drm/i915: Simplify reset_counter handling during atomic modesetting
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_lrc.c
... / ...
CommitLineData
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
28 *
29 */
30
31/**
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
33 *
34 * Motivation:
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
38 *
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
42 *
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
47 *
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
55 *
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
58 *
59 * LRC implementation:
60 * Regarding the creation of contexts, we have:
61 *
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
65 *
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
69 *
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
72 *
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
77 * contexts:
78 *
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
83 * so on.
84 *
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
88 *
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
93 *
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
101 * context itself.
102 *
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
108 *
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
114 *
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
122 *
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
132 *
133 */
134#include <linux/interrupt.h>
135
136#include <drm/drmP.h>
137#include <drm/i915_drm.h>
138#include "i915_drv.h"
139#include "intel_mocs.h"
140
141#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145#define RING_EXECLIST_QFULL (1 << 0x2)
146#define RING_EXECLIST1_VALID (1 << 0x3)
147#define RING_EXECLIST0_VALID (1 << 0x4)
148#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
149#define RING_EXECLIST1_ACTIVE (1 << 0x11)
150#define RING_EXECLIST0_ACTIVE (1 << 0x12)
151
152#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
153#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
154#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
155#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
156#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
157#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
158
159#define CTX_LRI_HEADER_0 0x01
160#define CTX_CONTEXT_CONTROL 0x02
161#define CTX_RING_HEAD 0x04
162#define CTX_RING_TAIL 0x06
163#define CTX_RING_BUFFER_START 0x08
164#define CTX_RING_BUFFER_CONTROL 0x0a
165#define CTX_BB_HEAD_U 0x0c
166#define CTX_BB_HEAD_L 0x0e
167#define CTX_BB_STATE 0x10
168#define CTX_SECOND_BB_HEAD_U 0x12
169#define CTX_SECOND_BB_HEAD_L 0x14
170#define CTX_SECOND_BB_STATE 0x16
171#define CTX_BB_PER_CTX_PTR 0x18
172#define CTX_RCS_INDIRECT_CTX 0x1a
173#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174#define CTX_LRI_HEADER_1 0x21
175#define CTX_CTX_TIMESTAMP 0x22
176#define CTX_PDP3_UDW 0x24
177#define CTX_PDP3_LDW 0x26
178#define CTX_PDP2_UDW 0x28
179#define CTX_PDP2_LDW 0x2a
180#define CTX_PDP1_UDW 0x2c
181#define CTX_PDP1_LDW 0x2e
182#define CTX_PDP0_UDW 0x30
183#define CTX_PDP0_LDW 0x32
184#define CTX_LRI_HEADER_2 0x41
185#define CTX_R_PWR_CLK_STATE 0x42
186#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
187
188#define GEN8_CTX_VALID (1<<0)
189#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
190#define GEN8_CTX_FORCE_RESTORE (1<<2)
191#define GEN8_CTX_L3LLC_COHERENT (1<<5)
192#define GEN8_CTX_PRIVILEGE (1<<8)
193
194#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
195 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
196 (reg_state)[(pos)+1] = (val); \
197} while (0)
198
199#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
200 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
201 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
202 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
203} while (0)
204
205#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
206 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
207 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
208} while (0)
209
210enum {
211 ADVANCED_CONTEXT = 0,
212 LEGACY_32B_CONTEXT,
213 ADVANCED_AD_CONTEXT,
214 LEGACY_64B_CONTEXT
215};
216#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
217#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
218 LEGACY_64B_CONTEXT :\
219 LEGACY_32B_CONTEXT)
220enum {
221 FAULT_AND_HANG = 0,
222 FAULT_AND_HALT, /* Debug only */
223 FAULT_AND_STREAM,
224 FAULT_AND_CONTINUE /* Unsupported */
225};
226#define GEN8_CTX_ID_SHIFT 32
227#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
228#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
229
230static int intel_lr_context_pin(struct intel_context *ctx,
231 struct intel_engine_cs *engine);
232
233/**
234 * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
235 * @dev: DRM device.
236 * @enable_execlists: value of i915.enable_execlists module parameter.
237 *
238 * Only certain platforms support Execlists (the prerequisites being
239 * support for Logical Ring Contexts and Aliasing PPGTT or better).
240 *
241 * Return: 1 if Execlists is supported and has to be enabled.
242 */
243int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
244{
245 WARN_ON(i915.enable_ppgtt == -1);
246
247 /* On platforms with execlist available, vGPU will only
248 * support execlist mode, no ring buffer mode.
249 */
250 if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
251 return 1;
252
253 if (INTEL_INFO(dev)->gen >= 9)
254 return 1;
255
256 if (enable_execlists == 0)
257 return 0;
258
259 if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
260 i915.use_mmio_flip >= 0)
261 return 1;
262
263 return 0;
264}
265
266static void
267logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
268{
269 struct drm_device *dev = engine->dev;
270
271 if (IS_GEN8(dev) || IS_GEN9(dev))
272 engine->idle_lite_restore_wa = ~0;
273
274 engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
275 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
276 (engine->id == VCS || engine->id == VCS2);
277
278 engine->ctx_desc_template = GEN8_CTX_VALID;
279 engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
280 GEN8_CTX_ADDRESSING_MODE_SHIFT;
281 if (IS_GEN8(dev))
282 engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
283 engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
284
285 /* TODO: WaDisableLiteRestore when we start using semaphore
286 * signalling between Command Streamers */
287 /* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
288
289 /* WaEnableForceRestoreInCtxtDescForVCS:skl */
290 /* WaEnableForceRestoreInCtxtDescForVCS:bxt */
291 if (engine->disable_lite_restore_wa)
292 engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
293}
294
295/**
296 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
297 * descriptor for a pinned context
298 *
299 * @ctx: Context to work on
300 * @ring: Engine the descriptor will be used with
301 *
302 * The context descriptor encodes various attributes of a context,
303 * including its GTT address and some flags. Because it's fairly
304 * expensive to calculate, we'll just do it once and cache the result,
305 * which remains valid until the context is unpinned.
306 *
307 * This is what a descriptor looks like, from LSB to MSB:
308 * bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
309 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
310 * bits 32-51: ctx ID, a globally unique tag (the LRCA again!)
311 * bits 52-63: reserved, may encode the engine ID (for GuC)
312 */
313static void
314intel_lr_context_descriptor_update(struct intel_context *ctx,
315 struct intel_engine_cs *engine)
316{
317 uint64_t lrca, desc;
318
319 lrca = ctx->engine[engine->id].lrc_vma->node.start +
320 LRC_PPHWSP_PN * PAGE_SIZE;
321
322 desc = engine->ctx_desc_template; /* bits 0-11 */
323 desc |= lrca; /* bits 12-31 */
324 desc |= (lrca >> PAGE_SHIFT) << GEN8_CTX_ID_SHIFT; /* bits 32-51 */
325
326 ctx->engine[engine->id].lrc_desc = desc;
327}
328
329uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
330 struct intel_engine_cs *engine)
331{
332 return ctx->engine[engine->id].lrc_desc;
333}
334
335/**
336 * intel_execlists_ctx_id() - get the Execlists Context ID
337 * @ctx: Context to get the ID for
338 * @ring: Engine to get the ID for
339 *
340 * Do not confuse with ctx->id! Unfortunately we have a name overload
341 * here: the old context ID we pass to userspace as a handler so that
342 * they can refer to a context, and the new context ID we pass to the
343 * ELSP so that the GPU can inform us of the context status via
344 * interrupts.
345 *
346 * The context ID is a portion of the context descriptor, so we can
347 * just extract the required part from the cached descriptor.
348 *
349 * Return: 20-bits globally unique context ID.
350 */
351u32 intel_execlists_ctx_id(struct intel_context *ctx,
352 struct intel_engine_cs *engine)
353{
354 return intel_lr_context_descriptor(ctx, engine) >> GEN8_CTX_ID_SHIFT;
355}
356
357static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
358 struct drm_i915_gem_request *rq1)
359{
360
361 struct intel_engine_cs *engine = rq0->engine;
362 struct drm_device *dev = engine->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 uint64_t desc[2];
365
366 if (rq1) {
367 desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
368 rq1->elsp_submitted++;
369 } else {
370 desc[1] = 0;
371 }
372
373 desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
374 rq0->elsp_submitted++;
375
376 /* You must always write both descriptors in the order below. */
377 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
378 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
379
380 I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
381 /* The context is automatically loaded after the following */
382 I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
383
384 /* ELSP is a wo register, use another nearby reg for posting */
385 POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
386}
387
388static void
389execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
390{
391 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
392 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
393 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
394 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
395}
396
397static void execlists_update_context(struct drm_i915_gem_request *rq)
398{
399 struct intel_engine_cs *engine = rq->engine;
400 struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
401 uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
402
403 reg_state[CTX_RING_TAIL+1] = rq->tail;
404
405 /* True 32b PPGTT with dynamic page allocation: update PDP
406 * registers and point the unallocated PDPs to scratch page.
407 * PML4 is allocated during ppgtt init, so this is not needed
408 * in 48-bit mode.
409 */
410 if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
411 execlists_update_context_pdps(ppgtt, reg_state);
412}
413
414static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
415 struct drm_i915_gem_request *rq1)
416{
417 struct drm_i915_private *dev_priv = rq0->i915;
418 unsigned int fw_domains = rq0->engine->fw_domains;
419
420 execlists_update_context(rq0);
421
422 if (rq1)
423 execlists_update_context(rq1);
424
425 spin_lock_irq(&dev_priv->uncore.lock);
426 intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
427
428 execlists_elsp_write(rq0, rq1);
429
430 intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
431 spin_unlock_irq(&dev_priv->uncore.lock);
432}
433
434static void execlists_context_unqueue(struct intel_engine_cs *engine)
435{
436 struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
437 struct drm_i915_gem_request *cursor, *tmp;
438
439 assert_spin_locked(&engine->execlist_lock);
440
441 /*
442 * If irqs are not active generate a warning as batches that finish
443 * without the irqs may get lost and a GPU Hang may occur.
