drm/i915: refactor ilk display interrupt handling
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_dp.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/export.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include <drm/drm_edid.h>
35#include "intel_drv.h"
36#include <drm/i915_drm.h>
37#include "i915_drv.h"
38
39#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
40
41struct dp_link_dpll {
42 int link_bw;
43 struct dpll dpll;
44};
45
46static const struct dp_link_dpll gen4_dpll[] = {
47 { DP_LINK_BW_1_62,
48 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49 { DP_LINK_BW_2_7,
50 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51};
52
53static const struct dp_link_dpll pch_dpll[] = {
54 { DP_LINK_BW_1_62,
55 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56 { DP_LINK_BW_2_7,
57 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58};
59
60static const struct dp_link_dpll vlv_dpll[] = {
61 { DP_LINK_BW_1_62,
62 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 { DP_LINK_BW_2_7,
64 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65};
66
67/**
68 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69 * @intel_dp: DP struct
70 *
71 * If a CPU or PCH DP output is attached to an eDP panel, this function
72 * will return true, and false otherwise.
73 */
74static bool is_edp(struct intel_dp *intel_dp)
75{
76 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78 return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79}
80
81static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82{
83 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85 return intel_dig_port->base.base.dev;
86}
87
88static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89{
90 return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91}
92
93static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95static int
96intel_dp_max_link_bw(struct intel_dp *intel_dp)
97{
98 int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100 switch (max_link_bw) {
101 case DP_LINK_BW_1_62:
102 case DP_LINK_BW_2_7:
103 break;
104 case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105 max_link_bw = DP_LINK_BW_2_7;
106 break;
107 default:
108 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109 max_link_bw);
110 max_link_bw = DP_LINK_BW_1_62;
111 break;
112 }
113 return max_link_bw;
114}
115
116/*
117 * The units on the numbers in the next two are... bizarre. Examples will
118 * make it clearer; this one parallels an example in the eDP spec.
119 *
120 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121 *
122 * 270000 * 1 * 8 / 10 == 216000
123 *
124 * The actual data capacity of that configuration is 2.16Gbit/s, so the
125 * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
126 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127 * 119000. At 18bpp that's 2142000 kilobits per second.
128 *
129 * Thus the strange-looking division by 10 in intel_dp_link_required, to
130 * get the result in decakilobits instead of kilobits.
131 */
132
133static int
134intel_dp_link_required(int pixel_clock, int bpp)
135{
136 return (pixel_clock * bpp + 9) / 10;
137}
138
139static int
140intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141{
142 return (max_link_clock * max_lanes * 8) / 10;
143}
144
145static int
146intel_dp_mode_valid(struct drm_connector *connector,
147 struct drm_display_mode *mode)
148{
149 struct intel_dp *intel_dp = intel_attached_dp(connector);
150 struct intel_connector *intel_connector = to_intel_connector(connector);
151 struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152 int target_clock = mode->clock;
153 int max_rate, mode_rate, max_lanes, max_link_clock;
154
155 if (is_edp(intel_dp) && fixed_mode) {
156 if (mode->hdisplay > fixed_mode->hdisplay)
157 return MODE_PANEL;
158
159 if (mode->vdisplay > fixed_mode->vdisplay)
160 return MODE_PANEL;
161
162 target_clock = fixed_mode->clock;
163 }
164
165 max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166 max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168 max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169 mode_rate = intel_dp_link_required(target_clock, 18);
170
171 if (mode_rate > max_rate)
172 return MODE_CLOCK_HIGH;
173
174 if (mode->clock < 10000)
175 return MODE_CLOCK_LOW;
176
177 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178 return MODE_H_ILLEGAL;
179
180 return MODE_OK;
181}
182
183static uint32_t
184pack_aux(uint8_t *src, int src_bytes)
185{
186 int i;
187 uint32_t v = 0;
188
189 if (src_bytes > 4)
190 src_bytes = 4;
191 for (i = 0; i < src_bytes; i++)
192 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193 return v;
194}
195
196static void
197unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198{
199 int i;
200 if (dst_bytes > 4)
201 dst_bytes = 4;
202 for (i = 0; i < dst_bytes; i++)
203 dst[i] = src >> ((3-i) * 8);
204}
205
206/* hrawclock is 1/4 the FSB frequency */
207static int
208intel_hrawclk(struct drm_device *dev)
209{
210 struct drm_i915_private *dev_priv = dev->dev_private;
211 uint32_t clkcfg;
212
213 /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214 if (IS_VALLEYVIEW(dev))
215 return 200;
216
217 clkcfg = I915_READ(CLKCFG);
218 switch (clkcfg & CLKCFG_FSB_MASK) {
219 case CLKCFG_FSB_400:
220 return 100;
221 case CLKCFG_FSB_533:
222 return 133;
223 case CLKCFG_FSB_667:
224 return 166;
225 case CLKCFG_FSB_800:
226 return 200;
227 case CLKCFG_FSB_1067:
228 return 266;
229 case CLKCFG_FSB_1333:
230 return 333;
231 /* these two are just a guess; one of them might be right */
232 case CLKCFG_FSB_1600:
233 case CLKCFG_FSB_1600_ALT:
234 return 400;
235 default:
236 return 133;
237 }
238}
239
240static void
241intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242 struct intel_dp *intel_dp,
243 struct edp_power_seq *out);
244static void
245intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246 struct intel_dp *intel_dp,
247 struct edp_power_seq *out);
248
249static enum pipe
250vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251{
252 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254 struct drm_device *dev = intel_dig_port->base.base.dev;
255 struct drm_i915_private *dev_priv = dev->dev_private;
256 enum port port = intel_dig_port->port;
257 enum pipe pipe;
258
259 /* modeset should have pipe */
260 if (crtc)
261 return to_intel_crtc(crtc)->pipe;
262
263 /* init time, try to find a pipe with this port selected */
264 for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266 PANEL_PORT_SELECT_MASK;
267 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268 return pipe;
269 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270 return pipe;
271 }
272
273 /* shrug */
274 return PIPE_A;
275}
276
277static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278{
279 struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281 if (HAS_PCH_SPLIT(dev))
282 return PCH_PP_CONTROL;
283 else
284 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285}
286
287static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288{
289 struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291 if (HAS_PCH_SPLIT(dev))
292 return PCH_PP_STATUS;
293 else
294 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295}
296
297static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298{
299 struct drm_device *dev = intel_dp_to_dev(intel_dp);
300 struct drm_i915_private *dev_priv = dev->dev_private;
301
302 return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303}
304
305static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306{
307 struct drm_device *dev = intel_dp_to_dev(intel_dp);
308 struct drm_i915_private *dev_priv = dev->dev_private;
309
310 return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311}
312
313static void
314intel_dp_check_edp(struct intel_dp *intel_dp)
315{
316 struct drm_device *dev = intel_dp_to_dev(intel_dp);
317 struct drm_i915_private *dev_priv = dev->dev_private;
318
319 if (!is_edp(intel_dp))
320 return;
321
322 if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325 I915_READ(_pp_stat_reg(intel_dp)),
326 I915_READ(_pp_ctrl_reg(intel_dp)));
327 }
328}
329
330static uint32_t
331intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332{
333 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334 struct drm_device *dev = intel_dig_port->base.base.dev;
335 struct drm_i915_private *dev_priv = dev->dev_private;
336 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337 uint32_t status;
338 bool done;
339
340#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341 if (has_aux_irq)
342 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343 msecs_to_jiffies_timeout(10));
344 else
345 done = wait_for_atomic(C, 10) == 0;
346 if (!done)
347 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348 has_aux_irq);
349#undef C
350
351 return status;
352}
353
354static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355 int index)
356{
357 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358 struct drm_device *dev = intel_dig_port->base.base.dev;
359 struct drm_i915_private *dev_priv = dev->dev_private;
360
361 /* The clock divider is based off the hrawclk,
362 * and would like to run at 2MHz. So, take the
363 * hrawclk value and divide by 2 and use that
364 *
365 * Note that PCH attached eDP panels should use a 125MHz input
366 * clock divider.
367 */
368 if (IS_VALLEYVIEW(dev)) {
369 return index ? 0 : 100;
370 } else if (intel_dig_port->port == PORT_A) {
371 if (index)
372 return 0;
373 if (HAS_DDI(dev))
374 return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375 else if (IS_GEN6(dev) || IS_GEN7(dev))
376 return 200; /* SNB & IVB eDP input clock at 400Mhz */
377 else
378 return 225; /* eDP input clock at 450Mhz */
379 } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380 /* Workaround for non-ULT HSW */
381 switch (index) {
382 case 0: return 63;
383 case 1: return 72;
384 default: return 0;
385 }
386 } else if (HAS_PCH_SPLIT(dev)) {
387 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388 } else {
389 return index ? 0 :intel_hrawclk(dev) / 2;
390 }
391}
392
393static int
394intel_dp_aux_ch(struct intel_dp *intel_dp,
395 uint8_t *send, int send_bytes,
396 uint8_t *recv, int recv_size)
397{
398 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399 struct drm_device *dev = intel_dig_port->base.base.dev;
400 struct drm_i915_private *dev_priv = dev->dev_private;
401 uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402 uint32_t ch_data = ch_ctl + 4;
403 uint32_t aux_clock_divider;
404 int i, ret, recv_bytes;
405 uint32_t status;
406 int try, precharge, clock = 0;
407 bool has_aux_irq = INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev);
408
409 /* dp aux is extremely sensitive to irq latency, hence request the
410 * lowest possible wakeup latency and so prevent the cpu from going into
411 * deep sleep states.
412 */
413 pm_qos_update_request(&dev_priv->pm_qos, 0);
414
415 intel_dp_check_edp(intel_dp);
416
417 if (IS_GEN6(dev))
418 precharge = 3;
419 else
420 precharge = 5;
421
422 intel_aux_display_runtime_get(dev_priv);
423
424 /* Try to wait for any previous AUX channel activity */
425 for (try = 0; try < 3; try++) {
426 status = I915_READ_NOTRACE(ch_ctl);
427 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
428 break;
429 msleep(1);
430 }
431
432 if (try == 3) {
433 WARN(1, "dp_aux_ch not started status 0x%08x\n",
434 I915_READ(ch_ctl));
435 ret = -EBUSY;
436 goto out;
437 }
438
439 /* Only 5 data registers! */
440 if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
441 ret = -E2BIG;
442 goto out;
443 }
444
445 while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
446 /* Must try at least 3 times according to DP spec */
447 for (try = 0; try < 5; try++) {
448 /* Load the send data into the aux channel data registers */
449 for (i = 0; i < send_bytes; i += 4)
450 I915_WRITE(ch_data + i,
451 pack_aux(send + i, send_bytes - i));
452
453 /* Send the command and wait for it to complete */
454 I915_WRITE(ch_ctl,
455 DP_AUX_CH_CTL_SEND_BUSY |
456 (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
457 DP_AUX_CH_CTL_TIME_OUT_400us |
458 (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
459 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
460 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
461 DP_AUX_CH_CTL_DONE |
462 DP_AUX_CH_CTL_TIME_OUT_ERROR |
463 DP_AUX_CH_CTL_RECEIVE_ERROR);
464
465 status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
466
467 /* Clear done status and any errors */
468 I915_WRITE(ch_ctl,
469 status |
470 DP_AUX_CH_CTL_DONE |
471 DP_AUX_CH_CTL_TIME_OUT_ERROR |
472 DP_AUX_CH_CTL_RECEIVE_ERROR);
473
474 if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
475 DP_AUX_CH_CTL_RECEIVE_ERROR))
476 continue;
477 if (status & DP_AUX_CH_CTL_DONE)
478 break;
479 }
480 if (status & DP_AUX_CH_CTL_DONE)
481 break;
482 }
483
484 if ((status & DP_AUX_CH_CTL_DONE) == 0) {
485 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
486 ret = -EBUSY;
487 goto out;
488 }
489
490 /* Check for timeout or receive error.
