ide: add ide_end_rq() (v2)
[deliverable/linux.git] / drivers / ide / ide-io.c
... / ...
CommitLineData
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
50#include <linux/bitops.h>
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
56
57int ide_end_rq(ide_drive_t *drive, struct request *rq, int uptodate,
58 unsigned int nr_bytes)
59{
60 int error = 0;
61
62 if (uptodate <= 0)
63 error = uptodate ? uptodate : -EIO;
64
65 /*
66 * if failfast is set on a request, override number of sectors and
67 * complete the whole request right now
68 */
69 if (blk_noretry_request(rq) && error)
70 nr_bytes = rq->hard_nr_sectors << 9;
71
72 if (!blk_fs_request(rq) && error && !rq->errors)
73 rq->errors = -EIO;
74
75 /*
76 * decide whether to reenable DMA -- 3 is a random magic for now,
77 * if we DMA timeout more than 3 times, just stay in PIO
78 */
79 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
80 drive->retry_pio <= 3) {
81 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
82 ide_dma_on(drive);
83 }
84
85 return blk_end_request(rq, error, nr_bytes);
86}
87EXPORT_SYMBOL_GPL(ide_end_rq);
88
89/**
90 * ide_end_request - complete an IDE I/O
91 * @drive: IDE device for the I/O
92 * @uptodate:
93 * @nr_sectors: number of sectors completed
94 *
95 * This is our end_request wrapper function. We complete the I/O
96 * update random number input and dequeue the request, which if
97 * it was tagged may be out of order.
98 */
99
100int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
101{
102 unsigned int nr_bytes = nr_sectors << 9;
103 struct request *rq = drive->hwif->rq;
104 int rc;
105
106 if (!nr_bytes) {
107 if (blk_pc_request(rq))
108 nr_bytes = rq->data_len;
109 else
110 nr_bytes = rq->hard_cur_sectors << 9;
111 }
112
113 rc = ide_end_rq(drive, rq, uptodate, nr_bytes);
114 if (rc == 0)
115 drive->hwif->rq = NULL;
116
117 return rc;
118}
119EXPORT_SYMBOL(ide_end_request);
120
121void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
122{
123 struct ide_taskfile *tf = &cmd->tf;
124 struct request *rq = cmd->rq;
125 u8 tf_cmd = tf->command;
126
127 tf->error = err;
128 tf->status = stat;
129
130 drive->hwif->tp_ops->tf_read(drive, cmd);
131
132 if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
133 tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
134 if (tf->lbal != 0xc4) {
135 printk(KERN_ERR "%s: head unload failed!\n",
136 drive->name);
137 ide_tf_dump(drive->name, tf);
138 } else
139 drive->dev_flags |= IDE_DFLAG_PARKED;
140 }
141
142 if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
143 memcpy(rq->special, cmd, sizeof(*cmd));
144
145 if (cmd->tf_flags & IDE_TFLAG_DYN)
146 kfree(cmd);
147}
148
149void ide_complete_rq(ide_drive_t *drive, u8 err)
150{
151 ide_hwif_t *hwif = drive->hwif;
152 struct request *rq = hwif->rq;
153
154 hwif->rq = NULL;
155
156 rq->errors = err;
157
158 if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
159 blk_rq_bytes(rq))))
160 BUG();
161}
162EXPORT_SYMBOL(ide_complete_rq);
163
164void ide_kill_rq(ide_drive_t *drive, struct request *rq)
165{
166 u8 drv_req = blk_special_request(rq) && rq->rq_disk;
167 u8 media = drive->media;
168
169 drive->failed_pc = NULL;
170
171 if ((media == ide_floppy && drv_req) || media == ide_tape)
172 rq->errors = IDE_DRV_ERROR_GENERAL;
173
174 if ((media == ide_floppy || media == ide_tape) && drv_req)
175 ide_complete_rq(drive, 0);
176 else
177 ide_end_request(drive, 0, 0);
178}
179
180static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
181{
182 tf->nsect = drive->sect;
183 tf->lbal = drive->sect;
184 tf->lbam = drive->cyl;