444 */
445 WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
446
447 /* Try to read in pairs */
448 list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
449 execlist_link) {
450 if (!req0) {
451 req0 = cursor;
452 } else if (req0->ctx == cursor->ctx) {
453 /* Same ctx: ignore first request, as second request
454 * will update tail past first request's workload */
455 cursor->elsp_submitted = req0->elsp_submitted;
456 list_move_tail(&req0->execlist_link,
457 &engine->execlist_retired_req_list);
458 req0 = cursor;
459 } else {
460 req1 = cursor;
461 WARN_ON(req1->elsp_submitted);
462 break;
463 }
464 }
465
466 if (unlikely(!req0))
467 return;
468
469 if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
470 /*
471 * WaIdleLiteRestore: make sure we never cause a lite restore
472 * with HEAD==TAIL.
473 *
474 * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
475 * resubmit the request. See gen8_emit_request() for where we
476 * prepare the padding after the end of the request.
477 */
478 struct intel_ringbuffer *ringbuf;
479
480 ringbuf = req0->ctx->engine[engine->id].ringbuf;
481 req0->tail += 8;
482 req0->tail &= ringbuf->size - 1;
483 }
484
485 execlists_submit_requests(req0, req1);
486}
487
488static unsigned int
489execlists_check_remove_request(struct intel_engine_cs *engine, u32 request_id)
490{
491 struct drm_i915_gem_request *head_req;
492
493 assert_spin_locked(&engine->execlist_lock);
494
495 head_req = list_first_entry_or_null(&engine->execlist_queue,
496 struct drm_i915_gem_request,
497 execlist_link);
498
499 if (!head_req)
500 return 0;
501
502 if (unlikely(intel_execlists_ctx_id(head_req->ctx, engine) != request_id))
503 return 0;
504
505 WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
506
507 if (--head_req->elsp_submitted > 0)
508 return 0;
509
510 list_move_tail(&head_req->execlist_link,
511 &engine->execlist_retired_req_list);
512
513 return 1;
514}
515
516static u32
517get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
518 u32 *context_id)
519{
520 struct drm_i915_private *dev_priv = engine->dev->dev_private;
521 u32 status;
522
523 read_pointer %= GEN8_CSB_ENTRIES;
524
525 status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
526
527 if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
528 return 0;
529
530 *context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
531 read_pointer));
532
533 return status;
534}
535
536/**
537 * intel_lrc_irq_handler() - handle Context Switch interrupts
538 * @engine: Engine Command Streamer to handle.
539 *
540 * Check the unread Context Status Buffers and manage the submission of new
541 * contexts to the ELSP accordingly.
542 */
543static void intel_lrc_irq_handler(unsigned long data)
544{
545 struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
546 struct drm_i915_private *dev_priv = engine->dev->dev_private;
547 u32 status_pointer;
548 unsigned int read_pointer, write_pointer;
549 u32 csb[GEN8_CSB_ENTRIES][2];
550 unsigned int csb_read = 0, i;
551 unsigned int submit_contexts = 0;
552
553 intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
554
555 status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
556
557 read_pointer = engine->next_context_status_buffer;
558 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
559 if (read_pointer > write_pointer)
560 write_pointer += GEN8_CSB_ENTRIES;
561
562 while (read_pointer < write_pointer) {
563 if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
564 break;
565 csb[csb_read][0] = get_context_status(engine, ++read_pointer,
566 &csb[csb_read][1]);
567 csb_read++;
568 }
569
570 engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
571
572 /* Update the read pointer to the old write pointer. Manual ringbuffer
573 * management ftw </sarcasm> */
574 I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
575 _MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
576 engine->next_context_status_buffer << 8));
577
578 intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
579
580 spin_lock(&engine->execlist_lock);
581
582 for (i = 0; i < csb_read; i++) {
583 if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
584 if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
585 if (execlists_check_remove_request(engine, csb[i][1]))
586 WARN(1, "Lite Restored request removed from queue\n");
587 } else
588 WARN(1, "Preemption without Lite Restore\n");
589 }
590
591 if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
592 GEN8_CTX_STATUS_ELEMENT_SWITCH))
593 submit_contexts +=
594 execlists_check_remove_request(engine, csb[i][1]);
595 }
596
597 if (submit_contexts) {
598 if (!engine->disable_lite_restore_wa ||
599 (csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
600 execlists_context_unqueue(engine);
601 }
602
603 spin_unlock(&engine->execlist_lock);
604
605 if (unlikely(submit_contexts > 2))
606 DRM_ERROR("More than two context complete events?\n");
607}
608
609static void execlists_context_queue(struct drm_i915_gem_request *request)
610{
611 struct intel_engine_cs *engine = request->engine;
612 struct drm_i915_gem_request *cursor;
613 int num_elements = 0;
614
615 if (request->ctx != request->i915->kernel_context)
616 intel_lr_context_pin(request->ctx, engine);
617
618 i915_gem_request_reference(request);
619
620 spin_lock_bh(&engine->execlist_lock);
621
622 list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
623 if (++num_elements > 2)
624 break;
625
626 if (num_elements > 2) {
627 struct drm_i915_gem_request *tail_req;
628
629 tail_req = list_last_entry(&engine->execlist_queue,
630 struct drm_i915_gem_request,
631 execlist_link);
632
633 if (request->ctx == tail_req->ctx) {
634 WARN(tail_req->elsp_submitted != 0,
635 "More than 2 already-submitted reqs queued\n");
636 list_move_tail(&tail_req->execlist_link,
637 &engine->execlist_retired_req_list);
638 }
639 }
640
641 list_add_tail(&request->execlist_link, &engine->execlist_queue);
642 if (num_elements == 0)
643 execlists_context_unqueue(engine);
644
645 spin_unlock_bh(&engine->execlist_lock);
646}
647
648static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
649{
650 struct intel_engine_cs *engine = req->engine;
651 uint32_t flush_domains;
652 int ret;
653
654 flush_domains = 0;
655 if (engine->gpu_caches_dirty)
656 flush_domains = I915_GEM_GPU_DOMAINS;
657
658 ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
659 if (ret)
660 return ret;
661
662 engine->gpu_caches_dirty = false;
663 return 0;
664}
665
666static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
667 struct list_head *vmas)
668{
669 const unsigned other_rings = ~intel_engine_flag(req->engine);
670 struct i915_vma *vma;
671 uint32_t flush_domains = 0;
672 bool flush_chipset = false;
673 int ret;
674
675 list_for_each_entry(vma, vmas, exec_list) {
676 struct drm_i915_gem_object *obj = vma->obj;
677
678 if (obj->active & other_rings) {
679 ret = i915_gem_object_sync(obj, req->engine, &req);
680 if (ret)
681 return ret;
682 }
683
684 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
685 flush_chipset |= i915_gem_clflush_object(obj, false);
686
687 flush_domains |= obj->base.write_domain;
688 }
689
690 if (flush_domains & I915_GEM_DOMAIN_GTT)
691 wmb();
692
693 /* Unconditionally invalidate gpu caches and ensure that we do flush
694 * any residual writes from the previous batch.
695 */
696 return logical_ring_invalidate_all_caches(req);
697}
698
699int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
700{
701 int ret = 0;
702
703 request->ringbuf = request->ctx->engine[request->engine->id].ringbuf;
704
705 if (i915.enable_guc_submission) {
706 /*
707 * Check that the GuC has space for the request before
708 * going any further, as the i915_add_request() call
709 * later on mustn't fail ...
710 */
711 struct intel_guc *guc = &request->i915->guc;
712
713 ret = i915_guc_wq_check_space(guc->execbuf_client);
714 if (ret)
715 return ret;
716 }
717
718 if (request->ctx != request->i915->kernel_context)
719 ret = intel_lr_context_pin(request->ctx, request->engine);
720
721 return ret;
722}
723
724static int logical_ring_wait_for_space(struct drm_i915_gem_request *req,
725 int bytes)
726{
727 struct intel_ringbuffer *ringbuf = req->ringbuf;
728 struct intel_engine_cs *engine = req->engine;
729 struct drm_i915_gem_request *target;
730 unsigned space;
731 int ret;
732
733 if (intel_ring_space(ringbuf) >= bytes)
734 return 0;
735
736 /* The whole point of reserving space is to not wait! */
737 WARN_ON(ringbuf->reserved_in_use);
738
739 list_for_each_entry(target, &engine->request_list, list) {
740 /*
741 * The request queue is per-engine, so can contain requests
742 * from multiple ringbuffers. Here, we must ignore any that
743 * aren't from the ringbuffer we're considering.
744 */
745 if (target->ringbuf != ringbuf)
746 continue;
747
748 /* Would completion of this request free enough space? */
749 space = __intel_ring_space(target->postfix, ringbuf->tail,
750 ringbuf->size);
751 if (space >= bytes)
752 break;
753 }
754
755 if (WARN_ON(&target->list == &engine->request_list))
756 return -ENOSPC;
757
758 ret = i915_wait_request(target);
759 if (ret)
760 return ret;
761
762 ringbuf->space = space;
763 return 0;
764}
765
766/*
767 * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
768 * @request: Request to advance the logical ringbuffer of.
769 *
770 * The tail is updated in our logical ringbuffer struct, not in the actual context. What
771 * really happens during submission is that the context and current tail will be placed
772 * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
773 * point, the tail *inside* the context is updated and the ELSP written to.
774 */
775static int
776intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
777{
778 struct intel_ringbuffer *ringbuf = request->ringbuf;
779 struct drm_i915_private *dev_priv = request->i915;
780 struct intel_engine_cs *engine = request->engine;
781
782 intel_logical_ring_advance(ringbuf);
783 request->tail = ringbuf->tail;
784
785 /*
786 * Here we add two extra NOOPs as padding to avoid
787 * lite restore of a context with HEAD==TAIL.
788 *
789 * Caller must reserve WA_TAIL_DWORDS for us!
