6:
10706 dev_priv->display.queue_flip = intel_gen6_queue_flip;
10707 break;
10708 case 7:
10709 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
10710 dev_priv->display.queue_flip = intel_gen7_queue_flip;
10711 break;
10712 }
10713
10714 intel_panel_init_backlight_funcs(dev);
10715}
10716
10717/*
10718 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
10719 * resume, or other times. This quirk makes sure that's the case for
10720 * affected systems.
10721 */
10722static void quirk_pipea_force(struct drm_device *dev)
10723{
10724 struct drm_i915_private *dev_priv = dev->dev_private;
10725
10726 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
10727 DRM_INFO("applying pipe a force quirk\n");
10728}
10729
10730/*
10731 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
10732 */
10733static void quirk_ssc_force_disable(struct drm_device *dev)
10734{
10735 struct drm_i915_private *dev_priv = dev->dev_private;
10736 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
10737 DRM_INFO("applying lvds SSC disable quirk\n");
10738}
10739
10740/*
10741 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
10742 * brightness value
10743 */
10744static void quirk_invert_brightness(struct drm_device *dev)
10745{
10746 struct drm_i915_private *dev_priv = dev->dev_private;
10747 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
10748 DRM_INFO("applying inverted panel brightness quirk\n");
10749}
10750
10751struct intel_quirk {
10752 int device;
10753 int subsystem_vendor;
10754 int subsystem_device;
10755 void (*hook)(struct drm_device *dev);
10756};
10757
10758/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
10759struct intel_dmi_quirk {
10760 void (*hook)(struct drm_device *dev);
10761 const struct dmi_system_id (*dmi_id_list)[];
10762};
10763
10764static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
10765{
10766 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
10767 return 1;
10768}
10769
10770static const struct intel_dmi_quirk intel_dmi_quirks[] = {
10771 {
10772 .dmi_id_list = &(const struct dmi_system_id[]) {
10773 {
10774 .callback = intel_dmi_reverse_brightness,
10775 .ident = "NCR Corporation",
10776 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
10777 DMI_MATCH(DMI_PRODUCT_NAME, ""),
10778 },
10779 },
10780 { } /* terminating entry */
10781 },
10782 .hook = quirk_invert_brightness,
10783 },
10784};
10785
10786static struct intel_quirk intel_quirks[] = {
10787 /* HP Mini needs pipe A force quirk (LP: #322104) */
10788 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
10789
10790 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
10791 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
10792
10793 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
10794 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
10795
10796 /* 830 needs to leave pipe A & dpll A up */
10797 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
10798
10799 /* Lenovo U160 cannot use SSC on LVDS */
10800 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
10801
10802 /* Sony Vaio Y cannot use SSC on LVDS */
10803 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
10804
10805 /*
10806 * All GM45 Acer (and its brands eMachines and Packard Bell) laptops
10807 * seem to use inverted backlight PWM.
