drm/i915: Remove obsolete seqno parameter from 'i915_add_request'
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30#include <drm/drmP.h>
31#include "i915_drv.h"
32#include <drm/i915_drm.h>
33#include "i915_trace.h"
34#include "intel_drv.h"
35
36bool
37intel_ring_initialized(struct intel_engine_cs *ring)
38{
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51}
52
53int __intel_ring_space(int head, int tail, int size)
54{
55 int space = head - (tail + I915_RING_FREE_SPACE);
56 if (space < 0)
57 space += size;
58 return space;
59}
60
61int intel_ring_space(struct intel_ringbuffer *ringbuf)
62{
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
65}
66
67bool intel_ring_stopped(struct intel_engine_cs *ring)
68{
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71}
72
73void __intel_ring_advance(struct intel_engine_cs *ring)
74{
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
78 return;
79 ring->write_tail(ring, ringbuf->tail);
80}
81
82static int
83gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
85 u32 flush_domains)
86{
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106}
107
108static int
109gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
111 u32 flush_domains)
112{
113 struct drm_device *dev = ring->dev;
114 u32 cmd;
115 int ret;
116
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
150
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
154
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
158
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
162
163 return 0;
164}
165
166/**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203static int
204intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205{
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236}
237
238static int
239gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
241{
242 u32 flags = 0;
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 int ret;
245
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
262 flags |= PIPE_CONTROL_CS_STALL;
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 }
276
277 ret = intel_ring_begin(ring, 4);
278 if (ret)
279 return ret;
280
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
286
287 return 0;
288}
289
290static int
291gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292{
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307}
308
309static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310{
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
316 ret = intel_ring_begin(ring, 6);
317 if (ret)
318 return ret;
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330}
331
332static int
333gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
335{
336 u32 flags = 0;
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 int ret;
339
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 /*
366 * TLB invalidate requires a post-sync write.
367 */
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
375 }
376
377 ret = intel_ring_begin(ring, 4);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
386
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390 return 0;
391}
392
393static int
394gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
396{
397 int ret;
398
399 ret = intel_ring_begin(ring, 6);
400 if (ret)
401 return ret;
402
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
410
411 return 0;
412}
413
414static int
415gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
417{
418 u32 flags = 0;
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420 int ret;
421
422 flags |= PIPE_CONTROL_CS_STALL;
423
424 if (flush_domains) {
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427 }
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
442 0);
443 if (ret)
444 return ret;
445 }
446
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448 if (ret)
449 return ret;
450
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454 return 0;
455}
456
457static void ring_write_tail(struct intel_engine_cs *ring,
458 u32 value)
459{
460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
461 I915_WRITE_TAIL(ring, value);
462}
463
464u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465{
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 u64 acthd;
468
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474 else
475 acthd = I915_READ(ACTHD);
476
477 return acthd;
478}
479
480static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481{
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 addr;
484
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
489}
490
491static bool stop_ring(struct intel_engine_cs *ring)
492{
493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
502 */
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504 return false;
505 }
506 }
507
508 I915_WRITE_CTL(ring, 0);
509 I915_WRITE_HEAD(ring, 0);
510 ring->write_tail(ring, 0);
511
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515 }
516
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518}
519
520static int init_ring_common(struct intel_engine_cs *ring)
521{
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
526 int ret = 0;
527
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
534 ring->name,
535 I915_READ_CTL(ring),
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
539
540 if (!stop_ring(ring)) {
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 ring->name,
544 I915_READ_CTL(ring),
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
548 ret = -EIO;
549 goto out;
550 }
551 }
552
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
555 else
556 ring_setup_phys_status_page(ring);
557
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
560
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567 /* WaClearRingBufHeadRegAtInit:ctg,elk */
568 if (I915_READ_HEAD(ring))
569 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570 ring->name, I915_READ_HEAD(ring));
571 I915_WRITE_HEAD(ring, 0);
572 (void)I915_READ_HEAD(ring);
573
574 I915_WRITE_CTL(ring,
575 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576 | RING_VALID);
577
578 /* If the head is still not zero, the ring is dead */
579 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582 DRM_ERROR("%s initialization failed "
583 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584 ring->name,
585 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588 ret = -EIO;
589 goto out;
590 }
591
592 ringbuf->head = I915_READ_HEAD(ring);
593 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
594 ringbuf->space = intel_ring_space(ringbuf);
595 ringbuf->last_retired_head = -1;
596
597 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
598
599out:
600 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
601
602 return ret;
603}
604
605void
606intel_fini_pipe_control(struct intel_engine_cs *ring)
607{
608 struct drm_device *dev = ring->dev;
609
610 if (ring->scratch.obj == NULL)
611 return;
612
613 if (INTEL_INFO(dev)->gen >= 5) {
614 kunmap(sg_page(ring->scratch.obj->pages->sgl));
615 i915_gem_object_ggtt_unpin(ring->scratch.obj);
616 }
617
618 drm_gem_object_unreference(&ring->scratch.obj->base);
619 ring->scratch.obj = NULL;
620}
621
622int
623intel_init_pipe_control(struct intel_engine_cs *ring)
624{
625 int ret;
626
627 if (ring->scratch.obj)
628 return 0;
629
630 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
631 if (ring->scratch.obj == NULL) {
632 DRM_ERROR("Failed to allocate seqno page\n");
633 ret = -ENOMEM;
634 goto err;
635 }
636
637 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
638 if (ret)
639 goto err_unref;
640
641 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
642 if (ret)
643 goto err_unref;
644
645 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
646 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
647 if (ring->scratch.cpu_page == NULL) {
648 ret = -ENOMEM;
649 goto err_unpin;
650 }
651
652 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
653 ring->name, ring->scratch.gtt_offset);
654 return 0;
655
656err_unpin:
657 i915_gem_object_ggtt_unpin(ring->scratch.obj);
658err_unref:
659 drm_gem_object_unreference(&ring->scratch.obj->base);
660err:
661 return ret;
662}
663
664static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
665 struct intel_context *ctx)
666{
667 int ret, i;
668 struct drm_device *dev = ring->dev;
669 struct drm_i915_private *dev_priv = dev->dev_private;
670 struct i915_workarounds *w = &dev_priv->workarounds;
671
672 if (WARN_ON(w->count == 0))
673 return 0;
674
675 ring->gpu_caches_dirty = true;
676 ret = intel_ring_flush_all_caches(ring);
677 if (ret)
678 return ret;
679
680 ret = intel_ring_begin(ring, (w->count * 2 + 2));
681 if (ret)
682 return ret;
683
684 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
685 for (i = 0; i < w->count; i++) {
686 intel_ring_emit(ring, w->reg[i].addr);
687 intel_ring_emit(ring, w->reg[i].value);
688 }
689 intel_ring_emit(ring, MI_NOOP);
690
691 intel_ring_advance(ring);
692
693 ring->gpu_caches_dirty = true;
694 ret = intel_ring_flush_all_caches(ring);
695 if (ret)
696 return ret;
697
698 DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
699
700 return 0;
701}
702
703static int wa_add(struct drm_i915_private *dev_priv,
704 const u32 addr, const u32 val, const u32 mask)
705{
706 const u32 idx = dev_priv->workarounds.count;
707
708 if (WARN_ON(idx >= I915_MAX_WA_REGS))
709 return -ENOSPC;
710
711 dev_priv->workarounds.reg[idx].addr = addr;
712 dev_priv->workarounds.reg[idx].value = val;
713 dev_priv->workarounds.reg[idx].mask = mask;
714
715 dev_priv->workarounds.count++;
716
717 return 0;
718}
719
720#define WA_REG(addr, val, mask) { \
721 const int r = wa_add(dev_priv, (addr), (val), (mask)); \
722 if (r) \
723 return r; \
724 }
725
726#define WA_SET_BIT_MASKED(addr, mask) \
727 WA_REG(addr, _MASKED_BIT_ENABLE(mask), (mask) & 0xffff)
728
729#define WA_CLR_BIT_MASKED(addr, mask) \
730 WA_REG(addr, _MASKED_BIT_DISABLE(mask), (mask) & 0xffff)
731
732#define WA_SET_BIT(addr, mask) WA_REG(addr, I915_READ(addr) | (mask), mask)
733#define WA_CLR_BIT(addr, mask) WA_REG(addr, I915_READ(addr) & ~(mask), mask)
734
735#define WA_WRITE(addr, val) WA_REG(addr, val, 0xffffffff)
736
737static int bdw_init_workarounds(struct intel_engine_cs *ring)
738{
739 struct drm_device *dev = ring->dev;
740 struct drm_i915_private *dev_priv = dev->dev_private;
741
742 /* WaDisablePartialInstShootdown:bdw */
743 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
744 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
745 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
746 STALL_DOP_GATING_DISABLE);
747
748 /* WaDisableDopClockGating:bdw */
749 WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
750 DOP_CLOCK_GATING_DISABLE);
751
752 WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
753 GEN8_SAMPLER_POWER_BYPASS_DIS);
754
755 /* Use Force Non-Coherent whenever executing a 3D context. This is a
756 * workaround for for a possible hang in the unlikely event a TLB
757 * invalidation occurs during a PSD flush.