185 tf->lbah = drive->cyl >> 8;
186 tf->device = (drive->head - 1) | drive->select;
187 tf->command = ATA_CMD_INIT_DEV_PARAMS;
188}
189
190static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
191{
192 tf->nsect = drive->sect;
193 tf->command = ATA_CMD_RESTORE;
194}
195
196static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
197{
198 tf->nsect = drive->mult_req;
199 tf->command = ATA_CMD_SET_MULTI;
200}
201
202static ide_startstop_t ide_disk_special(ide_drive_t *drive)
203{
204 special_t *s = &drive->special;
205 struct ide_cmd cmd;
206
207 memset(&cmd, 0, sizeof(cmd));
208 cmd.protocol = ATA_PROT_NODATA;
209
210 if (s->b.set_geometry) {
211 s->b.set_geometry = 0;
212 ide_tf_set_specify_cmd(drive, &cmd.tf);
213 } else if (s->b.recalibrate) {
214 s->b.recalibrate = 0;
215 ide_tf_set_restore_cmd(drive, &cmd.tf);
216 } else if (s->b.set_multmode) {
217 s->b.set_multmode = 0;
218 ide_tf_set_setmult_cmd(drive, &cmd.tf);
219 } else if (s->all) {
220 int special = s->all;
221 s->all = 0;
222 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
223 return ide_stopped;
224 }
225
226 cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
227 IDE_TFLAG_CUSTOM_HANDLER;
228
229 do_rw_taskfile(drive, &cmd);
230
231 return ide_started;
232}
233
234/**
235 * do_special - issue some special commands
236 * @drive: drive the command is for
237 *
238 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
239 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
240 *
241 * It used to do much more, but has been scaled back.
242 */
243
244static ide_startstop_t do_special (ide_drive_t *drive)
245{
246 special_t *s = &drive->special;
247
248#ifdef DEBUG
249 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
250#endif
251 if (drive->media == ide_disk)
252 return ide_disk_special(drive);
253
254 s->all = 0;
255 drive->mult_req = 0;
256 return ide_stopped;
257}
258
259void ide_map_sg(ide_drive_t *drive, struct request *rq)
260{
261 ide_hwif_t *hwif = drive->hwif;
262 struct ide_cmd *cmd = &hwif->cmd;
263 struct scatterlist *sg = hwif->sg_table;
264
265 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
266 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
267 cmd->sg_nents = 1;
268 } else if (!rq->bio) {
269 sg_init_one(sg, rq->data, rq->data_len);
270 cmd->sg_nents = 1;
271 } else
272 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
273}
274EXPORT_SYMBOL_GPL(ide_map_sg);
275
276void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
277{
278 cmd->nsect = cmd->nleft = nsect;
279 cmd->cursg_ofs = 0;
280 cmd->cursg = NULL;
281}
282EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
283
284/**
285 * execute_drive_command - issue special drive command
286 * @drive: the drive to issue the command on
287 * @rq: the request structure holding the command
288 *
289 * execute_drive_cmd() issues a special drive command, usually
290 * initiated by ioctl() from the external hdparm program. The
291 * command can be a drive command, drive task or taskfile
292 * operation. Weirdly you can call it with NULL to wait for
293 * all commands to finish. Don't do this as that is due to change
294 */
295
296static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
297 struct request *rq)
298{
299 struct ide_cmd *cmd = rq->special;
300
301 if (cmd) {
302 if (cmd->protocol == ATA_PROT_PIO) {
303 ide_init_sg_cmd(cmd, rq->nr_sectors);
304 ide_map_sg(drive, rq);
305 }
306
307 return do_rw_taskfile(drive, cmd);
308 }
309
310 /*
311 * NULL is actually a valid way of waiting for
312 * all current requests to be flushed from the queue.