10808 */
10809 { 0x2a42, 0x1025, PCI_ANY_ID, quirk_invert_brightness },
10810};
10811
10812static void intel_init_quirks(struct drm_device *dev)
10813{
10814 struct pci_dev *d = dev->pdev;
10815 int i;
10816
10817 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
10818 struct intel_quirk *q = &intel_quirks[i];
10819
10820 if (d->device == q->device &&
10821 (d->subsystem_vendor == q->subsystem_vendor ||
10822 q->subsystem_vendor == PCI_ANY_ID) &&
10823 (d->subsystem_device == q->subsystem_device ||
10824 q->subsystem_device == PCI_ANY_ID))
10825 q->hook(dev);
10826 }
10827 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
10828 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
10829 intel_dmi_quirks[i].hook(dev);
10830 }
10831}
10832
10833/* Disable the VGA plane that we never use */
10834static void i915_disable_vga(struct drm_device *dev)
10835{
10836 struct drm_i915_private *dev_priv = dev->dev_private;
10837 u8 sr1;
10838 u32 vga_reg = i915_vgacntrl_reg(dev);
10839
10840 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
10841 outb(SR01, VGA_SR_INDEX);
10842 sr1 = inb(VGA_SR_DATA);
10843 outb(sr1 | 1<<5, VGA_SR_DATA);
10844 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
10845 udelay(300);
10846
10847 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
10848 POSTING_READ(vga_reg);
10849}
10850
10851void intel_modeset_init_hw(struct drm_device *dev)
10852{
10853 intel_prepare_ddi(dev);
10854
10855 intel_init_clock_gating(dev);
10856
10857 intel_reset_dpio(dev);
10858
10859 mutex_lock(&dev->struct_mutex);
10860 intel_enable_gt_powersave(dev);
10861 mutex_unlock(&dev->struct_mutex);
10862}
10863
10864void intel_modeset_suspend_hw(struct drm_device *dev)
10865{
10866 intel_suspend_hw(dev);
10867}
10868
10869void intel_modeset_init(struct drm_device *dev)
10870{
10871 struct drm_i915_private *dev_priv = dev->dev_private;
10872 int i, j, ret;
10873
10874 drm_mode_config_init(dev);
10875
10876 dev->mode_config.min_width = 0;
10877 dev->mode_config.min_height = 0;
10878
10879 dev->mode_config.preferred_depth = 24;
10880 dev->mode_config.prefer_shadow = 1;
10881
10882 dev->mode_config.funcs = &intel_mode_funcs;
10883
10884 intel_init_quirks(dev);
10885
10886 intel_init_pm(dev);
10887
10888 if (INTEL_INFO(dev)->num_pipes == 0)
10889 return;
10890
10891 intel_init_display(dev);
10892
10893 if (IS_GEN2(dev)) {
10894 dev->mode_config.max_width = 2048;
10895 dev->mode_config.max_height = 2048;
10896 } else if (IS_GEN3(dev)) {
10897 dev->mode_config.max_width = 4096;
10898 dev->mode_config.max_height = 4096;
10899 } else {
10900 dev->mode_config.max_width = 8192;
10901 dev->mode_config.max_height = 8192;
10902 }
10903 dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
10904
10905 DRM_DEBUG_KMS("%d display pipe%s available.\n",
10906 INTEL_INFO(dev)->num_pipes,
10907 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
10908
10909 for_each_pipe(i) {
10910 intel_crtc_init(dev, i);
10911 for (j = 0; j < dev_priv->num_plane; j++) {
10912 ret = intel_plane_init(dev, i, j);
10913 if (ret)
10914 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
10915 pipe_name(i), sprite_name(i, j), ret);
10916 }
10917 }
10918
10919 intel_init_dpio(dev);
10920 intel_reset_dpio(dev);
10921
10922 intel_cpu_pll_init(dev);
10923 intel_shared_dpll_init(dev);
10924
10925 /* Just disable it once at startup */
10926 i915_disable_vga(dev);
10927 intel_setup_outputs(dev);
10928
10929 /* Just in case the BIOS is doing something questionable. */
10930 intel_disable_fbc(dev);
10931}
10932
10933static void
10934intel_connector_break_all_links(struct intel_connector *connector)
10935{
10936 connector->base.dpms = DRM_MODE_DPMS_OFF;
10937 connector->base.encoder = NULL;
10938 connector->encoder->connectors_active = false;
10939 connector->encoder->base.crtc = NULL;
10940}
10941
10942static void intel_enable_pipe_a(struct drm_device *dev)
10943{
10944 struct intel_connector *connector;
10945 struct drm_connector *crt = NULL;
10946 struct intel_load_detect_pipe load_detect_temp;
10947