790 */
791 intel_logical_ring_emit(ringbuf, MI_NOOP);
792 intel_logical_ring_emit(ringbuf, MI_NOOP);
793 intel_logical_ring_advance(ringbuf);
794
795 if (intel_engine_stopped(engine))
796 return 0;
797
798 if (engine->last_context != request->ctx) {
799 if (engine->last_context)
800 intel_lr_context_unpin(engine->last_context, engine);
801 if (request->ctx != request->i915->kernel_context) {
802 intel_lr_context_pin(request->ctx, engine);
803 engine->last_context = request->ctx;
804 } else {
805 engine->last_context = NULL;
806 }
807 }
808
809 if (dev_priv->guc.execbuf_client)
810 i915_guc_submit(dev_priv->guc.execbuf_client, request);
811 else
812 execlists_context_queue(request);
813
814 return 0;
815}
816
817static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
818{
819 uint32_t __iomem *virt;
820 int rem = ringbuf->size - ringbuf->tail;
821
822 virt = ringbuf->virtual_start + ringbuf->tail;
823 rem /= 4;
824 while (rem--)
825 iowrite32(MI_NOOP, virt++);
826
827 ringbuf->tail = 0;
828 intel_ring_update_space(ringbuf);
829}
830
831static int logical_ring_prepare(struct drm_i915_gem_request *req, int bytes)
832{
833 struct intel_ringbuffer *ringbuf = req->ringbuf;
834 int remain_usable = ringbuf->effective_size - ringbuf->tail;
835 int remain_actual = ringbuf->size - ringbuf->tail;
836 int ret, total_bytes, wait_bytes = 0;
837 bool need_wrap = false;
838
839 if (ringbuf->reserved_in_use)
840 total_bytes = bytes;
841 else
842 total_bytes = bytes + ringbuf->reserved_size;
843
844 if (unlikely(bytes > remain_usable)) {
845 /*
846 * Not enough space for the basic request. So need to flush
847 * out the remainder and then wait for base + reserved.
848 */
849 wait_bytes = remain_actual + total_bytes;
850 need_wrap = true;
851 } else {
852 if (unlikely(total_bytes > remain_usable)) {
853 /*
854 * The base request will fit but the reserved space
855 * falls off the end. So don't need an immediate wrap
856 * and only need to effectively wait for the reserved
857 * size space from the start of ringbuffer.
858 */
859 wait_bytes = remain_actual + ringbuf->reserved_size;
860 } else if (total_bytes > ringbuf->space) {
861 /* No wrapping required, just waiting. */
862 wait_bytes = total_bytes;
863 }
864 }
865
866 if (wait_bytes) {
867 ret = logical_ring_wait_for_space(req, wait_bytes);
868 if (unlikely(ret))
869 return ret;
870
871 if (need_wrap)
872 __wrap_ring_buffer(ringbuf);
873 }
874
875 return 0;
876}
877
878/**
879 * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
880 *
881 * @req: The request to start some new work for
882 * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
883 *
884 * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
885 * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
886 * and also preallocates a request (every workload submission is still mediated through
887 * requests, same as it did with legacy ringbuffer submission).
888 *
889 * Return: non-zero if the ringbuffer is not ready to be written to.
890 */
891int intel_logical_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
892{
893 int ret;
894
895 WARN_ON(req == NULL);
896
897 ret = logical_ring_prepare(req, num_dwords * sizeof(uint32_t));
898 if (ret)
899 return ret;
900
901 req->ringbuf->space -= num_dwords * sizeof(uint32_t);
902 return 0;
903}
904
905int intel_logical_ring_reserve_space(struct drm_i915_gem_request *request)
906{
907 /*
908 * The first call merely notes the reserve request and is common for
909 * all back ends. The subsequent localised _begin() call actually
910 * ensures that the reservation is available. Without the begin, if
911 * the request creator immediately submitted the request without
912 * adding any commands to it then there might not actually be
913 * sufficient room for the submission commands.
914 */
915 intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
916
917 return intel_logical_ring_begin(request, 0);
918}
919
920/**
921 * execlists_submission() - submit a batchbuffer for execution, Execlists style
922 * @dev: DRM device.
923 * @file: DRM file.
924 * @ring: Engine Command Streamer to submit to.
925 * @ctx: Context to employ for this submission.
926 * @args: execbuffer call arguments.
927 * @vmas: list of vmas.
928 * @batch_obj: the batchbuffer to submit.
929 * @exec_start: batchbuffer start virtual address pointer.
930 * @dispatch_flags: translated execbuffer call flags.
931 *
932 * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
933 * away the submission details of the execbuffer ioctl call.
934 *
935 * Return: non-zero if the submission fails.
936 */
937int intel_execlists_submission(struct i915_execbuffer_params *params,
938 struct drm_i915_gem_execbuffer2 *args,
939 struct list_head *vmas)
940{
941 struct drm_device *dev = params->dev;
942 struct intel_engine_cs *engine = params->engine;
943 struct drm_i915_private *dev_priv = dev->dev_private;
944 struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
945 u64 exec_start;
946 int instp_mode;
947 u32 instp_mask;
948 int ret;
949
950 instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
951 instp_mask = I915_EXEC_CONSTANTS_MASK;
952 switch (instp_mode) {
953 case I915_EXEC_CONSTANTS_REL_GENERAL:
954 case I915_EXEC_CONSTANTS_ABSOLUTE:
955 case I915_EXEC_CONSTANTS_REL_SURFACE:
956 if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
957 DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
958 return -EINVAL;
959 }
960
961 if (instp_mode != dev_priv->relative_constants_mode) {
962 if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
963 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
964 return -EINVAL;
965 }
966
967 /* The HW changed the meaning on this bit on gen6 */
968 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
969 }
970 break;
971 default:
972 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
973 return -EINVAL;
974 }
975
976 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
977 DRM_DEBUG("sol reset is gen7 only\n");
978 return -EINVAL;
979 }
980
981 ret = execlists_move_to_gpu(params->request, vmas);
982 if (ret)
983 return ret;
984
985 if (engine == &dev_priv->engine[RCS] &&
986 instp_mode != dev_priv->relative_constants_mode) {
987 ret = intel_logical_ring_begin(params->request, 4);
988 if (ret)
989 return ret;
990
991 intel_logical_ring_emit(ringbuf, MI_NOOP);
992 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
993 intel_logical_ring_emit_reg(ringbuf, INSTPM);
994 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
995 intel_logical_ring_advance(ringbuf);
996
997 dev_priv->relative_constants_mode = instp_mode;
998 }
999
1000 exec_start = params->batch_obj_vm_offset +
1001 args->batch_start_offset;
1002
1003 ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
1004 if (ret)
1005 return ret;
1006
1007 trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1008
1009 i915_gem_execbuffer_move_to_active(vmas, params->request);
1010 i915_gem_execbuffer_retire_commands(params);
1011
1012 return 0;
1013}
1014
1015void intel_execlists_retire_requests(struct intel_engine_cs *engine)
1016{
1017 struct drm_i915_gem_request *req, *tmp;
1018 struct list_head retired_list;
1019
1020 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1021 if (list_empty(&engine->execlist_retired_req_list))
1022 return;
1023
1024 INIT_LIST_HEAD(&retired_list);
1025 spin_lock_bh(&engine->execlist_lock);
1026 list_replace_init(&engine->execlist_retired_req_list, &retired_list);
1027 spin_unlock_bh(&engine->execlist_lock);
1028
1029 list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
1030 struct intel_context *ctx = req->ctx;
1031 struct drm_i915_gem_object *ctx_obj =
1032 ctx->engine[engine->id].state;
1033
1034 if (ctx_obj && (ctx != req->i915->kernel_context))
1035 intel_lr_context_unpin(ctx, engine);
1036
1037 list_del(&req->execlist_link);
1038 i915_gem_request_unreference(req);
1039 }
1040}
1041
1042void intel_logical_ring_stop(struct intel_engine_cs *engine)
1043{
1044 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1045 int ret;
1046
1047 if (!intel_engine_initialized(engine))
1048 return;
1049
1050 ret = intel_engine_idle(engine);
1051 if (ret && !i915_reset_in_progress_or_wedged(&dev_priv->gpu_error))
1052 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1053 engine->name, ret);
1054
1055 /* TODO: Is this correct with Execlists enabled? */
1056 I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
1057 if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
1058 DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
1059 return;
1060 }
1061 I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
1062}
1063
1064int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
1065{
1066 struct intel_engine_cs *engine = req->engine;
1067 int ret;
1068
1069 if (!engine->gpu_caches_dirty)
1070 return 0;
1071
1072 ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
1073 if (ret)
1074 return ret;
1075
1076 engine->gpu_caches_dirty = false;
1077 return 0;
1078}
1079
1080static int intel_lr_context_do_pin(struct intel_context *ctx,
1081 struct intel_engine_cs *engine)
1082{
1083 struct drm_device *dev = engine->dev;
1084 struct drm_i915_private *dev_priv = dev->dev_private;
1085 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1086 struct intel_ringbuffer *ringbuf = ctx->engine[engine->id].ringbuf;
1087 void *vaddr;
1088 u32 *lrc_reg_state;
1089 int ret;
1090
1091 WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
1092
1093 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
1094 PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
1095 if (ret)
1096 return ret;
1097
1098 vaddr = i915_gem_object_pin_map(ctx_obj);
1099 if (IS_ERR(vaddr)) {
1100 ret = PTR_ERR(vaddr);
1101 goto unpin_ctx_obj;
1102 }
1103
1104 lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1105
1106 ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
1107 if (ret)
1108 goto unpin_map;
1109
1110 ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
1111 intel_lr_context_descriptor_update(ctx, engine);
1112 lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
1113 ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
1114 ctx_obj->dirty = true;
1115
1116 /* Invalidate GuC TLB. */
1117 if (i915.enable_guc_submission)
1118 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
1119
1120 return ret;
1121
1122unpin_map:
1123 i915_gem_object_unpin_map(ctx_obj);
1124unpin_ctx_obj:
1125 i915_gem_object_ggtt_unpin(ctx_obj);
1126
1127 return ret;
1128}
1129
1130static int intel_lr_context_pin(struct intel_context *ctx,
1131 struct intel_engine_cs *engine)
1132{
1133 int ret = 0;
1134
1135 if (ctx->engine[engine->id].pin_count++ == 0) {
1136 ret = intel_lr_context_do_pin(ctx, engine);
1137 if (ret)
1138 goto reset_pin_count;
1139
1140 i915_gem_context_reference(ctx);
1141 }
1142 return ret;
1143
1144reset_pin_count:
1145 ctx->engine[engine->id].pin_count = 0;
1146 return ret;
1147}
1148
1149void intel_lr_context_unpin(struct intel_context *ctx,
1150 struct intel_engine_cs *engine)
1151{
1152 struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
1153
1154 WARN_ON(!mutex_is_locked(&ctx->i915->dev->struct_mutex));
1155 if (--ctx->engine[engine->id].pin_count == 0) {
1156 i915_gem_object_unpin_map(ctx_obj);
1157 intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
1158 i915_gem_object_ggtt_unpin(ctx_obj);
1159 ctx->engine[engine->id].lrc_vma = NULL;
1160 ctx->engine[engine->id].lrc_desc = 0;
1161 ctx->engine[engine->id].lrc_reg_state = NULL;
1162
1163 i915_gem_context_unreference(ctx);
1164 }
1165}
1166
1167static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
1168{
1169 int ret, i;
1170 struct intel_engine_cs *engine = req->engine;
1171 struct intel_ringbuffer *ringbuf = req->ringbuf;
1172 struct drm_device *dev = engine->dev;
1173 struct drm_i915_private *dev_priv = dev->dev_private;
1174 struct i915_workarounds *w = &dev_priv->workarounds;
1175
1176 if (w->count == 0)
1177 return 0;
1178
1179 engine->gpu_caches_dirty = true;
1180 ret = logical_ring_flush_all_caches(req);
1181 if (ret)
1182 return ret;
1183
1184 ret = intel_logical_ring_begin(req, w->count * 2 + 2);
1185 if (ret)
1186 return ret;
1187
1188 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1189 for (i = 0; i < w->count; i++) {
1190 intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
1191 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1192 }
1193 intel_logical_ring_emit(ringbuf, MI_NOOP);
1194
1195 intel_logical_ring_advance(ringbuf);
1196
1197 engine->gpu_caches_dirty = true;
1198 ret = logical_ring_flush_all_caches(req);
1199 if (ret)
1200 return ret;
1201
1202 return 0;
1203}
1204
1205#define wa_ctx_emit(batch, index, cmd) \
1206 do { \
1207 int __index = (index)++; \
1208 if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
1209 return -ENOSPC; \
1210 } \
1211 batch[__index] = (cmd); \
1212 } while (0)
1213
1214#define wa_ctx_emit_reg(batch, index, reg) \
1215 wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
1216
1217/*
1218 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1219 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1220 * but there is a slight complication as this is applied in WA batch where the
1221 * values are only initialized once so we cannot take register value at the
1222 * beginning and reuse it further; hence we save its value to memory, upload a
1223 * constant value with bit21 set and then we restore it back with the saved value.
