drm/i915: Convert a couple more INTEL_INFO-esque macros to be pointer agnostic
[deliverable/linux.git] / drivers / gpu / drm / i915 / intel_ringbuffer.c
... / ...
CommitLineData
1/*
2 * Copyright © 2008-2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Zou Nan hai <nanhai.zou@intel.com>
26 * Xiang Hai hao<haihao.xiang@intel.com>
27 *
28 */
29
30#include <drm/drmP.h>
31#include "i915_drv.h"
32#include <drm/i915_drm.h>
33#include "i915_trace.h"
34#include "intel_drv.h"
35
36bool
37intel_ring_initialized(struct intel_engine_cs *ring)
38{
39 struct drm_device *dev = ring->dev;
40
41 if (!dev)
42 return false;
43
44 if (i915.enable_execlists) {
45 struct intel_context *dctx = ring->default_context;
46 struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
47
48 return ringbuf->obj;
49 } else
50 return ring->buffer && ring->buffer->obj;
51}
52
53int __intel_ring_space(int head, int tail, int size)
54{
55 int space = head - (tail + I915_RING_FREE_SPACE);
56 if (space < 0)
57 space += size;
58 return space;
59}
60
61int intel_ring_space(struct intel_ringbuffer *ringbuf)
62{
63 return __intel_ring_space(ringbuf->head & HEAD_ADDR,
64 ringbuf->tail, ringbuf->size);
65}
66
67bool intel_ring_stopped(struct intel_engine_cs *ring)
68{
69 struct drm_i915_private *dev_priv = ring->dev->dev_private;
70 return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
71}
72
73void __intel_ring_advance(struct intel_engine_cs *ring)
74{
75 struct intel_ringbuffer *ringbuf = ring->buffer;
76 ringbuf->tail &= ringbuf->size - 1;
77 if (intel_ring_stopped(ring))
78 return;
79 ring->write_tail(ring, ringbuf->tail);
80}
81
82static int
83gen2_render_ring_flush(struct intel_engine_cs *ring,
84 u32 invalidate_domains,
85 u32 flush_domains)
86{
87 u32 cmd;
88 int ret;
89
90 cmd = MI_FLUSH;
91 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
92 cmd |= MI_NO_WRITE_FLUSH;
93
94 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
95 cmd |= MI_READ_FLUSH;
96
97 ret = intel_ring_begin(ring, 2);
98 if (ret)
99 return ret;
100
101 intel_ring_emit(ring, cmd);
102 intel_ring_emit(ring, MI_NOOP);
103 intel_ring_advance(ring);
104
105 return 0;
106}
107
108static int
109gen4_render_ring_flush(struct intel_engine_cs *ring,
110 u32 invalidate_domains,
111 u32 flush_domains)
112{
113 struct drm_device *dev = ring->dev;
114 u32 cmd;
115 int ret;
116
117 /*
118 * read/write caches:
119 *
120 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
121 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
122 * also flushed at 2d versus 3d pipeline switches.
123 *
124 * read-only caches:
125 *
126 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
127 * MI_READ_FLUSH is set, and is always flushed on 965.
128 *
129 * I915_GEM_DOMAIN_COMMAND may not exist?
130 *
131 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
132 * invalidated when MI_EXE_FLUSH is set.
133 *
134 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
135 * invalidated with every MI_FLUSH.
136 *
137 * TLBs:
138 *
139 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
140 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
141 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
142 * are flushed at any MI_FLUSH.
143 */
144
145 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
146 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
147 cmd &= ~MI_NO_WRITE_FLUSH;
148 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
149 cmd |= MI_EXE_FLUSH;
150
151 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
152 (IS_G4X(dev) || IS_GEN5(dev)))
153 cmd |= MI_INVALIDATE_ISP;
154
155 ret = intel_ring_begin(ring, 2);
156 if (ret)
157 return ret;
158
159 intel_ring_emit(ring, cmd);
160 intel_ring_emit(ring, MI_NOOP);
161 intel_ring_advance(ring);
162
163 return 0;
164}
165
166/**
167 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
168 * implementing two workarounds on gen6. From section 1.4.7.1
169 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
170 *
171 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
172 * produced by non-pipelined state commands), software needs to first
173 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
174 * 0.
175 *
176 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
177 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
178 *
179 * And the workaround for these two requires this workaround first:
180 *
181 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
182 * BEFORE the pipe-control with a post-sync op and no write-cache
183 * flushes.
184 *
185 * And this last workaround is tricky because of the requirements on
186 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
187 * volume 2 part 1:
188 *
189 * "1 of the following must also be set:
190 * - Render Target Cache Flush Enable ([12] of DW1)
191 * - Depth Cache Flush Enable ([0] of DW1)
192 * - Stall at Pixel Scoreboard ([1] of DW1)
193 * - Depth Stall ([13] of DW1)
194 * - Post-Sync Operation ([13] of DW1)
195 * - Notify Enable ([8] of DW1)"
196 *
197 * The cache flushes require the workaround flush that triggered this
198 * one, so we can't use it. Depth stall would trigger the same.
199 * Post-sync nonzero is what triggered this second workaround, so we
200 * can't use that one either. Notify enable is IRQs, which aren't
201 * really our business. That leaves only stall at scoreboard.
202 */
203static int
204intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
205{
206 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
207 int ret;
208
209
210 ret = intel_ring_begin(ring, 6);
211 if (ret)
212 return ret;
213
214 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
215 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
216 PIPE_CONTROL_STALL_AT_SCOREBOARD);
217 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
218 intel_ring_emit(ring, 0); /* low dword */
219 intel_ring_emit(ring, 0); /* high dword */
220 intel_ring_emit(ring, MI_NOOP);
221 intel_ring_advance(ring);
222
223 ret = intel_ring_begin(ring, 6);
224 if (ret)
225 return ret;
226
227 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
228 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
229 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
230 intel_ring_emit(ring, 0);
231 intel_ring_emit(ring, 0);
232 intel_ring_emit(ring, MI_NOOP);
233 intel_ring_advance(ring);
234
235 return 0;
236}
237
238static int
239gen6_render_ring_flush(struct intel_engine_cs *ring,
240 u32 invalidate_domains, u32 flush_domains)
241{
242 u32 flags = 0;
243 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
244 int ret;
245
246 /* Force SNB workarounds for PIPE_CONTROL flushes */
247 ret = intel_emit_post_sync_nonzero_flush(ring);
248 if (ret)
249 return ret;
250
251 /* Just flush everything. Experiments have shown that reducing the
252 * number of bits based on the write domains has little performance
253 * impact.
254 */
255 if (flush_domains) {
256 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
257 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
258 /*
259 * Ensure that any following seqno writes only happen
260 * when the render cache is indeed flushed.
261 */
262 flags |= PIPE_CONTROL_CS_STALL;
263 }
264 if (invalidate_domains) {
265 flags |= PIPE_CONTROL_TLB_INVALIDATE;
266 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
267 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
268 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
269 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
270 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
271 /*
272 * TLB invalidate requires a post-sync write.
273 */
274 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
275 }
276
277 ret = intel_ring_begin(ring, 4);
278 if (ret)
279 return ret;
280
281 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
282 intel_ring_emit(ring, flags);
283 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
284 intel_ring_emit(ring, 0);
285 intel_ring_advance(ring);
286
287 return 0;
288}
289
290static int
291gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
292{
293 int ret;
294
295 ret = intel_ring_begin(ring, 4);
296 if (ret)
297 return ret;
298
299 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
300 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
301 PIPE_CONTROL_STALL_AT_SCOREBOARD);
302 intel_ring_emit(ring, 0);
303 intel_ring_emit(ring, 0);
304 intel_ring_advance(ring);
305
306 return 0;
307}
308
309static int gen7_ring_fbc_flush(struct intel_engine_cs *ring, u32 value)
310{
311 int ret;
312
313 if (!ring->fbc_dirty)
314 return 0;
315
316 ret = intel_ring_begin(ring, 6);
317 if (ret)
318 return ret;
319 /* WaFbcNukeOn3DBlt:ivb/hsw */
320 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
321 intel_ring_emit(ring, MSG_FBC_REND_STATE);
322 intel_ring_emit(ring, value);
323 intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) | MI_SRM_LRM_GLOBAL_GTT);
324 intel_ring_emit(ring, MSG_FBC_REND_STATE);
325 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
326 intel_ring_advance(ring);
327
328 ring->fbc_dirty = false;
329 return 0;
330}
331
332static int
333gen7_render_ring_flush(struct intel_engine_cs *ring,
334 u32 invalidate_domains, u32 flush_domains)
335{
336 u32 flags = 0;
337 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
338 int ret;
339
340 /*
341 * Ensure that any following seqno writes only happen when the render
342 * cache is indeed flushed.
343 *
344 * Workaround: 4th PIPE_CONTROL command (except the ones with only
345 * read-cache invalidate bits set) must have the CS_STALL bit set. We
346 * don't try to be clever and just set it unconditionally.
347 */
348 flags |= PIPE_CONTROL_CS_STALL;
349
350 /* Just flush everything. Experiments have shown that reducing the
351 * number of bits based on the write domains has little performance
352 * impact.
353 */
354 if (flush_domains) {
355 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
356 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
357 }
358 if (invalidate_domains) {
359 flags |= PIPE_CONTROL_TLB_INVALIDATE;
360 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
361 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
362 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
363 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
364 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
365 /*
366 * TLB invalidate requires a post-sync write.