758 */
759 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
760 WA_SET_BIT_MASKED(HDC_CHICKEN0,
761 HDC_FORCE_NON_COHERENT |
762 (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
763
764 /* Wa4x4STCOptimizationDisable:bdw */
765 WA_SET_BIT_MASKED(CACHE_MODE_1,
766 GEN8_4x4_STC_OPTIMIZATION_DISABLE);
767
768 /*
769 * BSpec recommends 8x4 when MSAA is used,
770 * however in practice 16x4 seems fastest.
771 *
772 * Note that PS/WM thread counts depend on the WIZ hashing
773 * disable bit, which we don't touch here, but it's good
774 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
775 */
776 WA_SET_BIT_MASKED(GEN7_GT_MODE,
777 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
778
779 return 0;
780}
781
782static int chv_init_workarounds(struct intel_engine_cs *ring)
783{
784 struct drm_device *dev = ring->dev;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786
787 /* WaDisablePartialInstShootdown:chv */
788 /* WaDisableThreadStallDopClockGating:chv */
789 WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
790 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
791 STALL_DOP_GATING_DISABLE);
792
793 /* Use Force Non-Coherent whenever executing a 3D context. This is a
794 * workaround for a possible hang in the unlikely event a TLB
795 * invalidation occurs during a PSD flush.
796 */
797 /* WaForceEnableNonCoherent:chv */
798 /* WaHdcDisableFetchWhenMasked:chv */
799 WA_SET_BIT_MASKED(HDC_CHICKEN0,
800 HDC_FORCE_NON_COHERENT |
801 HDC_DONOT_FETCH_MEM_WHEN_MASKED);
802
803 return 0;
804}
805
806int init_workarounds_ring(struct intel_engine_cs *ring)
807{
808 struct drm_device *dev = ring->dev;
809 struct drm_i915_private *dev_priv = dev->dev_private;
810
811 WARN_ON(ring->id != RCS);
812
813 dev_priv->workarounds.count = 0;
814
815 if (IS_BROADWELL(dev))
816 return bdw_init_workarounds(ring);
817
818 if (IS_CHERRYVIEW(dev))
819 return chv_init_workarounds(ring);
820
821 return 0;
822}
823
824static int init_render_ring(struct intel_engine_cs *ring)
825{
826 struct drm_device *dev = ring->dev;
827 struct drm_i915_private *dev_priv = dev->dev_private;
828 int ret = init_ring_common(ring);
829 if (ret)
830 return ret;
831
832 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
833 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
834 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
835
836 /* We need to disable the AsyncFlip performance optimisations in order
837 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
838 * programmed to '1' on all products.
839 *
840 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
841 */
842 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
843 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
844
845 /* Required for the hardware to program scanline values for waiting */
846 /* WaEnableFlushTlbInvalidationMode:snb */
847 if (INTEL_INFO(dev)->gen == 6)
848 I915_WRITE(GFX_MODE,
849 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
850
851 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
852 if (IS_GEN7(dev))
853 I915_WRITE(GFX_MODE_GEN7,
854 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
855 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
856
857 if (INTEL_INFO(dev)->gen >= 5) {
858 ret = intel_init_pipe_control(ring);
859 if (ret)
860 return ret;
861 }
862
863 if (IS_GEN6(dev)) {
864 /* From the Sandybridge PRM, volume 1 part 3, page 24:
865 * "If this bit is set, STCunit will have LRA as replacement
866 * policy. [...] This bit must be reset. LRA replacement
867 * policy is not supported."
868 */
869 I915_WRITE(CACHE_MODE_0,
870 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
871 }
872
873 if (INTEL_INFO(dev)->gen >= 6)
874 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
875
876 if (HAS_L3_DPF(dev))
877 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
878
879 return init_workarounds_ring(ring);
880}
881
882static void render_ring_cleanup(struct intel_engine_cs *ring)
883{
884 struct drm_device *dev = ring->dev;
885 struct drm_i915_private *dev_priv = dev->dev_private;
886
887 if (dev_priv->semaphore_obj) {
888 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
889 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
890 dev_priv->semaphore_obj = NULL;
891 }
892
893 intel_fini_pipe_control(ring);
894}
895
896static int gen8_rcs_signal(struct intel_engine_cs *signaller,
897 unsigned int num_dwords)
898{
899#define MBOX_UPDATE_DWORDS 8
900 struct drm_device *dev = signaller->dev;
901 struct drm_i915_private *dev_priv = dev->dev_private;
902 struct intel_engine_cs *waiter;
903 int i, ret, num_rings;
904
905 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
906 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
907#undef MBOX_UPDATE_DWORDS
908
909 ret = intel_ring_begin(signaller, num_dwords);
910 if (ret)
911 return ret;
912
913 for_each_ring(waiter, dev_priv, i) {
914 u32 seqno;
915 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
916 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
917 continue;
918
919 seqno = i915_gem_request_get_seqno(
920 signaller->outstanding_lazy_request);
921 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
922 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
923 PIPE_CONTROL_QW_WRITE |
924 PIPE_CONTROL_FLUSH_ENABLE);
925 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
926 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
927 intel_ring_emit(signaller, seqno);
928 intel_ring_emit(signaller, 0);
929 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
930 MI_SEMAPHORE_TARGET(waiter->id));
931 intel_ring_emit(signaller, 0);
932 }
933
934 return 0;
935}
936
937static int gen8_xcs_signal(struct intel_engine_cs *signaller,
938 unsigned int num_dwords)
939{
940#define MBOX_UPDATE_DWORDS 6
941 struct drm_device *dev = signaller->dev;
942 struct drm_i915_private *dev_priv = dev->dev_private;
943 struct intel_engine_cs *waiter;
944 int i, ret, num_rings;
945
946 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
947 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
948#undef MBOX_UPDATE_DWORDS
949
950 ret = intel_ring_begin(signaller, num_dwords);
951 if (ret)
952 return ret;
953
954 for_each_ring(waiter, dev_priv, i) {
955 u32 seqno;
956 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
957 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
958 continue;
959
960 seqno = i915_gem_request_get_seqno(
961 signaller->outstanding_lazy_request);
962 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
963 MI_FLUSH_DW_OP_STOREDW);
964 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
965 MI_FLUSH_DW_USE_GTT);
966 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
967 intel_ring_emit(signaller, seqno);
968 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
969 MI_SEMAPHORE_TARGET(waiter->id));
970 intel_ring_emit(signaller, 0);
971 }
972
973 return 0;
974}
975
976static int gen6_signal(struct intel_engine_cs *signaller,
977 unsigned int num_dwords)
978{
979 struct drm_device *dev = signaller->dev;
980 struct drm_i915_private *dev_priv = dev->dev_private;
981 struct intel_engine_cs *useless;
982 int i, ret, num_rings;
983
984#define MBOX_UPDATE_DWORDS 3
985 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
986 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
987#undef MBOX_UPDATE_DWORDS
988
989 ret = intel_ring_begin(signaller, num_dwords);
990 if (ret)
991 return ret;
992
993 for_each_ring(useless, dev_priv, i) {
994 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
995 if (mbox_reg != GEN6_NOSYNC) {
996 u32 seqno = i915_gem_request_get_seqno(
997 signaller->outstanding_lazy_request);
998 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
999 intel_ring_emit(signaller, mbox_reg);
1000 intel_ring_emit(signaller, seqno);
1001 }
1002 }
1003
1004 /* If num_dwords was rounded, make sure the tail pointer is correct */
1005 if (num_rings % 2 == 0)
1006 intel_ring_emit(signaller, MI_NOOP);
1007
1008 return 0;
1009}
1010
1011/**
1012 * gen6_add_request - Update the semaphore mailbox registers
1013 *
1014 * @ring - ring that is adding a request
1015 * @seqno - return seqno stuck into the ring
1016 *
1017 * Update the mailbox registers in the *other* rings with the current seqno.