1224 * To simplify the WA, a constant value is formed by using the default value
1225 * of this register. This shouldn't be a problem because we are only modifying
1226 * it for a short period and this batch in non-premptible. We can ofcourse
1227 * use additional instructions that read the actual value of the register
1228 * at that time and set our bit of interest but it makes the WA complicated.
1229 *
1230 * This WA is also required for Gen9 so extracting as a function avoids
1231 * code duplication.
1232 */
1233static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
1234 uint32_t *const batch,
1235 uint32_t index)
1236{
1237 uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
1238
1239 /*
1240 * WaDisableLSQCROPERFforOCL:skl
1241 * This WA is implemented in skl_init_clock_gating() but since
1242 * this batch updates GEN8_L3SQCREG4 with default value we need to
1243 * set this bit here to retain the WA during flush.
1244 */
1245 if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
1246 l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
1247
1248 wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
1249 MI_SRM_LRM_GLOBAL_GTT));
1250 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1251 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1252 wa_ctx_emit(batch, index, 0);
1253
1254 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1255 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1256 wa_ctx_emit(batch, index, l3sqc4_flush);
1257
1258 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1259 wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
1260 PIPE_CONTROL_DC_FLUSH_ENABLE));
1261 wa_ctx_emit(batch, index, 0);
1262 wa_ctx_emit(batch, index, 0);
1263 wa_ctx_emit(batch, index, 0);
1264 wa_ctx_emit(batch, index, 0);
1265
1266 wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
1267 MI_SRM_LRM_GLOBAL_GTT));
1268 wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
1269 wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
1270 wa_ctx_emit(batch, index, 0);
1271
1272 return index;
1273}
1274
1275static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
1276 uint32_t offset,
1277 uint32_t start_alignment)
1278{
1279 return wa_ctx->offset = ALIGN(offset, start_alignment);
1280}
1281
1282static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
1283 uint32_t offset,
1284 uint32_t size_alignment)
1285{
1286 wa_ctx->size = offset - wa_ctx->offset;
1287
1288 WARN(wa_ctx->size % size_alignment,
1289 "wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
1290 wa_ctx->size, size_alignment);
1291 return 0;
1292}
1293
1294/**
1295 * gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
1296 *
1297 * @ring: only applicable for RCS
1298 * @wa_ctx: structure representing wa_ctx
1299 * offset: specifies start of the batch, should be cache-aligned. This is updated
1300 * with the offset value received as input.
1301 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1302 * @batch: page in which WA are loaded
1303 * @offset: This field specifies the start of the batch, it should be
1304 * cache-aligned otherwise it is adjusted accordingly.
1305 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1306 * initialized at the beginning and shared across all contexts but this field
1307 * helps us to have multiple batches at different offsets and select them based
1308 * on a criteria. At the moment this batch always start at the beginning of the page
1309 * and at this point we don't have multiple wa_ctx batch buffers.
1310 *
1311 * The number of WA applied are not known at the beginning; we use this field
1312 * to return the no of DWORDS written.
1313 *
1314 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1315 * so it adds NOOPs as padding to make it cacheline aligned.
1316 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1317 * makes a complete batch buffer.
1318 *
1319 * Return: non-zero if we exceed the PAGE_SIZE limit.
1320 */
1321
1322static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
1323 struct i915_wa_ctx_bb *wa_ctx,
1324 uint32_t *const batch,
1325 uint32_t *offset)
1326{
1327 uint32_t scratch_addr;
1328 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1329
1330 /* WaDisableCtxRestoreArbitration:bdw,chv */
1331 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1332
1333 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1334 if (IS_BROADWELL(engine->dev)) {
1335 int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1336 if (rc < 0)
1337 return rc;
1338 index = rc;
1339 }
1340
1341 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1342 /* Actual scratch location is at 128 bytes offset */
1343 scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
1344
1345 wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
1346 wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
1347 PIPE_CONTROL_GLOBAL_GTT_IVB |
1348 PIPE_CONTROL_CS_STALL |
1349 PIPE_CONTROL_QW_WRITE));
1350 wa_ctx_emit(batch, index, scratch_addr);
1351 wa_ctx_emit(batch, index, 0);
1352 wa_ctx_emit(batch, index, 0);
1353 wa_ctx_emit(batch, index, 0);
1354
1355 /* Pad to end of cacheline */
1356 while (index % CACHELINE_DWORDS)
1357 wa_ctx_emit(batch, index, MI_NOOP);
1358
1359 /*
1360 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1361 * execution depends on the length specified in terms of cache lines
1362 * in the register CTX_RCS_INDIRECT_CTX
1363 */
1364
1365 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1366}
1367
1368/**
1369 * gen8_init_perctx_bb() - initialize per ctx batch with WA
1370 *
1371 * @ring: only applicable for RCS
1372 * @wa_ctx: structure representing wa_ctx
1373 * offset: specifies start of the batch, should be cache-aligned.
1374 * size: size of the batch in DWORDS but HW expects in terms of cachelines
1375 * @batch: page in which WA are loaded
1376 * @offset: This field specifies the start of this batch.
1377 * This batch is started immediately after indirect_ctx batch. Since we ensure
1378 * that indirect_ctx ends on a cacheline this batch is aligned automatically.
1379 *
1380 * The number of DWORDS written are returned using this field.