491 * Timeouts occur when the sink is not connected
492 */
493 if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
494 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
495 ret = -EIO;
496 goto out;
497 }
498
499 /* Timeouts occur when the device isn't connected, so they're
500 * "normal" -- don't fill the kernel log with these */
501 if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
502 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
503 ret = -ETIMEDOUT;
504 goto out;
505 }
506
507 /* Unload any bytes sent back from the other side */
508 recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
509 DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
510 if (recv_bytes > recv_size)
511 recv_bytes = recv_size;
512
513 for (i = 0; i < recv_bytes; i += 4)
514 unpack_aux(I915_READ(ch_data + i),
515 recv + i, recv_bytes - i);
516
517 ret = recv_bytes;
518out:
519 pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
520 intel_aux_display_runtime_put(dev_priv);
521
522 return ret;
523}
524
525/* Write data to the aux channel in native mode */
526static int
527intel_dp_aux_native_write(struct intel_dp *intel_dp,
528 uint16_t address, uint8_t *send, int send_bytes)
529{
530 int ret;
531 uint8_t msg[20];
532 int msg_bytes;
533 uint8_t ack;
534
535 if (WARN_ON(send_bytes > 16))
536 return -E2BIG;
537
538 intel_dp_check_edp(intel_dp);
539 msg[0] = AUX_NATIVE_WRITE << 4;
540 msg[1] = address >> 8;
541 msg[2] = address & 0xff;
542 msg[3] = send_bytes - 1;
543 memcpy(&msg[4], send, send_bytes);
544 msg_bytes = send_bytes + 4;
545 for (;;) {
546 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
547 if (ret < 0)
548 return ret;
549 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
550 break;
551 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
552 udelay(100);
553 else
554 return -EIO;
555 }
556 return send_bytes;
557}
558
559/* Write a single byte to the aux channel in native mode */
560static int
561intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
562 uint16_t address, uint8_t byte)
563{
564 return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
565}
566
567/* read bytes from a native aux channel */
568static int
569intel_dp_aux_native_read(struct intel_dp *intel_dp,
570 uint16_t address, uint8_t *recv, int recv_bytes)
571{
572 uint8_t msg[4];
573 int msg_bytes;
574 uint8_t reply[20];
575 int reply_bytes;
576 uint8_t ack;
577 int ret;
578
579 if (WARN_ON(recv_bytes > 19))
580 return -E2BIG;
581
582 intel_dp_check_edp(intel_dp);
583 msg[0] = AUX_NATIVE_READ << 4;
584 msg[1] = address >> 8;
585 msg[2] = address & 0xff;
586 msg[3] = recv_bytes - 1;
587
588 msg_bytes = 4;
589 reply_bytes = recv_bytes + 1;
590
591 for (;;) {
592 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
593 reply, reply_bytes);
594 if (ret == 0)
595 return -EPROTO;
596 if (ret < 0)
597 return ret;
598 ack = reply[0];
599 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
600 memcpy(recv, reply + 1, ret - 1);
601 return ret - 1;
602 }
603 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
604 udelay(100);
605 else
606 return -EIO;
607 }
608}
609
610static int
611intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
612 uint8_t write_byte, uint8_t *read_byte)
613{
614 struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
615 struct intel_dp *intel_dp = container_of(adapter,
616 struct intel_dp,
617 adapter);
618 uint16_t address = algo_data->address;
619 uint8_t msg[5];
620 uint8_t reply[2];
621 unsigned retry;
622 int msg_bytes;
623 int reply_bytes;
624 int ret;
625
626 intel_dp_check_edp(intel_dp);
627 /* Set up the command byte */
628 if (mode & MODE_I2C_READ)
629 msg[0] = AUX_I2C_READ << 4;
630 else
631 msg[0] = AUX_I2C_WRITE << 4;
632
633 if (!(mode & MODE_I2C_STOP))
634 msg[0] |= AUX_I2C_MOT << 4;
635
636 msg[1] = address >> 8;
637 msg[2] = address;
638
639 switch (mode) {
640 case MODE_I2C_WRITE:
641 msg[3] = 0;
642 msg[4] = write_byte;
643 msg_bytes = 5;
644 reply_bytes = 1;
645 break;
646 case MODE_I2C_READ:
647 msg[3] = 0;
648 msg_bytes = 4;
649 reply_bytes = 2;
650 break;
651 default:
652 msg_bytes = 3;
653 reply_bytes = 1;
654 break;
655 }
656
657 /*
658 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
659 * required to retry at least seven times upon receiving AUX_DEFER
660 * before giving up the AUX transaction.
661 */
662 for (retry = 0; retry < 7; retry++) {
663 ret = intel_dp_aux_ch(intel_dp,
664 msg, msg_bytes,
665 reply, reply_bytes);
666 if (ret < 0) {
667 DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
668 return ret;
669 }
670
671 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
672 case AUX_NATIVE_REPLY_ACK:
673 /* I2C-over-AUX Reply field is only valid
674 * when paired with AUX ACK.
675 */
676 break;
677 case AUX_NATIVE_REPLY_NACK:
678 DRM_DEBUG_KMS("aux_ch native nack\n");
679 return -EREMOTEIO;
680 case AUX_NATIVE_REPLY_DEFER:
681 /*
682 * For now, just give more slack to branch devices. We
683 * could check the DPCD for I2C bit rate capabilities,
684 * and if available, adjust the interval. We could also
685 * be more careful with DP-to-Legacy adapters where a
686 * long legacy cable may force very low I2C bit rates.
687 */
688 if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
689 DP_DWN_STRM_PORT_PRESENT)
690 usleep_range(500, 600);
691 else
692 usleep_range(300, 400);
693 continue;
694 default:
695 DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
696 reply[0]);
697 return -EREMOTEIO;
698 }
699
700 switch (reply[0] & AUX_I2C_REPLY_MASK) {
701 case AUX_I2C_REPLY_ACK:
702 if (mode == MODE_I2C_READ) {
703 *read_byte = reply[1];
704 }
705 return reply_bytes - 1;
706 case AUX_I2C_REPLY_NACK:
707 DRM_DEBUG_KMS("aux_i2c nack\n");
708 return -EREMOTEIO;
709 case AUX_I2C_REPLY_DEFER:
710 DRM_DEBUG_KMS("aux_i2c defer\n");
711 udelay(100);
712 break;
713 default:
714 DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
715 return -EREMOTEIO;
716 }
717 }
718
719 DRM_ERROR("too many retries, giving up\n");
720 return -EREMOTEIO;
721}
722
723static int
724intel_dp_i2c_init(struct intel_dp *intel_dp,
725 struct intel_connector *intel_connector, const char *name)
726{
727 int ret;
728
729 DRM_DEBUG_KMS("i2c_init %s\n", name);
730 intel_dp->algo.running = false;
731 intel_dp->algo.address = 0;
732 intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
733
734 memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
735 intel_dp->adapter.owner = THIS_MODULE;
736 intel_dp->adapter.class = I2C_CLASS_DDC;
737 strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
738 intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
739 intel_dp->adapter.algo_data = &intel_dp->algo;
740 intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
741
742 ironlake_edp_panel_vdd_on(intel_dp);
743 ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
744 ironlake_edp_panel_vdd_off(intel_dp, false);
745 return ret;
746}
747
748static void
749intel_dp_set_clock(struct intel_encoder *encoder,
750 struct intel_crtc_config *pipe_config, int link_bw)
751{
752 struct drm_device *dev = encoder->base.dev;
753 const struct dp_link_dpll *divisor = NULL;
754 int i, count = 0;
755
756 if (IS_G4X(dev)) {
757 divisor = gen4_dpll;
758 count = ARRAY_SIZE(gen4_dpll);
759 } else if (IS_HASWELL(dev)) {
760 /* Haswell has special-purpose DP DDI clocks. */
761 } else if (HAS_PCH_SPLIT(dev)) {
762 divisor = pch_dpll;
763 count = ARRAY_SIZE(pch_dpll);
764 } else if (IS_VALLEYVIEW(dev)) {
765 divisor = vlv_dpll;
766 count = ARRAY_SIZE(vlv_dpll);
767 }
768
769 if (divisor && count) {
770 for (i = 0; i < count; i++) {
771 if (link_bw == divisor[i].link_bw) {
772 pipe_config->dpll = divisor[i].dpll;
773 pipe_config->clock_set = true;
774 break;
775 }
776 }
777 }
778}
779
780bool
781intel_dp_compute_config(struct intel_encoder *encoder,
782 struct intel_crtc_config *pipe_config)
783{
784 struct drm_device *dev = encoder->base.dev;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
787 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
788 enum port port = dp_to_dig_port(intel_dp)->port;
789 struct intel_crtc *intel_crtc = encoder->new_crtc;
790 struct intel_connector *intel_connector = intel_dp->attached_connector;
791 int lane_count, clock;
792 int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
793 int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
794 int bpp, mode_rate;
795 static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
796 int link_avail, link_clock;
797
798 if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
799 pipe_config->has_pch_encoder = true;
800
801 pipe_config->has_dp_encoder = true;
802
803 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
804 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
805 adjusted_mode);
806 if (!HAS_PCH_SPLIT(dev))
807 intel_gmch_panel_fitting(intel_crtc, pipe_config,
808 intel_connector->panel.fitting_mode);
809 else
810 intel_pch_panel_fitting(intel_crtc, pipe_config,
811 intel_connector->panel.fitting_mode);
812 }
813
814 if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
815 return false;
816
817 DRM_DEBUG_KMS("DP link computation with max lane count %i "
818 "max bw %02x pixel clock %iKHz\n",
819 max_lane_count, bws[max_clock],
820 adjusted_mode->crtc_clock);
821
822 /* Walk through all bpp values. Luckily they're all nicely spaced with 2
823 * bpc in between. */
824 bpp = pipe_config->pipe_bpp;
825 if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
826 dev_priv->vbt.edp_bpp < bpp) {
827 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
828 dev_priv->vbt.edp_bpp);
829 bpp = dev_priv->vbt.edp_bpp;
830 }
831
832 for (; bpp >= 6*3; bpp -= 2*3) {
833 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
834 bpp);
835
836 for (clock = 0; clock <= max_clock; clock++) {
837 for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
838 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
839 link_avail = intel_dp_max_data_rate(link_clock,
840 lane_count);
841
842 if (mode_rate <= link_avail) {
843 goto found;
844 }
845 }
846 }
847 }
848
849 return false;
850
851found:
852 if (intel_dp->color_range_auto) {
853 /*
854 * See:
855 * CEA-861-E - 5.1 Default Encoding Parameters
856 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
857 */
858 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
859 intel_dp->color_range = DP_COLOR_RANGE_16_235;
860 else
861 intel_dp->color_range = 0;
862 }
863
864 if (intel_dp->color_range)
865 pipe_config->limited_color_range = true;
866
867 intel_dp->link_bw = bws[clock];
868 intel_dp->lane_count = lane_count;
869 pipe_config->pipe_bpp = bpp;
870 pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
871
872 DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
873 intel_dp->link_bw, intel_dp->lane_count,
874 pipe_config->port_clock, bpp);
875 DRM_DEBUG_KMS("DP link bw required %i available %i\n",
876 mode_rate, link_avail);
877
878 intel_link_compute_m_n(bpp, lane_count,
879 adjusted_mode->crtc_clock,
880 pipe_config->port_clock,
881 &pipe_config->dp_m_n);
882
883 intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
884
885 return true;
886}
887
888static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
889{
890 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
891 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
892 struct drm_device *dev = crtc->base.dev;
893 struct drm_i915_private *dev_priv = dev->dev_private;
894 u32 dpa_ctl;
895
896 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
897 dpa_ctl = I915_READ(DP_A);
898 dpa_ctl &= ~DP_PLL_FREQ_MASK;
899
900 if (crtc->config.port_clock == 162000) {
901 /* For a long time we've carried around a ILK-DevA w/a for the
902 * 160MHz clock. If we're really unlucky, it's still required.
903 */
904 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
905 dpa_ctl |= DP_PLL_FREQ_160MHZ;
906 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
907 } else {
908 dpa_ctl |= DP_PLL_FREQ_270MHZ;
909 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
910 }
911
912 I915_WRITE(DP_A, dpa_ctl);
913
914 POSTING_READ(DP_A);
915 udelay(500);
916}
917
918static void intel_dp_mode_set(struct intel_encoder *encoder)
919{
920 struct drm_device *dev = encoder->base.dev;
921 struct drm_i915_private *dev_priv = dev->dev_private;
922 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
923 enum port port = dp_to_dig_port(intel_dp)->port;
924 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
925 struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
926
927 /*
928 * There are four kinds of DP registers:
929 *
930 * IBX PCH
931 * SNB CPU
932 * IVB CPU
933 * CPT PCH
934 *
935 * IBX PCH and CPU are the same for almost everything,
936 * except that the CPU DP PLL is configured in this
937 * register
938 *
939 * CPT PCH is quite different, having many bits moved
940 * to the TRANS_DP_CTL register instead. That
941 * configuration happens (oddly) in ironlake_pch_enable
942 */
943
944 /* Preserve the BIOS-computed detected bit. This is
945 * supposed to be read-only.