1018 * This acts like a signal in the canonical semaphore.
1019 */
1020static int
1021gen6_add_request(struct intel_engine_cs *ring)
1022{
1023 int ret;
1024
1025 if (ring->semaphore.signal)
1026 ret = ring->semaphore.signal(ring, 4);
1027 else
1028 ret = intel_ring_begin(ring, 4);
1029
1030 if (ret)
1031 return ret;
1032
1033 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1034 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1035 intel_ring_emit(ring,
1036 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1037 intel_ring_emit(ring, MI_USER_INTERRUPT);
1038 __intel_ring_advance(ring);
1039
1040 return 0;
1041}
1042
1043static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1044 u32 seqno)
1045{
1046 struct drm_i915_private *dev_priv = dev->dev_private;
1047 return dev_priv->last_seqno < seqno;
1048}
1049
1050/**
1051 * intel_ring_sync - sync the waiter to the signaller on seqno
1052 *
1053 * @waiter - ring that is waiting
1054 * @signaller - ring which has, or will signal
1055 * @seqno - seqno which the waiter will block on
1056 */
1057
1058static int
1059gen8_ring_sync(struct intel_engine_cs *waiter,
1060 struct intel_engine_cs *signaller,
1061 u32 seqno)
1062{
1063 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1064 int ret;
1065
1066 ret = intel_ring_begin(waiter, 4);
1067 if (ret)
1068 return ret;
1069
1070 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1071 MI_SEMAPHORE_GLOBAL_GTT |
1072 MI_SEMAPHORE_POLL |
1073 MI_SEMAPHORE_SAD_GTE_SDD);
1074 intel_ring_emit(waiter, seqno);
1075 intel_ring_emit(waiter,
1076 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1077 intel_ring_emit(waiter,
1078 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1079 intel_ring_advance(waiter);
1080 return 0;
1081}
1082
1083static int
1084gen6_ring_sync(struct intel_engine_cs *waiter,
1085 struct intel_engine_cs *signaller,
1086 u32 seqno)
1087{
1088 u32 dw1 = MI_SEMAPHORE_MBOX |
1089 MI_SEMAPHORE_COMPARE |
1090 MI_SEMAPHORE_REGISTER;
1091 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1092 int ret;
1093
1094 /* Throughout all of the GEM code, seqno passed implies our current
1095 * seqno is >= the last seqno executed. However for hardware the
1096 * comparison is strictly greater than.
1097 */
1098 seqno -= 1;
1099
1100 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1101
1102 ret = intel_ring_begin(waiter, 4);
1103 if (ret)
1104 return ret;
1105
1106 /* If seqno wrap happened, omit the wait with no-ops */
1107 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1108 intel_ring_emit(waiter, dw1 | wait_mbox);
1109 intel_ring_emit(waiter, seqno);
1110 intel_ring_emit(waiter, 0);
1111 intel_ring_emit(waiter, MI_NOOP);
1112 } else {
1113 intel_ring_emit(waiter, MI_NOOP);
1114 intel_ring_emit(waiter, MI_NOOP);
1115 intel_ring_emit(waiter, MI_NOOP);
1116 intel_ring_emit(waiter, MI_NOOP);
1117 }
1118 intel_ring_advance(waiter);
1119
1120 return 0;
1121}
1122
1123#define PIPE_CONTROL_FLUSH(ring__, addr__) \
1124do { \
1125 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1126 PIPE_CONTROL_DEPTH_STALL); \
1127 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1128 intel_ring_emit(ring__, 0); \
1129 intel_ring_emit(ring__, 0); \
1130} while (0)
1131
1132static int
1133pc_render_add_request(struct intel_engine_cs *ring)
1134{
1135 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1136 int ret;
1137
1138 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1139 * incoherent with writes to memory, i.e. completely fubar,
1140 * so we need to use PIPE_NOTIFY instead.
1141 *
1142 * However, we also need to workaround the qword write
1143 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1144 * memory before requesting an interrupt.
1145 */
1146 ret = intel_ring_begin(ring, 32);
1147 if (ret)
1148 return ret;
1149
1150 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1151 PIPE_CONTROL_WRITE_FLUSH |
1152 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1153 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1154 intel_ring_emit(ring,
1155 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1156 intel_ring_emit(ring, 0);
1157 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1158 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1159 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1160 scratch_addr += 2 * CACHELINE_BYTES;
1161 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1162 scratch_addr += 2 * CACHELINE_BYTES;
1163 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1164 scratch_addr += 2 * CACHELINE_BYTES;
1165 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1166 scratch_addr += 2 * CACHELINE_BYTES;
1167 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1168
1169 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1170 PIPE_CONTROL_WRITE_FLUSH |
1171 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1172 PIPE_CONTROL_NOTIFY);
1173 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1174 intel_ring_emit(ring,
1175 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1176 intel_ring_emit(ring, 0);
1177 __intel_ring_advance(ring);
1178
1179 return 0;
1180}
1181
1182static u32
1183gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1184{
1185 /* Workaround to force correct ordering between irq and seqno writes on
1186 * ivb (and maybe also on snb) by reading from a CS register (like
1187 * ACTHD) before reading the status page. */
1188 if (!lazy_coherency) {
1189 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1190 POSTING_READ(RING_ACTHD(ring->mmio_base));
1191 }
1192
1193 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1194}
1195
1196static u32
1197ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1198{
1199 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1200}
1201
1202static void
1203ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1204{
1205 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1206}
1207
1208static u32
1209pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1210{
1211 return ring->scratch.cpu_page[0];
1212}
1213
1214static void
1215pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1216{
1217 ring->scratch.cpu_page[0] = seqno;
1218}
1219
1220static bool
1221gen5_ring_get_irq(struct intel_engine_cs *ring)
1222{
1223 struct drm_device *dev = ring->dev;
1224 struct drm_i915_private *dev_priv = dev->dev_private;
1225 unsigned long flags;
1226
1227 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1228 return false;
1229
1230 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1231 if (ring->irq_refcount++ == 0)
1232 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1233 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1234
1235 return true;
1236}
1237
1238static void
1239gen5_ring_put_irq(struct intel_engine_cs *ring)
1240{
1241 struct drm_device *dev = ring->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1246 if (--ring->irq_refcount == 0)
1247 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1248 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1249}
1250
1251static bool
1252i9xx_ring_get_irq(struct intel_engine_cs *ring)
1253{
1254 struct drm_device *dev = ring->dev;
1255 struct drm_i915_private *dev_priv = dev->dev_private;
1256 unsigned long flags;
1257
1258 if (!intel_irqs_enabled(dev_priv))
1259 return false;
1260
1261 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1262 if (ring->irq_refcount++ == 0) {
1263 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1264 I915_WRITE(IMR, dev_priv->irq_mask);
1265 POSTING_READ(IMR);
1266 }
1267 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1268
1269 return true;
1270}
1271
1272static void
1273i9xx_ring_put_irq(struct intel_engine_cs *ring)
1274{
1275 struct drm_device *dev = ring->dev;
1276 struct drm_i915_private *dev_priv = dev->dev_private;
1277 unsigned long flags;
1278
1279 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1280 if (--ring->irq_refcount == 0) {
1281 dev_priv->irq_mask |= ring->irq_enable_mask;
1282 I915_WRITE(IMR, dev_priv->irq_mask);
1283 POSTING_READ(IMR);
1284 }
1285 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1286}
1287
1288static bool
1289i8xx_ring_get_irq(struct intel_engine_cs *ring)
1290{
1291 struct drm_device *dev = ring->dev;
1292 struct drm_i915_private *dev_priv = dev->dev_private;
1293 unsigned long flags;
1294
1295 if (!intel_irqs_enabled(dev_priv))
1296 return false;
1297
1298 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1299 if (ring->irq_refcount++ == 0) {
1300 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1301 I915_WRITE16(IMR, dev_priv->irq_mask);
1302 POSTING_READ16(IMR);
1303 }
1304 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1305
1306 return true;
1307}
1308
1309static void
1310i8xx_ring_put_irq(struct intel_engine_cs *ring)
1311{
1312 struct drm_device *dev = ring->dev;
1313 struct drm_i915_private *dev_priv = dev->dev_private;
1314 unsigned long flags;
1315
1316 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1317 if (--ring->irq_refcount == 0) {
1318 dev_priv->irq_mask |= ring->irq_enable_mask;
1319 I915_WRITE16(IMR, dev_priv->irq_mask);
1320 POSTING_READ16(IMR);
1321 }
1322 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1323}
1324
1325void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1326{
1327 struct drm_device *dev = ring->dev;
1328 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1329 u32 mmio = 0;
1330
1331 /* The ring status page addresses are no longer next to the rest of
1332 * the ring registers as of gen7.