367 */
368 flags |= PIPE_CONTROL_QW_WRITE;
369 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
370
371 /* Workaround: we must issue a pipe_control with CS-stall bit
372 * set before a pipe_control command that has the state cache
373 * invalidate bit set. */
374 gen7_render_ring_cs_stall_wa(ring);
375 }
376
377 ret = intel_ring_begin(ring, 4);
378 if (ret)
379 return ret;
380
381 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
382 intel_ring_emit(ring, flags);
383 intel_ring_emit(ring, scratch_addr);
384 intel_ring_emit(ring, 0);
385 intel_ring_advance(ring);
386
387 if (!invalidate_domains && flush_domains)
388 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
389
390 return 0;
391}
392
393static int
394gen8_emit_pipe_control(struct intel_engine_cs *ring,
395 u32 flags, u32 scratch_addr)
396{
397 int ret;
398
399 ret = intel_ring_begin(ring, 6);
400 if (ret)
401 return ret;
402
403 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
404 intel_ring_emit(ring, flags);
405 intel_ring_emit(ring, scratch_addr);
406 intel_ring_emit(ring, 0);
407 intel_ring_emit(ring, 0);
408 intel_ring_emit(ring, 0);
409 intel_ring_advance(ring);
410
411 return 0;
412}
413
414static int
415gen8_render_ring_flush(struct intel_engine_cs *ring,
416 u32 invalidate_domains, u32 flush_domains)
417{
418 u32 flags = 0;
419 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
420 int ret;
421
422 flags |= PIPE_CONTROL_CS_STALL;
423
424 if (flush_domains) {
425 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
426 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
427 }
428 if (invalidate_domains) {
429 flags |= PIPE_CONTROL_TLB_INVALIDATE;
430 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
431 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
432 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
433 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
434 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
435 flags |= PIPE_CONTROL_QW_WRITE;
436 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
437
438 /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
439 ret = gen8_emit_pipe_control(ring,
440 PIPE_CONTROL_CS_STALL |
441 PIPE_CONTROL_STALL_AT_SCOREBOARD,
442 0);
443 if (ret)
444 return ret;
445 }
446
447 ret = gen8_emit_pipe_control(ring, flags, scratch_addr);
448 if (ret)
449 return ret;
450
451 if (!invalidate_domains && flush_domains)
452 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
453
454 return 0;
455}
456
457static void ring_write_tail(struct intel_engine_cs *ring,
458 u32 value)
459{
460 struct drm_i915_private *dev_priv = ring->dev->dev_private;
461 I915_WRITE_TAIL(ring, value);
462}
463
464u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
465{
466 struct drm_i915_private *dev_priv = ring->dev->dev_private;
467 u64 acthd;
468
469 if (INTEL_INFO(ring->dev)->gen >= 8)
470 acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
471 RING_ACTHD_UDW(ring->mmio_base));
472 else if (INTEL_INFO(ring->dev)->gen >= 4)
473 acthd = I915_READ(RING_ACTHD(ring->mmio_base));
474 else
475 acthd = I915_READ(ACTHD);
476
477 return acthd;
478}
479
480static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
481{
482 struct drm_i915_private *dev_priv = ring->dev->dev_private;
483 u32 addr;
484
485 addr = dev_priv->status_page_dmah->busaddr;
486 if (INTEL_INFO(ring->dev)->gen >= 4)
487 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
488 I915_WRITE(HWS_PGA, addr);
489}
490
491static bool stop_ring(struct intel_engine_cs *ring)
492{
493 struct drm_i915_private *dev_priv = to_i915(ring->dev);
494
495 if (!IS_GEN2(ring->dev)) {
496 I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
497 if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
498 DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
499 /* Sometimes we observe that the idle flag is not
500 * set even though the ring is empty. So double
501 * check before giving up.
502 */
503 if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
504 return false;
505 }
506 }
507
508 I915_WRITE_CTL(ring, 0);
509 I915_WRITE_HEAD(ring, 0);
510 ring->write_tail(ring, 0);
511
512 if (!IS_GEN2(ring->dev)) {
513 (void)I915_READ_CTL(ring);
514 I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
515 }
516
517 return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
518}
519
520static int init_ring_common(struct intel_engine_cs *ring)
521{
522 struct drm_device *dev = ring->dev;
523 struct drm_i915_private *dev_priv = dev->dev_private;
524 struct intel_ringbuffer *ringbuf = ring->buffer;
525 struct drm_i915_gem_object *obj = ringbuf->obj;
526 int ret = 0;
527
528 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
529
530 if (!stop_ring(ring)) {
531 /* G45 ring initialization often fails to reset head to zero */
532 DRM_DEBUG_KMS("%s head not reset to zero "
533 "ctl %08x head %08x tail %08x start %08x\n",
534 ring->name,
535 I915_READ_CTL(ring),
536 I915_READ_HEAD(ring),
537 I915_READ_TAIL(ring),
538 I915_READ_START(ring));
539
540 if (!stop_ring(ring)) {
541 DRM_ERROR("failed to set %s head to zero "
542 "ctl %08x head %08x tail %08x start %08x\n",
543 ring->name,
544 I915_READ_CTL(ring),
545 I915_READ_HEAD(ring),
546 I915_READ_TAIL(ring),
547 I915_READ_START(ring));
548 ret = -EIO;
549 goto out;
550 }
551 }
552
553 if (I915_NEED_GFX_HWS(dev))
554 intel_ring_setup_status_page(ring);
555 else
556 ring_setup_phys_status_page(ring);
557
558 /* Enforce ordering by reading HEAD register back */
559 I915_READ_HEAD(ring);
560
561 /* Initialize the ring. This must happen _after_ we've cleared the ring
562 * registers with the above sequence (the readback of the HEAD registers
563 * also enforces ordering), otherwise the hw might lose the new ring
564 * register values. */
565 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
566
567 /* WaClearRingBufHeadRegAtInit:ctg,elk */
568 if (I915_READ_HEAD(ring))
569 DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
570 ring->name, I915_READ_HEAD(ring));
571 I915_WRITE_HEAD(ring, 0);
572 (void)I915_READ_HEAD(ring);
573
574 I915_WRITE_CTL(ring,
575 ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
576 | RING_VALID);
577
578 /* If the head is still not zero, the ring is dead */
579 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
580 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
581 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
582 DRM_ERROR("%s initialization failed "
583 "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
584 ring->name,
585 I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
586 I915_READ_HEAD(ring), I915_READ_TAIL(ring),
587 I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
588 ret = -EIO;
589 goto out;
590 }
591
592 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
593 i915_kernel_lost_context(ring->dev);
594 else {
595 ringbuf->head = I915_READ_HEAD(ring);
596 ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
597 ringbuf->space = intel_ring_space(ringbuf);
598 ringbuf->last_retired_head = -1;
599 }
600
601 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
602
603out:
604 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
605
606 return ret;
607}
608
609void
610intel_fini_pipe_control(struct intel_engine_cs *ring)
611{
612 struct drm_device *dev = ring->dev;
613
614 if (ring->scratch.obj == NULL)
615 return;
616
617 if (INTEL_INFO(dev)->gen >= 5) {
618 kunmap(sg_page(ring->scratch.obj->pages->sgl));
619 i915_gem_object_ggtt_unpin(ring->scratch.obj);
620 }
621
622 drm_gem_object_unreference(&ring->scratch.obj->base);
623 ring->scratch.obj = NULL;
624}
625
626int
627intel_init_pipe_control(struct intel_engine_cs *ring)
628{
629 int ret;
630
631 if (ring->scratch.obj)
632 return 0;
633
634 ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
635 if (ring->scratch.obj == NULL) {
636 DRM_ERROR("Failed to allocate seqno page\n");
637 ret = -ENOMEM;
638 goto err;
639 }
640
641 ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
642 if (ret)
643 goto err_unref;
644
645 ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
646 if (ret)
647 goto err_unref;
648
649 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
650 ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
651 if (ring->scratch.cpu_page == NULL) {
652 ret = -ENOMEM;
653 goto err_unpin;
654 }
655
656 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
657 ring->name, ring->scratch.gtt_offset);
658 return 0;
659
660err_unpin:
661 i915_gem_object_ggtt_unpin(ring->scratch.obj);
662err_unref:
663 drm_gem_object_unreference(&ring->scratch.obj->base);
664err:
665 return ret;
666}
667
668static inline void intel_ring_emit_wa(struct intel_engine_cs *ring,
669 u32 addr, u32 value)
670{
671 struct drm_device *dev = ring->dev;
672 struct drm_i915_private *dev_priv = dev->dev_private;
673
674 if (WARN_ON(dev_priv->num_wa_regs >= I915_MAX_WA_REGS))
675 return;
676
677 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
678 intel_ring_emit(ring, addr);
679 intel_ring_emit(ring, value);
680
681 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].addr = addr;
682 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].mask = value & 0xFFFF;
683 /* value is updated with the status of remaining bits of this
684 * register when it is read from debugfs file
685 */
686 dev_priv->intel_wa_regs[dev_priv->num_wa_regs].value = value;
687 dev_priv->num_wa_regs++;
688
689 return;
690}
691
692static int bdw_init_workarounds(struct intel_engine_cs *ring)
693{
694 int ret;
695 struct drm_device *dev = ring->dev;
696 struct drm_i915_private *dev_priv = dev->dev_private;
697
698 /*
699 * workarounds applied in this fn are part of register state context,
700 * they need to be re-initialized followed by gpu reset, suspend/resume,
701 * module reload.
702 */
703 dev_priv->num_wa_regs = 0;
704 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
705
706 /*
707 * update the number of dwords required based on the
708 * actual number of workarounds applied
709 */
710 ret = intel_ring_begin(ring, 18);
711 if (ret)
712 return ret;
713
714 /* WaDisablePartialInstShootdown:bdw */
715 /* WaDisableThreadStallDopClockGating:bdw */
716 /* FIXME: Unclear whether we really need this on production bdw. */
717 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
718 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE
719 | STALL_DOP_GATING_DISABLE));
720
721 /* WaDisableDopClockGating:bdw May not be needed for production */
722 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
723 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
724
725 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
726 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
727
728 /* Use Force Non-Coherent whenever executing a 3D context. This is a
729 * workaround for for a possible hang in the unlikely event a TLB
730 * invalidation occurs during a PSD flush.
731 */
732 /* WaDisableFenceDestinationToSLM:bdw (GT3 pre-production) */
733 intel_ring_emit_wa(ring, HDC_CHICKEN0,
734 _MASKED_BIT_ENABLE(HDC_FORCE_NON_COHERENT |
735 (IS_BDW_GT3(dev) ?
736 HDC_FENCE_DEST_SLM_DISABLE : 0)
737 ));
738
739 /* Wa4x4STCOptimizationDisable:bdw */
740 intel_ring_emit_wa(ring, CACHE_MODE_1,
741 _MASKED_BIT_ENABLE(GEN8_4x4_STC_OPTIMIZATION_DISABLE));
742
743 /*
744 * BSpec recommends 8x4 when MSAA is used,
745 * however in practice 16x4 seems fastest.