10948 /* We can't just switch on the pipe A, we need to set things up with a
10949 * proper mode and output configuration. As a gross hack, enable pipe A
10950 * by enabling the load detect pipe once. */
10951 list_for_each_entry(connector,
10952 &dev->mode_config.connector_list,
10953 base.head) {
10954 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
10955 crt = &connector->base;
10956 break;
10957 }
10958 }
10959
10960 if (!crt)
10961 return;
10962
10963 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
10964 intel_release_load_detect_pipe(crt, &load_detect_temp);
10965
10966
10967}
10968
10969static bool
10970intel_check_plane_mapping(struct intel_crtc *crtc)
10971{
10972 struct drm_device *dev = crtc->base.dev;
10973 struct drm_i915_private *dev_priv = dev->dev_private;
10974 u32 reg, val;
10975
10976 if (INTEL_INFO(dev)->num_pipes == 1)
10977 return true;
10978
10979 reg = DSPCNTR(!crtc->plane);
10980 val = I915_READ(reg);
10981
10982 if ((val & DISPLAY_PLANE_ENABLE) &&
10983 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
10984 return false;
10985
10986 return true;
10987}
10988
10989static void intel_sanitize_crtc(struct intel_crtc *crtc)
10990{
10991 struct drm_device *dev = crtc->base.dev;
10992 struct drm_i915_private *dev_priv = dev->dev_private;
10993 u32 reg;
10994
10995 /* Clear any frame start delays used for debugging left by the BIOS */
10996 reg = PIPECONF(crtc->config.cpu_transcoder);
10997 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
10998
10999 /* We need to sanitize the plane -> pipe mapping first because this will
11000 * disable the crtc (and hence change the state) if it is wrong. Note
11001 * that gen4+ has a fixed plane -> pipe mapping. */
11002 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
11003 struct intel_connector *connector;
11004 bool plane;
11005
11006 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
11007 crtc->base.base.id);
11008
11009 /* Pipe has the wrong plane attached and the plane is active.
11010 * Temporarily change the plane mapping and disable everything
11011 * ... */
11012 plane = crtc->plane;
11013 crtc->plane = !plane;
11014 dev_priv->display.crtc_disable(&crtc->base);
11015 crtc->plane = plane;
11016
11017 /* ... and break all links. */
11018 list_for_each_entry(connector, &dev->mode_config.connector_list,
11019 base.head) {
11020 if (connector->encoder->base.crtc != &crtc->base)
11021 continue;
11022
11023 intel_connector_break_all_links(connector);
11024 }
11025
11026 WARN_ON(crtc->active);
11027 crtc->base.enabled = false;
11028 }
11029
11030 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
11031 crtc->pipe == PIPE_A && !crtc->active) {
11032 /* BIOS forgot to enable pipe A, this mostly happens after
11033 * resume. Force-enable the pipe to fix this, the update_dpms
11034 * call below we restore the pipe to the right state, but leave
11035 * the required bits on. */
11036 intel_enable_pipe_a(dev);
11037 }
11038
11039 /* Adjust the state of the output pipe according to whether we
11040 * have active connectors/encoders. */
11041 intel_crtc_update_dpms(&crtc->base);
11042
11043 if (crtc->active != crtc->base.enabled) {
11044 struct intel_encoder *encoder;
11045
11046 /* This can happen either due to bugs in the get_hw_state
11047 * functions or because the pipe is force-enabled due to the
11048 * pipe A quirk. */
11049 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
11050 crtc->base.base.id,
11051 crtc->base.enabled ? "enabled" : "disabled",
11052 crtc->active ? "enabled" : "disabled");
11053
11054 crtc->base.enabled = crtc->active;
11055
11056 /* Because we only establish the connector -> encoder ->
11057 * crtc links if something is active, this means the
11058 * crtc is now deactivated. Break the links. connector
11059 * -> encoder links are only establish when things are
11060 * actually up, hence no need to break them. */
11061 WARN_ON(crtc->active);
11062
11063 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
11064 WARN_ON(encoder->connectors_active);
11065 encoder->base.crtc = NULL;
11066 }
11067 }
11068}
11069