1333 */
1334 if (IS_GEN7(dev)) {
1335 switch (ring->id) {
1336 case RCS:
1337 mmio = RENDER_HWS_PGA_GEN7;
1338 break;
1339 case BCS:
1340 mmio = BLT_HWS_PGA_GEN7;
1341 break;
1342 /*
1343 * VCS2 actually doesn't exist on Gen7. Only shut up
1344 * gcc switch check warning
1345 */
1346 case VCS2:
1347 case VCS:
1348 mmio = BSD_HWS_PGA_GEN7;
1349 break;
1350 case VECS:
1351 mmio = VEBOX_HWS_PGA_GEN7;
1352 break;
1353 }
1354 } else if (IS_GEN6(ring->dev)) {
1355 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1356 } else {
1357 /* XXX: gen8 returns to sanity */
1358 mmio = RING_HWS_PGA(ring->mmio_base);
1359 }
1360
1361 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1362 POSTING_READ(mmio);
1363
1364 /*
1365 * Flush the TLB for this page
1366 *
1367 * FIXME: These two bits have disappeared on gen8, so a question
1368 * arises: do we still need this and if so how should we go about
1369 * invalidating the TLB?
1370 */
1371 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1372 u32 reg = RING_INSTPM(ring->mmio_base);
1373
1374 /* ring should be idle before issuing a sync flush*/
1375 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1376
1377 I915_WRITE(reg,
1378 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1379 INSTPM_SYNC_FLUSH));
1380 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1381 1000))
1382 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1383 ring->name);
1384 }
1385}
1386
1387static int
1388bsd_ring_flush(struct intel_engine_cs *ring,
1389 u32 invalidate_domains,
1390 u32 flush_domains)
1391{
1392 int ret;
1393
1394 ret = intel_ring_begin(ring, 2);
1395 if (ret)
1396 return ret;
1397
1398 intel_ring_emit(ring, MI_FLUSH);
1399 intel_ring_emit(ring, MI_NOOP);
1400 intel_ring_advance(ring);
1401 return 0;
1402}
1403
1404static int
1405i9xx_add_request(struct intel_engine_cs *ring)
1406{
1407 int ret;
1408
1409 ret = intel_ring_begin(ring, 4);
1410 if (ret)
1411 return ret;
1412
1413 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1414 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1415 intel_ring_emit(ring,
1416 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1417 intel_ring_emit(ring, MI_USER_INTERRUPT);
1418 __intel_ring_advance(ring);
1419
1420 return 0;
1421}
1422
1423static bool
1424gen6_ring_get_irq(struct intel_engine_cs *ring)
1425{
1426 struct drm_device *dev = ring->dev;
1427 struct drm_i915_private *dev_priv = dev->dev_private;
1428 unsigned long flags;
1429
1430 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1431 return false;
1432
1433 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1434 if (ring->irq_refcount++ == 0) {
1435 if (HAS_L3_DPF(dev) && ring->id == RCS)
1436 I915_WRITE_IMR(ring,
1437 ~(ring->irq_enable_mask |
1438 GT_PARITY_ERROR(dev)));
1439 else
1440 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1441 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1442 }
1443 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1444
1445 return true;
1446}
1447
1448static void
1449gen6_ring_put_irq(struct intel_engine_cs *ring)
1450{
1451 struct drm_device *dev = ring->dev;
1452 struct drm_i915_private *dev_priv = dev->dev_private;
1453 unsigned long flags;
1454
1455 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1456 if (--ring->irq_refcount == 0) {
1457 if (HAS_L3_DPF(dev) && ring->id == RCS)
1458 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1459 else
1460 I915_WRITE_IMR(ring, ~0);
1461 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1462 }
1463 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1464}
1465
1466static bool
1467hsw_vebox_get_irq(struct intel_engine_cs *ring)
1468{
1469 struct drm_device *dev = ring->dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 unsigned long flags;
1472
1473 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1474 return false;
1475
1476 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1477 if (ring->irq_refcount++ == 0) {
1478 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1479 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1480 }
1481 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1482
1483 return true;
1484}
1485
1486static void
1487hsw_vebox_put_irq(struct intel_engine_cs *ring)
1488{
1489 struct drm_device *dev = ring->dev;
1490 struct drm_i915_private *dev_priv = dev->dev_private;
1491 unsigned long flags;
1492
1493 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1494 if (--ring->irq_refcount == 0) {
1495 I915_WRITE_IMR(ring, ~0);
1496 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1497 }
1498 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1499}
1500
1501static bool
1502gen8_ring_get_irq(struct intel_engine_cs *ring)
1503{
1504 struct drm_device *dev = ring->dev;
1505 struct drm_i915_private *dev_priv = dev->dev_private;
1506 unsigned long flags;
1507
1508 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1509 return false;
1510
1511 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1512 if (ring->irq_refcount++ == 0) {
1513 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1514 I915_WRITE_IMR(ring,
1515 ~(ring->irq_enable_mask |
1516 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1517 } else {
1518 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1519 }
1520 POSTING_READ(RING_IMR(ring->mmio_base));
1521 }
1522 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1523
1524 return true;
1525}
1526
1527static void
1528gen8_ring_put_irq(struct intel_engine_cs *ring)
1529{
1530 struct drm_device *dev = ring->dev;
1531 struct drm_i915_private *dev_priv = dev->dev_private;
1532 unsigned long flags;
1533
1534 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1535 if (--ring->irq_refcount == 0) {
1536 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1537 I915_WRITE_IMR(ring,
1538 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1539 } else {
1540 I915_WRITE_IMR(ring, ~0);
1541 }
1542 POSTING_READ(RING_IMR(ring->mmio_base));
1543 }
1544 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1545}
1546
1547static int
1548i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1549 u64 offset, u32 length,
1550 unsigned flags)
1551{
1552 int ret;
1553
1554 ret = intel_ring_begin(ring, 2);
1555 if (ret)
1556 return ret;
1557
1558 intel_ring_emit(ring,
1559 MI_BATCH_BUFFER_START |
1560 MI_BATCH_GTT |
1561 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1562 intel_ring_emit(ring, offset);
1563 intel_ring_advance(ring);
1564
1565 return 0;
1566}
1567
1568/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1569#define I830_BATCH_LIMIT (256*1024)
1570#define I830_TLB_ENTRIES (2)
1571#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1572static int
1573i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1574 u64 offset, u32 len,
1575 unsigned flags)
1576{
1577 u32 cs_offset = ring->scratch.gtt_offset;
1578 int ret;
1579
1580 ret = intel_ring_begin(ring, 6);
1581 if (ret)
1582 return ret;
1583
1584 /* Evict the invalid PTE TLBs */
1585 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1586 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1587 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1588 intel_ring_emit(ring, cs_offset);
1589 intel_ring_emit(ring, 0xdeadbeef);
1590 intel_ring_emit(ring, MI_NOOP);
1591 intel_ring_advance(ring);
1592
1593 if ((flags & I915_DISPATCH_PINNED) == 0) {
1594 if (len > I830_BATCH_LIMIT)
1595 return -ENOSPC;
1596
1597 ret = intel_ring_begin(ring, 6 + 2);
1598 if (ret)
1599 return ret;
1600
1601 /* Blit the batch (which has now all relocs applied) to the
1602 * stable batch scratch bo area (so that the CS never
1603 * stumbles over its tlb invalidation bug) ...