746 *
747 * Note that PS/WM thread counts depend on the WIZ hashing
748 * disable bit, which we don't touch here, but it's good
749 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
750 */
751 intel_ring_emit_wa(ring, GEN7_GT_MODE,
752 GEN6_WIZ_HASHING_MASK | GEN6_WIZ_HASHING_16x4);
753
754 intel_ring_advance(ring);
755
756 DRM_DEBUG_DRIVER("Number of Workarounds applied: %d\n",
757 dev_priv->num_wa_regs);
758
759 return 0;
760}
761
762static int chv_init_workarounds(struct intel_engine_cs *ring)
763{
764 int ret;
765 struct drm_device *dev = ring->dev;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767
768 /*
769 * workarounds applied in this fn are part of register state context,
770 * they need to be re-initialized followed by gpu reset, suspend/resume,
771 * module reload.
772 */
773 dev_priv->num_wa_regs = 0;
774 memset(dev_priv->intel_wa_regs, 0, sizeof(dev_priv->intel_wa_regs));
775
776 ret = intel_ring_begin(ring, 12);
777 if (ret)
778 return ret;
779
780 /* WaDisablePartialInstShootdown:chv */
781 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
782 _MASKED_BIT_ENABLE(PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE));
783
784 /* WaDisableThreadStallDopClockGating:chv */
785 intel_ring_emit_wa(ring, GEN8_ROW_CHICKEN,
786 _MASKED_BIT_ENABLE(STALL_DOP_GATING_DISABLE));
787
788 /* WaDisableDopClockGating:chv (pre-production hw) */
789 intel_ring_emit_wa(ring, GEN7_ROW_CHICKEN2,
790 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
791
792 /* WaDisableSamplerPowerBypass:chv (pre-production hw) */
793 intel_ring_emit_wa(ring, HALF_SLICE_CHICKEN3,
794 _MASKED_BIT_ENABLE(GEN8_SAMPLER_POWER_BYPASS_DIS));
795
796 intel_ring_advance(ring);
797
798 return 0;
799}
800
801static int init_render_ring(struct intel_engine_cs *ring)
802{
803 struct drm_device *dev = ring->dev;
804 struct drm_i915_private *dev_priv = dev->dev_private;
805 int ret = init_ring_common(ring);
806 if (ret)
807 return ret;
808
809 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
810 if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
811 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
812
813 /* We need to disable the AsyncFlip performance optimisations in order
814 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
815 * programmed to '1' on all products.
816 *
817 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
818 */
819 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
820 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
821
822 /* Required for the hardware to program scanline values for waiting */
823 /* WaEnableFlushTlbInvalidationMode:snb */
824 if (INTEL_INFO(dev)->gen == 6)
825 I915_WRITE(GFX_MODE,
826 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
827
828 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
829 if (IS_GEN7(dev))
830 I915_WRITE(GFX_MODE_GEN7,
831 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
832 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
833
834 if (INTEL_INFO(dev)->gen >= 5) {
835 ret = intel_init_pipe_control(ring);
836 if (ret)
837 return ret;
838 }
839
840 if (IS_GEN6(dev)) {
841 /* From the Sandybridge PRM, volume 1 part 3, page 24:
842 * "If this bit is set, STCunit will have LRA as replacement
843 * policy. [...] This bit must be reset. LRA replacement
844 * policy is not supported."
845 */
846 I915_WRITE(CACHE_MODE_0,
847 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
848 }
849
850 if (INTEL_INFO(dev)->gen >= 6)
851 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
852
853 if (HAS_L3_DPF(dev))
854 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
855
856 return ret;
857}
858
859static void render_ring_cleanup(struct intel_engine_cs *ring)
860{
861 struct drm_device *dev = ring->dev;
862 struct drm_i915_private *dev_priv = dev->dev_private;
863
864 if (dev_priv->semaphore_obj) {
865 i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
866 drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
867 dev_priv->semaphore_obj = NULL;
868 }
869
870 intel_fini_pipe_control(ring);
871}
872
873static int gen8_rcs_signal(struct intel_engine_cs *signaller,
874 unsigned int num_dwords)
875{
876#define MBOX_UPDATE_DWORDS 8
877 struct drm_device *dev = signaller->dev;
878 struct drm_i915_private *dev_priv = dev->dev_private;
879 struct intel_engine_cs *waiter;
880 int i, ret, num_rings;
881
882 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
883 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
884#undef MBOX_UPDATE_DWORDS
885
886 ret = intel_ring_begin(signaller, num_dwords);
887 if (ret)
888 return ret;
889
890 for_each_ring(waiter, dev_priv, i) {
891 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
892 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
893 continue;
894
895 intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
896 intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
897 PIPE_CONTROL_QW_WRITE |
898 PIPE_CONTROL_FLUSH_ENABLE);
899 intel_ring_emit(signaller, lower_32_bits(gtt_offset));
900 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
901 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
902 intel_ring_emit(signaller, 0);
903 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
904 MI_SEMAPHORE_TARGET(waiter->id));
905 intel_ring_emit(signaller, 0);
906 }
907
908 return 0;
909}
910
911static int gen8_xcs_signal(struct intel_engine_cs *signaller,
912 unsigned int num_dwords)
913{
914#define MBOX_UPDATE_DWORDS 6
915 struct drm_device *dev = signaller->dev;
916 struct drm_i915_private *dev_priv = dev->dev_private;
917 struct intel_engine_cs *waiter;
918 int i, ret, num_rings;
919
920 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
921 num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
922#undef MBOX_UPDATE_DWORDS
923
924 ret = intel_ring_begin(signaller, num_dwords);
925 if (ret)
926 return ret;
927
928 for_each_ring(waiter, dev_priv, i) {
929 u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
930 if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
931 continue;
932
933 intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
934 MI_FLUSH_DW_OP_STOREDW);
935 intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
936 MI_FLUSH_DW_USE_GTT);
937 intel_ring_emit(signaller, upper_32_bits(gtt_offset));
938 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
939 intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
940 MI_SEMAPHORE_TARGET(waiter->id));
941 intel_ring_emit(signaller, 0);
942 }
943
944 return 0;
945}
946
947static int gen6_signal(struct intel_engine_cs *signaller,
948 unsigned int num_dwords)
949{
950 struct drm_device *dev = signaller->dev;
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 struct intel_engine_cs *useless;
953 int i, ret, num_rings;
954
955#define MBOX_UPDATE_DWORDS 3
956 num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
957 num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
958#undef MBOX_UPDATE_DWORDS
959
960 ret = intel_ring_begin(signaller, num_dwords);
961 if (ret)
962 return ret;
963
964 for_each_ring(useless, dev_priv, i) {
965 u32 mbox_reg = signaller->semaphore.mbox.signal[i];
966 if (mbox_reg != GEN6_NOSYNC) {
967 intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
968 intel_ring_emit(signaller, mbox_reg);
969 intel_ring_emit(signaller, signaller->outstanding_lazy_seqno);
970 }
971 }
972
973 /* If num_dwords was rounded, make sure the tail pointer is correct */
974 if (num_rings % 2 == 0)
975 intel_ring_emit(signaller, MI_NOOP);
976
977 return 0;
978}
979
980/**
981 * gen6_add_request - Update the semaphore mailbox registers
982 *
983 * @ring - ring that is adding a request
984 * @seqno - return seqno stuck into the ring
985 *
986 * Update the mailbox registers in the *other* rings with the current seqno.
987 * This acts like a signal in the canonical semaphore.
988 */
989static int
990gen6_add_request(struct intel_engine_cs *ring)
991{
992 int ret;
993
994 if (ring->semaphore.signal)
995 ret = ring->semaphore.signal(ring, 4);
996 else
997 ret = intel_ring_begin(ring, 4);
998
999 if (ret)
1000 return ret;
1001
1002 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1003 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1004 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1005 intel_ring_emit(ring, MI_USER_INTERRUPT);
1006 __intel_ring_advance(ring);
1007
1008 return 0;
1009}
1010
1011static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1012 u32 seqno)
1013{
1014 struct drm_i915_private *dev_priv = dev->dev_private;
1015 return dev_priv->last_seqno < seqno;
1016}
1017
1018/**
1019 * intel_ring_sync - sync the waiter to the signaller on seqno
1020 *
1021 * @waiter - ring that is waiting
1022 * @signaller - ring which has, or will signal
1023 * @seqno - seqno which the waiter will block on
1024 */
1025
1026static int
1027gen8_ring_sync(struct intel_engine_cs *waiter,
1028 struct intel_engine_cs *signaller,
1029 u32 seqno)
1030{
1031 struct drm_i915_private *dev_priv = waiter->dev->dev_private;
1032 int ret;
1033
1034 ret = intel_ring_begin(waiter, 4);
1035 if (ret)
1036 return ret;
1037
1038 intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
1039 MI_SEMAPHORE_GLOBAL_GTT |
1040 MI_SEMAPHORE_POLL |
1041 MI_SEMAPHORE_SAD_GTE_SDD);
1042 intel_ring_emit(waiter, seqno);
1043 intel_ring_emit(waiter,
1044 lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1045 intel_ring_emit(waiter,
1046 upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
1047 intel_ring_advance(waiter);
1048 return 0;
1049}
1050
1051static int
1052gen6_ring_sync(struct intel_engine_cs *waiter,
1053 struct intel_engine_cs *signaller,
1054 u32 seqno)
1055{
1056 u32 dw1 = MI_SEMAPHORE_MBOX |
1057 MI_SEMAPHORE_COMPARE |
1058 MI_SEMAPHORE_REGISTER;
1059 u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
1060 int ret;
1061
1062 /* Throughout all of the GEM code, seqno passed implies our current
1063 * seqno is >= the last seqno executed. However for hardware the
1064 * comparison is strictly greater than.
1065 */
1066 seqno -= 1;
1067
1068 WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
1069
1070 ret = intel_ring_begin(waiter, 4);
1071 if (ret)
1072 return ret;
1073
1074 /* If seqno wrap happened, omit the wait with no-ops */
1075 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
1076 intel_ring_emit(waiter, dw1 | wait_mbox);
1077 intel_ring_emit(waiter, seqno);
1078 intel_ring_emit(waiter, 0);
1079 intel_ring_emit(waiter, MI_NOOP);
1080 } else {
1081 intel_ring_emit(waiter, MI_NOOP);
1082 intel_ring_emit(waiter, MI_NOOP);
1083 intel_ring_emit(waiter, MI_NOOP);
1084 intel_ring_emit(waiter, MI_NOOP);
1085 }
1086 intel_ring_advance(waiter);
1087
1088 return 0;
1089}
1090
1091#define PIPE_CONTROL_FLUSH(ring__, addr__) \
1092do { \
1093 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1094 PIPE_CONTROL_DEPTH_STALL); \
1095 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1096 intel_ring_emit(ring__, 0); \
1097 intel_ring_emit(ring__, 0); \
1098} while (0)
1099
1100static int
1101pc_render_add_request(struct intel_engine_cs *ring)
1102{
1103 u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1104 int ret;
1105
1106 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1107 * incoherent with writes to memory, i.e. completely fubar,
1108 * so we need to use PIPE_NOTIFY instead.