11070static void intel_sanitize_encoder(struct intel_encoder *encoder)
11071{
11072 struct intel_connector *connector;
11073 struct drm_device *dev = encoder->base.dev;
11074
11075 /* We need to check both for a crtc link (meaning that the
11076 * encoder is active and trying to read from a pipe) and the
11077 * pipe itself being active. */
11078 bool has_active_crtc = encoder->base.crtc &&
11079 to_intel_crtc(encoder->base.crtc)->active;
11080
11081 if (encoder->connectors_active && !has_active_crtc) {
11082 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
11083 encoder->base.base.id,
11084 drm_get_encoder_name(&encoder->base));
11085
11086 /* Connector is active, but has no active pipe. This is
11087 * fallout from our resume register restoring. Disable
11088 * the encoder manually again. */
11089 if (encoder->base.crtc) {
11090 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
11091 encoder->base.base.id,
11092 drm_get_encoder_name(&encoder->base));
11093 encoder->disable(encoder);
11094 }
11095
11096 /* Inconsistent output/port/pipe state happens presumably due to
11097 * a bug in one of the get_hw_state functions. Or someplace else
11098 * in our code, like the register restore mess on resume. Clamp
11099 * things to off as a safer default. */
11100 list_for_each_entry(connector,
11101 &dev->mode_config.connector_list,
11102 base.head) {
11103 if (connector->encoder != encoder)
11104 continue;
11105
11106 intel_connector_break_all_links(connector);
11107 }
11108 }
11109 /* Enabled encoders without active connectors will be fixed in
11110 * the crtc fixup. */
11111}
11112
11113void i915_redisable_vga(struct drm_device *dev)
11114{
11115 struct drm_i915_private *dev_priv = dev->dev_private;
11116 u32 vga_reg = i915_vgacntrl_reg(dev);
11117
11118 /* This function can be called both from intel_modeset_setup_hw_state or
11119 * at a very early point in our resume sequence, where the power well
11120 * structures are not yet restored. Since this function is at a very
11121 * paranoid "someone might have enabled VGA while we were not looking"
11122 * level, just check if the power well is enabled instead of trying to
11123 * follow the "don't touch the power well if we don't need it" policy
11124 * the rest of the driver uses. */
11125 if ((IS_HASWELL(dev) || IS_BROADWELL(dev)) &&
11126 (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
11127 return;
11128
11129 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
11130 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
11131 i915_disable_vga(dev);
11132 }
11133}
11134
11135static void intel_modeset_readout_hw_state(struct drm_device *dev)
11136{
11137 struct drm_i915_private *dev_priv = dev->dev_private;
11138 enum pipe pipe;
11139 struct intel_crtc *crtc;
11140 struct intel_encoder *encoder;
11141 struct intel_connector *connector;
11142 int i;
11143
11144 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11145 base.head) {
11146 memset(&crtc->config, 0, sizeof(crtc->config));
11147
11148 crtc->active = dev_priv->display.get_pipe_config(crtc,
11149 &crtc->config);
11150
11151 crtc->base.enabled = crtc->active;
11152 crtc->primary_enabled = crtc->active;
11153
11154 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
11155 crtc->base.base.id,
11156 crtc->active ? "enabled" : "disabled");
11157 }
11158
11159 /* FIXME: Smash this into the new shared dpll infrastructure. */
11160 if (HAS_DDI(dev))
11161 intel_ddi_setup_hw_pll_state(dev);
11162
11163 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11164 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11165
11166 pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
11167 pll->active = 0;
11168 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11169 base.head) {
11170 if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
11171 pll->active++;
11172 }
11173 pll->refcount = pll->active;
11174
11175 DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
11176 pll->name, pll->refcount, pll->on);
11177 }
11178
11179 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11180 base.head) {