946 */
947 intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
948
949 /* Handle DP bits in common between all three register formats */
950 intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
951 intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
952
953 if (intel_dp->has_audio) {
954 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
955 pipe_name(crtc->pipe));
956 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
957 intel_write_eld(&encoder->base, adjusted_mode);
958 }
959
960 /* Split out the IBX/CPU vs CPT settings */
961
962 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
963 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
964 intel_dp->DP |= DP_SYNC_HS_HIGH;
965 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
966 intel_dp->DP |= DP_SYNC_VS_HIGH;
967 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
968
969 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
970 intel_dp->DP |= DP_ENHANCED_FRAMING;
971
972 intel_dp->DP |= crtc->pipe << 29;
973 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
974 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
975 intel_dp->DP |= intel_dp->color_range;
976
977 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
978 intel_dp->DP |= DP_SYNC_HS_HIGH;
979 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
980 intel_dp->DP |= DP_SYNC_VS_HIGH;
981 intel_dp->DP |= DP_LINK_TRAIN_OFF;
982
983 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
984 intel_dp->DP |= DP_ENHANCED_FRAMING;
985
986 if (crtc->pipe == 1)
987 intel_dp->DP |= DP_PIPEB_SELECT;
988 } else {
989 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
990 }
991
992 if (port == PORT_A && !IS_VALLEYVIEW(dev))
993 ironlake_set_pll_cpu_edp(intel_dp);
994}
995
996#define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
997#define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
998
999#define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
1000#define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1001
1002#define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1003#define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
1004
1005static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1006 u32 mask,
1007 u32 value)
1008{
1009 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 u32 pp_stat_reg, pp_ctrl_reg;
1012
1013 pp_stat_reg = _pp_stat_reg(intel_dp);
1014 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1015
1016 DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1017 mask, value,
1018 I915_READ(pp_stat_reg),
1019 I915_READ(pp_ctrl_reg));
1020
1021 if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1022 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1023 I915_READ(pp_stat_reg),
1024 I915_READ(pp_ctrl_reg));
1025 }
1026}
1027
1028static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1029{
1030 DRM_DEBUG_KMS("Wait for panel power on\n");
1031 ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1032}
1033
1034static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1035{
1036 DRM_DEBUG_KMS("Wait for panel power off time\n");
1037 ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1038}
1039
1040static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1041{
1042 DRM_DEBUG_KMS("Wait for panel power cycle\n");
1043 ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1044}
1045
1046
1047/* Read the current pp_control value, unlocking the register if it
1048 * is locked
1049 */
1050
1051static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1052{
1053 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1054 struct drm_i915_private *dev_priv = dev->dev_private;
1055 u32 control;
1056
1057 control = I915_READ(_pp_ctrl_reg(intel_dp));
1058 control &= ~PANEL_UNLOCK_MASK;
1059 control |= PANEL_UNLOCK_REGS;
1060 return control;
1061}
1062
1063void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1064{
1065 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1066 struct drm_i915_private *dev_priv = dev->dev_private;
1067 u32 pp;
1068 u32 pp_stat_reg, pp_ctrl_reg;
1069
1070 if (!is_edp(intel_dp))
1071 return;
1072 DRM_DEBUG_KMS("Turn eDP VDD on\n");
1073
1074 WARN(intel_dp->want_panel_vdd,
1075 "eDP VDD already requested on\n");
1076
1077 intel_dp->want_panel_vdd = true;
1078
1079 if (ironlake_edp_have_panel_vdd(intel_dp)) {
1080 DRM_DEBUG_KMS("eDP VDD already on\n");
1081 return;
1082 }
1083
1084 if (!ironlake_edp_have_panel_power(intel_dp))
1085 ironlake_wait_panel_power_cycle(intel_dp);
1086
1087 pp = ironlake_get_pp_control(intel_dp);
1088 pp |= EDP_FORCE_VDD;
1089
1090 pp_stat_reg = _pp_stat_reg(intel_dp);
1091 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1092
1093 I915_WRITE(pp_ctrl_reg, pp);
1094 POSTING_READ(pp_ctrl_reg);
1095 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1096 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1097 /*
1098 * If the panel wasn't on, delay before accessing aux channel
1099 */
1100 if (!ironlake_edp_have_panel_power(intel_dp)) {
1101 DRM_DEBUG_KMS("eDP was not running\n");
1102 msleep(intel_dp->panel_power_up_delay);
1103 }
1104}
1105
1106static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1107{
1108 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1109 struct drm_i915_private *dev_priv = dev->dev_private;
1110 u32 pp;
1111 u32 pp_stat_reg, pp_ctrl_reg;
1112
1113 WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1114
1115 if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1116 pp = ironlake_get_pp_control(intel_dp);
1117 pp &= ~EDP_FORCE_VDD;
1118
1119 pp_stat_reg = _pp_ctrl_reg(intel_dp);
1120 pp_ctrl_reg = _pp_stat_reg(intel_dp);
1121
1122 I915_WRITE(pp_ctrl_reg, pp);
1123 POSTING_READ(pp_ctrl_reg);
1124
1125 /* Make sure sequencer is idle before allowing subsequent activity */
1126 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1127 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1128 msleep(intel_dp->panel_power_down_delay);
1129 }
1130}
1131
1132static void ironlake_panel_vdd_work(struct work_struct *__work)
1133{
1134 struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1135 struct intel_dp, panel_vdd_work);
1136 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1137
1138 mutex_lock(&dev->mode_config.mutex);
1139 ironlake_panel_vdd_off_sync(intel_dp);
1140 mutex_unlock(&dev->mode_config.mutex);
1141}
1142
1143void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1144{
1145 if (!is_edp(intel_dp))
1146 return;
1147
1148 DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
1149 WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1150
1151 intel_dp->want_panel_vdd = false;
1152
1153 if (sync) {
1154 ironlake_panel_vdd_off_sync(intel_dp);
1155 } else {
1156 /*
1157 * Queue the timer to fire a long
1158 * time from now (relative to the power down delay)
1159 * to keep the panel power up across a sequence of operations
1160 */
1161 schedule_delayed_work(&intel_dp->panel_vdd_work,
1162 msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1163 }
1164}
1165
1166void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1167{
1168 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1169 struct drm_i915_private *dev_priv = dev->dev_private;
1170 u32 pp;
1171 u32 pp_ctrl_reg;
1172
1173 if (!is_edp(intel_dp))
1174 return;
1175
1176 DRM_DEBUG_KMS("Turn eDP power on\n");
1177
1178 if (ironlake_edp_have_panel_power(intel_dp)) {
1179 DRM_DEBUG_KMS("eDP power already on\n");
1180 return;
1181 }
1182
1183 ironlake_wait_panel_power_cycle(intel_dp);
1184
1185 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1186 pp = ironlake_get_pp_control(intel_dp);
1187 if (IS_GEN5(dev)) {
1188 /* ILK workaround: disable reset around power sequence */
1189 pp &= ~PANEL_POWER_RESET;
1190 I915_WRITE(pp_ctrl_reg, pp);
1191 POSTING_READ(pp_ctrl_reg);
1192 }
1193
1194 pp |= POWER_TARGET_ON;
1195 if (!IS_GEN5(dev))
1196 pp |= PANEL_POWER_RESET;
1197
1198 I915_WRITE(pp_ctrl_reg, pp);
1199 POSTING_READ(pp_ctrl_reg);
1200
1201 ironlake_wait_panel_on(intel_dp);
1202
1203 if (IS_GEN5(dev)) {
1204 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1205 I915_WRITE(pp_ctrl_reg, pp);
1206 POSTING_READ(pp_ctrl_reg);
1207 }
1208}
1209
1210void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1211{
1212 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1213 struct drm_i915_private *dev_priv = dev->dev_private;
1214 u32 pp;
1215 u32 pp_ctrl_reg;
1216
1217 if (!is_edp(intel_dp))
1218 return;
1219
1220 DRM_DEBUG_KMS("Turn eDP power off\n");
1221
1222 WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
1223
1224 pp = ironlake_get_pp_control(intel_dp);
1225 /* We need to switch off panel power _and_ force vdd, for otherwise some
1226 * panels get very unhappy and cease to work. */
1227 pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1228
1229 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1230
1231 I915_WRITE(pp_ctrl_reg, pp);
1232 POSTING_READ(pp_ctrl_reg);
1233
1234 intel_dp->want_panel_vdd = false;
1235
1236 ironlake_wait_panel_off(intel_dp);
1237}
1238
1239void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1240{
1241 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1242 struct drm_device *dev = intel_dig_port->base.base.dev;
1243 struct drm_i915_private *dev_priv = dev->dev_private;
1244 int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
1245 u32 pp;
1246 u32 pp_ctrl_reg;
1247
1248 if (!is_edp(intel_dp))
1249 return;
1250
1251 DRM_DEBUG_KMS("\n");
1252 /*
1253 * If we enable the backlight right away following a panel power
1254 * on, we may see slight flicker as the panel syncs with the eDP
1255 * link. So delay a bit to make sure the image is solid before
1256 * allowing it to appear.
1257 */
1258 msleep(intel_dp->backlight_on_delay);
1259 pp = ironlake_get_pp_control(intel_dp);
1260 pp |= EDP_BLC_ENABLE;
1261
1262 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1263
1264 I915_WRITE(pp_ctrl_reg, pp);
1265 POSTING_READ(pp_ctrl_reg);
1266
1267 intel_panel_enable_backlight(dev, pipe);
1268}
1269
1270void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1271{
1272 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1273 struct drm_i915_private *dev_priv = dev->dev_private;
1274 u32 pp;
1275 u32 pp_ctrl_reg;
1276
1277 if (!is_edp(intel_dp))
1278 return;
1279
1280 intel_panel_disable_backlight(dev);
1281
1282 DRM_DEBUG_KMS("\n");
1283 pp = ironlake_get_pp_control(intel_dp);
1284 pp &= ~EDP_BLC_ENABLE;
1285
1286 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1287
1288 I915_WRITE(pp_ctrl_reg, pp);
1289 POSTING_READ(pp_ctrl_reg);
1290 msleep(intel_dp->backlight_off_delay);
1291}
1292
1293static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1294{
1295 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1297 struct drm_device *dev = crtc->dev;
1298 struct drm_i915_private *dev_priv = dev->dev_private;
1299 u32 dpa_ctl;
1300
1301 assert_pipe_disabled(dev_priv,
1302 to_intel_crtc(crtc)->pipe);
1303
1304 DRM_DEBUG_KMS("\n");
1305 dpa_ctl = I915_READ(DP_A);
1306 WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1307 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1308
1309 /* We don't adjust intel_dp->DP while tearing down the link, to
1310 * facilitate link retraining (e.g. after hotplug). Hence clear all
1311 * enable bits here to ensure that we don't enable too much. */
1312 intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1313 intel_dp->DP |= DP_PLL_ENABLE;
1314 I915_WRITE(DP_A, intel_dp->DP);
1315 POSTING_READ(DP_A);
1316 udelay(200);
1317}
1318
1319static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1320{
1321 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1322 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1323 struct drm_device *dev = crtc->dev;
1324 struct drm_i915_private *dev_priv = dev->dev_private;
1325 u32 dpa_ctl;
1326
1327 assert_pipe_disabled(dev_priv,
1328 to_intel_crtc(crtc)->pipe);
1329
1330 dpa_ctl = I915_READ(DP_A);
1331 WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1332 "dp pll off, should be on\n");
1333 WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1334
1335 /* We can't rely on the value tracked for the DP register in
1336 * intel_dp->DP because link_down must not change that (otherwise link
1337 * re-training will fail. */
1338 dpa_ctl &= ~DP_PLL_ENABLE;
1339 I915_WRITE(DP_A, dpa_ctl);
1340 POSTING_READ(DP_A);
1341 udelay(200);
1342}
1343
1344/* If the sink supports it, try to set the power state appropriately */
1345void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1346{
1347 int ret, i;
1348
1349 /* Should have a valid DPCD by this point */
1350 if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1351 return;
1352
1353 if (mode != DRM_MODE_DPMS_ON) {
1354 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1355 DP_SET_POWER_D3);
1356 if (ret != 1)
1357 DRM_DEBUG_DRIVER("failed to write sink power state\n");
1358 } else {
1359 /*
1360 * When turning on, we need to retry for 1ms to give the sink
1361 * time to wake up.