1109 *
1110 * However, we also need to workaround the qword write
1111 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1112 * memory before requesting an interrupt.
1113 */
1114 ret = intel_ring_begin(ring, 32);
1115 if (ret)
1116 return ret;
1117
1118 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1119 PIPE_CONTROL_WRITE_FLUSH |
1120 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1121 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1122 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1123 intel_ring_emit(ring, 0);
1124 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1125 scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
1126 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1127 scratch_addr += 2 * CACHELINE_BYTES;
1128 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1129 scratch_addr += 2 * CACHELINE_BYTES;
1130 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1131 scratch_addr += 2 * CACHELINE_BYTES;
1132 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1133 scratch_addr += 2 * CACHELINE_BYTES;
1134 PIPE_CONTROL_FLUSH(ring, scratch_addr);
1135
1136 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1137 PIPE_CONTROL_WRITE_FLUSH |
1138 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1139 PIPE_CONTROL_NOTIFY);
1140 intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1141 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1142 intel_ring_emit(ring, 0);
1143 __intel_ring_advance(ring);
1144
1145 return 0;
1146}
1147
1148static u32
1149gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1150{
1151 /* Workaround to force correct ordering between irq and seqno writes on
1152 * ivb (and maybe also on snb) by reading from a CS register (like
1153 * ACTHD) before reading the status page. */
1154 if (!lazy_coherency) {
1155 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1156 POSTING_READ(RING_ACTHD(ring->mmio_base));
1157 }
1158
1159 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1160}
1161
1162static u32
1163ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1164{
1165 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1166}
1167
1168static void
1169ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1170{
1171 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1172}
1173
1174static u32
1175pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1176{
1177 return ring->scratch.cpu_page[0];
1178}
1179
1180static void
1181pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1182{
1183 ring->scratch.cpu_page[0] = seqno;
1184}
1185
1186static bool
1187gen5_ring_get_irq(struct intel_engine_cs *ring)
1188{
1189 struct drm_device *dev = ring->dev;
1190 struct drm_i915_private *dev_priv = dev->dev_private;
1191 unsigned long flags;
1192
1193 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1194 return false;
1195
1196 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1197 if (ring->irq_refcount++ == 0)
1198 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1199 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1200
1201 return true;
1202}
1203
1204static void
1205gen5_ring_put_irq(struct intel_engine_cs *ring)
1206{
1207 struct drm_device *dev = ring->dev;
1208 struct drm_i915_private *dev_priv = dev->dev_private;
1209 unsigned long flags;
1210
1211 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1212 if (--ring->irq_refcount == 0)
1213 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1214 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1215}
1216
1217static bool
1218i9xx_ring_get_irq(struct intel_engine_cs *ring)
1219{
1220 struct drm_device *dev = ring->dev;
1221 struct drm_i915_private *dev_priv = dev->dev_private;
1222 unsigned long flags;
1223
1224 if (!intel_irqs_enabled(dev_priv))
1225 return false;
1226
1227 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1228 if (ring->irq_refcount++ == 0) {
1229 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1230 I915_WRITE(IMR, dev_priv->irq_mask);
1231 POSTING_READ(IMR);
1232 }
1233 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1234
1235 return true;
1236}
1237
1238static void
1239i9xx_ring_put_irq(struct intel_engine_cs *ring)
1240{
1241 struct drm_device *dev = ring->dev;
1242 struct drm_i915_private *dev_priv = dev->dev_private;
1243 unsigned long flags;
1244
1245 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1246 if (--ring->irq_refcount == 0) {
1247 dev_priv->irq_mask |= ring->irq_enable_mask;
1248 I915_WRITE(IMR, dev_priv->irq_mask);
1249 POSTING_READ(IMR);
1250 }
1251 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1252}
1253
1254static bool
1255i8xx_ring_get_irq(struct intel_engine_cs *ring)
1256{
1257 struct drm_device *dev = ring->dev;
1258 struct drm_i915_private *dev_priv = dev->dev_private;
1259 unsigned long flags;
1260
1261 if (!intel_irqs_enabled(dev_priv))
1262 return false;
1263
1264 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1265 if (ring->irq_refcount++ == 0) {
1266 dev_priv->irq_mask &= ~ring->irq_enable_mask;
1267 I915_WRITE16(IMR, dev_priv->irq_mask);
1268 POSTING_READ16(IMR);
1269 }
1270 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1271
1272 return true;
1273}
1274
1275static void
1276i8xx_ring_put_irq(struct intel_engine_cs *ring)
1277{
1278 struct drm_device *dev = ring->dev;
1279 struct drm_i915_private *dev_priv = dev->dev_private;
1280 unsigned long flags;
1281
1282 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1283 if (--ring->irq_refcount == 0) {
1284 dev_priv->irq_mask |= ring->irq_enable_mask;
1285 I915_WRITE16(IMR, dev_priv->irq_mask);
1286 POSTING_READ16(IMR);
1287 }
1288 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1289}
1290
1291void intel_ring_setup_status_page(struct intel_engine_cs *ring)
1292{
1293 struct drm_device *dev = ring->dev;
1294 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1295 u32 mmio = 0;
1296
1297 /* The ring status page addresses are no longer next to the rest of
1298 * the ring registers as of gen7.
1299 */
1300 if (IS_GEN7(dev)) {
1301 switch (ring->id) {
1302 case RCS:
1303 mmio = RENDER_HWS_PGA_GEN7;
1304 break;
1305 case BCS:
1306 mmio = BLT_HWS_PGA_GEN7;
1307 break;
1308 /*
1309 * VCS2 actually doesn't exist on Gen7. Only shut up
1310 * gcc switch check warning
1311 */
1312 case VCS2:
1313 case VCS:
1314 mmio = BSD_HWS_PGA_GEN7;
1315 break;
1316 case VECS:
1317 mmio = VEBOX_HWS_PGA_GEN7;
1318 break;
1319 }
1320 } else if (IS_GEN6(ring->dev)) {
1321 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1322 } else {
1323 /* XXX: gen8 returns to sanity */
1324 mmio = RING_HWS_PGA(ring->mmio_base);
1325 }
1326
1327 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1328 POSTING_READ(mmio);
1329
1330 /*
1331 * Flush the TLB for this page
1332 *
1333 * FIXME: These two bits have disappeared on gen8, so a question
1334 * arises: do we still need this and if so how should we go about
1335 * invalidating the TLB?
1336 */
1337 if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
1338 u32 reg = RING_INSTPM(ring->mmio_base);
1339
1340 /* ring should be idle before issuing a sync flush*/
1341 WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1342
1343 I915_WRITE(reg,
1344 _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1345 INSTPM_SYNC_FLUSH));
1346 if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1347 1000))
1348 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1349 ring->name);
1350 }
1351}
1352
1353static int
1354bsd_ring_flush(struct intel_engine_cs *ring,
1355 u32 invalidate_domains,
1356 u32 flush_domains)
1357{
1358 int ret;
1359
1360 ret = intel_ring_begin(ring, 2);
1361 if (ret)
1362 return ret;
1363
1364 intel_ring_emit(ring, MI_FLUSH);
1365 intel_ring_emit(ring, MI_NOOP);
1366 intel_ring_advance(ring);
1367 return 0;
1368}
1369
1370static int
1371i9xx_add_request(struct intel_engine_cs *ring)
1372{
1373 int ret;
1374
1375 ret = intel_ring_begin(ring, 4);
1376 if (ret)
1377 return ret;
1378
1379 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1380 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1381 intel_ring_emit(ring, ring->outstanding_lazy_seqno);
1382 intel_ring_emit(ring, MI_USER_INTERRUPT);
1383 __intel_ring_advance(ring);
1384
1385 return 0;
1386}
1387
1388static bool
1389gen6_ring_get_irq(struct intel_engine_cs *ring)
1390{
1391 struct drm_device *dev = ring->dev;
1392 struct drm_i915_private *dev_priv = dev->dev_private;
1393 unsigned long flags;
1394
1395 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1396 return false;
1397
1398 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1399 if (ring->irq_refcount++ == 0) {
1400 if (HAS_L3_DPF(dev) && ring->id == RCS)
1401 I915_WRITE_IMR(ring,
1402 ~(ring->irq_enable_mask |
1403 GT_PARITY_ERROR(dev)));
1404 else
1405 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1406 gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
1407 }
1408 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1409
1410 return true;
1411}
1412
1413static void
1414gen6_ring_put_irq(struct intel_engine_cs *ring)
1415{
1416 struct drm_device *dev = ring->dev;
1417 struct drm_i915_private *dev_priv = dev->dev_private;
1418 unsigned long flags;
1419
1420 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1421 if (--ring->irq_refcount == 0) {
1422 if (HAS_L3_DPF(dev) && ring->id == RCS)
1423 I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
1424 else
1425 I915_WRITE_IMR(ring, ~0);
1426 gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
1427 }
1428 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1429}
1430
1431static bool
1432hsw_vebox_get_irq(struct intel_engine_cs *ring)
1433{
1434 struct drm_device *dev = ring->dev;
1435 struct drm_i915_private *dev_priv = dev->dev_private;
1436 unsigned long flags;
1437
1438 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1439 return false;
1440
1441 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1442 if (ring->irq_refcount++ == 0) {
1443 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1444 gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
1445 }
1446 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1447
1448 return true;
1449}
1450
1451static void
1452hsw_vebox_put_irq(struct intel_engine_cs *ring)
1453{
1454 struct drm_device *dev = ring->dev;
1455 struct drm_i915_private *dev_priv = dev->dev_private;
1456 unsigned long flags;
1457
1458 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1459 if (--ring->irq_refcount == 0) {
1460 I915_WRITE_IMR(ring, ~0);
1461 gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
1462 }
1463 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1464}
1465
1466static bool
1467gen8_ring_get_irq(struct intel_engine_cs *ring)
1468{
1469 struct drm_device *dev = ring->dev;
1470 struct drm_i915_private *dev_priv = dev->dev_private;
1471 unsigned long flags;
1472
1473 if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1474 return false;
1475
1476 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1477 if (ring->irq_refcount++ == 0) {
1478 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1479 I915_WRITE_IMR(ring,
1480 ~(ring->irq_enable_mask |
1481 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1482 } else {
1483 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1484 }
1485 POSTING_READ(RING_IMR(ring->mmio_base));
1486 }
1487 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1488
1489 return true;
1490}
1491
1492static void
1493gen8_ring_put_irq(struct intel_engine_cs *ring)
1494{
1495 struct drm_device *dev = ring->dev;
1496 struct drm_i915_private *dev_priv = dev->dev_private;
1497 unsigned long flags;
1498
1499 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1500 if (--ring->irq_refcount == 0) {
1501 if (HAS_L3_DPF(dev) && ring->id == RCS) {
1502 I915_WRITE_IMR(ring,
1503 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1504 } else {
1505 I915_WRITE_IMR(ring, ~0);
1506 }
1507 POSTING_READ(RING_IMR(ring->mmio_base));
1508 }
1509 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1510}
1511
1512static int
1513i965_dispatch_execbuffer(struct intel_engine_cs *ring,
1514 u64 offset, u32 length,
1515 unsigned flags)
1516{
1517 int ret;
1518
1519 ret = intel_ring_begin(ring, 2);
1520 if (ret)
1521 return ret;
1522
1523 intel_ring_emit(ring,
1524 MI_BATCH_BUFFER_START |
1525 MI_BATCH_GTT |
1526 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1527 intel_ring_emit(ring, offset);
1528 intel_ring_advance(ring);
1529
1530 return 0;
1531}
1532
1533/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1534#define I830_BATCH_LIMIT (256*1024)
1535#define I830_TLB_ENTRIES (2)
1536#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1537static int
1538i830_dispatch_execbuffer(struct intel_engine_cs *ring,
1539 u64 offset, u32 len,
1540 unsigned flags)
1541{
1542 u32 cs_offset = ring->scratch.gtt_offset;
1543 int ret;
1544
1545 ret = intel_ring_begin(ring, 6);
1546 if (ret)
1547 return ret;
1548
1549 /* Evict the invalid PTE TLBs */
1550 intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
1551 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
1552 intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
1553 intel_ring_emit(ring, cs_offset);
1554 intel_ring_emit(ring, 0xdeadbeef);
1555 intel_ring_emit(ring, MI_NOOP);
1556 intel_ring_advance(ring);
1557
1558 if ((flags & I915_DISPATCH_PINNED) == 0) {
1559 if (len > I830_BATCH_LIMIT)
1560 return -ENOSPC;
1561
1562 ret = intel_ring_begin(ring, 6 + 2);
1563 if (ret)
1564 return ret;
1565
1566 /* Blit the batch (which has now all relocs applied) to the
1567 * stable batch scratch bo area (so that the CS never
1568 * stumbles over its tlb invalidation bug) ...