313 */
314#ifdef DEBUG
315 printk("%s: DRIVE_CMD (null)\n", drive->name);
316#endif
317 ide_complete_rq(drive, 0);
318
319 return ide_stopped;
320}
321
322static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
323{
324 u8 cmd = rq->cmd[0];
325
326 switch (cmd) {
327 case REQ_PARK_HEADS:
328 case REQ_UNPARK_HEADS:
329 return ide_do_park_unpark(drive, rq);
330 case REQ_DEVSET_EXEC:
331 return ide_do_devset(drive, rq);
332 case REQ_DRIVE_RESET:
333 return ide_do_reset(drive);
334 default:
335 BUG();
336 }
337}
338
339/**
340 * start_request - start of I/O and command issuing for IDE
341 *
342 * start_request() initiates handling of a new I/O request. It
343 * accepts commands and I/O (read/write) requests.
344 *
345 * FIXME: this function needs a rename
346 */
347
348static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
349{
350 ide_startstop_t startstop;
351
352 BUG_ON(!blk_rq_started(rq));
353
354#ifdef DEBUG
355 printk("%s: start_request: current=0x%08lx\n",
356 drive->hwif->name, (unsigned long) rq);
357#endif
358
359 /* bail early if we've exceeded max_failures */
360 if (drive->max_failures && (drive->failures > drive->max_failures)) {
361 rq->cmd_flags |= REQ_FAILED;
362 goto kill_rq;
363 }
364
365 if (blk_pm_request(rq))
366 ide_check_pm_state(drive, rq);
367
368 SELECT_DRIVE(drive);
369 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
370 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
371 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
372 return startstop;
373 }
374 if (!drive->special.all) {
375 struct ide_driver *drv;
376
377 /*
378 * We reset the drive so we need to issue a SETFEATURES.
379 * Do it _after_ do_special() restored device parameters.
380 */
381 if (drive->current_speed == 0xff)
382 ide_config_drive_speed(drive, drive->desired_speed);
383
384 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
385 return execute_drive_cmd(drive, rq);
386 else if (blk_pm_request(rq)) {
387 struct request_pm_state *pm = rq->data;
388#ifdef DEBUG_PM
389 printk("%s: start_power_step(step: %d)\n",
390 drive->name, pm->pm_step);
391#endif
392 startstop = ide_start_power_step(drive, rq);
393 if (startstop == ide_stopped &&
394 pm->pm_step == IDE_PM_COMPLETED)
395 ide_complete_pm_rq(drive, rq);
396 return startstop;
397 } else if (!rq->rq_disk && blk_special_request(rq))
398 /*
399 * TODO: Once all ULDs have been modified to
400 * check for specific op codes rather than
401 * blindly accepting any special request, the
402 * check for ->rq_disk above may be replaced
403 * by a more suitable mechanism or even
404 * dropped entirely.
405 */
406 return ide_special_rq(drive, rq);
407
408 drv = *(struct ide_driver **)rq->rq_disk->private_data;
409
410 return drv->do_request(drive, rq, rq->sector);
411 }
412 return do_special(drive);
413kill_rq:
414 ide_kill_rq(drive, rq);
415 return ide_stopped;
416}
417
418/**
419 * ide_stall_queue - pause an IDE device
420 * @drive: drive to stall
421 * @timeout: time to stall for (jiffies)
422 *
423 * ide_stall_queue() can be used by a drive to give excess bandwidth back
424 * to the port by sleeping for timeout jiffies.