1362 */
1363 for (i = 0; i < 3; i++) {
1364 ret = intel_dp_aux_native_write_1(intel_dp,
1365 DP_SET_POWER,
1366 DP_SET_POWER_D0);
1367 if (ret == 1)
1368 break;
1369 msleep(1);
1370 }
1371 }
1372}
1373
1374static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1375 enum pipe *pipe)
1376{
1377 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1378 enum port port = dp_to_dig_port(intel_dp)->port;
1379 struct drm_device *dev = encoder->base.dev;
1380 struct drm_i915_private *dev_priv = dev->dev_private;
1381 u32 tmp = I915_READ(intel_dp->output_reg);
1382
1383 if (!(tmp & DP_PORT_EN))
1384 return false;
1385
1386 if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1387 *pipe = PORT_TO_PIPE_CPT(tmp);
1388 } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1389 *pipe = PORT_TO_PIPE(tmp);
1390 } else {
1391 u32 trans_sel;
1392 u32 trans_dp;
1393 int i;
1394
1395 switch (intel_dp->output_reg) {
1396 case PCH_DP_B:
1397 trans_sel = TRANS_DP_PORT_SEL_B;
1398 break;
1399 case PCH_DP_C:
1400 trans_sel = TRANS_DP_PORT_SEL_C;
1401 break;
1402 case PCH_DP_D:
1403 trans_sel = TRANS_DP_PORT_SEL_D;
1404 break;
1405 default:
1406 return true;
1407 }
1408
1409 for_each_pipe(i) {
1410 trans_dp = I915_READ(TRANS_DP_CTL(i));
1411 if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1412 *pipe = i;
1413 return true;
1414 }
1415 }
1416
1417 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1418 intel_dp->output_reg);
1419 }
1420
1421 return true;
1422}
1423
1424static void intel_dp_get_config(struct intel_encoder *encoder,
1425 struct intel_crtc_config *pipe_config)
1426{
1427 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1428 u32 tmp, flags = 0;
1429 struct drm_device *dev = encoder->base.dev;
1430 struct drm_i915_private *dev_priv = dev->dev_private;
1431 enum port port = dp_to_dig_port(intel_dp)->port;
1432 struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1433 int dotclock;
1434
1435 if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1436 tmp = I915_READ(intel_dp->output_reg);
1437 if (tmp & DP_SYNC_HS_HIGH)
1438 flags |= DRM_MODE_FLAG_PHSYNC;
1439 else
1440 flags |= DRM_MODE_FLAG_NHSYNC;
1441
1442 if (tmp & DP_SYNC_VS_HIGH)
1443 flags |= DRM_MODE_FLAG_PVSYNC;
1444 else
1445 flags |= DRM_MODE_FLAG_NVSYNC;
1446 } else {
1447 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1448 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1449 flags |= DRM_MODE_FLAG_PHSYNC;
1450 else
1451 flags |= DRM_MODE_FLAG_NHSYNC;
1452
1453 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1454 flags |= DRM_MODE_FLAG_PVSYNC;
1455 else
1456 flags |= DRM_MODE_FLAG_NVSYNC;
1457 }
1458
1459 pipe_config->adjusted_mode.flags |= flags;
1460
1461 pipe_config->has_dp_encoder = true;
1462
1463 intel_dp_get_m_n(crtc, pipe_config);
1464
1465 if (port == PORT_A) {
1466 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1467 pipe_config->port_clock = 162000;
1468 else
1469 pipe_config->port_clock = 270000;
1470 }
1471
1472 dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1473 &pipe_config->dp_m_n);
1474
1475 if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1476 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1477
1478 pipe_config->adjusted_mode.crtc_clock = dotclock;
1479}
1480
1481static bool is_edp_psr(struct drm_device *dev)
1482{
1483 struct drm_i915_private *dev_priv = dev->dev_private;
1484
1485 return dev_priv->psr.sink_support;
1486}
1487
1488static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1489{
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491
1492 if (!HAS_PSR(dev))
1493 return false;
1494
1495 return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1496}
1497
1498static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1499 struct edp_vsc_psr *vsc_psr)
1500{
1501 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1502 struct drm_device *dev = dig_port->base.base.dev;
1503 struct drm_i915_private *dev_priv = dev->dev_private;
1504 struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1505 u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1506 u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1507 uint32_t *data = (uint32_t *) vsc_psr;
1508 unsigned int i;
1509
1510 /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1511 the video DIP being updated before program video DIP data buffer
1512 registers for DIP being updated. */
1513 I915_WRITE(ctl_reg, 0);
1514 POSTING_READ(ctl_reg);
1515
1516 for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1517 if (i < sizeof(struct edp_vsc_psr))
1518 I915_WRITE(data_reg + i, *data++);
1519 else
1520 I915_WRITE(data_reg + i, 0);
1521 }
1522
1523 I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1524 POSTING_READ(ctl_reg);
1525}
1526
1527static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1528{
1529 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1531 struct edp_vsc_psr psr_vsc;
1532
1533 if (intel_dp->psr_setup_done)
1534 return;
1535
1536 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1537 memset(&psr_vsc, 0, sizeof(psr_vsc));
1538 psr_vsc.sdp_header.HB0 = 0;
1539 psr_vsc.sdp_header.HB1 = 0x7;
1540 psr_vsc.sdp_header.HB2 = 0x2;
1541 psr_vsc.sdp_header.HB3 = 0x8;
1542 intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1543
1544 /* Avoid continuous PSR exit by masking memup and hpd */
1545 I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1546 EDP_PSR_DEBUG_MASK_HPD);
1547
1548 intel_dp->psr_setup_done = true;
1549}
1550
1551static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1552{
1553 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1555 uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1556 int precharge = 0x3;
1557 int msg_size = 5; /* Header(4) + Message(1) */
1558
1559 /* Enable PSR in sink */
1560 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1561 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1562 DP_PSR_ENABLE &
1563 ~DP_PSR_MAIN_LINK_ACTIVE);
1564 else
1565 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1566 DP_PSR_ENABLE |
1567 DP_PSR_MAIN_LINK_ACTIVE);
1568
1569 /* Setup AUX registers */
1570 I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1571 I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1572 I915_WRITE(EDP_PSR_AUX_CTL(dev),
1573 DP_AUX_CH_CTL_TIME_OUT_400us |
1574 (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1575 (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1576 (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1577}
1578
1579static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1580{
1581 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1582 struct drm_i915_private *dev_priv = dev->dev_private;
1583 uint32_t max_sleep_time = 0x1f;
1584 uint32_t idle_frames = 1;
1585 uint32_t val = 0x0;
1586
1587 if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1588 val |= EDP_PSR_LINK_STANDBY;
1589 val |= EDP_PSR_TP2_TP3_TIME_0us;
1590 val |= EDP_PSR_TP1_TIME_0us;
1591 val |= EDP_PSR_SKIP_AUX_EXIT;
1592 } else
1593 val |= EDP_PSR_LINK_DISABLE;
1594
1595 I915_WRITE(EDP_PSR_CTL(dev), val |
1596 EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES |
1597 max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1598 idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1599 EDP_PSR_ENABLE);
1600}
1601
1602static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1603{
1604 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1605 struct drm_device *dev = dig_port->base.base.dev;
1606 struct drm_i915_private *dev_priv = dev->dev_private;
1607 struct drm_crtc *crtc = dig_port->base.base.crtc;
1608 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1609 struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1610 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1611
1612 dev_priv->psr.source_ok = false;
1613
1614 if (!HAS_PSR(dev)) {
1615 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1616 return false;
1617 }
1618
1619 if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1620 (dig_port->port != PORT_A)) {
1621 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1622 return false;
1623 }
1624
1625 if (!i915_enable_psr) {
1626 DRM_DEBUG_KMS("PSR disable by flag\n");
1627 return false;
1628 }
1629
1630 crtc = dig_port->base.base.crtc;
1631 if (crtc == NULL) {
1632 DRM_DEBUG_KMS("crtc not active for PSR\n");
1633 return false;
1634 }
1635
1636 intel_crtc = to_intel_crtc(crtc);
1637 if (!intel_crtc_active(crtc)) {
1638 DRM_DEBUG_KMS("crtc not active for PSR\n");
1639 return false;
1640 }
1641
1642 obj = to_intel_framebuffer(crtc->fb)->obj;
1643 if (obj->tiling_mode != I915_TILING_X ||
1644 obj->fence_reg == I915_FENCE_REG_NONE) {
1645 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1646 return false;
1647 }
1648
1649 if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1650 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1651 return false;
1652 }
1653
1654 if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1655 S3D_ENABLE) {
1656 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1657 return false;
1658 }
1659
1660 if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1661 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1662 return false;
1663 }
1664
1665 dev_priv->psr.source_ok = true;
1666 return true;
1667}
1668
1669static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1670{
1671 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1672
1673 if (!intel_edp_psr_match_conditions(intel_dp) ||
1674 intel_edp_is_psr_enabled(dev))
1675 return;
1676
1677 /* Setup PSR once */
1678 intel_edp_psr_setup(intel_dp);
1679
1680 /* Enable PSR on the panel */
1681 intel_edp_psr_enable_sink(intel_dp);
1682
1683 /* Enable PSR on the host */
1684 intel_edp_psr_enable_source(intel_dp);
1685}
1686
1687void intel_edp_psr_enable(struct intel_dp *intel_dp)
1688{
1689 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1690
1691 if (intel_edp_psr_match_conditions(intel_dp) &&
1692 !intel_edp_is_psr_enabled(dev))
1693 intel_edp_psr_do_enable(intel_dp);
1694}
1695
1696void intel_edp_psr_disable(struct intel_dp *intel_dp)
1697{
1698 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1699 struct drm_i915_private *dev_priv = dev->dev_private;
1700
1701 if (!intel_edp_is_psr_enabled(dev))
1702 return;
1703
1704 I915_WRITE(EDP_PSR_CTL(dev),
1705 I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1706
1707 /* Wait till PSR is idle */
1708 if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1709 EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1710 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1711}
1712
1713void intel_edp_psr_update(struct drm_device *dev)
1714{
1715 struct intel_encoder *encoder;
1716 struct intel_dp *intel_dp = NULL;
1717
1718 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1719 if (encoder->type == INTEL_OUTPUT_EDP) {
1720 intel_dp = enc_to_intel_dp(&encoder->base);
1721
1722 if (!is_edp_psr(dev))
1723 return;
1724
1725 if (!intel_edp_psr_match_conditions(intel_dp))
1726 intel_edp_psr_disable(intel_dp);
1727 else
1728 if (!intel_edp_is_psr_enabled(dev))
1729 intel_edp_psr_do_enable(intel_dp);
1730 }
1731}
1732
1733static void intel_disable_dp(struct intel_encoder *encoder)
1734{
1735 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1736 enum port port = dp_to_dig_port(intel_dp)->port;
1737 struct drm_device *dev = encoder->base.dev;
1738
1739 /* Make sure the panel is off before trying to change the mode. But also
1740 * ensure that we have vdd while we switch off the panel. */
1741 ironlake_edp_panel_vdd_on(intel_dp);
1742 ironlake_edp_backlight_off(intel_dp);
1743 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1744 ironlake_edp_panel_off(intel_dp);
1745
1746 /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1747 if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1748 intel_dp_link_down(intel_dp);
1749}
1750
1751static void intel_post_disable_dp(struct intel_encoder *encoder)
1752{
1753 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1754 enum port port = dp_to_dig_port(intel_dp)->port;
1755 struct drm_device *dev = encoder->base.dev;
1756
1757 if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1758 intel_dp_link_down(intel_dp);
1759 if (!IS_VALLEYVIEW(dev))
1760 ironlake_edp_pll_off(intel_dp);
1761 }
1762}
1763
1764static void intel_enable_dp(struct intel_encoder *encoder)
1765{
1766 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1767 struct drm_device *dev = encoder->base.dev;
1768 struct drm_i915_private *dev_priv = dev->dev_private;
1769 uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1770
1771 if (WARN_ON(dp_reg & DP_PORT_EN))
1772 return;
1773
1774 ironlake_edp_panel_vdd_on(intel_dp);
1775 intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1776 intel_dp_start_link_train(intel_dp);
1777 ironlake_edp_panel_on(intel_dp);
1778 ironlake_edp_panel_vdd_off(intel_dp, true);
1779 intel_dp_complete_link_train(intel_dp);
1780 intel_dp_stop_link_train(intel_dp);
1781}
1782
1783static void g4x_enable_dp(struct intel_encoder *encoder)
1784{
1785 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1786
1787 intel_enable_dp(encoder);
1788 ironlake_edp_backlight_on(intel_dp);
1789}
1790
1791static void vlv_enable_dp(struct intel_encoder *encoder)
1792{
1793 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1794
1795 ironlake_edp_backlight_on(intel_dp);
1796}
1797
1798static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1799{
1800 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1801 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1802
1803 if (dport->port == PORT_A)
1804 ironlake_edp_pll_on(intel_dp);
1805}
1806
1807static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1808{
1809 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1810 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1811 struct drm_device *dev = encoder->base.dev;
1812 struct drm_i915_private *dev_priv = dev->dev_private;
1813 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1814 int port = vlv_dport_to_channel(dport);
1815 int pipe = intel_crtc->pipe;
1816 struct edp_power_seq power_seq;
1817 u32 val;
1818
1819 mutex_lock(&dev_priv->dpio_lock);
1820
1821 val = vlv_dpio_read(dev_priv, pipe, DPIO_DATA_LANE_A(port));
1822 val = 0;
1823 if (pipe)
1824 val |= (1<<21);
1825 else
1826 val &= ~(1<<21);
1827 val |= 0x001000c4;
1828 vlv_dpio_write(dev_priv, pipe, DPIO_DATA_CHANNEL(port), val);
1829 vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF0(port), 0x00760018);
1830 vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLOCKBUF8(port), 0x00400888);
1831
1832 mutex_unlock(&dev_priv->dpio_lock);
1833
1834 /* init power sequencer on this pipe and port */
1835 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1836 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1837 &power_seq);
1838
1839 intel_enable_dp(encoder);
1840
1841 vlv_wait_port_ready(dev_priv, port);
1842}
1843
1844static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1845{
1846 struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1847 struct drm_device *dev = encoder->base.dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1849 struct intel_crtc *intel_crtc =
1850 to_intel_crtc(encoder->base.crtc);
1851 int port = vlv_dport_to_channel(dport);
1852 int pipe = intel_crtc->pipe;
1853
1854 /* Program Tx lane resets to default */
1855 mutex_lock(&dev_priv->dpio_lock);
1856 vlv_dpio_write(dev_priv, pipe, DPIO_PCS_TX(port),
1857 DPIO_PCS_TX_LANE2_RESET |
1858 DPIO_PCS_TX_LANE1_RESET);
1859 vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CLK(port),
1860 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1861 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1862 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1863 DPIO_PCS_CLK_SOFT_RESET);
1864
1865 /* Fix up inter-pair skew failure */
1866 vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER1(port), 0x00750f00);
1867 vlv_dpio_write(dev_priv, pipe, DPIO_TX_CTL(port), 0x00001500);
1868 vlv_dpio_write(dev_priv, pipe, DPIO_TX_LANE(port), 0x40400000);
1869 mutex_unlock(&dev_priv->dpio_lock);
1870}
1871
1872/*
1873 * Native read with retry for link status and receiver capability reads for
1874 * cases where the sink may still be asleep.
1875 */
1876static bool
1877intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1878 uint8_t *recv, int recv_bytes)
1879{
1880 int ret, i;
1881
1882 /*
1883 * Sinks are *supposed* to come up within 1ms from an off state,
1884 * but we're also supposed to retry 3 times per the spec.