1569 */
1570 intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
1571 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
1572 intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 1024);
1573 intel_ring_emit(ring, cs_offset);
1574 intel_ring_emit(ring, 4096);
1575 intel_ring_emit(ring, offset);
1576
1577 intel_ring_emit(ring, MI_FLUSH);
1578 intel_ring_emit(ring, MI_NOOP);
1579 intel_ring_advance(ring);
1580
1581 /* ... and execute it. */
1582 offset = cs_offset;
1583 }
1584
1585 ret = intel_ring_begin(ring, 4);
1586 if (ret)
1587 return ret;
1588
1589 intel_ring_emit(ring, MI_BATCH_BUFFER);
1590 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1591 intel_ring_emit(ring, offset + len - 8);
1592 intel_ring_emit(ring, MI_NOOP);
1593 intel_ring_advance(ring);
1594
1595 return 0;
1596}
1597
1598static int
1599i915_dispatch_execbuffer(struct intel_engine_cs *ring,
1600 u64 offset, u32 len,
1601 unsigned flags)
1602{
1603 int ret;
1604
1605 ret = intel_ring_begin(ring, 2);
1606 if (ret)
1607 return ret;
1608
1609 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1610 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1611 intel_ring_advance(ring);
1612
1613 return 0;
1614}
1615
1616static void cleanup_status_page(struct intel_engine_cs *ring)
1617{
1618 struct drm_i915_gem_object *obj;
1619
1620 obj = ring->status_page.obj;
1621 if (obj == NULL)
1622 return;
1623
1624 kunmap(sg_page(obj->pages->sgl));
1625 i915_gem_object_ggtt_unpin(obj);
1626 drm_gem_object_unreference(&obj->base);
1627 ring->status_page.obj = NULL;
1628}
1629
1630static int init_status_page(struct intel_engine_cs *ring)
1631{
1632 struct drm_i915_gem_object *obj;
1633
1634 if ((obj = ring->status_page.obj) == NULL) {
1635 unsigned flags;
1636 int ret;
1637
1638 obj = i915_gem_alloc_object(ring->dev, 4096);
1639 if (obj == NULL) {
1640 DRM_ERROR("Failed to allocate status page\n");
1641 return -ENOMEM;
1642 }
1643
1644 ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1645 if (ret)
1646 goto err_unref;
1647
1648 flags = 0;
1649 if (!HAS_LLC(ring->dev))
1650 /* On g33, we cannot place HWS above 256MiB, so
1651 * restrict its pinning to the low mappable arena.
1652 * Though this restriction is not documented for
1653 * gen4, gen5, or byt, they also behave similarly
1654 * and hang if the HWS is placed at the top of the
1655 * GTT. To generalise, it appears that all !llc
1656 * platforms have issues with us placing the HWS
1657 * above the mappable region (even though we never
1658 * actualy map it).
1659 */
1660 flags |= PIN_MAPPABLE;
1661 ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
1662 if (ret) {
1663err_unref:
1664 drm_gem_object_unreference(&obj->base);
1665 return ret;
1666 }
1667
1668 ring->status_page.obj = obj;
1669 }
1670
1671 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1672 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1673 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1674
1675 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1676 ring->name, ring->status_page.gfx_addr);
1677
1678 return 0;
1679}
1680
1681static int init_phys_status_page(struct intel_engine_cs *ring)
1682{
1683 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1684
1685 if (!dev_priv->status_page_dmah) {
1686 dev_priv->status_page_dmah =
1687 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1688 if (!dev_priv->status_page_dmah)
1689 return -ENOMEM;
1690 }
1691
1692 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1693 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1694
1695 return 0;
1696}
1697
1698void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
1699{
1700 if (!ringbuf->obj)
1701 return;
1702
1703 iounmap(ringbuf->virtual_start);
1704 i915_gem_object_ggtt_unpin(ringbuf->obj);
1705 drm_gem_object_unreference(&ringbuf->obj->base);
1706 ringbuf->obj = NULL;
1707}
1708
1709int intel_alloc_ringbuffer_obj(struct drm_device *dev,
1710 struct intel_ringbuffer *ringbuf)
1711{
1712 struct drm_i915_private *dev_priv = to_i915(dev);
1713 struct drm_i915_gem_object *obj;
1714 int ret;
1715
1716 if (ringbuf->obj)
1717 return 0;
1718
1719 obj = NULL;
1720 if (!HAS_LLC(dev))
1721 obj = i915_gem_object_create_stolen(dev, ringbuf->size);
1722 if (obj == NULL)
1723 obj = i915_gem_alloc_object(dev, ringbuf->size);
1724 if (obj == NULL)
1725 return -ENOMEM;
1726
1727 /* mark ring buffers as read-only from GPU side by default */
1728 obj->gt_ro = 1;
1729
1730 ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
1731 if (ret)
1732 goto err_unref;
1733
1734 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1735 if (ret)
1736 goto err_unpin;
1737
1738 ringbuf->virtual_start =
1739 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1740 ringbuf->size);
1741 if (ringbuf->virtual_start == NULL) {
1742 ret = -EINVAL;
1743 goto err_unpin;
1744 }
1745
1746 ringbuf->obj = obj;
1747 return 0;
1748
1749err_unpin:
1750 i915_gem_object_ggtt_unpin(obj);
1751err_unref:
1752 drm_gem_object_unreference(&obj->base);
1753 return ret;
1754}
1755
1756static int intel_init_ring_buffer(struct drm_device *dev,
1757 struct intel_engine_cs *ring)
1758{
1759 struct intel_ringbuffer *ringbuf = ring->buffer;
1760 int ret;
1761
1762 if (ringbuf == NULL) {
1763 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1764 if (!ringbuf)
1765 return -ENOMEM;
1766 ring->buffer = ringbuf;
1767 }
1768
1769 ring->dev = dev;
1770 INIT_LIST_HEAD(&ring->active_list);
1771 INIT_LIST_HEAD(&ring->request_list);
1772 INIT_LIST_HEAD(&ring->execlist_queue);
1773 ringbuf->size = 32 * PAGE_SIZE;
1774 ringbuf->ring = ring;
1775 memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
1776
1777 init_waitqueue_head(&ring->irq_queue);
1778
1779 if (I915_NEED_GFX_HWS(dev)) {
1780 ret = init_status_page(ring);
1781 if (ret)
1782 goto error;
1783 } else {
1784 BUG_ON(ring->id != RCS);
1785 ret = init_phys_status_page(ring);
1786 if (ret)
1787 goto error;
1788 }
1789
1790 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1791 if (ret) {
1792 DRM_ERROR("Failed to allocate ringbuffer %s: %d\n", ring->name, ret);
1793 goto error;
1794 }
1795
1796 /* Workaround an erratum on the i830 which causes a hang if
1797 * the TAIL pointer points to within the last 2 cachelines
1798 * of the buffer.