1604 */
1605 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1606 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1607 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
1608 intel_ring_emit(ring, cs_offset);
1609 intel_ring_emit(ring, 4096);
1610 intel_ring_emit(ring, offset);
1611
1612 intel_ring_emit(ring, MI_FLUSH);
1613 intel_ring_emit(ring, MI_NOOP);
1614 intel_ring_advance(ring);
1615
1616 /* ... and execute it. */
1617 offset = cs_offset;
1618 }
1619
1620 ret = intel_ring_begin(ring, 4);
1621 if (ret)
1622 return ret;
1623
1624 intel_ring_emit(ring, MI_BATCH_BUFFER);
1625 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1626 intel_ring_emit(ring, offset + len - 8);
1627 intel_ring_emit(ring, MI_NOOP);
1628 intel_ring_advance(ring);
1629
1630 return 0;
1631}
1632
1633static int
1634i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1635 u64 offset, u32 len,
1636 unsigned flags)
1637{
1638 int ret;
1639
1640 ret = intel_ring_begin(ring, 2);
1641 if (ret)
1642 return ret;
1643
1644 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1645 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1646 intel_ring_advance(ring);
1647
1648 return 0;
1649}
1650
1651static void cleanup_status_page(struct intel_engine_cs *ring)
1652{
1653 struct drm_i915_gem_object *obj;
1654
1655 obj = ring->status_page.obj;
1656 if (obj == NULL)
1657 return;
1658
1659 kunmap(sg_page(obj->pages->sgl));
1660 i915_gem_object_ggtt_unpin(obj);
1661 drm_gem_object_unreference(&obj->base);
1662 ring->status_page.obj = NULL;
1663}
1664
1665static int init_status_page(struct intel_engine_cs *ring)
1666{
1667 struct drm_i915_gem_object *obj;
1668
1669 if ((obj = ring->status_page.obj) == NULL) {
1670 unsigned flags;
1671 int ret;
1672
1673 obj = i915_gem_alloc_object(ring->dev, 4096);
1674 if (obj == NULL) {
1675 DRM_ERROR("Failed to allocate status page\n");
1676 return -ENOMEM;
1677 }
1678
1679 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1680 if (ret)
1681 goto err_unref;
1682
1683 flags = 0;
1684 if (!HAS_LLC(ring->dev))
1685 /* On g33, we cannot place HWS above 256MiB, so
1686 * restrict its pinning to the low mappable arena.
1687 * Though this restriction is not documented for
1688 * gen4, gen5, or byt, they also behave similarly
1689 * and hang if the HWS is placed at the top of the
1690 * GTT. To generalise, it appears that all !llc
1691 * platforms have issues with us placing the HWS
1692 * above the mappable region (even though we never
1693 * actualy map it).
1694 */
1695 flags |= PIN_MAPPABLE;
1696 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1697 if (ret) {
1698err_unref:
1699 drm_gem_object_unreference(&obj->base);
1700 return ret;
1701 }
1702
1703 ring->status_page.obj = obj;
1704 }
1705
1706 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1707 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1708 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1709
1710 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1711 ring->name, ring->status_page.gfx_addr);
1712
1713 return 0;
1714}
1715
1716static int init_phys_status_page(struct intel_engine_cs *ring)
1717{
1718 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1719
1720 if (!dev_priv->status_page_dmah) {
1721 dev_priv->status_page_dmah =
1722 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1723 if (!dev_priv->status_page_dmah)
1724 return -ENOMEM;
1725 }
1726
1727 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1728 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1729
1730 return 0;
1731}
1732
1733void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1734{
1735 iounmap(ringbuf->virtual_start);
1736 ringbuf->virtual_start = NULL;
1737 i915_gem_object_ggtt_unpin(ringbuf->obj);
1738}
1739
1740int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
1741 struct intel_ringbuffer *ringbuf)
1742{
1743 struct drm_i915_private *dev_priv = to_i915(dev);
1744 struct drm_i915_gem_object *obj = ringbuf->obj;
1745 int ret;
1746
1747 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1748 if (ret)
1749 return ret;
1750
1751 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1752 if (ret) {
1753 i915_gem_object_ggtt_unpin(obj);
1754 return ret;
1755 }
1756
1757 ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
1758 i915_gem_obj_ggtt_offset(obj), ringbuf->size);
1759 if (ringbuf->virtual_start == NULL) {
1760 i915_gem_object_ggtt_unpin(obj);
1761 return -EINVAL;
1762 }
1763
1764 return 0;
1765}
1766
1767void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1768{
1769 drm_gem_object_unreference(&ringbuf->obj->base);
1770 ringbuf->obj = NULL;
1771}
1772
1773int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1774 struct intel_ringbuffer *ringbuf)
1775{
1776 struct drm_i915_gem_object *obj;
1777
1778 obj = NULL;
1779 if (!HAS_LLC(dev))
1780 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1781 if (obj == NULL)
1782 obj = i915_gem_alloc_object(dev, ringbuf->size);
1783 if (obj == NULL)
1784 return -ENOMEM;
1785
1786 /* mark ring buffers as read-only from GPU side by default */
1787 obj->gt_ro = 1;
1788
1789 ringbuf->obj = obj;
1790
1791 return 0;
1792}
1793
1794static int intel_init_ring_buffer(struct drm_device *dev,
1795 struct intel_engine_cs *ring)
1796{
1797 struct intel_ringbuffer *ringbuf = ring->buffer;
1798 int ret;
1799
1800 if (ringbuf == NULL) {
1801 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1802 if (!ringbuf)
1803 return -ENOMEM;
1804 ring->buffer = ringbuf;
1805 }
1806
1807 ring->dev = dev;
1808 INIT_LIST_HEAD(&ring->active_list);
1809 INIT_LIST_HEAD(&ring->request_list);
1810 INIT_LIST_HEAD(&ring->execlist_queue);
1811 ringbuf->size = 32 * PAGE_SIZE;
1812 ringbuf->ring = ring;
1813 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1814
1815 init_waitqueue_head(&ring->irq_queue);
1816
1817 if (I915_NEED_GFX_HWS(dev)) {
1818 ret = init_status_page(ring);
1819 if (ret)
1820 goto error;
1821 } else {
1822 BUG_ON(ring->id != RCS);
1823 ret = init_phys_status_page(ring);
1824 if (ret)
1825 goto error;
1826 }
1827
1828 if (ringbuf->obj == NULL) {
1829 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1830 if (ret) {
1831 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
1832 ring->name, ret);
1833 goto error;
1834 }
1835
1836 ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1837 if (ret) {
1838 DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
1839 ring->name, ret);
1840 intel_destroy_ringbuffer_obj(ringbuf);
1841 goto error;
1842 }
1843 }
1844
1845 /* Workaround an erratum on the i830 which causes a hang if
1846 * the TAIL pointer points to within the last 2 cachelines
1847 * of the buffer.