1885 */
1886 for (i = 0; i < 3; i++) {
1887 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1888 recv_bytes);
1889 if (ret == recv_bytes)
1890 return true;
1891 msleep(1);
1892 }
1893
1894 return false;
1895}
1896
1897/*
1898 * Fetch AUX CH registers 0x202 - 0x207 which contain
1899 * link status information
1900 */
1901static bool
1902intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1903{
1904 return intel_dp_aux_native_read_retry(intel_dp,
1905 DP_LANE0_1_STATUS,
1906 link_status,
1907 DP_LINK_STATUS_SIZE);
1908}
1909
1910#if 0
1911static char *voltage_names[] = {
1912 "0.4V", "0.6V", "0.8V", "1.2V"
1913};
1914static char *pre_emph_names[] = {
1915 "0dB", "3.5dB", "6dB", "9.5dB"
1916};
1917static char *link_train_names[] = {
1918 "pattern 1", "pattern 2", "idle", "off"
1919};
1920#endif
1921
1922/*
1923 * These are source-specific values; current Intel hardware supports
1924 * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1925 */
1926
1927static uint8_t
1928intel_dp_voltage_max(struct intel_dp *intel_dp)
1929{
1930 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1931 enum port port = dp_to_dig_port(intel_dp)->port;
1932
1933 if (IS_VALLEYVIEW(dev))
1934 return DP_TRAIN_VOLTAGE_SWING_1200;
1935 else if (IS_GEN7(dev) && port == PORT_A)
1936 return DP_TRAIN_VOLTAGE_SWING_800;
1937 else if (HAS_PCH_CPT(dev) && port != PORT_A)
1938 return DP_TRAIN_VOLTAGE_SWING_1200;
1939 else
1940 return DP_TRAIN_VOLTAGE_SWING_800;
1941}
1942
1943static uint8_t
1944intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1945{
1946 struct drm_device *dev = intel_dp_to_dev(intel_dp);
1947 enum port port = dp_to_dig_port(intel_dp)->port;
1948
1949 if (HAS_DDI(dev)) {
1950 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1951 case DP_TRAIN_VOLTAGE_SWING_400:
1952 return DP_TRAIN_PRE_EMPHASIS_9_5;
1953 case DP_TRAIN_VOLTAGE_SWING_600:
1954 return DP_TRAIN_PRE_EMPHASIS_6;
1955 case DP_TRAIN_VOLTAGE_SWING_800:
1956 return DP_TRAIN_PRE_EMPHASIS_3_5;
1957 case DP_TRAIN_VOLTAGE_SWING_1200:
1958 default:
1959 return DP_TRAIN_PRE_EMPHASIS_0;
1960 }
1961 } else if (IS_VALLEYVIEW(dev)) {
1962 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1963 case DP_TRAIN_VOLTAGE_SWING_400:
1964 return DP_TRAIN_PRE_EMPHASIS_9_5;
1965 case DP_TRAIN_VOLTAGE_SWING_600:
1966 return DP_TRAIN_PRE_EMPHASIS_6;
1967 case DP_TRAIN_VOLTAGE_SWING_800:
1968 return DP_TRAIN_PRE_EMPHASIS_3_5;
1969 case DP_TRAIN_VOLTAGE_SWING_1200:
1970 default:
1971 return DP_TRAIN_PRE_EMPHASIS_0;
1972 }
1973 } else if (IS_GEN7(dev) && port == PORT_A) {
1974 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1975 case DP_TRAIN_VOLTAGE_SWING_400:
1976 return DP_TRAIN_PRE_EMPHASIS_6;
1977 case DP_TRAIN_VOLTAGE_SWING_600:
1978 case DP_TRAIN_VOLTAGE_SWING_800:
1979 return DP_TRAIN_PRE_EMPHASIS_3_5;
1980 default:
1981 return DP_TRAIN_PRE_EMPHASIS_0;
1982 }
1983 } else {
1984 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1985 case DP_TRAIN_VOLTAGE_SWING_400:
1986 return DP_TRAIN_PRE_EMPHASIS_6;
1987 case DP_TRAIN_VOLTAGE_SWING_600:
1988 return DP_TRAIN_PRE_EMPHASIS_6;
1989 case DP_TRAIN_VOLTAGE_SWING_800:
1990 return DP_TRAIN_PRE_EMPHASIS_3_5;
1991 case DP_TRAIN_VOLTAGE_SWING_1200:
1992 default:
1993 return DP_TRAIN_PRE_EMPHASIS_0;
1994 }
1995 }
1996}
1997
1998static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
1999{
2000 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2001 struct drm_i915_private *dev_priv = dev->dev_private;
2002 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2003 struct intel_crtc *intel_crtc =
2004 to_intel_crtc(dport->base.base.crtc);
2005 unsigned long demph_reg_value, preemph_reg_value,
2006 uniqtranscale_reg_value;
2007 uint8_t train_set = intel_dp->train_set[0];
2008 int port = vlv_dport_to_channel(dport);
2009 int pipe = intel_crtc->pipe;
2010
2011 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2012 case DP_TRAIN_PRE_EMPHASIS_0:
2013 preemph_reg_value = 0x0004000;
2014 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2015 case DP_TRAIN_VOLTAGE_SWING_400:
2016 demph_reg_value = 0x2B405555;
2017 uniqtranscale_reg_value = 0x552AB83A;
2018 break;
2019 case DP_TRAIN_VOLTAGE_SWING_600:
2020 demph_reg_value = 0x2B404040;
2021 uniqtranscale_reg_value = 0x5548B83A;
2022 break;
2023 case DP_TRAIN_VOLTAGE_SWING_800:
2024 demph_reg_value = 0x2B245555;
2025 uniqtranscale_reg_value = 0x5560B83A;
2026 break;
2027 case DP_TRAIN_VOLTAGE_SWING_1200:
2028 demph_reg_value = 0x2B405555;
2029 uniqtranscale_reg_value = 0x5598DA3A;
2030 break;
2031 default:
2032 return 0;
2033 }
2034 break;
2035 case DP_TRAIN_PRE_EMPHASIS_3_5:
2036 preemph_reg_value = 0x0002000;
2037 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2038 case DP_TRAIN_VOLTAGE_SWING_400:
2039 demph_reg_value = 0x2B404040;
2040 uniqtranscale_reg_value = 0x5552B83A;
2041 break;
2042 case DP_TRAIN_VOLTAGE_SWING_600:
2043 demph_reg_value = 0x2B404848;
2044 uniqtranscale_reg_value = 0x5580B83A;
2045 break;
2046 case DP_TRAIN_VOLTAGE_SWING_800:
2047 demph_reg_value = 0x2B404040;
2048 uniqtranscale_reg_value = 0x55ADDA3A;
2049 break;
2050 default:
2051 return 0;
2052 }
2053 break;
2054 case DP_TRAIN_PRE_EMPHASIS_6:
2055 preemph_reg_value = 0x0000000;
2056 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2057 case DP_TRAIN_VOLTAGE_SWING_400:
2058 demph_reg_value = 0x2B305555;
2059 uniqtranscale_reg_value = 0x5570B83A;
2060 break;
2061 case DP_TRAIN_VOLTAGE_SWING_600:
2062 demph_reg_value = 0x2B2B4040;
2063 uniqtranscale_reg_value = 0x55ADDA3A;
2064 break;
2065 default:
2066 return 0;
2067 }
2068 break;
2069 case DP_TRAIN_PRE_EMPHASIS_9_5:
2070 preemph_reg_value = 0x0006000;
2071 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2072 case DP_TRAIN_VOLTAGE_SWING_400:
2073 demph_reg_value = 0x1B405555;
2074 uniqtranscale_reg_value = 0x55ADDA3A;
2075 break;
2076 default:
2077 return 0;
2078 }
2079 break;
2080 default:
2081 return 0;
2082 }
2083
2084 mutex_lock(&dev_priv->dpio_lock);
2085 vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x00000000);
2086 vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL4(port), demph_reg_value);
2087 vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL2(port),
2088 uniqtranscale_reg_value);
2089 vlv_dpio_write(dev_priv, pipe, DPIO_TX_SWING_CTL3(port), 0x0C782040);
2090 vlv_dpio_write(dev_priv, pipe, DPIO_PCS_STAGGER0(port), 0x00030000);
2091 vlv_dpio_write(dev_priv, pipe, DPIO_PCS_CTL_OVER1(port), preemph_reg_value);
2092 vlv_dpio_write(dev_priv, pipe, DPIO_TX_OCALINIT(port), 0x80000000);
2093 mutex_unlock(&dev_priv->dpio_lock);
2094
2095 return 0;
2096}
2097
2098static void
2099intel_get_adjust_train(struct intel_dp *intel_dp,
2100 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2101{
2102 uint8_t v = 0;
2103 uint8_t p = 0;
2104 int lane;
2105 uint8_t voltage_max;
2106 uint8_t preemph_max;
2107
2108 for (lane = 0; lane < intel_dp->lane_count; lane++) {
2109 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2110 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2111
2112 if (this_v > v)
2113 v = this_v;
2114 if (this_p > p)
2115 p = this_p;
2116 }
2117
2118 voltage_max = intel_dp_voltage_max(intel_dp);
2119 if (v >= voltage_max)
2120 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2121
2122 preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2123 if (p >= preemph_max)
2124 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2125
2126 for (lane = 0; lane < 4; lane++)
2127 intel_dp->train_set[lane] = v | p;
2128}
2129
2130static uint32_t
2131intel_gen4_signal_levels(uint8_t train_set)
2132{
2133 uint32_t signal_levels = 0;
2134
2135 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2136 case DP_TRAIN_VOLTAGE_SWING_400:
2137 default:
2138 signal_levels |= DP_VOLTAGE_0_4;
2139 break;
2140 case DP_TRAIN_VOLTAGE_SWING_600:
2141 signal_levels |= DP_VOLTAGE_0_6;
2142 break;
2143 case DP_TRAIN_VOLTAGE_SWING_800:
2144 signal_levels |= DP_VOLTAGE_0_8;
2145 break;
2146 case DP_TRAIN_VOLTAGE_SWING_1200:
2147 signal_levels |= DP_VOLTAGE_1_2;
2148 break;
2149 }
2150 switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2151 case DP_TRAIN_PRE_EMPHASIS_0:
2152 default:
2153 signal_levels |= DP_PRE_EMPHASIS_0;
2154 break;
2155 case DP_TRAIN_PRE_EMPHASIS_3_5:
2156 signal_levels |= DP_PRE_EMPHASIS_3_5;
2157 break;
2158 case DP_TRAIN_PRE_EMPHASIS_6:
2159 signal_levels |= DP_PRE_EMPHASIS_6;
2160 break;
2161 case DP_TRAIN_PRE_EMPHASIS_9_5:
2162 signal_levels |= DP_PRE_EMPHASIS_9_5;
2163 break;
2164 }
2165 return signal_levels;
2166}
2167
2168/* Gen6's DP voltage swing and pre-emphasis control */
2169static uint32_t
2170intel_gen6_edp_signal_levels(uint8_t train_set)
2171{
2172 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2173 DP_TRAIN_PRE_EMPHASIS_MASK);
2174 switch (signal_levels) {
2175 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2176 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2177 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2178 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2179 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2180 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2181 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2182 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2183 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2184 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2185 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2186 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2187 case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2188 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2189 default:
2190 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2191 "0x%x\n", signal_levels);
2192 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2193 }
2194}
2195
2196/* Gen7's DP voltage swing and pre-emphasis control */
2197static uint32_t
2198intel_gen7_edp_signal_levels(uint8_t train_set)
2199{
2200 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2201 DP_TRAIN_PRE_EMPHASIS_MASK);
2202 switch (signal_levels) {
2203 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2204 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2205 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2206 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2207 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2208 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2209
2210 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2211 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2212 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2213 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2214
2215 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2216 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2217 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2218 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2219
2220 default:
2221 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2222 "0x%x\n", signal_levels);
2223 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2224 }
2225}
2226
2227/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2228static uint32_t
2229intel_hsw_signal_levels(uint8_t train_set)
2230{
2231 int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2232 DP_TRAIN_PRE_EMPHASIS_MASK);
2233 switch (signal_levels) {
2234 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2235 return DDI_BUF_EMP_400MV_0DB_HSW;
2236 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2237 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2238 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2239 return DDI_BUF_EMP_400MV_6DB_HSW;
2240 case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2241 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2242
2243 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2244 return DDI_BUF_EMP_600MV_0DB_HSW;
2245 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2246 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2247 case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2248 return DDI_BUF_EMP_600MV_6DB_HSW;
2249
2250 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2251 return DDI_BUF_EMP_800MV_0DB_HSW;
2252 case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2253 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2254 default:
2255 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2256 "0x%x\n", signal_levels);
2257 return DDI_BUF_EMP_400MV_0DB_HSW;
2258 }
2259}
2260
2261/* Properly updates "DP" with the correct signal levels. */
2262static void
2263intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2264{
2265 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2266 enum port port = intel_dig_port->port;
2267 struct drm_device *dev = intel_dig_port->base.base.dev;
2268 uint32_t signal_levels, mask;
2269 uint8_t train_set = intel_dp->train_set[0];
2270
2271 if (HAS_DDI(dev)) {
2272 signal_levels = intel_hsw_signal_levels(train_set);
2273 mask = DDI_BUF_EMP_MASK;
2274 } else if (IS_VALLEYVIEW(dev)) {
2275 signal_levels = intel_vlv_signal_levels(intel_dp);
2276 mask = 0;
2277 } else if (IS_GEN7(dev) && port == PORT_A) {
2278 signal_levels = intel_gen7_edp_signal_levels(train_set);
2279 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2280 } else if (IS_GEN6(dev) && port == PORT_A) {
2281 signal_levels = intel_gen6_edp_signal_levels(train_set);
2282 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2283 } else {
2284 signal_levels = intel_gen4_signal_levels(train_set);
2285 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2286 }
2287
2288 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2289
2290 *DP = (*DP & ~mask) | signal_levels;
2291}
2292
2293static bool
2294intel_dp_set_link_train(struct intel_dp *intel_dp,
2295 uint32_t *DP,
2296 uint8_t dp_train_pat)
2297{
2298 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2299 struct drm_device *dev = intel_dig_port->base.base.dev;
2300 struct drm_i915_private *dev_priv = dev->dev_private;
2301 enum port port = intel_dig_port->port;
2302 uint8_t buf[sizeof(intel_dp->train_set) + 1];
2303 int ret, len;
2304
2305 if (HAS_DDI(dev)) {
2306 uint32_t temp = I915_READ(DP_TP_CTL(port));
2307
2308 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2309 temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2310 else
2311 temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2312
2313 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2314 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2315 case DP_TRAINING_PATTERN_DISABLE:
2316 temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2317
2318 break;
2319 case DP_TRAINING_PATTERN_1:
2320 temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2321 break;
2322 case DP_TRAINING_PATTERN_2:
2323 temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2324 break;
2325 case DP_TRAINING_PATTERN_3:
2326 temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2327 break;
2328 }
2329 I915_WRITE(DP_TP_CTL(port), temp);
2330
2331 } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2332 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2333
2334 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2335 case DP_TRAINING_PATTERN_DISABLE:
2336 *DP |= DP_LINK_TRAIN_OFF_CPT;
2337 break;
2338 case DP_TRAINING_PATTERN_1:
2339 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2340 break;
2341 case DP_TRAINING_PATTERN_2:
2342 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2343 break;
2344 case DP_TRAINING_PATTERN_3:
2345 DRM_ERROR("DP training pattern 3 not supported\n");
2346 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2347 break;
2348 }
2349
2350 } else {
2351 *DP &= ~DP_LINK_TRAIN_MASK;
2352
2353 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2354 case DP_TRAINING_PATTERN_DISABLE:
2355 *DP |= DP_LINK_TRAIN_OFF;
2356 break;
2357 case DP_TRAINING_PATTERN_1:
2358 *DP |= DP_LINK_TRAIN_PAT_1;
2359 break;
2360 case DP_TRAINING_PATTERN_2:
2361 *DP |= DP_LINK_TRAIN_PAT_2;
2362 break;
2363 case DP_TRAINING_PATTERN_3:
2364 DRM_ERROR("DP training pattern 3 not supported\n");
2365 *DP |= DP_LINK_TRAIN_PAT_2;
2366 break;
2367 }
2368 }
2369
2370 I915_WRITE(intel_dp->output_reg, *DP);
2371 POSTING_READ(intel_dp->output_reg);
2372
2373 buf[0] = dp_train_pat;
2374 if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2375 DP_TRAINING_PATTERN_DISABLE) {
2376 /* don't write DP_TRAINING_LANEx_SET on disable */
2377 len = 1;
2378 } else {
2379 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2380 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2381 len = intel_dp->lane_count + 1;
2382 }
2383
2384 ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2385 buf, len);
2386
2387 return ret == len;
2388}
2389
2390static bool
2391intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2392 uint8_t dp_train_pat)
2393{
2394 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2395 intel_dp_set_signal_levels(intel_dp, DP);
2396 return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2397}
2398
2399static bool
2400intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2401 const uint8_t link_status[DP_LINK_STATUS_SIZE])
2402{
2403 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2404 struct drm_device *dev = intel_dig_port->base.base.dev;
2405 struct drm_i915_private *dev_priv = dev->dev_private;
2406 int ret;
2407
2408 intel_get_adjust_train(intel_dp, link_status);
2409 intel_dp_set_signal_levels(intel_dp, DP);
2410
2411 I915_WRITE(intel_dp->output_reg, *DP);
2412 POSTING_READ(intel_dp->output_reg);
2413
2414 ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2415 intel_dp->train_set,
2416 intel_dp->lane_count);
2417
2418 return ret == intel_dp->lane_count;
2419}
2420
2421static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2422{
2423 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2424 struct drm_device *dev = intel_dig_port->base.base.dev;
2425 struct drm_i915_private *dev_priv = dev->dev_private;
2426 enum port port = intel_dig_port->port;
2427 uint32_t val;
2428
2429 if (!HAS_DDI(dev))
2430 return;
2431
2432 val = I915_READ(DP_TP_CTL(port));
2433 val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2434 val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2435 I915_WRITE(DP_TP_CTL(port), val);
2436
2437 /*
2438 * On PORT_A we can have only eDP in SST mode. There the only reason
2439 * we need to set idle transmission mode is to work around a HW issue
2440 * where we enable the pipe while not in idle link-training mode.