11181 pipe = 0;
11182
11183 if (encoder->get_hw_state(encoder, &pipe)) {
11184 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11185 encoder->base.crtc = &crtc->base;
11186 encoder->get_config(encoder, &crtc->config);
11187 } else {
11188 encoder->base.crtc = NULL;
11189 }
11190
11191 encoder->connectors_active = false;
11192 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
11193 encoder->base.base.id,
11194 drm_get_encoder_name(&encoder->base),
11195 encoder->base.crtc ? "enabled" : "disabled",
11196 pipe_name(pipe));
11197 }
11198
11199 list_for_each_entry(connector, &dev->mode_config.connector_list,
11200 base.head) {
11201 if (connector->get_hw_state(connector)) {
11202 connector->base.dpms = DRM_MODE_DPMS_ON;
11203 connector->encoder->connectors_active = true;
11204 connector->base.encoder = &connector->encoder->base;
11205 } else {
11206 connector->base.dpms = DRM_MODE_DPMS_OFF;
11207 connector->base.encoder = NULL;
11208 }
11209 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
11210 connector->base.base.id,
11211 drm_get_connector_name(&connector->base),
11212 connector->base.encoder ? "enabled" : "disabled");
11213 }
11214}
11215
11216/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
11217 * and i915 state tracking structures. */
11218void intel_modeset_setup_hw_state(struct drm_device *dev,
11219 bool force_restore)
11220{
11221 struct drm_i915_private *dev_priv = dev->dev_private;
11222 enum pipe pipe;
11223 struct intel_crtc *crtc;
11224 struct intel_encoder *encoder;
11225 int i;
11226
11227 intel_modeset_readout_hw_state(dev);
11228
11229 /*
11230 * Now that we have the config, copy it to each CRTC struct
11231 * Note that this could go away if we move to using crtc_config
11232 * checking everywhere.
11233 */
11234 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
11235 base.head) {
11236 if (crtc->active && i915_fastboot) {
11237 intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
11238
11239 DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
11240 crtc->base.base.id);
11241 drm_mode_debug_printmodeline(&crtc->base.mode);
11242 }
11243 }
11244
11245 /* HW state is read out, now we need to sanitize this mess. */
11246 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
11247 base.head) {
11248 intel_sanitize_encoder(encoder);
11249 }
11250
11251 for_each_pipe(pipe) {
11252 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
11253 intel_sanitize_crtc(crtc);
11254 intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
11255 }
11256
11257 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
11258 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
11259
11260 if (!pll->on || pll->active)
11261 continue;
11262
11263 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
11264
11265 pll->disable(dev_priv, pll);
11266 pll->on = false;
11267 }
11268
11269 if (HAS_PCH_SPLIT(dev))
11270 ilk_wm_get_hw_state(dev);
11271
11272 if (force_restore) {
11273 i915_redisable_vga(dev);
11274
11275 /*
11276 * We need to use raw interfaces for restoring state to avoid
11277 * checking (bogus) intermediate states.
11278 */
11279 for_each_pipe(pipe) {
11280 struct drm_crtc *crtc =
11281 dev_priv->pipe_to_crtc_mapping[pipe];
11282
11283 __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
11284 crtc->fb);
11285 }
11286 } else {
11287 intel_modeset_update_staged_output_state(dev);
11288 }
11289
11290 intel_modeset_check_state(dev);
11291
11292 drm_mode_config_reset(dev);
11293}
11294
11295void intel_modeset_gem_init(struct drm_device *dev)
11296{
11297 intel_modeset_init_hw(dev);
11298
11299 intel_setup_overlay(dev);
11300
11301 intel_modeset_setup_hw_state(dev, false);
11302}
11303
11304void intel_modeset_cleanup(struct drm_device *dev)
11305{
11306 struct drm_i915_private *dev_priv = dev->dev_private;
11307 struct drm_crtc *crtc;
11308 struct drm_connector *connector;
11309
11310 /*
11311 * Interrupts and polling as the first thing to avoid creating havoc.
11312 * Too much stuff here (turning of rps, connectors, ...) would
11313 * experience fancy races otherwise.