425 */
426
427void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
428{
429 if (timeout > WAIT_WORSTCASE)
430 timeout = WAIT_WORSTCASE;
431 drive->sleep = timeout + jiffies;
432 drive->dev_flags |= IDE_DFLAG_SLEEPING;
433}
434EXPORT_SYMBOL(ide_stall_queue);
435
436static inline int ide_lock_port(ide_hwif_t *hwif)
437{
438 if (hwif->busy)
439 return 1;
440
441 hwif->busy = 1;
442
443 return 0;
444}
445
446static inline void ide_unlock_port(ide_hwif_t *hwif)
447{
448 hwif->busy = 0;
449}
450
451static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
452{
453 int rc = 0;
454
455 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
456 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
457 if (rc == 0) {
458 if (host->get_lock)
459 host->get_lock(ide_intr, hwif);
460 }
461 }
462 return rc;
463}
464
465static inline void ide_unlock_host(struct ide_host *host)
466{
467 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
468 if (host->release_lock)
469 host->release_lock();
470 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
471 }
472}
473
474/*
475 * Issue a new request to a device.
476 */
477void do_ide_request(struct request_queue *q)
478{
479 ide_drive_t *drive = q->queuedata;
480 ide_hwif_t *hwif = drive->hwif;
481 struct ide_host *host = hwif->host;
482 struct request *rq = NULL;
483 ide_startstop_t startstop;
484
485 /*
486 * drive is doing pre-flush, ordered write, post-flush sequence. even
487 * though that is 3 requests, it must be seen as a single transaction.
488 * we must not preempt this drive until that is complete
489 */
490 if (blk_queue_flushing(q))
491 /*
492 * small race where queue could get replugged during
493 * the 3-request flush cycle, just yank the plug since
494 * we want it to finish asap
495 */
496 blk_remove_plug(q);
497
498 spin_unlock_irq(q->queue_lock);
499
500 if (ide_lock_host(host, hwif))
501 goto plug_device_2;
502
503 spin_lock_irq(&hwif->lock);
504
505 if (!ide_lock_port(hwif)) {
506 ide_hwif_t *prev_port;
507repeat:
508 prev_port = hwif->host->cur_port;
509 hwif->rq = NULL;
510
511 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
512 if (time_before(drive->sleep, jiffies)) {
513 ide_unlock_port(hwif);
514 goto plug_device;
515 }
516 }
517
518 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
519 hwif != prev_port) {
520 /*
521 * set nIEN for previous port, drives in the
522 * quirk_list may not like intr setups/cleanups
523 */
524 if (prev_port && prev_port->cur_dev->quirk_list == 0)
525 prev_port->tp_ops->set_irq(prev_port, 0);
526
527 hwif->host->cur_port = hwif;
528 }
529 hwif->cur_dev = drive;
530 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
531
532 spin_unlock_irq(&hwif->lock);
533 spin_lock_irq(q->queue_lock);
534 /*
535 * we know that the queue isn't empty, but this can happen
536 * if the q->prep_rq_fn() decides to kill a request
537 */
538 rq = elv_next_request(drive->queue);
539 spin_unlock_irq(q->queue_lock);
540 spin_lock_irq(&hwif->lock);
541
542 if (!rq) {
543 ide_unlock_port(hwif);
544 goto out;
545 }
546
547 /*
548 * Sanity: don't accept a request that isn't a PM request
549 * if we are currently power managed. This is very important as
550 * blk_stop_queue() doesn't prevent the elv_next_request()
551 * above to return us whatever is in the queue. Since we call
552 * ide_do_request() ourselves, we end up taking requests while
553 * the queue is blocked...
554 *
555 * We let requests forced at head of queue with ide-preempt
556 * though. I hope that doesn't happen too much, hopefully not
557 * unless the subdriver triggers such a thing in its own PM
558 * state machine.