1848 */
1849 ringbuf->effective_size = ringbuf->size;
1850 if (IS_I830(dev) || IS_845G(dev))
1851 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1852
1853 ret = i915_cmd_parser_init_ring(ring);
1854 if (ret)
1855 goto error;
1856
1857 ret = ring->init(ring);
1858 if (ret)
1859 goto error;
1860
1861 return 0;
1862
1863error:
1864 kfree(ringbuf);
1865 ring->buffer = NULL;
1866 return ret;
1867}
1868
1869void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1870{
1871 struct drm_i915_private *dev_priv;
1872 struct intel_ringbuffer *ringbuf;
1873
1874 if (!intel_ring_initialized(ring))
1875 return;
1876
1877 dev_priv = to_i915(ring->dev);
1878 ringbuf = ring->buffer;
1879
1880 intel_stop_ring_buffer(ring);
1881 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1882
1883 intel_unpin_ringbuffer_obj(ringbuf);
1884 intel_destroy_ringbuffer_obj(ringbuf);
1885 i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1886
1887 if (ring->cleanup)
1888 ring->cleanup(ring);
1889
1890 cleanup_status_page(ring);
1891
1892 i915_cmd_parser_fini_ring(ring);
1893
1894 kfree(ringbuf);
1895 ring->buffer = NULL;
1896}
1897
1898static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1899{
1900 struct intel_ringbuffer *ringbuf = ring->buffer;
1901 struct drm_i915_gem_request *request;
1902 int ret;
1903
1904 if (ringbuf->last_retired_head != -1) {
1905 ringbuf->head = ringbuf->last_retired_head;
1906 ringbuf->last_retired_head = -1;
1907
1908 ringbuf->space = intel_ring_space(ringbuf);
1909 if (ringbuf->space >= n)
1910 return 0;
1911 }
1912
1913 list_for_each_entry(request, &ring->request_list, list) {
1914 if (__intel_ring_space(request->tail, ringbuf->tail,
1915 ringbuf->size) >= n) {
1916 break;
1917 }
1918 }
1919
1920 if (&request->list == &ring->request_list)
1921 return -ENOSPC;
1922
1923 ret = i915_wait_request(request);
1924 if (ret)
1925 return ret;
1926
1927 i915_gem_retire_requests_ring(ring);
1928 ringbuf->head = ringbuf->last_retired_head;
1929 ringbuf->last_retired_head = -1;
1930
1931 ringbuf->space = intel_ring_space(ringbuf);
1932 return 0;
1933}
1934
1935static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1936{
1937 struct drm_device *dev = ring->dev;
1938 struct drm_i915_private *dev_priv = dev->dev_private;
1939 struct intel_ringbuffer *ringbuf = ring->buffer;
1940 unsigned long end;
1941 int ret;
1942
1943 ret = intel_ring_wait_request(ring, n);
1944 if (ret != -ENOSPC)
1945 return ret;
1946
1947 /* force the tail write in case we have been skipping them */
1948 __intel_ring_advance(ring);
1949
1950 /* With GEM the hangcheck timer should kick us out of the loop,
1951 * leaving it early runs the risk of corrupting GEM state (due
1952 * to running on almost untested codepaths). But on resume
1953 * timers don't work yet, so prevent a complete hang in that
1954 * case by choosing an insanely large timeout. */
1955 end = jiffies + 60 * HZ;
1956
1957 trace_i915_ring_wait_begin(ring);
1958 do {
1959 ringbuf->head = I915_READ_HEAD(ring);
1960 ringbuf->space = intel_ring_space(ringbuf);
1961 if (ringbuf->space >= n) {
1962 ret = 0;
1963 break;
1964 }
1965
1966 msleep(1);
1967
1968 if (dev_priv->mm.interruptible && signal_pending(current)) {
1969 ret = -ERESTARTSYS;
1970 break;
1971 }
1972
1973 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1974 dev_priv->mm.interruptible);
1975 if (ret)
1976 break;
1977
1978 if (time_after(jiffies, end)) {
1979 ret = -EBUSY;
1980 break;
1981 }
1982 } while (1);
1983 trace_i915_ring_wait_end(ring);
1984 return ret;
1985}
1986
1987static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1988{
1989 uint32_t __iomem *virt;
1990 struct intel_ringbuffer *ringbuf = ring->buffer;
1991 int rem = ringbuf->size - ringbuf->tail;
1992
1993 if (ringbuf->space < rem) {
1994 int ret = ring_wait_for_space(ring, rem);
1995 if (ret)
1996 return ret;
1997 }
1998
1999 virt = ringbuf->virtual_start + ringbuf->tail;
2000 rem /= 4;
2001 while (rem--)
2002 iowrite32(MI_NOOP, virt++);
2003
2004 ringbuf->tail = 0;
2005 ringbuf->space = intel_ring_space(ringbuf);
2006
2007 return 0;
2008}
2009
2010int intel_ring_idle(struct intel_engine_cs *ring)
2011{
2012 struct drm_i915_gem_request *req;
2013 int ret;
2014
2015 /* We need to add any requests required to flush the objects and ring */
2016 if (ring->outstanding_lazy_request) {
2017 ret = i915_add_request(ring);
2018 if (ret)
2019 return ret;
2020 }
2021
2022 /* Wait upon the last request to be completed */
2023 if (list_empty(&ring->request_list))
2024 return 0;
2025
2026 req = list_entry(ring->request_list.prev,
2027 struct drm_i915_gem_request,
2028 list);
2029
2030 return i915_wait_request(req);
2031}
2032
2033static int
2034intel_ring_alloc_request(struct intel_engine_cs *ring)
2035{
2036 int ret;
2037 struct drm_i915_gem_request *request;
2038
2039 if (ring->outstanding_lazy_request)
2040 return 0;
2041
2042 request = kmalloc(sizeof(*request), GFP_KERNEL);
2043 if (request == NULL)
2044 return -ENOMEM;
2045
2046 kref_init(&request->ref);
2047
2048 ret = i915_gem_get_seqno(ring->dev, &request->seqno);
2049 if (ret) {
2050 kfree(request);
2051 return ret;
2052 }
2053
2054 ring->outstanding_lazy_request = request;
2055 return 0;
2056}
2057
2058static int __intel_ring_prepare(struct intel_engine_cs *ring,
2059 int bytes)
2060{
2061 struct intel_ringbuffer *ringbuf = ring->buffer;
2062 int ret;
2063
2064 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2065 ret = intel_wrap_ring_buffer(ring);
2066 if (unlikely(ret))
2067 return ret;
2068 }
2069
2070 if (unlikely(ringbuf->space < bytes)) {
2071 ret = ring_wait_for_space(ring, bytes);
2072 if (unlikely(ret))
2073 return ret;
2074 }
2075
2076 return 0;
2077}
2078
2079int intel_ring_begin(struct intel_engine_cs *ring,
2080 int num_dwords)
2081{
2082 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2083 int ret;
2084
2085 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2086 dev_priv->mm.interruptible);
2087 if (ret)
2088 return ret;
2089
2090 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2091 if (ret)
2092 return ret;
2093
2094 /* Preallocate the olr before touching the ring */
2095 ret = intel_ring_alloc_request(ring);
2096 if (ret)
2097 return ret;
2098
2099 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2100 return 0;
2101}
2102
2103/* Align the ring tail to a cacheline boundary */
2104int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2105{
2106 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2107 int ret;
2108
2109 if (num_dwords == 0)
2110 return 0;
2111
2112 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2113 ret = intel_ring_begin(ring, num_dwords);
2114 if (ret)
2115 return ret;
2116
2117 while (num_dwords--)
2118 intel_ring_emit(ring, MI_NOOP);
2119
2120 intel_ring_advance(ring);
2121
2122 return 0;
2123}
2124
2125void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2126{
2127 struct drm_device *dev = ring->dev;
2128 struct drm_i915_private *dev_priv = dev->dev_private;
2129
2130 BUG_ON(ring->outstanding_lazy_request);
2131
2132 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2133 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2134 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2135 if (HAS_VEBOX(dev))
2136 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2137 }
2138
2139 ring->set_seqno(ring, seqno);
2140 ring->hangcheck.seqno = seqno;
2141}
2142
2143static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2144 u32 value)
2145{
2146 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2147
2148 /* Every tail move must follow the sequence below */
2149
2150 /* Disable notification that the ring is IDLE. The GT
2151 * will then assume that it is busy and bring it out of rc6.
2152 */
2153 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2154 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2155
2156 /* Clear the context id. Here be magic! */
2157 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2158
2159 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2160 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2161 GEN6_BSD_SLEEP_INDICATOR) == 0,
2162 50))
2163 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2164
2165 /* Now that the ring is fully powered up, update the tail */
2166 I915_WRITE_TAIL(ring, value);
2167 POSTING_READ(RING_TAIL(ring->mmio_base));
2168
2169 /* Let the ring send IDLE messages to the GT again,
2170 * and so let it sleep to conserve power when idle.
2171 */
2172 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2173 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2174}
2175
2176static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2177 u32 invalidate, u32 flush)
2178{
2179 uint32_t cmd;
2180 int ret;
2181
2182 ret = intel_ring_begin(ring, 4);
2183 if (ret)
2184 return ret;
2185
2186 cmd = MI_FLUSH_DW;
2187 if (INTEL_INFO(ring->dev)->gen >= 8)
2188 cmd += 1;
2189 /*
2190 * Bspec vol 1c.5 - video engine command streamer:
2191 * "If ENABLED, all TLBs will be invalidated once the flush
2192 * operation is complete. This bit is only valid when the
2193 * Post-Sync Operation field is a value of 1h or 3h."
2194 */
2195 if (invalidate & I915_GEM_GPU_DOMAINS)
2196 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2197 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2198 intel_ring_emit(ring, cmd);
2199 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2200 if (INTEL_INFO(ring->dev)->gen >= 8) {
2201 intel_ring_emit(ring, 0); /* upper addr */
2202 intel_ring_emit(ring, 0); /* value */
2203 } else {
2204 intel_ring_emit(ring, 0);
2205 intel_ring_emit(ring, MI_NOOP);
2206 }
2207 intel_ring_advance(ring);
2208 return 0;
2209}
2210
2211static int
2212gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2213 u64 offset, u32 len,
2214 unsigned flags)
2215{
2216 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2217 int ret;
2218
2219 ret = intel_ring_begin(ring, 4);
2220 if (ret)
2221 return ret;
2222
2223 /* FIXME(BDW): Address space and security selectors. */
2224 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2225 intel_ring_emit(ring, lower_32_bits(offset));
2226 intel_ring_emit(ring, upper_32_bits(offset));
2227 intel_ring_emit(ring, MI_NOOP);
2228 intel_ring_advance(ring);
2229
2230 return 0;
2231}
2232
2233static int
2234hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2235 u64 offset, u32 len,
2236 unsigned flags)
2237{
2238 int ret;
2239
2240 ret = intel_ring_begin(ring, 2);
2241 if (ret)
2242 return ret;
2243
2244 intel_ring_emit(ring,
2245 MI_BATCH_BUFFER_START |
2246 (flags & I915_DISPATCH_SECURE ?