11314 */
11315 drm_irq_uninstall(dev);
11316 cancel_work_sync(&dev_priv->hotplug_work);
11317 /*
11318 * Due to the hpd irq storm handling the hotplug work can re-arm the
11319 * poll handlers. Hence disable polling after hpd handling is shut down.
11320 */
11321 drm_kms_helper_poll_fini(dev);
11322
11323 mutex_lock(&dev->struct_mutex);
11324
11325 intel_unregister_dsm_handler();
11326
11327 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
11328 /* Skip inactive CRTCs */
11329 if (!crtc->fb)
11330 continue;
11331
11332 intel_increase_pllclock(crtc);
11333 }
11334
11335 intel_disable_fbc(dev);
11336
11337 intel_disable_gt_powersave(dev);
11338
11339 ironlake_teardown_rc6(dev);
11340
11341 mutex_unlock(&dev->struct_mutex);
11342
11343 /* flush any delayed tasks or pending work */
11344 flush_scheduled_work();
11345
11346 /* destroy the backlight and sysfs files before encoders/connectors */
11347 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11348 intel_panel_destroy_backlight(connector);
11349 drm_sysfs_connector_remove(connector);
11350 }
11351
11352 drm_mode_config_cleanup(dev);
11353
11354 intel_cleanup_overlay(dev);
11355}
11356
11357/*
11358 * Return which encoder is currently attached for connector.
11359 */
11360struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
11361{
11362 return &intel_attached_encoder(connector)->base;
11363}
11364
11365void intel_connector_attach_encoder(struct intel_connector *connector,
11366 struct intel_encoder *encoder)
11367{
11368 connector->encoder = encoder;
11369 drm_mode_connector_attach_encoder(&connector->base,
11370 &encoder->base);
11371}
11372
11373/*
11374 * set vga decode state - true == enable VGA decode
11375 */
11376int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
11377{
11378 struct drm_i915_private *dev_priv = dev->dev_private;
11379 u16 gmch_ctrl;
11380
11381 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
11382 if (state)
11383 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
11384 else
11385 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
11386 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
11387 return 0;
11388}
11389
11390struct intel_display_error_state {
11391
11392 u32 power_well_driver;
11393
11394 int num_transcoders;
11395
11396 struct intel_cursor_error_state {
11397 u32 control;
11398 u32 position;
11399 u32 base;
11400 u32 size;
11401 } cursor[I915_MAX_PIPES];
11402
11403 struct intel_pipe_error_state {
11404 bool power_domain_on;
11405 u32 source;
11406 } pipe[I915_MAX_PIPES];
11407
11408 struct intel_plane_error_state {
11409 u32 control;
11410 u32 stride;
11411 u32 size;
11412 u32 pos;
11413 u32 addr;
11414 u32 surface;
11415 u32 tile_offset;
11416 } plane[I915_MAX_PIPES];
11417
11418 struct intel_transcoder_error_state {
11419 bool power_domain_on;
11420 enum transcoder cpu_transcoder;
11421
11422 u32 conf;
11423
11424 u32 htotal;
11425 u32 hblank;
11426 u32 hsync;
11427 u32 vtotal;
11428 u32 vblank;
11429 u32 vsync;
11430 } transcoder[4];
11431};
11432
11433struct intel_display_error_state *
11434intel_display_capture_error_state(struct drm_device *dev)
11435{
11436 drm_i915_private_t *dev_priv = dev->dev_private;
11437 struct intel_display_error_state *error;
11438 int transcoders[] = {
11439 TRANSCODER_A,
11440 TRANSCODER_B,
11441 TRANSCODER_C,
11442 TRANSCODER_EDP,
11443 };
11444 int i;
11445
11446 if (INTEL_INFO(dev)->num_pipes == 0)
11447 return NULL;
11448
11449 error = kzalloc(sizeof(*error), GFP_ATOMIC);
11450 if (error == NULL)
11451 return NULL;
11452
11453 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11454 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
11455
11456 for_each_pipe(i) {
11457 error->pipe[i].power_domain_on =
11458 intel_display_power_enabled_sw(dev, POWER_DOMAIN_PIPE(i));
11459 if (!error->pipe[i].power_domain_on)
11460 continue;
11461
11462 if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
11463 error->cursor[i].control = I915_READ(CURCNTR(i));
11464 error->cursor[i].position = I915_READ(CURPOS(i));
11465 error->cursor[i].base = I915_READ(CURBASE(i));
11466 } else {