1799 */
1800 ringbuf->effective_size = ringbuf->size;
1801 if (IS_I830(dev) || IS_845G(dev))
1802 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
1803
1804 ret = i915_cmd_parser_init_ring(ring);
1805 if (ret)
1806 goto error;
1807
1808 ret = ring->init(ring);
1809 if (ret)
1810 goto error;
1811
1812 return 0;
1813
1814error:
1815 kfree(ringbuf);
1816 ring->buffer = NULL;
1817 return ret;
1818}
1819
1820void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
1821{
1822 struct drm_i915_private *dev_priv = to_i915(ring->dev);
1823 struct intel_ringbuffer *ringbuf = ring->buffer;
1824
1825 if (!intel_ring_initialized(ring))
1826 return;
1827
1828 intel_stop_ring_buffer(ring);
1829 WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
1830
1831 intel_destroy_ringbuffer_obj(ringbuf);
1832 ring->preallocated_lazy_request = NULL;
1833 ring->outstanding_lazy_seqno = 0;
1834
1835 if (ring->cleanup)
1836 ring->cleanup(ring);
1837
1838 cleanup_status_page(ring);
1839
1840 i915_cmd_parser_fini_ring(ring);
1841
1842 kfree(ringbuf);
1843 ring->buffer = NULL;
1844}
1845
1846static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
1847{
1848 struct intel_ringbuffer *ringbuf = ring->buffer;
1849 struct drm_i915_gem_request *request;
1850 u32 seqno = 0;
1851 int ret;
1852
1853 if (ringbuf->last_retired_head != -1) {
1854 ringbuf->head = ringbuf->last_retired_head;
1855 ringbuf->last_retired_head = -1;
1856
1857 ringbuf->space = intel_ring_space(ringbuf);
1858 if (ringbuf->space >= n)
1859 return 0;
1860 }
1861
1862 list_for_each_entry(request, &ring->request_list, list) {
1863 if (__intel_ring_space(request->tail, ringbuf->tail,
1864 ringbuf->size) >= n) {
1865 seqno = request->seqno;
1866 break;
1867 }
1868 }
1869
1870 if (seqno == 0)
1871 return -ENOSPC;
1872
1873 ret = i915_wait_seqno(ring, seqno);
1874 if (ret)
1875 return ret;
1876
1877 i915_gem_retire_requests_ring(ring);
1878 ringbuf->head = ringbuf->last_retired_head;
1879 ringbuf->last_retired_head = -1;
1880
1881 ringbuf->space = intel_ring_space(ringbuf);
1882 return 0;
1883}
1884
1885static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
1886{
1887 struct drm_device *dev = ring->dev;
1888 struct drm_i915_private *dev_priv = dev->dev_private;
1889 struct intel_ringbuffer *ringbuf = ring->buffer;
1890 unsigned long end;
1891 int ret;
1892
1893 ret = intel_ring_wait_request(ring, n);
1894 if (ret != -ENOSPC)
1895 return ret;
1896
1897 /* force the tail write in case we have been skipping them */
1898 __intel_ring_advance(ring);
1899
1900 /* With GEM the hangcheck timer should kick us out of the loop,
1901 * leaving it early runs the risk of corrupting GEM state (due
1902 * to running on almost untested codepaths). But on resume
1903 * timers don't work yet, so prevent a complete hang in that
1904 * case by choosing an insanely large timeout. */
1905 end = jiffies + 60 * HZ;
1906
1907 trace_i915_ring_wait_begin(ring);
1908 do {
1909 ringbuf->head = I915_READ_HEAD(ring);
1910 ringbuf->space = intel_ring_space(ringbuf);
1911 if (ringbuf->space >= n) {
1912 ret = 0;
1913 break;
1914 }
1915
1916 if (!drm_core_check_feature(dev, DRIVER_MODESET) &&
1917 dev->primary->master) {
1918 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1919 if (master_priv->sarea_priv)
1920 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1921 }
1922
1923 msleep(1);
1924
1925 if (dev_priv->mm.interruptible && signal_pending(current)) {
1926 ret = -ERESTARTSYS;
1927 break;
1928 }
1929
1930 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1931 dev_priv->mm.interruptible);
1932 if (ret)
1933 break;
1934
1935 if (time_after(jiffies, end)) {
1936 ret = -EBUSY;
1937 break;
1938 }
1939 } while (1);
1940 trace_i915_ring_wait_end(ring);
1941 return ret;
1942}
1943
1944static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
1945{
1946 uint32_t __iomem *virt;
1947 struct intel_ringbuffer *ringbuf = ring->buffer;
1948 int rem = ringbuf->size - ringbuf->tail;
1949
1950 if (ringbuf->space < rem) {
1951 int ret = ring_wait_for_space(ring, rem);
1952 if (ret)
1953 return ret;
1954 }
1955
1956 virt = ringbuf->virtual_start + ringbuf->tail;
1957 rem /= 4;
1958 while (rem--)
1959 iowrite32(MI_NOOP, virt++);
1960
1961 ringbuf->tail = 0;
1962 ringbuf->space = intel_ring_space(ringbuf);
1963
1964 return 0;
1965}
1966
1967int intel_ring_idle(struct intel_engine_cs *ring)
1968{
1969 u32 seqno;
1970 int ret;
1971
1972 /* We need to add any requests required to flush the objects and ring */
1973 if (ring->outstanding_lazy_seqno) {
1974 ret = i915_add_request(ring, NULL);
1975 if (ret)
1976 return ret;
1977 }
1978
1979 /* Wait upon the last request to be completed */
1980 if (list_empty(&ring->request_list))
1981 return 0;
1982
1983 seqno = list_entry(ring->request_list.prev,
1984 struct drm_i915_gem_request,
1985 list)->seqno;
1986
1987 return i915_wait_seqno(ring, seqno);
1988}
1989
1990static int
1991intel_ring_alloc_seqno(struct intel_engine_cs *ring)
1992{
1993 if (ring->outstanding_lazy_seqno)
1994 return 0;
1995
1996 if (ring->preallocated_lazy_request == NULL) {
1997 struct drm_i915_gem_request *request;
1998
1999 request = kmalloc(sizeof(*request), GFP_KERNEL);
2000 if (request == NULL)
2001 return -ENOMEM;
2002
2003 ring->preallocated_lazy_request = request;
2004 }
2005
2006 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_seqno);
2007}
2008
2009static int __intel_ring_prepare(struct intel_engine_cs *ring,
2010 int bytes)
2011{
2012 struct intel_ringbuffer *ringbuf = ring->buffer;
2013 int ret;
2014
2015 if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
2016 ret = intel_wrap_ring_buffer(ring);
2017 if (unlikely(ret))
2018 return ret;
2019 }
2020
2021 if (unlikely(ringbuf->space < bytes)) {
2022 ret = ring_wait_for_space(ring, bytes);
2023 if (unlikely(ret))
2024 return ret;
2025 }
2026
2027 return 0;
2028}
2029
2030int intel_ring_begin(struct intel_engine_cs *ring,
2031 int num_dwords)
2032{
2033 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2034 int ret;
2035
2036 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
2037 dev_priv->mm.interruptible);
2038 if (ret)
2039 return ret;
2040
2041 ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
2042 if (ret)
2043 return ret;
2044
2045 /* Preallocate the olr before touching the ring */
2046 ret = intel_ring_alloc_seqno(ring);
2047 if (ret)
2048 return ret;
2049
2050 ring->buffer->space -= num_dwords * sizeof(uint32_t);
2051 return 0;
2052}
2053
2054/* Align the ring tail to a cacheline boundary */
2055int intel_ring_cacheline_align(struct intel_engine_cs *ring)
2056{
2057 int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
2058 int ret;
2059
2060 if (num_dwords == 0)
2061 return 0;
2062
2063 num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
2064 ret = intel_ring_begin(ring, num_dwords);
2065 if (ret)
2066 return ret;
2067
2068 while (num_dwords--)
2069 intel_ring_emit(ring, MI_NOOP);
2070
2071 intel_ring_advance(ring);
2072
2073 return 0;
2074}
2075
2076void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
2077{
2078 struct drm_device *dev = ring->dev;
2079 struct drm_i915_private *dev_priv = dev->dev_private;
2080
2081 BUG_ON(ring->outstanding_lazy_seqno);
2082
2083 if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
2084 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
2085 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
2086 if (HAS_VEBOX(dev))
2087 I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
2088 }
2089
2090 ring->set_seqno(ring, seqno);
2091 ring->hangcheck.seqno = seqno;
2092}
2093
2094static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
2095 u32 value)
2096{
2097 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2098
2099 /* Every tail move must follow the sequence below */
2100
2101 /* Disable notification that the ring is IDLE. The GT
2102 * will then assume that it is busy and bring it out of rc6.
2103 */
2104 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2105 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2106
2107 /* Clear the context id. Here be magic! */
2108 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
2109
2110 /* Wait for the ring not to be idle, i.e. for it to wake up. */
2111 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
2112 GEN6_BSD_SLEEP_INDICATOR) == 0,
2113 50))
2114 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2115
2116 /* Now that the ring is fully powered up, update the tail */
2117 I915_WRITE_TAIL(ring, value);
2118 POSTING_READ(RING_TAIL(ring->mmio_base));
2119
2120 /* Let the ring send IDLE messages to the GT again,
2121 * and so let it sleep to conserve power when idle.
2122 */
2123 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
2124 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2125}
2126
2127static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
2128 u32 invalidate, u32 flush)
2129{
2130 uint32_t cmd;
2131 int ret;
2132
2133 ret = intel_ring_begin(ring, 4);
2134 if (ret)
2135 return ret;
2136
2137 cmd = MI_FLUSH_DW;
2138 if (INTEL_INFO(ring->dev)->gen >= 8)
2139 cmd += 1;
2140 /*
2141 * Bspec vol 1c.5 - video engine command streamer:
2142 * "If ENABLED, all TLBs will be invalidated once the flush
2143 * operation is complete. This bit is only valid when the
2144 * Post-Sync Operation field is a value of 1h or 3h."
2145 */
2146 if (invalidate & I915_GEM_GPU_DOMAINS)
2147 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
2148 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2149 intel_ring_emit(ring, cmd);
2150 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2151 if (INTEL_INFO(ring->dev)->gen >= 8) {
2152 intel_ring_emit(ring, 0); /* upper addr */
2153 intel_ring_emit(ring, 0); /* value */
2154 } else {
2155 intel_ring_emit(ring, 0);
2156 intel_ring_emit(ring, MI_NOOP);
2157 }
2158 intel_ring_advance(ring);
2159 return 0;
2160}
2161
2162static int
2163gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2164 u64 offset, u32 len,
2165 unsigned flags)
2166{
2167 bool ppgtt = USES_PPGTT(ring->dev) && !(flags & I915_DISPATCH_SECURE);
2168 int ret;
2169
2170 ret = intel_ring_begin(ring, 4);
2171 if (ret)
2172 return ret;
2173
2174 /* FIXME(BDW): Address space and security selectors. */
2175 intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
2176 intel_ring_emit(ring, lower_32_bits(offset));
2177 intel_ring_emit(ring, upper_32_bits(offset));
2178 intel_ring_emit(ring, MI_NOOP);
2179 intel_ring_advance(ring);
2180
2181 return 0;
2182}
2183
2184static int
2185hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2186 u64 offset, u32 len,
2187 unsigned flags)
2188{
2189 int ret;
2190
2191 ret = intel_ring_begin(ring, 2);
2192 if (ret)
2193 return ret;
2194
2195 intel_ring_emit(ring,
2196 MI_BATCH_BUFFER_START |
2197 (flags & I915_DISPATCH_SECURE ?