2247 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2248 /* bit0-7 is the length on GEN6+ */
2249 intel_ring_emit(ring, offset);
2250 intel_ring_advance(ring);
2251
2252 return 0;
2253}
2254
2255static int
2256gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2257 u64 offset, u32 len,
2258 unsigned flags)
2259{
2260 int ret;
2261
2262 ret = intel_ring_begin(ring, 2);
2263 if (ret)
2264 return ret;
2265
2266 intel_ring_emit(ring,
2267 MI_BATCH_BUFFER_START |
2268 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2269 /* bit0-7 is the length on GEN6+ */
2270 intel_ring_emit(ring, offset);
2271 intel_ring_advance(ring);
2272
2273 return 0;
2274}
2275
2276/* Blitter support (SandyBridge+) */
2277
2278static int gen6_ring_flush(struct intel_engine_cs *ring,
2279 u32 invalidate, u32 flush)
2280{
2281 struct drm_device *dev = ring->dev;
2282 struct drm_i915_private *dev_priv = dev->dev_private;
2283 uint32_t cmd;
2284 int ret;
2285
2286 ret = intel_ring_begin(ring, 4);
2287 if (ret)
2288 return ret;
2289
2290 cmd = MI_FLUSH_DW;
2291 if (INTEL_INFO(ring->dev)->gen >= 8)
2292 cmd += 1;
2293 /*
2294 * Bspec vol 1c.3 - blitter engine command streamer:
2295 * "If ENABLED, all TLBs will be invalidated once the flush
2296 * operation is complete. This bit is only valid when the
2297 * Post-Sync Operation field is a value of 1h or 3h."
2298 */
2299 if (invalidate & I915_GEM_DOMAIN_RENDER)
2300 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2301 MI_FLUSH_DW_OP_STOREDW;
2302 intel_ring_emit(ring, cmd);
2303 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2304 if (INTEL_INFO(ring->dev)->gen >= 8) {
2305 intel_ring_emit(ring, 0); /* upper addr */
2306 intel_ring_emit(ring, 0); /* value */
2307 } else {
2308 intel_ring_emit(ring, 0);
2309 intel_ring_emit(ring, MI_NOOP);
2310 }
2311 intel_ring_advance(ring);
2312
2313 if (!invalidate && flush) {
2314 if (IS_GEN7(dev))
2315 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2316 else if (IS_BROADWELL(dev))
2317 dev_priv->fbc.need_sw_cache_clean = true;
2318 }
2319
2320 return 0;
2321}
2322
2323int intel_init_render_ring_buffer(struct drm_device *dev)
2324{
2325 struct drm_i915_private *dev_priv = dev->dev_private;
2326 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2327 struct drm_i915_gem_object *obj;
2328 int ret;
2329
2330 ring->name = "render ring";
2331 ring->id = RCS;
2332 ring->mmio_base = RENDER_RING_BASE;
2333
2334 if (INTEL_INFO(dev)->gen >= 8) {
2335 if (i915_semaphore_is_enabled(dev)) {
2336 obj = i915_gem_alloc_object(dev, 4096);
2337 if (obj == NULL) {
2338 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2339 i915.semaphores = 0;
2340 } else {
2341 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2342 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2343 if (ret != 0) {
2344 drm_gem_object_unreference(&obj->base);
2345 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2346 i915.semaphores = 0;
2347 } else
2348 dev_priv->semaphore_obj = obj;
2349 }
2350 }
2351
2352 ring->init_context = intel_ring_workarounds_emit;
2353 ring->add_request = gen6_add_request;
2354 ring->flush = gen8_render_ring_flush;
2355 ring->irq_get = gen8_ring_get_irq;
2356 ring->irq_put = gen8_ring_put_irq;
2357 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2358 ring->get_seqno = gen6_ring_get_seqno;
2359 ring->set_seqno = ring_set_seqno;
2360 if (i915_semaphore_is_enabled(dev)) {
2361 WARN_ON(!dev_priv->semaphore_obj);
2362 ring->semaphore.sync_to = gen8_ring_sync;
2363 ring->semaphore.signal = gen8_rcs_signal;
2364 GEN8_RING_SEMAPHORE_INIT;
2365 }
2366 } else if (INTEL_INFO(dev)->gen >= 6) {
2367 ring->add_request = gen6_add_request;
2368 ring->flush = gen7_render_ring_flush;
2369 if (INTEL_INFO(dev)->gen == 6)
2370 ring->flush = gen6_render_ring_flush;
2371 ring->irq_get = gen6_ring_get_irq;
2372 ring->irq_put = gen6_ring_put_irq;
2373 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2374 ring->get_seqno = gen6_ring_get_seqno;
2375 ring->set_seqno = ring_set_seqno;
2376 if (i915_semaphore_is_enabled(dev)) {
2377 ring->semaphore.sync_to = gen6_ring_sync;
2378 ring->semaphore.signal = gen6_signal;
2379 /*
2380 * The current semaphore is only applied on pre-gen8
2381 * platform. And there is no VCS2 ring on the pre-gen8
2382 * platform. So the semaphore between RCS and VCS2 is
2383 * initialized as INVALID. Gen8 will initialize the
2384 * sema between VCS2 and RCS later.
2385 */
2386 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2387 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2388 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2389 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2390 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2391 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2392 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2393 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2394 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2395 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2396 }
2397 } else if (IS_GEN5(dev)) {
2398 ring->add_request = pc_render_add_request;
2399 ring->flush = gen4_render_ring_flush;
2400 ring->get_seqno = pc_render_get_seqno;
2401 ring->set_seqno = pc_render_set_seqno;
2402 ring->irq_get = gen5_ring_get_irq;
2403 ring->irq_put = gen5_ring_put_irq;
2404 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2405 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2406 } else {
2407 ring->add_request = i9xx_add_request;
2408 if (INTEL_INFO(dev)->gen < 4)
2409 ring->flush = gen2_render_ring_flush;
2410 else
2411 ring->flush = gen4_render_ring_flush;
2412 ring->get_seqno = ring_get_seqno;
2413 ring->set_seqno = ring_set_seqno;
2414 if (IS_GEN2(dev)) {
2415 ring->irq_get = i8xx_ring_get_irq;
2416 ring->irq_put = i8xx_ring_put_irq;
2417 } else {
2418 ring->irq_get = i9xx_ring_get_irq;
2419 ring->irq_put = i9xx_ring_put_irq;
2420 }
2421 ring->irq_enable_mask = I915_USER_INTERRUPT;
2422 }
2423 ring->write_tail = ring_write_tail;
2424
2425 if (IS_HASWELL(dev))
2426 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2427 else if (IS_GEN8(dev))
2428 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2429 else if (INTEL_INFO(dev)->gen >= 6)
2430 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2431 else if (INTEL_INFO(dev)->gen >= 4)
2432 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2433 else if (IS_I830(dev) || IS_845G(dev))
2434 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2435 else
2436 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2437 ring->init = init_render_ring;
2438 ring->cleanup = render_ring_cleanup;
2439
2440 /* Workaround batchbuffer to combat CS tlb bug. */
2441 if (HAS_BROKEN_CS_TLB(dev)) {
2442 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2443 if (obj == NULL) {
2444 DRM_ERROR("Failed to allocate batch bo\n");
2445 return -ENOMEM;
2446 }
2447
2448 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2449 if (ret != 0) {
2450 drm_gem_object_unreference(&obj->base);
2451 DRM_ERROR("Failed to ping batch bo\n");
2452 return ret;
2453 }
2454
2455 ring->scratch.obj = obj;
2456 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2457 }
2458
2459 return intel_init_ring_buffer(dev, ring);
2460}
2461
2462int intel_init_bsd_ring_buffer(struct drm_device *dev)
2463{
2464 struct drm_i915_private *dev_priv = dev->dev_private;
2465 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2466
2467 ring->name = "bsd ring";
2468 ring->id = VCS;
2469
2470 ring->write_tail = ring_write_tail;
2471 if (INTEL_INFO(dev)->gen >= 6) {
2472 ring->mmio_base = GEN6_BSD_RING_BASE;
2473 /* gen6 bsd needs a special wa for tail updates */
2474 if (IS_GEN6(dev))
2475 ring->write_tail = gen6_bsd_ring_write_tail;
2476 ring->flush = gen6_bsd_ring_flush;
2477 ring->add_request = gen6_add_request;
2478 ring->get_seqno = gen6_ring_get_seqno;
2479 ring->set_seqno = ring_set_seqno;
2480 if (INTEL_INFO(dev)->gen >= 8) {
2481 ring->irq_enable_mask =
2482 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2483 ring->irq_get = gen8_ring_get_irq;
2484 ring->irq_put = gen8_ring_put_irq;
2485 ring->dispatch_execbuffer =
2486 gen8_ring_dispatch_execbuffer;
2487 if (i915_semaphore_is_enabled(dev)) {
2488 ring->semaphore.sync_to = gen8_ring_sync;
2489 ring->semaphore.signal = gen8_xcs_signal;
2490 GEN8_RING_SEMAPHORE_INIT;
2491 }
2492 } else {
2493 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2494 ring->irq_get = gen6_ring_get_irq;
2495 ring->irq_put = gen6_ring_put_irq;
2496 ring->dispatch_execbuffer =
2497 gen6_ring_dispatch_execbuffer;
2498 if (i915_semaphore_is_enabled(dev)) {
2499 ring->semaphore.sync_to = gen6_ring_sync;
2500 ring->semaphore.signal = gen6_signal;
2501 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2502 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2503 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2504 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2505 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2506 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2507 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2508 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2509 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2510 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2511 }
2512 }
2513 } else {
2514 ring->mmio_base = BSD_RING_BASE;
2515 ring->flush = bsd_ring_flush;
2516 ring->add_request = i9xx_add_request;
2517 ring->get_seqno = ring_get_seqno;
2518 ring->set_seqno = ring_set_seqno;
2519 if (IS_GEN5(dev)) {
2520 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2521 ring->irq_get = gen5_ring_get_irq;
2522 ring->irq_put = gen5_ring_put_irq;
2523 } else {
2524 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2525 ring->irq_get = i9xx_ring_get_irq;
2526 ring->irq_put = i9xx_ring_put_irq;
2527 }
2528 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2529 }
2530 ring->init = init_ring_common;
2531
2532 return intel_init_ring_buffer(dev, ring);
2533}
2534
2535/**
2536 * Initialize the second BSD ring for Broadwell GT3.