2441 * In this case there is requirement to wait for a minimum number of
2442 * idle patterns to be sent.
2443 */
2444 if (port == PORT_A)
2445 return;
2446
2447 if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2448 1))
2449 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2450}
2451
2452/* Enable corresponding port and start training pattern 1 */
2453void
2454intel_dp_start_link_train(struct intel_dp *intel_dp)
2455{
2456 struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2457 struct drm_device *dev = encoder->dev;
2458 int i;
2459 uint8_t voltage;
2460 int voltage_tries, loop_tries;
2461 uint32_t DP = intel_dp->DP;
2462 uint8_t link_config[2];
2463
2464 if (HAS_DDI(dev))
2465 intel_ddi_prepare_link_retrain(encoder);
2466
2467 /* Write the link configuration data */
2468 link_config[0] = intel_dp->link_bw;
2469 link_config[1] = intel_dp->lane_count;
2470 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2471 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2472 intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2473
2474 link_config[0] = 0;
2475 link_config[1] = DP_SET_ANSI_8B10B;
2476 intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2477
2478 DP |= DP_PORT_EN;
2479
2480 /* clock recovery */
2481 if (!intel_dp_reset_link_train(intel_dp, &DP,
2482 DP_TRAINING_PATTERN_1 |
2483 DP_LINK_SCRAMBLING_DISABLE)) {
2484 DRM_ERROR("failed to enable link training\n");
2485 return;
2486 }
2487
2488 voltage = 0xff;
2489 voltage_tries = 0;
2490 loop_tries = 0;
2491 for (;;) {
2492 uint8_t link_status[DP_LINK_STATUS_SIZE];
2493
2494 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2495 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2496 DRM_ERROR("failed to get link status\n");
2497 break;
2498 }
2499
2500 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2501 DRM_DEBUG_KMS("clock recovery OK\n");
2502 break;
2503 }
2504
2505 /* Check to see if we've tried the max voltage */
2506 for (i = 0; i < intel_dp->lane_count; i++)
2507 if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2508 break;
2509 if (i == intel_dp->lane_count) {
2510 ++loop_tries;
2511 if (loop_tries == 5) {
2512 DRM_ERROR("too many full retries, give up\n");
2513 break;
2514 }
2515 intel_dp_reset_link_train(intel_dp, &DP,
2516 DP_TRAINING_PATTERN_1 |
2517 DP_LINK_SCRAMBLING_DISABLE);
2518 voltage_tries = 0;
2519 continue;
2520 }
2521
2522 /* Check to see if we've tried the same voltage 5 times */
2523 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2524 ++voltage_tries;
2525 if (voltage_tries == 5) {
2526 DRM_ERROR("too many voltage retries, give up\n");
2527 break;
2528 }
2529 } else
2530 voltage_tries = 0;
2531 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2532
2533 /* Update training set as requested by target */
2534 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2535 DRM_ERROR("failed to update link training\n");
2536 break;
2537 }
2538 }
2539
2540 intel_dp->DP = DP;
2541}
2542
2543void
2544intel_dp_complete_link_train(struct intel_dp *intel_dp)
2545{
2546 bool channel_eq = false;
2547 int tries, cr_tries;
2548 uint32_t DP = intel_dp->DP;
2549
2550 /* channel equalization */
2551 if (!intel_dp_set_link_train(intel_dp, &DP,
2552 DP_TRAINING_PATTERN_2 |
2553 DP_LINK_SCRAMBLING_DISABLE)) {
2554 DRM_ERROR("failed to start channel equalization\n");
2555 return;
2556 }
2557
2558 tries = 0;
2559 cr_tries = 0;
2560 channel_eq = false;
2561 for (;;) {
2562 uint8_t link_status[DP_LINK_STATUS_SIZE];
2563
2564 if (cr_tries > 5) {
2565 DRM_ERROR("failed to train DP, aborting\n");
2566 intel_dp_link_down(intel_dp);
2567 break;
2568 }
2569
2570 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2571 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2572 DRM_ERROR("failed to get link status\n");
2573 break;
2574 }
2575
2576 /* Make sure clock is still ok */
2577 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2578 intel_dp_start_link_train(intel_dp);
2579 intel_dp_set_link_train(intel_dp, &DP,
2580 DP_TRAINING_PATTERN_2 |
2581 DP_LINK_SCRAMBLING_DISABLE);
2582 cr_tries++;
2583 continue;
2584 }
2585
2586 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2587 channel_eq = true;
2588 break;
2589 }
2590
2591 /* Try 5 times, then try clock recovery if that fails */
2592 if (tries > 5) {
2593 intel_dp_link_down(intel_dp);
2594 intel_dp_start_link_train(intel_dp);
2595 intel_dp_set_link_train(intel_dp, &DP,
2596 DP_TRAINING_PATTERN_2 |
2597 DP_LINK_SCRAMBLING_DISABLE);
2598 tries = 0;
2599 cr_tries++;
2600 continue;
2601 }
2602
2603 /* Update training set as requested by target */
2604 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2605 DRM_ERROR("failed to update link training\n");
2606 break;
2607 }
2608 ++tries;
2609 }
2610
2611 intel_dp_set_idle_link_train(intel_dp);
2612
2613 intel_dp->DP = DP;
2614
2615 if (channel_eq)
2616 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2617
2618}
2619
2620void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2621{
2622 intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2623 DP_TRAINING_PATTERN_DISABLE);
2624}
2625
2626static void
2627intel_dp_link_down(struct intel_dp *intel_dp)
2628{
2629 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2630 enum port port = intel_dig_port->port;
2631 struct drm_device *dev = intel_dig_port->base.base.dev;
2632 struct drm_i915_private *dev_priv = dev->dev_private;
2633 struct intel_crtc *intel_crtc =
2634 to_intel_crtc(intel_dig_port->base.base.crtc);
2635 uint32_t DP = intel_dp->DP;
2636
2637 /*
2638 * DDI code has a strict mode set sequence and we should try to respect
2639 * it, otherwise we might hang the machine in many different ways. So we
2640 * really should be disabling the port only on a complete crtc_disable
2641 * sequence. This function is just called under two conditions on DDI
2642 * code:
2643 * - Link train failed while doing crtc_enable, and on this case we
2644 * really should respect the mode set sequence and wait for a
2645 * crtc_disable.
2646 * - Someone turned the monitor off and intel_dp_check_link_status
2647 * called us. We don't need to disable the whole port on this case, so
2648 * when someone turns the monitor on again,
2649 * intel_ddi_prepare_link_retrain will take care of redoing the link
2650 * train.
2651 */
2652 if (HAS_DDI(dev))
2653 return;
2654
2655 if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2656 return;
2657
2658 DRM_DEBUG_KMS("\n");
2659
2660 if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2661 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2662 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2663 } else {
2664 DP &= ~DP_LINK_TRAIN_MASK;
2665 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2666 }
2667 POSTING_READ(intel_dp->output_reg);
2668
2669 /* We don't really know why we're doing this */
2670 intel_wait_for_vblank(dev, intel_crtc->pipe);
2671
2672 if (HAS_PCH_IBX(dev) &&
2673 I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2674 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2675
2676 /* Hardware workaround: leaving our transcoder select
2677 * set to transcoder B while it's off will prevent the
2678 * corresponding HDMI output on transcoder A.
2679 *
2680 * Combine this with another hardware workaround:
2681 * transcoder select bit can only be cleared while the
2682 * port is enabled.
2683 */
2684 DP &= ~DP_PIPEB_SELECT;
2685 I915_WRITE(intel_dp->output_reg, DP);
2686
2687 /* Changes to enable or select take place the vblank
2688 * after being written.