11467 error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
11468 error->cursor[i].position = I915_READ(CURPOS_IVB(i));
11469 error->cursor[i].base = I915_READ(CURBASE_IVB(i));
11470 }
11471
11472 error->plane[i].control = I915_READ(DSPCNTR(i));
11473 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
11474 if (INTEL_INFO(dev)->gen <= 3) {
11475 error->plane[i].size = I915_READ(DSPSIZE(i));
11476 error->plane[i].pos = I915_READ(DSPPOS(i));
11477 }
11478 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11479 error->plane[i].addr = I915_READ(DSPADDR(i));
11480 if (INTEL_INFO(dev)->gen >= 4) {
11481 error->plane[i].surface = I915_READ(DSPSURF(i));
11482 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
11483 }
11484
11485 error->pipe[i].source = I915_READ(PIPESRC(i));
11486 }
11487
11488 error->num_transcoders = INTEL_INFO(dev)->num_pipes;
11489 if (HAS_DDI(dev_priv->dev))
11490 error->num_transcoders++; /* Account for eDP. */
11491
11492 for (i = 0; i < error->num_transcoders; i++) {
11493 enum transcoder cpu_transcoder = transcoders[i];
11494
11495 error->transcoder[i].power_domain_on =
11496 intel_display_power_enabled_sw(dev,
11497 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
11498 if (!error->transcoder[i].power_domain_on)
11499 continue;
11500
11501 error->transcoder[i].cpu_transcoder = cpu_transcoder;
11502
11503 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
11504 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
11505 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
11506 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
11507 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
11508 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
11509 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
11510 }
11511
11512 return error;
11513}
11514
11515#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
11516
11517void
11518intel_display_print_error_state(struct drm_i915_error_state_buf *m,
11519 struct drm_device *dev,
11520 struct intel_display_error_state *error)
11521{
11522 int i;
11523
11524 if (!error)
11525 return;
11526
11527 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
11528 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
11529 err_printf(m, "PWR_WELL_CTL2: %08x\n",
11530 error->power_well_driver);
11531 for_each_pipe(i) {
11532 err_printf(m, "Pipe [%d]:\n", i);
11533 err_printf(m, " Power: %s\n",
11534 error->pipe[i].power_domain_on ? "on" : "off");
11535 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
11536
11537 err_printf(m, "Plane [%d]:\n", i);
11538 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
11539 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
11540 if (INTEL_INFO(dev)->gen <= 3) {
11541 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
11542 err_printf(m, " POS: %08x\n", error->plane[i].pos);
11543 }
11544 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
11545 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
11546 if (INTEL_INFO(dev)->gen >= 4) {
11547 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
11548 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
11549 }
11550
11551 err_printf(m, "Cursor [%d]:\n", i);
11552 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
11553 err_printf(m, " POS: %08x\n", error->cursor[i].position);
11554 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
11555 }
11556
11557 for (i = 0; i < error->num_transcoders; i++) {
11558 err_printf(m, "CPU transcoder: %c\n",
11559 transcoder_name(error->transcoder[i].cpu_transcoder));
11560 err_printf(m, " Power: %s\n",
11561 error->transcoder[i].power_domain_on ? "on" : "off");
11562 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
11563 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
11564 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
11565 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
11566 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
11567 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
11568 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
11569 }
11570}
This page took 0.067623 seconds and 5 git commands to generate.