559 */
560 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
561 blk_pm_request(rq) == 0 &&
562 (rq->cmd_flags & REQ_PREEMPT) == 0) {
563 /* there should be no pending command at this point */
564 ide_unlock_port(hwif);
565 goto plug_device;
566 }
567
568 hwif->rq = rq;
569
570 spin_unlock_irq(&hwif->lock);
571 startstop = start_request(drive, rq);
572 spin_lock_irq(&hwif->lock);
573
574 if (startstop == ide_stopped)
575 goto repeat;
576 } else
577 goto plug_device;
578out:
579 spin_unlock_irq(&hwif->lock);
580 if (rq == NULL)
581 ide_unlock_host(host);
582 spin_lock_irq(q->queue_lock);
583 return;
584
585plug_device:
586 spin_unlock_irq(&hwif->lock);
587 ide_unlock_host(host);
588plug_device_2:
589 spin_lock_irq(q->queue_lock);
590
591 if (!elv_queue_empty(q))
592 blk_plug_device(q);
593}
594
595static void ide_plug_device(ide_drive_t *drive)
596{
597 struct request_queue *q = drive->queue;
598 unsigned long flags;
599
600 spin_lock_irqsave(q->queue_lock, flags);
601 if (!elv_queue_empty(q))
602 blk_plug_device(q);
603 spin_unlock_irqrestore(q->queue_lock, flags);
604}
605
606static int drive_is_ready(ide_drive_t *drive)
607{
608 ide_hwif_t *hwif = drive->hwif;
609 u8 stat = 0;
610
611 if (drive->waiting_for_dma)
612 return hwif->dma_ops->dma_test_irq(drive);
613
614 if (hwif->io_ports.ctl_addr &&
615 (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
616 stat = hwif->tp_ops->read_altstatus(hwif);
617 else
618 /* Note: this may clear a pending IRQ!! */
619 stat = hwif->tp_ops->read_status(hwif);
620
621 if (stat & ATA_BUSY)
622 /* drive busy: definitely not interrupting */
623 return 0;
624
625 /* drive ready: *might* be interrupting */
626 return 1;
627}
628
629/**
630 * ide_timer_expiry - handle lack of an IDE interrupt
631 * @data: timer callback magic (hwif)
632 *
633 * An IDE command has timed out before the expected drive return
634 * occurred. At this point we attempt to clean up the current
635 * mess. If the current handler includes an expiry handler then
636 * we invoke the expiry handler, and providing it is happy the
637 * work is done. If that fails we apply generic recovery rules
638 * invoking the handler and checking the drive DMA status. We
639 * have an excessively incestuous relationship with the DMA
640 * logic that wants cleaning up.
641 */
642
643void ide_timer_expiry (unsigned long data)
644{
645 ide_hwif_t *hwif = (ide_hwif_t *)data;
646 ide_drive_t *uninitialized_var(drive);
647 ide_handler_t *handler;
648 unsigned long flags;
649 int wait = -1;
650 int plug_device = 0;
651
652 spin_lock_irqsave(&hwif->lock, flags);
653
654 handler = hwif->handler;
655
656 if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
657 /*
658 * Either a marginal timeout occurred
659 * (got the interrupt just as timer expired),
660 * or we were "sleeping" to give other devices a chance.
661 * Either way, we don't really want to complain about anything.