1381 *
1382 * This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
1383 * to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
1384 */
1385static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
1386 struct i915_wa_ctx_bb *wa_ctx,
1387 uint32_t *const batch,
1388 uint32_t *offset)
1389{
1390 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1391
1392 /* WaDisableCtxRestoreArbitration:bdw,chv */
1393 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1394
1395 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1396
1397 return wa_ctx_end(wa_ctx, *offset = index, 1);
1398}
1399
1400static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
1401 struct i915_wa_ctx_bb *wa_ctx,
1402 uint32_t *const batch,
1403 uint32_t *offset)
1404{
1405 int ret;
1406 struct drm_device *dev = engine->dev;
1407 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1408
1409 /* WaDisableCtxRestoreArbitration:skl,bxt */
1410 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1411 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1412 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
1413
1414 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
1415 ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
1416 if (ret < 0)
1417 return ret;
1418 index = ret;
1419
1420 /* Pad to end of cacheline */
1421 while (index % CACHELINE_DWORDS)
1422 wa_ctx_emit(batch, index, MI_NOOP);
1423
1424 return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
1425}
1426
1427static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
1428 struct i915_wa_ctx_bb *wa_ctx,
1429 uint32_t *const batch,
1430 uint32_t *offset)
1431{
1432 struct drm_device *dev = engine->dev;
1433 uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
1434
1435 /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
1436 if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
1437 IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
1438 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
1439 wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
1440 wa_ctx_emit(batch, index,
1441 _MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
1442 wa_ctx_emit(batch, index, MI_NOOP);
1443 }
1444
1445 /* WaClearTdlStateAckDirtyBits:bxt */
1446 if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
1447 wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
1448
1449 wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
1450 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1451
1452 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
1453 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1454
1455 wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
1456 wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
1457
1458 wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
1459 /* dummy write to CS, mask bits are 0 to ensure the register is not modified */
1460 wa_ctx_emit(batch, index, 0x0);
1461 wa_ctx_emit(batch, index, MI_NOOP);
1462 }
1463
1464 /* WaDisableCtxRestoreArbitration:skl,bxt */
1465 if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
1466 IS_BXT_REVID(dev, 0, BXT_REVID_A1))
1467 wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
1468
1469 wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
1470
1471 return wa_ctx_end(wa_ctx, *offset = index, 1);
1472}
1473
1474static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
1475{
1476 int ret;
1477
1478 engine->wa_ctx.obj = i915_gem_alloc_object(engine->dev,
1479 PAGE_ALIGN(size));
1480 if (!engine->wa_ctx.obj) {
1481 DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
1482 return -ENOMEM;
1483 }
1484
1485 ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
1486 if (ret) {
1487 DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
1488 ret);
1489 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1490 return ret;
1491 }
1492
1493 return 0;
1494}
1495
1496static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
1497{
1498 if (engine->wa_ctx.obj) {
1499 i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
1500 drm_gem_object_unreference(&engine->wa_ctx.obj->base);
1501 engine->wa_ctx.obj = NULL;
1502 }
1503}
1504
1505static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1506{
1507 int ret;
1508 uint32_t *batch;
1509 uint32_t offset;
1510 struct page *page;
1511 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1512
1513 WARN_ON(engine->id != RCS);
1514
1515 /* update this when WA for higher Gen are added */
1516 if (INTEL_INFO(engine->dev)->gen > 9) {
1517 DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
1518 INTEL_INFO(engine->dev)->gen);
1519 return 0;
1520 }
1521
1522 /* some WA perform writes to scratch page, ensure it is valid */
1523 if (engine->scratch.obj == NULL) {
1524 DRM_ERROR("scratch page not allocated for %s\n", engine->name);
1525 return -EINVAL;
1526 }
1527
1528 ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
1529 if (ret) {
1530 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1531 return ret;
1532 }
1533
1534 page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
1535 batch = kmap_atomic(page);
1536 offset = 0;
1537
1538 if (INTEL_INFO(engine->dev)->gen == 8) {
1539 ret = gen8_init_indirectctx_bb(engine,
1540 &wa_ctx->indirect_ctx,
1541 batch,
1542 &offset);
1543 if (ret)
1544 goto out;
1545
1546 ret = gen8_init_perctx_bb(engine,
1547 &wa_ctx->per_ctx,
1548 batch,
1549 &offset);
1550 if (ret)
1551 goto out;
1552 } else if (INTEL_INFO(engine->dev)->gen == 9) {
1553 ret = gen9_init_indirectctx_bb(engine,
1554 &wa_ctx->indirect_ctx,
1555 batch,
1556 &offset);
1557 if (ret)
1558 goto out;
1559
1560 ret = gen9_init_perctx_bb(engine,
1561 &wa_ctx->per_ctx,
1562 batch,
1563 &offset);
1564 if (ret)
1565 goto out;
1566 }
1567
1568out:
1569 kunmap_atomic(batch);
1570 if (ret)
1571 lrc_destroy_wa_ctx_obj(engine);
1572
1573 return ret;
1574}
1575
1576static void lrc_init_hws(struct intel_engine_cs *engine)
1577{
1578 struct drm_i915_private *dev_priv = engine->dev->dev_private;
1579
1580 I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1581 (u32)engine->status_page.gfx_addr);
1582 POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1583}
1584
1585static int gen8_init_common_ring(struct intel_engine_cs *engine)
1586{
1587 struct drm_device *dev = engine->dev;
1588 struct drm_i915_private *dev_priv = dev->dev_private;
1589 unsigned int next_context_status_buffer_hw;
1590
1591 lrc_init_hws(engine);
1592
1593 I915_WRITE_IMR(engine,
1594 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1595 I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1596
1597 I915_WRITE(RING_MODE_GEN7(engine),
1598 _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1599 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1600 POSTING_READ(RING_MODE_GEN7(engine));
1601
1602 /*
1603 * Instead of resetting the Context Status Buffer (CSB) read pointer to
1604 * zero, we need to read the write pointer from hardware and use its
1605 * value because "this register is power context save restored".
1606 * Effectively, these states have been observed:
1607 *
1608 * | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
1609 * BDW | CSB regs not reset | CSB regs reset |
1610 * CHT | CSB regs not reset | CSB regs not reset |
1611 * SKL | ? | ? |
1612 * BXT | ? | ? |
1613 */
1614 next_context_status_buffer_hw =
1615 GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
1616
1617 /*
1618 * When the CSB registers are reset (also after power-up / gpu reset),
1619 * CSB write pointer is set to all 1's, which is not valid, use '5' in
1620 * this special case, so the first element read is CSB[0].
1621 */
1622 if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
1623 next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
1624
1625 engine->next_context_status_buffer = next_context_status_buffer_hw;
1626 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1627
1628 intel_engine_init_hangcheck(engine);
1629
1630 return 0;
1631}
1632
1633static int gen8_init_render_ring(struct intel_engine_cs *engine)
1634{
1635 struct drm_device *dev = engine->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637 int ret;
1638
1639 ret = gen8_init_common_ring(engine);
1640 if (ret)
1641 return ret;
1642
1643 /* We need to disable the AsyncFlip performance optimisations in order
1644 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1645 * programmed to '1' on all products.
1646 *
1647 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1648 */
1649 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1650
1651 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1652
1653 return init_workarounds_ring(engine);
1654}
1655
1656static int gen9_init_render_ring(struct intel_engine_cs *engine)
1657{
1658 int ret;
1659
1660 ret = gen8_init_common_ring(engine);
1661 if (ret)
1662 return ret;
1663
1664 return init_workarounds_ring(engine);
1665}
1666
1667static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1668{
1669 struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1670 struct intel_engine_cs *engine = req->engine;
1671 struct intel_ringbuffer *ringbuf = req->ringbuf;
1672 const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1673 int i, ret;
1674
1675 ret = intel_logical_ring_begin(req, num_lri_cmds * 2 + 2);
1676 if (ret)
1677 return ret;
1678
1679 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
1680 for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1681 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1682
1683 intel_logical_ring_emit_reg(ringbuf,
1684 GEN8_RING_PDP_UDW(engine, i));
1685 intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
1686 intel_logical_ring_emit_reg(ringbuf,
1687 GEN8_RING_PDP_LDW(engine, i));
1688 intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
1689 }
1690
1691 intel_logical_ring_emit(ringbuf, MI_NOOP);
1692 intel_logical_ring_advance(ringbuf);
1693
1694 return 0;
1695}
1696
1697static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1698 u64 offset, unsigned dispatch_flags)
1699{
1700 struct intel_ringbuffer *ringbuf = req->ringbuf;
1701 bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1702 int ret;
1703
1704 /* Don't rely in hw updating PDPs, specially in lite-restore.
1705 * Ideally, we should set Force PD Restore in ctx descriptor,
1706 * but we can't. Force Restore would be a second option, but
1707 * it is unsafe in case of lite-restore (because the ctx is
1708 * not idle). PML4 is allocated during ppgtt init so this is
1709 * not needed in 48-bit.*/
1710 if (req->ctx->ppgtt &&
1711 (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1712 if (!USES_FULL_48BIT_PPGTT(req->i915) &&
1713 !intel_vgpu_active(req->i915->dev)) {
1714 ret = intel_logical_ring_emit_pdps(req);
1715 if (ret)
1716 return ret;
1717 }
1718
1719 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1720 }
1721
1722 ret = intel_logical_ring_begin(req, 4);
1723 if (ret)
1724 return ret;
1725
1726 /* FIXME(BDW): Address space and security selectors. */
1727 intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
1728 (ppgtt<<8) |
1729 (dispatch_flags & I915_DISPATCH_RS ?
1730 MI_BATCH_RESOURCE_STREAMER : 0));
1731 intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1732 intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1733 intel_logical_ring_emit(ringbuf, MI_NOOP);
1734 intel_logical_ring_advance(ringbuf);
1735
1736 return 0;
1737}
1738
1739static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
1740{
1741 struct drm_device *dev = engine->dev;
1742 struct drm_i915_private *dev_priv = dev->dev_private;
1743 unsigned long flags;
1744
1745 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1746 return false;
1747
1748 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1749 if (engine->irq_refcount++ == 0) {
1750 I915_WRITE_IMR(engine,
1751 ~(engine->irq_enable_mask | engine->irq_keep_mask));
1752 POSTING_READ(RING_IMR(engine->mmio_base));
1753 }
1754 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1755
1756 return true;
1757}
1758
1759static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
1760{
1761 struct drm_device *dev = engine->dev;
1762 struct drm_i915_private *dev_priv = dev->dev_private;
1763 unsigned long flags;
1764
1765 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1766 if (--engine->irq_refcount == 0) {
1767 I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1768 POSTING_READ(RING_IMR(engine->mmio_base));
1769 }
1770 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1771}
1772
1773static int gen8_emit_flush(struct drm_i915_gem_request *request,
1774 u32 invalidate_domains,
1775 u32 unused)
1776{
1777 struct intel_ringbuffer *ringbuf = request->ringbuf;
1778 struct intel_engine_cs *engine = ringbuf->engine;
1779 struct drm_device *dev = engine->dev;
1780 struct drm_i915_private *dev_priv = dev->dev_private;
1781 uint32_t cmd;
1782 int ret;
1783
1784 ret = intel_logical_ring_begin(request, 4);
1785 if (ret)
1786 return ret;
1787
1788 cmd = MI_FLUSH_DW + 1;
1789
1790 /* We always require a command barrier so that subsequent
1791 * commands, such as breadcrumb interrupts, are strictly ordered
1792 * wrt the contents of the write cache being flushed to memory
1793 * (and thus being coherent from the CPU).