2689 */
2690 if (WARN_ON(crtc == NULL)) {
2691 /* We should never try to disable a port without a crtc
2692 * attached. For paranoia keep the code around for a
2693 * bit. */
2694 POSTING_READ(intel_dp->output_reg);
2695 msleep(50);
2696 } else
2697 intel_wait_for_vblank(dev, intel_crtc->pipe);
2698 }
2699
2700 DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2701 I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2702 POSTING_READ(intel_dp->output_reg);
2703 msleep(intel_dp->panel_power_down_delay);
2704}
2705
2706static bool
2707intel_dp_get_dpcd(struct intel_dp *intel_dp)
2708{
2709 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2710 struct drm_device *dev = dig_port->base.base.dev;
2711 struct drm_i915_private *dev_priv = dev->dev_private;
2712
2713 char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2714
2715 if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2716 sizeof(intel_dp->dpcd)) == 0)
2717 return false; /* aux transfer failed */
2718
2719 hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2720 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2721 DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2722
2723 if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2724 return false; /* DPCD not present */
2725
2726 /* Check if the panel supports PSR */
2727 memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2728 if (is_edp(intel_dp)) {
2729 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2730 intel_dp->psr_dpcd,
2731 sizeof(intel_dp->psr_dpcd));
2732 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2733 dev_priv->psr.sink_support = true;
2734 DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2735 }
2736 }
2737
2738 if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2739 DP_DWN_STRM_PORT_PRESENT))
2740 return true; /* native DP sink */
2741
2742 if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2743 return true; /* no per-port downstream info */
2744
2745 if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2746 intel_dp->downstream_ports,
2747 DP_MAX_DOWNSTREAM_PORTS) == 0)
2748 return false; /* downstream port status fetch failed */
2749
2750 return true;
2751}
2752
2753static void
2754intel_dp_probe_oui(struct intel_dp *intel_dp)
2755{
2756 u8 buf[3];
2757
2758 if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2759 return;
2760
2761 ironlake_edp_panel_vdd_on(intel_dp);
2762
2763 if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2764 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2765 buf[0], buf[1], buf[2]);
2766
2767 if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2768 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2769 buf[0], buf[1], buf[2]);
2770
2771 ironlake_edp_panel_vdd_off(intel_dp, false);
2772}
2773
2774static bool
2775intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2776{
2777 int ret;
2778
2779 ret = intel_dp_aux_native_read_retry(intel_dp,
2780 DP_DEVICE_SERVICE_IRQ_VECTOR,
2781 sink_irq_vector, 1);
2782 if (!ret)
2783 return false;
2784
2785 return true;
2786}
2787
2788static void
2789intel_dp_handle_test_request(struct intel_dp *intel_dp)
2790{
2791 /* NAK by default */
2792 intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2793}
2794
2795/*
2796 * According to DP spec
2797 * 5.1.2:
2798 * 1. Read DPCD
2799 * 2. Configure link according to Receiver Capabilities
2800 * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
2801 * 4. Check link status on receipt of hot-plug interrupt
2802 */
2803
2804void
2805intel_dp_check_link_status(struct intel_dp *intel_dp)
2806{
2807 struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2808 u8 sink_irq_vector;
2809 u8 link_status[DP_LINK_STATUS_SIZE];
2810
2811 if (!intel_encoder->connectors_active)
2812 return;
2813
2814 if (WARN_ON(!intel_encoder->base.crtc))
2815 return;
2816
2817 /* Try to read receiver status if the link appears to be up */
2818 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2819 intel_dp_link_down(intel_dp);
2820 return;
2821 }
2822
2823 /* Now read the DPCD to see if it's actually running */
2824 if (!intel_dp_get_dpcd(intel_dp)) {
2825 intel_dp_link_down(intel_dp);
2826 return;
2827 }
2828
2829 /* Try to read the source of the interrupt */
2830 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2831 intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2832 /* Clear interrupt source */
2833 intel_dp_aux_native_write_1(intel_dp,
2834 DP_DEVICE_SERVICE_IRQ_VECTOR,
2835 sink_irq_vector);
2836
2837 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2838 intel_dp_handle_test_request(intel_dp);
2839 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2840 DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2841 }
2842
2843 if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2844 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2845 drm_get_encoder_name(&intel_encoder->base));
2846 intel_dp_start_link_train(intel_dp);
2847 intel_dp_complete_link_train(intel_dp);
2848 intel_dp_stop_link_train(intel_dp);
2849 }
2850}
2851
2852/* XXX this is probably wrong for multiple downstream ports */
2853static enum drm_connector_status
2854intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2855{
2856 uint8_t *dpcd = intel_dp->dpcd;
2857 uint8_t type;
2858
2859 if (!intel_dp_get_dpcd(intel_dp))
2860 return connector_status_disconnected;
2861
2862 /* if there's no downstream port, we're done */
2863 if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2864 return connector_status_connected;
2865
2866 /* If we're HPD-aware, SINK_COUNT changes dynamically */
2867 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2868 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2869 uint8_t reg;
2870 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2871 &reg, 1))
2872 return connector_status_unknown;
2873 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2874 : connector_status_disconnected;
2875 }
2876
2877 /* If no HPD, poke DDC gently */
2878 if (drm_probe_ddc(&intel_dp->adapter))
2879 return connector_status_connected;
2880
2881 /* Well we tried, say unknown for unreliable port types */
2882 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2883 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2884 if (type == DP_DS_PORT_TYPE_VGA ||
2885 type == DP_DS_PORT_TYPE_NON_EDID)
2886 return connector_status_unknown;
2887 } else {
2888 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2889 DP_DWN_STRM_PORT_TYPE_MASK;
2890 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2891 type == DP_DWN_STRM_PORT_TYPE_OTHER)
2892 return connector_status_unknown;
2893 }
2894
2895 /* Anything else is out of spec, warn and ignore */
2896 DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2897 return connector_status_disconnected;
2898}
2899
2900static enum drm_connector_status
2901ironlake_dp_detect(struct intel_dp *intel_dp)
2902{
2903 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2904 struct drm_i915_private *dev_priv = dev->dev_private;
2905 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2906 enum drm_connector_status status;
2907
2908 /* Can't disconnect eDP, but you can close the lid... */
2909 if (is_edp(intel_dp)) {
2910 status = intel_panel_detect(dev);
2911 if (status == connector_status_unknown)
2912 status = connector_status_connected;
2913 return status;
2914 }
2915
2916 if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2917 return connector_status_disconnected;
2918
2919 return intel_dp_detect_dpcd(intel_dp);
2920}
2921
2922static enum drm_connector_status
2923g4x_dp_detect(struct intel_dp *intel_dp)
2924{
2925 struct drm_device *dev = intel_dp_to_dev(intel_dp);
2926 struct drm_i915_private *dev_priv = dev->dev_private;
2927 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2928 uint32_t bit;
2929
2930 /* Can't disconnect eDP, but you can close the lid... */
2931 if (is_edp(intel_dp)) {
2932 enum drm_connector_status status;
2933
2934 status = intel_panel_detect(dev);
2935 if (status == connector_status_unknown)
2936 status = connector_status_connected;
2937 return status;
2938 }
2939
2940 switch (intel_dig_port->port) {
2941 case PORT_B:
2942 bit = PORTB_HOTPLUG_LIVE_STATUS;
2943 break;
2944 case PORT_C:
2945 bit = PORTC_HOTPLUG_LIVE_STATUS;
2946 break;
2947 case PORT_D:
2948 bit = PORTD_HOTPLUG_LIVE_STATUS;
2949 break;
2950 default:
2951 return connector_status_unknown;
2952 }
2953
2954 if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
2955 return connector_status_disconnected;
2956
2957 return intel_dp_detect_dpcd(intel_dp);
2958}
2959
2960static struct edid *
2961intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
2962{
2963 struct intel_connector *intel_connector = to_intel_connector(connector);
2964
2965 /* use cached edid if we have one */
2966 if (intel_connector->edid) {
2967 /* invalid edid */
2968 if (IS_ERR(intel_connector->edid))
2969 return NULL;
2970
2971 return drm_edid_duplicate(intel_connector->edid);
2972 }
2973
2974 return drm_get_edid(connector, adapter);
2975}
2976
2977static int
2978intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
2979{
2980 struct intel_connector *intel_connector = to_intel_connector(connector);
2981
2982 /* use cached edid if we have one */
2983 if (intel_connector->edid) {
2984 /* invalid edid */
2985 if (IS_ERR(intel_connector->edid))
2986 return 0;
2987
2988 return intel_connector_update_modes(connector,
2989 intel_connector->edid);
2990 }
2991
2992 return intel_ddc_get_modes(connector, adapter);
2993}
2994
2995static enum drm_connector_status
2996intel_dp_detect(struct drm_connector *connector, bool force)
2997{
2998 struct intel_dp *intel_dp = intel_attached_dp(connector);
2999 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3000 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3001 struct drm_device *dev = connector->dev;
3002 enum drm_connector_status status;
3003 struct edid *edid = NULL;
3004
3005 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3006 connector->base.id, drm_get_connector_name(connector));
3007
3008 intel_dp->has_audio = false;
3009
3010 if (HAS_PCH_SPLIT(dev))
3011 status = ironlake_dp_detect(intel_dp);
3012 else
3013 status = g4x_dp_detect(intel_dp);
3014
3015 if (status != connector_status_connected)
3016 return status;
3017
3018 intel_dp_probe_oui(intel_dp);
3019
3020 if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3021 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3022 } else {
3023 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3024 if (edid) {
3025 intel_dp->has_audio = drm_detect_monitor_audio(edid);
3026 kfree(edid);
3027 }
3028 }
3029
3030 if (intel_encoder->type != INTEL_OUTPUT_EDP)
3031 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3032 return connector_status_connected;
3033}
3034
3035static int intel_dp_get_modes(struct drm_connector *connector)
3036{
3037 struct intel_dp *intel_dp = intel_attached_dp(connector);
3038 struct intel_connector *intel_connector = to_intel_connector(connector);
3039 struct drm_device *dev = connector->dev;
3040 int ret;
3041
3042 /* We should parse the EDID data and find out if it has an audio sink
3043 */
3044
3045 ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3046 if (ret)
3047 return ret;
3048
3049 /* if eDP has no EDID, fall back to fixed mode */
3050 if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3051 struct drm_display_mode *mode;
3052 mode = drm_mode_duplicate(dev,
3053 intel_connector->panel.fixed_mode);
3054 if (mode) {
3055 drm_mode_probed_add(connector, mode);
3056 return 1;
3057 }
3058 }
3059 return 0;
3060}
3061
3062static bool
3063intel_dp_detect_audio(struct drm_connector *connector)
3064{
3065 struct intel_dp *intel_dp = intel_attached_dp(connector);
3066 struct edid *edid;
3067 bool has_audio = false;
3068
3069 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3070 if (edid) {
3071 has_audio = drm_detect_monitor_audio(edid);
3072 kfree(edid);
3073 }
3074
3075 return has_audio;
3076}
3077
3078static int
3079intel_dp_set_property(struct drm_connector *connector,
3080 struct drm_property *property,
3081 uint64_t val)
3082{
3083 struct drm_i915_private *dev_priv = connector->dev->dev_private;
3084 struct intel_connector *intel_connector = to_intel_connector(connector);
3085 struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3086 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3087 int ret;
3088
3089 ret = drm_object_property_set_value(&connector->base, property, val);
3090 if (ret)
3091 return ret;
3092
3093 if (property == dev_priv->force_audio_property) {
3094 int i = val;
3095 bool has_audio;
3096
3097 if (i == intel_dp->force_audio)
3098 return 0;
3099
3100 intel_dp->force_audio = i;
3101
3102 if (i == HDMI_AUDIO_AUTO)
3103 has_audio = intel_dp_detect_audio(connector);
3104 else
3105 has_audio = (i == HDMI_AUDIO_ON);
3106
3107 if (has_audio == intel_dp->has_audio)
3108 return 0;
3109
3110 intel_dp->has_audio = has_audio;
3111 goto done;
3112 }
3113
3114 if (property == dev_priv->broadcast_rgb_property) {
3115 bool old_auto = intel_dp->color_range_auto;
3116 uint32_t old_range = intel_dp->color_range;
3117
3118 switch (val) {
3119 case INTEL_BROADCAST_RGB_AUTO:
3120 intel_dp->color_range_auto = true;
3121 break;
3122 case INTEL_BROADCAST_RGB_FULL:
3123 intel_dp->color_range_auto = false;
3124 intel_dp->color_range = 0;
3125 break;
3126 case INTEL_BROADCAST_RGB_LIMITED:
3127 intel_dp->color_range_auto = false;
3128 intel_dp->color_range = DP_COLOR_RANGE_16_235;
3129 break;
3130 default:
3131 return -EINVAL;
3132 }
3133
3134 if (old_auto == intel_dp->color_range_auto &&
3135 old_range == intel_dp->color_range)
3136 return 0;
3137
3138 goto done;
3139 }
3140
3141 if (is_edp(intel_dp) &&
3142 property == connector->dev->mode_config.scaling_mode_property) {
3143 if (val == DRM_MODE_SCALE_NONE) {
3144 DRM_DEBUG_KMS("no scaling not supported\n");
3145 return -EINVAL;
3146 }
3147
3148 if (intel_connector->panel.fitting_mode == val) {
3149 /* the eDP scaling property is not changed */
3150 return 0;
3151 }
3152 intel_connector->panel.fitting_mode = val;
3153
3154 goto done;
3155 }
3156
3157 return -EINVAL;
3158
3159done:
3160 if (intel_encoder->base.crtc)
3161 intel_crtc_restore_mode(intel_encoder->base.crtc);
3162
3163 return 0;
3164}
3165
3166static void
3167intel_dp_connector_destroy(struct drm_connector *connector)
3168{
3169 struct intel_connector *intel_connector = to_intel_connector(connector);
3170
3171 if (!IS_ERR_OR_NULL(intel_connector->edid))
3172 kfree(intel_connector->edid);
3173
3174 /* Can't call is_edp() since the encoder may have been destroyed
3175 * already. */
3176 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3177 intel_panel_fini(&intel_connector->panel);
3178
3179 drm_connector_cleanup(connector);
3180 kfree(connector);
3181}
3182
3183void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3184{
3185 struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3186 struct intel_dp *intel_dp = &intel_dig_port->dp;
3187 struct drm_device *dev = intel_dp_to_dev(intel_dp);
3188
3189 i2c_del_adapter(&intel_dp->adapter);
3190 drm_encoder_cleanup(encoder);
3191 if (is_edp(intel_dp)) {
3192 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3193 mutex_lock(&dev->mode_config.mutex);
3194 ironlake_panel_vdd_off_sync(intel_dp);
3195 mutex_unlock(&dev->mode_config.mutex);
3196 }
3197 kfree(intel_dig_port);
3198}
3199
3200static const struct drm_connector_funcs intel_dp_connector_funcs = {
3201 .dpms = intel_connector_dpms,
3202 .detect = intel_dp_detect,
3203 .fill_modes = drm_helper_probe_single_connector_modes,
3204 .set_property = intel_dp_set_property,
3205 .destroy = intel_dp_connector_destroy,
3206};
3207
3208static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3209 .get_modes = intel_dp_get_modes,
3210 .mode_valid = intel_dp_mode_valid,
3211 .best_encoder = intel_best_encoder,
3212};
3213
3214static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3215 .destroy = intel_dp_encoder_destroy,
3216};
3217
3218static void
3219intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3220{
3221 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3222
3223 intel_dp_check_link_status(intel_dp);
3224}