662 */
663 } else {
664 ide_expiry_t *expiry = hwif->expiry;
665 ide_startstop_t startstop = ide_stopped;
666
667 drive = hwif->cur_dev;
668
669 if (expiry) {
670 wait = expiry(drive);
671 if (wait > 0) { /* continue */
672 /* reset timer */
673 hwif->timer.expires = jiffies + wait;
674 hwif->req_gen_timer = hwif->req_gen;
675 add_timer(&hwif->timer);
676 spin_unlock_irqrestore(&hwif->lock, flags);
677 return;
678 }
679 }
680 hwif->handler = NULL;
681 /*
682 * We need to simulate a real interrupt when invoking
683 * the handler() function, which means we need to
684 * globally mask the specific IRQ:
685 */
686 spin_unlock(&hwif->lock);
687 /* disable_irq_nosync ?? */
688 disable_irq(hwif->irq);
689 /* local CPU only, as if we were handling an interrupt */
690 local_irq_disable();
691 if (hwif->polling) {
692 startstop = handler(drive);
693 } else if (drive_is_ready(drive)) {
694 if (drive->waiting_for_dma)
695 hwif->dma_ops->dma_lost_irq(drive);
696 if (hwif->ack_intr)
697 hwif->ack_intr(hwif);
698 printk(KERN_WARNING "%s: lost interrupt\n",
699 drive->name);
700 startstop = handler(drive);
701 } else {
702 if (drive->waiting_for_dma)
703 startstop = ide_dma_timeout_retry(drive, wait);
704 else
705 startstop = ide_error(drive, "irq timeout",
706 hwif->tp_ops->read_status(hwif));
707 }
708 spin_lock_irq(&hwif->lock);
709 enable_irq(hwif->irq);
710 if (startstop == ide_stopped) {
711 ide_unlock_port(hwif);
712 plug_device = 1;
713 }
714 }
715 spin_unlock_irqrestore(&hwif->lock, flags);
716
717 if (plug_device) {
718 ide_unlock_host(hwif->host);
719 ide_plug_device(drive);
720 }
721}
722
723/**
724 * unexpected_intr - handle an unexpected IDE interrupt
725 * @irq: interrupt line
726 * @hwif: port being processed
727 *
728 * There's nothing really useful we can do with an unexpected interrupt,
729 * other than reading the status register (to clear it), and logging it.
730 * There should be no way that an irq can happen before we're ready for it,
731 * so we needn't worry much about losing an "important" interrupt here.
732 *
733 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
734 * the drive enters "idle", "standby", or "sleep" mode, so if the status
735 * looks "good", we just ignore the interrupt completely.
736 *
737 * This routine assumes __cli() is in effect when called.
738 *
739 * If an unexpected interrupt happens on irq15 while we are handling irq14
740 * and if the two interfaces are "serialized" (CMD640), then it looks like
741 * we could screw up by interfering with a new request being set up for
742 * irq15.
743 *
744 * In reality, this is a non-issue. The new command is not sent unless
745 * the drive is ready to accept one, in which case we know the drive is
746 * not trying to interrupt us. And ide_set_handler() is always invoked
747 * before completing the issuance of any new drive command, so we will not
748 * be accidentally invoked as a result of any valid command completion
749 * interrupt.
750 */
751
752static void unexpected_intr(int irq, ide_hwif_t *hwif)
753{
754 u8 stat = hwif->tp_ops->read_status(hwif);
755
756 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
757 /* Try to not flood the console with msgs */
758 static unsigned long last_msgtime, count;
759 ++count;
760
761 if (time_after(jiffies, last_msgtime + HZ)) {
762 last_msgtime = jiffies;
763 printk(KERN_ERR "%s: unexpected interrupt, "
764 "status=0x%02x, count=%ld\n",
765 hwif->name, stat, count);
766 }
767 }
768}
769
770/**
771 * ide_intr - default IDE interrupt handler
772 * @irq: interrupt number
773 * @dev_id: hwif
774 * @regs: unused weirdness from the kernel irq layer
775 *
776 * This is the default IRQ handler for the IDE layer. You should
777 * not need to override it. If you do be aware it is subtle in
778 * places
779 *
780 * hwif is the interface in the group currently performing
781 * a command. hwif->cur_dev is the drive and hwif->handler is
782 * the IRQ handler to call. As we issue a command the handlers
783 * step through multiple states, reassigning the handler to the
784 * next step in the process. Unlike a smart SCSI controller IDE
785 * expects the main processor to sequence the various transfer
786 * stages. We also manage a poll timer to catch up with most
787 * timeout situations. There are still a few where the handlers
788 * don't ever decide to give up.
789 *
790 * The handler eventually returns ide_stopped to indicate the
791 * request completed. At this point we issue the next request
792 * on the port and the process begins again.