1794 */
1795 cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1796
1797 if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1798 cmd |= MI_INVALIDATE_TLB;
1799 if (engine == &dev_priv->engine[VCS])
1800 cmd |= MI_INVALIDATE_BSD;
1801 }
1802
1803 intel_logical_ring_emit(ringbuf, cmd);
1804 intel_logical_ring_emit(ringbuf,
1805 I915_GEM_HWS_SCRATCH_ADDR |
1806 MI_FLUSH_DW_USE_GTT);
1807 intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1808 intel_logical_ring_emit(ringbuf, 0); /* value */
1809 intel_logical_ring_advance(ringbuf);
1810
1811 return 0;
1812}
1813
1814static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1815 u32 invalidate_domains,
1816 u32 flush_domains)
1817{
1818 struct intel_ringbuffer *ringbuf = request->ringbuf;
1819 struct intel_engine_cs *engine = ringbuf->engine;
1820 u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1821 bool vf_flush_wa = false;
1822 u32 flags = 0;
1823 int ret;
1824
1825 flags |= PIPE_CONTROL_CS_STALL;
1826
1827 if (flush_domains) {
1828 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1829 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1830 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1831 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1832 }
1833
1834 if (invalidate_domains) {
1835 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1836 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1837 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1838 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1839 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1840 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1841 flags |= PIPE_CONTROL_QW_WRITE;
1842 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1843
1844 /*
1845 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1846 * pipe control.
1847 */
1848 if (IS_GEN9(engine->dev))
1849 vf_flush_wa = true;
1850 }
1851
1852 ret = intel_logical_ring_begin(request, vf_flush_wa ? 12 : 6);
1853 if (ret)
1854 return ret;
1855
1856 if (vf_flush_wa) {
1857 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1858 intel_logical_ring_emit(ringbuf, 0);
1859 intel_logical_ring_emit(ringbuf, 0);
1860 intel_logical_ring_emit(ringbuf, 0);
1861 intel_logical_ring_emit(ringbuf, 0);
1862 intel_logical_ring_emit(ringbuf, 0);
1863 }
1864
1865 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1866 intel_logical_ring_emit(ringbuf, flags);
1867 intel_logical_ring_emit(ringbuf, scratch_addr);
1868 intel_logical_ring_emit(ringbuf, 0);
1869 intel_logical_ring_emit(ringbuf, 0);
1870 intel_logical_ring_emit(ringbuf, 0);
1871 intel_logical_ring_advance(ringbuf);
1872
1873 return 0;
1874}
1875
1876static u32 gen8_get_seqno(struct intel_engine_cs *engine)
1877{
1878 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
1879}
1880
1881static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1882{
1883 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1884}
1885
1886static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
1887{
1888 /*
1889 * On BXT A steppings there is a HW coherency issue whereby the
1890 * MI_STORE_DATA_IMM storing the completed request's seqno
1891 * occasionally doesn't invalidate the CPU cache. Work around this by
1892 * clflushing the corresponding cacheline whenever the caller wants
1893 * the coherency to be guaranteed. Note that this cacheline is known
1894 * to be clean at this point, since we only write it in
1895 * bxt_a_set_seqno(), where we also do a clflush after the write. So
1896 * this clflush in practice becomes an invalidate operation.
1897 */
1898 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1899}
1900
1901static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
1902{
1903 intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
1904
1905 /* See bxt_a_get_seqno() explaining the reason for the clflush. */
1906 intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
1907}
1908
1909/*
1910 * Reserve space for 2 NOOPs at the end of each request to be
1911 * used as a workaround for not being allowed to do lite
1912 * restore with HEAD==TAIL (WaIdleLiteRestore).
1913 */
1914#define WA_TAIL_DWORDS 2
1915
1916static inline u32 hws_seqno_address(struct intel_engine_cs *engine)
1917{
1918 return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
1919}
1920
1921static int gen8_emit_request(struct drm_i915_gem_request *request)
1922{
1923 struct intel_ringbuffer *ringbuf = request->ringbuf;
1924 int ret;
1925
1926 ret = intel_logical_ring_begin(request, 6 + WA_TAIL_DWORDS);
1927 if (ret)
1928 return ret;
1929
1930 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1931 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1932
1933 intel_logical_ring_emit(ringbuf,
1934 (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
1935 intel_logical_ring_emit(ringbuf,
1936 hws_seqno_address(request->engine) |
1937 MI_FLUSH_DW_USE_GTT);
1938 intel_logical_ring_emit(ringbuf, 0);
1939 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1940 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1941 intel_logical_ring_emit(ringbuf, MI_NOOP);
1942 return intel_logical_ring_advance_and_submit(request);
1943}
1944
1945static int gen8_emit_request_render(struct drm_i915_gem_request *request)
1946{
1947 struct intel_ringbuffer *ringbuf = request->ringbuf;
1948 int ret;
1949
1950 ret = intel_logical_ring_begin(request, 8 + WA_TAIL_DWORDS);
1951 if (ret)
1952 return ret;
1953
1954 /* We're using qword write, seqno should be aligned to 8 bytes. */
1955 BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1956
1957 /* w/a for post sync ops following a GPGPU operation we
1958 * need a prior CS_STALL, which is emitted by the flush
1959 * following the batch.
1960 */
1961 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1962 intel_logical_ring_emit(ringbuf,
1963 (PIPE_CONTROL_GLOBAL_GTT_IVB |
1964 PIPE_CONTROL_CS_STALL |
1965 PIPE_CONTROL_QW_WRITE));
1966 intel_logical_ring_emit(ringbuf, hws_seqno_address(request->engine));
1967 intel_logical_ring_emit(ringbuf, 0);
1968 intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
1969 /* We're thrashing one dword of HWS. */
1970 intel_logical_ring_emit(ringbuf, 0);
1971 intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1972 intel_logical_ring_emit(ringbuf, MI_NOOP);
1973 return intel_logical_ring_advance_and_submit(request);
1974}
1975
1976static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
1977{
1978 struct render_state so;
1979 int ret;
1980
1981 ret = i915_gem_render_state_prepare(req->engine, &so);
1982 if (ret)
1983 return ret;
1984
1985 if (so.rodata == NULL)
1986 return 0;
1987
1988 ret = req->engine->emit_bb_start(req, so.ggtt_offset,
1989 I915_DISPATCH_SECURE);
1990 if (ret)
1991 goto out;
1992
1993 ret = req->engine->emit_bb_start(req,
1994 (so.ggtt_offset + so.aux_batch_offset),
1995 I915_DISPATCH_SECURE);
1996 if (ret)
1997 goto out;
1998
1999 i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
2000
2001out:
2002 i915_gem_render_state_fini(&so);
2003 return ret;
2004}
2005
2006static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
2007{
2008 int ret;
2009
2010 ret = intel_logical_ring_workarounds_emit(req);
2011 if (ret)
2012 return ret;
2013
2014 ret = intel_rcs_context_init_mocs(req);
2015 /*
2016 * Failing to program the MOCS is non-fatal.The system will not
2017 * run at peak performance. So generate an error and carry on.
2018 */
2019 if (ret)
2020 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2021
2022 return intel_lr_context_render_state_init(req);
2023}
2024
2025/**
2026 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2027 *
2028 * @ring: Engine Command Streamer.
2029 *
2030 */
2031void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2032{
2033 struct drm_i915_private *dev_priv;
2034
2035 if (!intel_engine_initialized(engine))
2036 return;
2037
2038 /*
2039 * Tasklet cannot be active at this point due intel_mark_active/idle
2040 * so this is just for documentation.