3225
3226/* Return which DP Port should be selected for Transcoder DP control */
3227int
3228intel_trans_dp_port_sel(struct drm_crtc *crtc)
3229{
3230 struct drm_device *dev = crtc->dev;
3231 struct intel_encoder *intel_encoder;
3232 struct intel_dp *intel_dp;
3233
3234 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3235 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3236
3237 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3238 intel_encoder->type == INTEL_OUTPUT_EDP)
3239 return intel_dp->output_reg;
3240 }
3241
3242 return -1;
3243}
3244
3245/* check the VBT to see whether the eDP is on DP-D port */
3246bool intel_dpd_is_edp(struct drm_device *dev)
3247{
3248 struct drm_i915_private *dev_priv = dev->dev_private;
3249 union child_device_config *p_child;
3250 int i;
3251
3252 if (!dev_priv->vbt.child_dev_num)
3253 return false;
3254
3255 for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3256 p_child = dev_priv->vbt.child_dev + i;
3257
3258 if (p_child->common.dvo_port == PORT_IDPD &&
3259 p_child->common.device_type == DEVICE_TYPE_eDP)
3260 return true;
3261 }
3262 return false;
3263}
3264
3265static void
3266intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3267{
3268 struct intel_connector *intel_connector = to_intel_connector(connector);
3269
3270 intel_attach_force_audio_property(connector);
3271 intel_attach_broadcast_rgb_property(connector);
3272 intel_dp->color_range_auto = true;
3273
3274 if (is_edp(intel_dp)) {
3275 drm_mode_create_scaling_mode_property(connector->dev);
3276 drm_object_attach_property(
3277 &connector->base,
3278 connector->dev->mode_config.scaling_mode_property,
3279 DRM_MODE_SCALE_ASPECT);
3280 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3281 }
3282}
3283
3284static void
3285intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3286 struct intel_dp *intel_dp,
3287 struct edp_power_seq *out)
3288{
3289 struct drm_i915_private *dev_priv = dev->dev_private;
3290 struct edp_power_seq cur, vbt, spec, final;
3291 u32 pp_on, pp_off, pp_div, pp;
3292 int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3293
3294 if (HAS_PCH_SPLIT(dev)) {
3295 pp_ctrl_reg = PCH_PP_CONTROL;
3296 pp_on_reg = PCH_PP_ON_DELAYS;
3297 pp_off_reg = PCH_PP_OFF_DELAYS;
3298 pp_div_reg = PCH_PP_DIVISOR;
3299 } else {
3300 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3301
3302 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3303 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3304 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3305 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3306 }
3307
3308 /* Workaround: Need to write PP_CONTROL with the unlock key as
3309 * the very first thing. */
3310 pp = ironlake_get_pp_control(intel_dp);
3311 I915_WRITE(pp_ctrl_reg, pp);
3312
3313 pp_on = I915_READ(pp_on_reg);
3314 pp_off = I915_READ(pp_off_reg);
3315 pp_div = I915_READ(pp_div_reg);
3316
3317 /* Pull timing values out of registers */
3318 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3319 PANEL_POWER_UP_DELAY_SHIFT;
3320
3321 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3322 PANEL_LIGHT_ON_DELAY_SHIFT;
3323
3324 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3325 PANEL_LIGHT_OFF_DELAY_SHIFT;
3326
3327 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3328 PANEL_POWER_DOWN_DELAY_SHIFT;
3329
3330 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3331 PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3332
3333 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3334 cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3335
3336 vbt = dev_priv->vbt.edp_pps;
3337
3338 /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3339 * our hw here, which are all in 100usec. */
3340 spec.t1_t3 = 210 * 10;
3341 spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3342 spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3343 spec.t10 = 500 * 10;
3344 /* This one is special and actually in units of 100ms, but zero
3345 * based in the hw (so we need to add 100 ms). But the sw vbt
3346 * table multiplies it with 1000 to make it in units of 100usec,
3347 * too. */
3348 spec.t11_t12 = (510 + 100) * 10;
3349
3350 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3351 vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3352
3353 /* Use the max of the register settings and vbt. If both are
3354 * unset, fall back to the spec limits. */
3355#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
3356 spec.field : \
3357 max(cur.field, vbt.field))
3358 assign_final(t1_t3);
3359 assign_final(t8);
3360 assign_final(t9);
3361 assign_final(t10);
3362 assign_final(t11_t12);
3363#undef assign_final
3364
3365#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
3366 intel_dp->panel_power_up_delay = get_delay(t1_t3);
3367 intel_dp->backlight_on_delay = get_delay(t8);
3368 intel_dp->backlight_off_delay = get_delay(t9);
3369 intel_dp->panel_power_down_delay = get_delay(t10);
3370 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3371#undef get_delay
3372
3373 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3374 intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3375 intel_dp->panel_power_cycle_delay);
3376
3377 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3378 intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3379
3380 if (out)
3381 *out = final;
3382}
3383
3384static void
3385intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3386 struct intel_dp *intel_dp,
3387 struct edp_power_seq *seq)
3388{
3389 struct drm_i915_private *dev_priv = dev->dev_private;
3390 u32 pp_on, pp_off, pp_div, port_sel = 0;
3391 int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3392 int pp_on_reg, pp_off_reg, pp_div_reg;
3393
3394 if (HAS_PCH_SPLIT(dev)) {
3395 pp_on_reg = PCH_PP_ON_DELAYS;
3396 pp_off_reg = PCH_PP_OFF_DELAYS;
3397 pp_div_reg = PCH_PP_DIVISOR;
3398 } else {
3399 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3400
3401 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3402 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3403 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3404 }
3405
3406 /* And finally store the new values in the power sequencer. */
3407 pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3408 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3409 pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3410 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3411 /* Compute the divisor for the pp clock, simply match the Bspec
3412 * formula. */
3413 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3414 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3415 << PANEL_POWER_CYCLE_DELAY_SHIFT);
3416
3417 /* Haswell doesn't have any port selection bits for the panel
3418 * power sequencer any more. */
3419 if (IS_VALLEYVIEW(dev)) {
3420 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3421 port_sel = PANEL_PORT_SELECT_DPB_VLV;
3422 else
3423 port_sel = PANEL_PORT_SELECT_DPC_VLV;
3424 } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3425 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3426 port_sel = PANEL_PORT_SELECT_DPA;
3427 else
3428 port_sel = PANEL_PORT_SELECT_DPD;
3429 }
3430
3431 pp_on |= port_sel;
3432
3433 I915_WRITE(pp_on_reg, pp_on);
3434 I915_WRITE(pp_off_reg, pp_off);
3435 I915_WRITE(pp_div_reg, pp_div);
3436
3437 DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3438 I915_READ(pp_on_reg),
3439 I915_READ(pp_off_reg),
3440 I915_READ(pp_div_reg));
3441}
3442
3443static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3444 struct intel_connector *intel_connector)
3445{
3446 struct drm_connector *connector = &intel_connector->base;
3447 struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3448 struct drm_device *dev = intel_dig_port->base.base.dev;
3449 struct drm_i915_private *dev_priv = dev->dev_private;
3450 struct drm_display_mode *fixed_mode = NULL;
3451 struct edp_power_seq power_seq = { 0 };
3452 bool has_dpcd;
3453 struct drm_display_mode *scan;
3454 struct edid *edid;
3455
3456 if (!is_edp(intel_dp))
3457 return true;
3458
3459 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3460
3461 /* Cache DPCD and EDID for edp. */
3462 ironlake_edp_panel_vdd_on(intel_dp);
3463 has_dpcd = intel_dp_get_dpcd(intel_dp);
3464 ironlake_edp_panel_vdd_off(intel_dp, false);
3465
3466 if (has_dpcd) {
3467 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3468 dev_priv->no_aux_handshake =
3469 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3470 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3471 } else {
3472 /* if this fails, presume the device is a ghost */
3473 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3474 return false;
3475 }
3476
3477 /* We now know it's not a ghost, init power sequence regs. */
3478 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3479 &power_seq);
3480
3481 ironlake_edp_panel_vdd_on(intel_dp);
3482 edid = drm_get_edid(connector, &intel_dp->adapter);
3483 if (edid) {
3484 if (drm_add_edid_modes(connector, edid)) {
3485 drm_mode_connector_update_edid_property(connector,
3486 edid);
3487 drm_edid_to_eld(connector, edid);
3488 } else {
3489 kfree(edid);
3490 edid = ERR_PTR(-EINVAL);
3491 }
3492 } else {
3493 edid = ERR_PTR(-ENOENT);
3494 }
3495 intel_connector->edid = edid;
3496
3497 /* prefer fixed mode from EDID if available */
3498 list_for_each_entry(scan, &connector->probed_modes, head) {
3499 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3500 fixed_mode = drm_mode_duplicate(dev, scan);
3501 break;
3502 }
3503 }
3504
3505 /* fallback to VBT if available for eDP */
3506 if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3507 fixed_mode = drm_mode_duplicate(dev,
3508 dev_priv->vbt.lfp_lvds_vbt_mode);
3509 if (fixed_mode)
3510 fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3511 }
3512
3513 ironlake_edp_panel_vdd_off(intel_dp, false);
3514
3515 intel_panel_init(&intel_connector->panel, fixed_mode);
3516 intel_panel_setup_backlight(connector);
3517
3518 return true;
3519}
3520
3521bool
3522intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3523 struct intel_connector *intel_connector)
3524{
3525 struct drm_connector *connector = &intel_connector->base;
3526 struct intel_dp *intel_dp = &intel_dig_port->dp;
3527 struct intel_encoder *intel_encoder = &intel_dig_port->base;
3528 struct drm_device *dev = intel_encoder->base.dev;
3529 struct drm_i915_private *dev_priv = dev->dev_private;
3530 enum port port = intel_dig_port->port;
3531 const char *name = NULL;
3532 int type, error;
3533
3534 /* Preserve the current hw state. */
3535 intel_dp->DP = I915_READ(intel_dp->output_reg);
3536 intel_dp->attached_connector = intel_connector;
3537
3538 type = DRM_MODE_CONNECTOR_DisplayPort;
3539 /*
3540 * FIXME : We need to initialize built-in panels before external panels.
3541 * For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
3542 */
3543 switch (port) {
3544 case PORT_A:
3545 type = DRM_MODE_CONNECTOR_eDP;
3546 break;
3547 case PORT_C:
3548 if (IS_VALLEYVIEW(dev))
3549 type = DRM_MODE_CONNECTOR_eDP;
3550 break;
3551 case PORT_D:
3552 if (HAS_PCH_SPLIT(dev) && intel_dpd_is_edp(dev))
3553 type = DRM_MODE_CONNECTOR_eDP;
3554 break;
3555 default: /* silence GCC warning */
3556 break;
3557 }
3558
3559 /*
3560 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3561 * for DP the encoder type can be set by the caller to
3562 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3563 */
3564 if (type == DRM_MODE_CONNECTOR_eDP)
3565 intel_encoder->type = INTEL_OUTPUT_EDP;
3566
3567 DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3568 type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3569 port_name(port));
3570
3571 drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3572 drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3573
3574 connector->interlace_allowed = true;
3575 connector->doublescan_allowed = 0;
3576
3577 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3578 ironlake_panel_vdd_work);
3579
3580 intel_connector_attach_encoder(intel_connector, intel_encoder);
3581 drm_sysfs_connector_add(connector);
3582
3583 if (HAS_DDI(dev))
3584 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3585 else
3586 intel_connector->get_hw_state = intel_connector_get_hw_state;
3587
3588 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3589 if (HAS_DDI(dev)) {
3590 switch (intel_dig_port->port) {
3591 case PORT_A:
3592 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3593 break;
3594 case PORT_B:
3595 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3596 break;
3597 case PORT_C:
3598 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3599 break;
3600 case PORT_D:
3601 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3602 break;
3603 default:
3604 BUG();
3605 }
3606 }
3607
3608 /* Set up the DDC bus. */
3609 switch (port) {
3610 case PORT_A:
3611 intel_encoder->hpd_pin = HPD_PORT_A;
3612 name = "DPDDC-A";
3613 break;
3614 case PORT_B:
3615 intel_encoder->hpd_pin = HPD_PORT_B;
3616 name = "DPDDC-B";
3617 break;
3618 case PORT_C:
3619 intel_encoder->hpd_pin = HPD_PORT_C;
3620 name = "DPDDC-C";
3621 break;
3622 case PORT_D:
3623 intel_encoder->hpd_pin = HPD_PORT_D;
3624 name = "DPDDC-D";
3625 break;
3626 default:
3627 BUG();
3628 }
3629
3630 error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3631 WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3632 error, port_name(port));
3633
3634 intel_dp->psr_setup_done = false;
3635
3636 if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3637 i2c_del_adapter(&intel_dp->adapter);
3638 if (is_edp(intel_dp)) {
3639 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3640 mutex_lock(&dev->mode_config.mutex);
3641 ironlake_panel_vdd_off_sync(intel_dp);
3642 mutex_unlock(&dev->mode_config.mutex);
3643 }
3644 drm_sysfs_connector_remove(connector);
3645 drm_connector_cleanup(connector);
3646 return false;
3647 }
3648
3649 intel_dp_add_properties(intel_dp, connector);
3650
3651 /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3652 * 0xd. Failure to do so will result in spurious interrupts being
3653 * generated on the port when a cable is not attached.
3654 */
3655 if (IS_G4X(dev) && !IS_GM45(dev)) {
3656 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3657 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3658 }
3659
3660 return true;
3661}
3662
3663void
3664intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3665{
3666 struct intel_digital_port *intel_dig_port;
3667 struct intel_encoder *intel_encoder;
3668 struct drm_encoder *encoder;
3669 struct intel_connector *intel_connector;
3670
3671 intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3672 if (!intel_dig_port)
3673 return;
3674
3675 intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3676 if (!intel_connector) {
3677 kfree(intel_dig_port);
3678 return;
3679 }
3680
3681 intel_encoder = &intel_dig_port->base;
3682 encoder = &intel_encoder->base;
3683
3684 drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3685 DRM_MODE_ENCODER_TMDS);
3686
3687 intel_encoder->compute_config = intel_dp_compute_config;
3688 intel_encoder->mode_set = intel_dp_mode_set;
3689 intel_encoder->disable = intel_disable_dp;
3690 intel_encoder->post_disable = intel_post_disable_dp;
3691 intel_encoder->get_hw_state = intel_dp_get_hw_state;
3692 intel_encoder->get_config = intel_dp_get_config;
3693 if (IS_VALLEYVIEW(dev)) {
3694 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3695 intel_encoder->pre_enable = vlv_pre_enable_dp;
3696 intel_encoder->enable = vlv_enable_dp;
3697 } else {
3698 intel_encoder->pre_enable = g4x_pre_enable_dp;
3699 intel_encoder->enable = g4x_enable_dp;
3700 }
3701
3702 intel_dig_port->port = port;
3703 intel_dig_port->dp.output_reg = output_reg;
3704
3705 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3706 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3707 intel_encoder->cloneable = false;
3708 intel_encoder->hot_plug = intel_dp_hot_plug;
3709
3710 if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3711 drm_encoder_cleanup(encoder);
3712 kfree(intel_dig_port);
3713 kfree(intel_connector);
3714 }
3715}
This page took 0.040097 seconds and 5 git commands to generate.