2537 * It is noted that this only exists on Broadwell GT3.
2538 */
2539int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2540{
2541 struct drm_i915_private *dev_priv = dev->dev_private;
2542 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2543
2544 if ((INTEL_INFO(dev)->gen != 8)) {
2545 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2546 return -EINVAL;
2547 }
2548
2549 ring->name = "bsd2 ring";
2550 ring->id = VCS2;
2551
2552 ring->write_tail = ring_write_tail;
2553 ring->mmio_base = GEN8_BSD2_RING_BASE;
2554 ring->flush = gen6_bsd_ring_flush;
2555 ring->add_request = gen6_add_request;
2556 ring->get_seqno = gen6_ring_get_seqno;
2557 ring->set_seqno = ring_set_seqno;
2558 ring->irq_enable_mask =
2559 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2560 ring->irq_get = gen8_ring_get_irq;
2561 ring->irq_put = gen8_ring_put_irq;
2562 ring->dispatch_execbuffer =
2563 gen8_ring_dispatch_execbuffer;
2564 if (i915_semaphore_is_enabled(dev)) {
2565 ring->semaphore.sync_to = gen8_ring_sync;
2566 ring->semaphore.signal = gen8_xcs_signal;
2567 GEN8_RING_SEMAPHORE_INIT;
2568 }
2569 ring->init = init_ring_common;
2570
2571 return intel_init_ring_buffer(dev, ring);
2572}
2573
2574int intel_init_blt_ring_buffer(struct drm_device *dev)
2575{
2576 struct drm_i915_private *dev_priv = dev->dev_private;
2577 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2578
2579 ring->name = "blitter ring";
2580 ring->id = BCS;
2581
2582 ring->mmio_base = BLT_RING_BASE;
2583 ring->write_tail = ring_write_tail;
2584 ring->flush = gen6_ring_flush;
2585 ring->add_request = gen6_add_request;
2586 ring->get_seqno = gen6_ring_get_seqno;
2587 ring->set_seqno = ring_set_seqno;
2588 if (INTEL_INFO(dev)->gen >= 8) {
2589 ring->irq_enable_mask =
2590 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2591 ring->irq_get = gen8_ring_get_irq;
2592 ring->irq_put = gen8_ring_put_irq;
2593 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2594 if (i915_semaphore_is_enabled(dev)) {
2595 ring->semaphore.sync_to = gen8_ring_sync;
2596 ring->semaphore.signal = gen8_xcs_signal;
2597 GEN8_RING_SEMAPHORE_INIT;
2598 }
2599 } else {
2600 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2601 ring->irq_get = gen6_ring_get_irq;
2602 ring->irq_put = gen6_ring_put_irq;
2603 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2604 if (i915_semaphore_is_enabled(dev)) {
2605 ring->semaphore.signal = gen6_signal;
2606 ring->semaphore.sync_to = gen6_ring_sync;
2607 /*
2608 * The current semaphore is only applied on pre-gen8
2609 * platform. And there is no VCS2 ring on the pre-gen8
2610 * platform. So the semaphore between BCS and VCS2 is
2611 * initialized as INVALID. Gen8 will initialize the
2612 * sema between BCS and VCS2 later.
2613 */
2614 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2615 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2616 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2617 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2618 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2619 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2620 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2621 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2622 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2623 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2624 }
2625 }
2626 ring->init = init_ring_common;
2627
2628 return intel_init_ring_buffer(dev, ring);
2629}
2630
2631int intel_init_vebox_ring_buffer(struct drm_device *dev)
2632{
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2635
2636 ring->name = "video enhancement ring";
2637 ring->id = VECS;
2638
2639 ring->mmio_base = VEBOX_RING_BASE;
2640 ring->write_tail = ring_write_tail;
2641 ring->flush = gen6_ring_flush;
2642 ring->add_request = gen6_add_request;
2643 ring->get_seqno = gen6_ring_get_seqno;
2644 ring->set_seqno = ring_set_seqno;
2645
2646 if (INTEL_INFO(dev)->gen >= 8) {
2647 ring->irq_enable_mask =
2648 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2649 ring->irq_get = gen8_ring_get_irq;
2650 ring->irq_put = gen8_ring_put_irq;
2651 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2652 if (i915_semaphore_is_enabled(dev)) {
2653 ring->semaphore.sync_to = gen8_ring_sync;
2654 ring->semaphore.signal = gen8_xcs_signal;
2655 GEN8_RING_SEMAPHORE_INIT;
2656 }
2657 } else {
2658 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2659 ring->irq_get = hsw_vebox_get_irq;
2660 ring->irq_put = hsw_vebox_put_irq;
2661 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2662 if (i915_semaphore_is_enabled(dev)) {
2663 ring->semaphore.sync_to = gen6_ring_sync;
2664 ring->semaphore.signal = gen6_signal;
2665 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2666 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2667 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2668 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2669 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2670 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2671 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2672 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2673 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2674 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2675 }
2676 }
2677 ring->init = init_ring_common;
2678
2679 return intel_init_ring_buffer(dev, ring);
2680}
2681
2682int
2683intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2684{
2685 int ret;
2686
2687 if (!ring->gpu_caches_dirty)
2688 return 0;
2689
2690 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2691 if (ret)
2692 return ret;
2693
2694 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2695
2696 ring->gpu_caches_dirty = false;
2697 return 0;
2698}
2699
2700int
2701intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2702{
2703 uint32_t flush_domains;
2704 int ret;
2705
2706 flush_domains = 0;
2707 if (ring->gpu_caches_dirty)
2708 flush_domains = I915_GEM_GPU_DOMAINS;
2709
2710 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2711 if (ret)
2712 return ret;
2713
2714 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2715
2716 ring->gpu_caches_dirty = false;
2717 return 0;
2718}
2719
2720void
2721intel_stop_ring_buffer(struct intel_engine_cs *ring)
2722{
2723 int ret;
2724
2725 if (!intel_ring_initialized(ring))
2726 return;
2727
2728 ret = intel_ring_idle(ring);
2729 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2730 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2731 ring->name, ret);
2732
2733 stop_ring(ring);
2734}
This page took 0.034729 seconds and 5 git commands to generate.