2041 */
2042 if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
2043 tasklet_kill(&engine->irq_tasklet);
2044
2045 dev_priv = engine->dev->dev_private;
2046
2047 if (engine->buffer) {
2048 intel_logical_ring_stop(engine);
2049 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
2050 }
2051
2052 if (engine->cleanup)
2053 engine->cleanup(engine);
2054
2055 i915_cmd_parser_fini_ring(engine);
2056 i915_gem_batch_pool_fini(&engine->batch_pool);
2057
2058 if (engine->status_page.obj) {
2059 i915_gem_object_unpin_map(engine->status_page.obj);
2060 engine->status_page.obj = NULL;
2061 }
2062
2063 engine->idle_lite_restore_wa = 0;
2064 engine->disable_lite_restore_wa = false;
2065 engine->ctx_desc_template = 0;
2066
2067 lrc_destroy_wa_ctx_obj(engine);
2068 engine->dev = NULL;
2069}
2070
2071static void
2072logical_ring_default_vfuncs(struct drm_device *dev,
2073 struct intel_engine_cs *engine)
2074{
2075 /* Default vfuncs which can be overriden by each engine. */
2076 engine->init_hw = gen8_init_common_ring;
2077 engine->emit_request = gen8_emit_request;
2078 engine->emit_flush = gen8_emit_flush;
2079 engine->irq_get = gen8_logical_ring_get_irq;
2080 engine->irq_put = gen8_logical_ring_put_irq;
2081 engine->emit_bb_start = gen8_emit_bb_start;
2082 engine->get_seqno = gen8_get_seqno;
2083 engine->set_seqno = gen8_set_seqno;
2084 if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
2085 engine->irq_seqno_barrier = bxt_a_seqno_barrier;
2086 engine->set_seqno = bxt_a_set_seqno;
2087 }
2088}
2089
2090static inline void
2091logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
2092{
2093 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2094 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2095}
2096
2097static int
2098lrc_setup_hws(struct intel_engine_cs *engine,
2099 struct drm_i915_gem_object *dctx_obj)
2100{
2101 void *hws;
2102
2103 /* The HWSP is part of the default context object in LRC mode. */
2104 engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
2105 LRC_PPHWSP_PN * PAGE_SIZE;
2106 hws = i915_gem_object_pin_map(dctx_obj);
2107 if (IS_ERR(hws))
2108 return PTR_ERR(hws);
2109 engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
2110 engine->status_page.obj = dctx_obj;
2111
2112 return 0;
2113}
2114
2115static int
2116logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
2117{
2118 struct drm_i915_private *dev_priv = to_i915(dev);
2119 struct intel_context *dctx = dev_priv->kernel_context;
2120 enum forcewake_domains fw_domains;
2121 int ret;
2122
2123 /* Intentionally left blank. */
2124 engine->buffer = NULL;
2125
2126 engine->dev = dev;
2127 INIT_LIST_HEAD(&engine->active_list);
2128 INIT_LIST_HEAD(&engine->request_list);
2129 i915_gem_batch_pool_init(dev, &engine->batch_pool);
2130 init_waitqueue_head(&engine->irq_queue);
2131
2132 INIT_LIST_HEAD(&engine->buffers);
2133 INIT_LIST_HEAD(&engine->execlist_queue);
2134 INIT_LIST_HEAD(&engine->execlist_retired_req_list);
2135 spin_lock_init(&engine->execlist_lock);
2136
2137 tasklet_init(&engine->irq_tasklet,
2138 intel_lrc_irq_handler, (unsigned long)engine);
2139
2140 logical_ring_init_platform_invariants(engine);
2141
2142 fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
2143 RING_ELSP(engine),
2144 FW_REG_WRITE);
2145
2146 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2147 RING_CONTEXT_STATUS_PTR(engine),
2148 FW_REG_READ | FW_REG_WRITE);
2149
2150 fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
2151 RING_CONTEXT_STATUS_BUF_BASE(engine),
2152 FW_REG_READ);
2153
2154 engine->fw_domains = fw_domains;
2155
2156 ret = i915_cmd_parser_init_ring(engine);
2157 if (ret)
2158 goto error;
2159
2160 ret = intel_lr_context_deferred_alloc(dctx, engine);
2161 if (ret)
2162 goto error;
2163
2164 /* As this is the default context, always pin it */
2165 ret = intel_lr_context_do_pin(dctx, engine);
2166 if (ret) {
2167 DRM_ERROR(
2168 "Failed to pin and map ringbuffer %s: %d\n",
2169 engine->name, ret);
2170 goto error;
2171 }
2172
2173 /* And setup the hardware status page. */
2174 ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
2175 if (ret) {
2176 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
2177 goto error;
2178 }
2179
2180 return 0;
2181
2182error:
2183 intel_logical_ring_cleanup(engine);
2184 return ret;
2185}
2186
2187static int logical_render_ring_init(struct drm_device *dev)
2188{
2189 struct drm_i915_private *dev_priv = dev->dev_private;
2190 struct intel_engine_cs *engine = &dev_priv->engine[RCS];
2191 int ret;
2192
2193 engine->name = "render ring";
2194 engine->id = RCS;
2195 engine->exec_id = I915_EXEC_RENDER;
2196 engine->guc_id = GUC_RENDER_ENGINE;
2197 engine->mmio_base = RENDER_RING_BASE;
2198
2199 logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
2200 if (HAS_L3_DPF(dev))
2201 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2202
2203 logical_ring_default_vfuncs(dev, engine);
2204
2205 /* Override some for render ring. */
2206 if (INTEL_INFO(dev)->gen >= 9)
2207 engine->init_hw = gen9_init_render_ring;
2208 else
2209 engine->init_hw = gen8_init_render_ring;
2210 engine->init_context = gen8_init_rcs_context;
2211 engine->cleanup = intel_fini_pipe_control;
2212 engine->emit_flush = gen8_emit_flush_render;
2213 engine->emit_request = gen8_emit_request_render;
2214
2215 engine->dev = dev;
2216
2217 ret = intel_init_pipe_control(engine);
2218 if (ret)
2219 return ret;
2220
2221 ret = intel_init_workaround_bb(engine);
2222 if (ret) {
2223 /*
2224 * We continue even if we fail to initialize WA batch
2225 * because we only expect rare glitches but nothing
2226 * critical to prevent us from using GPU
2227 */
2228 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2229 ret);
2230 }
2231
2232 ret = logical_ring_init(dev, engine);
2233 if (ret) {
2234 lrc_destroy_wa_ctx_obj(engine);
2235 }
2236
2237 return ret;
2238}
2239
2240static int logical_bsd_ring_init(struct drm_device *dev)
2241{
2242 struct drm_i915_private *dev_priv = dev->dev_private;
2243 struct intel_engine_cs *engine = &dev_priv->engine[VCS];
2244
2245 engine->name = "bsd ring";
2246 engine->id = VCS;
2247 engine->exec_id = I915_EXEC_BSD;
2248 engine->guc_id = GUC_VIDEO_ENGINE;
2249 engine->mmio_base = GEN6_BSD_RING_BASE;
2250
2251 logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
2252 logical_ring_default_vfuncs(dev, engine);
2253
2254 return logical_ring_init(dev, engine);
2255}
2256
2257static int logical_bsd2_ring_init(struct drm_device *dev)
2258{
2259 struct drm_i915_private *dev_priv = dev->dev_private;
2260 struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
2261
2262 engine->name = "bsd2 ring";
2263 engine->id = VCS2;
2264 engine->exec_id = I915_EXEC_BSD;
2265 engine->guc_id = GUC_VIDEO_ENGINE2;
2266 engine->mmio_base = GEN8_BSD2_RING_BASE;
2267
2268 logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
2269 logical_ring_default_vfuncs(dev, engine);
2270
2271 return logical_ring_init(dev, engine);
2272}
2273
2274static int logical_blt_ring_init(struct drm_device *dev)
2275{
2276 struct drm_i915_private *dev_priv = dev->dev_private;
2277 struct intel_engine_cs *engine = &dev_priv->engine[BCS];
2278
2279 engine->name = "blitter ring";
2280 engine->id = BCS;
2281 engine->exec_id = I915_EXEC_BLT;
2282 engine->guc_id = GUC_BLITTER_ENGINE;
2283 engine->mmio_base = BLT_RING_BASE;
2284
2285 logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
2286 logical_ring_default_vfuncs(dev, engine);
2287
2288 return logical_ring_init(dev, engine);
2289}
2290
2291static int logical_vebox_ring_init(struct drm_device *dev)
2292{
2293 struct drm_i915_private *dev_priv = dev->dev_private;
2294 struct intel_engine_cs *engine = &dev_priv->engine[VECS];
2295
2296 engine->name = "video enhancement ring";
2297 engine->id = VECS;
2298 engine->exec_id = I915_EXEC_VEBOX;
2299 engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
2300 engine->mmio_base = VEBOX_RING_BASE;
2301
2302 logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
2303 logical_ring_default_vfuncs(dev, engine);
2304
2305 return logical_ring_init(dev, engine);
2306}
2307
2308/**
2309 * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
2310 * @dev: DRM device.
2311 *
2312 * This function inits the engines for an Execlists submission style (the equivalent in the
2313 * legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
2314 * those engines that are present in the hardware.
2315 *
2316 * Return: non-zero if the initialization failed.
2317 */
2318int intel_logical_rings_init(struct drm_device *dev)
2319{
2320 struct drm_i915_private *dev_priv = dev->dev_private;
2321 int ret;
2322
2323 ret = logical_render_ring_init(dev);
2324 if (ret)
2325 return ret;
2326
2327 if (HAS_BSD(dev)) {
2328 ret = logical_bsd_ring_init(dev);
2329 if (ret)
2330 goto cleanup_render_ring;
2331 }
2332
2333 if (HAS_BLT(dev)) {
2334 ret = logical_blt_ring_init(dev);
2335 if (ret)
2336 goto cleanup_bsd_ring;
2337 }
2338
2339 if (HAS_VEBOX(dev)) {
2340 ret = logical_vebox_ring_init(dev);
2341 if (ret)
2342 goto cleanup_blt_ring;
2343 }
2344
2345 if (HAS_BSD2(dev)) {
2346 ret = logical_bsd2_ring_init(dev);
2347 if (ret)
2348 goto cleanup_vebox_ring;
2349 }
2350
2351 return 0;
2352
2353cleanup_vebox_ring:
2354 intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
2355cleanup_blt_ring:
2356 intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
2357cleanup_bsd_ring:
2358 intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
2359cleanup_render_ring:
2360 intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
2361
2362 return ret;
2363}
2364
2365static u32
2366make_rpcs(struct drm_device *dev)
2367{
2368 u32 rpcs = 0;
2369
2370 /*
2371 * No explicit RPCS request is needed to ensure full
2372 * slice/subslice/EU enablement prior to Gen9.
2373 */
2374 if (INTEL_INFO(dev)->gen < 9)
2375 return 0;
2376
2377 /*
2378 * Starting in Gen9, render power gating can leave
2379 * slice/subslice/EU in a partially enabled state. We
2380 * must make an explicit request through RPCS for full
2381 * enablement.
2382 */
2383 if (INTEL_INFO(dev)->has_slice_pg) {
2384 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2385 rpcs |= INTEL_INFO(dev)->slice_total <<
2386 GEN8_RPCS_S_CNT_SHIFT;
2387 rpcs |= GEN8_RPCS_ENABLE;
2388 }
2389
2390 if (INTEL_INFO(dev)->has_subslice_pg) {
2391 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2392 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
2393 GEN8_RPCS_SS_CNT_SHIFT;
2394 rpcs |= GEN8_RPCS_ENABLE;
2395 }
2396
2397 if (INTEL_INFO(dev)->has_eu_pg) {
2398 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2399 GEN8_RPCS_EU_MIN_SHIFT;
2400 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
2401 GEN8_RPCS_EU_MAX_SHIFT;
2402 rpcs |= GEN8_RPCS_ENABLE;
2403 }
2404
2405 return rpcs;
2406}
2407
2408static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2409{
2410 u32 indirect_ctx_offset;
2411
2412 switch (INTEL_INFO(engine->dev)->gen) {
2413 default:
2414 MISSING_CASE(INTEL_INFO(engine->dev)->gen);
2415 /* fall through */
2416 case 9:
2417 indirect_ctx_offset =
2418 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2419 break;
2420 case 8:
2421 indirect_ctx_offset =
2422 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2423 break;
2424 }
2425
2426 return indirect_ctx_offset;
2427}
2428
2429static int
2430populate_lr_context(struct intel_context *ctx,
2431 struct drm_i915_gem_object *ctx_obj,
2432 struct intel_engine_cs *engine,
2433 struct intel_ringbuffer *ringbuf)
2434{
2435 struct drm_device *dev = engine->dev;
2436 struct drm_i915_private *dev_priv = dev->dev_private;
2437 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2438 void *vaddr;
2439 u32 *reg_state;
2440 int ret;
2441
2442 if (!ppgtt)
2443 ppgtt = dev_priv->mm.aliasing_ppgtt;
2444
2445 ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
2446 if (ret) {
2447 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2448 return ret;
2449 }
2450
2451 vaddr = i915_gem_object_pin_map(ctx_obj);
2452 if (IS_ERR(vaddr)) {
2453 ret = PTR_ERR(vaddr);
2454 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2455 return ret;
2456 }
2457 ctx_obj->dirty = true;
2458
2459 /* The second page of the context object contains some fields which must
2460 * be set up prior to the first execution. */
2461 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2462
2463 /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
2464 * commands followed by (reg, value) pairs. The values we are setting here are
2465 * only for the first context restore: on a subsequent save, the GPU will
2466 * recreate this batchbuffer with new values (including all the missing
2467 * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
2468 reg_state[CTX_LRI_HEADER_0] =
2469 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
2470 ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
2471 RING_CONTEXT_CONTROL(engine),
2472 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
2473 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2474 (HAS_RESOURCE_STREAMER(dev) ?