793 */
794
795irqreturn_t ide_intr (int irq, void *dev_id)
796{
797 ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
798 struct ide_host *host = hwif->host;
799 ide_drive_t *uninitialized_var(drive);
800 ide_handler_t *handler;
801 unsigned long flags;
802 ide_startstop_t startstop;
803 irqreturn_t irq_ret = IRQ_NONE;
804 int plug_device = 0;
805
806 if (host->host_flags & IDE_HFLAG_SERIALIZE) {
807 if (hwif != host->cur_port)
808 goto out_early;
809 }
810
811 spin_lock_irqsave(&hwif->lock, flags);
812
813 if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
814 goto out;
815
816 handler = hwif->handler;
817
818 if (handler == NULL || hwif->polling) {
819 /*
820 * Not expecting an interrupt from this drive.
821 * That means this could be:
822 * (1) an interrupt from another PCI device
823 * sharing the same PCI INT# as us.
824 * or (2) a drive just entered sleep or standby mode,
825 * and is interrupting to let us know.
826 * or (3) a spurious interrupt of unknown origin.
827 *
828 * For PCI, we cannot tell the difference,
829 * so in that case we just ignore it and hope it goes away.
830 */
831 if ((host->irq_flags & IRQF_SHARED) == 0) {
832 /*
833 * Probably not a shared PCI interrupt,
834 * so we can safely try to do something about it:
835 */
836 unexpected_intr(irq, hwif);
837 } else {
838 /*
839 * Whack the status register, just in case
840 * we have a leftover pending IRQ.
841 */
842 (void)hwif->tp_ops->read_status(hwif);
843 }
844 goto out;
845 }
846
847 drive = hwif->cur_dev;
848
849 if (!drive_is_ready(drive))
850 /*
851 * This happens regularly when we share a PCI IRQ with
852 * another device. Unfortunately, it can also happen
853 * with some buggy drives that trigger the IRQ before
854 * their status register is up to date. Hopefully we have
855 * enough advance overhead that the latter isn't a problem.
856 */
857 goto out;
858
859 hwif->handler = NULL;
860 hwif->req_gen++;
861 del_timer(&hwif->timer);
862 spin_unlock(&hwif->lock);
863
864 if (hwif->port_ops && hwif->port_ops->clear_irq)
865 hwif->port_ops->clear_irq(drive);
866
867 if (drive->dev_flags & IDE_DFLAG_UNMASK)
868 local_irq_enable_in_hardirq();
869
870 /* service this interrupt, may set handler for next interrupt */
871 startstop = handler(drive);
872
873 spin_lock_irq(&hwif->lock);
874 /*
875 * Note that handler() may have set things up for another
876 * interrupt to occur soon, but it cannot happen until
877 * we exit from this routine, because it will be the
878 * same irq as is currently being serviced here, and Linux
879 * won't allow another of the same (on any CPU) until we return.
880 */
881 if (startstop == ide_stopped) {
882 BUG_ON(hwif->handler);
883 ide_unlock_port(hwif);
884 plug_device = 1;
885 }
886 irq_ret = IRQ_HANDLED;
887out:
888 spin_unlock_irqrestore(&hwif->lock, flags);
889out_early:
890 if (plug_device) {
891 ide_unlock_host(hwif->host);
892 ide_plug_device(drive);
893 }
894
895 return irq_ret;
896}
897EXPORT_SYMBOL_GPL(ide_intr);
898
899void ide_pad_transfer(ide_drive_t *drive, int write, int len)
900{
901 ide_hwif_t *hwif = drive->hwif;
902 u8 buf[4] = { 0 };
903
904 while (len > 0) {
905 if (write)
906 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
907 else
908 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
909 len -= 4;
910 }
911}
912EXPORT_SYMBOL_GPL(ide_pad_transfer);
This page took 0.027951 seconds and 5 git commands to generate.