2198 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
2199 /* bit0-7 is the length on GEN6+ */
2200 intel_ring_emit(ring, offset);
2201 intel_ring_advance(ring);
2202
2203 return 0;
2204}
2205
2206static int
2207gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
2208 u64 offset, u32 len,
2209 unsigned flags)
2210{
2211 int ret;
2212
2213 ret = intel_ring_begin(ring, 2);
2214 if (ret)
2215 return ret;
2216
2217 intel_ring_emit(ring,
2218 MI_BATCH_BUFFER_START |
2219 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
2220 /* bit0-7 is the length on GEN6+ */
2221 intel_ring_emit(ring, offset);
2222 intel_ring_advance(ring);
2223
2224 return 0;
2225}
2226
2227/* Blitter support (SandyBridge+) */
2228
2229static int gen6_ring_flush(struct intel_engine_cs *ring,
2230 u32 invalidate, u32 flush)
2231{
2232 struct drm_device *dev = ring->dev;
2233 struct drm_i915_private *dev_priv = dev->dev_private;
2234 uint32_t cmd;
2235 int ret;
2236
2237 ret = intel_ring_begin(ring, 4);
2238 if (ret)
2239 return ret;
2240
2241 cmd = MI_FLUSH_DW;
2242 if (INTEL_INFO(ring->dev)->gen >= 8)
2243 cmd += 1;
2244 /*
2245 * Bspec vol 1c.3 - blitter engine command streamer:
2246 * "If ENABLED, all TLBs will be invalidated once the flush
2247 * operation is complete. This bit is only valid when the
2248 * Post-Sync Operation field is a value of 1h or 3h."
2249 */
2250 if (invalidate & I915_GEM_DOMAIN_RENDER)
2251 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
2252 MI_FLUSH_DW_OP_STOREDW;
2253 intel_ring_emit(ring, cmd);
2254 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
2255 if (INTEL_INFO(ring->dev)->gen >= 8) {
2256 intel_ring_emit(ring, 0); /* upper addr */
2257 intel_ring_emit(ring, 0); /* value */
2258 } else {
2259 intel_ring_emit(ring, 0);
2260 intel_ring_emit(ring, MI_NOOP);
2261 }
2262 intel_ring_advance(ring);
2263
2264 if (!invalidate && flush) {
2265 if (IS_GEN7(dev))
2266 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
2267 else if (IS_BROADWELL(dev))
2268 dev_priv->fbc.need_sw_cache_clean = true;
2269 }
2270
2271 return 0;
2272}
2273
2274int intel_init_render_ring_buffer(struct drm_device *dev)
2275{
2276 struct drm_i915_private *dev_priv = dev->dev_private;
2277 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2278 struct drm_i915_gem_object *obj;
2279 int ret;
2280
2281 ring->name = "render ring";
2282 ring->id = RCS;
2283 ring->mmio_base = RENDER_RING_BASE;
2284
2285 if (INTEL_INFO(dev)->gen >= 8) {
2286 if (i915_semaphore_is_enabled(dev)) {
2287 obj = i915_gem_alloc_object(dev, 4096);
2288 if (obj == NULL) {
2289 DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
2290 i915.semaphores = 0;
2291 } else {
2292 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
2293 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
2294 if (ret != 0) {
2295 drm_gem_object_unreference(&obj->base);
2296 DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
2297 i915.semaphores = 0;
2298 } else
2299 dev_priv->semaphore_obj = obj;
2300 }
2301 }
2302 if (IS_CHERRYVIEW(dev))
2303 ring->init_context = chv_init_workarounds;
2304 else
2305 ring->init_context = bdw_init_workarounds;
2306 ring->add_request = gen6_add_request;
2307 ring->flush = gen8_render_ring_flush;
2308 ring->irq_get = gen8_ring_get_irq;
2309 ring->irq_put = gen8_ring_put_irq;
2310 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2311 ring->get_seqno = gen6_ring_get_seqno;
2312 ring->set_seqno = ring_set_seqno;
2313 if (i915_semaphore_is_enabled(dev)) {
2314 WARN_ON(!dev_priv->semaphore_obj);
2315 ring->semaphore.sync_to = gen8_ring_sync;
2316 ring->semaphore.signal = gen8_rcs_signal;
2317 GEN8_RING_SEMAPHORE_INIT;
2318 }
2319 } else if (INTEL_INFO(dev)->gen >= 6) {
2320 ring->add_request = gen6_add_request;
2321 ring->flush = gen7_render_ring_flush;
2322 if (INTEL_INFO(dev)->gen == 6)
2323 ring->flush = gen6_render_ring_flush;
2324 ring->irq_get = gen6_ring_get_irq;
2325 ring->irq_put = gen6_ring_put_irq;
2326 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2327 ring->get_seqno = gen6_ring_get_seqno;
2328 ring->set_seqno = ring_set_seqno;
2329 if (i915_semaphore_is_enabled(dev)) {
2330 ring->semaphore.sync_to = gen6_ring_sync;
2331 ring->semaphore.signal = gen6_signal;
2332 /*
2333 * The current semaphore is only applied on pre-gen8
2334 * platform. And there is no VCS2 ring on the pre-gen8
2335 * platform. So the semaphore between RCS and VCS2 is
2336 * initialized as INVALID. Gen8 will initialize the
2337 * sema between VCS2 and RCS later.
2338 */
2339 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
2340 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
2341 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
2342 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
2343 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2344 ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
2345 ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
2346 ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
2347 ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
2348 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2349 }
2350 } else if (IS_GEN5(dev)) {
2351 ring->add_request = pc_render_add_request;
2352 ring->flush = gen4_render_ring_flush;
2353 ring->get_seqno = pc_render_get_seqno;
2354 ring->set_seqno = pc_render_set_seqno;
2355 ring->irq_get = gen5_ring_get_irq;
2356 ring->irq_put = gen5_ring_put_irq;
2357 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
2358 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
2359 } else {
2360 ring->add_request = i9xx_add_request;
2361 if (INTEL_INFO(dev)->gen < 4)
2362 ring->flush = gen2_render_ring_flush;
2363 else
2364 ring->flush = gen4_render_ring_flush;
2365 ring->get_seqno = ring_get_seqno;
2366 ring->set_seqno = ring_set_seqno;
2367 if (IS_GEN2(dev)) {
2368 ring->irq_get = i8xx_ring_get_irq;
2369 ring->irq_put = i8xx_ring_put_irq;
2370 } else {
2371 ring->irq_get = i9xx_ring_get_irq;
2372 ring->irq_put = i9xx_ring_put_irq;
2373 }
2374 ring->irq_enable_mask = I915_USER_INTERRUPT;
2375 }
2376 ring->write_tail = ring_write_tail;
2377
2378 if (IS_HASWELL(dev))
2379 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
2380 else if (IS_GEN8(dev))
2381 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2382 else if (INTEL_INFO(dev)->gen >= 6)
2383 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2384 else if (INTEL_INFO(dev)->gen >= 4)
2385 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2386 else if (IS_I830(dev) || IS_845G(dev))
2387 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2388 else
2389 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2390 ring->init = init_render_ring;
2391 ring->cleanup = render_ring_cleanup;
2392
2393 /* Workaround batchbuffer to combat CS tlb bug. */
2394 if (HAS_BROKEN_CS_TLB(dev)) {
2395 obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
2396 if (obj == NULL) {
2397 DRM_ERROR("Failed to allocate batch bo\n");
2398 return -ENOMEM;
2399 }
2400
2401 ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
2402 if (ret != 0) {
2403 drm_gem_object_unreference(&obj->base);
2404 DRM_ERROR("Failed to ping batch bo\n");
2405 return ret;
2406 }
2407
2408 ring->scratch.obj = obj;
2409 ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
2410 }
2411
2412 return intel_init_ring_buffer(dev, ring);
2413}
2414
2415int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
2416{
2417 struct drm_i915_private *dev_priv = dev->dev_private;
2418 struct intel_engine_cs *ring = &dev_priv->ring[RCS];
2419 struct intel_ringbuffer *ringbuf = ring->buffer;
2420 int ret;
2421
2422 if (ringbuf == NULL) {
2423 ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
2424 if (!ringbuf)
2425 return -ENOMEM;
2426 ring->buffer = ringbuf;
2427 }
2428
2429 ring->name = "render ring";
2430 ring->id = RCS;
2431 ring->mmio_base = RENDER_RING_BASE;
2432
2433 if (INTEL_INFO(dev)->gen >= 6) {
2434 /* non-kms not supported on gen6+ */
2435 ret = -ENODEV;
2436 goto err_ringbuf;
2437 }
2438
2439 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
2440 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
2441 * the special gen5 functions. */
2442 ring->add_request = i9xx_add_request;
2443 if (INTEL_INFO(dev)->gen < 4)
2444 ring->flush = gen2_render_ring_flush;
2445 else
2446 ring->flush = gen4_render_ring_flush;
2447 ring->get_seqno = ring_get_seqno;
2448 ring->set_seqno = ring_set_seqno;
2449 if (IS_GEN2(dev)) {
2450 ring->irq_get = i8xx_ring_get_irq;
2451 ring->irq_put = i8xx_ring_put_irq;
2452 } else {
2453 ring->irq_get = i9xx_ring_get_irq;
2454 ring->irq_put = i9xx_ring_put_irq;
2455 }
2456 ring->irq_enable_mask = I915_USER_INTERRUPT;
2457 ring->write_tail = ring_write_tail;
2458 if (INTEL_INFO(dev)->gen >= 4)
2459 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2460 else if (IS_I830(dev) || IS_845G(dev))
2461 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
2462 else
2463 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
2464 ring->init = init_render_ring;
2465 ring->cleanup = render_ring_cleanup;
2466
2467 ring->dev = dev;
2468 INIT_LIST_HEAD(&ring->active_list);
2469 INIT_LIST_HEAD(&ring->request_list);
2470
2471 ringbuf->size = size;
2472 ringbuf->effective_size = ringbuf->size;
2473 if (IS_I830(ring->dev) || IS_845G(ring->dev))
2474 ringbuf->effective_size -= 2 * CACHELINE_BYTES;
2475
2476 ringbuf->virtual_start = ioremap_wc(start, size);
2477 if (ringbuf->virtual_start == NULL) {
2478 DRM_ERROR("can not ioremap virtual address for"
2479 " ring buffer\n");
2480 ret = -ENOMEM;
2481 goto err_ringbuf;
2482 }
2483
2484 if (!I915_NEED_GFX_HWS(dev)) {
2485 ret = init_phys_status_page(ring);
2486 if (ret)
2487 goto err_vstart;
2488 }
2489