2475 CTX_CTRL_RS_CTX_ENABLE : 0)));
2476 ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
2477 0);
2478 ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
2479 0);
2480 /* Ring buffer start address is not known until the buffer is pinned.
2481 * It is written to the context image in execlists_update_context()
2482 */
2483 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
2484 RING_START(engine->mmio_base), 0);
2485 ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
2486 RING_CTL(engine->mmio_base),
2487 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
2488 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
2489 RING_BBADDR_UDW(engine->mmio_base), 0);
2490 ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
2491 RING_BBADDR(engine->mmio_base), 0);
2492 ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
2493 RING_BBSTATE(engine->mmio_base),
2494 RING_BB_PPGTT);
2495 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
2496 RING_SBBADDR_UDW(engine->mmio_base), 0);
2497 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
2498 RING_SBBADDR(engine->mmio_base), 0);
2499 ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
2500 RING_SBBSTATE(engine->mmio_base), 0);
2501 if (engine->id == RCS) {
2502 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
2503 RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
2504 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
2505 RING_INDIRECT_CTX(engine->mmio_base), 0);
2506 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
2507 RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
2508 if (engine->wa_ctx.obj) {
2509 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2510 uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
2511
2512 reg_state[CTX_RCS_INDIRECT_CTX+1] =
2513 (ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
2514 (wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
2515
2516 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
2517 intel_lr_indirect_ctx_offset(engine) << 6;
2518
2519 reg_state[CTX_BB_PER_CTX_PTR+1] =
2520 (ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
2521 0x01;
2522 }
2523 }
2524 reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2525 ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
2526 RING_CTX_TIMESTAMP(engine->mmio_base), 0);
2527 /* PDP values well be assigned later if needed */
2528 ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
2529 0);
2530 ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
2531 0);
2532 ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
2533 0);
2534 ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
2535 0);
2536 ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
2537 0);
2538 ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
2539 0);
2540 ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
2541 0);
2542 ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
2543 0);
2544
2545 if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
2546 /* 64b PPGTT (48bit canonical)
2547 * PDP0_DESCRIPTOR contains the base address to PML4 and
2548 * other PDP Descriptors are ignored.
2549 */
2550 ASSIGN_CTX_PML4(ppgtt, reg_state);
2551 } else {
2552 /* 32b PPGTT
2553 * PDP*_DESCRIPTOR contains the base address of space supported.
2554 * With dynamic page allocation, PDPs may not be allocated at
2555 * this point. Point the unallocated PDPs to the scratch page
2556 */
2557 execlists_update_context_pdps(ppgtt, reg_state);
2558 }
2559
2560 if (engine->id == RCS) {
2561 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2562 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
2563 make_rpcs(dev));
2564 }
2565
2566 i915_gem_object_unpin_map(ctx_obj);
2567
2568 return 0;
2569}
2570
2571/**
2572 * intel_lr_context_free() - free the LRC specific bits of a context
2573 * @ctx: the LR context to free.
2574 *
2575 * The real context freeing is done in i915_gem_context_free: this only
2576 * takes care of the bits that are LRC related: the per-engine backing
2577 * objects and the logical ringbuffer.
2578 */
2579void intel_lr_context_free(struct intel_context *ctx)
2580{
2581 int i;
2582
2583 for (i = I915_NUM_ENGINES; --i >= 0; ) {
2584 struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
2585 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
2586
2587 if (!ctx_obj)
2588 continue;
2589
2590 if (ctx == ctx->i915->kernel_context) {
2591 intel_unpin_ringbuffer_obj(ringbuf);
2592 i915_gem_object_ggtt_unpin(ctx_obj);
2593 i915_gem_object_unpin_map(ctx_obj);
2594 }
2595
2596 WARN_ON(ctx->engine[i].pin_count);
2597 intel_ringbuffer_free(ringbuf);
2598 drm_gem_object_unreference(&ctx_obj->base);
2599 }
2600}
2601
2602/**
2603 * intel_lr_context_size() - return the size of the context for an engine
2604 * @ring: which engine to find the context size for
2605 *
2606 * Each engine may require a different amount of space for a context image,
2607 * so when allocating (or copying) an image, this function can be used to
2608 * find the right size for the specific engine.
2609 *
2610 * Return: size (in bytes) of an engine-specific context image
2611 *
2612 * Note: this size includes the HWSP, which is part of the context image
2613 * in LRC mode, but does not include the "shared data page" used with
2614 * GuC submission. The caller should account for this if using the GuC.
2615 */
2616uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
2617{
2618 int ret = 0;
2619
2620 WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
2621
2622 switch (engine->id) {
2623 case RCS:
2624 if (INTEL_INFO(engine->dev)->gen >= 9)
2625 ret = GEN9_LR_CONTEXT_RENDER_SIZE;
2626 else
2627 ret = GEN8_LR_CONTEXT_RENDER_SIZE;
2628 break;
2629 case VCS:
2630 case BCS:
2631 case VECS:
2632 case VCS2:
2633 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2634 break;
2635 }
2636
2637 return ret;
2638}
2639
2640/**
2641 * intel_lr_context_deferred_alloc() - create the LRC specific bits of a context
2642 * @ctx: LR context to create.
2643 * @ring: engine to be used with the context.
2644 *
2645 * This function can be called more than once, with different engines, if we plan
2646 * to use the context with them. The context backing objects and the ringbuffers
2647 * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
2648 * the creation is a deferred call: it's better to make sure first that we need to use
2649 * a given ring with the context.
2650 *
2651 * Return: non-zero on error.
2652 */
2653
2654int intel_lr_context_deferred_alloc(struct intel_context *ctx,
2655 struct intel_engine_cs *engine)
2656{
2657 struct drm_device *dev = engine->dev;
2658 struct drm_i915_gem_object *ctx_obj;
2659 uint32_t context_size;
2660 struct intel_ringbuffer *ringbuf;
2661 int ret;
2662
2663 WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
2664 WARN_ON(ctx->engine[engine->id].state);
2665
2666 context_size = round_up(intel_lr_context_size(engine), 4096);
2667
2668 /* One extra page as the sharing data between driver and GuC */
2669 context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2670
2671 ctx_obj = i915_gem_alloc_object(dev, context_size);
2672 if (!ctx_obj) {
2673 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2674 return -ENOMEM;
2675 }
2676
2677 ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
2678 if (IS_ERR(ringbuf)) {
2679 ret = PTR_ERR(ringbuf);
2680 goto error_deref_obj;
2681 }
2682
2683 ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
2684 if (ret) {
2685 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2686 goto error_ringbuf;
2687 }
2688
2689 ctx->engine[engine->id].ringbuf = ringbuf;
2690 ctx->engine[engine->id].state = ctx_obj;
2691
2692 if (ctx != ctx->i915->kernel_context && engine->init_context) {
2693 struct drm_i915_gem_request *req;
2694
2695 req = i915_gem_request_alloc(engine, ctx);
2696 if (IS_ERR(req)) {
2697 ret = PTR_ERR(req);
2698 DRM_ERROR("ring create req: %d\n", ret);
2699 goto error_ringbuf;
2700 }
2701
2702 ret = engine->init_context(req);
2703 if (ret) {
2704 DRM_ERROR("ring init context: %d\n",
2705 ret);
2706 i915_gem_request_cancel(req);
2707 goto error_ringbuf;
2708 }
2709 i915_add_request_no_flush(req);
2710 }
2711 return 0;
2712
2713error_ringbuf:
2714 intel_ringbuffer_free(ringbuf);
2715error_deref_obj:
2716 drm_gem_object_unreference(&ctx_obj->base);
2717 ctx->engine[engine->id].ringbuf = NULL;
2718 ctx->engine[engine->id].state = NULL;
2719 return ret;
2720}
2721
2722void intel_lr_context_reset(struct drm_i915_private *dev_priv,
2723 struct intel_context *ctx)
2724{
2725 struct intel_engine_cs *engine;
2726
2727 for_each_engine(engine, dev_priv) {
2728 struct drm_i915_gem_object *ctx_obj =
2729 ctx->engine[engine->id].state;
2730 struct intel_ringbuffer *ringbuf =
2731 ctx->engine[engine->id].ringbuf;
2732 void *vaddr;
2733 uint32_t *reg_state;
2734
2735 if (!ctx_obj)
2736 continue;
2737
2738 vaddr = i915_gem_object_pin_map(ctx_obj);
2739 if (WARN_ON(IS_ERR(vaddr)))
2740 continue;
2741
2742 reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
2743 ctx_obj->dirty = true;
2744
2745 reg_state[CTX_RING_HEAD+1] = 0;
2746 reg_state[CTX_RING_TAIL+1] = 0;
2747
2748 i915_gem_object_unpin_map(ctx_obj);
2749
2750 ringbuf->head = 0;
2751 ringbuf->tail = 0;
2752 }
2753}
This page took 0.033038 seconds and 5 git commands to generate.