2490 return 0;
2491
2492err_vstart:
2493 iounmap(ringbuf->virtual_start);
2494err_ringbuf:
2495 kfree(ringbuf);
2496 ring->buffer = NULL;
2497 return ret;
2498}
2499
2500int intel_init_bsd_ring_buffer(struct drm_device *dev)
2501{
2502 struct drm_i915_private *dev_priv = dev->dev_private;
2503 struct intel_engine_cs *ring = &dev_priv->ring[VCS];
2504
2505 ring->name = "bsd ring";
2506 ring->id = VCS;
2507
2508 ring->write_tail = ring_write_tail;
2509 if (INTEL_INFO(dev)->gen >= 6) {
2510 ring->mmio_base = GEN6_BSD_RING_BASE;
2511 /* gen6 bsd needs a special wa for tail updates */
2512 if (IS_GEN6(dev))
2513 ring->write_tail = gen6_bsd_ring_write_tail;
2514 ring->flush = gen6_bsd_ring_flush;
2515 ring->add_request = gen6_add_request;
2516 ring->get_seqno = gen6_ring_get_seqno;
2517 ring->set_seqno = ring_set_seqno;
2518 if (INTEL_INFO(dev)->gen >= 8) {
2519 ring->irq_enable_mask =
2520 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
2521 ring->irq_get = gen8_ring_get_irq;
2522 ring->irq_put = gen8_ring_put_irq;
2523 ring->dispatch_execbuffer =
2524 gen8_ring_dispatch_execbuffer;
2525 if (i915_semaphore_is_enabled(dev)) {
2526 ring->semaphore.sync_to = gen8_ring_sync;
2527 ring->semaphore.signal = gen8_xcs_signal;
2528 GEN8_RING_SEMAPHORE_INIT;
2529 }
2530 } else {
2531 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2532 ring->irq_get = gen6_ring_get_irq;
2533 ring->irq_put = gen6_ring_put_irq;
2534 ring->dispatch_execbuffer =
2535 gen6_ring_dispatch_execbuffer;
2536 if (i915_semaphore_is_enabled(dev)) {
2537 ring->semaphore.sync_to = gen6_ring_sync;
2538 ring->semaphore.signal = gen6_signal;
2539 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
2540 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
2541 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
2542 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
2543 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2544 ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
2545 ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
2546 ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
2547 ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
2548 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2549 }
2550 }
2551 } else {
2552 ring->mmio_base = BSD_RING_BASE;
2553 ring->flush = bsd_ring_flush;
2554 ring->add_request = i9xx_add_request;
2555 ring->get_seqno = ring_get_seqno;
2556 ring->set_seqno = ring_set_seqno;
2557 if (IS_GEN5(dev)) {
2558 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2559 ring->irq_get = gen5_ring_get_irq;
2560 ring->irq_put = gen5_ring_put_irq;
2561 } else {
2562 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2563 ring->irq_get = i9xx_ring_get_irq;
2564 ring->irq_put = i9xx_ring_put_irq;
2565 }
2566 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
2567 }
2568 ring->init = init_ring_common;
2569
2570 return intel_init_ring_buffer(dev, ring);
2571}
2572
2573/**
2574 * Initialize the second BSD ring for Broadwell GT3.
2575 * It is noted that this only exists on Broadwell GT3.
2576 */
2577int intel_init_bsd2_ring_buffer(struct drm_device *dev)
2578{
2579 struct drm_i915_private *dev_priv = dev->dev_private;
2580 struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
2581
2582 if ((INTEL_INFO(dev)->gen != 8)) {
2583 DRM_ERROR("No dual-BSD ring on non-BDW machine\n");
2584 return -EINVAL;
2585 }
2586
2587 ring->name = "bsd2 ring";
2588 ring->id = VCS2;
2589
2590 ring->write_tail = ring_write_tail;
2591 ring->mmio_base = GEN8_BSD2_RING_BASE;
2592 ring->flush = gen6_bsd_ring_flush;
2593 ring->add_request = gen6_add_request;
2594 ring->get_seqno = gen6_ring_get_seqno;
2595 ring->set_seqno = ring_set_seqno;
2596 ring->irq_enable_mask =
2597 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
2598 ring->irq_get = gen8_ring_get_irq;
2599 ring->irq_put = gen8_ring_put_irq;
2600 ring->dispatch_execbuffer =
2601 gen8_ring_dispatch_execbuffer;
2602 if (i915_semaphore_is_enabled(dev)) {
2603 ring->semaphore.sync_to = gen8_ring_sync;
2604 ring->semaphore.signal = gen8_xcs_signal;
2605 GEN8_RING_SEMAPHORE_INIT;
2606 }
2607 ring->init = init_ring_common;
2608
2609 return intel_init_ring_buffer(dev, ring);
2610}
2611
2612int intel_init_blt_ring_buffer(struct drm_device *dev)
2613{
2614 struct drm_i915_private *dev_priv = dev->dev_private;
2615 struct intel_engine_cs *ring = &dev_priv->ring[BCS];
2616
2617 ring->name = "blitter ring";
2618 ring->id = BCS;
2619
2620 ring->mmio_base = BLT_RING_BASE;
2621 ring->write_tail = ring_write_tail;
2622 ring->flush = gen6_ring_flush;
2623 ring->add_request = gen6_add_request;
2624 ring->get_seqno = gen6_ring_get_seqno;
2625 ring->set_seqno = ring_set_seqno;
2626 if (INTEL_INFO(dev)->gen >= 8) {
2627 ring->irq_enable_mask =
2628 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
2629 ring->irq_get = gen8_ring_get_irq;
2630 ring->irq_put = gen8_ring_put_irq;
2631 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2632 if (i915_semaphore_is_enabled(dev)) {
2633 ring->semaphore.sync_to = gen8_ring_sync;
2634 ring->semaphore.signal = gen8_xcs_signal;
2635 GEN8_RING_SEMAPHORE_INIT;
2636 }
2637 } else {
2638 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2639 ring->irq_get = gen6_ring_get_irq;
2640 ring->irq_put = gen6_ring_put_irq;
2641 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2642 if (i915_semaphore_is_enabled(dev)) {
2643 ring->semaphore.signal = gen6_signal;
2644 ring->semaphore.sync_to = gen6_ring_sync;
2645 /*
2646 * The current semaphore is only applied on pre-gen8
2647 * platform. And there is no VCS2 ring on the pre-gen8
2648 * platform. So the semaphore between BCS and VCS2 is
2649 * initialized as INVALID. Gen8 will initialize the
2650 * sema between BCS and VCS2 later.
2651 */
2652 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
2653 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
2654 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
2655 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
2656 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2657 ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
2658 ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
2659 ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
2660 ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
2661 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2662 }
2663 }
2664 ring->init = init_ring_common;
2665
2666 return intel_init_ring_buffer(dev, ring);
2667}
2668
2669int intel_init_vebox_ring_buffer(struct drm_device *dev)
2670{
2671 struct drm_i915_private *dev_priv = dev->dev_private;
2672 struct intel_engine_cs *ring = &dev_priv->ring[VECS];
2673
2674 ring->name = "video enhancement ring";
2675 ring->id = VECS;
2676
2677 ring->mmio_base = VEBOX_RING_BASE;
2678 ring->write_tail = ring_write_tail;
2679 ring->flush = gen6_ring_flush;
2680 ring->add_request = gen6_add_request;
2681 ring->get_seqno = gen6_ring_get_seqno;
2682 ring->set_seqno = ring_set_seqno;
2683
2684 if (INTEL_INFO(dev)->gen >= 8) {
2685 ring->irq_enable_mask =
2686 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
2687 ring->irq_get = gen8_ring_get_irq;
2688 ring->irq_put = gen8_ring_put_irq;
2689 ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
2690 if (i915_semaphore_is_enabled(dev)) {
2691 ring->semaphore.sync_to = gen8_ring_sync;
2692 ring->semaphore.signal = gen8_xcs_signal;
2693 GEN8_RING_SEMAPHORE_INIT;
2694 }
2695 } else {
2696 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2697 ring->irq_get = hsw_vebox_get_irq;
2698 ring->irq_put = hsw_vebox_put_irq;
2699 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2700 if (i915_semaphore_is_enabled(dev)) {
2701 ring->semaphore.sync_to = gen6_ring_sync;
2702 ring->semaphore.signal = gen6_signal;
2703 ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
2704 ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
2705 ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
2706 ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2707 ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
2708 ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
2709 ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
2710 ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
2711 ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
2712 ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
2713 }
2714 }
2715 ring->init = init_ring_common;
2716
2717 return intel_init_ring_buffer(dev, ring);
2718}
2719
2720int
2721intel_ring_flush_all_caches(struct intel_engine_cs *ring)
2722{
2723 int ret;
2724
2725 if (!ring->gpu_caches_dirty)
2726 return 0;
2727
2728 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2729 if (ret)
2730 return ret;
2731
2732 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2733
2734 ring->gpu_caches_dirty = false;
2735 return 0;
2736}
2737
2738int
2739intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
2740{
2741 uint32_t flush_domains;
2742 int ret;
2743
2744 flush_domains = 0;
2745 if (ring->gpu_caches_dirty)
2746 flush_domains = I915_GEM_GPU_DOMAINS;
2747
2748 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2749 if (ret)
2750 return ret;
2751
2752 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2753
2754 ring->gpu_caches_dirty = false;
2755 return 0;
2756}
2757
2758void
2759intel_stop_ring_buffer(struct intel_engine_cs *ring)
2760{
2761 int ret;
2762
2763 if (!intel_ring_initialized(ring))
2764 return;
2765
2766 ret = intel_ring_idle(ring);
2767 if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
2768 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
2769 ring->name, ret);
2770
2771 stop_ring(ring);
2772}
This page took 0.033904 seconds and 5 git commands to generate.